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Abstract

The concept of trust is diverse and widely used to understand dynamics within multi-agent

systems (MAS). Various academic disciplines study trust to understand the interactions and

decisions of humans and/or artificial agents. We define trust as the extent to which an agent is

willing to take on the risk governed by the behavior of another agent.

The following research formulates trust as a decision process under the reinforcement learning

(RL) framework. Distinct from previous work, trust is formalized as an action enabling mean-

ingful measurement of the construct as the expected return with consideration to the variance

of the partner’s behavior. The framework facilitates the investigation of the role of reward, risk,

and partner behavior within trust formation and collaboration between the agents. We examine

these characteristics among two agents operating in a gridworld simulated environment.

We find that having information on the partner’s behavior, and the ability to take risks are

crucial aspects for trust formation. When agents make risk-conscious decisions upwards to 62.54

% rates of mutual collaboration can be achieved. However, there is a trade-off where high values

of trust can lead to over-trust situations; situations where one agent trusts the other agent to

its own detriment. Then, the agent must adapt how much risk it is willing to assume, to control

for these mis-coordinated outcomes.

We propose several avenues for future work in which the framework estimates and integrates

risk into the agent’s decision-making process. The framework can be used to further articulate

interdependencies and the characterization of interactions, and expanded to larger multi-agent

systems.

i



Contents

1 Introduction 1

2 Related Research 1

2.1 Firefighter Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Socio-Cognitive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Computational trust models for MAS . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Interdependence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6 Safe Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.7 Expected Utility Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Theoretical Formulation 8

3.1 Proposed Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Trust as an action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Algorithmic Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 Expanded state space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Research Objectives and Questions 16

4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Experimental Design 17

5.1 Outcome Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Demonstrated performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Results 27

6.1 RQ #1: Impact of Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 RQ #2: Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3 RQ #3: Risk Preference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ii



6.4 RQ #4: Variation in partner behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.5 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Conclusions 40

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iii



1 Introduction

Multi-agent systems are a way of describing a collection of autonomous agents that each have their

own goals, missions, or responsibilities [1]. These systems are growing to become pervasive in

society. We are using increasingly intelligent robots and intelligent tools to interact with each other

and interact with people, with everyone having their own goals. Natural questions that come up

are how can we get everyone to synchronize efforts, and how can everyone work together towards

an even greater mission?

In the domain of behavior change and intervention systems, machines are in a relationship with

their humans. For example, an intelligent artificial pancreas encourages beneficial health behavioral

changes to the human patient [2]. Does the human listen? I trust my machine, but I trust my other

instincts more. When would the human trust the machine’s recommendations? In an education

setting, a intelligence robot is providing instruction to a classroom [3]. Each student will inculcate

the instruction so far as how much he or she trusts the teacher.

Larger and distributed systems comprise of a complex network of relationships. Energy is being

harvested from a distributed network of sensors [4]. Individual producers must coordinate with

each other to pool the commodity and coordinate with buyers. In the manufacturing realm, robots

and human operators perform specialized tasks [5]. Whether it is a smart energy market or a

factory setting, individual agents cannot blindly trust each other. However, trust is required for

collaboration to a greater success. What are the risks that each agent has to accept when they

partner, and how are those risk mitigated? How are these teams built?

Multi-agent systems proliferate in society; their capabilities and their associated challenges.

Collaboration between autonomous agents and humans is significant challenge. My thesis is, Trust

is the primary determinant of collaborative outcomes within multi-agent systems.

2 Related Research

The concept of trust is diverse and widely used to understand dynamics within multi-agent systems.

Various disciplines from economics, psychology, sociology, and computer science study trust to

understand the interactions and decisions of humans and/or artificial agents. Cognitive factors

such as fear and hope can impact the construct of trust, as well as social and environmental
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conditions. Trust is dynamic and changes over time between agents, and depends on specific

situations or circumstances. These characteristics make trust a challenging construct to model yet

vital to understand social and network interactions. Among these factors, measuring trust becomes

significant as well.

Various academic disciplines study trust and develop definitions to characterize the construct.

Organizational behaviorists Rousseau et al. developed a cross-disciplinary definition to promote

shared understanding across all academic domains. Rousseau et al. define trust as, “a psychological

state comprising the intention to accept vulnerability based upon positive expectations of the

intentions or behavior of an other” [6]. Rousseau and other scholars note that trust is comprised

of a psychological and social component [6]–[8]. A psychological process is present that drives an

individual to a decision based on contextual information and emotions. A social process is required

where the individual must consider to interact, collaborate, or dependent on a partner. Mayer et

al. define trust as, “the willingness of a party to be vulnerable to the actions of another party” [9].

The sociologist Niklas Luhmann described trust as the willingness to take risk under uncertainty

[10]. Scholars note the central role that consideration of risk or reliability of the partner in decisions

of trust [6], [11].

A review across multiple disciplines in regards to trust related research illustrate the key char-

acteristics of trust include interdependence, risk, a psychological process, and a social interaction.

How do we integrate these elements into a framework to model trust formation and collaboration

between multi-agent systems (MAS)? The following subsections elaborate on current approaches to

study these characteristics, how current computational approaches model trust within multi-agent

systems (MAS), and their limitations to study these characteristics.

2.1 Firefighter Scenario

Before I talk about those trust characteristics, I want to introduce a simple example to reference

through out the presentation. The scenario is illustrated in 1. Bob is in his office building, which

is on fire. A firefighter contacts him and says, “The bottom floor is on fire. We have to exit out

of the roof. Meet me on the roof, I’m going to check the rest of the building for other people.”

Figure 2 articulates Bob’s thought process. Bob has a choice, should he trust the firefighter and

go to the roof. What if the firefighter does not show up, he could die. Or, Bob can say, ”I don’t
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Figure 1: The firefighter scenario

Figure 2: Bob’s decision timeline

believe the firefighter. I know my building better than him. I can find a way out of the first floor

myself.” How does Bob negotiate this dilemma? Should Bob trust the firefighter? Well it depends,

but what does it depend on ?

2.2 Socio-Cognitive Approach

The significant challenge was to map important characteristics of trust determined from psychology

and sociology, into an integrated computational framework. Circa 1995, Cristiano Castelfranchi

and Rino Falcone introduced a socio-cognitive approach to model trust in multi-agent systems [7].

Most contemporary computational trust models lean on the work of Castelfranchi and Falcone.

They integrate four primary characteristics, their framework to describe trust development.
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First, the agent has its own goal seeking behavior. Second, The agent forms a prediction or

belief on the partner’s behavior. Third, the agent makes a decision or intention to be vulnerable

to another’s actions. Fourth, the agent induces a subjectivity created through a cognitive pro-

cess. Factors of fear, hope, beliefs, and attitudes impact the agents perception of the reward, and

willingness to take risk.

How do these characteristics map into the firefighter scenario in figure 1. First, Bob is motivated

by is own interests. He is going to act in the manner to save his own life. Second, there is a

component of partner prediction. Bob needs to predict the firefighter’s behavior. What is the

likelihood that the firefighter will meet me on the roof? Third, Bob has to make a decision, go up

and be subject to what the firefighter does, or go down and be irrelevant to what the firefighter

does. Fourth, there is an induced subjectivity. Bob’s own inherent willingness to take risk, and his

own emotions effect his decision-making process.

The work of Castelfranchi and Falcone also demonstrate how the environment and context can

influence an agent’s decision-making through changes in the information, intrinsic beliefs, and/or

observed beliefs. Finally, the authors make a distinction between trust and collaboration. Trust

does not guarantee collaboration and vice versa. These implications illustrate how trust is a unidi-

rectional, subjective, and dynamic process—important characteristics to understand trust develop-

ment in multi-agent systems (MAS). The research paved the way for follow on work on how trust is

formed through specific information sources and in specific MAS application areas. The limitation

of the framework will be discussed at the end of the next subsection.

2.3 Computational trust models for MAS

Within the last ten years, there has been an extensive amount development in computational trust

models for MAS. Many models informed through the work of Castelfranchi and Falcone. Each model

considers a different approach in calculating trust among interactions in a variety of application

areas. In large multi-agent networks, the key task for an agent is to often find a trustworthy agent

to help advance towards a goal. Trust models will assist with that task and primarily use quality of

direct interactions as a way to evaluate and calculate trust. When direct interaction information is

not existent or is insufficient, trust models utilize third party or witness information to assess the

trustworthiness of an agent [12]. Sabater and Sierra developed the foundational ReGreT model [13]
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demonstrating how trust can be calculated in a large social network using four pieces of information:

direct interactions, third-party information, social relationships, and system reputation [14]. Other

models may utilize additional sources of information such as certification protocols [15], update

trust in a probabilistic manner [16], or a Bayesian network approach [17]. Overall these approaches

consider multiple sources of information into trust formulation.

The framework posed by Castelfranchi and Falcone and the above computational models focus

on the calculation of a trustworthiness score. They do not facilitate the study of interactions, trust

decisions, and associated trade-offs. There is a key characteristic missing from these approaches,

the characterization of interdependence.

2.4 Interdependence Theory

Interdependence is a situation when the goals or interests of two agents overlap, and cannot be

achieved without the agents relying on each other [11]. Psychologists Harold Kelley and John

Thibaut first introduced interdependence theory in 1959. The theory formalizes interdependent

rewards and interpersonal interactions within contextual (environmental) conditions [8], [18]. The

theory allows for the study of interdependence along multiple dimensions such as degrees of de-

pendence, influence, and dependability [8]. The theory explains how interdependent rewards can

be characterized as a cost and a benefit, which are dictated by the environment or circumstance.

The two researchers introduced game theoretic matrices to articulate the interplay between envi-

ronment, decisions, and outcomes. The matrix approach illustrates the utility of studying trust

as interactions, however it is limited to single interaction games. The theory provides an stepping

point to settings that involve sequential decision making, and settings that involve more than two

agents.

In the firefighter example in figure 1, Bob must rely on the firefighter, to a certain degree.

Interdependence theory helps us characterize this dependence. When Bob needs to make a decision

to be vulnerable, he compares the outcome from being dependent on the firefighter, with the

outcome of acting independently (alone) by going downstairs.

Wagner et al. studied trust development between humans and machines through stochastic game

theoretic models. The team experimentally tested Kelley and Thibaut’s interdependence theory in

the human-machine interaction domain. Wagner et al. examined the extent to which interdepen-
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dent reward structures and inherent risk disposition influenced trust decisions [19]. Gaps between

theoretic predictions and experimental results were attributed to human cognitive responses to dif-

ferent situations. Individuals react differently (emotionally) than each other in different situations.

Game-theoretic approaches to study trust development can be improved in three ways to include

learning, delayed feedback, and dynamic situations. Game-theoretic approaches do not adequately

address trust formation as learned behavior between interactions. The analysis of the development

of trust through a learning model may yield additional insight on how and why agents deviate from

theoretic outcomes. Do situations and previous interactions shape trust development in a way that

ultimately leads to sub-optimal decision-making? Maybe Bob has a history of being betrayed by

firefighters, which leads him to not trust this one.

Delayed feedback will also improve the framework. Many times, the feedback from the decision

to trust is not received until later on. Bob does not immediately know that he made the right

decision to trust the firefighter. He does not get the reward until the end of this scenario. Finally,

dynamic situations will help improve the characterization of trust. Trust is dependent on the

situation. Bob’s trust in the firefighter is different if he is closer to the roof vs closer to the first

floor, as well as other details that may characterize this environment.

2.5 Markov Decision Processes

Trust models built within Markov Decision Processes (MDPs) characterize trust as a learned pro-

cess, include delayed feedback, and include dynamic situations. Chen et al. capture the relationship

through a partially observable Markov decision process (POMDP) [20]. Within the model, trust

is defined as the approximation of the history of interaction between two agents. Therefore, the

probability of a particular action is conditioned on the state and the trust parameter, which is

updated after each interaction. The agent will tend to select particular actions depending on the

level of the trust parameter.

Reinforcement learning (RL) is a form of machine learning characterized by goal-oriented behav-

ior within a Markov decision process [21]. RL assumes the agent’s behavior is driven to maximize

reward. The assumption remains consistent with previously specified forms of trust research where

people are often modeled as reward maximizers [8], [7]. The RL framework allows for stochastic

decision-making and feedback from the environment, which characterizes the uncertainty condi-
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tions of rewards. Decisions based on contextual information and decisions based on interactions

are effectively tested in RL. Therefore, trust conditions such as risk, reward, and interaction can

be mapped into the RL framework. Furthermore, the use of a learning model provides insight

on trust formation as through repeated interactions. Trust is maintained as a parameter that is

learned through direct interactions [22], [23], and witness information [24], [25]. In large scale MAS,

agents are classified based on their trustworthiness score to prioritize interactions. Classification

mechanisms are executed through heuristics [22] or fuzzy logic systems [24].

The above trust models focus on the four trust characteristics posed by Castelfranchi and

Falcone. However, there is no characterization of interdependence- how much does the agent have

to depend on the partner versus not have to depend on the partner. The lack of this component

limits our ability to study risk in the context of trust relationships.

Moreover, the above trust models formulate trust as a parameter. There is a disconnect between

actual and accepted definitions of trust out of psychology and sociology, and how the definitions

are formalized in these models. Trust as a parameter does not meaningfully express the decision

to be vulnerable or a willingness to take risk.

2.6 Safe Reinforcement Learning

There is an important relationship between the trust and risk. In traditional approaches to RL,

agents only consider the expected return of outcomes. In trust situations, it is significant to consider

the risk associated with the interaction. Approaches in safe RL balance maximization of expected

return with risk, in order to motivate the agent to avoid high risk states despite their potentially

high return. Safe RL approaches modify the optimization criteria by including the consideration of

reward variance [26]. Heger introduced a minimax criteria where the agent maximizes the expected

return over the trajectory of least variance [27]. On the other hand, the optimization criteria can be

a linear combination of expected return and variance [28], [29], or an exponential expected utility

function [30]. These changes in the optimization criteria provide a utility on the variance for the

agent to consider at a given state. Other safe RL approaches modify the exploration process [26].

Apprenticeship learning or initial learning can guide agents through the learning process to avoid

high-risk states. Agents can also be guided through the exploration process through a risk metric

identified for each state-action pair [31]. Safe RL approaches primarily focus on minimizing risk in
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control applications. The literature does not address encouraging agents to take risks to promote

trust development and collaboration.

2.7 Expected Utility Theory

Several of the safe RL approaches above are informed by expected utility theory. These approaches

acknowledge that an agent’s perceived value of a reward, and the real value of a reward are not

necessarily the same. The gap between utility and real value is due to a inherent subjectivity of

the agent. The subjectivity can be influenced by a variety of cognitive emotions such as fear, hope,

regret, or caution [7], [32]. Expected utility theory calls this subjectivity parameter a risk preference

that controls the shape of the utility function. Safe RL approaches have directly used expected

utility functions [30] in the objective criteria. Also, several safe RL approaches contain a parameter

to control the amount of variance to consider as part of the reward expectation calculation [28],

[29]. The approaches of expected utility theory integrated into the RL architecture are focused

on risk aversion and safety. In trust interactions, we seek to encourage risk seeking behavior to

promote trust development.

3 Theoretical Formulation

Various academic disciplines have conducted important research into trust. A survey of the lit-

erature indicates that key elements of trust are interdependence, risk, a psychological process, a

social interaction, and situational context. In order to study trust formation and collaboration

among MAS, a framework must integrate these trust characteristics. The computational trust

framework by Castelfranchi and Falcone best integrate these characteristics highlighting that trust

comprises of a prediction of the partner, decision to be vulnerable to another, cognitive process, and

goal seeking behavior [7]. However, the framework does not characterize interdependency, which

limits our understanding of the nature of the interaction between the agents. Wagner et al. use

a game-theoretic framework built on Interdependency Theory by Kelley and Thibault to better

characterize interactions [18], [19]. However, both approaches do not consider trust development

through learning, delayed feedback, and dynamic situations. Trust models build as MDPs address

these issues, but formalize trust as a parameter. Trust as a parameter does not meaningfully ex-
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press the decision to be vulnerable or a willingness to take risk. Therefore, we seek to develop a

theoretical formulation that characterizes the significant trust elements, to allow us to study the

formation of trust and collaboration among multiple agents.

3.1 Proposed Definition

We formalize our definition of trust as follows: trust is the extent to which an agent is willing

to take on the risk governed by the behavior of another agent. Risk is defined as the

variance in return [33], governed by the behavior of another agent.

If agent 1 trusts agent 2 a great deal, then agent 1 is willing to take on risk that is governed

by agent 2’s actions and will behave in accordance with the expectation that agent 2 will act in a

particular way. In trusting agent 2, agent 1 makes its future rewards contingent upon the behavior

of agent 2. On the other hand, if agent 1 does not trust agent 2, then it will do its best to eliminate

agent 2’s influence over agent 1’s future rewards. Misplaced trust has negative utility when the

agent 1 acts in a way that is sub-optimal given expectations of agent 2 are not met. The definition

emphasizes the key role that risk and reward play in trust. Furthermore, the definition poses trust

as a decision to take on risk with another agent, highlighting the interdependent reward and trust

as a decision.

3.2 Problem Formulation

The proposed definition helps create a theoretical formulation as a Markov Decision Process (MDP).

We build off of the firefighter scenario in figure 1. We formulate a two-agent system, n = 2, with Bob

and the firefighter. Each agent has a discrete set of states in state space, si ∈ S, representing the

location or floor of the agent. There is a discrete set of two actions available to the agent, to either

move up or to move down, ai = {aU , aD} ∈ A. There is an unknown probability transition matrix,

T . Each agent is given its own reward function, R. There is a time-valued discount parameter, γ.

The Markov Decision Process (MPD), < n, S,A, T,R, γ > is created. Each agent follows a default

ε-greedy policy, π, to balance exploration and exploitation. Each agent’s objective is to maximize

their own return (long term reward), which results in the optimal policy for the agent, π∗. Equation

1 is the objective function, where t is the time-step.
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π∗(a|s) = max
π∈Π

Eπ[Gt|st, at] = max
π∈Π

Eπ[
∞∑
k=0

γkRt+k+1|st, at] (1)

Figure 3: Simple problem formulation

There are two outcomes for a particular agent. Figure 3 visually depicts the agent’s decision.

Both agents hold the same perspective. From any state, the agent faces a choice. Let’s look at

the choice from the perspective of Bob. Bob can choose to go down (action down, aD, to act

independently, which will lead to a consistent reward noted as the independent reward, Rind. Or,

Bob can choose to go up (action up), aU , which will lead to two possible rewards that are contingent

on the other agent (the firefighter’s) behavior, an Rn,int or Rp,int.

These reward contingencies are noted as interdependent rewards. A reward contingency is

defined as a set of conditions that both agents must meet in order to receive the positive interde-

pendent reward, Rp,int. If both agents satisfy the conditions, it would be considered a successful

interaction and both agents will receive the positive interdependent reward, Rp,int. If an agent de-

viates from one of the conditions, it will result in a failed interaction and the agent who attempted

to collaborate will receive a negative interdependent reward, Rn,int.

If Bob goes up and the firefighter is already on the roof, that is considered a successful in-

teraction and Bob will receive the positive interdependent reward, Rp,int.If Bob goes up and the

firefighter is not on the roof, that is considered a failed interaction and Bob will receive the negative

interdependent reward, Rn,int. Figure 4 articulates the reward structure in game-theoretic matrix

form. In a 2x2 matrix, the interdependency between both agents is highlighted. The matrix also
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highlights how this can be seen as a simple coordination game.

Figure 4: Theoretical Reward Matrix

Each agent must weigh the expected return of pursuing the independent reward, choosing aD,

and the expected return of pursuing the interdependent reward, aU . By definition, the action-value

function q(s, a), is the expected return Gt, starting from state s, taking action a, and then following

policy π [21].

qπ(s, aD) = Rind + γEπ[(Gt+1|st+1, at+1)] (2)

qπ(s, aU ) =

 Rn,int , if C = NM

Rp,int , if C = M
+ γEπ[(Gt+1|st+1, at+1)] (3)

In equation 3, C = NM denotes if the reward contingency conditions are NOT MET by both

agents, versus C = M denotes if the reward contingency conditions are MET by both agents. The

condition in the firefighter scenario is if the partner is present at the terminal point. As equations

2 and 3 specify, the q-values comprise of an immediate reward and discounted future return. The

expected return from action up, is the expected return from a policy pursuing the independent goal.

The expected return from action down is dependent on the immediate outcome of the contingency,

which dependent on the behavior of both agents. Because the expected return from action up is

dependent on the behavior of both agents, there is variability on the expected return from the

interdependent goal. On one hand, an agent can choose an action that eliminates any dependency

on the other agent and can choose to pursue the independent reward, which has no variance due

to the partner’s behavior.
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Standard RL methods in incrementally estimating the expectation do not adequately character-

ize the distribution of the interdependent reward. The expectation will be adjusted heavily based

on the latest outcome, and not consider the history of outcomes as an indication of the other agent’s

behavior. The agent needs more insight on the partner’s behavior in order to determine if pursuing

the interdependent reward is a worthwhile endeavor.

There are two problems in the standard RL formulation. First, how do we restructure the action

space to include the concept of trust as a primary construct? Second, how does the agent consider

the variance (in outcomes due to the partner’s behavior) in its decision-making process?

3.3 Trust as an action

Motivated by the proposed definition of trust, as well as trust scholars such as Meyer, Castelfranchi,

and Falcone, trust has often been characterized as a decision to accept the risk associated with

another [7], [9]. The current framework in figure 3 does not have a concept of trust, and only

contains two actions. We now adopt the concept in figure 3 to a general action space and include

two additional action choices- the action to ”trust” and the action to ”not trust.” To “not trust”

is to choose a subset of actions to pursue the independent reward. To “trust” is to choose a subset

of actions to pursue the interdependent reward. The decision process becomes a two step decision

process, where the first step is for the agent decide, at a particular state, is it more valuable to

”trust” or ”not trust” the other agent. This is a cognitive decision, where the state does not

change. There is no physical movement of the agent. Then, depending on the trust/not trust

choice, a subset of following actions are available. In choosing action to ”trust”, the agent has a

subset of actions now available, and in choosing an action to ”not trust,” the agent has a different

subset of actions available. Trust and not trust actions must influence availability of subsequent

actions in order to differentiate trust and not trust action choices. Future work can focus on varying

the probability of subsequent action choices. Figure 5-6 illustrates the new formulation.

Trust is formalized as an action. This is a distinction from previous trust-RL

models [22]–[25]. These models represent trust as a parameter that is updated through

interactions and other sources of information. We postulate that trust is a decision

the agent faces, where it must estimate the value of trusting or not trusting in each

state.
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Figure 5: Formulation with trust as an action

Figure 6: MDP with trust as an action

3.4 Variance

The second problem with the standard RL formulation is how does the agent consider variance,

due to the outcomes in the partner’s behavior, in its decision-making process? Safe RL literature

provides methods of addressing variance in return through changes in the objective function or

exploration process. Other approaches may be to observe and estimate a policy of the other agent.

Variance is included as part of the objective function [26], [28].

π∗(a|s) = max
π∈Π

(Eπ[Gt|st, at] +

 βσ2
R,int , if at = T

0 , if at = NT
) (4)

Where, σ2
R,int is the variance of the historical interdependent outcomes. The variance is an esti-

mation of the other agent’s behavior. The agent maintains a record of the history of interdependent
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outcomes. The variance of this distribution is the risk governed by the partner. If the firefighter

scenario was a repeated game, Bob has attempted interacting with the firefighter x amount of

times, sometimes successful, sometimes not. Bob approximates the risk governed by the firefighter

through the variance of this distribution.

The parameter, β, serves to soften the component, and represents inherent risk preference of

the agent. β = 0 denotes a risk-neutral agent, whose decision is driven only by maximum expected

return. β > 0 denotes a risk-seeking agent, who has a propensity to accept the variance governed

by the partner, which translates to placing additional value on trust actions. β < 0 denotes a

risk-averse agent, who has a reluctance to accept the variance, which translates to removing value

from trust actions.

The variance component only reinforces trust action choices. The partner is unreliable when

the variance is large. Therefore a small β parameter can be selected to limit the influence the

variance has on the value or utility for the action trust value. Most of the value will then come

from the expected return from the interdependent goal. Conversely, the partner is reliable when

the variance is small. Therefore a larger β parameter can be selected to increase the influence the

variance has on the value or utility for the action trust value. Now, the value of the trust action

will be bolstered by value of variance, in addition to the expected return.

3.5 Algorithmic Formulation

Two problems have been addressed: incorporating trust as an action and incorporating variance in

the objective function. The agent now has to choose between depending on the partner and receiving

an interdependent reward from a distribution, OR, acting alone and receiving a independently

reward. With trust formulated as an action, the agent first determines if it is more valuable to

not trust or to trust, which will dictate its subsequent movement actions. A variance component

is added into the objective function so the decision to trust now considers the historical behavior

of the partner.

We now have a more nuanced characterization of trust. The value to not trust is

expected return from the independent goal. The value to trust is the expected return

from the interdependent goal, with consideration to the risk governed by the partner.

The value of trust is now meaningful in units of reward points. The value of trust is
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now dependent on the state.

qπ(s, aNT ) = Rind + γEπ[(Gt+1|st+1, at+1)] (5)

qπ(s, aT ) = γEπ[Gt+1|st+1, at+1] +



Rp,int + βσ2
R,int , if C = M and at = T

Rn,int + βσ2
R,int , if C = NM and at = T

Rp,int , if C = M and at = NT

Rn,int , if C = NM and at = NT

(6)

The agent now as a nuanced method to calculate the value of trust. At each state, it can

determine the value to ”not trust” versus to ”trust”. The value to ”not trust” is the expected

return in pursuing the independent reward, which only depends on the state, its own actions, and

the independent reward. The value to ”trust” is the expected return in pursuing the interdependent

reward with consideration of the historical variance of the interdependency. The value of trust

depends on the state, agent’s own actions, the interdependent reward, and the behavior of the

partner.

The on-policy method, SARSA(λ), is modified to include implement the formulation compo-

nents specified above [21]. α is the learning rate of the agent, λ is the eligibility trace weight. The

developed SARSA algorithm will be referred to as SARSA-Trust (SARSA-T) through the rest of

this report.

q(st, at)← q(st, at) + α(Rt+1 + γq(st+1, at+1)− q(st, at) + (βσ2
R,int)) (7)

Note that the above update is only used when a trust decision is made. When a ”not trust”

decision is made, the variance component is not included in the update.

3.6 Expanded state space

The next problem is to ensure the agent has accurate information from the environment to facilitate

learning. The agent requires information on the benefits and consequences of its action choices,

as related to the contingency. In this case, the contingency is that both agents end at the final
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location together. Therefore, the agent’s state space is defined as its own location and the location

of the other agent.

4 Research Objectives and Questions

The theoretical formulation seeks to create a framework to study trust formation and collaboration

between two agents. We use Interdependence Theory by Kelley and Thibault to characterize the

a interaction between two agents, where trust and collaboration are possible. We incorporate the

four trust model attributes of Castelfranchi and Falcone into a reinforcement learning framework.

First, agents are motivated by their own reward functions. Second, the trust is formulated as

a decision between an independent and interdependent reward. The final model characteristics,

partner behavior prediction and subjectivity, are integrated into a modified objective function

where a variance component. The value of trust at a particular state is the expected return from

the interdependent reward plus the agent’s subjective interpretation of the historical variance of

the partner. The formulation within reinforcement learning allows us to investigate trust as a

learned behavior through a sequential decision-making process. Trust is learned through repeated

interactions with the partner. Feedback from decisions to trust or not trust are delayed.

Aspects of the theoretical formulation enable us to pursue two research objectives. 1) To

determine under what conditions is collaboration between two agents achieved. 2) To determine

what the value of trust reveals about the interactions under these conditions. Through analysis of

the framework’s rewards, agent subjectivity, and behavior, we aim to understand trust formation

and collaboration between two agents.

4.1 Research Questions

#1: Impact of SARSA-Trust. How does the new theoretical formulation affect trust and

collaboration between the two agents? The research question investigates the impact of each new

component of the theoretical formulation, to trust and collaboration between the two agents.

#2: Rewards. How do different values in the rewards affect trust and collaboration between

the two agents? The research question investigates the role of the reward components- the inde-

pendent reward, Rind, the positive interdependent reward, Rp,int, and the negative interdependent
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reward, Rn,int, in trust formation and collaboration.

#3: Risk preference. How does inherent risk preference effect trust and collaboration be-

tween the two agents? The research question assesses the role of subjective considerations of risk

preference in trust formation and collaboration.

#4: Partner behavior. How does partner’s behavior effect trust and collaboration between

the two agents? The research question analyzes the impact of varying partners in trust formation

and collaboration.

5 Experimental Design

We will utilize a simulated environment to investigate the research questions. The gridworld envi-

ronment is a useful tool to explore the representation of an MDP [21]. A gridworld’s interpretabil-

ity and general applicability make it an excellent place to begin the exploration of trust between

agents within an RL framework. Particularly, gridworld allows for the testing of sequential decision-

making, where immediate trust/not trust decisions can have long term benefits and costs. Figure 7

illustrates the experimental design. A four-by-four Cartesian gridworld is utilized. Two agents are

included in the experiment. The objective for each agent is to maximize their individual reward,

which is achieved through finding the shortest path to one of two terminal locations, location 0 or

location 15. The state space of the agent is a tuple comprising of the location of agent 1 (grids

0 through 15) and the location of agent 2 (grids 0 through 15). There are six possible actions

available for each agent: to ”not trust”, to ”trust” move left, move up, move right, or move down.

Each agent is given its own reward function that has a independent reward, Rind, a positive

interdependent reward, Rp,int, and a negative interdependent reward, Rn,int. If the agent arrives

at location 0, it will receive the independent reward, Rind; the reward is independent of the other

agent’s actions. The interdependent reward is conditioned on the behavior of both agents. If both

agents arrive at location 15, both agents will receive the positive interdependent reward, Rp,int. If

one agent goes to location 15 and the other agent goes at location 0, the former will receive the

negative interdependent reward, Rn,int, as a failed attempt to collaborate. Finally, both agents

receive a “-1” point for every step they take, to emphasize the shortest path to the terminal states.

Figure 8 summarizes the reward structure in game theoretic matrix form. Summarizing the reward

17



Figure 7: Experimental formulation

structure in a matrix highlights the interdependency between the two agents. The matrix also

illustrates this how this can be seen as a simple coordination game between the two agents.

Figure 8: Rewards in matrix form

Figure 9 illustrates the two decisions that the agent makes during each iteration. The first

decision is the trust decision. Following an ε-greedy policy, the agent decides either to “trust” or

“not trust” the other agent. There is no change in the state; no physical movement of the agents.

Furthermore, the trust decision will impact the availability of actions during the second decision. If

the agent decides to ”trust”, then only a subset of actions pursuant of the interdependent reward is

made available- move right and move down. If the agent chooses to ”not trust”, then only a subset

of actions pursuant of the independent reward is made available- move left and move up.

A algorithmic cycle is a cycle of two decisions that the agent goes through; first a trust decision,
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Figure 9: Agent decision tree in Gridworld

then a movement decision, after which results in one physical movement step. An agent will make

any number of algorithmic cycles to move to a terminal location, as defined as location 0 or location

15. Once both agents reach a terminal location, the episode concludes. The action-values calculated

during that episode is transferred to the next episode. Both agents start at new initial locations

and begin a new episode to alternate movement to a terminal location. There is a specified number

of episodes to allow both agents a specified number of repeated interactions and learn how to

optimally behave in given conditions.

5.1 Outcome Variables

Two sets of outcome variables are used: final outcomes and trust-values. Final outcome metrics

are borrowed from game theoretic approaches [32] and give insight into team and collaborative

performance. What goals do the agents learn to pursue? An episode concludes with either agent

finishing at a particular terminal location. Figure 10 illustrates the four possible outcomes. The

fraction of outcomes, out of total tested episodes, are indicative of what policies the agents have

learned under given conditions. If both agents terminate at location 0 (S0S0), this indicates both

agents have chosen to act independently for that episode. If both agents choose terminate at location

15 (S15S15), both agents have chosen to collaborate. This is indicative of mutual collaboration
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and a successful interaction as both agents will have obtained the positive interdependent reward.

If agent 1 terminates at location 0 and agent 2 terminates at location 15 (outcome S0S15), this

is indicative of a sub-optimal decision or lack of coordination. This is also true when agent 1

terminates at location 15 and agent 2 terminates at location 0 (outcome S15S0).

Figure 10: Final Outcomes

Trust-values give insight into the trust dynamics between the agents and why the agents behave

the way they do. Equations 5-7 enable the calculation of trust values by state. Specifically, we

look at the expected value of trust minus the expected value of not trust for each state. If the

difference is positive, this indicates the state is beneficial for ”trust”. If the difference is negative,

this indicates the state is beneficial to ”not trust”.

∆ = qπ(st, aT )− qπ(st, aNT ) (8)

When comparing the effect of different treatments on trust values, the percent of states that

favor trust will be used as a summary metric. In any particular state, the agent is going to find it

more valuable to ”trust” or to ”not trust”. The share of states that the agent finds it more valuable

to ”trust” is a summary of the impact of the treatment on trust.

S%,T =
# of stateswhere∆ > 0

total# of states
(9)
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5.2 Demonstrated performance

The following subsection demonstrates the developed framework and how the outcome variables

can be utilized to analyze performance.

In the following situation, two independent learning agents are given the same reward function

and developed SARSA-Trust algorithm. The reward components are set at, Rind = 9.5, Rp,int =

20, and, Rn,int = −1. Both agents are risk-neutral agents at β = 0. Therefore, they do not

consider variance in their objective function. Both agents are unsuccessful in achieving mutual

cooperation. Figure 11 illustrates their final outcomes. Out of 1,000 episodes, 69.68% of the

episodes results in both agents terminating at location 0. Therefore, 69.68% of the time, both

agents acted independently or mutual defection. 15.68% of the episodes resulted in both agents

terminating at location 15. Therefore, 15.68% of the time, both agents collaborated successfully

or mutual collaboration. 7.30% of the episodes resulted in agent 1 going to location 0 while agent

2 terminated at location 15, and 7.34% of the episodes resulted in the opposite outcome. These

illustrate mis-coordinated events among the two agents.

Figure 11: Final Outcomes for demonstration, Risk-Neutral Agents

Figure 12 illustrates the plot of the trust-values that Agent 1 has learned. Agent 1 calculates

its value to “not trust” based on its proximity to the independent reward, location 0. Agent 1

calculates its value to “trust” based on its proximity to the interdependent reward at location

15, Agent 2’s proximity to location 15, and Agent 2’s prior behavior. The difference between the

q-values dictate which outweighs the other. A positive difference notes that it is more valuable to
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“trust” than to ”not trust” at a particular state.

The y-axis is the delta trust metric, in units of expected return. The x-axis annotates the

number of steps Agent 1 is away from location 15. For example, if Agent 1 is one step away from

state 15, Agent 1 is located at position 11 or position 14. Since this graph is from the perspective

of Agent 1, steps one and six are not shown for the agent. These indicate Agent 1 has reached

a terminal location and the episode is complete. The functions are categorized by color based on

how many steps Agent 2 is from location 15. For example, if Agent 2 is zero steps away from state

15, Agent 2 is located at state 15.

Overall, as the number of steps away from location 15 increase, Agent 1 gets further away from

the interdependent reward and closer to the independent reward. Following this trend, the value

of trust decreases.

The value of trust is the highest when Agent 2 is located at terminal location 15. The only

time Agent 1 finds value to trust Agent 2, is when Agent 2 is actually at location 15 guaranteeing

a successful interaction outcome. This makes sense as Agent 1 is a risk neutral agent and does

not accept any risk. Therefore, only in situations when the interdependent reward is guaranteed

does the agent find value in the action to “trust”. Once Agent 1 is four and five steps away from

location 15, while Agent 1 is at location 0, it is no longer valuable for agent 1 to “trust” agent 2.

To summarize the trust impact on this scenario, approximately 2.72 - 3.26% of the state space

favors trust. From approximately three percent of the states that Agent 1 finds itself in, where it

will choose to ”trust” over to ”not trust” thereby explaining the high rates of acting independently.

Figure 13 illustrates the outcomes when both agents are risk-seeking agents at β = 0.1. Now

both agents consider and magnify variance as part of their objective function. Only 6.24 % of the

time, both agents act independently and pursue the reward at location 0. 62.54 % of the time, both

agents learn to mutually cooperate, and successfully obtain the positive interdependent reward at

location 15. 14.51-16.71% of the time results in mis-coordinated outcomes on the part of both

agents. The final outcomes demonstrate an increase in mutual collaboration, when both agents are

risk-seeking.

Figure 14 illustrates the action value plot of Agent 1, when both agents are risk-seeking at

β = 0.1. It is helpful to compare the changes from Figure 12 (risk-neutral agents) and Figure 14

(risk-seeking agents). Overall, the is more variability introduced in the values, due to the variation
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Figure 12: Agent 1’s trust in agent 2, Risk-Neutral Agents

in the objective function. When Agent 2 is located at terminal location 15, the value of of the

action, to “trust”, does not change between risk-neutral and risk-seeking agents. Once Agent 2 is

located at the terminal location 15 the positive interdependent reward is guaranteed, the variance

and risk is minimized, and therefore there is no risk to assume. A risk-seeking Agent 1 starts to

assume risk at other states. There is now a visible change when Agent 2 is one step away. A risk-

neutral Agent 1 will not find it valuable to “trust” whenever Agent 2 is one step away. However,

a risk-seeking Agent 1 does find it valuable to “trust” when Agent 2 is one step away at certain

states. To summarize Figure 14, approximately 37.38-38.92% of the state space favors trust. From

approximately 38% of the states that Agent 1 finds itself in, it will choose to ”trust” over to ”not

trust”, which leads to sustainable mutual collaboration results.

The increase state space coverage supporting the trust action results in increase mutual collab-

oration rates. However, a comparison of the final outcomes of in Figure 11 (risk-neutral agents)

and Figure 13 (risk-seeking agents) shows that risk-seeking agents result in an increase in mis-

coordinated outcomes. On one hand, the risk that the agents assume increases in mutual collabo-

ration. However, increases in risk assumption also result in potential failures in interaction. These
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Figure 13: Final Outcomes for demonstration, Risk-Seeking Agents

failures can be seen by the increases in mis-coordinated outcomes.

5.3 Tests

For the first research question, the impact of theoretical formulation, we test the addition of each

component of the framework. The purpose of the tests are to determine the impact of the addition

of each developed component to the overall collaboration between the two agents. The tests and

hypotheses are outline in 15.

For test #1, the agents will be given the standard SARSA(λ) algorithm, to determine baseline

performance. Can the agents learn to collaborate with a standard RL algorithm? For test #2,

agents are given additional information about their partner’s current location, in the form of an

expanded state space. Does giving the agent the current location of their partner help the agents

learn to collaborate? For test #3, the agents’ state space returns back to only their self-location,

but the action space now includes the actions to ”not trust” and to ”trust”. Does the trust as an

action formulation, or awareness of their trust actions, give the agents the capability to collaborate?

For test #4, the agents are given the expanded state space and trust actions. For test #5, the

agents are given the full SARSA-Trust algorithm which includes the expanded state space, the

trust actions, and the inclusion of variance in the objective function. Does it take the modification

of the objective function and risk-seeking behavior for the agents to learn to collaborate?

Both agents will be given the same reward function of Rind = 9.5, Rp,int = 20, and, Rn,int = −1

for all the tests. A simple 2x2 matrix game can give overall expected values of either decision,
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Figure 14: Agent 1’s trust in agent 2, Risk Seeking Agents

assuming the other agent behaves in a probability of 50/50. If Agent 2 is assumed to act in a

50/50 manner, Agent 1’s expected value in acting independently and collaborating are both 9.5.

EV (act ind) = Rind = 9.5

EV (to collab) = PA2,S0Rn,int + PA2,S15Rp,int = (0.5)(−1) + (0.5)(20) = 9.5

Research question #2, Rewards, will explore if there are situations where collaboration can

occur among risk-neutral agents through value changes in the reward structure. To test research

question # 2, several reward values will be evaluated. The tests, experimental settings, and hy-

potheses are articulated in 16. In test #1, the independent reward,Rind, is higher than the positive

interdependent rewardRp,int. In the subsequent tests, the independent reward,Rind, will be lowered

with a constant positive interdependent rewardRp,int. This is to determine when the agent makes

trades between the independent and interdependent reward, and based on expected value and vari-

ance. The final set of tests are to determine how the agents decision-making adopts to changes in

the negative interdependent reward, Rn,int.

Research question #3 explores the inherent risk preference of the agents. Figure 17 summarizes
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Figure 15: Tests and hypotheses, RQ #1 (Impact of formulation)

the tests for this research question. The risk preference parameter, β, for both agents will be

incrementally increased so the agents will be made incrementally more risk-seeking. Then, the

parameter will be incrementally decreased (more negative), so the agents will be made incrementally

more risk-averse.

Research question #4, partner behavior,investigates four different behaviors that Agent 1 must

interact and adapt to. The tests, experimental settings, and hypotheses are summarized in figure

18. In test #1, Agent 1 interacts with a “cooperative” Agent 2. A “cooperative” Agent 2 is given

a reward function that only leads to location 15. This results in greater than 90% of Agent 2

terminations at location 15. In test #2, Agent 1 interacts with a “non-cooperative” Agent 2. A

“non-cooperative” Agent 2 is given a reward function that only leads to location 0. This results in

greater than 90% of Agent 2 terminations at location 0. In test #3 and test #4, Agent 1 interacts

with an “unbiased” Agent 2. An “unbiased” Agent 2 is given the same reward function as Agent

1 and both agents must determine if collaboration is beneficial. We test a “unbiased, risk-neutral”

Agent 2, and a “unbiased, risk-seeking Agent 2”.

The outcome variables for each test within each research question are as previously specified-

final outcomes and the delta trust values. The outcome variables will be used to determine the

impact of the treatment on collaboration and separately, trust, between the two agents. Each test

will be executed over 1,000 episodes. Ten iterations of each test will be conducted to determine

standard errors. Pairwise t-test will be utilized at a 95 % confidence interval to evaluate each
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Figure 16: Tests and hypotheses, RQ #2 (Rewards)

Figure 17: Tests and hypotheses, RQ #3 (Risk Preference)

hypothesis.

6 Results

6.1 RQ #1: Impact of Formulation

The first research question asks how does the SARSA-Trust algorithm effect trust formation and

collaboration between the two agents.

Figure 19 summarizes the effect of adding different components of the algorithm on collaboration

between the two agents. The agents are posed with a situation to determine if it is advantageous to

pursue a independent reward at location 0 of 9.5 points, or to work together for an interdependent

reward at location 15 of 20 points. When both agents are given the standard SARSA(λ) algorithm,
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Figure 18: Tests and hypotheses, RQ #4 (Partner Behavior)

Figure 19: Impact of addition of components to collaboration

both agents adopt a policy of mutual defection 84.85 % of the time. Between 6.6-7.8 % of the time,

the agents miscoordinate and randomly terminate at location 15. Mutual cooperation is never

achieved through a standard SARSA(λ) algorithm.

With test #2, the agents are given awareness of their partner’s current location, by including

that information in an expanded state space. There are no significant changes to final outcomes.

With test #3, the agents do not have the partner awareness in their expanded state space, but are

given the trust actions. This leads to mutual defection rates decreasing to 60.63 %. However, mutual

cooperation rates only increase to 4.70 %, while miss-coordinated efforts increased to approximately

17.0 %. The stark increase in mis-coordination rates illustrates the need for additional information

on the partner to reduce the miscoordinated events.
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Test #4, results reveal that expanding the state space and including trust as an action work

effectively together. Mutual defection rates are reduced by 69.68 % and mutual cooperation rates

increase to 15.68 %. The mis-coordination rates marginally change. The expanded state space

gives the agents the right information to effectively obtain the interdependent reward. The trust

action formulation ensures the reinforcement (or feedback) remains distinct; independent rewards

reinforce only the action to not trust and associated movement actions, while interdependent re-

wards reinforce only the action to trust and associated movement actions. However, agents will act

indepdently the majority of the time.

Test #5 is the the full SARSA-Trust algorithm with risk seeking agents at β = 0.1, which

includes the variance component in the objective function. SARSA-Trust leads to a mutual defec-

tion decrease to 6.24 % and a mutual cooperation increase to 62.54 %. It is not until risk-seeking

behavior does collaboration occur.

In summary, when two agents are posed with a choice between a independent and interde-

pendent reward, the standard SARSA algorithm demonstrates that the agents will learn to act

independently. The first research question seeks to determine if the proposed formulation can im-

prove mutual collaboration. It is shown that in order for the agents to collaborate, at a minimum

the agents must have a method for comparing the independent option with the interdependent

option (trust as an action). Integrating more information into the state space to help obtain the

interdependent reward leads to a reduction in miscoordination events and improving mutual collab-

oration. However, the inclusion of the variance component in the objective function and risk-seeking

behavior provides the agents is the most significant capability that leads to mutual collaboration.

6.2 RQ #2: Rewards

The results of research question # 1 suggest the importance of risk-seeking behavior for mutual

collaboration. This motivates research question # 2, how do rewards effect trust formation and

collaboration between the two agents? Can we find ways for risk-neutral agents to collaborate

through different values in the reward components. To note, the following tests are conducted with

risk-neutral agents only.

Figure 20 summarizes the final outcomes of the research question. When the independent

reward is 22.0, while the positive interdependent reward is 20.0 points, mutual defection is achieved
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Figure 20: Final Outcomes for changing independent reward

76.41 % of the time. If the independent reward is lowered to 9.5, mutual defection rates slightly

decrease. If the independent reward is 1.0 points, mutual defection rates of 46.84 % can be achieved.

Additionally, if the independent reward is made -1.0 point, mutual collaboration rates increase to

51.67 %. These series of tests demonstrate that the agents will learn a policy to the higher expected

return. In most cases, the independent reward is the higher expected return.

The final two tests explore the impact when the negative interdependent reward is changed. For

these two tests, the independent reward is set at 9.5 points. In comparison to test #2 (Rind = 9.5,

raising the negative interdependent reward to +1.0 points does result in a decrease in mutual

defection rates from 70.29 % to 63.56 %. This make sense as the expected value of the interde-

pendent reward is increased slightly. To note, most of the complementary increase in outcomes

is in miscoordinated events rather than mutual cooperation. The final test explores raising the

negative interdependent reward to -10.0 points. The changes are not statistically significant than

the negative reward set at -1.0 points. This may indicate the model is not effective in articulating

magnitude differences in costs.

Figure 21 summarizes the results of the delta trust metric under each treatment. For inde-

pendent reward values of 22.0 and 9.5 points, the share of states that favor trust range from

approximately 15.0-19.0 %. There are few states where it is more valuable to ”trust” than to ”not

trust”. This illustrates why the agents learn policies to act independently the majority of the time.

It is not until the independent reward is set at -1.0, that approximately half of the state space

favors trust. The agent finds it valuable to ”trust” from half of the states. This test results in
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Figure 21: Trust coverage

policies towards the interdependent reward, and resulting in mutual collaboration rates.

Overall, the agents will learn the optimal policies to pursue the goals of higher expected value.

Mutual collaboration is achieved between the agents when the higher expected value shifts towards

the interdependent reward. Correspondingly, the share of states that value trust also increase. The

tests demonstrate collaboration is not synonymous with trust. High values of trust can lead to

mutual cooperation as well as increased mis-coordinated rates. Moreover, what informs the agent’s

decision to ”trust” is only expected return from the interdependent reward. The agent assumes

the risk based only on limited information (expected return). What if the agent is given more

information about the interdependent reward? In addition to expected return of the interdependent

reward, what if the agent is given the variance of the interdependent reward? Does this additional

information yield better decision-making?

Mutual collaboration only occurs when the independent reward is negative. These results

suggest that mutual collaboration among risk-neutral agents is attained in the absence of an in-

dependent reward. This further reinforces the notion that some level of risk-seeking behavior is

required for mutual collaboration.

6.3 RQ #3: Risk Preference

The results of research question #2 suggest some level of risk-seeking behavior is required for mutual

collaboration. This motivates the third research question to investigate the impact of inherent risk

preference of the agent on trust formation and collaboration between the two agents.

Figure 22 summarizes the final outcomes for the research question. The agents become in-
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Figure 22: Final outcomes for varying inherent risk preference

creasingly risk-seeking agents, through a β parameter increase from 0 to 1.0. By β=0.1, a mutual

collaboration rate of 62.54 % is achieved. Mutual defection rates are significantly reduced, and as

low as 6.24 %. As the β parameters increase, more variance is included to the expected return. If

β ≥ 1.0, the variance will dominate the calculated values.

A trade-off is identified. As mutual cooperation increases, mis-coordinated events also increase.

These are sub optimal decisions. By β=0.1, 14.51 % of the time Agent 1 went to location 15 despite

Agent 2 going to location 0. Agent 1 can be seen as having over-trust in Agent 2 in these instances.

15.51 % of the time, Agent 1 trusts Agent 2, to its own detriment.

As the β parameters become increasingly negative, the agents becoming increasingly risk-averse.

The agents show an increased preference towards the independent reward. The mutual defection

rates increase. Levels of mutual collaboration are effectively reduced. However, overall the approach

does not effectively demonstrate risk aversion. The miscoordination rates can be interpreted as
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under-trust or missed opportunities. At at risk level of β=-0.1, 6.63 % of instances occur where

Agent 1 missed an opportunity to collaborate with Agent 2.

Figure 23: State space coverage

Figure 23 illustrates the impact of varying inherent risk preference on trust. As both agents

become increasing risk-seeking, more of their state space favors trust actions. On the other hand,

as both agents become increasingly risk-averse, less of their state space favors trust actions.

The results also highlights the gap between trust and collaboration. Trust does not guarantee

collaboration [7]. This is due to the role of subjectivity in trust calculations. Agents with risk-

seeking levels of β = 0.1 have approximately 38.0 % of their state space favoring trust. This does not

translate to an approximate 76% of mutual collaboration. The two agents under these risk-seeking

levels achieve a mutual collaboration rate of 62.54 %, while 14.51-16.71 % are miscoordinated or

over-trust outcomes. This gap is just one way collaboration and trust are separate constructs.

6.4 RQ #4: Variation in partner behavior

The fourth research question investigates how the partner’s behavior effect trust formation and

collaboration between the two agents. The previous research question (RQ # 3), identifies the

trade-off between risk-seeking behavior, trust, and collaboration. How can agents mitigate the

detrimental effects of over-trust outcomes?

Figure 24 illustrates the first scenario where Agent 1 encounters a “cooperative” Agent 2, an

Agent 2 that follows a policy only to location 15. This results in a Agent 2 that travels to location

15 greater than 80% of the time. When Agent 1 is risk-neutral, with a β = 0, mutual collaboration

is not achieved. Agent 1’s rates of acting independently are indicated by the rates of S0S0 plus
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Figure 24: Final Outcomes, Interaction with “Cooperative” A2

S0S15. As Agent 1 increases in inherent risk-seeking behavior, the rate of mutual collaboration

increases. By a risk-seeking level of β1 = 0.01, mutual collaboration rates of 49.77 % are achieved.

However, there is a trade-off in S15S0 events as well. As mutual cooperation increases, the number

of instances where Agent 1 goes to location 15 without Agent 2 also increases. This is indicative of

over-trust in Agent 2. At β1=0.01, Agent 1 goes to location 15 at a rate of 13.30 % of the time to

its detriment, indicating over-trust behavior. If that risk-preference is increased to β1=0.1, Agent

1 goes to location 15 at a rate of 30.13 % of the time.

Choosing the optimal risk-seeking parameter is dependent on the partner, situation, and rewards

that the agent faces. It can be seen as an optimization problem with two objectives. 1) What is

the minimum amount of mutual collaboration that I want to achieve?, 2) What is the maximum

amount of negative outcomes from over-trust that I am willing to accept? We must find the optimal

risk-seeking parameter beta that satisfies these objectives in the current situation. Future work

will focus on more effective optimization strategies. Currently, the parameter is selected visually.

In this situation, when Agent 1 encounters a “cooperative” Agent 2, a suitable risk-seeking level is

β1=0.01.

Figure 25 illustrates when Agent 1 is risk neutral, it learns a policy towards the independent

reward (S0S15) outcomes. Once Agent 1 is risk-seeking to the appropriate level of β1=0.01, it is

able to learn a policy to mutual collaborate with a “cooperative” Agent 2.

When examining the action-value plots for a risk-neutral Agent 1, 2.04-3.43% of the state space
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favors trust. The risk-seeking Agent 1 has trust favorable coverage expanded to 36.07-37.13% of

the state space, enabling it to learn a mutually collaborative policy.

Figure 25: Learning performance of A1 interacting with “Cooperative” A2

Figure 26 illustrates the second scenario where Agent 1 interacts with a “non-cooperative”

Agent 2, an Agent 2 that follows a policy only to location 0. This results in a Agent 2 that travels

to location 0 greater than 80% of the time. In this scenario, Agent 1 must demonstrate it can

learn a optimal policy to act independently. A new inherent risk level is required for Agent 1

to adapt optimally to the new type of Agent 2 behavior. An Agent 1 that is optimized to the

previous scenario, β1=0.01, will still learn a policy to act independently. However the performance

is mediocre, as over-trust rates are very high (46.40 %). To improve these metrics, Agent 1’s risk

level needs to be adjusted.

A risk-neutral Agent 1 provides considerable improvement, where mutual defection rates are

now 71.04 %. Agent 1 needs to accept less risk in order to improve performance, or reduce the

determinant impacts of over-trust. As β1 becomes negative, Agent 1 becomes increasingly risk

averse which will further improve performance.

Figure 27 illustrates an instance when a risk-seeking Agent 1 learned a policy to pursue location

15. Its behavior is adjusted when Agent 2 is risk averse, where its misplaced trust is reduced. In

investigating the action-value plots for each risk level, marginal improvements are also seem in state

space coverage. For the risk-seeking Agent 1 at β1=0.01, 31.46-32.23% of the state space supports

trust. When Agent 1 is risk neutral, 2.16-3.78% of the state space supports trust. Ideally, the lower

the share of the state space that supports trust, the more conducive for learning an independent

policy.
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Figure 26: Final Outcomes, Interaction with “Non-cooperative” A2

Figure 27: Learning performance, A1 Interaction with “Non-cooperative” A2

Figure 28 illustrates the third scenario where Agent 1 encounters an Agent 2 that is an “unbi-

ased” learning agent with the same reward function. To note, Agent 2 is risk-neutral (β2=0.0) in

the scenario.

When both agents are risk-neutral, they are unable to learn to collaborate. It is not until

β1=0.01 that we see mutual collaboration rates approximately equal to mutual defection rates,

at 29.39 %. Rates of over-trust outcomes are very high at 36.78 %. Increasing the risk-seeking

levels only increase the over trust rates without achieving more mutual collaboration. So the ideal

risk-seeking level when Agent 1 interacts with a “unbiased,risk- neutral” agent 2 is β1=0.01.

In investigating the action-value plots, an Agent 1 at risk-seeking level of β1=0.001 has between

6.17-7.98% of its state space favoring trust. This explains why Agent 1 is unable to obtain a policy to

the interdependent reward. When Agent 1’s risk-seeking level increases to β1=0.01, the state space

coverage expands to 24.54-26.49% in favor of trust, allowing for an optimal interdependent policy

to be found. All in all, the scenario highlights the difficulty in obtaining high mutual collaboration
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rates when the partner is independent and risk-neutral.

Figure 28: Final Outcomes, Interaction with “Unbiased, RN” A2

Figure 29: Learning performance, A1 Interaction with “Unbiased-RN” A2

Figure 30 illustrates the fourth scenario where Agent 1 encounters an Agent 2 that is an “un-

biased” learning agent but risk-seeking (β2=0.01). In the situation, team performance improves

overall when both agents are risk-seeking at β=0.01. Now, mutual collaboration rates are much

higher, and over-trust rates are much lower. Agent 1 can accept less risk if needed to β=0.001, if the

detrimental impacts of the over-trust rates need to be reduced further, and still achieve majority

mutual collaboration rates.

Figure 31 illustrates that under all three risk levels, there is a certain degree of mutual cooper-

ation. Agent 1 does not learn a optimal policy towards mutual cooperation as a risk-neutral agent.

When Agent 1 is risk-seeking at β1=0.001, Agent 1 learns a optimal policy sometimes; displayed

is one instance. When Agent 1 is risk-seeking at β1=0.01, Agent 1 learns a optimal policy at all

instances. Interacting with a risk-seeking Agent 2, Agent 1 learns a policy that supports trust from

6.75-7.87 %. When Agent 1 is risk-seeking at β=0.001. When Agent 1 is risk-seeking at β1=0.01,
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its policy coverage expands to 24.67-27.89 % in favor of trust.

Figure 30: Final Outcomes, Interaction with “Unbiased, RS” A2

Figure 31: Learning Performance, Interaction with “Unbiased, RS” A2

6.5 Results Summary

The literature review highlighted the key characteristics of trust that come out of the psychology and

sociology domain and have been mapped into computational models. However there are limitations

in existing computational models that prevent us from effectively studying these characteristics.

We therefore sought to create our own proposed definition and theoretical formulation to integrate

these key characteristics and enable us to study these relationships. The framework enables us to

study four research questions, which we investigate within a simulated environment.

The first research question seeks to determine if the proposed formulation can improve mutual

collaboration. When two agents are posed with a choice between a independent and interdepen-

dent reward, the standard SARSA(λ) algorithm demonstrates that the agents will learn to act

independently. It is shown that in order for the agents to learn collaboration, they are given four
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capabilities. First, they are given trust as an action as a method for comparing the independent op-

tion with the interdependent option. Second, they are given current information of their partner’s

state which helps to reduce miscoordination events and improving mutual collaboration. Third,

the agents are given the historical behavior of their partner, to calculate the risk associated with

their partner. Fourth, the inclusion of the variance component in the objective function provides

the capability to consider risk as part of their own decision-making process, to balance expected

return with variance. There is a central role in risk to the development of trust and collaboration.

This motivates the second research question.

The results of the first research question suggest that risk-seeking behavior encourage trust

formation and mutual collaboration. can mutual collaboration be attained through changes in

reward structure values among risk-neutral agents? Among risk-neutral agents, agents will pursue

the higher expected return under the standard RL formulation. The agents will learn the optimal

policies to pursue the goals of higher expected value. Mutual collaboration is achieved between the

agents when the higher expected value shifts towards the interdependent reward. Correspondingly,

the amount of states that value trust over not trust actions also increase. For risk-neutral agents,

decisions to trust are only based on expected return. Agents need more information about their

partner’s behavior, in order to adjust the risk to assume in various situations. Mutual collaboration

is only achieved when the interdependent reward is taken away. This further emphasizes that the

agents require some level of risk-seeking behavior in order to develop trust and collaborate. This

motivates the third research question.

The second research question emphasized the necessity of risk to achieve collaboration. How

does varying inherent risk preferences of the agents impact trust and collaboration? These Risk-

seeking behavior yields larger mutual collaboration rates, but also results in larger rates of over-

trust. The results demonstrate the gap between collaboration and trust. Trust does not guarantee

collaboration. High amounts of trust can lead to mis-coordinated outcomes.

The third research question identifies a trade-off. The fourth research question aims to pro-

vide insight into how agents can mitigate risks and adapt to varying partners. When Agent 1

interacts with Agent 2, some level of inherent risk-seeking behavior is required to achieve mutual

collaboration. Determining the appropriate risk-seeking level for the agent requires a trade-off be-

tween mutual cooperation and over-trust or mis-coordination. Choosing the optimal risk-seeking
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parameter is dependent on the partner, situation, and rewards that the agent faces. It can be

seen as an optimization problem with two objectives. 1) What is the minimum amount of mutual

collaboration that I want to achieve?, 2) What is the maximum amount of negative outcomes from

over-trust that I am willing to accept? We must find the optimal risk-seeking parameter β that

satisfies these objectives in the current situation.

Figure 32 summarizes the final performance of the developed SARSA-Trust algorithm, tested

on a scenario where the rewards are Rind = 9.5, Rp,int = 20, and, Rn,int = −1. With the standard

SARSA algorithm, the agents are unable to learn a policy to mutual collaborate. Instead, both

agents learn to act independently 84.85 % of the time. With the SARSA-Trust algorithm and both

agents set as risk-seeking at β=0.10, mutual cooperation rates of 62.54 % is achieved.

Figure 32: Final Outcomes Summary

7 Conclusions

7.1 Conclusions

Multi-agent systems prolific in society. The relationships and interconnectedness between various

autonomous systems and humans are new challenges. Working together as a team is often the goal,

but is very challenging to achieve. Trust is the primary determinant of collaborative outcomes

among multi-agent systems. The research seeks to investigate the role of reward, risk, and behavior

in trust formation and collaboration among two agents. We seek to integrate the following proposed

definition of trust into a reinforcement learning framework; trust is the willingness to take on the

risk governed by the behavior of another.
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Trust has been extensively studied within psychology and sociology. The work of Castelfranchi

and Falcone map significant characteristics of trust into the computational domain [7]. Wagner

illustrates the importance to consider interdependency into a trust formulation as a decision process

[18], [19]. Contemporary computational models do not allow us to adequately investigate the

characteristics of interdependency, risk, and behavior in the context of learned behavior. Moreover,

existing computational trust models built within learning frameworks do not meaningfully express

trust in terms of accepted definitions.

We start by proposing our definition of trust as the extent to which an agent is willing to take on

risk (the variance in reward) governed by the behavior of another agent. The proposed definition is

consonant with accepted definitions from the domains of psychology and sociology. The proposed

definition is used to create a theoretical framework using the key characteristics of trust illustrated

by the work of Castelfranchi and Falcone, and Wagner.

The RL architecture to integrate the two theories. Trust is formulated as a decision between

an independent and interdependent goal. Additionally, the objective function includes a variance

component. This drives the agent’s decision-making process to balance maximizing expected return

with the risk (variance) in outcomes governed by the partner. The theoretical framework enables

us to investigate under what conditions do agents collaborate, and what does the value of trust

reveal about the nature of these relationships. Specifically, the formulation allows us to investigate

four research questions concerning components of the formulation, reward values, risk preferences,

and partner behavior. We investigate these research questions within a gridworld simulated envi-

ronment.

Two independent learning agents are given the standard SARSA(λ) algorithm and given the

choice between an independent and interdependent reward. The SARSA(λ) algorithm is unable to

encourage the agents to collaborate. The theoretical framework, and the corresponding SARSA-

Trust algorithm enables the agents to achieve mutual collaboration rates of 62.54 %. The agents

required four key components to enable collaboration. First, they are given trust as an action as

a method for comparing the independent option with the interdependent option. Second, they

are given current information of their partner’s state which helps to reduce miscoordination events

and improving mutual collaboration. Third, the agents are given the historical behavior of their

partner, to calculate the risk associated with their partner. Fourth, the inclusion of the variance
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component in the objective function provides the capability to consider risk as part of their own

decision-making process, to balance expected return with variance.

The second research question revealed the risk-neutral agents were unable to collaborate unless

the independent reward was removed. This suggests the central role risk plays in trust formation

and collaboration. The third research question identified that increases in risk-seeking behavior

results in increases in mutual collaboration. However, with increases in risk-seeking behavior, there

is an increase in mis-coordination rates, specifically, over-trust rates, instances where one agent

trusts the partner to its own detriment. In the fourth research question, it is shown that agents

can adjust their risk preferences to mitigate the detrimental effects of over-trust outcomes. Agents

can adapt to their situation and their partner to achieve the optimal cooperation levels.

7.2 Contributions

1. This research has created a comprehensive definition of trust that integrates six important

characteristics together within a theoretical framework.

2. The theoretical framework enables the study of trust and collaboration with a more nuanced

characterization of reward, risk, and behavior.

3. Within a simulated environment, results illustrate that trust formation and collaboration

are not attainable within risk-seeking behavior. There is a trade-off between risk, trust, and

collaboration. Agents can mitigate risk by adapting to situations to address these trade-offs.

4. Targeted publication venues: IEEE Transactions on Human-Machine Systems, ACM Trans-

actions on Human-Robot Interaction

7.3 Limitations and Future Work

The results highlight three major limitations in the current work.

The primary limitation is in the variance formulation. The agent requires a way to be informed

about the uncertainty from the interdependent reward at a particular state. In the current frame-

work, there are many states that are not visited enough. Therefore, the incremental expected

return and incremental variance calculated through reinforcement learning methods are very small.

We choose to calculate the variance of the history of interdependent rewards, rather than a state-

specific calculation of variance. Extensions of this work can consider how to improve the calculation
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of uncertainty of the expected return from the interdependent reward at a particular state-action

pair. This could be achieved through safe RL methods that influence the agent’s exploration pro-

cess. A better calculation of risk can articulate trade-offs between risk and states. Stochastic policy

gradient methods can be explored. Safe RL literature also suggests exploration methods for risk

mitigation as a viable alternative.

The agent using this approach is also limited in adaptability. Optimal risk levels for a given

partner are determined through a manual process. Ideally, the agent should determine the ideal

parameter by itself, and adapt when the partner’s behavior changes.

Future work can focus on validating the framework against existing trust models and real data.

Furthermore, the approach considers a simple interdependency situation. Interdependency theory

offers a lot more insight to expand interdependent situations. we need to know the rewards.

The approach considers the interaction of two agents. How would this approach be adopted in

a n-size multi-agent system. Additionally, trust is formed through experiences. Other MAS models

use other sources of information to inform trust in a larger network.
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