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Abstract 

3D3C (three-dimensional and three-component) optical velocimetry has long been 

desired to resolve the 3D spatial structures of turbulent flows. Recent advancements have 

demonstrated tomographic particle image velocimetry (tomo-PIV) as a powerful technique 

to enable such velocimetry. The current tomo-PIV technique obtains 3D3C velocimetry by 

combining PIV measurements with 3D tomographic reconstruction, i.e., cross-correlating 

the 3D particles distributions reconstructed by tomography at two consecutive times. 

However, the current tomo-PIV technique, due to the significant complexity of tomography 

(e.g., the view registration VR process and the reconstruction algorithm), suffers from the 

relatively low accuracy of velocity measurements. This further deteriorates the subsequent 

determinations of velocity derivatives which are usually of ultimate interests. To study and 

address such accuracy issue, this dissertation first reports an experimental quantification of 

the tomo-PIV accuracy, and then reports the developments and demonstrations of two 

novel techniques to enhance the tomo-PIV accuracy. 

First, the accuracy of the existing tomo-PIV technique was quantified experimentally. 

Precisely controlled experiments were designed using tracer particles embedded in a solid 

sample, and tomo-PIV measurements were performed on the sample while it was moved 

both translationally and rotationally to simulate various known displacement fields. So that 

the 3D3C displacements measured by tomo-PIV can be directly compared to the known 

displacements created by the sample to quantify the accuracy. With these controlled 
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experiments, the accuracies in both velocity magnitude and direction were quantified and 

analyzed in this dissertation. 

Then, after recognizing the current tomo-PIV accuracy, two techniques were proposed 

in this dissertation to significantly enhance the accuracy of tomo-PIV measurements. These 

two techniques were code-named the RTPIV (regularized tomo-PIV) method and the RIVR 

(reconstruction integrating view registration) method. Conceptually, the RTPIV method 

improved the accuracy of 3D3C velocity measurements by incorporating the conservation 

of mass (COM) equation as a priori information into the cross-correlation. The RIVR 

method enhanced the accuracies of tomography and the resulting velocity by integrating 

the tomography and VR. The accuracy enhancement could be achieved, because the 

integration of tomography and VR established a feedback mechanism between them and 

enabled each step to leverage the information provided by the other. Both the RTPIV and 

RIVR methods were validated experimentally and numerically, and were demonstrated to 

indeed enhance the accuracy of tomo-PIV measurements significantly. The measurements 

with enhanced accuracy by these two techniques are expected to improve the understanding 

of flow and combustion physics and the design of propulsion systems. 
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Chapter 1 Introduction 

1.1 Overview of 3D3C particle image velocimetry 

Particle image velocimetry (PIV) is a well-established technique for two-dimensional 

and two-component (2D2C) velocity measurements in the study of fluid flows [1, 2]. 

Practical applications ubiquitously involve three-dimensional (3D) flows containing 3D 

structures (e.g., vortices, and shear layer, etc.), and the ability to measure the three-

dimensional and three-component (3D3C) velocity field has been highly desired. Several 

possible approaches have been investigated to extend the established 2D2C PIV technique 

to 3D3C measurements by leveraging techniques from other disciplines, including 

scanning PIV [3-5], holographic PIV [6, 7], and tomographic PIV (tomo-PIV) [8-11]. 

Different 3D3C PIV techniques have different working principles. Among aforementioned 

techniques, scanning PIV is a conceptually straightforward approach which obtains a 3D3C 

velocity measurement by a series of 2D3C measurements sequentially using the established 

stereoscopic PIV technique. However, its spatial resolution in the scanning direction has 

been typically limited to the order of ~1 mm [4, 12, 13], due to practical difficulties related 

to precise control of the scanning, laser repetition rate, and camera frame rate. Holographic 

PIV also offers great promise for 3D3C velocity measurements. This technique obtains the 

3D3C velocity by combining holography with PIV, more specifically by encoding the 

amplitude and phase of the scattered light, then reconstructing and cross-correlating the 

particle distribution. However, at this stage of its development, practical applications are 

limited by the time-consuming reinstallation process of hologram films [14-16]. Similar to 
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scanning PIV, tomo-PIV is an extension of the established 2D PIV measurements, and it 

obtains 3D3C velocity measurements by combining PIV measurements with 3D 

tomographic reconstruction, more specifically by cross-correlating two 3D particle 

distributions reconstructed using two sets of particle projections captured by multiple 

cameras at two consecutive times. Compared to the scanning PIV technique, the tomo-PIV 

technique enables instantaneous measurement without scanning, and enables spatial 

resolution down to ~0.10 mm in all three spatial directions [2]. Compared to the 

holographic techniques, the tomo-PIV technique takes advantages of recent advancements 

in high-repetition-rate CCD and CMOS cameras, and enables an all-digital data acquisition 

and processing implementation. Due these advantages, tomo-PIV has been studied and 

applied under a range of application backgrounds and in both passive and reactive flows 

[9, 17, 18]. And this dissertation focuses on the tomo-PIV technique. 

1.2 Tomographic PIV 

Typically, the tomo-PIV technique involves two steps: tomography reconstruction and 

cross-correlation. In the first step, the tomography reconstruction step, the distributions of 

seeded particles in 3D are obtained at two consecutive times using 3D tomographic 

reconstructions. At each time, a thick laser slab is used to illuminate the seeded particles 

volumetrically, and multiple cameras are used to capture the scattered signal from different 

orientations, providing the inputs for a tomography algorithm to obtain the 3D distribution 

of the seeded particles. In the second step, the cross-correlation step, a 3D3C velocity field 

is calculated by performing a cross-correlation of the two frames of 3D particle 

distributions obtained in the first step.  
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However, the tomo-PIV technique, due to its significant complexity of tomography (the 

aforementioned step 1), suffers from the relatively low accuracy, compared to 2D PIV 

measurements. For instance, due to the nature of the volumetric illumination and the use 

of multiple cameras, it becomes important to calibrate these cameras both in terms of their 

noise level and their relative orientation, which is the so-called view registration (VR) 

process. Such calibration inevitably involves uncertainties, including camera noise and also 

orientation error [19], and these uncertainties propagate through the rest of the data 

processing for obtaining velocity. Also, the subsequent tomography algorithm can only 

reconstruct with a finite accuracy even if the measurements captured by the cameras are 

error free. In practice, these measurements are contaminated by noises (e.g., due to the 

calibrations just mentioned), and such noises will propagate during the tomographic 

reconstruction process. As a result, accuracy of tomo-PIV can be much worse than that of 

2D PIV. Currently, the measurement accuracy of 3D3C velocity enabled by tomo-PIV was 

reported to be on the order of ~1 voxel and ~2° in terms of velocity magnitude and direction 

[19], respectively; in contrast, the 2D PIV technique can yield a measurement accuracy of 

~0.5 pixel and ~1° [20, 21].  

Furthermore, the existing error of velocity measurements propagates or becomes 

amplified when inferring velocity derivatives, including velocity-gradient-type derivatives 

(e.g., stress and vortex) and velocity-integral-type derivatives (e.g., force and energy). 

These derivatives are of paramount importance to the understanding of aerodynamics and 

the design of propulsion systems. Based on our quantifications, the aforementioned error 

of ~1 voxel and ~2° in velocity magnitude and direction would lead to at least ~35% error 
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in the determination of the velocity-gradient-type derivatives (e.g., stress and vorticity), 

and also lead to at least ~20% error in the determination of velocity-integral-type 

derivatives (e.g., force and energy). These error levels are high enough to change or even 

completely reshape our understanding of flow physics (e.g., flow topology and vortex 

dynamics) and the design of propulsion systems (e.g., geometric parameters and fuel 

consumption of aero-engines). 

Recognizing the additional complexity brought about by tomo-PIV and the critical need 

for accuracy, considerable efforts have been made to enhance the measurement accuracy 

of tomo-PIV from tomography reconstruction (step 1) and cross-correlation (step 2). The 

investigation of tomography reconstruction included a range of experimental and 

computational efforts to improve the reconstruction accuracy. Experimental effects 

included the optimization of key imaging parameters [19, 22, 23], tomography imaging 

configuration (cross-like configuration [24, 25] and linear configuration [26, 27]), view 

registration [28-30], seeding density [31, 32], etc. In parallel, computational efforts 

included optimization of existing reconstruction algorithms such as ART ( algebraic 

reconstruction technique) and MART (multiplicative algebraic reconstruction technique) 

[8, 33], the use of spatial filter in the reconstruction [33], the integration of sparsity 

maximization into reconstruction [34, 35], and the development of new reconstruction 

methods and algorithms [29, 36, 37], etc. In addition to the investigation in tomography 

reconstruction, significant efforts have also been invested in the improvement of the second 

step, the cross-correlation step. Examples include the development of high-accuracy cross-
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correlation algorithms such as the 3D window deformation algorithm [38], methods for 

sub-voxel estimation [5], and the use of low-pass filters in 3D image pre-processing [39]. 

1.3 Organization and contributions of this dissertation 

Based on the above understanding of past efforts, this dissertation is aimed to study and 

address the accuracy issue in tomo-PIV measurements. This dissertation first reports an 

experimental quantification of the current tomo-PIV accuracy, and then reports two novel 

techniques to improve the accuracy, as organized below, together with the main 

contributions. More specifically: 

Chapter 2 introduces a quantification of tomo-PIV accuracy using controlled 

experiment measurements [19], and sets the ground work for the following work in Chapter 

3 and 4. The main contribution of this part is that we, for the first time, experimentally 

quantified the tomo-PIV accuracy by precisely controlled measurements. The controlled 

measurements were designed by performing tomo-PIV measurements on a solid sample 

embedded with tracer particles, while the sample was moved both translationally and 

rotationally to create various known displacement fields. So that the 3D3C displacements 

measured by tomo-PIV can be directly compared to the known displacements created by 

the sample. The results illustrated that the tomo-PIV technique was able to reconstruct the 

3D3C velocity with an averaged error of 0.8–1.4 voxels in terms of magnitude and 1.7°–

1.9° in terms of orientation for the velocity fields tested. These results obtained from 

controlled tests are expected to aid the error analysis and the developments of advanced 

tomo-PIV techniques. 
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After recognizing the current tomo-PIV accuracy, Chapter 3 and 4 then present two 

advanced techniques to significantly enhance the accuracy of the tomo-PIV measurements. 

These two techniques are code-named the RTPIV (regularized tomo-PIV) method [40] and 

the RIVR (reconstruction integrating view registration) method [29, 30].  

Chapter 3 describes the development and the validation of the RTPIV method, 

motivated by the need of tomo-PIV accuracy enhancement. The main contribution is the 

development of the RTPIV method, a regularized method that can be applied to 

incompressible flows and other types of flows where the density variation is negligible. 

The major idea of the RTPIV method is that it improves the accuracy of 3D3C velocity 

measurements by incorporating the conservation of mass (COM) equation as a priori 

information into the cross-correlation process. This RTPIV method was demonstrated and 

validated both experimentally and numerically. The results illustrated that the method was 

able to significantly enhance the accuracy of 3D3C velocity measurements, compared to 

the existing tomo-PIV technique. 

Chapter 4 then describes the development and the validation of the RIVR method, also 

motivated by the requirement of accuracy improvement of 3D tomography diagnostics. 

The main contribution is the development and validation of the RIVR method. This method 

focuses on the tomography process, and it enhances the accuracies of tomography and the 

resulting velocity by integrating tomography and VR holistically. The accuracy 

enhancement can be achieved, because the integration of tomography and VR establishes 

a feedback mechanism between them and enables each step to leverage the information 

provided by the other. Both controlled experiments and accompanying numerical analyses 
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were conducted to validate the RIVR method. Two sets of controlled experiments were 

conducted and analyzed, including a static uniform dye solution and turbulent flows, where 

the RIVR technique was demonstrated to significantly reduce the overall reconstruction 

error, compared to past methods that treated VR and tomography separately. 

Lastly, Chapter 5 summarizes this dissertation and suggests the possible future work. 

To summarize, the major contributions of this dissertation are: 

1) The accuracy of 3D3C velocity measurements enabled by the tomo-PIV technique 

was experimentally quantified for the first time by designing precisely controlled 

experiments on a solid sample embedded with tracer particles. 

2) The RTPIV method was developed and demonstrated to considerably enhance the 

accuracy of 3D3C velocity measurements. This RTPIV method is applicable to 

measurements in incompressible flows or other types of flows where the density variation 

is negligible. 

3) The RIVR method was developed and demonstrated to significantly improve the 

accuracy of 3D tomography diagnostics including tomo-PIV. This RIVR method is 

applicable universally to various types of 3D tomography diagnostics, not only limited to 

tomo-PIV, but also including tomographic laser induced fluorescence and tomographic 

chemiluminescence, etc. 
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Chapter 2 Experimental quantifications of tomo-PIV 

uncertainty 

Abstract 

The goal of this work was to experimentally quantify the uncertainty of three-

dimensional (3D) and three-component (3C) velocity measurements using tomographic 

particle image velocimetry (tomo-PIV). Controlled measurements were designed using 

tracer particles embedded in a solid sample, and tomo-PIV measurements were performed 

on the sample while it was moved both translationally and rotationally to simulate various 

known displacement fields. So that the 3D3C displacements measured by tomo-PIV can 

be directly compared to the known displacements created by the sample. The results 

illustrated that 1) the tomo-PIV technique was able to reconstruct the 3D3C velocity with 

an averaged error of 0.8 to 1.4 voxels in terms of magnitude and 1.7° to 1.9° in terms of 

orientation for the velocity fields tested, 2) view registration (VR) plays a significant role 

in tomo-PIV, and by reducing VR error from 0.6° to 0.1°, the 3D3C measurement accuracy 

can be improved by at least 2.5× in terms of both magnitude and orientation, and 3) the use 

of additional cameras in tomo-PIV can extend the 3D3C velocity measurement to a larger 

volume while maintaining acceptable accuracy. These results obtained from controlled 

tests are expected to aid the error analysis and the design of tomo-PIV measurements. 

2.1 Introduction  

Particle image velocimetry (PIV) is a well-established technique for two-component 

(2C) velocity  in two-dimension (2D) [1, 2]. Practical applications ubiquitously involved 
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3D flows, and the ability to measurement 3D3C velocity fields is highly desired. Several 

possible approaches have been investigated to extend the established 2D2C PIV technique 

to 3D3C measurements, including scanning PIV [3-5], holographic PIV [6, 7], and 

tomographic PIV (tomo-PIV) [8-11]. Among these techniques, scanning PIV is a 

conceptually straightforward approach which obtains a 3D velocity measurement by a 

series of 2D measurements sequentially using the established 2D PIV technique. However, 

its spatial resolution in the scanning direction has been typically limited to the order of 

~1mm [4, 12, 13] due to practical difficulties related to precise control of the scanning, 

laser repetition rate, and camera frame rate. Holographic PIV also offers great promise for 

3D3C velocity measurements. However, at this stage of its development, practical 

applications are limited by the time consuming reinstallation process of hologram films 

[14-16]. Similar to scanning PIV, tomo-PIV obtains 3D3C velocity measurements by 

extending the established 2D PIV measurements [8-10]. The technique uses a thick laser 

slab to illuminate the seeded particles volumetrically, and uses multiple cameras to image 

the scattered signal from multiple orientations, based on which a tomographic 

reconstruction was performed to obtain the particle position distributions in 3D. Compared 

to the scanning PIV technique, the tomo-PIV technique enables instantaneous 

measurement without scanning, and enables spatial resolution down to ~0.10 mm in all 

three spatial directions [2]. Compared to holographic techniques, the tomo-PIV technique 

takes advantages of recent advancements in high-repetition-rate CCD and CMOS cameras, 

and enables an all-digital data acquisition and processing implementation. Due these 
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advantages, tomo-PIV has been studied and applied under a range of application 

backgrounds and in both passive and reactive flows [9, 17, 18]. 

Due to the promise and progress demonstrated in tomo-PIV, both numerical and 

experimental research efforts have been devoted to quantify its capability and accuracy. 

Numerical efforts included the use of simulations to validate and quantify the accuracy of 

tomo-PIV in canonical turbulent flows such as channel flows [41] and cylinder wake flows 

[8]. In parallel to these numerical efforts, experimental efforts have also been invested to 

validate and characterize the reconstruction quality of tomo-PIV [42] using flow 

measurements. These results provide insights into important factors such as SNR, intensity 

variance, and the relative quality factor. However, the use flows cannot provide the degree 

of control desired for error quantification. Therefore, it is desirable to have results that can 

provide direct experimental validation and quantification of tomo-PIV measurements, 

ideally from precisely controlled velocity fields.  

Based on the above understanding of past efforts, this work reports an experimental 

validation of tomo-PIV by performing precisely controlled experiment. The experiment 

was performed using a custom-built cell with tracer particles seeded and fixed on a solid 

sample. A moving stage was installed under the cell and was able to precisely control the 

movement of the cell. Therefore, the particle displacement field between subsequent cell 

locations can be created to simulate various velocity fields with great precision. Then tomo-

PIV measurement was performed and corresponding reconstructions were obtained, which 

were then compared with the exact velocity field to quantify the accuracy of the 3D3C 

measurements.  
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The rest of this chapter is organized as follows. Chapter 2.2 describes the controlled 

experimental setup used to validate the tomo-PIV technique. Chapter 2.3 reports the 

validation results together with the accompanying analysis. Finally, Chapter 2.4 

summarizes the chapter. 

2.2 Experimental arrangement  

The experimental setup of the controlled measurement is schematically illustrated from 

the top view as shown in Figure 2-1. As shown in the center portion of Figure 2-1, the 

controlled cell consists of three components: a moving base, thin glasses and a clamp. The 

moving base was assembled by mounting a rotation stage (Thorlabs PR01) on a translation 

stage (OptoSigma TSD-602C). The translation stage can linearly translate along one 

direction with a resolution of 10 µm and the rotation stage can rotate continuously within 

360o with a resolution of 5 arcmin. Four pieces of thin glasses were fixed on the breadboard 

by using a clamp. The surfaces of glasses were adjusted parallel to each other and 

perpendicular to the breadboard plane. The spacing between two adjacent glasses is 5 mm. 

All glasses have a thickness of 0.50 mm and a height × width of 65 × 60 mm2, and they 

were coated with 4.05 µm polystyrene particles on one side. Before coating, the particles 

were stored in a solution with a concentration of 10-7 solids by weight, and ultra-sonication 

was applied to prevent bead aggregation. Based on the controlled cell configuration, a 

Cartesian coordinate system was defined such that the plane of the breadboard was the x-y 

plane with the origin at plate center, as shown in Figure 2-1. The x, y and z axes were 

defined along the thickness, width and height direction of the glasses, respectively.  
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Figure 2-1 Experimental setup. 

The output of a high pulse energy Nd: YLF laser (Photonics Industries DM30 – 527, 

labeled as Illumination laser in Figure 2-1 with a wavelength of 527 nm was used to 

illuminate the polystyrene particles on glass surfaces. Operated at a repetition rate of 1 

kHz, the illumination laser generates pulses with a pulse energy of 50 mJ and a pulse 

duration of ~120 ns. The laser pulses were expanded by a series of lenses into a thick laser 

slab so that a measurement volume of 57 (x direction) × 57 (y direction) × 19 (z direction) 

mm3 was illuminated. Note that typical tomo-PIV practice (e.g., the arrangement used in 

[1]) involves arranging the smallest dimension of the measurement volume normal to the 

plane formed by the optical axes of the cameras (assuming the cameras are arranged in a 

co-planar fashion). Such practice offers the advantage of minimizing particle overlapping 

on the projections at the cost of measurement volume. This work used a different 

arrangement to test if using more cameras (six compared to the typical practice of 4) can 
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help to combat the overlapping effects and obtain measurements in a thicker volume (and 

the results suggested it can as to be elaborated in Section 3). 

The scattered light signals of particles were then captured by six CMOS cameras (4 

Photron SA-4 and 2 Photron SA-1.1) as shown in Figure 2-1. All cameras were aligned in 

the x-y plane so that their orientations were specified by θ, defined as the angle formed by 

the optical axis of a camera relative to the positive x direction as shown in Figure 2-1. The 

focal length and f-number of the lenses used on all cameras were 105 mm and 2.8, 

respectively. The operation of the laser and cameras was synchronized using control 

electronics, and the camera control and projections acquisition were centralized on a 

computer. All six cameras were operated at a repetition rate of 1 kHz and an exposure time 

of 1 ms. Prior to any measurement, a view registration (VR) process was performed to 

determine the orientations and locations of the cameras relative to the solid sample. The 

VR process involved a calibration target with known and precise patterns, and a camera 

calibration program as detailed in [43, 44]. The view angles of camera 1 through 6 were 

determined to be θ =219.5°, 270.0°, 315.7°, 50.1°, 118.6° and 139.0°, respectively, with an 

average VR error of ±0.3° [45]. These view angles were selected to 1) maximize the linear 

independence of the projections following the method outlined in [46], and 2) minimize 

exposure to reflected light. A VR error of ±0.3° corresponds to an uncertainty of ±0.3 pixel 

for the setup in this work as to be elaborated later. Here the VR error was defined as the 

difference between the true view angle versus that determined by the VR process 

experimentally. The horizontal distance from the lenses to the center point of the 

breadboard was measured to be 439 mm and the magnification ratio is 0.31.  
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2.3 Experimental results 

Figure 2-2 shows a pair of example projections of the controlled cell measured by 

camera 1 and 4. Each projection had 900 × 300 pixels (cropped from the original CMOS 

image with 1024 × 1024 pixels), and each pixel corresponded to a physical dimension of 

~0.06 × 0.06 mm2. As mentioned before, the projections were captured with a frame rate 

of 1 kHz and an exposure time of 1 ms. These measurements were static (since neither the 

controlled cell nor the particles were moving during the exposure time), and the primary 

reason of picking the frame rate and exposure time was to ensure sufficient scattering light 

signals. Figure 2-2a and Figure 2-2b show the nature of the scattering signal and the particle 

distribution from two different perspectives. As can be seen, the densities of the particles 

varied from region to region on the same camera (and also from camera to camera too), 

primarily due to the line-of-sight-integration effects generic to volumetric measurements, 

and this will be further elaborated using the results from Figure 2-3 below. Note that Figure 

2-2 also shows multiple vertical lines on the raw projections, and these lines corresponded 

to the edges of glass plates. The method that we found effective in removing the artifacts 

involved two steps. First, we directly used the raw projections as shown in Figure 2-2 to 

perform the reconstruction. We did not attempt to remove them via post-processing 

methods from the raw projections because some of them were embedded in the signal as 

seen.  Second, in the reconstruction, these vertical lines were manifested as planes that 

were located at the boundaries of the measurement volume. Thus, these planes were then 

easily identified, separated, and removed from the reconstruction. 
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Figure 2-3 shows the example particle image density distributions of the projections 

taken by camera 1 and 4 in terms of particles per pixel (i.e., ppp). The ppp distribution was 

estimated in three steps using the Analyze Particles function in ImageJ. More specifically, 

first, for a given pixel on which the ppp is to be estimated, a sliding window with a size of 

7×7 pixels was formed centering on the target pixel. Second, this sliding window was 

binarized using the entropic thresholding method detailed in [47] and the binarized 

particles in the sliding window were counted. Third, the average ppp within the sliding 

window was calculated as the ppp of target pixel. The above steps were applied on each 

pixel individually for a projection captured by a camera to obtain the distribution shown in 

Figure 2-3.  Though note that for tomo-PIV, the concept of ppp is more intricate to interpret 

than in the case of planar PIV due to the different line-of-sight integration effects from 

different orientations. Therefore, the ppp distribution varies significantly from region to 

region and from camera to camera significantly as seen in Figure 2-3, and the 0.08 ppp was 

an average from all the projections used in this work (compared to the highest particle 

density of ~0.19 ppp which occurred near the region around pixel (524, 237) on camera 4 

as shown in Figure 2-3b). A well-recognized issue in PIV measurements involves resolving 

overlapping particles [8, 48, 49], and the particle image density shown in Figure 2-3 is an 

intuitive diagnosis tool for evaluating the severity of overlapping issue. However, our 

results show the particle image density depends on the orientation for a multi-camera setup 

as mentioned, and also that the ability to resolve overlapping particles depends on the 

number of cameras used (more cameras enable enhanced ability to resolve overlapping 
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particles). A systematic examination of such dependences is of great interest and 

importance, however is beyond the scope of this work and will merit a separate treatment.  

 

Figure 2-2 A set of scattering signal of particles taken by camera 1 (panel (a)) and 4 (panel 

(b)), respectively. 

 

Figure 2-3 A set of PPP distributions of projections taken by camera 1 (panel (a)) and 4 

(panel (b)), respectively. 
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Based on the projections of all cameras, a tomographic reconstruction of 900 × 900 × 

300 voxels was performed to obtain the scattering light distribution of the cell using a 

Multiplicative Algebraic Reconstruction Technique (MART) [50] with 20 iterations and a 

relaxation factor of 1 [8]. The MART algorithm used here is a variation of the Algebraic 

Reconstruction Techniques (ARTs) as detailed in [51], and the algorithm performs 

tomographic reconstruction by adjusting the reconstructed fields to match the measured 

projection at each camera sequentially and iteratively until converging on a solution. The 

MART algorithm was executed on a workstation with 16-Core Intel Xeon 2.6GHz and 512 

GB memory, and it took a computing time of ~36 hours for each reconstruction to converge 

with the voxel set in this work. 

Equipped with such tomographic algorithm, the 3D distribution of particles can be 

reconstructed, and then denoted as the particle distribution at initial position. Starting from 

the initial position, the location of the cell was moved by the stage to create a displacement 

for the particles. Experimentally, two types of movement were used in this work, the first 

one by a translation of 0.51 mm towards the positive x direction, and the second one by a 

clock-wise (viewed from the top) rotation of 2.5° around the cell center. Such translation 

and rotation were designed based on two considerations. The first consideration was to 

minimize them to explore the performance limit of tomo-PIV in resolving particle motion. 

The second consideration was that they need to be large enough to be resolvable by the 

experimental setup in this work. More specifically, the finest resolvable motion was limited 

by the camera with the most unfavorable view orientation (which was camera 6, whose 

optical axis was closest to 90°, among all cameras used, with respect to the sample plane).  
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For each new position, the projections were recorded again and the corresponding 

tomographic reconstruction performed. After the position of particle distributions at 

consecutive locations (equivalent to times) were obtained, a 3D cross correlation algorithm 

[8] was applied to obtain the displacement field based on the two reconstructed particle 

distributions. The 3D cross correlation algorithm used here is a straightforward extension 

of established 2D cross correlation algorithms. More specifically, the 3D algorithm was 

implemented in two steps. First, the 3D cross correlation of two particle position 

distributions was calculated within 30×30×30 voxel interrogation volumes at 75% overlap 

following the suggestion from [2] to obtain a correlation matrix. Second, each displacement 

vector is determined by subtracting the dimensions of interrogation volume from the voxel 

location of the maximum element in the resulting correlation matrix. Under this setup, the 

number of particles was on the order of ~210 per interrogation volume on average, and the 

effective image density per planar slice in the volume was ~7 on average. This level of 

effective image density was close to the minimum requirement suggested in [1] for a 

reliable 3D cross correlation. 

With the above description of 3D cross correlation, a measured displacement field 

containing 117 × 117 × 37 vectors was acquired. Figure 2-4 shows the vector distribution 

of the displacement field of the translation (Figure 2-4a) and rotation (Figure 2-4b) 

movement. As shown in Figure 2-4, the overall motion pattern was well captured for both 

the translation and rotation cases. Figure 2-4a shows that majority of the three components 

of displacement vectors were equal or close to (8 voxels, 0, 0), corresponding to the 
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physical distance of 0.51 mm along the x direction. Figure 2-4b shows that the distribution 

of vectors followed a rotational pattern around the measurement volume center as expected. 

 

Figure 2-4 The vector distribution of the displacement field of translation (panel (a)) and 

rotation (panel (b)) measurement. 

To provide further insights to the accuracy of the displacement vector distribution shown 

in Figure 2-4, numerical simulations were performed in parallel with the experiments. 
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These numerical simulations were performed in the following four steps. First, a phantom 

was created to simulate the distribution of particles in the controlled cell. For the sake of 

simplicity, we used the intensity distribution of the reconstruction obtained at the initial 

position in the experiment as the phantom. Second, the phantom was moved either 

translationally by 8 voxels towards the x direction (to simulate the translation experimental 

measurement) or rotated clock-wise by 2.5° (to simulate the rotational experimental 

measurement), creating the corresponding new phantom at the updated position. Third, 

projections of both phantoms at the initial and the updated positions were calculated at the 

same orientations as used in the experiments, during which artificial noises were added to 

simulate possible measurement uncertainty of the experiments. These calculations were 

performed using a method combining ray-tracing and Monte Carlo simulations as detailed 

in our earlier work [46, 52]. Two primary sources of noise were considered in this work 

(which should be representative for tomo-PIV measurements in general): background (BG) 

noises and noises from the view registration process. The VR uncertainties was considered 

by the ray-tracing program, and the BG noises were considered by adding white noise to 

the simulated projections.  In the fourth step, the projections calculated during the third 

step were used as inputs to the MART algorithms to solve for the positions of the particles 

at the initial and update locations. And in the final fifth step, these positions were correlated 

to obtain the velocity fields.  
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Figure 2-5 Comparison of experiment and simulation results of transition measurements 

on displacement vector magnitude and angle relative to the yz plane (Panel (a), (b) and 

(c)), and rotation measurements on displacement vector magnitude and angle relative to xy 

plane (Panel (d), (e) and (f)). 

Figure 2-5 summarizes the results from these simulations to provide a quantitative 

analysis of the experimental results. Figure 2-5a evaluates the displacement and vector 

fields of translation and rotation measurements in a 2D plane. Such 2D plane corresponds 
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to the glass piece located at x = -33.50 mm, the leftmost piece as shown in Figure 2-1. 

Figure 2-5a shows the distribution of the displacement magnitude (i.e. vector norm) and 

angle of vectors relative to the yz plane calculated from the 3D3C measurements. The true 

value of the displacement magnitude and angle were 0.51 mm and 90o, respectively. As 

shown in Figure 2-5a, the majority of magnitudes were measured experimentally precisely, 

and the errors appeared primarily around the boundary of the measurement plane. The 

averaged errors of magnitude and angle to the yz plane for the translation experiment as 

shown in Figure 2-5a were calculated to be 0.8 voxel and 1.7°, suggesting an overall good 

measurement accuracy. To obtain further insights into the experimental, Figure 2-5b shows 

a numerical simulation with conditions replicating the experimental conditions less any 

noise (i.e., noise-free ideal experiments). As expected, Figure 2-5b shows a more uniform 

distribution of displacement magnitude and angle with only a few larger errors, also located 

around the boundary of measurement plate. The errors seen in Figure 2-5b were caused 

purely by the MART algorithm, and the differences between Figure 2-5a and 2-5b were 

due to experimental uncertainties. To further quantify the experimental uncertainties, 

numerical simulations were performed with various levels of measurement uncertainties 

artificially added to the projections. Two categories of uncertainties were considered here: 

background (BG) noises and view registration (VR) uncertainties. Based on such 

contaminated projections, reconstructions were obtained and error distributions calculated. 

The goal was to search for the level of BG and VR errors that could best reproduce (i.e., 

fit) the experimental results observed. Figure 2-5c shows the simulation results obtained 

with 1% BG and 0.3° VR uncertainty added into the simulation. A comparison between 
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Figure 2-5a against 2-5c (and also between Figure 2-5d and 2-5f too for the rotational case) 

shows that the error distributions from the experimental results were statistically the same 

as those from the simulation results with 1% BG and 0.3° VR error. Such comparison 

suggested that 1% BG noise and 0.30 VR uncertainty could be a reasonable estimate of the 

error sources in the measurements, which were in reasonable agreement with our 

experiences. In addition, Figure 2-5 also provides the standard deviations of the magnitude 

and orientation of the displacement for both the experiments and simulations results. These 

statistics are shown right above each plot. For example, for the translation cases as shown 

in Figure 2-5a and 2-5c, Figure 2-5a shows the standard deviations of the magnitude and 

the angle to the yz plane were 0.07 mm and 3.50  for the experimental results, in close 

agreement with 0.07 mm and 3.80 obtained for the simulation results with 1% BG and 0.30 

VR uncertainty as shown in Figure 2-5c. 

Parallel to the results shown for the translational cases above, Figure 2-5d ~ 2-5f show 

the experimental results and their analysis for the rotational cases. As shown in Figure 2-

5d ~ 2-5f, the magnitude distribution was measured on another piece of glass located at x 

= 18.50 mm, corresponding to the rightmost piece as shown in Figure 2-1.  For Figure 2-

5d ~ 2-5f, the distribution of displacement magnitude and angle of vectors relative to the 

xy plane were calculated. As aforementioned, the measurement domain was rotated in the 

xy plane around the center at the origin. Therefore, the true displacement magnitude was 

perfectly symmetrical about y = 0 mm and constant along the z direction, and the true value 

of the angle of the velocity vector relative to the xy plane should be 0°. Several observations 

can be made from these results. First, the average errors of magnitude and angle to the xy 
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plane for the rotation experiment as shown in Figure 2-5d were determined to be 1.4 voxels 

and 1.9°. Second, as shown in Figure 2-5e, the noise-free simulation presents nearly ideal 

distribution of displacement magnitude and angle, while Figure 2-5d and 2-5f both show 

notable non-uniformity in the displacement and angle distribution, especially near the 

center of the measurement plane. One possible reason is that the displacement vectors near 

the plane center have smaller magnitude, thus are more sensitive to the measurement error. 

Similar to the above analysis of the error and the related standard deviation made for the 

translational cases, the simulation with 1% BG and 0.3° VR error for the rotational case 

reproduced the experimental results the best, supporting that these BG and VR 

uncertainties to be a reasonable estimate of the experimental uncertainty.  

To further examine the above analysis of the experimental uncertainties, Figure 2-6 

show a more detailed comparison between the experimental and the simulation results with 

1% BG and 0.3o VR uncertainty by plotting the percentage distribution of the errors. Figure 

2-62-6a and 2-6b show the percentage distribution of the displacement magnitude error for 

the translation and rotation measurements, respectively. The displacement magnitude error 

here was calculated by firstly subtracting the measured displacement vector from its ideal 

vector, and then calculating the norm of the subtracted vector. Figure 2-6c shows the 

percentage distribution of angle of vectors to yz plane for translation measurement. Figure 

2-6d shows the percentage distribution of angle of vectors to the xy plane for rotation 

measurement. As can be seen from Figure 2-6, for the results under all panels, the detail 

percentage distribution of the simulated error match the experimental results with 

reasonable agreement. Again, this comparison supports that 1% BG and 0.3° VR error were 
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reasonable estimates of the experimental uncertainty. It is typically difficult, if possible at 

all, to isolate and quantify various sources of experimental uncertainties. The simulation 

results and method discussed here served as an effective approach, and we expected them 

to provide insights to aid the interpretation of tomo-PIV experiments.  

As a next step, numerical simulations were performed to further explore the effects of 

VR uncertainties, and the results are shown in Figure 2-7. These simulations were 

performed with the BG noise fixed at 1% while the VR noise was varied from 0.1° to 0.6°. 

These simulation studies were motivated by the practical consideration that BG noise is 

difficulty, if possible at all, to be controlled or reduced, while there are possible approaches 

to improve the VR process and reduce the VR noise[45, 53-55]. Figure 2-7a and 2-7b show 

the displacement magnitude error distribution of the simulated translation and rotation 

measurements, respectively. Figure 2-7c and 2-7d show the error distribution of the vector 

angle of the simulated translation and rotation measurements, respectively. Several 

observations can be made based on these results. First, for the noise-free simulation shown 

in Figure 2-7a and 2-7b, more than 95% of the velocity vectors were reconstructed with no 

displacement error in the translational case, and the more than 87% reconstructed with no 

displacement error in rotational case. Such results obtained from noise free simulation were 

consistent with the experimental results discussed earlier, showing that it was more difficult 

to reconstruct the magnitude of the velocity vectors accurate for rotational velocity fields 

than for translational fields. Such noise-free results shown in Figure 2-7a and 2-7b also 

illustrate the level of reconstruction error brought about by the MART algorithm itself, 

suggesting the potential for algorithm improvement. Second, for error in the vector, Figure 
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2-7c and 2-7d show that, under the noise-free case, more than 96% of the vectors were 

reconstructed with no error for both the translational and rotational fields. Such results were 

again consistent with the experimental results discussed earlier, suggesting that it is equally 

difficult (or easy) to obtain the correct velocity vector orientation in both translational and 

rotation velocity fields. Third, it can be seen that more vectors were reconstructed with 

increasing errors as the noise level increased. As one example, Figure 2-7a and 2-7b show 

that less than 1% of the velocity vectors were reconstructed with a magnitude error at 0.38 

mm with 0.30 VR error, compare to almost 10%, a more than 10x increase, when the VR 

error increased to 0.60. As another example, for the noise-free cases, Figure 2-7c and 2-7d 

show that no vector was reconstructed with an angle error more than 10°, and less than 5% 

of vectors were reconstructed with an error larger than 5°. However, with 1% BG and 0.3° 

VR noise, angle error up to 30° began to occur (also consistent with the experimental 

results discussed earlier).  

These results suggested that the VR error impacts the reconstruction accuracy 

significantly, motivating future research to develop improved VR processes to reduce the 

VR error. The results in Figure 2-7 shows that if the VR error can be reduced to the level 

of 0.10, the overall reconstruction error will be significantly reduced, and also the larger 

errors will be removed. Specifically, for the cases studied here, as the VR error was 

decreased from 0.6° to 0.1°, the tomo-PIV accuracy was improved by at least 2.5× in terms 

of both displacement vector magnitude and orientation. The magnitude error was reduced 

from 1.5~2.1 voxels to 0.5~0.8 voxels, and angle error reduced from 4.5°~3.8° to 0.6°~1.3° 

for the translational and rotational velocity fields, respectively. 
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Figure 2-6 Percentage distributions of experiment and simulation results with 1% BG and 

0.3o VR noise. Panel (a) and (b): displacement error for translational and rotational velocity 

fields, respectively. Panel (c): angle of vectors relative to the yz plane for translational 

velocity fields. Panel (d): angle of vectors relative to the xy plane for translational fields. 
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Figure 2-7 Percentage distributions of simulation results with different compositions of 

noise. Panel (a) and (b): displacement error for transitional and rotational fields, 

respectively. Panel (c): angle of vectors relative to yz plane for translation. Panel (d): angle 

of vectors relative to xy plane for rotation. 

2.4 Summary 

In summary, this work reports the experimental validation of tomographic particle 

image velocimetry (tomo-PIV) for measuring 3D3C velocity fields using controlled tests. 

This work designed a method involving solid samples to create precisely controllable 

particle displacement fields to simulate flow fields. The displacement fields were 

experimentally measured by a six-camera tomo-PIV system, and the experimental results 

then analyzed to quantify the accuracy of 3D3C velocity fields obtained from the tomo-
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PIV technique. The results obtained in this work quantified the capabilities and 

uncertainties of tomo-PIV for resolving the magnitudes and orientation of 3D3C velocity 

fields. More specifically, the major observations can be summarized into the follow three 

aspects. First, the results showed that tomo-PIV technique was able to reconstruct the 3D3C 

velocity with an averaged error of 0.8 to 1.4 voxels in terms of magnitude and 1.7° to 1.9° 

in terms of orientation for the velocity fields tested. Second, these results illustrated that 

the view registration (VR) process plays a significant role in tomo-PIV. By reducing VR 

error from 0.6° to 0.1°, the overall 3D3C measurement accuracy can be improved by at 

least 2.5× in terms of both magnitude and orientation, and also the larger outliers of 

reconstruction errors can be removed. Since there are possible methods to improve the VR 

process, these results provide motivation for further investigation of these possibilities. 

Third, the use of additional cameras in tomo-PIV can extend the 3D3C velocity 

measurement to a larger volume while maintaining acceptable accuracy (that is, at the cost 

of increasing equipment cost). With the six cameras used in this work, 3D3C measurements 

were obtained in a volume with a thickness of 57 mm in the direction of the field-of-view 

of the cameras. In comparison, the thickness of the measurement volume was typically on 

the order of ~25 mm with a four-camera setup predominately applied in the past. We expect 

these results and observations to aid the error analysis and the design of tomo-PIV 

measurements. 
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Chapter 3 Regularized tomo-PIV based on conservation of 

mass 

Abstract 

3D3C (three-dimensional and three-component) velocity measurements have long been 

desired to resolve the 3D spatial structures of turbulent flows. Recent advancements have 

demonstrated tomographic particle image velocimetry (tomo-PIV) as a powerful technique 

to enable such measurements. The existing tomo-PIV technique obtains 3D3C velocity 

field by cross-correlating two frames of 3D tomographic reconstructions of the seeding 

particles. A most important issue in 3D3C velocity measurement involves uncertainty, as 

the derivatives of the measurements are usually of ultimate interests and uncertainties are 

amplified when calculating derivatives. To reduce the uncertainties of 3D3C velocity 

measurements, this work developed a regularized tomo-PIV method. The new method was 

demonstrated to enhance accuracy significantly by incorporating the conservation of mass 

into the tomo-PIV process. The new method was demonstrated and validated both 

experimentally and numerically. The results illustrated that the new method was able to 

enhance the accuracy of 3D3C velocity measurements by 40~50% in terms of velocity 

magnitude and by 0.6~1.1° in terms of velocity orientation, compared to the existing tomo-

PIV technique. These improvements brought about by the new method are expected to 

expand the application of tomo-PIV techniques when accuracy and quantitative 3D flow 

properties are required. 

3.1 Introduction 
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Instantaneous 3D3C (three-dimensional and three-component) velocity measurements 

represent an ultimate goal of velocimetry, which is to fully resolve unsteady flow 

structures. However, it was only recently that substantial progress in instantaneous 3D3C 

velocimetry has been made owing to the advancements in lasers, digital imaging, and 

computational technology [17, 22, 56].  In the recent past, several approaches have been 

demonstrated to enable 3D3C velocity measurements, including scanning particle image 

velocimetry (PIV) [3, 5, 57, 58], holographic PIV [6, 7, 59], and tomographic PIV (tomo-

PIV) [8, 22, 26, 60, 61]. A comprehensive comparison of these approaches is beyond the 

scope of this paper, and interested readers are referred to [17, 22, 56] and the references 

therein.  

This current work focuses on the tomo-PIV technique. Tomo-PIV obtains 3D3C 

velocity measurements by combining PIV measurements with 3D tomographic 

reconstruction. Conceptually, this technique involves two steps. In the first step, the 

distributions of seeded particles in 3D are obtained at two consecutive times using 3D 

tomographic reconstructions. At each time, a thick laser slab is used to illuminate the 

seeded particles volumetrically, and multiple cameras are used to capture the scattered 

signal from different orientations, providing the inputs for a tomography algorithm to 

obtain the 3D distribution of the seeded particles. In the second step, a 3D3C velocity field 

is calculated by performing a cross-correlation of the two frames of 3D particle 

distributions obtained in the first step. Such tomo-PIV technique has been demonstrated 

[8, 61, 62], validated [19, 60, 63], and applied to investigate a variety of flows [24, 25]. 
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The second step is a relatively straightforward extension of established 2D PIV 

correlation. However, the first step presents significant additional complexity and 

uncertainty to the measurements compared to 2D PIV measurements. For instance, due to 

the nature of the volumetric illumination and the use of multiple cameras, it becomes 

important to calibrate these cameras both in terms of their noise level and their relative 

orientation. Such calibration inevitably involves uncertainties, including camera noise and 

also orientation error [19], and these uncertainties propagate through the rest of the data 

processing. Also, the subsequent tomography algorithm can only reconstruct with a finite 

accuracy even if the measurements captured by the cameras are error free. In practice, these 

measurements are contaminated by noises (e.g., due to the calibrations just mentioned), 

and such noises will propagate (or even become amplified) during the tomographic 

reconstruction process. As a result, accuracy of tomo-PIV can be much worse than that of 

2D PIV, while accuracy is of paramount importance in many velocity measurements as 

their derivatives are of ultimate interest to determine quantities such as vortex, force, 

energy, etc. Currently, the measurement accuracy of 3D3C velocity enabled by tomo-PIV 

was reported to be on the order of ~1 voxel and ~2° in terms of velocity magnitude and 

direction [19], respectively; in contrast, the 2D PIV technique can yield a measurement 

accuracy of ~0.5 pixel and ~1° [20, 21].  

Recognizing the additional complexity brought about by tomo-PIV and the critical need 

for accuracy, considerable efforts have been made to enhance the measurement accuracy 

of tomo-PIV from tomography reconstruction (step 1) and cross-correlation (step 2). The 

investigation of tomography reconstruction included a range of experimental and 
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computational efforts to improve the reconstruction accuracy. Experimental effects 

included the optimization of key imaging parameters [22, 23, 64], tomography imaging 

configuration (cross-like configuration [24, 25] and linear configuration [26, 27]), view 

registration [28-30], seeding density [31, 32], etc. In parallel, computational efforts 

included optimization of existing reconstruction algorithms such as ART ( algebraic 

reconstruction technique) and MART (multiplicative algebraic reconstruction technique) 

[8, 33], the use of spatial filter in the reconstruction [33], the integration of sparsity 

maximization into reconstruction [34, 35], and the development of new reconstruction 

methods and algorithms [29, 36, 37], etc. In addition to the investigation in tomography 

reconstruction, significant efforts have also been invested in the improvement of the second 

step, the cross-correlation step. Examples include the development of high-accuracy cross-

correlation algorithms such as the 3D window deformation algorithm [38], methods for 

sub-voxel estimation [5], and the use of low-pass filters in 3D image pre-processing [39]. 

The focus of this work involves the second step. Based on the above understanding of 

past efforts, this work describes a new approach to improve the cross-correlation by 

incorporating flow physics. It is intuitive to recognize that if some fundamental flow 

physics can be integrated into the cross-correlation process (e.g., as a regularization), it has 

the potential to improve the accuracy and can lead to more accurate velocity vectors. Based 

on such recognition, this work investigated a regularized tomo-PIV method (code-named 

RTPIV) using the conversation of mass as a regularization for incompressible flows. The 

rest of this chapter describes the development of the RTPIV method in detail (Chapter 3.2), 

and also presents the confirmation and demonstration results obtained both by controlled 
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experiments and by numerical simulations (Chapter 3.3). Finally, Chapter 3.4 will conclude 

the work with a summary of the major observations, a discussion of the limitations of the 

current work, and possible directions for further study.  

3.2 Problem formulation and algorithm description 

This section describes the mathematical formulation of the proposed RTPIV method. 

As described in Section 1, the first step in tomo-PIV involves obtaining the 3D distribution 

of the seeded particles (denoted as F) using tomographic reconstructions.  The 3D 

tomographic reconstruction to obtain F has been previously detailed elsewhere [10], and 

only a brief summary is provided here to facilitate the discussion of the regularized cross-

correlation process. After discretization of the measurement domain into voxels, the 

relationship between the projections measured by the cameras and the sought F is related 

by the following equation:  

                                                          = P PSF F                                                          (3-1) 

where P represents all the measured projections organized into a vector format pixel by 

pixel, F the discretized particle distributions also in vector format by organizing its values 

voxel by voxel, and PSF the point spread function matrix that only depends on the 

geometry parameters of the imaging system used (i.e., no dependence on F) [65, 66]. The 

algorithm used to solve Equation 3-1 in this work was the Multiplicative Algebraic 

Reconstruction Technique (MART) as detailed in [19, 51].  

In practice, Equation 3-1 was solved twice with two sets of projections captured by 

cameras at two consecutive times to provide the corresponding particle distributions 



35 

 

(denoted F1 and F2). The resultant F1 and F2 are then cross-correlated to provide the final 

3D3C velocity. 

To reduce the uncertainties of 3D3C velocity measurements induced both by the 

reconstruction step and the cross-correlation step, this work describes a new method, code-

named RTPIV, to incorporate the conservation of mass (COM) equation as a priori 

information into the cross-correlation. For divergence-free flows (i.e., incompressible 

flows), the COM equation is simplified to ∇∙V=0. Therefore, for such flows, instead of 

simply correlating F1 and F2 to solve for velocity (V) as practiced in past work, this work 

solves for velocity through the following minimization problem:  

                                              
min   = ( CC( ))E   + − V V

                                             (3-2) 

where E is the master function to be minimized, |∇∙V| is the regularization term, i.e., the 

modulus of the velocity divergence, CC(V) is the value of cross-correlation under a given 

velocity vector, and α is the regularization parameter used to adjust the weights of these 

two terms. The summation in Equation 3-2 runs over all the velocity vectors obtained in 

the discretized domain. Since V is obtained based on the reconstructed F1 and F2, the 

minimization of Equation 3-2 ultimately relies on both the COM regularization and the 

tomographic measurements. Note that the negative sign in front of the cross-correlation 

term in Equation 3-2 is needed so that minimizing Equation 3-2 is equivalent to 

maximizing the cross-correlation. Also, the modulus of the divergence in Equation 3-2 is 

used to ensure a positive regularization term to be minimized.  
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The formulation in Equation 3-2 enables the simultaneous consideration of a priori 

information (i.e. the COM equation) and a posteriori information (i.e., the measurements). 

Conceptually, the ideal solution from solving Equation 3-2 is the one that makes the first 

term zero (such that the COM equation is perfectly satisfied), and at the same time 

maximizes the second term (such that optimal correlation is achieved with the measured 

data). In practice, due to the presence of noises, both experimental and numerical, the 

solution from Equation 3-2 will not perfectly satisfy the COM equation or maximize the 

cross-correlation of the measurements. Instead, the solution will be a balanced 

consideration of both. The regularization parameter, α, controls the relative weight of them 

and therefore is a key parameter – not only for this particular RTPIV problem, but for 

regularized schemes in general [67, 68]. This work employed the so-called L-curve method 

to determine the optimal α [69], which is to be elaborated in detail in the next section.  

Before describing the specific methods for solving Equation 3-2, note that the particular 

formulation shown in Equation 3-2 only applies to incompressible flows. For other types 

of flows (e.g., compressible flows, multiphase flows and most reacting flows), the COM 

equation can involve other properties beyond velocity. There are possible approaches that 

the COM equations can be incorporated into the reconstruction process for these flows, but 

modifications and extensions of Equation 3-2 will be needed.  In this work, we limit our 

focus to incompressible flows, and want to emphasize that incompressible flows already 

represent a wide range of applications of contemporary interests (such as the study of many 

bio-induced flows and the operation of many unmanned aerial vehicles where small-scale 
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vortices and erratic velocity components exist). Furthermore, the current RTPIV method 

could be applied to certain reacting flows when the density variation is negligible. 

The problem formulated in Equation 3-2 represents a global minimization problem that 

is not always easy to solve numerically, due to the complexity of velocity fields that can 

create interfering local minima. This work adopts the Simulated Annealing (SA) algorithm 

due to its robustness. SA is a probabilistic algorithm [70] that has been demonstrated to 

solve a range of difficult minimization problems with numerous interfering local minima 

[53, 71].  

With these above understandings, this work has developed the following four steps to 

solve Equation 3-2 to obtain 3D3C velocity, as summarized by the flow chart in Figure 3-

1. In the first step, tomo-PIV reconstruction was performed in a traditional way following 

[8, 24], and the solution was used to initialize the 3D3C velocity field and the master 

function E. More specifically, the reconstructions of particle distributions across two 

consecutive frames were used to compute the correlation on each integration volume (IV) 

and then the summation Σ(-CC(V)) over all IVs. The velocity vectors were used to calculate 

|∇∙V| on each IVs using the central difference scheme (with a second-order accuracy of the 

discretization), and then Σ|∇∙V| over all IVs. Once the correlation term and divergence were 

both obtained, they were added to initialize the master function E. In the second step, the 

velocity field initialized in the first step was adjusted. The adjustment was performed by 

applying a random amount of perturbation to the three components of the initial velocity 

vectors, and the perturbed 3D3C velocity field was denoted by V’. The resultant V’ was 

then used to update the master function E, and the updated value of E was denoted as E’. 
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In the third step, E’ was compared to E by the Metropolis criterion [70] to decide whether 

the adjusted velocity field (i.e., V’) should be rejected or accepted. If the decision was to 

reject, then the initial velocity field was adjusted again to form another perturbed velocity 

field. If the decision was to accept, then V’ was regarded as a more accurate velocity field 

and was used as the starting point for the next round of perturbation. In this step, the use 

of the Metropolis criterion is the key to the SA algorithm, which allows the RTPIV method 

to evolve the solution in the most promising direction after exploring possible velocity 

perturbations from all directions. In the fourth and last step, step 2 and 3 were iterated until 

E converged to a preset criterion. In this work, the criterion was set so that when the relative 

change of E between two consecutive iterations was below 0.1% following the suggestion 

in [72]. Also, our results showed that the accuracy of RTPIV was insensitive to this preset 

level. The accuracy of RTPIV changed within 0.5% when the preset level varied between 

a range of 0.001% to 0.1%.  
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Figure 3-1 Flow chart summarizing the RTPIV method. 

3.3 Validation via controlled experiments and numerical simulations 

 This section describes and demonstrates the validation of the RTPIV method via 

controlled experiments. The setup for the controlled experiments is illustrated in Figure 3-

2. This setup was similar to that described in [19]. The central concept of the experiment 

involved using a solid sample to create precisely controlled velocity field for validation 

purposes. More specifically, the experimental setup consisted of three major components 

as shown in Figure 3-2: a solid sample assembled from thin glass slides, an illumination 

laser, and a total of 6 CMOS cameras. 

As shown in Figure 3-2, the solid sample assembled from thin glasses was placed in 

the center of the setup. Four pieces of thin glass were coated with polystyrene particles 
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with a nominal diameter of 4.05 µm. These particles were coated on one side of each thin 

glass with an average spacing of ~0.5 mm. Each glass slide had a thickness of 0.5 mm and 

a height × width of 65 × 60 mm2. These four slides of thin glass were then clamped together 

and assembled to form the solid sample. The glasses were adjusted parallel to each other 

with a spacing of 5 mm between each other. Such 5 mm spacing was chosen to imitate 

commonly used measurement dimension (along the normal direction of the glasses) in 

typical tomo-PIV experiments [22]. The solid sample therefore was essentially a 

transparent cuboid with particles sandwiched in between. The solid sample was then 

mounted on a rotation stage (Thorlabs PR01), which was in turn mounted in on a translation 

stage (OptoSigma TSD-602C). The translation stage can linearly translate along one 

direction with a resolution of 10 µm, and the rotation stage can rotate continuously within 

360o with a resolution of 5 arcmin. As a result, the solid sample can be moved either 

translationally or rotationally with precision up to the accuracy of the stages. The 

corresponding movement of the embedded particles were then used to generate the target 

velocity fields, with well controlled accuracy, for validation and demonstration purposes.  
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Figure 3-2 Experimental setup. 

The second major component was a laser used to illuminate the particles embedded in 

the solid sample. The laser was a pulsed Nd: YLF laser (Photonics Industries DM30 – 527, 

labeled as the Illumination laser in Figure 3-2) at a wavelength of 527 nm. The laser pulses 

were shaped by a series of optics into a thick laser slab to illuminate a measurement volume 

of 26.4 (x direction) × 26.4 (y direction) × 12 (z direction) mm3, so that the entire solid 

sample can be illuminated volumetrically. Based on the controlled cell and laser 

configuration, a Cartesian coordinate system was defined as shown in Figure 3-2: the center 

of the translational base was defined as the origin, the plane of the movement of the 

translational base was defined as the x-y plane, the direction of the translational movement 

(also the opposite direction of the laser propagation) was defined as the x axis. Essentially, 

the x, y and z axes were defined along the thickness, width and height direction of the solid 

sample, respectively.  
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The third major components involved a total of six cameras to capture the signal from 

the particles. When illuminated by the laser volumetrically, the embedded particles 

scattered the incident photons and the scattered photons were then captured by six CMOS 

cameras (4 Photron SA-4 and 2 Photron SA-1.1) as shown in Figure 3-2. All six cameras 

were operated with an exposure time of 1 ms, and they were synchronized with the laser 

using control electronics. All cameras were aligned in the x-y plane within experimental 

accuracy so that their orientations can be specified by θ (defined as the angle formed by 

the optical axis of a camera relative to the positive x direction as shown in Figure 3-2). 

Prior to any measurement, a view registration (VR) process was performed to determine θ 

as detailed in [73, 74]. The view angles θ of camera 1 through 6 were determined to be 

219.5°, 270.0°, 315.7°, 50.1°, 118.6° and 139.0°, respectively, with an average VR error 

of ±0.3° [75].  

With the above setup, two representative controlled experiments were performed to 

validate the proposed RTPIV method. These two representative experiments involved a 

translational movement and a rotational movement of the solid sample. For the translational 

movement, the solid sample was moved 0.51 mm along the positive x axis; and for the 

rotational movement, the solid sample was rotated clock-wise (viewed from the top) of 

2.5° around the cell center. For each experiment, volumetric scattering signals were 

captured on the cameras before and after the movement, the measured signals were used to 

reconstruct the 3D distributions of the particles before and after the movement, and velocity 

field were finally obtained by correlating the 3D particle distributions before and after the 

movement.  
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Figure 3-3a shows the 3D3C velocity field reconstructed by the RTPIV method for the 

translational movements. The reconstruction was obtained with the measurement domain 

discretized into a total of 440 × 440 × 200 voxels. Under this discretization, two 

tomography reconstructions at consecutive times were performed using the six projections 

obtained by the six cameras, each with a pixel resolution of 440 × 200. The tomography 

reconstructions resulted in two distributions of particle intensities in 3D at two consecutive 

times. These two distributions were then interrogated using the COM-regularized cross-

correlation method as described in Equation 3-2 to generate the ultimate 3D3C velocity 

field. The COM-regularized cross-correlation was conducted with an interrogation volume 

of 30 × 30 × 30 voxels at 50% overlap, such that the 3D3C velocity field contained 28 × 

28 × 12 velocity vectors as shown in Figure 3-3a. As seen, the obtained velocity vector 

field captured the uniform nature of the translation movement as expected.  

To quantitatively assess the measurement accuracy, the following eV metric was 

defined, 
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                                                 (3-

3) 

where Vmea and Vtrue represented the measured and true velocity vector, respectively, the |∙| 

sign the modulus of a vector, and the summation operated on a vector-by-vector basis. 

Conceptually, the eV defined in Equation 3-3 quantifies the average error of the velocity 

measured relative to the ground truth. Since the modulus of the velocity vectors was used 

in the definition, eV  represents the combined effects of measurement error in both the 
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velocity magnitude and also the velocity direction [76]. To decouple such combined effects 

and explicitly quantify the measurement error in velocity direction, an error of the velocity 

direction (denoted as eD) was also defined in this work: eD was defined as the absolute 

difference of the velocity direction between the measured velocity vectors relative to the 

ground truth, averaged across the entire measurement domain. Under these definitions, the 

eV and eD for the measurement obtained by the RTPIV method over the entire domain 

shown in Figure 3-3a was calculated to be 5.1% and 0.9°, respectively.  

To illustrate the advantage of the RTPIV method, the velocity reconstruction was also 

performed using the traditional TPIV (tomo-PIV) method using the same projection data. 

The computational settings in the TPIV method remained the same as those used in RTPIV, 

and the only difference was that it performed the cross-correlation without the COM 

regularization used in the RTPIV. The eV and eD obtained by the traditional TPIV method 

over the entire domain shown in Figure 3-3a was calculated to be 10% and 1.7°, 

respectively. Therefore, the new RTPIV method was able to enhance the accuracy 

significantly both in terms of eV and eD  (i.e., to 5.1% and 0.9°, respectively). Along with 

the overall error comparison, the probability density functions (PDFs) of eV and eD were 

also generated by the RTPIV and TPIV methods to provide a more detailed error 

comparison and further illustrate the superiority of the RTPIV method. Note that a similar 

level of accuracy enhancements was observed in other cases with different spatial 

resolutions by varying the interrogation volume (from 16×16×16 voxels to 64×64×64 

voxels), too. Then, we examine the results with the current translational velocity field more 

closely. Figure 3-3b and 3-3c show the velocity vector plots at the central z plane (i.e., z = 



45 

 

6 mm) obtained by RTPIV and TPIV, respectively. Figure 3-3d shows the corresponding 

ground truth velocity field to be compared to Figure 3-3b and 3-3c directly. The velocity 

unit as labelled in Figure 3-3b ~ 3-3d was voxel/frame, which was defined as how many 

voxels the solid sample has been moved between two consecutive frames of tomographic 

measurements, i.e., before and after the manual movement in this work. As can be seen 

visually, the enhancement brought about by the RTPIV method resulted in better agreement 

with the ground truth, and also the significant reduction of vectors with large errors both 

in terms of magnitude and direction. 

 

Figure 3-3 Comparison of the RTPIV and TPIV methods using the controlled translation 

experiment. (a) Velocity vector distribution reconstructed by RTPIV. (b) Reconstructed 

field by RTPIV at the central z plane (z = 6 mm). (c) Reconstructed field by TPIV at the 

same central z plane. (d) Ground truth at the same central z plane. 
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Figure 3-4 shows more intermediate steps with the intention of providing more insights 

to the results in Figure 3-3. Figure 3-4 shows the performance of the RTPIV method when 

Equation 3-2 was solved with varying α, the regularization parameter. Figure 3-4a shows 

the value of Σ(-CC(V)), i.e. the second term in Equation 3-2, versus Σ|∇∙V| when Equation 

3-2 was solved at different values of α ranging from 0 to +∞. Here Σ(-CC(V)) was scaled 

into a range of [0, 1]. As seen in Figure 3-4a, the curve resulted from such analysis featured 

an overall approximate L shape, a feature common to regularized techniques in general 

[69, 71]. The reason for the general L-shape can be intuitively understood by examining 

its trend at extreme values of α. At one extreme when α =0 (or close to zero), Σ(-CC(V)) 

reaches its minima and Σ|∇∙V| is large because Equation 3-2 ignores Σ|∇∙V| and only 

attempts to minimize Σ(-CC(V)), as displayed by the nearly horizontal portion of the curve 

on the lower right corner of Figure 3-4a. At the other extreme when α = +∞ (or very large), 

the opposite happens: Σ(-CC(V)) is large and Σ|∇∙V| reaches its minima, as displayed by 

the nearly vertical portion of the curve on the upper left corner of Figure 3-4a. As α varies 

in between, the curve traces an overall L shape. Hence, the L curve shown here illustrates 

the essence of the RTPIV method proposed in Equation 3-2: the RTPIV method enables a 

technique to balance the role of cross-correlation and that of the fundamental governing 

equation of COM by varying α. When a small α is used, the RTPIV method assigns more 

weight on the cross-correlation and approaches traditional TPIV. As the value of α 

increase, the method assigns more weight on the COM governing equation to complement 

the information provided by the cross-correlation.  
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Accompanying Figure 3-4a, Figure 3-4b shows the corresponding eV obtained under 

different values of α used. First, it can be seen that when α was small enough (smaller than 

~10-5), the error remained constant at 10% as highlighted by the horizontal green dashed 

line. As mentioned earlier, the reason was that when α is small enough, the RTPIV method 

became essentially equivalent to traditional TPIV. And indeed, an eV of ~10% represents a 

typical error the current unregularized TPIV method based on recent quantification efforts 

[8, 19, 71]. Then Figure 3-4b also shows that as the value of α gradually increased, eV first 

decreased, then reached a minimal of 5.1% when α = 3 × 10-4, and began to increase again. 

The fundamental reason behind such behavior was that as α increases, the RTPIV method 

attempted to balance the role of cross-correlation and that of the COM regularization. As 

Figure 3-4b shows, such balance was only optimal within a certain range of α (between 

~0.1 and 10-5 in this case as highlighted by vertical green dashed lines). When α is too 

small (smaller than ~10-5 in this case), the role of regularization is negligible and the eV will 

be just the same as unregularized TPIV. When α is too large (larger than ~0.1 in this case), 

the role of regularization is too large and not enough weight is assigned to the cross-

correlation (i.e., the experimental data), and eV will be larger than the unregularized TPIV. 

Besides providing a further understanding of the RTPIV method, the above 

observations from Figure 3-4 also illustrate the importance, and the potential practical 

difficulty, of selecting α. In practice, the true velocity is unknown and therefore eV is not 

available for selecting the optimal α in the way shown in Figure 3-4b. The plot shown in 

Figure 3-4b simply is not obtainable in practice. Therefore, significant past efforts have 

been invested to develop methods that depend only on quantities practically accessible to 
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determine the optimal α [69]. This work adapted the so-called L-curve method [69], named 

after the overall L shape of the curve between of Σ(-CC(V)) versus Σ|∇∙V|, both quantities 

practically accessible. More specifically, the L-curve method searches for the optimal α in 

three steps. First, the regularized minimization problem as described in Equation 3-2 was 

solved by the RTPIV method multiple times at different α’s, and then the Σ(-CC(V)) and 

Σ|∇∙V| obtained under each α were recorded. Second, the Σ(-CC(V)) and Σ|∇∙V| obtained in 

step 1 under different α’s were plotted, providing the L-curve shown in Figure 3-4a. Third, 

the corner of the L-curve was located by finding the maximum curvature of the curve, and 

the corresponding α at the corner was taken as the optimal α. Conceptually, the L-curve 

method is based on two recognitions. First, the α corresponding to the corner of the L-

curve, where its curvature peaks, represents an optimal balance between the contributions 

from the regularization (i.e., the Σ|∇∙V| term) and the measurements (i.e., the Σ(-CC(V)) 

term). A different α would result in a sub-optimal tradeoff between the regularization and 

measurements because the trade-off is moving away from the point with maximum 

curvature. The second recognition is that eV is insensitive to the selection of α around the 

corner. So that in practice, the L-curve method can still be effective even though the 

“corner” of the L-curve cannot be accurately identified due to either measurement or 

computation uncertainties.   

With the L-curve method, the optimal α was determined to be 3×10-4 for the 

experimental translation data shown in Figure 3-3a and 3-3b. The corresponding corner is 

highlighted by the red square on the L-curve in Figure 3-4a. The effectiveness of the L-

curve method was confirmed by the fact that the minimal eV indeed occurred near α of 



49 

 

3×10-4 as shown in Figure 3-4b. The data shown in Figure 3-4 also illustrate the 

insensitivity of eV with respect to α as aforementioned. The two blue squares in Figure 3-

4a show the cases from two other values of α, 5 × 10-4 and 1.6 × 10-4, one larger and one 

smaller than the optimal value picked by the L-curved method. As seen, the portion of the 

curve within these two values was wide enough to contain the entire “corner” region of the 

L-curve. As seen from Figure 3-4b, any value from this region can reduce eV sufficiently 

close to the minimal level of ~5.1%. 

 

Figure 3-4 The L curve for the RTPIV method when applied to the controlled translation 

experiment. (a) The relationship between Σ(-CC(V)) and Σ|∇∙V| with α varying from 0 to 

+∞. (b) Corresponding eV at different values of α. 

Figure 3-5 shows the validation results for the RTPIV method using the controlled 

rotation movement. As aforementioned, the experiment was similar to that of the 

translational movement described in Figure 3-3 and 3-4, except this time the solid samples 

were rotated. Two sets of projections were then captured at two consecutive positions of 

the rotation. Based on these projections, the RTPIV method was then applied to reconstruct 

the rotation field (with the same computational settings, e.g., voxel discretization and 
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projection size, as used before). Figure 3-5a shows the 3D3C velocity vector distribution 

of the rotation movement obtained by the RTPIV method. As seen, the reconstruction 

faithfully captured the overall structure of the velocity field, i.e., a rotational field around 

the geometric center of the rotation. Quantitative examination was then performed by 

comparing the reconstruction against the ground truth. The eV and eD from the RTPIV 

method, averaged across the entire measurement domain, was calculated to be 6.2% and 

1.1°. In comparison, when unregularized TPIV technique was applied using the same 

projections, eV and eD were 11.3% and 1.9°, respectively. The RTPIV method was again 

demonstrated to enhance measurement accuracy significantly.  

Figure 3-5b and 3-5c show the velocity vector distributions at the central z plane (z = 6 

mm) obtained by the RTPIV and TPIV method, respectively, to provide a visualization of 

the reconstructions. And Figure 3-5d shows the ground truth at the same plane. As can be 

seen from Figure 3-5b to 3-5d, the velocity field at central z plane obtained by RTPIV 

resembled the ground truth velocity field more closely than that acquired by TPIV. 
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Figure 3-5 Comparison of the RTPIV and TPIV methods using the controlled rotation 

experiment. (a) Velocity vector distribution of the reconstructed rotation field obtained 

from RTPIV. (b) Reconstructed rotation field from RTPIV at the central z plane (z = 6 

mm). (c) Reconstructed rotation field from TPIV at the same central z plane. (d)  Ground 

truth rotation field at the same central z plane. 

Similar to the controlled translation experiment, Figure 3-6 shows more intermediate 

steps and also illustrates the selection of α using the L-curve method. Figure 3-6a shows 

the scaled Σ(-CC(V)) versus Σ|∇∙V| at various α. As can be seen, the result again followed 

the L shape, similar to that shown in Figure 3-4a for the controlled translation experiment. 

Figure 3-6b shows the corresponding eV obtained at different values of α used. These results 

suggest the same key observations made from Figure 3-4b. The L shape seen in Figure 3-

6a again reflected RTPIV’s capability of balancing the cross-correlation and COM by 
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varying α as formulated in Equation 3-2.  From Figure 3-6b, it can be seen that when α was 

smaller than ~10-6, the RTPIV method was essentially reduced to the unregularized TPIV 

method, with eV =11.3% as highlighted by the horizontal green dashed line. Then as α 

increased, eV first declined to a minimum of 6.2% at α = 1 × 10-4, then started to increase 

again. When α increased beyond ~0.02, eV obtained by RTPIV became larger than 11.3%. 

Figure 3-6 also illustrates the selection of optimal α using the L-curve method. The L-

curve, when applied to the data shown in Figure 3-6a, led to an optimal α =1 × 10-4. The 

effectiveness of the L-curve method was again demonstrated by the corresponding eV 

shown in Figure 3-6b. As shown, the minimal eV indeed occurred in the vicinity of α =1 × 

10-4. Moreover, Figure 3-6 again illustrates that eV was insensitive to the selection of α 

around the corner of the L curve. As seen from Figure 3-6a, with any α ranging from 2 × 

10-4 and 5 × 10-5, which covered essentially the entire “corner” region of the curve, the eV 

obtained was sufficiently close to the minimal level of ~6.2% shown in Figure 3-6b. 

 

Figure 3-6 The L curve for the RTPIV method when applied to the controlled rotation 

experiment. (a) Σ(-CC(V)) versus Σ|∇∙V| with α within [0, +∞]. (b) eV at different α’s. 
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After the above validation of the RTPIV method using controlled experiments, 

numerical analyses were performed using more practical velocity fields. Numerical 

analyses were conducted here because for such practical fields, it was infeasible to obtain 

the ground truth velocity fields experimentally. Here, numerical analyses were performed 

on a jet flow and a pair of Rankine vortices so the effectiveness of the RTPIV method can 

be quantitatively evaluated on these canonical flows. 

Figure 3-7 summarizes the results obtained from the jet flow simulations. The results 

of this jet flow were obtained via numerical simulations performed in the following four 

steps. First, the velocity vector field of a jet flow was obtained numerically by CFD 

simulations in Fluent. A volume of 14.4 × 14.4 × 4.8 mm3 (along x, y and z directions, 

respectively) within the simulated field was created and then discretized into 240 × 240 × 

80 voxels, inside of which a total of 24,000 numerical particles were randomly distributed 

spatially. Here these numerical particles were introduced to simulate the practical tracer 

particles seeded in the flow in the tomo-PIV experiment, and the spacing of these particles 

was ~0.4 mm on average, which was on the same order as that (i.e., ~0.5 mm) used in the 

above experiments. Secondly, the particles generated in step 1 were moved based on the 

local velocity vector of the jet flow. Third, two sets of six projections were calculated for 

the particles before and after the move in step 2. The projections were set to be at the same 

orientations as those used in the experiments (i.e., θ =219.5°, 270.0°, 315.7°, 50.1°, 118.6° 

and 139.0°). These calculations were conducted using a method combining ray-tracing and 

Monte Carlo simulations as detailed in our earlier work [52, 66]. To simulate major sources 

of practical measurement uncertainty, two types of artificial noises were added into the 
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calculation of each projection, including a 1% background noise and a 0.3° VR error, 

following the suggestion from [19]. Fourth, the projections obtained in step 3 were fed into 

the RTPIV and TPIV methods separately to obtain the final velocity fields. The 

interrogation volume used in both methods was 32 × 32 × 32 voxels at 50% overlap, 

resulting in a 3D3C velocity field of 14 × 14 × 4 vectors.  

Based on the above simulation approach, Figure 3-7a first shows the 3D3C velocity 

field of the jet flow reconstructed by the RTPIV method. Figure 3-7b and 3-7c then show 

the velocity vector distributions at the central z plane (z = 2.4 mm) extracted from the jet 

velocity fields obtained by RTPIV and TPIV, respectively. And Figure 3-7d shows the 

ground truth jet flow field (i.e., taken from the numerical solution) at the same central z 

plane. More specifically, the simulations were conducted for an air flow under a Reynolds 

number of 1.2 × 104 at jet exit (centered at x = 0 mm and y = -7.2 mm and issuing along 

the positive y direction). Based on these results, the eV and eD obtained by the RTPIV 

method were 4.5% and 1.1°, respectively. In comparison, the eV and eD were 9.1% and 1.7° 

obtained by the unregularized TPIV method. These error results agree with the observation 

on the velocity fields shown in Figure 3-7b ~ 3-7d: the velocity field obtained by RTPIV 

shown in Figure 3-7b resembled the ground truth field shown in Figure 3-7d more than that 

obtained by TPIV shown in Figure 3-7c. Therefore, the RTPIV method was able to 

significantly reduce the velocity error compared to the TPIV method, similar to the 

experimental results.  
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Figure 3-7 Comparison of the RTPIV and TPIV methods on a jet flow field. (a) Velocity 

vector distribution reconstructed by RTPIV. (b) Reconstructed field by RTPIV at the 

central z plane (z = 2.4 mm). (c) Velocity field reconstructed by TPIV at the same central 

z plane. (d)  Ground truth jet flow field at the same central z plane.  

Figure 3-8 summarizes the results from the numerical simulations of a pair of Rankine 

vortices, a more complicated flow field compared to the jet flow and also the controlled 

experiments. The results were obtained in the same steps as those used in Figure 3-7 with 

a few different parameters. First, the flow field was obtained using an analytical solution 

as detailed in [77] instead of CFD simulations. Second, the measurement volume was 48.0 

× 36.0 × 9.6 mm3, and the discretization was 800 × 600 × 160 voxels, in which a total of 

400,000 numerical particles were seeded randomly. Third, an interrogation volume of 64 

× 64 × 64 voxels at 50% overlap was employed in both RTPIV and TPIV methods to obtain 
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a 3D3C velocity field of 24 × 17 × 4 vectors. With these modifications, Figure 3-8a first 

shows the 3D3C velocity field of the Rankine vortices reconstructed by the RTPIV method. 

Figure 3-8b and 3-8c then show the velocity vector distributions at central z plane (z = 4.8 

mm) extracted from velocity fields of Rankine vortices obtained by RTPIV and TPIV, 

respectively. Figure 3-8d shows the ground truth velocity field of Rankine vortices at the 

same z plane. Comparing the reconstructed velocity field to its ground truth, the eV and eD 

for the RTPIV method were 6.6% and 1.4°, respectively, both substantially lower than 

14.1% and 2.5° for the regularized TPIV method.  

 

Figure 3-8 Comparison of the RTPIV and TPIV methods on a pair of Rankine vortices. (a) 

Velocity vector distribution reconstructed by RTPIV. (b) Reconstructed field by RTPIV at 

the central z plane (z = 4.8 mm). (c) Velocity field reconstructed by TPIV at the same 

central z plane. (d)  Ground truth velocity field at the same central z plane.  
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Figure 3-9 and 3-10 provide the L-curves for results shown in Figure 3-7 and 3-8, 

respectively. Figure 3-9a first shows Σ(-CC(V)) versus Σ|∇∙V| recorded from the jet flow 

simulations with α ranging from 0 to +∞. As shown, Figure 3-9a again displays an 

approximate L shaped curve. Figure 3-9b shows the corresponding eV obtained with 

varying α. Observations similar to the experimental results can be made from Figure 3-9b. 

When α is sufficiently small (α < 5 × 10-6 in this case), the RTPIV method became 

equivalent to the unregularized TPIV method, which generated an error eV = 9.1% as shown 

in Figure 3-9b. Then as α increased, eV decreased to its minima 4.5% at α = 3 × 10-4, the 

corner of the L-curve. With further increase beyond a certain level (7 × 10-2 in this case), 

eV obtained by RTPIV began to exceed that of the unregularized TPIV method, leaving a 

relatively wide range of α (between 7 × 10-2 and 5 × 10-6) where the RTPIV can outperform 

the unregularized method. In addition, Figure 3-9 again illustrates the insensitivity of eV to 

the selection of α around the corner of the L-curve. With α ranging from 1 × 10-3 to 1 × 10-

4, as highlighted by blue squares both in Figure 3-9a and 3-9b, the eV remained 

approximately around the minimal level of ~4.5%. Similar to Figure 3-9, Figure 3-10 

shows the L-curve for the Rankine vortices. These results exhibit the same characteristics 

as those shown in Figure 3-9 and those obtained for the experimental results. One 

noteworthy observation is that in this case, the L-curve as shown in Figure 3-10 featured a 

more distinct “corner” than those seen earlier. A change of α from 1 × 10-3 to 5 × 10-5 

corresponded to a relatively small region near this corner. 
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Figure 3-9 L-curve for the RTPIV method applied to a jet flow. (a) The relationship 

between Σ(-CC(V)) and Σ|∇∙V| with α from 0 to +∞. (b) eV with varying α. 

 

Figure 3-10 L-curve for the RTPIV method applied to a pair of Rankine vortices. (a) Σ(-

CC(V)) versus Σ|∇∙V| with α from 0 to +∞. (b) eV at various α’s. 

Two notes are worth mentioning before leaving this section: one regarding noise-free 

simulations and the other about the computational time. First, a set of noise-free 

simulations were performed on the jet flow and Rankine vortices to further isolate the 

performance enhancement of the RTPIV compared to the TPIV method. These simulations 

were identical to the aforementioned simulations except one difference: this time without 

background noise or VR error added into the projection calculation. As a result, the RTPIV 

method was still able to improve the accuracy of velocity measurements by 35%~37% in 
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terms of velocity magnitude and 0.4°~0.5° in terms of velocity orientation. Second, 

regarding the computational time, the accuracy enhancement of the RTPIV method comes 

at increased computational cost. For all the cases presented in this work, the RTPIV method 

consumed a total computational time of ~96 hours per case (36 hours on the reconstruction 

step and 60 hours on the regularized cross-correlation step) using a workstation with 16-

Core Intel Xeon 2.6GHz and 512 GB memory, while the TPIV method consumed ~41 

hours in contrast (36 hours on the reconstruction step and 5 hours on the cross-correlation 

step). As a result, the computational time required by the RTPIV method was ~2.3x of that 

of the TPIV method. Therefore, the application of the RPTIV method involves a 

consideration of whether the tradeoff between computational time and accuracy is feasible 

or worthwhile for a given application.  

3.4 Summary 

In summary, this work described the development and validation of a new method to 

reduce the uncertainties of 3D3C velocity measurements. The new method integrates 

regularization of the conservation of mass (COM) equation. This method enables improved 

accuracy by balancing the roles played by the measurements and the COM governing 

equation, so that the resulting 3D3C velocity field represents an optimal fit of both the 

experimental data and the governing equation. The new method was validated both 

experimentally (using controlled experiments) and computationally (using simulated 

canonical flows). The results demonstrated accuracy enhancement by 40~50% in terms of 

velocity magnitude and by 0.6~1.1° in terms of velocity orientation, compared to existing 

tomography PIV methods. Encouraged by these the validation results reported here, our 
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ongoing work involves the application and assessment of the RPTIV method in realistic 

turbulent flows encountered in the experimental investigation of practical engineering 

devices/processes. 
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Chapter 4 Tomography reconstruction integrating view 

registration 

Abstract 

 Tomographic measurements involve two steps: view registration (VR) to determine the 

orientation of the projections and the subsequent tomography reconstruction. Therefore, 

the practical error in both steps impacts the overall accuracy of the final tomographic 

measurements. Past work treated these two steps separately. This work shows that the 

overall tomography accuracy can be enhanced substantially if these two steps are 

considered holistically. Because there is an opportunity for each step to leverage the 

information in the other step to improve the overall accuracy if they are considered 

holistically. Based on this recognition, this work developed a new method (code named the 

RIVR method) to implement such a holistic scheme. The key of this implementation 

involved the use of the Metropolis criterion to adjust the initial orientation provided by 

traditional VR process dynamically. Both controlled experiments and accompanying 

numerical analyses were conducted to validate the RIVR method. Two sets of controlled 

experiments were conducted and analyzed, including a static uniform dye solution and 

turbulent flows, where the RIVR technique was demonstrated to significantly reduce the 

overall reconstruction error (by ~37% and ~35%, respectively) compared to past methods 

that treated VR and tomography separately. 

4.1 Introduction 
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Tomography has been demonstrated as an effective diagnostic technique across a 

variety of applications, including medical imaging [78], electrical capacitance 

measurements [79], and also combustion and flow measurements [64, 80-83]. This work 

is performed under the context of combustion and flow measurements where tomography 

is used to obtain measurements that can resolve the three-dimensional (3D) spatial structure 

of key flow and flame properties with adequate temporal resolution [19, 72, 84-90]. A 

typical flow/flame tomography measurement consists of two steps. The first step uses 

multiple digital cameras placed at different locations and angular orientations to capture 

projection measurements of a target flow or flame property. The second step uses the 

projections captured in the first step as inputs for a tomography algorithm to reconstruct 

the 3D structure of the target property. A key process involved in the first step is view 

registration (VR), a process to determine the locations and orientations of the cameras, as 

the accuracy of the subsequent tomography reconstruction depends critically on the 

accuracy of the camera locations and orientations [22, 59, 64, 91, 92].  

Accordingly, significant efforts have been invested in the VR process (step 1) and the 

tomography reconstruction algorithms (step 2), and have led to significant advancement in 

both. The investigation on the VR process focused on the development of better VR 

procedures and algorithms so that the camera locations and orientations can be determined 

with enhanced accuracy. Researchers examined a range of aspects, both experimental and 

computational, that can impact and improve the VR accuracy, including the use of different 

calibration targets (e.g., with a cylindrical shape [82, 92, 93] or a flat plate [45, 94-96]), 

the VR algorithms [97, 98], and effects caused by difficulty in the extraction of feature 
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points due to the out-of-focus blurring inevitable in practice [99, 100]. In parallel to the 

investigation of the VR process, significant efforts have also been invested in the 

development of tomography reconstruction algorithms. Researchers in the flow and 

combustion community both adapted and modified algorithms established in other 

disciplines, and also developed new algorithms to either address or exploit the uniqueness 

features of flow and flame measurements. For example, the well-established ART and 

MART (algebraic reconstruction technique and multiplicative algebraic reconstruction 

technique) algorithms have been demonstrated to work effectively on combustion and flow 

problems [22, 82, 101]. Also, new algorithms and methods have been developed to either 

address or exploit unique aspects of flow and flames, such as the integration of a prior 

information [102, 103], the use of minimization algorithms to solve problems with limited 

views [67] and to exploit multi-spectral information [104], and the development of 

algorithms that can address nonlinearity (e.g., caused by strong absorption or radiation 

trapping) [72].  

However, past efforts have treated the VR process (step 1) and the tomography 

reconstruction process (step 2) separately as two independent steps, even though these two 

steps are integral and their division is essentially arbitrary. Conceptually, it is intuitive to 

recognize that integrating both steps can potentially improve the overall tomography 

performance. Since both steps can only be performed with finite accuracy in practice, 

integration of them can enable a feedback mechanism between the VR and tomography 

process, so that each step leverages the information provided by the other to improve the 

its own accuracy. With this recognition, this work examined closely the benefits of 
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integrating both steps in a holistic scheme, developed a corresponding method to 

implement the holistic scheme, and lastly demonstrated that it can indeed lead to significant 

improvement of the overall tomography performance both by numerical simulations and 

also by controlled experiments. The method that we developed to implement such a holistic 

concept is code named RIVR (reconstruction integration view registration).  And the rest 

of the paper first details the mathematical background of the RIVR method, followed by 

its demonstration via both numerical simulations and controlled experiments. 

4.2 Problem formulation and algorithm description 

The mathematical formulation of 3D tomography has been previously detailed 

elsewhere [93, 105], and a brief summary is provided here to facilitate the discussion. The 

goal of 3D tomography is to measure the instantaneous 3D distribution of the target object 

(denoted as F) using multiple line of sight integrated projections (denoted as P) of F 

obtained by cameras (or other optical sensors) from different orientations. After proper 

discretization in the computational domain into voxels, the relationship between the 

measured P and the sought F is given by the following equation when the problem is a 

linear problem:  

 ( ), , r = P PSF F
            (4-1) 

where P represents the measured projections in a vector format by organizing the 

projections pixel by pixel, F the discretized target object also in vector format by 

organizing its values voxel by voxel, PSF the point spread function matrix that only 

depends on the geometry parameters of the imaging system used (i.e., not on F) [106]. Also 

note that this paper uses bold symbols to denote matrices and vectors, and normal symbols 
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to denote scalars. The parameters of the imaging system include the distances and 

orientations of cameras relative to the target object, specified by θ (azimuth angle), ϕ 

(inclination angle), and r (distance) in a given coordinate system. Mathematically, the 3D 

tomographic problem is to solve for F with Ps measured at different locations and 

orientations specified by θ, ϕ, and r.  

In practice, θ, ϕ and r were determined by a view registration (VR) process, so that the 

PSF matrix in Equation 4-1 can be computed before the tomographic problem can be 

solved. Due to various uncertainties encountered in practice, the VR process will only be 

able to determine θ, ϕ, and r within a certain level of error, and the error will propagate 

into the PSF matrix and the rest of the tomography process [19, 82], eventually manifested 

as an error in the reconstructed F. As an example, our past work was able to achieve an 

accuracy of 0.6° for the camera orientations (i.e., θ or ϕ) in the VR process [72, 107]. With 

this level of accuracy, when the VR and tomography reconstruction were performed 

separately, the resulting reconstruction error was in the range 7~11% approximately [72, 

107]. 

As aforementioned, division of the problem formulated in Equation 4-1 into an 

independent VR process and a subsequent tomography process is essentially arbitrary and 

also unnecessary. Intuitively, integrating both steps can potentially improve the overall 

tomography performance by creating a feedback mechanism between the VR and 

tomography process and leveraging the information provided by each to improve the other. 

With this recognition, this work describes a new method, code named RIVR, to integrate 

both steps and solve the problem holistically.  
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The RIVR method was implemented in three steps. In the first step, a VR process was 

performed in the traditional way (e.g., following the process detailed in [45]) to obtain (θ, 

ϕ, r) to initialize the RIVR method. More specifically, the resulting (θ, ϕ, r) was used to 

compute the PSF using a ray-tracing method detailed in [52]. With the initial PSF obtained, 

the tomographic problem was solved to obtain Fi (where the superscript i stands for the 

initial solution of F). The projection formed by Fi was then computed (and denoted as Pi) 

using the same ray-tracing method detailed in [52]. 

The second step, the key step, adjusted the (θ, ϕ) provided by the initialization step 

with the information provided in the projections measured. As aforementioned, such 

adjustment was based on the recognition that (θ, ϕ) was noise contaminated and their 

accuracy could be improved by information provided in the measured projections. The 

adjustment was performed based on the difference (D) between Pi and P defined below,  

 ( )
2

D = − i
P P              (4-2) 

where the operator ‘∘2’ represents the Hadamard square. In this second step, the orientation 

parameters (θ, ϕ) provided by the first step was perturbed by applying a random amount to 

form a new orientation (θ’, ϕ’). The new orientation (θ’, ϕ’) was used to compute a new 

PSF and solve for a new F. Based on the new F, a set of new projections were computed 

and a new difference D (denoted as D’) was determined. Then D’ was compared to D by 

the Metropolis criterion [108] to decide if the current (θ’, ϕ’) should be rejected or accepted. 

If the decision was to reject, then the orientation parameters (θ, ϕ) provided by the first step 

was perturbed again to form another orientation (θ’, ϕ’). If the decision was to accept, then 

the current (θ’, ϕ’) was regarded as a more accurate orientation for the cameras used, and 
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be used as the starting point for the next round of perturbation. In this step, the use of the 

Metropolis criterion (the basis for stochastic optimization [108] ) allowed the RIVR 

method to explore possible perturbations of (θ, ϕ) in all directions before deciding on the 

most promising direction, a key to enable the feedback between two complicated processes: 

the VR and tomography process.  

The third and last step simply iterate step 2 until D converged, i.e., when the relative 

change in D between consecutive iterations became smaller than a preset level. In this 

work, the preset level was chosen to be 0.1% following the results in [68, 109]. Also, past 

work [72] has shown that the reconstruction accuracy was insensitive to this preset level 

(the reconstruction accuracy changed within 0.5% when the preset level varied between a 

range of 0.001% to 0.1%). 

 In summary, the above RIVR method integrated the VR and tomography process by 

establishing a feedback mechanism between them so that the end result is optimized 

holistically using information provided in both. Before leaving this section, note that the 

RIVR method requires more computational time than past practice (about 4x more time 

according to our testing) due to the iterative adjustment in step 2. Also note that here we 

only adjusted θ and ϕ, not r. The reason was that in our typical setup (where cameras are 

relatively far away from the target), the end result is significantly more sensitive to the 

uncertainty in the angular orientations (i.e., θ and ϕ) than to the distance (i.e., r). Therefore, 

the adjustment in r was not considered. In the application where r needs to be adjusted, the 

RIVR method can be straightforwardly extended. 

4.3 Validation on a controlled dye solution 
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This section describes the experimental demonstration and validation of the proposed 

RIVR algorithm via controlled experiments, and the supporting numerical analysis. The 

setup for the controlled experiments is shown in Figure 4-1, and it was similar to that 

described in [96] and only a brief summary will be provided here. The major concept of 

the controlled experiments was the use of a well-mixed solution of Rhodamine 6G dye to 

create a uniform 3D distribution. The dye solution was excited by a laser volumetrically, 

and the laser induced fluorescence (LIF) signal emitted by the dye volumetrically (referred 

to as the VLIF signal hereafter) was collected by several cameras. Here LIF is a 

spectroscopic approach in which the target atoms or molecules are excited to a higher 

energy level by laser absorption followed by spontaneous emission [110]. Tomography 

reconstructions were then performed using the VLIF signals collected to obtain the 3D 

distribution of the dye concentration, which were then compared to the ground truth (i.e., 

the uniform distribution known a prior) to quantify the accuracy.  

More specifically, the experimental setup consisted of three major components as 

shown in Figure 4-1: the dye solution, the laser, and the cameras. The dye solution was 

prepared by well mixing ethanol and Rhodamine 6G. This dye solution was contained in a 

cubical cell with a dimension of 50 mm × 50 mm × 50 mm, creating a precisely known 

concentration distribution. The dye solution was then illuminated volumetrically by a laser 

slab, generated by expanding the outputs from a pulsed Nd: YAG laser (Quanta-Ray 

Spectra-Physics, labeled as the VLIF laser shown in Figure 4-1). The LIF signals emitted 

by the dye were captured simultaneously by a total of 5 cameras (4 Photron SA4s and 1 

SA6) at different positions and orientations as shown. These cameras were carefully 
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aligned in the horizontal plane within experimental accuracy so that their orientations were 

completely specified by θ (defined as the angle formed by the optical axis of a given camera 

relative to the opposite propagation direction of the laser slab as shown). To facilitate the 

description of camera orientations and the following discussion, a right-handed Cartesian 

coordinate system was defined as shown in Figure 4-1: the origin O was defined as the 

center point of the cubical cell, the X axis was defined along the opposite propagation 

direction of the VLIF laser slab (which propagated perpendicularly into the dye cell), and 

the Z axis was defined to be out of the horizontal plane. Prior to any measurement, a 

traditional VR process was performed to determine the initial orientations of cameras [45, 

97], and the orientations of cameras 1 through 5 were determined to be θ = 270.0°, 311.8°, 

341.9°, 73.7° and 111.1°, respectively, with an error estimated to be ~0.6°.  

 

Figure 4-1 Setup of the validation experiments using a dye solution. 
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The validation experiments started with characterizing the incident VLIF laser slab 

intensity profile, because the subsequent tomography reconstruction algorithm needed the 

laser profile as an input to decouple the laser intensity variation from the dye absorption 

[72], and the resulting intensity profile of the laser slab used here was depicted in Figure 

4-2a. The details to decouple the laser intensity from dye absorption were provided in [72], 

and are only summarized briefly here. The key concept involved in the decoupling was a 

nonlinear point spread function (NPSF). The NPSF extends the standard point spread 

function to accommodate laser attenuation during propagation (e.g., due to dye absorption) 

[72]. With the problem domain (i.e., the dye solution in this work) discretized into thin 

layers perpendicular to the laser propagation direction, the NPSF was applied iteratively 

layer by layer to decouple the laser intensity profile from the dye absorption. 

After the above preparation, VLIF measurements were performed with all 5 cameras, 

and Figure 4-2b shows an example projection of VLIF signal captured by camera 5, as an 

illustration of the nature of the inputs fed into the tomography reconstruction. The pixel 

resolution of the projection was 800 × 800 and each pixel corresponded to a physical size 

of 0.05 mm × 0.05 mm. As seen in Figure 4-2b, the VLIF signals captured were not uniform 

even though the concentration of the dye was uniform. Because the VLIF signals depended 

both on the dye concentration and the local laser intensity profile, necessitating the 

characterization of the laser slab intensity described above. Based on the measured VLIF 

projections (and also the initial camera orientations from the VR process), the RIVR 

algorithm was used to obtain reconstructions of the 3D dye concentration, which was then 

compared against the ground truth to quantify the accuracy.  
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Figure 4-2 (a) VLIF laser slab intensity profile at X = 25 mm. (b) Projection captured by 

camera 5 for the controlled dye solution. 

In the reconstruction, the computational domain was set to be a volume of 40 mm × 40 

mm × 40 mm centered around the origin O, which was smaller than the volume of the dye 

cell to exclude non-ideal effect around the edges and corners of the cell. This computational 

domain was then discretized into 120 × 120 × 120 voxels, resulting in a voxel size of 0.33 

mm in all three directions. The tomography algorithm used in the RIVR algorithm was an 

established method detailed in [72], and code named IRT (iterative reconstruction 

technique). It obtained the reconstruction iteratively by using the projections measured 

from different orientations at a time to refine it. Figure 4-3a shows a rendering of the 

reconstructed concentration across four planes (at X = 0 mm, Z = 10 mm, 20 mm and 30 

mm) obtained by the RIVR algorithm, visually illustrating that the reconstruction 

reproduced the expected uniform distribution. To quantitatively assess the reconstruction 

performance, the following reconstruction error (𝑒𝑅) was defined: 
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where Frec and Ftrue represent the reconstructed and true concentration distributions, 

respectively. With this definition, the 𝑒𝑅 for the reconstruction shown in Figure 4-3a over 

the entire computational domain was calculated to be 2.66%. To further examine the 

reconstruction accuracy, Figure 4-3b shows the concentration reconstructed by RIVR 

along three lines (Z = 10 mm, 20 mm, and 30 mm on the Y = 0 mm plane) together with 

the eR along these lines. As shown, the RIVR algorithm was able to reconstruct the uniform 

concentration with eR of 2.87%, 3.14%, and 2.97% at these locations.  
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Figure 4-3 Comparison of the RIVR and IRT methods using controlled validation 

experiments. (a) Reconstructed concentration by RIVR at 4 selected planes (X = 0 mm, Z 

= 10, 20 and 30 mm). (b) Reconstructed concentration by RIVR along 3 lines with 

corresponding eR. (c) Reconstructed concentration by IRT along 3 lines with corresponding 

eR.  

To illustrate the advantage of the RIVR algorithm, reconstruction of the same 

experimental data was also processed with the traditional method, where the VR and 

tomography were performed as two separate steps. More specifically in this case, the same 

cameras orientations obtained with the VR process and the measured projections as those 

used in the RIVR algorithm were fed into the same IRT algorithm. The only difference was 

that this time, the orientations were kept constant in the IRT algorithm. The eR for the 

reconstruction obtained by the IRT method was calculated to be 4.20%, significantly higher 

than the 2.66% accuracy provided by the RIVR method (by ~37%). For closer examination, 

Figure 4-3c shows results from the IRT algorithm at the same three lines as in Figure 4-3b, 

together with their corresponding eR (3.99%, 4.20% and 4.06%). As can be seen from 

Figure 4-3b and 4-3c, due to the more accurate reconstruction enabled by the RIVR 
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method, the reconstructed concentration followed the actual uniform distribution more 

closely. Also note that at these 3 particular lines picked, the reconstruction errors were all 

larger than the error in the entire domain for the RIVR algorithm, and those for the IRT 

method were either at or smaller than that in the entire domain. Therefore, the eR 

enhancement from the RIVR method were in general more dramatic than those shown in 

Figure 4-3b and 4-3c.  

As mentioned in section 2, such superior performance from the RIVR method was 

brought about by establishing a feedback mechanism between the VR and tomography 

step, because this was the only difference between the RIVR and IRT methods applied 

above. As a demonstration of the feedback mechanism, the RIVR method was able to 

adjust the camera orientation to 271.1°, 311.6°, 341.1°, 73.8° and 111.7° for camera 1-5, 

respectively. Compared to the orientations determined by the VR process, the RIVR 

method adjusted them by 1.1°, -0.2°, -0.8°, 0.1° and 0.6°, respectively (in contrast, the 

traditional IRT method just used the orientations from the VR process as they were). To 

further confirm the effectiveness of the feedback mechanism, numerical analysis was 

performed. Because numerical analysis provides ground truth for both the target 

distribution (which was precisely known in the above validation experiments) and also the 

camera orientations (which are difficult to known a prior experimentally), so that the 

effects of the orientation adjustments can be examined and quantified. 

The numerical analysis was performed in the following four steps. First, a uniformly 

distributed concentration phantom was created to simulate the dye concentration in the 

cubical cell used in the aforementioned validation experiments. Second, projections from 
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five orientations were generated based on the phantom created in the first step. To 

reproduce the conditions of the experiments, these five orientations were set to be the same 

as those obtained by the VR process in the experiments (i.e., θ = 270.0°, 311.8°, 341.9°, 

73.7° and 111.1°, respectively, for cameras 1 through 5). To simulate the validation 

experiments, a total of 3.0% of Gaussian noise was artificially added to the projections 

following the suggestion from [72] to simulate noises (e.g., background noise, shot noise, 

camera uncertainty, et al), and a ±0.6° error was randomly added to the projections 

(corresponding to the obtainable VR accuracy in our experiments). Third, these projections 

together with the orientations described in step 2, both contaminated with noises, were fed 

into the RIVR algorithm to perform the reconstruction. Fourth, the same projections and 

orientations described in step 2 were also fed into the IRT algorithm to perform the 

reconstruction, and the results were compared against those from the RIVR algorithm. The 

eR across the entire simulation domain was 2.55% from the RIVR method and 4.15% from 

the IRT method. The RIVR method was able to significantly reduce the reconstruction 

error compared to the traditional method similar to the experiments. The results in Figure 

4-4 show more detailed comparison of the reconstructed concentration by these two 

methods at several locations. These results resemble the experimental results shown earlier, 

providing further support of the RIVR method. Here we wanted to emphasize that in this 

comparison, the RIVR method started with the same view registration results as those used 

in the IRT method, and was able to provide reconstructions with enhanced accuracy due to 

the feedback mechanism introduced. 
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Figure 4-4 Comparison of the RIVR and IRT methods using numerical analysis. (a) 

Reconstructed concentration by RIVR along 3 lines with corresponding eR. (b) 

Reconstructed concentration by IRT along 3 lines with corresponding eR. 

Figure 4-5 shows the orientation adjustments performed by the RIVR method and 

compares the orientations obtained vs the correct orientation, providing insights into the 

RIVR mechanism that cannot be easily obtained in experiments. Figure 4-5 compares the 

initial camera orientations fed into the RIVR algorithm and the optimized orientations 
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obtained by the RIVR algorithm. The comparison was shown in terms of the error (denoted 

as Δθ) of the initial and optimized orientations versus the correct orientation. As seen in 

Figure 4-5, the errors in the initial orientations were either 0.6° or -0.6° as mentioned 

earlier. And the RIVR method was able to optimize and reduce the orientations for four 

out of the five cameras used substantially from ±0.6° to 0.4°, 0°, 0.1°, and 0° (for cameras 

1, 2, 3, and 5, respectively). As a result, the RIVR method was able to significantly reduce 

the overall reconstruction error as discussed earlier. Figure 4-6 further extends the 

comparison of the RIVR and IRT method under other levels VR accuracy with Δθ ranging 

from 0° to ±1.0°, while all the other settings (including the phantom, initial camera 

orientation set and gaussian noise level, etc.) remained the same as those used in the case 

with Δθ = ±0.6°. Note that the horizontal axis in Figure 4-6 means the range of the VR 

error, i.e., 1.0° on the horizontal axis means VR error is within ±1.0°. Figure 4-6 show 

several key observations. First, at Δθ = 0°, the RIVR and IRT method achieved the same 

level of reconstruction accuracy as they should intuitively. Because with completely 

accurate VR process, the RIVR and IRT method are completely equivalent. Secondly, 

RIVR was able to reduce eR more dramatically compared to IRT when VR error becomes 

increasingly larger also as intuitively expected. As Δθ increases, traditional IRT performs 

reconstruction based on inputs with increasingly larger error and results in larger eR. In 

contrast, RIVR enables the adjustment of camera orientations and compensates for the 

error, resulting in significantly reduced eR compared to IRT. Third, the eR obtained 

experimentally from RIVR or IRT was plotted at Δθ = 0.6° for both methods. And as seen, 
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these experimental data points overlap with the simulations closely, providing a 

confirmation to the estimation ±0.6° as the VR accuracy achieved in the experiments. 

 

Figure 4-5 Comparison of initial camera orientations fed into the RIVR algorithm and the 

optimized orientation obtained by the RIVR algorithm. 

 

Figure 4-6 Comparison of reconstruction error obtained by RIVR and IRT under different 

VR errors. 
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Lastly, as a side note, the RIVR method is also observed to improve the convergence 

of the reconstruction in our work. As an example, Figure 4-7 compares the evolution of eR 

in the RIVR and IRT methods as they iterated to reconstruct the results shown in Figure 4-

4 and Figure 4-5. In the IRT method, eR first decreased and reached a minimum near 4.2% 

at the 18th iteration, and then began to increase again as the iteration continues. Such a 

non-monotonic convergence has been observed for a variety of established reconstruction 

algorithms and is an important aspect of algorithm development [68]. In contrast, in the 

RIVR method, 𝑒𝑅 decreased monotonically as it iterated as shown. To provide a limit for 

the convergence, the 𝑒𝑅  that was achievable without zero VR error (i.e., Δθ = 0°) was 

estimated to be about 2% in this case (determined by applying a few established algorithms 

and taking the minimum of their eR). As seen, the RIVR method was able to converge 

monotonically towards this limit, and such monotonic convergence is a highly desirable 

feature for reconstruction algorithms. 

 

Figure 4-7 Convergence of eR in the RIVR and IRT methods. 
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4.4 Application on turbulent flows 

 After the above validation with controlled experiments and numerical validations, 

this section reports an application of the RIVR algorithm on turbulent flows, with the goal 

of demonstrating the effectiveness of the RIVR method on 3D tomographic measurements 

in practical turbulent flows. The demonstration was based on the 3D tomographic imaging 

of a turbulent flow using VLIF signal from iodine (I2) vapor seeded in the flow using an 

experimental setup shown in Figure 4-8. The experimental setup has been detailed else [96] 

and a brief summary is provided here.  

This setup was largely similar as the controlled validation setup using the dye solution 

with two major differences. First, the dye solution was replaced by a turbulent flow. And 

second, a second laser was applied to simultaneously perform PLIF measurements so that 

accuracy of the 3D measurement can be quantified. The turbulent flow was formed by 

flowing nitrogen flow out of a nozzle with an exit diameter of 6.35 mm. At the exit of this 

nozzle, a rod with a diameter of 3.18 mm was placed to enhance turbulence and to create 

an easily recognizable V-shaped flow pattern to facilitate visual examination of the results. 

The flow was seeded with about 4% I2 vapor by mole fraction. The seeded I2 vapor was 

excited volumetrically to emit the VLIF signal, which were projected to 5 cameras as 

shown. The projections captured by these cameras provided the inputs to the subsequent 

tomographic reconstruction. 

To provide a way to quantify the accuracy of the tomographic reconstruction, a planar 

measurement was taken simultaneously. The planar measurement involved a well-

established PLIF technique based on I2 vapor [110, 111]. As shown, a second laser (labelled 
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the PLIF laser, Photonics Industries DM20-527DH) was used to generate the laser sheet 

for the PLIF measurement. The PLIF laser pulses were shaped by lenses into sheets with a 

thickness of ~0.8 mm, and then was aligned perpendicular to the optical axis of camera 1. 

Camera 1 was used to capture the PLIF signal. To better utilize the available cameras, 

camera 1 was configured in such a way that it captured the PLIF and VLIF signals 

sequentially in two consecutive frames with a time lag of 0.2 ms in between. The flow was 

essentially frozen during 0.2 ms considering the moderate turbulence levels in the target 

flow (with a Reynolds number of 2000 defined based on the jet exit diameter), therefore 

the 3D and PLIF measurements can be directly compared. Lastly, note that the coordinate 

system in this experiment was redefined as shown in Figure 4-8 to facilitate the remaining 

discussion: the origin O was defined as the center of the nozzle exit, X axis along the 

opposite direction of the PLIF laser propagation, and Z axis in the flow direction flow.  

 

Figure 4-8 Demonstration of the RIVR method on turbulent flows measurements. 
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With the above setup, Figure 4-9a shows a set of example VLIF projections captured 

by camera 1 through 5 and the corresponding PLIF image captured by camera 1. Both the 

VLIF projections and the PLIF image display a turbulent jet flow with two branches formed 

by the rod placed at the exit of the nozzle as expected. All VLIF projections and the PLIF 

image had a resolution of 600 × 600 pixels, and each pixel corresponded to a physical size 

of 0.06 mm × 0.06 mm. Note that the PLIF image in Figure 4-9a appeared sharper than the 

VLIF projections as expected, due to the line-of-sight integrated nature of the VLIF 

projections. 
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Figure 4-9 (a) A set of example VLIF projections captured by camera 1-5 and the PLIF 

image captured by camera 1. (b) 3D rendering of relative I2 concentration reconstructed by 

the RIVR algorithm. 

The RIVR method was then used to reconstruct the VLIF projections as those shown 

in Figure 4-9a together with the initial camera orientations obtained by the traditional VR 

method. The reconstruction was performed on a computational domain of 35.5 mm × 35.5 

mm × 35.5 mm, discretized into 120 × 120 × 120 voxels, resulting in a voxel size of 0.30 

mm in all three spatial directions. Figure 4-9b rendered the 3D I2 concentration 

reconstructed by RIVR. Visual examination (e.g., by comparing Figure 4-9b to the VLIF 

projection captured by camera 1) suggests that the reconstruction captured the features of 

the V-shape flow. A quantitatively examination was then performed by comparing the 

RIVR reconstruction against the PLIF measurements as shown in Figure 4-10. Here, the 

concentration was also performed by the IRT method with the same VLIF projections. 

Figure 4-10a and 4-10b show the reconstruction obtained by RIVR and IRT at the central 

plane of the measurement domain (i.e., Y=0 mm), the location where the PLIF 
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measurements were performed. Figure 4-10c and 4-10d compare the RIVR and IRT 

reconstructions against the PLIF measurement along three lines in this plane (i.e., Z = 18 

mm, 15 mm and 12 mm within the Y = 0 mm plane as marked by the three dashed lines in 

Figure 4-10a and 4-10b). In these comparisons, due to the availability of the PLIF 

measurement, it was taken as the ground truth and used in Equation 4-3 for the calculation 

of the reconstruction error (eR). From Figure 4-10c and 4-10d, it can be seen that, for the 

RIVR algorithm, eR was 5.65%, 8.40% and 8.71% at Z = 12 mm, 15 mm, and 18 mm. In 

comparison, for the IRT method, eR was 11.9%, 12.9% and 11.8%, significantly larger than 

that of the RIVR results. Across the entire central plane at Y = 0 mm, eR was 7.03% and 

11.3% for RIVR and IRT, respectively. Thus, the RIVR method was demonstrated to 

reduce the reconstruction error by ~38% than the traditional IRT method. In addition to the 

results shown here, this work also applied the RIVR technique on a variety of other 

turbulent flows measurements (a total of 8 different cases), and the error reduction were in 

a range of [31%, 42%] with an average of 35% compared to the traditional IRT technique. 

Therefore, the results shown here represented a case with average error reduction.  
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Figure 4-10 Comparison of the RIVR and IRT methods on turbulent flows. Panels (a) and 

(b): Reconstructed concentration across the central plane (Y = 0 mm) from RIVR and IRT, 

respectively. (c) Comparison between RIVR and PLIF along three lines (Z = 12 mm, 15 

mm and 18 mm and Y = 0 mm as marked in Figure 4-10a. (d) Comparison between IRT 

and PLIF along the same lines as in panel (c). 

As aforementioned, the above improvement was brought about by RIVR’s ability to 

optimize the VR and tomography processes holistically. In the comparison shown in Figure 

4-10, the RIVR method adjusted the camera orientations by 1.1°, -0.2°, -0.1°, 0.1°, and 

0.6° for cameras 1 through 5, respectively. To further illustrate the effects of such 
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adjustment, a numerical analysis similar to that performed on the controlled dye solution 

was conducted. Here again, the idea was to use simulations, in which both the target 

distribution and camera orientations were known a priori, to quantify the performance of 

the RIVR method. The numerical simulations here were entirely parallel to those 

performed on the controlled dye solution as detailed in Section 3 with one difference: the 

flow as shown in Figure 4-9b (i.e., reconstructed using experimentally measured 

projections shown in Figure 4-9a) was directly used as the numerical phantom now. The 

results were summarized in Figure 4-11 and 4-12.  

Figure 4-11 shows that the RIVR method indeed was able to reduce the initial VR 

errors. More specifically, the RIVR method was able to reduce the initial VR error of Δθ = 

±0.6° to 0.14° on average with almost 0.0° error for four out of the five cameras (cameras 

1, 2, 4, and 5), and a slightly larger error of 0.7° (than 0.6°) for camera 3. Such slightly 

larger error of 0.7° for camera 3 was caused by the stochastic and global optimization 

nature of the RIVR method. As described in Section 2, the RIVR method uses the 

Metropolis criterion, a stochastic technique, to perform the optimization globally. Hence, 

the goal of the RIVR technique was not to reduce all the individual VR errors for each 

camera, but to reduce the global reconstruction error, as shown by the results (the averaged 

VR error was reduced from 0.6° to 0.14° and the overall reconstruction error by ~38%). 

Figure 4-12 repeats the comparison between the RIVR and IRT methods at different levels 

of VR error ranging from Δθ=0.0° to ±1.0°. Similar to the results obtained earlier for the 

dye solution, the RIVR method outperformed IRT on all levels of Δθ, and the 

outperformance became more dramatic as the VR error increases. Lastly, also note that at 
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Δθ=±0.6°, the eR from the numerical simulations was 6.40% for the RIVR method and 

10.8% for the IRT, reasonably close to the experimental results (i.e., 7.03% and 11.3%, 

respectively) as shown.  

 

Figure 4-11 Comparison of initial camera orientations fed into the RIVR algorithm and the 

optimized orientation obtained by the RIVR algorithm in the turbulent flow cases. 

 

Figure 4-12 Comparison of the RIVR and IRT under different VR accuracy for turbulent 

flows. 
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4.5 Summary 

In summary, this work reports the development and validation of a new tomography 

method (code named RIVR) for 3D measurements. Past methods treated view registration 

(VR) and tomography reconstruction as two separate steps. The new RIVR method was 

based on the recognition that integrating both steps can improve the overall tomography 

performance by enabling a feedback mechanism between the VR and tomography process. 

So that each step leverages the information provided by the other to improve the overall 

accuracy holistically. Based on this recognition, this work developed a method to 

implement such holistic scheme. The key of this implementation was the use of the 

Metropolis criterion to adjust the initial orientation provided by the traditional VR process 

iteratively and probabilistically. The RIVR method was validated both experimentally and 

numerically. The experimental validation involved creating controlled experiments based 

on a volumetric laser induced fluorescence technique, so that the performance of the new 

RIVR method can be compared quantitatively against established method. Two sets of 

controlled experiments were designed and conducted, including a static uniform solution 

and turbulent flows, where the RIVR technique was demonstrated to considerably reduce 

the overall reconstruction error (by ~37% and ~35%, respectively) compared to past 

methods that treated VR and tomography separately. Corresponding numerical analyses 

were performed to show that such enhanced reconstruction accuracy was enabled by the 

ability of the RIVR method to adjust view orientations holistically and reduce the error in 

the VR step. 
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Chapter 5 Conclusions and future work 

5.1 Conclusions 

In summary, this dissertation first reported an experimental quantification of the 

existing tomo-PIV uncertainty using controlled measurements, and then described the 

development and validation of two novel techniques, code-named RTPIV (Regularized 

Tomographic Particle Image Velocimetry) and RIVR (Reconstruction integrating View 

Registration), for improving the accuracy of 3D3C optical velocimetry. Conceptually, the 

RTPIV method improves the accuracy of 3D3C velocity measurements by incorporating 

the conservation of mass (COM) equation into the cross-correlation. The RIVR method 

enhances the accuracies of tomography and the resulting velocity by integrating 

tomography and VR and building a feedback connection in between. Both techniques have 

been validated experimentally using controlled experiments and numerically using 

phantom simulations. The results demonstrated that these techniques can indeed improve 

the accuracy of 3D3C velocimetry, and be expected to expand the application of 

tomographic PIV measurements when accurate and quantitative 3D flow properties are 

required. 

More specifically, Chapter 2 first described an experimental quantification of tomo-PIV 

accuracy using controlled measurements which laid the ground work for the following 

developments of two novel techniques. The controlled measurements were designed by 

performing tomo-PIV measurements on a solid sample embedded with tracer particles, 

while the sample was moved both translationally and rotationally to create various known 

displacement fields. So that the 3D3C displacements measured by tomo-PIV can be 
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directly compared to the known displacements created by the sample. The results illustrated 

that the tomo-PIV technique was able to reconstruct the 3D3C velocity with an averaged 

error of 0.8–1.4 voxels in terms of magnitude and 1.7°–1.9° in terms of orientation for the 

velocity fields tested. These results obtained from controlled tests aided the error analysis 

and developments of two novel tomo-PIV techniques (i.e., RTPIV and RIVR). 

After recognizing the current tomo-PIV accuracy, Chapter 3 and 4 then presented 

RTPIV and RIVR to significantly enhance the accuracy of the tomo-PIV measurements. 

Chapter 3 first described the development and the validation of the RTPIV method, 

motivated by the need of tomo-PIV accuracy enhancement. The major idea of the RTPIV 

method is that it improves the accuracy of 3D3C velocity measurements by incorporating 

the conservation of mass (COM) equation as a priori information into the cross-correlation 

process. This RTPIV method was demonstrated and validated both experimentally and 

numerically. The results illustrated that the method was able to significantly enhance the 

accuracy of 3D3C velocity measurements, compared to the existing tomo-PIV technique. 

Chapter 4 then described the development and the validation of the RIVR method, also 

motivated by the requirement of accuracy improvement of 3D tomography diagnostics. 

This RIVR method focuses on the tomography process, and it enhances the accuracies of 

tomography and the resulting velocity by integrating tomography and VR holistically. The 

accuracy enhancement can be achieved, because the integration of tomography and VR 

establishes a feedback connection between them and leverages the information provided 

by each step. Both controlled experiments and accompanying numerical analyses were 

conducted to validate the RIVR method. Two sets of controlled experiments were 
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conducted and analyzed using a static uniform dye solution and turbulent flows, where the 

RIVR technique was demonstrated to significantly reduce the overall reconstruction error, 

compared to past methods that treated VR and tomography separately. 

5.2 Future work 

 The above work can help to suggest three possible research directions for future work, 

as below: 

1) The validation of the RTPIV technique on real flow measurements and its 

application of obtaining flow properties. First, the RTPIV technique needs to be 

validated experimentally on real flows. This dissertation developed the RTPIV 

technique and validated the RTPIV method using controlled motion experiments 

on solid samples embedded with particles. The controlled motions including a 

translation and a rotation are quite simple and ideal. In practice, real flows are much 

more complicated with flow structures (e.g., vortices) at various spatial and 

temporal scales, posing a challenge to the RTPIV technique. Second, the RTPIV 

method can be extended to obtain flow properties, such as strain, stress, and force. 

These properties are 3D in nature, and past work largely relied on the 2D PIV 

technique to estimate them or on the relatively low-accuracy tomo-PIV method to 

measure them. Therefore, direct 3D measurements of these flow properties with 

adequate accuracy have long been desired. Now, the recently developed RTPIV 

method is expected to enable such direct 3D measurements of these properties with 

an improved accuracy. 
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2) The completion of the RIVR technique on 3D3C velocity measurements. As a 

technique for velocimetry, the RIVR technique was developed to enable 3D3C 

velocity measurements with an improved accuracy. Nonetheless, the current 

version of RIVR has been developed and demonstrated only on 3D concentration 

measurements. The next step is to complete the development of the RIVR technique 

on 3D3C velocity measurements. One issue might pose a challenge to this 

development completion, and hence requires special attention: the computational 

cost of RIVR needs to be reduced when extending RIVR to 3D3C velocity 

measurements. As mentioned in Chapter 4, RIVR requires more computational 

time than past methods (about 4 times) to converge on a final 3D reconstruction. 

However, the typical particle reconstruction involved in the current 3D3C 

velocimetry is already computationally expensive (~2 days), due to the requirement 

of high-resolution reconstruction of small-scale particles. If we directly apply 

RIVR to the particle reconstruction in 3D3C velocimetry, the total computational 

cost will be combinatorically explosive, hindering RIVR’s application in practical 

flow measurements. Thus, some extra adaptions of the current RIVR are required 

to reduce its computational cost, when extending RIVR to 3D3C velocimetry. 

3) The extension of the RIVR technique to 3D LIF measurements of chemical radicals 

in reactive flows. First, it is interesting to examine whether RIVR can be effectively 

applied to 3D LIF measurements of chemical radicals in reactive flows. The LIF 

here is typically used to mark the key radicals (e.g., CH) in combustion studies. As 

a result of the turbulence-chemistry interaction, most radicals exist only in certain 
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regions (e.g., CH radicals exist in thin flame front layers). This results in a 

completely different spatial structure from the currently measured volumetric 

concentration of the tracers which exist everywhere within the flow domain. 

Second, it is also desired to quantify the final benefits that the RIVR method can 

bring about on key flame properties. The distributions of radicals can be used to 

infer key combustion and flame properties, such as flame surface density, which 

are inherently 3D. However, in the past, these properties were obtained using 2D 

measurements or relatively low-accuracy 3D measurements. As a high-accuracy 

3D measurement technique, the RIVR application is expected to lead to key flame 

properties with adequate accuracy. 
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