
Page 1 of 51

The Harmonic Triad - Vocal Harmonizer

Laura Gustad, Nate Hunter, and Noah Mills

December 10, 2020

Capstone Design ECE 4440 / ECE 4991

Signatures

Page 2 of 51

Statement of work:
Laura Gustad

 My main contributions to the project were the circuit design, board layout, and PCB

testing. I designed the circuit schematic in Multisim, which included calculations for resistor and

capacitor values, creating footprints, and researching the Codec communication configurations.

From the schematic design, I handled the board layout in Ultiboard and organized the signoff

checks before submitting the Gerber files to be printed. Noah and I worked closely together on

PCB construction, testing individual subsystems, and deadbugging to resolve issues with the

board. In designing the second iteration of the PCB, I corrected the issues we encountered with

the first PCB design, including spacing and correcting the biasing in the filters.

My secondary responsibilities for the project included both software testing and smaller

non-technical roles. As I was the most familiar with the Codec datasheet, I designed the SPI

commands necessary to configure the Codec, both for smaller tests of SPI function and our full

system. For the SPI and I2S communication testing, I manned the VirtualBench to obtain

screenshots and confirm frequencies. Among my non-technical roles, I was responsible for

ordering the microphone and audio chords/converters. More specific to board construction, I was

also the contact person and transportation to and from WWW Electronics both times they

soldered the Codec to our PCB.

Nate Hunter

 I created the top-level design for the harmonizer, illustrated in a block diagram. I

configured my laptop and the myRIO to run LabVIEW. I proceeded to design the DSP

algorithm, first on a conceptual level, then in LabVIEW code. The initial algorithm code

accepted voice and keyboard WAV files as inputs, producing a harmonized output. I then

determined the codec communication requirements for SPI and I2S and developed the LabVIEW

FPGA code interface between the myRIO real-time processor and the codec. During this phase I

also led the testing of the SPI and I2S communication. Finally, I synthesized the DSP algorithm

and the FPGA FIFO code into a program for the real-time processor and deployed it on the

myRIO. I led the testing of the final program. In secondary roles, I also helped out with some

hardware testing and selecting SPI commands.

Noah Mills

 My main contributions to this project were performed with the physical circuit board. I

did all of the soldering/stuffing of our PCBs, as well as lead testing before and after adding

components and subsystems to the boards. I worked closely alongside Laura during the

construction of the PCBs, since she did the designing of them with Multisim and Ultiboard. In

addition to soldering components onto the boards, I created the documents required to have

select components stuffed by WWW Electronics. For the test plan, I used YEd to design a test

plan from scratch that would allow us to individually test each subsystem before and after

connecting to our whole system, to ensure that each component worked on its own. By doing so,

we were able to reduce the need to search for errors in our completed project.

Page 3 of 51

 My secondary roles for this project included less technical jobs, such as setting up orders

from Digi-Key by creating bills of materials (BOM), arranging meetings/reserving lab time, and

documenting our progress with screenshots and pictures. In addition, I was responsible for

designing the 3D printed container that would eventually hold our board on the keyboard. To do

this, I downloaded Autodesk AutoCAD 2021 and designed the holder to be printed by the

MECH-E Department.

Page 4 of 51

Table of Contents

Signatures 1

Statement of work: 1

Table of Contents 4

Table of Figures 5

Abstract 6

Background 7

Constraints 8

Design Constraints 8

Economic and Cost Constraints 9

External Standards 9

Tools Employed 10

Ethical, Social, and Economic Concerns 11

Environmental Impact 11

Sustainability 11

Health and Safety 11

Manufacturability 11

Ethical Issues 12

Intellectual Property Issues 12

Detailed Technical Description of Project 13

Schematic 13

PCB Layout 17

Software Design 18

Mechanical Chassis 27

Problems and Design Modifications 29

Project Timeline 32

Test Plan 33

Final Results 36

Costs 37

Future Work 38

References 40

Appendix 43

Appendix A: PCB Bill of Materials (BOM) 43

Appendix B: Codec Block Diagram and Timing Requirements 43

Appendix C: Software Data Communication Testing 45

Appendix D: Full System Testing 46

Appendix E: Vowel Comparisons 48

Appendix F: Budget 51

Page 5 of 51

Table of Figures
Figure 1: Block Diagram for Vocal Harmonizer .. 13

Figure 2: Top Level Schematic for PCB... 14

Figure 3: VMID from myRIO 3.3 V Supply .. 14

Figure 4: Input Signals Subcircuit .. 15

Figure 5: Anti-Alias Filter Subcircuit ... 16

Figure 6: Codec Communication, myRIO DIO, and Crystal.. 16

Figure 7: Ultiboard Layout for PCB (GND Plane Hidden) .. 18

Figure 8: Populated PCB .. 18

Figure 9: File structure of Harmonizer.lvproj ... 19

Figure 10: Main.vi front panel in action ... 19

Figure 11: Main.vi block diagram .. 20

Figure 12: Mic 2 Harmonics.vi block diagram left: fundamental computation 21

Figure 13: Mic 2 Harmonics.vi block diagram right: harmonic extraction 22

Figure 14: Keys 2 Notes.vi block diagram left: amplitude computation 22

Figure 15: Keys 2 Notes.vi block diagram right: note determination... 23

Figure 16: Synthesis.vi block diagram.. 24

Figure 17: Main.vi block diagram, SPI ... 25

Figure 18: SPI message interpretations... 25

Figure 19: FPGA 2.vi block diagram, SPI .. 26

Figure 20: FPGA 2.vi block diagram, I2S left channel .. 26

Figure 21: FPGA 2.vi block diagram, I2S right channel .. 27

Figure 22: Chassis design in AutoCAD .. 28

Figure 23: Final Printed Chassis ... 28

Figure 24: First Iteration PCB with Deadbugging .. 29

Figure 25: Phase Clipping Between Two Audio Sections .. 31

Figure 26: Original Gantt Chart .. 32

Figure 27: Final Gantt Chart ... 33

Figure 28: Input Signal Test Plan ... 34

Figure 29: Codec Connection Test Plan ... 34

Figure 30: Full System Test - C3 + C4 on Keyboard, “Oo” Vowel ... 36

Figure 31: Initial Proposal Deliverables ... 37

Figure 32: Table of Costs .. 38

Figure 33: Bill of Materials (BOM) for PCB Components .. 43

Figure 34: SPI Timing Requirements for Codec .. 43

Figure 35: I2S Timing Requirements for Codec... 43

Figure 36: Codec Block Diagram ... 44

Figure 37: SPI Send Codec Configuration VirtualBench Test ... 45

Figure 38: I2S Read 44.1 kHz DOUT on myRIO VirtualBench Test .. 45

Figure 39: myRIO Read In for 44.1 kHz DOUT .. 45

Figure 40: LabView WaveForm and FFT for Keyboard C Chord Test 46

Figure 41: LabView WaveForm and FFT for No Voice Input Test ... 46

Figure 42: LabView WaveForm and FFT for Soft Ah Test ... 47

Page 6 of 51

Figure 43: LabView WaveForm and FFT for Loud Ah Test.. 47

Figure 44: Mic to I2S, “Ah” ... 48

Figure 45: Mic to I2S, “Ee” .. 48

Figure 46: Mic to I2S, “Eh” .. 48

Figure 47: Mic to I2S, “Oh” ... 48

Figure 48: Mic to I2S, “Oo” ... 49

Figure 49: Mic to Chord Output, “Ah” ... 49

Figure 50: Mic to Chord Output, “Ee”.. 49

Figure 51: Mic to Chord Output, “Eh” ... 50

Figure 52: Mic to Chord Output, “Oh” ... 50

Figure 53: Mic to Chord Output, “Oo” ... 50

Figure 54: Total Project Budget Breakdown .. 51

Page 7 of 51

Abstract

Our project is a real-time vocal harmonizer. The idea is that someone could sing or play

an instrument into a microphone while simultaneously pressing down a chord on a keyboard,

producing the output of their voice reharmonized to the chord that is played. The signal

processing required to execute this transformation can be accomplished with a field-

programmable gate array (for the digital side) and a printed circuit board with an amplifier and a

codec (for the analog side). This project will enable musicians to simulate their own choir, thus

unlocking new realms of creative expression. Such a capability could be particularly valuable

during the solitary times of a pandemic.

Background

As three students with musical backgrounds, this project is both useful to us for personal

musical projects and also is recognized as helpful for both new and experienced musicians. This

project is especially useful during times of quarantine, in which musical groups are unable to

meet together in person. It both simulates the effects of being with other musicians, and

encourages musicians to practice on their own.

 There have been a number of similar projects and products to ours that have been done in

the past, both in academic settings and in the commercial market. At the University of Virginia

(UVA), one former capstone project was to identify the pitch of a microphone input and to

harmonize it in the output [1]. Students at the University of Michigan developed a device to

harmonize microphone input according to various preset scales as well as to keyboard MIDI

input [2]. A device known as a vocoder can be used to harmonize vocal input according to

keyboard input, typically to produce a synthetic or electronic sound. Vocoders such as the

Roland JD-Xi are commonly used and are available on the market [3]. The musician Jacob

Collier uses an advanced vocal harmonizer that was developed at MIT to harmonize his voice

with his keyboard [4].

 There are a number of elements that our project has combined in such a way that none of

the aforementioned projects have done. First, the notes of the output chord are exclusively

defined by a keyboard, and not by presets or by the voice itself. Second, our device produces an

output that mirrors the natural timbre of the voice, instead of producing a synthetic timbre. Third,

we have created a product that, with modifications, could be widely available and reasonably

affordable on the market. The combination of these three factors define our project uniquely, and

make for a device that musicians of all levels could enjoy in a way that no other device exactly

captures.

This project greatly relied on knowledge from previous courses that our group members

have taken. The programming of the MyRIO was completed in LabView, which Laura has

become familiar with through Independent Research. The construction of the electronic system,

schematic design and PCB layout design, drew on all three ECE Fundamentals classes (ECE

2630, ECE 2660, ECE 3750), which all three of us have taken. In addition, all three of us took

Intro to Embedded Systems (ECE 3430), which gave us the background knowledge to interface

between the codec and the MyRIO system using serial peripheral interface (SPI) protocol.

https://www.zotero.org/google-docs/?MuKU3b
https://www.zotero.org/google-docs/?VXGP4f
https://www.zotero.org/google-docs/?0r38Yj
https://www.zotero.org/google-docs/?WiSCLP

Page 8 of 51

Constraints

Design Constraints

Parts Availability

 As we borrowed a MyRIO and keyboard from the university, the availability of parts

constraints can be narrowed down to the Codec, microphone, and 3D printing materials. Also,

the piano amplifier used for the signal output was borrowed from Nate Hunter. The Stereo Audio

Codec from Texas Instruments is stocked in the thousands by Digikey [5]. The microphone did

not have to be a specific brand and we could not find a microphone with a detailed datasheet;

therefore, we chose a dynamic microphone from Arctic Violet that was in stock [6]. 3D printing

was available at multiple locations in the Engineering School as well as in the Fab Lab at the

Architecture School, so the time slots and access were more of a concern than material

availability. We chose to have the PCB holder 3D printed by the mechanical engineering

department, since they had a quick turnaround time and were able to easily deliver our completed

product to the ECE department [7].

Manufacturing Limitations

Professor Powell ordered our board as a larger sheet with multiple boards from other

teams to save on shipping costs, therefore the board designs needed to match with respect to

certain layering and design requirements. The origin of the board outline was kept at the bottom

left and the number of copper layers was kept to two. Of the 2-layer board requirements imposed

by the PCB manufacturer, Advanced Circuits, the following were relevant to the PCB design for

this project [8]:

● Maximum board size: 30 sq. in.

● Minimum 0.005 in. line/space

● Minimum 0.010 in. hole size

● Maximum 50 drilled holes per sq. in.

Software Availability

 The softwares used in this project were Matlab [9] and National Instruments’ LabView

[10], Multisim [11], and Ultiboard [12]. The University of Virginia provides student licenses for

Matlab 2019, NI LabView 19.0, NI Multisim 14.1, and NI Ultiboard 14.1.

CPU Limitations

The software options were limited by the myRIO compatibility requirements. The

processor on the myRIO can be programmed in C or C++, but the FPGA can only be customized

using National Instruments’ LabView [10]. The firmware on the myRIO was difficult to update

without direct help from National Instruments, but the second myRIO we adopted already had

firmware for LabView 2019, which was the version we were all able to download to our laptops.

https://www.zotero.org/google-docs/?KIu5Z7
https://www.zotero.org/google-docs/?xJer6s
https://www.zotero.org/google-docs/?h1MkNO
https://www.zotero.org/google-docs/?gJcstw
https://www.zotero.org/google-docs/?iQJJ4U
https://www.zotero.org/google-docs/?Q2t95z
https://www.zotero.org/google-docs/?u7RHWX
https://www.zotero.org/google-docs/?E080T2
https://www.zotero.org/google-docs/?gCMps4

Page 9 of 51

Economic and Cost Constraints

The vocal harmonizer fit comfortably within the cost constraints of the capstone budget

of $500. We borrowed a Yamaha keyboard and MyRIO from the Electrical and Computer

Engineering departments, which considerably reduced the larger cost variables. The circuit

components were not a major cost variable as some of the components needed for the PCB were

included in the kits from the Fundamentals classes, but the components that needed to be ordered

were each in the range of $0.10-$5.05. The cost of 3D printing the casing for the myRIO and

PCB was $15 per cubic inch of material by the Mechanical Engineering Department. The only

purchased items were the microphone, codec, circuit components, and the PCB.

 If this device were to go into production, the economic constraints would be considerably

higher. The potential customers would be universities, musical education programs, and

individuals interested in music, so the cost would need to be kept reasonable. As this device

would be a keyboard attachment, the cost of the keyboard would not need to be included in the

price. A new myRIO typically costs between $500-$1000, but developing a more specified

FPGA board with just the necessary hardware for this device would reduce the cost. More

professional-grade encasing than 3D printing would add to the initial development cost either

with out-sourcing or purchasing plastic molds. After development, the device cost could

reasonably be estimated between $25-$50.

External Standards

The following external regulatory standards are relevant to this project.

1. IPC Standards for PCB Design - Characteristics of PCB designs are defined in the IPC

standards. IPC-A-600 defines the acceptable levels for plating, hole size, material, solder

mask quality, internal and external characteristics, etc. for printed circuit boards [13]. IPC

2221 sets the specifications and electrical testing protocol for the materials used in rigid

printed circuit boards, including nickel, polymer, copper, dielectrics, etc. [14]. In order to

meet these requirements, we used the DRC and netlist check alongside the connectivity

check. We also submitted the Gerber files to the FreeDFM tool from Advanced Circuits

to make sure our board had no showstoppers [15].

2. FCC Standards - Part 15 of the FCC standards regulate devices operating over 9 kHz,

requires all digital and peripheral devices to accept interference from licensed sources,

and defines the acceptable frequency operation bands [16]. The codec would be defined

as a peripheral device under the FCC §15.3 [17]. The myRIO that was used within the

vocal harmonizer complies with Part 15 of the FCC restrictions on Class B devices that

act as unintentional radiators [18]. Should we have any issues with interference related to

harmful radio communications, we will use the guidance in the “FCC Interference

Statement” of the NI myRIO manual [18].

3. SPI (Serial peripheral Interface) Communication Protocol - SPI is a synchronous

communication protocol used between master and peripheral devices with modes defined

by clock polarity and phase [19]. For this project, SPI was used to communicate in the

https://www.zotero.org/google-docs/?zOeyl9
https://www.zotero.org/google-docs/?LpTJbh
https://www.zotero.org/google-docs/?9uGABI
https://www.zotero.org/google-docs/?EKxMcN
https://www.zotero.org/google-docs/?ktyj8A
https://www.zotero.org/google-docs/?Z7fEmp
https://www.zotero.org/google-docs/?QhC1VQ
https://www.zotero.org/google-docs/?rE2JIz

Page 10 of 51

Control Interface between the myRIO and the codec with CPOL = 0, CPHA = 0, and an

approximately 1 MHz clock.

4. I2S (Inter-IC Sound) Communication Protocol - I2S is a synchronous protocol for

communication between digital audio devices [20]. In this project, I2S was used to read

and write digital audio between the myRIO and the codec in the Digital Audio Interface.

The clock input provided by the myRIO was approximately 1.66 MHz.

Tools Employed

Different design, simulation, software, and testing tools were used to complete each

section of this project. The tools used in each subsection of the project are described in detail

below.

Math Analysis

 In designing the schematic, the resistor and capacitor values were checked using Matlab

[9]. Laura already had experience programming in Matlab and a bank of typical resistor and

capacitor values saved from Fun I and Fun II projects.

Hardware Design

 For the schematic and PCB design, Laura used National Instruments’ Multisim [11] and

Ultiboard [12]. These tools were necessary to simulate subcircuits, design the schematic, and

develop the PCB layout. Laura, the primary on Multisim schematic design and Ultiboard layout,

had experience with Multisim and Ultiboard from Fun I, II, and III.

Software and FPGA Design

 For the FPGA and processor design, National Instruments’ graphical programming

software LabView 2019 [10] was used. LabView was required to develop the serial peripheral

interface (SPI) and signal calculations on the myRIO processor as well as the I2S (Inter-IC

Sound) on the myRIO FPGA. Within LabView, the more specified toolkits needed for this

project were: Advanced Signal Processing Toolkit [21], LabView FPGA [22], and myRIO

Toolkit [23]. Nate, the primary on algorithm and software development, learned LabView from

scratch for this project.

3D Printing Design

 For the 3D printed holder design, Noah used Autodesk AutoCAD [24]. With AutoCAD,

the holder was designed from scratch based on measurements made of the piano slot (to insert

the holder) and the myRIO. After designing the holder, the files were exported to .stl and .igs

formats, and they were sent to the Mechanical Engineering Department [7] to be printed.

Testing

 For testing voltages and digital inputs/outputs, the National Instruments' VirtualBench

[25] and accompanying software were used. These tools were necessary for testing the voltage

https://www.zotero.org/google-docs/?Hy4oxU
https://www.zotero.org/google-docs/?MZ46mY
https://www.zotero.org/google-docs/?I3WxHF
https://www.zotero.org/google-docs/?JZVCA9
https://www.zotero.org/google-docs/?0mp9Ym
https://www.zotero.org/google-docs/?dPZloN
https://www.zotero.org/google-docs/?CkEEYU
https://www.zotero.org/google-docs/?fU28C8
https://www.zotero.org/google-docs/?fjIYSz
https://www.zotero.org/google-docs/?y6dQgs
https://www.zotero.org/google-docs/?rq5YpV

Page 11 of 51

supplies and subcircuits before and after sections of the PCB were stuffed. During software

development, the Digital Input/Output tool was also necessary to confirm communication timing

on the myRIO before testing on the PCB. All three students were involved in testing the system,

and each had individual experience with the VirtualBench hardware and software from the ECE

Fundamentals I, II, and III classes.

Ethical, Social, and Economic Concerns

Environmental Impact

The environmental impact of this device is heavily dependent on the responsibility of the

consumer if and when they dispose of it. E-Waste can be safely recycled at designated locations,

but the PCB and myRIO components could release toxic chemicals into the ground if placed in a

landfill. The myRIO should only be disposed of according to the Directive 2012/19/EU for waste

electrical and electronic equipment to prevent leaching toxic chemicals into the ground or

atmosphere [18].

Sustainability

The myRIO has a warranty of 1 year after the shipment date, but the electronics within

should last much longer than that. The keyboard, speaker, and microphone should all have at

least 5+ year lifetimes, and parts that are not easily repaired could be replaced easily. If this

device entered the market, the warranty for repairs on the custom board should be around a year

as well.

Health and Safety

The myRIO has radio exposure risk if not operated according to the FCC limits, antennas

kept more than 20 cm from a person’s body [18]. Unauthorized product changes or modifications

could also lead to bodily harm or injury. Signals of recklessly excessive amplitude-at or above 85

dB- input into a speaker could cause ear damage [26].

Due to the small parts involved in the system, this project could be hazardous if used

by/around small children, due to the potential of swallowing/choking on the small pieces.

Additionally, the device is not waterproof, so caution should be used if using the device around

water or any other liquid (such as drinks). The chassis does not enclose all electrical components

and wiring, but 3.3 V is not enough to overcome the resistance in skin, which prevents a risk of

electrical shock [27].

Manufacturability

The only manufactured parts of the system are the PCB and the casing, all other

components and cords will be purchased off-the-shelf. There is no specified power source

requirement outside of the standard wall supply. The PCB and casing would be easy to reproduce

with access to the design files. As the myRIO has more capabilities than are needed for this

system and are not often stocked in high numbers, a custom FPGA would need to be designed if

this project were to go into market production. With an FPGA (field programmable gate array)

https://www.zotero.org/google-docs/?3F6XTs
https://www.zotero.org/google-docs/?AyDa77
https://www.zotero.org/google-docs/?arjUvc
https://www.zotero.org/google-docs/?lOuHcE

Page 12 of 51

design and designated code file to configure the FPGA, the LabView code would most likely

need to be translated to VHDL or Verilog, but a custom FPGA would be easily programmed for

manufacturing once the translated code file was written.

For manufacturing the PCB, the major skills required would be soldering and reading a

PCB layout for component directionality. Component directionality is only applicable for the

operational amplifiers and the stereo audio codec. The board requires both surface mount and

through-hole components, but the board could be redesigned to use surface mount components to

allow for machine soldering.

Ethical Issues

The ethical issues surrounding a real-time vocal harmonizer relate to the possession of

voice recordings without permission. We are not planning to record the voice inputs to the

system, and permission and human testing forms are not required as we are our own test subjects.

However, if the myRIO system were to be compromised, it is possible that a malicious entity

could modify the code to record a user’s voice without their consent. To avoid this possibility,

the myRIO should be kept in a secure location, and it should not be connected to the internet,

since that is not a necessary feature to use the vocal harmonizer anyway.

Intellectual Property Issues

[28] is a patent for a software harmonizer that automatically harmonizers pitch inputs into

chords. It does not use user input to select notes the way our project does, but automatically

selects tones to be played in harmony with the input. The Harmonizer “harmonizes a melody in

accordance with the rules using an iterative technique of chord selection, permutation and

submission to the rules until solutions are found”. In addition, this patent is for an exclusively

software design.

[29] is a patent for a system that listens to a pre-recorded song, analyzes to find the key,

then is run during a live vocal performance (such as karaoke). During this live run, the system

takes in a “melody note” from the performer, and generates a harmony that fits both the song and

the melody note. Once again, this system is different from our project due to the fact that it is an

automatic harmonizer, and only relies on the user voice input and previously recorded notes to

generate harmony.

Finally, [30] is a patent for a harmony generator based on a melody note and an

accompaniment note. This is a software system that would take in MIDI files or live audio to

analyze and output the harmonies digitally. This system is able to process quickly in real-time to

be used for an audio performance. This, like the previous two patents, generates its own harmony

and does not require all harmony to be generated by the user. Therefore, our Vocal Harmonizer

should be patentable, since it appears to be unique in our method of harmony generation.

https://www.zotero.org/google-docs/?CwDorE
https://www.zotero.org/google-docs/?kemm3u
https://www.zotero.org/google-docs/?35Ch3Y

Page 13 of 51

Detailed Technical Description of Project

 The purpose of our project was to develop a vocal harmonizer, which would create a

chord from microphone and keyboard input signals. Once activated, the microphone takes input

from voice or a musical instrument of the user’s choice. The keyboard was then played at any

note or chord chosen by the user. The piano amplifier output the user’s original vocal or

instrumental input, modulated to match the pitch or pitches selected on the keyboard.

 According to the requirements of the capstone project, our project involves a

microcontroller, the myRIO [18], and a custom PCB. The overall block diagram for our system

is shown in Figure 1.

Figure 1: Block Diagram for Vocal Harmonizer

Schematic

 The schematic for the PCB was developed using NI Multisim. The schematic design

began with understanding the components needed to fulfill the block diagram and signal path

necessary for the vocal harmonizer: real-time (RT) processor, FPGA, ADC/DAC function,

filtering, and audio jacks. The myRIO [18] was chosen for the FPGA, processor, numerous

digital input/output pins (DIO), and SPI capabilities. The TLV320AIC23BIPWR Stereo Audio

Codec [31] was chosen for its 16-bit ADC/DAC, voltage supply requirements, left/right channel

and mic inputs, and simple footprint. Finally, the 35RASMT2BHNTRX 3.5 mm audio jack [32]

was chosen because Laura had prior experience wiring it from the class project in Fun II.

The top level design for this project is shown below in Figure 2. Smaller operating

sections of the schematic are described in more detail in the following sections. A full bill of

materials (BOM) for the components used for the PCB can be found in Appendix A.

https://www.zotero.org/google-docs/?zMY85X
https://www.zotero.org/google-docs/?Vp2bbL
https://www.zotero.org/google-docs/?btdxE0

Page 14 of 51

Figure 2: Top Level Schematic for PCB

VMID and myRIO Power

 The myRIO +3.3 V supply was used as the power source for the PCB, as shown in the

top left of Figure 2. As the Codec required a 1.65 V supply in addition to the 3.3V, the subcircuit

shown in Figure 3 was designed to halve the 3.3 V supply and provide VMID through the

voltage reference buffer.

Figure 3: VMID from myRIO 3.3 V Supply

Page 15 of 51

Audio Jacks, Biasing, and Anti-Aliasing Filters

 The Input Signals subcircuit from the top level schematic is shown in Figure 4. The audio

jacks for the microphone and keyboard were wired such that the tip signal is biased to VMID

before being input to the anti-alias filter. Test pins were included for both the raw signals and the

biased, filtered signals to allow for easier debugging of the keyboard and microphone inputs.

Figure 4: Input Signals Subcircuit

 The Anti-Alias Filter subcircuit is shown in Figure 5, depicting the Sallen Key

architecture filters for the keyboard and microphone. According to the Nyquist sampling

theorem, the anti-aliasing filters were designed to have a 22 kHz cutoff frequency as the

sampling frequency was 44.1 kHz. The gain was selected to be 1 for both filters and the quality

factor was designed to be as close to 0.707 as possible.

Page 16 of 51

Figure 5: Anti-Alias Filter Subcircuit

The appropriate resistor and capacitor values were calculated in Matlab using the Sallen

Key equations shown below. With R1, R11, C3, and C4 values of 13kΩ, 8.2 kΩ, 0.001𝜇F, and

470 pF, respectively, the cutoff frequency is 22484 Hz and the quality factor is 0.71.

 The biasing, cutoff frequency, and quality factor were all confirmed using Multisim

simulation and breadboard prototyping before the final PCB was printed.

Codec Communication, myRIO DIO, and Crystal

Figure 6: Codec Communication, myRIO DIO, and Crystal

 The Codec connections were designed based on the codec datasheet [31] specifications

for the datapath and configuration required for this project. The BVDD, AVDD, HPVDD,

https://www.zotero.org/google-docs/?26ZeiO

Page 17 of 51

DVDD, and VMID were routed to 3.3 V, 3.3 V, 3.3 V, and 1.65 V, respectively, as outlined in

the Codec datasheet. The ABLS_LR_12.000MHZ-T Crystal [33] was chosen to fulfill the

XTI/MCLK requirements for a 44.1 kHz sampling frequency. The CLKOUT signal was wired to

a myRIO DIO pin in case it was needed as a reference in LabView but was not used during

programming.

 There were two major communication systems between the myRIO and the codec, SPI

for the Control Interface and I2S for the Digital Audio Interface, as shown in the Codec block

diagram in Appendix B. First, the Control Interface consists of the SDIN, SCLK, CS, and

MODE pins. The MODE pin was hard-wired to 3.3 V to set the interface to SPI communication.

The SDIN and SCLK were connected to the appropriate SPI pins on the myRIO with the CS

signal provided by a DIO pin. Second, the Digital Audio Interface consists of the BCLK,

LRCIN, LRCOUT, DIN, and DOUT pins on the Codec. With the Codec in slave mode, each of

these signals needed to be provided by a DIO pin on the myRIO.

 The analog inputs for the keyboard and microphone were routed to LLINEIN and

MICIN, respectively. The MICIN was originally chosen over RLINEIN for internal gain

features, but the microphone trace had to be soldered to the RLINEIN on the final PCB due to

limitations of the ADC select. The capacitors on the analog inputs, C1 and C11, were used to

remove the DC biasing added in the anti-alias filtering. Because the codec does not require

external filtering on the LOUT pin, C10 was used as a buffer between the codec output and the

audio jack for the piano amp.

PCB Layout

 For the design of the PCB, the most important design considerations came from the

myRIO connector, the input/output jacks, and the minimization of space used. For the myRIO

connector, our initial design did not give enough room for the myRIO to connect to the board

without pressing up against other components, so it was placed on one edge by itself to avoid this

in the final design. For the input jacks, we chose to place them next to each other so we could

keep the board consistent in its organization. We decided to keep all three jacks on the same size

to make it easier to place the myRIO/PCB in the chassis. The final design in Ultiboard [12] for

the PCB is shown in Figure 7. After the PCB was printed by Advanced Circuits [34], we had the

codec soldered on by WWW Electronics [35], due to the precision required. After this, we

soldered the rest of the components onto the board by hand. The final board design can be seen

in Figure 8.

https://www.zotero.org/google-docs/?6lecai
https://www.zotero.org/google-docs/?ai8sp8
https://www.zotero.org/google-docs/?iAnoTY
https://www.zotero.org/google-docs/?tUCskE

Page 18 of 51

Figure 7: Ultiboard Layout for PCB (GND Plane Hidden)

Figure 8: Populated PCB

Page 19 of 51

Software Design

Overview

Figure 9: File structure of Harmonizer.lvproj

Figure 10: Main.vi front panel in action

Page 20 of 51

Figure 11: Main.vi block diagram

The software for the harmonizer is contained in a LabVIEW [10] project called

Harmonizer.lvproj. This project contains LabVIEW VIs for the real-time processor and the

FPGA. The main program running on the processor is Main.vi. In the Initialize step, a reference

to the FPGA program, FPGA 2.vi, is opened, and FIFOs for communication between the

processor and the FPGA are configured. In the SPI step, SPI messages are written to the codec

through FIFO SPI From RT. In the main loop, I2S communication and digital signal processing

occur. This runs indefinitely until the program is stopped, at which point the FPGA reference is

closed.

 Within the main loop, keyboard and mic audio samples are read through the left (FIFO

I2S To RT Left) and right (FIFO I2S To RT Right) I2S channels respectively. 4096 16-bit

samples (about 93 ms of sound) are collected per channel in each loop iteration. The keyboard

samples are analyzed in the subVI Keys 2 Notes.vi, which returns a boolean array of which notes

are being played. The mic samples are analyzed in the subVI Mic 2 Harmonics.vi, which returns

the amplitudes of the first ten voice harmonics and a “Voice On” indicator. These data are then

synthesized in Synthesis.vi, which produces the output chord as an array of 4096 16-bit samples.

These samples are written back to the codec through FIFO I2S From RT.

 The VIs that are used in this project are Main, Mic 2 Harmonics, Keys 2 Notes, Synthesis,

and FPGA 2. The first four run on the myRIO processor; the fifth runs on the myRIO FPGA.

Having looked at the main, we will proceed to look at the other four VIs.

https://www.zotero.org/google-docs/?nZ52Nf

Page 21 of 51

DSP Algorithm

Mic 2 Harmonics

Figure 12: Mic 2 Harmonics.vi block diagram left: fundamental computation

The microphone analysis subVI takes in 4096 samples and runs a Fast Fourier Transform

(FFT) on them. This produces an array of 4096 amplitudes at frequencies evenly distributed

between 0 kHz and 44.1 kHz (about 10.8 Hz apart). The magnitudes are separated from the

phases, and the magnitude at 0 Hz is zeroed out (in testing, we found that the microphone signal

had a DC offset). The lowest 100 frequencies (up to 1066 Hz) are isolated and passed through a

threshold function, which identifies the first index to cross a magnitude threshold of 100,000

(determined in testing). The maximum magnitude is identified among the next 7 frequencies

(determined in DSP development); this index marks the spot closest to the fundamental

frequency.

 Parabolic interpolation follows, using the formula above [36] to get a more accurate

reading of the true fundamental frequency (beyond the 10.8 Hz granularity afforded by the FFT,

that is). Finally, the refined index is multiplied by the 10.8 Hz (= 44100 / 4096) bin division to

obtain the true fundamental frequency.

https://www.zotero.org/google-docs/?QodKqr

Page 22 of 51

Figure 13: Mic 2 Harmonics.vi block diagram right: harmonic extraction

The fundamental frequency is compared with a maximum at 1047 Hz (determined in DSP

development) to establish whether or not the voice is on. This is reasonable, as a soprano’s range

caps at around 880 Hz [37]. When the voice is off, the 100K threshold is never reached, so the

threshold function returns a frequency at the 1066 Hz cap (which may be slightly adjusted by the

rest of the computation). This “Voice On” signal is sent to the synthesis VI.

 In a for loop, the unscaled fundamental frequency is multiplied by the integers from 1 to

10 to establish ten harmonic frequencies. At each one, a maximum amplitude is found from the

nearest 5 (determined in DSP development) FFT bins. These 10 amplitudes are sent to the

synthesis VI as “Harmonics”.

Keys 2 Notes

Figure 14: Keys 2 Notes.vi block diagram left: amplitude computation

https://www.zotero.org/google-docs/?aUI4O4

Page 23 of 51

As with the microphone analysis, the keyboard analysis subVI takes in 4096 samples and

runs an FFT on them, producing an array of 4096 amplitudes at frequencies evenly distributed

between 0 kHz and 44.1 kHz (about 10.8 Hz apart). The bottom 200 bins are isolated (up to 2143

Hz); higher bins are unneeded. The first for loop runs 39 times to compute 39 note amplitudes in

the 3+ octave range of Ab3 (208 Hz) to Bb6 (1865 Hz). Note frequencies are computed with the

formula 𝑓 = 220 𝐻𝑧 × 2𝑛/12, where n is the interval between the note and A3 in half steps. Note

partial indices are computed by dividing by 10.8 Hz, and the note amplitude is computed with

linear interpolation by the formula 𝐴 = 𝑀[⌈𝑝⌉] × (⌈𝑝⌉ − 𝑝) + 𝑀[⌊𝑝⌋] × (𝑝 − ⌊𝑝⌋), where p

is the partial index and M[i] is the magnitude at bin i.

Figure 15: Keys 2 Notes.vi block diagram right: note determination

In the next for loop, the 39 note amplitudes are reduced to 37 boolean signals for whether

or not the notes in the 3-octave range from A3 to A6 are being played. For a note to be “on” its

amplitude must be greater than 3 numbers: 500,000 (determined in testing), the maximum of its

two neighbors, and the minimum of its two neighbors times 1.2 (determined in testing). The

neighbor-comparison approach yielded promising results, but with limitations, as explained in

“Problems and Design Modifications”. The 37 signals are sent to the synthesis VI as “Notes”.

Page 24 of 51

Synthesis

Figure 16: Synthesis.vi block diagram

The synthesis subVI takes in multiple signals: voice harmonics and “Voice On” from Mic

2 Harmonics.vi, notes from Keys 2 Notes.vi, and a smoothing signal (set to True in the final

project). It begins with an empty, 4096-sample array. Looping 37 times, it determines for each of

37 notes (and factoring in “Voice On”) whether or not to add sinusoids. If both the note and the

voice are present, it computes a frequency as 𝑓 = 110 𝐻𝑧 × 2𝑛/12, where n is the interval

between the note and A2 in half steps. Note that this base frequency is an octave lower than in

the keyboard subVI; the reason is that the desired output frequency range is A2-A5, but the

higher-frequency notes from A3-A6 have greater frequency resolution in the keyboard FFT.

Thus, a musician must play an octave up on the keyboard from the intended output.

 The computed frequency becomes the fundamental for that note. In a nested for loop, the

fundamental frequency is multiplied by the integers from 1 to 10 to establish ten harmonic

frequencies, and downscaled by 1/44.1 kHz. This is the frequency input to an included sinusoid-

generation subVI called Sine Wave.vi. The amplitude input is provided by the “Harmonics”

input, after being scaled down. The scaling factor is the reciprocal of 512, which was determined

as follows. An FFT amplitude is scaled up by half the bin count (2048) [38], which must be

https://www.zotero.org/google-docs/?RUiulx

Page 25 of 51

reversed when returning to the time domain. We also apply a software gain of 4 here (determined

in testing). Thus, we have
4

2048
=

1

512
.

 With each loop, a new sinusoid is generated and added element-wise to the previous

chord. At the end of the inner for loop, sinusoids for ten harmonics of one keyboard note are

added to the signal, and at the end of the outer for loop, sinusoids for ten harmonics of k

keyboard notes (where k is the number of asserted notes) have been summed into a final chord

signal.

 When the smoothing signal is asserted, a linear fade in/out is added to the 100 samples

(determined in DSP development) at each end of the 4096-sample section. This helps to reduce

the clipping due to phase differences at the borders between sections. The output chord signal is

finally converted to signed 16-bit integers (as the codec expects) and sent to FIFO I2S From RT

as “Output”.

Data Communication

SPI Messages

Figure 17: Main.vi block diagram, SPI

The main VI sends 10 16-bit SPI messages to the codec through the FPGA. Each

message contains a 7-bit register address followed by a 9-bit configuration setting. Below is the

meaning of each message, as determined from the codec datasheet [31].

Figure 18: SPI message interpretations

https://www.zotero.org/google-docs/?LkSuxR

Page 26 of 51

SPI

Figure 19: FPGA 2.vi block diagram, SPI

The SPI communication code runs in FPGA 2.vi. FIFO SPI From RT streams 16-bit

messages from the processor to the FPGA. If the stop message (52,428, determined in

communication development) is the last message sent, then nothing more happens in the case

structure and SPI stops. For other messages, the integer is converted to a Boolean array with the

MSB first, and bits are sent in the for loop one by one. While the chip select is low, SPI_CLK is

cycled 16 times (once per bit). A cycle is 40 myRIO ticks, which is about a microsecond (one

tick is 25 ns); this is well above the codec minimum requirement. The SPI_MOSI pin is set to the

message bit on the falling edge, so that it can be read by the codec on the rising edge. At the end

of the message, the chip select is asserted, and the codec is ready to read a new message.

I2S

Figure 20: FPGA 2.vi block diagram, I2S left channel

Page 27 of 51

The I2S communication code also runs in FPGA 2.vi. LRCIN and LRCOUT are cycled at

44.1 kHz, which works out to approximately 453 myRIO ticks between toggles. While LRCIN

and LRCOUT are low, the codec’s left channels are written and read, as shown above. For

writing the output chord to the codec, 16-bit signed integers are sent to the FPGA through FIFO

I2S From RT. These are converted to boolean arrays with the MSB first and buffered with a zero,

per codec specifications [31]. BCLK is toggled at 24 ticks per cycle, which is the maximum

allowable without slowing down the loop (determined in testing). Bits are written on DIN on the

falling edge so that the codec can read them on the rising edge.

 For reading the input chord from the keyboard, the same clock structure is used. A

boolean array is initialized and populated with the value provided by the codec on DOUT on the

rising edge. The initial zero is removed and the boolean array is converted to a 16-bit unsigned

integer and sent to the real-time processor through FIFO I2S To RT Left, which treats the integer

as signed. Both the input and output streams run constantly, transferring numbers between the

codec and the processor.

Figure 21: FPGA 2.vi block diagram, I2S right channel

While LRCIN and LRCOUT are high, the codec’s right channel is read. The right write

channel is unused. A signal from the microphone input is communicated through this channel in

the same way that the keyboard signal was communicated through the left channel, except using

FIFO I2S To RT Right. By alternating in this way, the keyboard signal and the microphone signal

can be streamed to the processor simultaneously.

Mechanical Chassis

 The mechanical chassis was designed to easily hold the myRIO/PCB on the piano, so that

a user of the system did not need to be concerned with them falling while operating the system.

https://www.zotero.org/google-docs/?G7KcQ9

Page 28 of 51

The chassis was designed in AutoCAD [24], which allowed for precise measurements of each

dimension, as required by the shape of the myRIO and the hole on the piano in which the chassis

would rest. The dimensions of the chassis came out to be 3.0" x 1.46875" x 3.81252". The final

AutoCAD design for the chassis is shown in Figure 22.

Figure 22: Chassis design in AutoCAD

 After the chassis was designed in AutoCAD, the .dwg file was exported to .stl and .igs.

By doing this, the chassis could be 3D printed by the Mechanical Engineering Department [7].

The two files were emailed to Professor Powell, he contacted the MECH-E Department on our

behalf, and they printed the final product, as shown in Figure 23.

Figure 23: Final Printed Chassis

https://www.zotero.org/google-docs/?kaQo7t
https://www.zotero.org/google-docs/?zxXY6j

Page 29 of 51

Problems and Design Modifications

Note: this section will also include discussion of tradeoffs and design decisions made

(particularly on the software side).

Hardware

The first iteration of the PCB did not correctly bias the keyboard and microphone signals

to 1.65 V, which caused the output from the anti-aliasing filters to rail to one of the op-amp

supplies. To fix the railing, we cut the traces causing railing and soldered the non-inverting input

and output of the op-amp together. In order to bias the input signals to 1.65 V, we “deadbugged”

the PCB to add the necessary 33 kΩ resistors and 1 𝜇F capacitors as shown in Figure 24.

Figure 24: First Iteration PCB with Deadbugging

 The final iteration of the PCB corrected the biasing and anti-aliasing filters, but we

discovered an issue with the 3.3 V supply from the myRIO. When connected to the myRIO, the

3.3 V supply dropped to 2.65 V and the VMID generation dropped to 8 mV. The error laid with

the ground plane, specifically the myRIO GND did not share the same GND as the rest of the

PCB. To rectify this, jumper wires were soldered to connect the myRIO GND references with

the ground plane of the PCB.

 Finally, the final iteration of the PCB had two other small trace errors that were able to be

fixed with soldering. During testing of the keyboard, microphone, and piano amplifier signals on

the PCB, the signals from the audio jacks for the keyboard and piano amplifier were unusual. To

Page 30 of 51

correct these signals, the pin for the ring signal from the jack had to be desoldered and electrical

tape added between the solder pad and the pin. The second error was discovered when working

on the SPI configuration for the datapath to read and write from the Codec in I2S format.

According to the Codec datasheet [31], the ADC cannot be used on the MICIN and LLINEIN

channels simultaneously due to the fact that the input MUX select that decides mic or line for the

ADC is shared between the left and right ADC. In order to read the keyboard and microphone

inputs simultaneously, the MICIN pin and RLINEIN pins were soldered together on the Codec.

Software

One of the first tradeoffs we had to consider was how much of the vocal content we

would capture. Initially, the goal was to include non-harmonic content. However, it quickly

became clear that synthesizing non-harmonic content from a FFT would be extremely sloppy due

to spectral leakage [36]. One option would be to use a phase-vocoder technique, which shifts

signals in the frequency domain before converting back to the time domain [39], but it was

unclear how well this would work with multiple pitches. Thus, we decided to stick with

harmonic content only.

The length of the FFT was a major tradeoff to consider. By the nature of the algorithm,

the frequency resolution is inversely proportional to the length of time captured [36]. We found

4096 samples to be a good balance, yielding a time period of 93 ms (close enough to real time)

and a frequency resolution of 10.8 Hz (small enough to identify the fundamental and later to

determine notes on the keyboard). We considered implementing an overlap of ¾ to reduce the

update delay, but the complexity of this approach, the additional computational demands, and the

sufficiency of the existing time period motivated us to avoid this [40].

In identifying the fundamental of the voice, we had to consider interpolation. Leaving out

interpolation would give a result that could be off by more than 5 Hz, which was too much. Two

options were parabolic interpolation, which is approximate but simpler, and Gaussian

interpolation, which is the most precise [36]. Parabolic interpolation turned out to be sufficient,

as the error has been shown not to exceed 4% of the bin spacing [41].

For analyzing the keyboard signal, we initially considered a strobe tuner approach, which

would compare the input signal to expected note frequencies to establish the pitch [42]. Upon

implementing this, however, numerous problems arose: using low-pass filters required more time

to detect a DC signal, and using sums failed because AC frequencies from other notes in the

chord overpowered the DC difference we were trying to detect. Thus, we decided to use an FFT

for the keyboard as well, approximating magnitudes at various notes with interpolation. This

worked better; however, it limited us to higher keyboard frequencies where there were more bins

between notes. To determine which magnitudes were large enough to indicate the presence of a

note, absolute magnitude alone ran into significant issues due to spectral leakage. Thus, we

decided to also compare note magnitudes to their neighbors. This worked well, but the downside

is that notes are not guaranteed to be detected unless separated by at least a minor third (usually a

https://www.zotero.org/google-docs/?6DS3zG
https://www.zotero.org/google-docs/?VqqnYA
https://www.zotero.org/google-docs/?D18b5Y
https://www.zotero.org/google-docs/?LzwGWK
https://www.zotero.org/google-docs/?i00fcn
https://www.zotero.org/google-docs/?you8RZ
https://www.zotero.org/google-docs/?AVBV3k
https://www.zotero.org/google-docs/?1wMeqg

Page 31 of 51

whole step is fine too). Another issue is that, due to the low bin resolution at lower frequencies,

one of the bottom notes in our input range, Bb3, was mistaken by the algorithm for B3. Thus,

instead of an output range of A2 to A5, our correct output range is B2 to A5.

Figure 25: Phase Clipping Between Two Audio Sections

On the algorithm output side, clipping between audio sections became a big problem. A

possible solution to this would be to align the phases of the component sinusoids between

sections. This step would be a great future improvement. Due to time constraints, we instead

implemented smoothing at the ends of each section, which dampened the impact of the clipping.

Another output consideration was volume. Unfortunately, due to the codec’s inability to transmit

mic and line data simultaneously, we did not have much hardware gain to work with on the mic

input (the multiplier was about 4). Thus, we added an additional software gain of 4 to the output.

When moving the code to the myRIO, we had to decide what to put on the FPGA and

what to put on the processor. We initially intended to put everything on the FPGA in order to

process the signals as fast as possible. However, the FPGA code was much more limited than the

standard LabVIEW palette, and the FPGA did not work well with storing large arrays of data.

We then timed the algorithm on the real time processor, and estimated a maximum delay of only

30 ms, well under the 93 ms period allotted. Thus, the entire DSP algorithm went on the

processor.

The last major hurdle was that when we tried to run SPI and I2S communication in the

same program, we got no signal whatsoever. We initially thought that the I2S wasn’t doing

anything, but upon further investigation, we found that the SPI messages were no longer sending.

We were using a dedicated subVI for SPI and the FPGA VI for I2S. With Prof. Powell’s help,

we figured out that these two VIs could not run on the FPGA simultaneously, so we reconfigured

Page 32 of 51

the SPI to run on the same FPGA VI as the I2S. From there, it was (relatively) smooth sailing to

the finish line: a working vocal harmonizer.

Project Timeline

To create our timeline, we used a free online Gantt chart tool [43]. The chart in Figure 26

shows our initial prediction for our project timeline. Due to problems such as difficulty

configuring software, reordering a new PCB after discovering problems with the initial design,

and the pandemic-caused complications with meeting in person, not all sections were completed

in accordance with the initial timeline. The Gantt chart in Figure 27 shows a much more accurate

timeline, as this was created at the end of the semester.

 Tasks that had to be done serially were signal design followed by LabVIEW coding.

Circuit design was followed by the PCB layout, which was followed by the PCB assembly. In

addition, the PCB assembly and the chassis design had to be complete before beginning the final

assembly. Finally, all of the previous tasks were completed before testing performance began.

Tasks that were done in parallel include component purchases, signal design, and circuit

design. After those were completed, LabVIEW coding and the PCB layout were done in parallel.

Then, the PCB was assembled while the testing system was designed. The chassis design was

also completed at this time.

● Primary Responsibilities:

 Laura: Component purchase, circuit design, PCB layout

Nate: Signal design, LabVIEW coding, final assembly

Noah: PCB assembly, test design, test performance, chassis design

● Secondary Responsibilities:

 Laura: Signal design, LabVIEW coding, PCB assembly, final assembly

 Nate: Component purchase, test design, test performance

Noah: Circuit design, PCB layout, chassis design

Figure 26: Original Gantt Chart

https://www.zotero.org/google-docs/?9j42r0

Page 33 of 51

Figure 27: Final Gantt Chart

Test Plan

Hardware

The vocal harmonizer was split into multiple subsections in order to test most effectively.

The hardware was divided into input signals, filters, signal analysis, and output signals. During

the initial hardware design process, the circuitry was tested in Multisim [11] by performing AC

sweeps on filters to confirm that they properly filtered out signals as we designed. After the PCB

was printed, each hardware subsystem was tested by using assembling on a breadboard

connected to a VirtualBench [25]. The VirtualBench provided input signals while also measuring

the output of the subsystem. After successfully testing the subsystem, we soldered the individual

components onto the PCB and tested that subsystem again. This process allowed us to ensure

that each subsystem functioned on its own, which made debugging the entire system much easier

later on. Figure 28 and Figure 29 show the original hardware test plans. The original hardware

test plans were followed closely, however, we spent more time analyzing the signals coming out

of the anti-alias filters than originally planned. This was due to a biasing problem, which was

later fixed.

 After testing our original PCB, we came to the realization that our anti-aliasing filters did

not bias the input signals to 1.65 V as desired. Because of this, we had to partially redesign the

anti-alias filters to achieve the desired signal bias. The original PCB also lacked a ground plane

in the circuit, which was added to the final PCB. Additionally, we realized that the first PCB did

not have enough room to easily connect to the myRIO via the 34-pin connector, so the final PCB

was redesigned to allow enough space for that connection.

https://www.zotero.org/google-docs/?fvRxXf
https://www.zotero.org/google-docs/?D19Pnq

Page 34 of 51

Figure 28: Input Signal Test Plan

Figure 29: Codec Connection Test Plan

Software

 Testing of the DSP algorithm occurred somewhat in parallel with its development (i.e.

“code a little, test a little”). First, the FFT was tested with the voice input to determine that the

Page 35 of 51

frequency of the voice was picked up in the appropriate bins. Then, the fundamental frequency

identification was tested. The input frequencies were C3 (131 Hz) and F3 (175 Hz), both of

which were read appropriately. Next, the harmonic detection was tested by comparing the output

with the display of the FFT and seeing that they matched. Additional confirmation of this was

seeing the distinct harmonic components of the five different vowel sounds in the input voice

WAV file. Having completed the microphone input section, testing proceeded to the keyboard

side. Preliminary tests revealed that the strobe tuner approach was not working as expected.

After playing around with it, this approach was replaced with an FFT and neighbor comparison

approach. Five different keyboard chords, each containing four or five notes, were run against

the algorithm, and not a single note was missed in any of them. Testing proceeded to the output.

To confirm that the output was adapting properly to the inputs, sections from each of the five

vowels in the voice WAV and from each of the five chords in the keyboard WAV were

combined. The output chord matched the keyboard chord in each case, and the output timbre also

shifted with each new vowel as expected.

The data communication protocols were tested individually to confirm timing and

functionality using the DIO tool with the VirtualBench as shown in Appendix C. For the SPI, a

DIO trigger was used to detect an SPI message burst and confirm that it matched the shape in the

codec datasheet. Then, the necessary Control Interface commands to set the left channel in

BYPASS mode and turn on the line input were sent. As a null test, the keyboard was played

before the SPI code was run to ensure no sound was emitted from the amp. Then, the sound

emitted from the amp after the code was deployed, confirming that the SPI write was successful.

For the I2S, the VirtualBench was used to send square waves of known frequencies to DOUT on

the myRIO to confirm read capabilities. To test write capabilities in I2S, the DIO was used once

again to confirm the shape of the transmission. Then, a 220 Hz digitally-represented sinusoid

was sent from the myRIO through DIN to the codec to play from the amp. To test I2S in

conjunction with SPI, the codec was configured such that the keyboard input would be sent

through the ADC to the myRIO through DOUT, back to the codec through DIN, and through the

DAC to be played on the amp.

Full System

To test the entire system, after confirming that both the hardware and software operated

as expected individually, we connected the myRIO to the PCB, and the PCB to the microphone

and keyboard. We tested the keyboard input first, confirming that the sinusoidal signal of a note

could show up on a waveform graph and then that the notes of the keyboard corresponded to the

notes lighting up on the front panel. Next, we tested the microphone input, confirming the

visibility of a signal in a waveform graph and clear changes in the harmonic amplitudes with the

voice both on and off. A selection of the LabView screenshots used to confirm these tests are

shown and explained in Appendix D. We also tested that both the mic and the keyboard could be

heard when piped directly to the amp. Finally, we hooked these components up to the synthesis

subVI and confirmed that the desired output signal was displaying on a waveform graph. As

Page 36 of 51

shown below in Figure 30, an octave on the keyboard shows up on the LED display and in the

waveform graph of the output signal (a signal of period ~320 samples plus a signal of period

~160 samples is apparent), while the voice signal is confirmed in the indicator light, the

harmonic array, and the relatively smooth triangular shape of the output. Vowel signals can be

compared in Appendix E.

Figure 30: Full System Test - C3 + C4 on Keyboard, “Oo” Vowel

After connecting all of the subVIs and the amp output, we attempted to sing into the

microphone while playing the keyboard, and we found that the system worked as expected,

harmonizing the voice to the chord of the keyboard. We also tested this after deploying to the

myRIO and unplugging from the laptop, and got the same result. To continue testing, we

changed volume while singing and playing the piano and found that the output proportionally

changed volume, which was the desired result. We then attempted to change singing pitch while

maintaining the same notes on the piano, and found that the system worked as planned and the

output pitch was not impacted by the microphone. We also spoke/sang different words into the

microphone and found that the output could clearly be heard when changing vowel sounds. The

words “wow” and “yeah” could be distinguished, but more complex words such as “harmonizer”

were much harder to understand. We had anticipated that this was a possibility due to the time

resolution of the algorithm, so this was not a problem that we attempted to fix.

Final Results

 Our team completed a fully-functional vocal harmonizer. The system functions as its own

module, which is to say that the myRIO can run independently from a computer. The system as a

Page 37 of 51

whole contains the keyboard, the microphone, the PCB, the myRIO, and the output amp. When

the user sings into the microphone, nothing happens unless they are also pressing keys on the

keyboard. Similarly, the keyboard only outputs sounds when the user sings into the microphone.

This is exactly what we intended, so we consider the project to be a success.

 The system outputs in real-time, which means that the delay between singing into the

microphone and hearing output from the system is reasonably small. The most significant

problem that we found is that the output is not extremely clear, and it is not easy to hear spoken

words into the system. That said, the system still gives the sense of performing within a group.

 The text in Figure 31 is an excerpt from the initial project proposal.

Figure 31: Initial Proposal Deliverables

 Figure 31 shows the 3 gradable deliverables for the project. Deliverable 1 stated that the

output must respond to changes of the inputs in real time. This was successfully accomplished: at

under a tenth of a second, the delay between input and output is not too bothersome when using

the system. Deliverable 2 stated that the timbre of the output must resemble the timbre of the

microphone input. There is a resemblance, in that vowels can be distinguished from each other

and in that the shapes of the input and output waveforms for a particular vowel resemble each

other. However, the output is not all that human-sounding, due to the clipping, time resolution,

and lack of non-harmonic content. Thus, this deliverable was partially met. Lastly, deliverable 3

states that the pitches of the output match the input keys from the keyboard. This final

deliverable was fully met, since the output pitches were based solely on the keyboard input and

were faithfully produced in the range of B2 to A5. Since we successfully completed two of the

deliverables, and partially completed the third, our finished product has earned an A-.

Costs

 The cost of the vocal harmonizer system for our production was $138.20. This included

the PCB printing, PCB parts, and the 3D printed holder. We were provided with the myRIO

(FPGA) and a keyboard. A microphone was purchased for testing, in addition to cables to

connect to the system. We used an amp for the output that we already had available. A full

Following are the deliverables of this project:

1. The output responds to changes on the inputs in real time

2. The timbre of the output resembles the timbre of the microphone

input

3. The pitches of the output match the keys pressed on the keyboard

If all three deliverables are met, the working project part of our grade

should be an A. For each deliverable that is not met, this grade should drop

by one letter. Partially meeting a deliverable may add a minus (“-”) to the

letter grade.

Page 38 of 51

breakdown of the budget can be found in Appendix F. To determine the estimated cost of mass

production, we received a quote from Protolabs for the holder [44]. For the PCB, the cost

estimate for mass production came from a quote from Advanced Circuits [34]. Typically, a

myRIO system costs between $500 and $700. If the vocal harmonizer were going to be mass

produced, an FPGA that is specifically designed for this system (likely an ASIC) would be

designed and manufactured. We received a quote from Sigenics [45] to create a custom FPGA

with our specifications, and its cost is shown in Figure 32.

Item Cost for 1 Estimated cost (each) for 10,000

PCB $71.20 $24.80

FPGA $578.00 $9.60

3D Printed Holder $67.18 $3.16

Total $716.38 $37.56

Figure 32: Table of Costs

Future Work

 For future projects, there are a few possible topics that could be explored based on our

project. We have selected four to discuss in the following section.

 The first possible future topic would be to find a method of pre-recording. This idea came

from the realization that it would be nearly impossible to play an instrument (trumpet, violin,

flute) into the system’s microphone while also playing the piano key for input. To account for

this, a future iteration of this project could include pre-recording the keys/chords that they want

to play. This would involve having a “recording session” in advance, saving the chords on the

FPGA, and then playing at a time specified by the user. There are many technical challenges to

implementing this expansion, specifically with saving the notes on the FPGA and giving the user

the option to switch to “recording mode” with the keyboard.

 A second future work could improve on the first idea, and allow for pre-recorded inputs

for both chords and the user voice/instrument input. While this idea would allow the most

options for a user, it would also face the most challenges. It would require multiple levels of user

input to select the type of input, multiple storage systems, and the ability to read memory and

output multiple sounds at the same time. This would also face more ethical issues than our

current product. When storing user input in memory, the user’s voice print will be available to be

stolen from the memory. If the system is compromised, the voice print could be taken without

the user’s consent and used to impersonate them. To account for this, various security measures

would need to be taken to confirm the device is being used only as designed.

https://www.zotero.org/google-docs/?el6KC3
https://www.zotero.org/google-docs/?RESESY
https://www.zotero.org/google-docs/?nRQ55n

Page 39 of 51

 Another idea for future work involves fixing some problems with the final PCB and

improving the software and 3D printed chassis to allow for a more robust and clean system.

These fixable problems include fixing the ground references for the 3.5 mm jacks, and wiring the

microphone input to the RLINEIN input on the codec. We were able to correct both of these

problems in our design by un-soldering the ground references and soldering the RLINEIN input

to the LLINEIN input on the codec. However, while these solutions work for this board, if the

board were going to be produced again, these problems should be addressed in the initial design.

If this project were continued, we could also consider using a different stereo Codec with the

capability to read both microphone and keyboard inputs simultaneously. With respect to the

software, the current algorithm creates an output signal in 4096 16-bit word increments, which

creates a clicking noise at each stitch as the signals are out of phase. In the future, we could

explore options for better stitching the signal together.

 The final topic to explore for future work involves creating a larger and more secure case

for the system. At this point, the holder we designed only cradles the myRIO to keep the system

secure on the piano. If the holder were larger and more encasing, the system would be more

protected from the environment (dust, falling objects) and also any intentional tampering. To do

this, we would consider the dust and water specifications NEMA requires for manufactured

mechanical casings in the redesign. This holder would be more costly than the original holder,

but would likely be worthwhile to protect the system from any damage.

Page 40 of 51

References

[1] I. M. Dansey, “ThereFret,” 2013, Charlottesville, VA, 2013.

[2] Music Makeathon: Harmonizer. 2018.

[3] Roland JD-Xi - How to use Vocoder and Auto Pitch. 2016.

[4] JACOB COLLIER: WTF IS A HARMONISER? | EFG LONDON JAZZ FESTIVAL

PREVIEW. 2015.

[5] “DigiKey Electronics - Electronic Components Distributor.” https://www.digikey.com/

(accessed Dec. 01, 2020).

[6] “Arctic Violet,” Arctic Violet. https://arcticviolet.com/ (accessed Dec. 02, 2020).

[7] “MAE Rapid Prototyping and Machine Labs, U.Va.” https://rpl.mae.virginia.edu/ (accessed

Dec. 01, 2020).

[8] “PCB Tolerances | Advanced Circuits.” https://www.4pcb.com/pcb-design-specifications/

(accessed Sep. 08, 2020).

[9] “MATLAB Documentation.” https://www.mathworks.com/help/matlab/ (accessed Dec. 02,

2020).

[10] “What is LabVIEW? - NI,” NI. https://www.ni.com/en-us/shop/labview.html (accessed

Sep. 15, 2020).

[11] “Multisim Live Online Circuit Simulator,” NI Multisim Live. https://www.multisim.com/

(accessed Dec. 04, 2020).

[12] “Ultiboard,” NI. https://www.ni.com/en-us/shop/software/products/ultiboard.html

(accessed Sep. 15, 2020).

[13] “fffb5c2b5dd8c965428a2783fef5a567.pdf.” Accessed: Dec. 10, 2020. [Online].

Available:

http://www.vipcircuit.com/data/download/201810/29/fffb5c2b5dd8c965428a2783fef5a567.p

df.

[14] “IPC-2221A(L).pdf.” Accessed: Dec. 10, 2020. [Online]. Available: http://www-

eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/MATERIALS/IPC-2221A(L).pdf.

[15] “FreeDFM - A Service of Advanced Circuits.”

https://www.my4pcb.com/net35/FreeDFMNet/FreeDFMHome.aspx (accessed Dec. 10,

2020).

[16] “Part 15 - Radio Frequency Devices.” http://www.arrl.org/part-15-radio-frequency-

devices (accessed Dec. 10, 2020).

[17] “47 CFR § 15.3 - Definitions.,” LII / Legal Information Institute.

https://www.law.cornell.edu/cfr/text/47/15.3 (accessed Dec. 10, 2020).

[18] “myRIO-1900 User Guide and Specifications - National Instruments,” p. 32.

[19] “SPI Tutorial – Serial Peripheral Interface Bus Protocol Basics.”

https://www.corelis.com/education/tutorials/spi-tutorial/ (accessed Dec. 10, 2020).

[20] “Inter-IC Sound Bus (I2S),” no. 001, p. 19.

[21] “LabVIEW Advanced Signal Processing Toolkit - National Instruments.”

https://sine.ni.com/nips/cds/view/p/nid/209055 (accessed Dec. 04, 2020).

[22] “What Is the LabVIEW FPGA Module.” https://www.ni.com/en-us/shop/electronic-test-

instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-

module.html (accessed Dec. 04, 2020).

[23] “LabVIEW myRIO Toolkit Download.” https://www.ni.com/en-

us/support/downloads/software-products/download.labview-myrio-toolkit.html (accessed

Dec. 04, 2020).

https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU

Page 41 of 51

[24] “AutoCAD for Mac & Windows | 2D/3D CAD Software | Autodesk.”

https://www.autodesk.com/products/autocad/overview?support=ADVANCED (accessed

Dec. 01, 2020).

[25] “What Is VirtualBench?” https://www.ni.com/en-us/shop/electronic-test-

instrumentation/virtualbench/what-is-virtualbench.html (accessed Dec. 04, 2020).

[26] “Noise-Induced Hearing Loss,” NIDCD, Aug. 18, 2015.

https://www.nidcd.nih.gov/health/noise-induced-hearing-loss (accessed Sep. 08, 2020).

[27] T. R. Kuphaldt and J. Haughery, “ELECTRICAL SAFETY,” in Applied Industrial

Electricity, Iowa State University Digital Press, 2020.

[28] A. J. Mack and AU, “United States Patent: 7189914 - Automated music harmonizer,”

7189914, Mar. 13, 2007.

[29] D. K. Hilderman, CA, and J. Devecka, “United States Patent: 9626946 - Vocal

processing with accompaniment music input,” 9626946, Apr. 18, 2017.

[30] G. A. Rutledge, CA, W. N. Campbell, CA, P. R. Lupini, and CA, “United States Patent:

8168877 - Musical harmony generation from polyphonic audio signals,” 8168877, May 01,

2012.

[31] “tlv320aic23b.pdf.” Accessed: Dec. 07, 2020. [Online]. Available:

https://www.ti.com/lit/ds/symlink/tlv320aic23b.pdf?HQS=TI-null-null-digikeymode-df-pf-

null-wwe&ts=1607364933278.

[32] “35rasmt2bhntrx_cd.pdf.” Accessed: Dec. 10, 2020. [Online]. Available:

http://www.switchcraft.com/Drawings/35rasmt2bhntrx_cd.pdf.

[33] “ABLS-LR_Series_DS.pdf.” Accessed: Dec. 10, 2020. [Online]. Available:

https://media.digikey.com/pdf/Data%20Sheets/Abracon%20Corp%20PDFs/ABLS-

LR_Series_DS.pdf.

[34] “USA PCB Manufacturer & Assembly | Advanced Circuits.” https://www.4pcb.com/

(accessed Dec. 01, 2020).

[35] “3W Electronics.” http://3welec.com/ (accessed Dec. 10, 2020).

[36] “ImprovingFFTResoltuion.pdf.” Accessed: Dec. 10, 2020. [Online]. Available:

http://www.add.ece.ufl.edu/4511/references/ImprovingFFTResoltuion.pdf.

[37] “Vocal Types and Ranges | Music Appreciation.”

https://courses.lumenlearning.com/musicappreciation_with_theory/chapter/introduction/

(accessed Dec. 10, 2020).

[38] “How to Interpret FFT results - complex DFT, frequency bins and FFTShift,”

GaussianWaves, Nov. 16, 2015. https://www.gaussianwaves.com/2015/11/interpreting-fft-

results-complex-dft-frequency-bins-and-fftshift/ (accessed Dec. 10, 2020).

[39] “♫Jens Johansson · The Phase Vocoder: A Tutorial.” http://www.panix.com/~jens/pvoc-

dolson.par (accessed Dec. 10, 2020).

[40] “Understanding FFT Overlap Processing Fundamentals | Tektronix.”

https://www.tek.com/document/primer/understanding-fft-overlap-processing-fundamentals-0

(accessed Dec. 10, 2020).

[41] M. Gasior and J. L. Gonzalez, “Improving FFT Frequency Measurement Resolution by

Parabolic and Gaussian Interpolation,” p. 17.

[42] “Electronic tuner,” Wikipedia. Dec. 08, 2020, Accessed: Dec. 10, 2020. [Online].

Available: https://en.wikipedia.org/w/index.php?title=Electronic_tuner&oldid=993100835.

[43] “Office Timeline Online - Interactive Timeline & Gantt Chart Maker,” Office Timeline

Online. https://online.officetimeline.com/ (accessed Dec. 02, 2020).

https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU

Page 42 of 51

[44] “Protolabs | Rapid Prototyping & On-demand Production.” https://www.protolabs.com/

(accessed Dec. 02, 2020).

[45] S. via PeopleVine, “Custom ASIC Cost Calculator - Sigenics.”

https://www.sigenics.com/page/asic-cost-calculator (accessed Dec. 02, 2020).

https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU
https://www.zotero.org/google-docs/?6s71UU

Page 43 of 51

Appendix

Appendix A: PCB Bill of Materials (BOM)

Figure 33: Bill of Materials (BOM) for PCB Components

 The bill of materials (BOM) shown in Figure 33 was created using the Reports function

in NI Multisim. It contains all the components necessary for PCB construction. For clarification

as U1 and U4 are described by their footprint name in the table, U1 is the stereo audio codec and

U4 is the 12 MHz crystal.

Appendix B: Codec Block Diagram and Timing Requirements

Figure 34: SPI Timing Requirements for Codec

Figure 35: I2S Timing Requirements for Codec

 The SPI and I2S timing diagrams shown in Figures 34 and 35 were used to write the SPI

and I2S functionality on the myRIO [31]. With respect to the SPI, the diagram was necessary to

determine clock polarity and phase. For the I2S, the graphic was used to determine when the

Page 44 of 51

myRIO should “read” the bits of incoming data and whether the signal belonged to the

microphone or keyboard input.

Figure 36: Codec Block Diagram

The block diagram of the codec shown in Figure 36 was taken from the datasheet for the

TLV320AIC23BIPWR Stereo Audio Codec [31]. The diagram was used to determine the routing

for communication, audio input, and voltage supply for the codec. The datapath information

regarding the ADC select, Bypass mute, Sidetone mute, and gain placement were also necessary

for deciphering the necessary SPI commands.

Page 45 of 51

Appendix C: Software Data Communication Testing

Figure 37: SPI Send Codec Configuration VirtualBench Test

Figure 38: I2S Read 44.1 kHz DOUT on myRIO VirtualBench Test

Figure 39: myRIO Read In for 44.1 kHz DOUT

Page 46 of 51

 The VirtualBench DIO test screenshot in Figure 37 shows the SPI communication test

and timing confirmation. The burst 7 SPI messages shown is the register configuration needed to

prepare the codec for the myRIO to write to I2S to be played by the amp. The I2S Read test for a

44.1 kHz square wave from the FGEN is shown in Figures 38 and 39. The VirtualBench DIO for

LRCOUT, BCLK, and DOUT (44.1 kHz FGEN) are shown in Figure 38. As the frequency of

LRCOUT is approximately 44.1 kHz, the data read in LabView should be the same decimal

value each time as shown in Figure 39.

Appendix D: Full System Testing

Figure 40: LabView WaveForm and FFT for Keyboard C Chord Test

 The test to confirm the FFT capability for identifying the chord from the keyboard is

shown in Figure 40. The Waveform of the audio signal read from the DOUT of the codec is

given on the left with the corresponding FFT on the right. The notes are again confirmed using

the LED strip at the top to depict a C chord.

Figure 41: LabView WaveForm and FFT for No Voice Input Test

Page 47 of 51

 As there was static present when the microphone was connected, the FFT was run with

no voice input as shown in Figure 41. The negligible FFT response confirmed that the noise

should not negatively affect the functionality of the FFT for identification of fundamental

frequencies and harmonics from the voice inputs.

Figure 42: LabView WaveForm and FFT for Soft Ah Test

Figure 43: LabView WaveForm and FFT for Loud Ah Test

 In order to show that the volume of the output changes with the volume of the voice

input, Nate sang the same note softly and loudly with the same vowel sound. The amplitudes on

the FFT and Waveform are ten times higher for the loud test than the soft test as shown in the

Figures 42 and 43.

Page 48 of 51

Appendix E: Vowel Comparisons

Figure 44: Mic to I2S, “Ah”

Figure 45: Mic to I2S, “Ee”

Figure 46: Mic to I2S, “Eh”

Figure 47: Mic to I2S, “Oh”

Page 49 of 51

Figure 48: Mic to I2S, “Oo”

Figure 49: Mic to Chord Output, “Ah”

Figure 50: Mic to Chord Output, “Ee”

Page 50 of 51

Figure 51: Mic to Chord Output, “Eh”

Figure 52: Mic to Chord Output, “Oh”

Figure 53: Mic to Chord Output, “Oo”

Page 51 of 51

Figures 44-48 show the microphone signal for five vowels as it is read to the processor

via I2S. Figures 49-53 show the output signal produced by the DSP algorithm given microphone

inputs for the same five vowels. While there are differences, it is notable that in both cases, “ah”

(perhaps the loudest vowel) clearly has the strongest higher-harmonic activity, whereas “ee” and

“oo” have the weakest higher-harmonic activity.

Appendix F: Budget

Figure 54: Total Project Budget Breakdown

