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ABSTRACT

v

 Many algorithms on speech-based emotion detection that utilize machine learning are 

published. They are often trained and tested on datasets that consist of audio clips in which 

the speaker emulates emotion such as anger, happiness, neutrality, and sadness. Despite 

the high accuracy that the algorithms have achieved, they are not suitable for real-life de- 

ployment for two reasons. First, the datasets are often times collected in strictly controlled 

environments where noises are minimum and the microphone is placed very close to the 

speaker, which is not representative of real-life environments in which background noises 

are present and people are not expected to be adjacent to the acoustic sensor(s) all the 

time. Second, each audio clip is usually uttered by an actor, and labeled with the emo- 

tion that the actor attempts to simulate. However, research indicates no evidence that the 

acoustic features of acted emotion are representative of the acoustic features of 

authentic, spontaneous emotions. As a result, algorithms trained on acted speech may not 

achieve the same excellent performance when deployed in real-life environments to detect 

emotions in people’s speech. This thesis explores different approaches to address the 

          

recognition may not be fit for use in real-life deployment, and proposes an acoustical 

              

be part of a smart healthcare system to monitor the users’ emotions.

classifier for emotion detection fit for real-life deployment. The classifier is intended to

problem that high-performing machine learning classifiers on speech-based emotion
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CHAPTER 1

INTRODUCTION

Emotion plays an essential role in one’s physical and psychological well-being. Negative

emotions, such as sadness and anger, are correlated to underlying mental health issues

which, if left untreated, may result in serious complications such as self-harm or even

suicide. In cases when the negative emotions are not caused by mental health problems,

they can be unpleasant at the present moment and negatively influence one’s daily life and

interaction with others. Emotion can be picked up by one’s voice. With more and more

acoustic sensors being connected to the Internet, we see a surge of interest in speech-based

emotion detection in the field of affective computing.

This thesis presents a speech-based emotion detection classifier. When deployed, this

classifier keeps track of each individual’s emotion in home environments. Its output pro-

vides detailed record of each individual’s emotion through time, which can prove useful

to behavioral studies: For example, family eating dynamics (FED), consisting of dining

environment and time at home, are potentially crucial to the diners’ dietary intake. Family

dining environment consists of the dinners’ emotion [1]. Therefore, the detailed under-

standing will provide better insights into FED and problems related to dietary intake, such

as obesity. Likewise, research into maintaining healthy and pleasant patient-caregiver re-

lationship can benefit from the output of the pipeline. Taking care of patients suffering

from chronic diseases such as dementia is a demanding and exhausting task. The detailed

understanding will detect the onset of negative emotions from the caregivers. Based on the

knowledge, negative emotions could be managed via a recommendation system that rec-

ommends a technique to control negative emotions. Therefore, the detailed understanding

will be crucial to emotionally healthy environments in which caregivers tend patients.

The main contributions of the proposed acoustic system are:
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• Identified major limitation in published speech-based emotion detection ap-

proaches. The datasets are often collected from actors, and research [2] suggests

that the evidence that acted emotional speech can be used in the place of authen-

tic, natural emotional speech is lacking. Even when trained and evaluated on emo-

tional speech representative of the actual emotions, state-of-the-art approaches as-

sume ideal sound-collecting environments in which reverberation and background

noises are minimal, because many datasets are collected in strictly controlled stu-

dio environments in which the effect of reverberation and background noises are

kept minimal with professional noise reduction and reverberation reduction sound

devices. When training and evaluating solely on the datasets, the classifiers are not

adaptive to the realistic scenario in which reverberation and background noises are

constantly present.

• Designed for realistic environment. Having identified the major limitation of state-

of-the-art approach, the speech-based emotion recognition classifier is suitable for

deployment in realistic environments where background noises as well as reverber-

ation are present. The microphone used to pick up sounds is distance-resistant. The

transcription accuracy of the speech it captures does not degrade even if it is placed

5 meters away from the sound source, which is about the width of an average-sized

room. A state-of-the-art noise-filtering algorithm [3] is also used to filter out noise

in the audios captured by the microphone, before the audio samples are passed to

the emotion classifier. The emotion classifier is trained on a synthetic dataset, which

are obtained from randomly amplyfing/de-amplifying and adding reverberation and

background noises to the original audio clips from emotional speech datasets to imi-

tate realistic environments.

• Designed for rapid deployment. The acoustic system only requires a computer and

a specific microphone, both of which are available on the market. The computer does
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not have to be an expensive high-end product with best computing powers, and the

microphone is available at a reasonable price, despite its exceptional performance in

preserving acoustic features at different distances. The microphone is powered via a

USB-cable, so it can be directly connected to the computer. Batteries and additional

work to forward audio clips captured by the microphone to the emotion detection

classifier are unnecessary. The classifier is pre-trained, so there is no need to gather

acoustic samples from the environment in which it is about to be deployed. Because

of the availability and low maintenance of the components in the acoustic system,

the system is fit for rapid deployment.

• Wide range of potential applications. Given that it is designed for realistic envi-

ronments, the acoustic pipeline has a wide range of potential applications, such as

an analysis tool for the development or progression of one’s emotional states over

time. Combining the analysis of the emotional progression of more than one indi-

viduals in a household, analysis can be made on family eating dynamics (FED) and

patient-caregiver relationship.
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CHAPTER 2

RELATED WORKS

Most state-of-the-art algorithms are trained and evaluated on datasets of emotional speech.

Two popular datasets of emotional speech are the Danish Emotional Speech Datasbase

(DES) [4] and Berlin Database of Emotional Speech (EMO-DB) [5]. A study [6] provides

a list of machine learning classifiers, such as [7], [8], [9], and [10], trained on DES and

a list of machine learning classifiers trained on EMO-DB. In the former lists, approaches

include GentleBoost [11], Bayes classifier [12], instance based learning [7], and vector

quantification [10]. In the latter list, approaches include SVM [13], GentleBoost [11],

linear discriminant analyses [14], and Two-stage neural network [15]. [16], a work not in

the previous lists, achieves a very high accuracy (88.9%) on the EMO-DB dataset using

CNN and LSTM. However, there are two issues with training and evaluating solely on

datasets of emotional speech.

• The emotion in some clips from datasets of emotional speech is not typical

enough for humans to discern. Although emotions are highly subjective, it is not

difficult for human beings to pick up the emotion from one’s speech when that emo-

tion is typical. In some datasets of emotional speech, the emotion in the audio clips

are not typical enough and humans cannot discern these emotions with satisfying ac-

curacy. [6] compares the accuracy of machine learning classifiers with human evalu-

ation. Human evaluation on DES only yields an accuracy of 0.67. The is no evidence

suggesting that classifiers trained on DES will be able to yield a reasonable accuracy

when tested on speech that conveys typical emotions. Thus, classifiers trained on

speech datasets of atypical emotions are not usable in real-life deployment.

• The datasets of emotional speech are collected in laboratory environments. There

4



are datasets on which human evaluation yields reasonable accuracy; the human eval-

uation on EMO-DB results in an accuracy of 0.86 [6]. However, most available

datasets of emotional speech, such as [4], [5], [17], [18], [19], are collected in labo-

ratory environments in which the acoustic sensors are closed to the speaker’s mouth

and background noises are kept minimal with professional acoustic devices, the ev-

idence suggesting that they will yield the same accuracy when applied in real-life

scenarios is lacking.

A recent work [20] focuses on developing an automatic emotion recognition classifier that

will work in a realistic scenario in which the speakers are not necessarily near the acoustic

sensor. It interprets speech as the progression of acoustic states over time. An audio clip

is segmented into small, overlapping frames, and each frame is represented by an acoustic

state. Each acoustic state is associated with a word that describes the state, and each word

is represented by the low level descriptors (LLD) extracted from the small frame. Using

k-means clustering, [20] identifies the centroids of the clusters as words in the codebook.

Each small frame is represented by the the set of centroids (words) to which it has the

shortest Euclidean distances. Then, [20] uses the Emo2vec model to train the classifier

based on the idea that if two audio clips are often observed in similar context (surround-

ing small frames), words associated with the small frames in both clips must be similar.

Otherwise, the words associated with the small frames in both clips must be different. Dur-

ing the training, basic vector addition is applied to pull two vectors closer if they tend to

show up in similar context, and basic vector subtraction is used to pull them apart if other-

wise. It claims to be the first work that addresses realistic scenarios in which the speaker

is not adjacent to the microphone, the likely scenario of a real-life deployment. However,

only using two relatively small datasets of emotional speech [21], [22], the evidence that

their approach is robust enough to handle noises and reverberation present in a realistic

environment is lacking.

5



CHAPTER 3

APPROACH

3.1 Datasets

This section describes several publicly available datasets of emotional speech that are fre-

quently used to develop automatic emotion recognition modules. While it is crucial to know

that the validation accuracy of the classifiers trained on these datasets does not necessarily

translate well into the accuracy of them being deployed in real-life, some of the datasets

are good as training sets that allow features indicative of emotions to be pinpointed or

correctly identified because these datasets are collected in idealistic environment in which

background noise and reverberation effects are minimized. In other words, the most rele-

vant features extracted from them will be accurate because the original audio samples are

not distorted and presented at their best quality.

3.1.1 Danish Emotional Speech Datasbase (DES)

Danish Emotional Speech Datasbase (DES) consists of 260 samples of emotional speech

in the Danish language obtained from two male and two female actors. There are five

categories in the dataset: happiness, anger, neutrality, sad, and surprise. [4] claims that the

actors are believed to convey the emotions realistically. Based on verification process that

[4] uses, 67% of samples are correctly predicted by human evaluators. Danish and English

have distinct linguistic features. Since the emotion recognition classifier proposed in this

thesis targets the English-speaking population, DES is not a good candidate for the training

of the proposed classifier.
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3.1.2 Berlin Database of Emotional Speech (EMO-DB)

Berlin Database of Emotional Speech (EMO-DB) consists of 535 samples of emotional

speech in the German language obtained from five male and five female speakers. There

are seven categories in the dataset: anger, happiness, sadness, neutrality, boredom, disgust,

fear. The speech samples are collected in a lab with high-end acoustic devices, while the

microphone is placed in front of the speaker. Human evaluators can recognize 86% of the

emotions in the samples correctly [6], indicating that the emotions in the emotional speech

are typical enough for humans to recognize. EMO-DB appears to be a good candidate

training set for speech processing classifiers in German, but it is unclear if its usability

translates into English. Therefore, EMO-DB is not chosen as a training set for the proposed

classifier.

3.1.3 Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D)

Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D) consists of 7442 sam-

ples of emotional speech obtained from 91 actors of different ethnicity. There are six

categories in the dataset: anger, happiness, sadness, neutrality, fear, and disgust. Several

human evaluators are asked to label the clips with the most likely emotion. The accuracy of

human evaluation on the angry, happy, neutral, and sad audio samples are 68.2%, 62.4%,

67.2%, 54.1% [17]. The accuracy of human evaluation on the angry, happy, neutral, and

sad audio-video samples are 76.1%, 89%, 71.7%, 59.9% [17]. The difference between

the human evaluation accuracy on the audio-only samples and the human evaluation ac-

curacy on the audio-video samples indicates that these emotions in the audio samples are

still recognizable, although humans need visual cues help them recognize emotions more

accurately. The audio clips are used as a part of the training set for the classifier proposed

in this thesis.
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3.1.4 Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)

Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) consists of

happy, angry, neutral, sad, calm, surprised, disgusted, and fearful emotional utterances of

North American English obtained from a gender-balanced group of 24 professional actors.

For all emotion classes except neutrality, there exist two types of intensity: normal and

strong. On samples of happy speech with strong intensity, human evaluation yields an

accuracy of 44%. On happy speech with normal intensity, the accuracy is 29%. While the

accuracy seems low, the authors also provide the accuracy when the audios are paired with

videos, and the accuracy for happiness with strong intensity becomes 84%, and happiness

with normal intensity becomes 80%. On angry speech with strong intensity, the audio-only

accuracy is 91%. On angry speech with normal intensity, the accuracy is 59%. When

paired with videos, the accuracy for anger with strong and normal intensity is improved

significantly to 94% and 75% respectively. On audio-only sad clips with strong intensity,

the accuracy is 62%. On audio-only sad clips with normal intensity, the accuracy is 34%.

Paired with videos, the accuracy for sadness with strong and normal intensity becomes

81% and 56%. The accuracy of human evaluation on audio-only neutral clips is 91%.

The comparison between the accuracy of the audio-only samples and the accuracy of the

audio clips paired with videos suggest that these emotions are indeed emulated with high

accuracy, but voice alone may not be sufficient enough to correctly identify the emotions

for humans. The audio clips from this dataset are used to train the classifier proposed in

this thesis.

3.1.5 Surrey Audio-Visual Expressed Emotion Database (SAVEE)

Surrey Audio-Visual Expressed Emotion Database (SAVEE) consists of happy, angry, neu-

tral, sad, disgusted, fearful, surprised samples of emotional speech. The dataset is obtained

from four male actors and the audio samples are spoken in British English. There are 480

utterances of emotional speech in total. The speech samples are evaluated by ten human

8



evaluators, five of whom are native English speakers and the other have stayed in England

for at least a year. For the recognition of all seven classes, the accuracy achieved by human

evaluation is 67% when the evaluators are only given audio samples. The accuracy rises to

92% when the evaluators are given audio-video samples. The audio clips from this dataset

are used to train the classifier proposed in this thesis.

3.1.6 Electromagnetic Articulography Database (EMA)

Electromagnetic Articulography Database (EMA) [22],[23] consists of happy, angry, neu-

tral, and sad samples of emotional speech, produced by one male and two female speakers.

The male speaker produces 70 sentences for each emotion and 280 emotional utterances

in total. Each of the two female speakers produce 200 samples of emotional speech. Each

of the samples of emotional speech is rated numerically at least three times by different

human evaluators from different linguistic and cultural backgrounds. The accuracy on hu-

man evaluation is not explicitly spoken, but the authors provide a list of best utterances.

A sample will be rated as a best utterance if it achieves high numerical result on its tar-

get emotion and low numerical result on other emotions. The dataset is used to train the

classifier proposed in this thesis.

3.1.7 Toronto Emotional Speech Set (TESS)

Toronto Emotional Speech Set (TESS) [19] consists of happy, angry, neutral, sad, dis-

gusted, fearful, and surprised samples of emotional speech, produced by two female actors

aged 26 and 64 years. Both actresses have received proper musical training. For each of

the emotion classes, the two actresses produce 100 samples together. 56 undergraduate

students whose first language is English are recruited to evaluate the emotional utterances.

The average accuracy for all the samples of emotional speech is 82%.

In this thesis, there are two training sets. The first training set is the clean dataset, con-

sisting of the original, unaltered audio samples from CREMA-D, RAVDESS, SAVEE, and
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EMA. The second training set is the synthetic dataset, consisting of the original audio sam-

ples from CREMA-D, RAVDESS, SAVEE, and EMA, as well as the altered versions of the

samples - background noise, amplification/de-amplification, and reverberation are added

to them. The performance of the emotion classifiers trained on the clean dataset and the

synthetic dataset is compared. The details of the classifiers are described in Section 2.6.

Along with live person speech described in Chapter 5.6, TESS is used to test the classi-

fier due to the following reason: As the dataset in English that yields the highest accuracy

on human evaluation when the human evaluators are given audio samples only. In other

words, this dataset consists of speech samples with the most acoustically recognizable emo-

tions, indicating that the speech samples are most similar to spontaneous emotional speech

when compared to the acted emotional speech samples in other English datasets. TESS,

like the other datasets listed above, is collected in a strictly controlled lab environment

where the microphone is placed adjacent to the speaker. Therefore, TESS can be seen as

the set of clean, spontaneous emotional speech, with ”cleanness” indicating that the speech

clips are collected when background noise and reverberation effects are minimized. The

classifier’s performance when it is evaluated on TESS after training is indicative of its per-

formance when it is deployed in an idealistic environment where a speaker is speaking

spontaneously to a microphone placed near his or her mouth (distance between the speaker

and the microphone is almost 0 meter) and the background noise is minimal (assuming

optimal performance from the noise reduction algorithm in the pre-processing unit).

3.2 Acoustic system overview

The microphone used in the acoustic pipeline has a sampling rate between 44.1kHz - 48kHz

and frequency response between 40Hz - 16kHz [24]. The evaluation (Chapter 5) indicates

that it is distance resistant, capable of picking up sounds from 15 feet away with 100% tran-

scription accuracy paired with a state-of-the-art transcription tool [37]. When the system

starts running, the microphone begins capturing continuous speech signals. The continu-
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ous speech signal is sliced into 5-second sound windows for further processing. A silence

filter is applied to each of the sound windows. If more than an adjustable percentage of

the sound window is silence, the entire sound window is regarded as silence and discarded.

Otherwise, the sound signal is passed to the noise filter, then to the overlapped speech filter

to get rid of the overlapped speech. After all the above pre-processing steps, the sound

window is passed to the emotion recognition classifier.

3.3 Feature selection

There are two groups of features that can be extracted from a speech clip. The first group

consists of features that can be extracted from small time frames in a clip, such as loudness

and Mel-frequency cepstral coefficients. These features are low-level descriptors (LLDs).

The second group consists of features that must be extracted from the LLDs obtained from

all small time frames in the entire audio clip, such as skewness, flatness, standard deviation

and quartile. These descriptors are global descriptors [20]. Since emotion in speech clips is

represented as a progression of states and states are extracted from small time frames in the

entire speech clip [20], v this thesis proposes to take small, overlapping small time frames

from each speech clip and obtain LLDs from each of the small frames. In total, there are

272 LLDs associated with emotion recognition. Table 3.1 describes the LLD features.

Table 3.1: The 272 low-level descriptor features.

Low-Level descriptor features Amount

Mel-Frequency cepstral coefficients (MFCC) 1-13 104

Delta coefficients for MFCC 1-13 104

Zero-crossing rates 8

Delta coefficients for zero-crossing rates 8

Continued on next page
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Table 3.1 – continued from previous page

Low-Level descriptor features Amount selected to train the CNN

Root-mean-square signal frame energy 8

Delta coefficients for root-mean-square signal frame energy 8

Spectral centroid features 8

Delta coefficients for the spectral centroid related features 8

Pitch-related features 8

Delta coefficients for the pitch-related features 8

Total amounts 272

3.4 Dataset compensation

Since available datasets are collected in strictly controlled laboratory environments in which

noises and reverberation are minimal and the microphone is placed adjacent to the speakers,

modules trained on these datasets will not be robust enough to yield similar accuracy when

deployed in real-life scenarios due to the presence of noises and reverberation. In order to

compensate this problem, synthetic datasets are created by adding reverberation, amplifi-

cation, and background noises to the original datasets. The original datasets of emotional

speech used for training are CREMA-D [17], SAVEE [21], RAVDESS [18], and EMA [22].

In total, there are 1693 samples of happy speech, 1693 samples of angry speech, 1693 sam-

ples of sad speech, and 1473 samples of neutral speech from the original datasets. For

each sample from the four classes from the original datasets, a copy of the sample is made,

and reverberation effect is added to the copy. Both the clean samples and the copies of

the clean samples that are contaminated with reverberation are kept. Then, the clean sam-

ples and contaminated samples are randomly amplified or de-amplified, and subsequently

mixed with 136 samples of random background noise. As a result, the synthetic dataset

12



consists of 6772 samples for happy speech, 6772 samples for angry speech, 6772 samples

for sad speech, and 5892 samples for neutral speech.

• Reason to add background noise to create the synthetic training set: Although an

audio signal pre-processing unit (Section 3.5) is added in the system to filter out

noise, we cannot assume that the noise will be completely eliminated. Portions of

noisy frames will remian in a sound window even after it is pre-processed by this

unit. Therefore, in the synthetic training set, background noise is fabricated into the

original audio samples to better imitate actual signals that the acoustic system will

receive.

• Reason to add reverberation to create the synthetic training set: The pre-processing

unit does not reduce the reverberation effect from its input.

3.5 Audio signal pre-processing

When the system starts running, the microphone will always be on and continuously cap-

turing acoustic signals. However, we only want single-person speeches to be passed to the

mood classifier. Therefore, we need to (1) filter out silence, (2) get rid of noises that are

both within and outside of the human vocal range, and (3) disregard the acoustic segments

in which more than one speaker are speaking at the same time.

• Silence filter [3]. If the energy signal of an acoustic segment is below a predeter-

mined threshold, this acoustic segment is treated as a silent segment and discarded.

In other words, it will not be passed to the classifier.

• Noise filter [3]. The first step is to filter out noises outside of the human vocal range.

A Butterworth band-pass filter will eliminate such noises from an acoustic segment.

The third order of band-pass range (100Hz to 3500 Hz) is used. The second step is to

use the standard spectral subtraction to detect noises that are inside the human vocal

13



range. The spectral profile of the background noise is analyzed and a fingerprint for

the profile is generated. The input audio is sliced into several sub-segments. For any

sub-segment, if its frequency spectrum is lower than the mean of the fingerprint, this

sub-segment is replaced by silence. Non-speech segments are also treated as noise as

they are not desirable candidate input for the emotion recognition classifier. Long-

term spectral divergence (LTSD) VAD filter [25] is used to filter out such sounds.

After calculating the LTSD between actual speech and noises, the filter will decide if

this segment is speech or non-speech based on decision rule [3].

• Overlapping speech filter [20]. Proposed by Salekin et al., the classifier that detects

overlapping speech is a binary neural network that categorizes an input sound signal

into either single-speaker speech or multiple-speaker speech. If a sound segment is

classified as a multiple-speaker speech, the entire segment is disregarded and will not

be passed to the other classifiers in the system.

3.6 Emotion classifier

Figure 3.1 is an overview of the emotion classifier. The emotion classifier is a hierar-

chical structure consists of three sub-classifiers for mood, the top classifier that distin-

guishes happy/angry clips from neutral/sad clips, the happy/angry classifier that distin-

guishes happy clips from angry clips, and the neutral/sad clips that distinguishes neutral

clips from sad clips.

Distinguishing happy voice samples from angry ones are hard, because happy and angry

sound clips have similar affective activation labels (activation denotes the level of energy

[26]). Meanwhile, distinguishing sad voice samples from neutral ones experiences the

same difficulty, as samples from the two categories also have similar affective activation

labels [26]. Therefore, a hierarchy of three classifiers are used. Each of the classifiers are

convolutional neural networks.

The three classifiers (the top classifier, the Happy/Angry classifier, and the Neutral/Sad

14



Figure 3.1: Overview of the emotion classifier

classifier) are convolutional neural networks with the same structure, as described in Figure

3.2. Such structure contains 3 CNN layers and each layer has 100 filters. Each layer is

processed using max pooling, with window of size 2 and stride of size 2. The dropout rate

for each layer is 20%. After the 3 CNN layers with max pooling, 1 dense layer of 200

neurons is added, and the dropout rate is set as 20%. The output layer is a dense layer with

1 neuron.
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Figure 3.2: Structure of the CNN classifier. The top classifier, the Happy/Angry classifier,
and the Neutral/Sad classifier share the same structure. The only difference among them is
that they use different LLD features.
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CHAPTER 4

MICROPHONE SELECTION

The microphone (MXL AC-404) used in the acoustic pipeline has a sampling rate between

44.1kHz - 48kHz and frequency response between 40Hz - 16kHz [24]. A comparative

analysis is performed on MXL and other two microphones, Google Home Mini and Vaddio

EasyMic. A person is speaking while standing at distances varying from 3 to 25 feet from

the microphones.

The following paragraph describes the design of the testing environment. Vaddio, at-

tached to the ceiling, is 8 feet away from the ground. The perpendicular line from Vaddio to

the floor intersects the floor at point O. Google Home Mini, point O, and MXL are placed

in a straight line on the floor, with point O in the middle, Google Home Mini on the left,

and MXL on the right. Google Home Mini is placed 4 feet away from O on the left, and

MXL is placed 4 feet away from O on the right. A another line is drawn on the floor that

is perpendicular to the line consisting of Google Home Mini, point O, and MXL. The line

is marked at points that are at different distances to the point O, starting at 3 feet away and

ending at 25 feet away.

During the testing, both three microphones are turned on and spontaneously capturing

acoustic signals. This is to make sure that the three microphones’ performance is obtained

when they process the same acoustic signal. The speaker stands and the marked points and

speak sentences to the microphones. At each marked point, the speaker will speak sponta-

neously a sentence. The longest sentence consists of 23 words, while the shortest consists

of only 7 words. The performance of the microphones are measured by transcription accu-

racy.

One complication needs to be addressed, as the transcribed sentences from Google

Home Mini can not be directly obtained. The device needs to be invoked with the phrase
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”Okay Google”, followed by the command ”repeat after me.” Then, the device will ask via

its electronic speaker ”what would you like me to repeat.” Then the speaker will proceed to

say the sentence. After the speaker finishes speaking the sentence, Google Home Mini will

announce via its electronic speaker the transcribed sentence. In the meantime, the other

two microphones are keep listening to the environment, and they will capture the afore-

mentioned audible interaction between Google Home Mini and the speaker. For example,

if the speaker intends that the three microphones should transcribe the sentence ”congrat-

ulations on your sister’s recent graduation from college”, the interaction between Google

Home Mini and the speaker will be as follows. Note that, in the described scenario, Google

Home Mini transcribes the sentence with 100% accuracy.

• Speaker: Okay Google, repeat after me.

• Google Home Mini: What would you like me to repeat?

• Speaker: Congratulations on your sister’s recent graduation from college.

• Google Home: Congratulations on your sister’s recent graduation from college.

Since the interaction conversation between Google Home Mini and the speaker is audible,

the acoustic signal received by the other two microphones will be the entire conversation,

instead of the sentence that is intended to be transcribed. The accuracy of the other two

microphone’s transcription is only based on how the sentence intended to be transcribed is

transcribed, while the transcription in the other part of the conversation is ignored.

A microphone that are suitable for real-life deployment must satisfy all three require-

ments below.

• Distance-resistant. All three microphones achieve excellent transcription accuracy

when placed within 4.57 meters or 15 feet from the speaker. MXL and Google Home

Mini achieve accuracy about 90 % when placed within 7.62 meters or 25 feet from

the speaker. MXL and Google Home Mini can capture speech in a very large room

and the speech can still be transcribed with high accuracy.
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Distance Vaddio MXL Google

3 ft 1 1 1
4 ft 0.9285 0.9285 1
5 ft 0.8888 0.8888 0.8888
6 ft 1 1 1
7 ft 1 1 1
8 ft 1 1 1
9 ft 1 1 1
10 ft 1 1 0.9090
11 ft 1 1 1
12 ft 1 1 1
13 ft 1 1 1
14 ft 1 1 1
15 ft 1 1 1
16 ft 1 1 1
17 ft 1 1 1
18 ft 0.9565 0.4782 0.9565
19 ft 1 1 1
20 ft 0 0.7058 0.7058
21 ft 0 1 1
22 ft 1 0.9 0.9
23 ft 0.7 0.7 1
24 ft 1 1 1
25 ft 1 1 1

average 0.8901 0.9391 0.9721

Table 4.1: Comparative analysis on microphones. The columns indicate the transcription
accuracy of the acoustic signals collected by the microphones when the speaker stands at
different distances from the microphones and speaks a sentence.
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• Fit for rapid development. In other words, the microphone must be easily available

for purchase at an affordable price to average users. It must be easily maintainable.

It must not require additional efforts to pass the audio clips it captures to the speaker

identification module and mood classifier. MXL and Google Home Mini are obtain-

able at affordable prices, available to online purchases. However, it is impossible to

directly obtain the captured sound signals from Google Home.

• Comfortable to users. In other words, the microphone should not be too visually

intrusive or aesthetically unpleasant. Vaddio is a pair of ceiling microphones that

must be attached to the ceiling, and the pair of microphones must be connected to

a mixer/amplifier device via wires. Some users may not be pleased with either the

wires.

All three microphones are distance-resistant enough to be deployed in an average sized

room, with MXL and Google Home Mini having a better performance in a large room.

Since Vaddio is too visually intrusive and Google Home Mini requires extra effort to obtain

the captured audio clips, MXL is used as the microphone in the acoustical pipeline.
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CHAPTER 5

EVALUATION ON THE EMOTION CLASSIFIER

5.1 The downfall of playing out audio clips to the microphone via an electronic

speaker

Since the acoustic pipeline is designed to be deployed in users’ houses and the users are

not expected to be always near the microphone, an intuitive approach to test the emotion

classifier is to have actual human volunteers speak when the system is running. However,

this approach requires volunteers who can speak in a way that carries out the emotions

faithfully. It is hard for people who have not been trained in acting to act out different

emotions accurately.

A second approach is to play out the audio clips with an electronic speaker to the mi-

crophone to test the mood classifier. However, the result produced by this approach may

be influenced by the electronic speaker that are used to play out the samples of emotional

speech. In order to investigate if the electronic speaker will indeed distort the audio signal

and impact, an experiment is performed. A lay person who has not received any acting

training is speaking spontaneously to the microphone that is placed 0.5 meter away; 211

samples of speech are produced, each of which is 5-second long. Then, these samples are

stored in a laptop placed 0.5 meter away from the microphone and the samples are played

out via the electronic speaker of the laptop. Both the original samples and the samples

obtained from the electronic speaker are passed to five early versions of the top classifier

(the classifier that distinguishes happy and angry samples from neutral and sad samples).

Original samples are the audio samples directly obtained by the microphone from the

speaker. Played-out samples are audio samples obtained when the microphone captures the

acoustic output from the speaker of the laptop when the original samples are being played
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out. If the electronic speaker does not significantly distort the acoustic signal, the accuracy

of the classifiers should not be significantly different. Since the human speaker who pro-

vides the speech samples is untrained and not emotionally simulated when the samples are

collected, all the samples are labeled, by the speaker themselves, as neutral speech. Since a

person knows what emotion he or she feels at the current moment, the labeling is accurate.

When passing each of the samples to the top classifier, the top classifier will either classify

it as happy or angry samples, or neutral or sad samples. In this case, since all samples are

labeled as neutral samples, the accuracy of the top classifier is calculated as the number of

samples predicted as neutral/sad divided by the number of all the samples.

In addition to further test that playing out audio clips from an electronic speaker and us-

ing a microphone to capture the output acoustic signal of the electronic speaker will distort

the original audio clips, another evaluation is performed. 78 speech samples consisting of

evenly distributed happy, angry, neutral, and sad speech samples from TESS are played out

by a the same laptop using the same speaker. The laptop is placed 0.5 meter away from the

microphone that captures the acoustic output. Since most audio samples in TESS are 2 to

3-second long, and the emotion classifier requires its input to be exact 5-second long, each

of the captured samples is padded with silence. The 78 played-out samples are passed to

the same early version of the top classifier. As a control group, the entire TESS dataset that

consists of 100 happy audio samples, 100 angry audio samples, 100 neutral audio samples,

and 100 sad audio samples, are directly passed to the same classifier after they are padded

with silence. In this case, the accuracy of the top classifier is calculated as

accuracy =
c

sum
∗ 100% (5.1)

where sum is the overall amount of samples and c is the sum of the number of happy

and angry clips that are predicted as happy or angry clips, and the sum of neutral and sad

clips that are predicted as neutral or sad clips.

Table 5.1 is the result of this experiment. The performance of the top classifier varies
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Table 5.1: Analysis on the effect of an electronic speaker.
Audio Random Forest + CNN

Original live speech 0.98
Played-out live speech 0.38

Original TESS 0.83
Played-out TESS 0.42

significantly in both evaluations in this experiment. When an actual person is speaking di-

rectly to the microphone, the top classifier classifies 98 % of the speech samples as neutral

or sad samples, which correspond to the fact that the person is feeling not happy, angry,

or sad when the spontaneous speech was recorded. However, when the same speech clips

are played out by an electronic speaker and re-captured by the same microphone, the top

classifiers can only identify 38% of them as neutral or sad. The audio clips in TESS are

collected when the human speakers (actors) are speaking directly to the microphone when

the microphone is placed close by. However, when those audios are played out via an exter-

nal electronic speaker and re-captured by a microphone, the performance of the classifier

also changes dramatically. Therefore, playing out audio signals to the microphone is not a

reliable way to conduct evaluation on the classifier.

5.2 Trained on clean datasets

It is unrealistic to have untrained volunteers demonstrate authentic happiness, anger and

sadness for the classifier evaluation to be done, and playing out audio samples from datasets

of emotional speech to the microphone requires an electronic speaker which distorts the

original acoustic signal, but the set of features that results in the highest cross-validation

accuracy are accurately indicative of the target emotion when the classifier is trained on the

clean dataset, because the audio samples are collected in idealistic environments and sub-

ject to minimal distortion. Training and cross validation are performed on the combined

dataset of CREMA-D, EMA, SAVEE, and RAVDESS. In other words, training and per-

forming cross-validation on the clean dataset for the three emotion classifiers are to obtain
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the feature set for each of them.

The audio clips in the datasets are only padded with silence if they are less than 5-

second long. There is no other alternation to the datasets than silence padding. There are

272 LLD features associated with emotions, out of which we use random forest for feature

selection. The random forest consists of 100 trees, and the sizes of the trees range from 1

to 7 layers. The random forest provides a ranking for all of the 272 features.

After obtaining ranking of the 272 features, different amounts of feature, ranging from

48 to 272, are selected to train the CNN for each of the Happy/Angry, Neutral/Sad, and top

classifier in order to select the best amount of features. For example, when the amount of

feature is specified as 50, the top 50 features from the feature ranking will be used to train

the CNN. The following figures and tables illustrate the top 100 LLD features for the Top

classifier, the top 100 LLD features for the Happy/Angry classifier, and the top 90 features

for the Neutral/Sad classifier, as the CNNs trained on the top 100 LLD features for the top

classifier, the top 100 LLD features for the Happy/Angry classifier, and the top 90 LLD

features for the Neutral/Sad classifier yield the best accuracy on their respective validation

sets.

Figure 5.1: Validation accuracy of the Happy/Angry classifier over different LLD features.
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Table 5.2: Top 100 relevant LLD features for the

Happy/Angry classifier.

Low-Level descriptor features Amount selected to train the CNN

Mel-Frequency cepstral coefficients (MFCC) 1-13 62

Delta coefficients for MFCC 1-13 6

Zero-crossing rates 6

Delta coefficients for zero-crossing rates 1

Root-mean-square signal frame energy 6

Delta coefficients for root-mean-square signal frame energy 4

Spectral centroid features 6

Delta coefficients for the spectral centroid related features 1

Pitch-related features 6

Delta coefficients for the pitch-related features 2

Total amounts 100

Figure 5.1 describes the cross validation accuracy of the Happy/Angry classifier with differ-

ent features. The x-axis indicates the top n features based on the feature ranking produced

by a random forest feature selection (100 trees, and the sizes of the trees range from 1

to 7 layers), and the y-axis describes the classifier’s accuracy on the validation set when

trained on the top n features. Figure 3 indicates that there is no significant difference on the

validation accuracy of classifiers when trained on different features, as all of them provid-

ing satisfactory performance, although the validation accuracy is highest when the top 100

feature are selected. Figure 5.1 provides insights into feature reduction - since there is no

significant improvement of the classifier when different top features are chosen, as small as

a set of 48 features may prove sufficient if a smaller feature set can reduce the complexity
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during training.

Table 5.2 describes what the top 100 features are. The top 100 features are used as the

selected features when the same classifier is trained on the synthetic dataset.

Figure 5.2: Validation accuracy of the Neutral/Sad classifier over different LLD features

Table 5.3: Top 90 relevant LLD features for the Neutral/Sad

classifier.

Low-Level descriptor features Amount selected to train the CNN

Mel-Frequency cepstral coefficients (MFCC) 1-13 60

Delta coefficients for MFCC 1-13 7

Zero-crossing rates 4

Delta coefficients for zero-crossing rates 0

Root-mean-square signal frame energy 6

Delta coefficients for root-mean-square signal frame energy 4

Spectral centroid features 6

Delta coefficients for the spectral centroid related features 1

Pitch-related features 2

Delta coefficients for the pitch-related features 0

Continued on next page
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Table 5.3 – continued from previous page

Low-Level descriptor features Amount selected to train the CNN

Total amounts 90

Figure 5.2 describes the cross validation accuracy of the Neutral/Sad classifier with

different features. Again, the x-axis indicates the top n features based on the feature ranking

produced by the same random forest feature selection. The y-axis describes the classifier’s

accuracy on the validation set when trained on the top n features. Figure 5.2 indicates that

there is no significant difference on the validation accuracy of classifiers when trained on

different features, as all of them providing satisfactory performance, although the validation

accuracy is highest when the top 90 feature are selected. Since there is no significant

improvement of the classifier when different top features are chosen, as small as a set of

48 features may prove sufficient if a smaller feature set can reduce the complexity during

training.

Table 5.3 describes what the top 90 features are. The top 90 features are used as the

selected features when the same classifier is trained on the synthetic dataset.

Figure 5.3: Validation accuracy of the top classifier over different LLD features
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Table 5.4: Top 100 relevant LLD features for the top classi-

fier.

Low-Level descriptor features Amount selected to train the CNN

Mel-Frequency cepstral coefficients (MFCC) 1-13 60

Delta coefficients for MFCC 1-13 9

Zero-crossing rates 6

Delta coefficients for zero-crossing rates 1

Root-mean-square signal frame energy 7

Delta coefficients for root-mean-square signal frame energy 6

Spectral centroid features 6

Delta coefficients for the spectral centroid related features 1

Pitch-related features 4

Delta coefficients for the pitch-related features 0

Total amounts 100

Figure 5.3 describes the cross validation accuracy of the top classifier with different

features. Again, the x-axis indicates the top n features based on the feature ranking pro-

duced by the same random forest feature selection. The y-axis describes the classifier’s

accuracy on the validation set when trained on the top n features. There is no significant

difference on the validation accuracy of classifiers when trained on different features, as

all of them providing satisfactory performance, although the validation accuracy is highest

when the top 100 feature are selected. Since there is no significant improvement of the

classifier when different top features are chosen, as small as a set of 48 features may prove

sufficient if a smaller feature set can reduce the complexity during training.

Table 5.4 describes what the top 100 features are. The top 100 features are used as the
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selected features when the same classifier is trained on the synthetic dataset.

Over the training dataset, the top classifier yields an accuracy of 0.9013 with 100 LLD

features, the happy/angry classifier yields an accuracy of 0.8461 with 100 LLD features,

and the neutral/sad classifier yields an accuracy of 0.8322, with 90 LLD features. The

reason why the evaluation starts at 48 features is that [20] summarizes there at 48 emotion-

related LLD features that distorts less than 50% when the microphone is placed away from

the sound source at different distances. In the future work, we plan to take the intersection

between the 48 distance-agnostic features and the set of features that yield the highest

accuracy for each classifier (the top classifier, the happy/angry classifier, and the neutral/sad

classifier).

5.3 Trained on the synthetic dataset

In order to serve as a comparison to the classifier trained on the clean dataset discussed

in the previous subsection, a classifier sharing the same structure (3 convolutional neural

networks with the same parameters) is trained on the synthetic dataset. As discussed in the

Dataset Compensation section, the synthetic dataset is obtained from adding reverberation

effect, background noise, and random amplification/de-amplification effect to the original

audio clips in the clean datasets.

The same features selected that yields the highest validation accuracy for each emotion

classifier is used as the set of features for the same classifier trained on the synthetic dataset.

The optimal amount of relevant LLD features for the top classifier, the happy/angry classi-

fier, and the neutral/sad classifier are determined as 100, 100, and 90 respectively. Based on

the knowledge of the most relevant LLD features for each classifier, the three classifiers are

trained. When trained on the synthetic datasets, the accuracy of the top classifier becomes

0.8759, the accuracy of the happy/angry classifier becomes 0.8357, and the accuracy of the

neutral/sad classifier becomes 0.8180.
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5.4 Comparison of the performance of the classifiers trained on the clean dataset

and synthetic dataset

5.4.1 Validation accuracy

Table 5.5 is a comparison on the accuracy over the validation set of the classifiers trained

on the synthetic dataset and the clean dataset. The validation accuracy of the Happy/Angry

classifier when trained on synthetic and clean dataset are very similar. The validation accu-

racy of the Neutral/Sad classifier is slightly higher when it is trained on clean dataset, while

the validation accuracy of the Happy/Angry classifier is slightly lower when it is trained on

clean dataset.

Table 5.5: Validation accuracy obtained when the classifiers

are trained on synthetic and clean datasets.

Classifier Training set Validation accuracy

Happy/Angry Clean 0.8461

Happy/Angry Synthetic 0.8357

Neutral/Sad Clean 0.8322

Neutral/Sad Synthetic 0.8180

Top Clean 0.9013

Top Synthetic 0.8759

The validation accuracy obtained from classifiers trained on synthetic datasets are very

similar to the validation accuracy obtained from classifiers with the same structure trained

on clean datasets. The highest validation accuracy is 90.13% given by the top classifier

when it is trained on clean datasets, and the lowest validation accuracy is 81.80%, given by

the Neutral/Sad classifier trained on synthetic datasets. The classifier’s validation accuracy
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falls in the range between 81.80% and 90.13%, indicating that the classifiers are not subject

to the risk of over-fitting and consequently not biased on the datasets.

5.5 Accuracy when evaluated on TESS

As discussed before, TESS can be interpreted and used as spontaneous emotional speech

that is collected in idealistic environment in which the speaker is speaking closely to the

microphone and background noise and reverberation is minimum.

Table 5.6 illustrates the performance of the top classifier, the happy/angry classifier,

and the neutral/sad classifier trained on clean dataset. The performance is indicated by the

accuracy that these classifiers achieve on the clean TESS dataset. “Clean” means that the

audio clips in TESS are padded with silence if they are less than 5-second to make it longer,

and there is no further modification. When trained on clean datasets, the top classifier can

accurately identifies 87% of happy speech samples, 99% of angry speech sample, and 84%

of sad speech samples, yet it can only correctly classify 52% of neutral speech samples into

the neutral/sad category. The performance of the Happy/Angry and Neutral/Sad classifiers

are lacking, with the former only yielding an accuracy of 60.5%, while the latter’s accuracy

is very similar to random guessing. This again confirms that distinguishing emotions that

are dramatically different is easy, while distinguishing emotions that are subtly different

from each other requires more than CNNs with a standard structure.

Table 5.6: Performance of the three classifiers on the TESS dataset when the classifiers
are trained on the clean dataset. Row: Emotional utterances in TESS. Column:Classifier
accuracy

Top classifier Happy/Angry Neutral/Sad
Happy 0.87 0.49 N/A
Angry 0.99 0.72 N/A
Neutral 0.52 N/A 0.08
Sad 0.84 N/A 0.93
Overall 0.805 0.605 0.505
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Table 5.7 illustrates the performance of the top classifier and the neutral/sad classifier

trained on synthetic datasets. The performance is indicated by the accuracy that these

classifiers achieve on the clean TESS dataset. The top classifier’s performance on each

emotional category in TESS remain almost identical to its performance when it is trained on

the clean speech. The accuracy of the happy/angry classifier and the neutral/sad classifier

drops by 5.5% and 0.5%.

Table 5.7: Performance of the three classifiers on the TESS dataset when the classifiers are
trained on the synthetic dataset. Row: Emotional utterances in TESS. Column:Classifier
accuracy

Top classifier Happy/Angry Neutral/Sad
Happy 0.87 0.6 N/A
Angry 0.99 0.5 N/A
Neutral 0.55 N/A 0.01
Sad 0.84 N/A 0.99
Overall 0.81 0.55 0.50

When trained on both synthetic and clean datasets, the top classifier, the Happy/Angry

classifier, and the Neutral/Sad classifier all yield satisfactory validation accuracy. When

tested on TESS, a dataset previously unseen by the classifiers and resembling a semi-

realistic environment in which the impact of noise and reverberation is at its minimum, the

top classifier trained on the clean dataset and its counter-part trained on synthetic trained

on the synthetic dataset both generalized well. This indicates that, despite TESS and other

aforementioned datasets are collected with the intention to minimize background noise and

reverberation effect, background noise and reverberation effect is not eliminated. As a

result, the top classifier trained on the synthetic dataset performs slightly better than its

counterpart trained on the clean set.
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5.6 Accuracy when evaluated on live speech

A person is speaking spontaneously to the microphone when standing at different distances

(0.5, 1.5, 3, and 6 meters) from the microphone. The captured audio clips are passed to the

pre-processing component to filter out silence, noise, and overlapping speech. The person

is in a calm and slightly joyful mood when the samples are collected. Intuitively, the clips

should be labeled as neutral because the speaker is not overly stimulated, but the neutral

speech samples from the datasets tend to be more similar to disinterest to boredom. As

a result, the audio clips are labeled as happy samples. Although the speech samples are

collected in a lab environment, the environment is realistic because there is no external

acoustical equipment to assure the minimum of background noise and reverberation effect,

unlike the idealistic environments where such equipment is present. In other words, the

environment resembles the home environments in which the acoustic system will be de-

ployed, and this evaluation is indicative of the evaluation of the classifiers on the samples

collected in those home environments.

This paragraph describes the details of the collection of the audio samples when a live

person is speaking. The microphone used in the acoustic pipeline has a sampling rate

between 44.1kHz - 48kHz and frequency response between 40Hz - 16kHz [24]. The evalu-

ation of the microphone indicates that it is distance resistant, capable of picking up sounds

from 15 feet away with 100% transcription accuracy paired with a state-of-the-art transcrip-

tion tool [37]. When the system starts running, the microphone begins capturing continuous

speech signals. The continuous speech signal is sliced into 5-second sound windows for

further processing. A silence filter is applied to each of the sound windows. If more less

than 25% of the sound window is speech, the entire sound window is regarded as silence

and discarded. Otherwise, the sound signal is passed to the noise filter, then to the over-

lapped speech filter to get rid of the overlapped speech. After all the above pre-processing

steps, the sound window is passed to the mood classifier.

33



Given the results from Table 5.6 and Table 5.7, the top classifier generalizes well on

a semi-realistic environment. Therefore, comparing its performance on the live person

speech and its performance on TESS will provide insights into if how the effects intro-

duced by a realistic environment affect the features. Since the feature sets of all three

classifiers are all subsets from the same 272 features, information obtained from how the

top classifier’s features are influenced by a realistic environment does translate to the other

two classifiers.

Table 5.8: Accuracy obtained when the classifiers are trained

on synthetic datasets tested in a realistic environment

Classifier Distance Accuracy

Top 0.5 meter 0.7254

Top 1.5 meters 0.84

Top 3 meters 0.74

Top 6 meters 0.5283

Table 5.8 describes the accuracy obtained when the classifiers are trained on synthetic

datasets tested in a realistic environment with a live person speaking to the microphone at

different distances. When the speaker is 3 meters away from the microphone, the aver-

age accuracy of the top classifier is 74%, in contrast to its cross validation accuracy that

is 87.59%. We observe a significant drop of 21.17% when the speaker moves from being

3 meters away to 6 meters away to the microphone. This suggests that, although the mi-

crophone is distance-resistant when it comes to transcription and the synthetic dataset is

created to mitigate the effect introduced by the environment in which the acoustic signals

are collected, distance still impacts the performance of the classifier.
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In Table 5.8, the classifier’s accuracy from 0.5 meter away is lower than the classifier’s

accuracy from 1.5 meters away. This is because of the assumption of the ground truth - all

the samples produced by the speaker is labeled as happy. However, when a person is happy,

his or her speech samples will consist of a large portion of happy samples and perhaps a

smaller portion of neutral samples.

Table 5.9: Accuracy obtained when the classifiers are trained

on clean datasets and tested in a realistic environment

Classifier Distance Accuracy

Top 0.5 meters 0.6470

Top 1.5 meters 0.56

Top 3 meters 0.3

Top 6 meters 0.3018

Table 5.9 describes the classifier’s performance when the speaker is at different dis-

tances from the microphone and when the classifier is trained on the clean dataset. Classi-

fiers trained on clean datasets do not generalize well on audio clips from live speech, despite

the fact that noise-filtering techniques are applied to the captured audio clips. Similar to

when the classifier’s performance when it is trained on the synthetic dataset, the accuracy

decreases over different distances. However, the classifier trained on the synthetic dataset

always significantly outperforms the classifier trained on the clean dataset. This is because

(1) the pre-processing procedure, despite having noise filters, does not mitigate the effect of

reverberation, (2) Despite the best effort of the pre-processing component, the background

noise can only be reduced, instead of completely eliminated, because of this, the top classi-

fier trained on the clean dataset is not adaptive to the effect introduced by the environment,
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(3) the microphone is distance-resistant.

The goal of testing the classifier in a realistic setting is to see the effect of the synthetic

dataset. By comparing Table 5.8 and Table 5.9, we see that the accuracy of the classifier

trained on the clean dataset is lower than the accuracy of the classifier trained on the syn-

thetic dataset at each of the distances. Therefore, the synthetic dataset helps the classifier

adapt to a realistic environment.

The top classifier performs well when a live person is speaking and the speech passes

through the pre-processing components, suggesting that the pre-processing components

function well in filtering out silence and reducing noise and results in audio samples that

are similar to those collected in idealistic or strictly controlled lab environments.
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CHAPTER 6

CONCLUSION

This thesis proposes an acoustic system consisting of audio pre-processing algorithms and

a speech-based emotion recognition classifier. This thesis identifies several limitations in

published speech-based emotion detection approaches: they are trained on datasets of emo-

tional speech collected in strictly controlled laboratory environment in which noise and re-

verberation are minimal. As a result, the evidence to prove that these approaches will still

yield similar accuracy when deployed in real-life environments is lacking. The emotion

recognition classifier in this thesis is trained on the synthetic dataset obtained from adding

background noise, amplification and de-amplification, and reverberation effects to imitate

the actual environments in which speech is taking place, instead of the idealistic and strictly

controlled environments in labs. The emotion recognition classifier is a hierarchical clas-

sifier consisting of three components: the top classifier that separates happy/angry speech

samples from neutral/sad speech samples. The happy/angry classifier will determine if the

speech sample is happy or angry if the top classifier decides that the speech sample is either

happy or angry. Likewise, the neutral/sad classifier will determine if the speech sample is

neutral or sad if the top classifier decides that the speech sample is either neutral or sad.

Top classifier performs well on the clean TESS dataset which can be seen as a semi-realistic

scenario in which a live person is speaking. It’s semi-realistic due to two factors: first, the

speaker is adjacent to the microphone; second, there is minimal background noise and re-

verberation effect. Its performance is also satisfactory when the noise and reverberation

effect are nullified from the speech sample, based on its evaluation when a live person is

speaking to the microphone. In summary, the speech-based emotion recognition system

can identify if the speaker is happy/angry or neutral/sad despite the speaker’s distance from

the microphone.
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CHAPTER 7

FUTURE WORKS

It is shown that the top classifier’s performance degrades gradually when the speaker is

moving away from the microphone. This is because not all of the LLD features it uses are

distance-agnostic. In fact, [20] identifies that many LLD features distort over distances. A

future step to improve the accuracy is to take the intersection of the top LLD features and

the set of distance-agnostic features identified in [20] and retrain classifiers with them.
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