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Abstract

We present a model of neutrino masses and mixings within the framework of the EW-νR

model in which the experimentally desired form of the PMNS matrix is obtained by applying an

A4 symmetry to the Higgs singlet sector responsible for the neutrino Dirac mass matrix. This

mechanism naturally avoids potential conflict with the LHC data which severely constrains the

Higgs sector, in particular the Higgs doublets. Moreover, by making a simple ansätz we extract

MlM
†
l for the charged lepton sector. A similar ansätz is proposed for the quark sector in order to

construct quark mass matrices. The sources of masses for the neutrinos are entirely different from

those for the charged leptons and for the quarks and this might explain why UPMNS is very different

from VCKM . Two interesting phenomenological implications on µ → eγ and µ − e conversion are

investigated within the model. At the limit of zero momentum transfer and large mirror lepton

masses, we derive a simple formula to relate the conversion rate with the on-shell radiative decay

rate of muon into electron. The Yukawa couplings constrained by current limits and projected

sensitivities of these processes are found to be small ∼ O(10−5 − 10−3), which give rise to distinct

signatures in the search of mirror charged leptons and Majorana right-handed neutrinos at the

LHC (or planned colliders).
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Chapter 1

Introduction

Over the past few decades, researches in particle physics field have focused on the so-

called Standard Model (SM) which describes the universe in terms of Matter (fermions) and Force

(bosons). The SM has served as a hardcore theory to understand and predict how particles and

forces are related to each other. Over time it has provided excellent agreements with almost all

experimental results. Furthermore the renormalizability of the SM made it possible to study the ra-

diative or quantum corrections in a consistent manner. As an example, the electroweak corrections

resulted from a theory that mixes the electromagnetic and weak contributions. Several illustrative

example of electroweak corrections in the SM include unitarity of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix, prediction of the W and Z boson masses, top-quark mass and an estimation of the

Higgs Boson mass. The year of 2012 witnessed the discovery of a new particle of mass 126 GeV

observed by the ATLAS and CMS experiments at the Large Hadron Collider (LHC). The new

particle is said to be compatible with Higgs boson since it has behaved, interacted and decayed

as in the predictions of the SM. Additionally, leptonic family numbers are accidentally conserved

quantities in the SM regarding the fact that neutrinos are massless.

However this is not the end of the story. If the 126 GeV object is the “end of the road” then

the SM turns out to be incomplete due to several major unsolved problems:
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• We do not know whether the new 126 GeV particle is the long-sought-after SM Higgs

boson or an impostor. There could be also other types of Higgs bosons which SM could

not predict.

• Typical concerns about the origin of mass hierarchy and mixings: “Why are there three

generations of quarks and leptons?”, “Why exist very different mass scales of quark and

lepton sectors?”.

• The neutrino oscillations resulting in non-zero neutrino masses have been observed. It was

raising a question about the origin of neutrino mass and a possible explanation of why they

are so light.

• Evidences of neutrino oscillations also show that the conservation law for leptonic family

numbers is invoked. However the total lepton number must be conserved in the SM, which

gives the possibility to see rare muon decays such as µ→ eγ or µN → eN .

• The unification of gravity with the other three fundamental forces. So far we have been

omitting its existence.

• There are other important questions remaining unrevealed, for example, “What is dark

matter?”, “Matter-antimatter asymmetry: What happened to the antimatter after the big

bang?”.

This lack of attention is significant because not solving these questions will incur an incomplete pic-

ture of the subatomic world, which will affect any future theoretical and experimental developments

of particle physics field.

In order to address the above problems we apparently need to go search for new physics

beyond the SM (BSM). It refers to theoretical developments needed to explain the deficiencies of

the SM. Upon the addressed unsatisfactory situation, windows into BSM can be neutrino masses

and lepton flavor violating processes such as µ→ eγ, µ− e conversion. It is noticed that radiative
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decay of the muon into electron is possible but with an unobservable rate highly suppressed with

the minuscule neutrino masses. Searches for lepton flavor violating rare processes in high intensity

experiments are thus important for new physics beyond the SM. They all can potentially be the

Great Guide to the road ahead.

In the light of this road guidance, our research has constructed a “Model of Neutrino Masses

and Mixings” within the framework of the so-called “Electroweak-scale right-handed neutrino”

(EW-νR) model which has basically proposed a possibility of producing and detecting right handed

neutrinos at the colliders. In the model of neutrino masses and mixings the experimentally de-

sired form of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix is obtained by applying an

A4 symmetry to the Higgs singlet sector responsible for the neutrino Dirac mass matrix. This

mechanism naturally avoids potential conflict with the LHC data which severely constrains the

Higgs sector, in particular the Higgs doublets. Moreover, by making a simple ansätz we are able

to further explore the mass matrices for charged lepton and quark sectors. This might contribute

to the understanding of the very distinctive mass structures of leptons and quarks. Interesting

outcomes of this model of neutrino masses and mixings are analyses of muon rare decays: µ→ eγ

and µ− e conversion in which we have incorporated all current experimental limits and projected

sensitivities used to put constraints on the parameter space of the model. Furthermore we also

have clues to help narrow down searched regions for near future experiments.

All detailed discussions and results of our research will be presented in this thesis. Let us

first introduce the road map to the thesis.

• Chapter 2 will give us a brief summary of the SM’s particle content and gauge interactions.

The so-called Higgs mechanism generating masses for fermions and bosons and resulting in

mixing matrices is also discussed.

• Chapter 3 will walk us through neutrinos masses and mixings, two types of neutrino mass
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which are Dirac and Majorana. Moreover the well-known seesaw mechanisms generically

modeling the observed neutrino masses ∼ O(eV ) will be briefly reviewed.

• Chapter 4 will totally focus on the EW-νR model. It includes step-by-step model building

process, the model’s possible signature and phenomenological constraints.

• Chapter 5 will present the full context of the model of neutrino masses and mixings. Besides,

we also provide a possible explanation on why the PMNS matrix is very different from the

CKM matrix.

• We dedicate Chapter 6 to perform updated analyses for the one-loop induced lepton fla-

vor violating radiative decays lj → liγ and the muon-to-electron conversion in nuclei like

aluminum, titanium and gold in the context of the model of neutrino masses and mixings

introduced in the previous chapter.

• Chapter 7 will provide implications on quark mass matrices from the point of view of the

neutrino model along with relevant assumptions.

• We conclude the thesis with Chapter 8. Useful formulas and calculations can be found in

the Appendices.

With the brief indication of how the thesis will proceed, we are now ready to explore the model of

neutrino masses and mixings and its phenomenological implications.



Chapter 2

Standard Model Overview

In mid 1970s, particle physicists combined all knowledge about fundamental particles and

forces or mediators which build up almost everything we have known so far into a theory called

Standard Model (SM). Since then, the SM has provided extremely successful explanations for many

vital observations and predicted a wide variety of phenomena. In the following sections, we will

learn more about basic SM and its key role in understanding of the phenomenology of particle

physics.

2.1 Particle families and their interactions

Fundamental particles are building blocks of matter, called fermions, and the mediators of

interactions, called bosons.

Fermions can make up ordinary matter which is needed to make an atom, or exotic matter

produced in high energy collisions, or very exotic matter produced in very high energy collisions.

Fermions obey Fermi-Dirac statistics [1] and have spin 1/2. They come in one of twelve flavors and

are organized in three families with identical quantum number but different masses. The elementary

fermions are either quarks or leptons, and they are differentiated by their charges under strong and
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electromagnetic interactions. For example, let us take the first family which contains

Quark: u, d and Lepton: νe, e . (2.1)

Two quarks carry so-called color charges under the strong interactions but two leptons do not.

Under the electromagnetic interaction, two quarks have charges 2/3 (for the up quark) and 1/3

(for the down quark) while two leptons have charges 0 (for the electron neutrino) and -1 (for the

electron). Either quarks or leptons come in one of six flavors

• Quarks: u, c, t; d, s, b 1 ,

• Leptons: e, µ, τ , νe, νµ, ντ .

Another difference between quarks and leptons is that quarks are always bound to other quarks by

the strong force whereas heavy leptons (e, µ, τ) can be found free or bound to other charged fermions

by the electromagnetic force and neutrinos only interact with themselves and other particles via

the weak force. Masses of these fermions can fall into a range from the sub-eV neutrino masses to

the 172 GeV top mass [3]. Moreover, each family shows such a peculiar mass structure in which

the masses are hierarchically separated from one another. A massive charged fermion, e.g. electron

has two possible chiralities called left-handed and right-handed. In the case of neutrinos, only the

left-handed chirality has been observed so far and this seems to agree well with SM’s prediction

because neutrinos are massless in SM. Further discussion on neutrinos and their chiralities will be

provided in the next chapter. Quarks are known to bind into triplets and doublets. The triplets

are called baryons and the doublets (quark-antiquark pair) are called mesons. Collectively baryons

(the heavy triplets), mesons (the middleweight doublets), and quarks (the fundamental particles)

are known as hadrons.

In contrast to fermions, bosons obey Bose-Einstein statistics [2] and have integral spin quan-

tum numbers (±0,±1,±2, ...). The SM interactions are characterized by four vector bosons or gauge

1 Sometimes we refer u, c, t as up-quark sector and d, s, b as down-quark sector
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bosons of spin 1. The photon carries the electromagnetic force between particles with charge, the

gluon strong force between particles with color (quarks and gluons), the Z and W’s weak force

between certain particles with flavor. It is noticed that the photon and gluons are massless while

the Z and W’s bosons are massive. This explains why weak interactions are weak at low energy

because of a suppression of 1/MZ,W factor. However, they still stand out because of their viola-

tions in universal symmetries such as parity P , charge conjugation C, CP , time-reversal T , and

lepton/baryon (L/B) number, which all are conserved under the electromagnetic and strong inter-

actions. Another boson we should mention about is the scalar Higgs boson (spin = 0) which was

discovered in 2012 [4, 5] and the mediator of the Higgs mechanism. Within the frame work of the

mechanism, Higgs is able to give mass to all particles and itself. Signals from the LHC show that

Higgs has mass around 125 GeV [6] but we do not know whether or not it is the SM Higgs. Future

experiments carried out at the colliders will hopefully give us the answer soon. A further discussion

about Higgs mechanism will be given in section 2.3. A summary of SM particle content is given in

Fig. (2.1).

2.2 The SM gauge interactions

2.2.1 Gauge transformations

Gauge transformation or more precisely, local gauge transformation when applied to a local

symmetry will result in the representation of the symmetry group that is a function of the manifold

and can be taken to act differently on different points of spacetime. This section is arranged as

follows. We first review a physical quantity needed for a symmetry to work on. This quantity is a

Lagrangian of a theory. We then discuss the role of symmetry and two kind of symmetries called

global and local symmetry. Finally, we will have a heavy discussion on local symmetry and local

gauge transformation in quantum electrodynamics (QED) and then generalize a renormalizable

gauge theory at the end of this section.
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Figure 2.1: The Standard Model particle content

To get the idea of a Lagrangian, let us start with a quantum field theory (QFT) basis in

which particles are related to fields φ(x) in the space-time coordinates. The fundamental quantity

of the field theory is the action, S, which can be written as

S =

∫
Ldt =

∫
L(x)d4x, L(x) =

∑
i

ciOi(x) (2.2)

where L is the Lagrangian density 2 which is a function of fields φ(x) and their derivatives ∂µφ.

Although there is no strict form for a Lagrangian, a typical one will contain terms bilinear in the

fields called free Lagrangian, Lfree and terms called interaction Lagrangian Lint. Let us take an

example of the so-called “φ4 theory” whose Lagrangian is

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4 (2.3)

The interaction term Lint = − λ
4!φ

4 accounts for field interactions. In order to see how a corre-

sponding interaction behaves we must consider the dimension of the coefficients ci in Eq. (2.2).

2 Hereinafter we will refer to L simply as the Lagrangian.
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For example, a term with negative dimension, i.e. c = 1/Λr where r > 0 and Λ is the energy

scale will appear as “non-renormalizable interaction”. According to the QFT, such an interaction

is not applicable at low energy scale but may cause a potential interest at high energy where they

make the theory incalculable. Therefore, non-renormalizable terms are only relevant in an effective

theory having a cutoff energy scale (Λ).

Symmetry plays a crucial role in outlining the independent regularities of the laws of nature

in the context of specific dynamics. Within the scope of this thesis, we will be considering three

popular symmetry groups: U(1) and SU(2), SU(3) which are special cases of the general SU(N)

group. We start with an infinitesimal group element g

g(α) = 1 + iαaT a +O(α2) (2.4)

where T a are the generators of the symmetry group. The set of generators will have the commu-

tation relations

[T a, T b] = ifabcT c, fabc are structure constants (2.5)

which form a so-called Lie Algebra and the identities

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0. (2.6)

A group which has one of the generators T a commutes with the others and phase rotations ψ → eiαψ

is called U(1). A subgroup of U(1) which commutes with other unitarity transformations is known

as SU(N). The generators of SU(N), ta, are Hermitian traceless matrices. In the case of N = 2,

generators of SU(2) are chosen to be

ta = σa/2, a = 1, 2, 3, σa are Pauli matrices (2.7)

In the case of N = 3, generators of SU(3) are

tA = λA/2, A = 1, 2...8, λA are Gell-Mann matrices (2.8)

If a Lagrangian under a transformation on the fields ψ

ψi(x)→ Uijψj(x) (2.9)
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is invariant, we then call this transformation a symmetry of the Lagrangian. From (2.9) if U does

not depend on space-time point x, the symmetry is called global symmetry, otherwise, it called

local symmetry. An example of global symmetry is SU(2) isospin which acts on the quark doublet

Q = (u, d)T . Within the framework of quantum chromodynamics (QCD) with the limit mu,d → 0,

the isospin transformation Q → UQ is a symmetry of QCD Lagrangian for u, d. In other words,

isospin symmetry is given by the invariance of the Hamiltonian of the strong interactions under the

action of the Lie group SU(2).

Gauge symmetries are the invariances of the Lagrangians under gauge transformations which

are realized on the fields as a local phase rotation. A celebrated example is the famous gauge

symmetry of QED whose Lagrangian is written as

LQED = ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν − eψ̄γµψAµ. (2.10)

where the electromagnetic field Fµν is expressed in terms of the vector potential Aµ as Fµν =

∂µAν − ∂νAµ. In this case, the fields are the complex-valued Dirac. Under gauge transformation

ψ(x)→ eiα(x)ψ(x), Aµ(x)→ Aµ(x)− 1

e
∂µα(x) (2.11)

in which an angle α(x) varies arbitrarily from point to point, our Lagrangian (2.10) must be

invariant. In fact, the QED Lagrangian can be simplified by introducing the gauge covariant

derivative

Dµ ≡ ∂µ + ieAµ(x) (2.12)

that can be transformed according to Eq. (2.11)

Dµψ(x) →
[
∂µ + ie

(
Aµ −

1

e
∂µα

)]
eiα(x)ψ(x) (2.13)

= eiα(x) (∂µ + ieAµ)ψ(x) = eiα(x)Dµψ(x)

Therefore, the QED Lagrangian is simply

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν (2.14)
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The first term is clearly invariant based on the above argument and the kinetic term FµνF
µν is also

invariant as the vector field Aµ transforms in (2.11). In conclusion, we are able to prove that the

QED Lagrangian follows from the principle of gauge invariance under local U(1) transformations.

In addition, gauge invariance shows us why the photon is massless, since a mass term AµA
µ would

break gauge invariance.

Finally, we will present the steps to construct a general renormalizable gauge theory of spin

0, 1/2, 1 fields Φ.

• Choose a basis of generators ta for a compact gauge group G with associated real vector

field, Aaµ and field strength F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν .

• Define a covariant derivative Dµ = ∂µ + igAaµTa where Ta is the action of the generator ta

on the fields Φ.

• Make a gauge transformation of the fields Φ(x) → U(x)Φ(x) and vector fields so that

Dµ(U(x)Φ(x))→ U(x)(DµΦ(x)) and F aµνTa → U(x)(F aµνTa)U
†(x).

• Write a corresponding gauge Lagrangian, for example,

L = −1

4

(
F aµν

)2
+

1

2
(DµΦ)T DµΦ− 1

2
m2ΦTΦ , (2.15)

where the first term describes the famous Yang-Mills gauge theory, the other terms con-

struct the locally gauge invariant Lagrangian.

2.2.2 Gauging SM interactions

SM itself is a gauge theory so in order to define it we have to identify key ingredients listed

in the previous section. As mentioned in the section 2.1, SM describes three interactions related

to electromagnetic, strong and weak forces. Therefore, it is reasonable to develop a gauge group
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for SM which contains all generators of groups describing the above interactions. So far we have

known that the QED and QCD detail the electromagnetic and strong interactions and then involve

the U(1)em and SU(3)c (‘c’ stands for ‘color’) gauge groups, respectively. It is important to figure

out which gauge group represents the weak interaction as well. Because parity is violated in weak

interactions as opposed to electromagnetic and strong interactions, one expects to look at Dirac

spinors in a chiral view. If we take the first family fermions (ν, e, u, d) for consideration, they have

to be split into left- and right-handed components: νL, eL, eR, uL, uR, dL, and dR
3 .

We shall now discuss weak interactions before gauge theory comes along. In 1950s, it is

suggested that an effective Lagrangian for weak interactions

Leff (x) = −GF√
2
J†W,µ(x) JµW (x) + h.c. (2.16)

with the Fermi coupling constant, GF ' 10−5/m2
proton and the weak current JµW (x) having the V-A

form

JµW = ν̄Lγ
µeL + ūLγ

µdL, note that ψL =
1− γ5

2
ψ. (2.17)

It is said that the Lagrangian (2.16) described successfully parity violating and charge changing

weak interaction. Nevertheless it is lack of renormalizability because of the negative dimension of

the coefficient GF ([energy]−2) and violates unitarity at high energies, even in the lowest order of

GF [7].

2.2.2.1 Unitarity violation and bad high energy behavior

We have known that at tree level measured cross-sections of processes such as n→ pe−ν̄e or

νµe
− → µ−νe turn out to agree very well with the theory containing the above effective Lagrangian.

However when considering, for example, one-loop process νµe → νµe as shown in Fig. (2.2) one

gets an infinite cross-section. This “disease” has a deep root in the violation of tree-level unitarity.

In quantum physics, unitarity restricts the probability from exceeding 1. Let us take an example

3 The right-handed neutrino νR is not presented here since it does not exist in the SM
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Figure 2.2: One-loop process νµe→ νµe results in an infinite cross-section.

of scattering theories with the S-matrix defined as

S = I + iT (2.18)

where I indicated “no scattering” and T is the scattering matrix. Unitarity, in this case, requires

sum of probabilities

SS† = S†S ≤ 1 . (2.19)

If one considers the interaction of νµe
− → µ−νe in Fig. (2.2) its amplitude has only the J = 1

partial wave and the cross-section goes like

σ ∼ GF 2 s (2.20)

where s = 2meEν , Eν is the νµ energy in the lab frame. According to the scattering theory, the

cross-section can be expressed as

σ ∼ |SJ=1|2

s
. (2.21)

Since unitarity forces |SJ=1|2 ≤ 1 the cross-section, σJ=1, is bounded by s−1. Therefore

GF
2 s ≤ 1

s
⇒
√
s ≤ GF−1/2 ∼ 300 GeV . (2.22)

This means the weak interaction’s unitarity is violated if one goes beyond 300 GeV. Actually the

broken energy scale is about 1000 GeV to a good precision. How could one avoid such a bad high

energy behavior from occurring?
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2.2.2.2 Problem solvers - W± and W 0

It has been known that QED is described by the Lagrangian

LQED = e JµEM Aµ, (2.23)

where JµEM is the electromagnetic current, Aµ is a photon field and e - the electron’s charge - is the

dimensionless coupling constant of the electromagnetic interaction. QED has shown a good high

energy behavior and contained no infinities at higher orders in perturbation theory. Here is why.

All the infinities in QED can be eliminated via “renormalization” triggered by the dimensionless

coupling constant e. It is worth noticing that the electromagnetic interaction mediated by the

spin-1 vector photon field makes it possible to have the dimensionless coupling.

Therefore it would be a good idea if we try to mimic QED in order to cure the infinities and

unitarity violation problems in weak interactions. Let us suggest a choice of charged vector bosons

(spin 1), W±µ and write down the weak Lagrangian in the same manner with that of QED as

Lweak = g JµW Wµ (2.24)

where JµW is introduced in Eq. (2.17) and g is the dimensionless coupling constant of the weak

interaction. We can generate the effective interaction by a massive gauge boson as shown in

Fig. (2.3) and have such an identification

GF =

√
2

8

g2

M2
W

. (2.25)

in the case of the squared transferred momentum, q2 �M2
W .

We now investigate the problems of unitarity and renormalizability in the theory involving

intermediate vector boson W±. Unfortunately the bad high energy behavior remains, for instance,

in a process νeν̄e →W+W−. Since W± are massive spin-1 fields they have 3 degrees of freedom of

polarizations: 2 transverse and 1 longitudinal. The longitudinal polarized W , denoted as Wl, has
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Figure 2.3: eνµ → µνe process with W exchange approximation to four-fermion interaction at low
energies.

a polarization of the form

ε(3)
µ =

kµ
MW

+O
(
MW

E

)
(2.26)

where E is the energy in the center-of-mass frame. Therefore the cross-section of a diagram shown

in Fig. (2.4) contains ∑
polarization

εµ ε
∗
ν = −gµν +

kµkν

MW
2 . (2.27)

The second term causes the bad energy behavior that we will see later. The amplitude, therefore,

is given by

ft = −2g2v̄(p′)
/ε(/p− /k)/ε(1− γ5)

(p− k)2 −m2
e

u(p) (2.28)

' − 2g2

k2 − 2p · k
v̄(p′)

(
/k
′
/MW

)
(/p− /k) (/k/MW ) (1− γ5)u(p)

' 2g2

M2
W

v̄(p′)/k
′
(1− γ5)u(p) .

One can choose the following momentum configuration

pµ = (E, 0, 0, E), p′µ = (E, 0, 0,−E) (2.29)

kµ = (E, ke), k′µ = (E,−ke)

where e = (sin θ, 0, cos θ). It is proved that the cross-section

σt ≈
GF

2E2

3π
(2.30)
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Figure 2.4: νeν̄e →W+W− process with a t-channel.

On the other hand, from the partial-wave expansion [11], the cross-section is given by

σt =
π

E2

∑
J

(2J + 1) |SJλ3,λ4;λ1,λ2 |
2 (2.31)

where λ1 = −λ2 = 1/2 are the helicities of νe, ν̄e and λ3 = λ4 = 0 are the helicities of W±. This

cross-section comes from a pure J = 1 partial wave. From Eqs. (2.30), (2.31) and the unitarity

constraint we have

GF
2E4

9π2
= |SJ=1

0,0;1/2,−1/2|
2 ≤ 1 (2.32)

or

GF s ≤ 12π where s ≡ 4E2 . (2.33)

This implies that the unitarity is violated at
√
s = 2E ∼ 1800 GeV or E ∼ 900 GeV.

Although the coupling g is now dimensionless which helps fix the infinities problem, the

theory with intermediate vector bosons W± is still not renormalizable. According to the free

massive vector boson Lagrangian

LW = −1

4
FµνF

µν +M2
WW

†
µW

µ (2.34)

one can find the propagator in momentum space as

i∆µν(k) = −i
gµν − kµkν/M2

W

k2 −M2
W + iε

. (2.35)
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As k →∞, the propagator acts like a constant and the interaction is not renormalizable because of

power counting. Therefore something must come rescue this theory. It turns out that in order to

cancel the bad high energy behavior, one can implement other diagrams for the above interaction.

They are either s-channel or u-channel exchange diagrams as shown in Fig. (2.5). For the purpose

of this review we only consider the choice of neutral vector boson exchange or the s-channel diagram

in Fig. (2.5)-(b). It is noticed that the couplings f, f ′ obey the symmetry of a Lie group forming

Figure 2.5: νeν̄e →W+W− with (a) u-channel and (b) s-channel.

the Yang-Mills theory. The amplitude is proven to be

fs '
−ff ′

M2
W

v̄(p′)/k
′
(1− γ5)u(p) (2.36)

with a choice of W 0W+W− coupling to have the Yang-Mills structure. If

ff ′ = 2g2 (2.37)

then fs will cancel the bad high energy behavior from Eq. (2.29). In a nutshell, the good high

energy behavior of the weak interactions forces us to introduce W 0, in addition to W±, with the

couplings obeying the symmetry of SU(2) and being universal coupling g.
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2.2.2.3 SM gauge group, GSM

If we introduce the left-handed fermion doublets

lL ≡

 νL

eL

 , qL ≡

 uL

dL

 , (2.38)

and then define W±µ in terms of real vectors W 1,2
µ as

W±µ ≡
(
W 1
µ ∓ iW 2

µ

)
√

2
(2.39)

the Lagrangian (2.24) can be written as

Lweak = gl̄Lγ
µ
(
W 1
µT1 +W 2

µT2

)
lL + gq̄Lγ

µ
(
W 1
µT1 +W 2

µT2

)
qL (2.40)

where T1,2 = σ1,2/2. We can see that T1 and T2 are the generators of gauge theory. In order to form

a Lie algebra such that [T1, T2] = iT3, T3 = σ3/2, we also have T3 as a generator corresponding to

a third real gauge boson, W 3
µ . As a result, this predicts an additional neutral interaction. With

the identification of 3 generators T1,2,3 we can conclude that SU(2)L (‘L’ stands for ‘left-handed’

field components) is a part of the gauge group, GSM .

As argued in the beginning of this section, GSM should also include generators of U(1) and

SU(3)c. We have already seen the generators of the SU(3) group in section 2.2.1 so I will not

repeat them here. Instead we would focus on finding the generators of U(1). As we have known,

U(1) associates with an electric charge generator called Q. However, we observe that Q − T3 also

gives the same quantum number to all members of SU(2) fermion doublets in (2.38). In fact, one

can go further by checking the commutation of this linear combination generator with other SU(2)

generators and confirm that

[Q− T3, Ti] = 0, i = 1, 2, 3. (2.41)

We then define “hypercharge” generator of U(1) as

Y

2
≡ Q− T3 or Q = T3 +

Y

2
. (2.42)
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The later one is known as Gell-Mann-Nishijima formula [8].

In conclusion, the gauge group of the SM is identified as

GSM = SU(3)c × SU(2)L × U(1)Y . (2.43)

in which SU(2)L × U(1)Y composes the electroweak group. Table (2.1) will summarize quantum

number assignments of SM chiral fermions in the first family under gauge group, GSM .

Table 2.1: Gauge quantum numbers of chiral SM fermions in the first family. Later on we can
consider this as a generic notation for fermion families because the quantum numbers are the same
for all three families

SU(3)c SU(2)L U(1)Y

lL 1 2 -1/2

eR 1 1 -1

qL 3 2 1/6

uR 3 1 2/3

dR 3 1 -1/3

Before closing this section, let us discuss anomalies in gauge theories and why it is important

to perceive anomaly cancellation. The presence of triangle diagrams which appear in the one-loop

corrections to the tree-gauge-boson vertex is dangerous for a gauge theory because of the breakdown

of gauge invariance presented by the so-called Ward identity. The anomalous term of a triangle

diagram of three gauge bosons denoted as Aaµ, A
b
ν , A

c
λ (as shown in Fig. (2.6)) is proportional to

Tr [{Ta, Tb}Tc] which vanishes if there is no anomaly. To examine the anomalies of the SM gauge

theory, it is convenient to start with the SU(2)L × U(1)Y gauge group and check to see if the

anomalous terms cancel as required. As one may notice, three generators τa, τb, τc belongs to the

SU(2)L. They satisfy

Tr[{τa, τb}τc] = Tr[2δabτc] = 0 . (2.44)

It is easy to show that the anomalies containing one SU(3) or SU(2) boson are zero because



20

Figure 2.6: Anomalies from triangle diagrams in a gauge theory.

Tr[ta] = 0 or Tr[τa] = 0 . (2.45)

The anomaly of one U(1) boson with two SU(2) or SU(3) boson is

Tr[τa, τbY ] =
1

2
δab · TrY or Tr[ta, tbY ] =

1

2
δab · TrY , (2.46)

where TrY can be understood as the total of the sums running overs leptons and quarks. For each

family, using the values of Y/2 from Table (2.1) we have∑
lepton

Y = Y (eL) + Y (νL) + Y (eR) = −1 + (−1) + (−2) = −4 , (2.47)

∑
quark

Y = Nc · (Y (uL) + Y (dL) + Y (uR) + Y (dR)) (2.48)

= Nc ·
(

1

3
+

1

3
+

4

3
+

(
−2

3

))
=

4

3
Nc .

where Nc is the number of quark colors. Therefore,

TrY =
∑
lepton

Y +
∑
quark

Y = −4 +
4

3
Nc . (2.49)

In order to cancel this anomaly (i.e., TrY = 0) one needs exactly three quark colors which turns

out agree well with experimental data. Furthermore it is obvious that Tr[T3L] = 0. Since Y =

2(Q−T3L) and TrY = 0 from the above argument, we obtain TrQ = 0 which is verified by taking∑
lepton

Q+ 3 ·
∑
quark

Q (2.50)

The SM theory is thus a chiral gauge theory which is completely anomaly-free. Nevertheless the

anomalies cancellation entails that leptons and quarks in each family have to form a structure of

doublets and singlets as lL, eR, qL, uR, dR.



21

2.3 Higgs Mechanism and how to generate gauge boson masses

In the theory of gauge invariance, vector gauge bosons such as W± are prevented from

acquiring their masses in order to preserve the invariance. With the discovery of the mass of

W -bosons to be about 80 GeV [9], we may claim that the gauge symmetry has to be broken to

give mass to gauge bosons as well as fermions. This is where “spontaneous symmetry breaking”

(SSB) [10] takes off and becomes one of the most important mechanisms accounting for massive

particles. The SSB can be applied to either global or local symmetry. However we will only focus on

analyzing SSB of the local U(1) gauge symmetry which leads us to the Higgs mechanism and that of

the SU(2)L which helps us move toward SSB of SM weak interaction in the following section.

2.3.1 Spontaneous symmetry breaking in U(1) gauge theory

Let us first start by introducing the Lagrangian of complex scalar fields φ

Lgauge = −1

4
FµνF

µν + (Dµφ)†(Dµφ)− V (φ) (2.51)

where V (φ) = −µ2φ†φ + λ(φ†φ)2. Recall that Dµ = ∂µ − igAµ. We can write φ in terms of 2

independent real components, φ1 and φ2 as

φ =
1√
2

(φ1 + iφ2) (2.52)

Therefore the potential becomes

V (φ1, φ2) = −µ
2

2
(φ2

1 + φ2
2) +

λ

4
(φ2

1 + φ2
2)2 (2.53)

Under a local gauge transformation the fields and vector potentials transform as

φ(x)→ φ′(x) = e−iα(x)φ(x) (2.54)

Aµ → A′µ = Aµ −
1

g
∂µα(x)
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SSB arises if the vacuum expectation value (VEV) of the scale fields is not invariant under the

gauge symmetry. In order to obtain the VEV, we minimize the effective potential (2.53). If µ2 > 0

we get the minimum

|φ|2 =
1

2

(
φ2

1 + φ2
2

)
=
v2

2
or φ2

1 + φ2
2 = v2 (2.55)

Here v =
√

µ2

λ . We can choose 〈φ1〉 = v, 〈φ2〉 = 0 which are field configurations for classical

vacuum. From this we are able to define new quantum fields

φ′1 = φ1 − v, φ′2 = φ2 (2.56)

which correspond to oscillations around the minimum so that φ′ = 1√
2
(φ′1 + iφ′2). It is noticed that

the condition of 〈φ1〉 = v is necessary for SSB according to the Goldstone’s theorem [12]. Hence

the new Lagrangian is

L =
1

2

[(
Dµφ

′
1

)2
+
(
Dµφ

′
2

)2]
+
µ4

4λ
− µ2φ′1

2 − λvφ′1
(
φ′1

2
+ φ′2

2
)
− λ

4

(
φ′1

2
+ φ′2

2
)2

(2.57)

We can see that there is no φ′2
2 term which implies φ′2 is a massless Nambu-Goldstone (N-G) boson.

The constant µ4/4λ is called “cosmological constant” and can be shifted away due to the absence

of gravity. The kinetic term in the Lagrangian can be rewritten in terms of new fields as

(
Dµφ

′)† (Dµφ
′) = |Dµφ

′|2 = |(∂µ − igAµ)φ′|2 (2.58)

=
1

2

(
∂µφ

′
1 + gAµφ

′
2

)2
+

1

2

(
∂µφ

′
2 − gAµφ′1

)2
+

1

2
g2v2AµAµ − gvAµ

(
∂µφ

′
2 + gAµφ

′
1

)
Due to SSB, the covariant derivative produces mass term for vector boson with mass MA = gv.

The main feature of spontaneous breaking of gauge invariance is that gauge vector affiliated with

each broken generator gets a longitudinal component and a mass. So far we have already seen how

the mass is generated. The additional longitudinal component is given by the N-G boson which

gets absorbed by the vector. This can be seen by redefining the fields φ in polar coordinates as

φ(x) =
1√
2

(v + η(x)) eiξ(x)/v (2.59)

' 1√
2

(v + η(x) + iξ(x) + ...) for small oscillation
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Comparing with Eqs. (2.52) and (2.56) we have

η(x) ≡ φ′1, ξ(x) ≡ φ′2 (2.60)

From this point, two configurations associated by a gauge transformation can be made

φ(x) → φ′(x) = e−iξ(x)/vφ(x) ' 1√
2

(v + η(x)) (2.61)

Aµ → Bµ = Aµ −
1

gv
∂µξ(x) (2.62)

Therefore the Lagrangian transform as

L → L′ = −1

4
(∂µBν − ∂νBµ)2 +

1

2
|(∂µ − igBµ) (v + η)|2 +

µ2

2
(v + η)2 − λ

4
(v + η)4 (2.63)

= −1

4
(∂µBν − ∂νBµ)2 +

1

2
(∂µη)2 − 1

2
(2µ2)η2 +

1

2
g2v2B2 +

(
g2vη +

1

2
g2η2

)
B2 + ...

where B2 = BµB
µ. The ξ(x) component disappears in the Lagrangian because it is absorbed as a

longitudinal component Bµ. What remains is one massive scalar, η with mass mη =
√

2µ and one

massive spin-1, Bµ with mass mB = gv.

In summary, if a massless gauge boson “eats up” a N-G boson associated with a broken

generator, a massive vector meson is produced. This was discovered in the 60s by Peter Higgs

[13, 14], Englert and Brout [15], Guralnik, Hagen and Kibble [16] independently and is usually

called Higgs mechanism. We shall now see applications of Higgs mechanism in the particular

SU(2)L and the SM gauge theories.

2.3.2 Higgs mechanism for the SU(2)L gauge theory

In order to break SU(2)L gauge symmetry, one can introduce a complex scaler doublet having

4 degrees of freedom (d.o.f)

Φ =

 φ1

φ2

 (2.64)
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The scalar Lagrangian is given by

LS = −1

4
GiµνG

iµν + (DµΦ)†(DµΦ)− V (Φ), i = 1, 2, 3 (2.65)

where

DµΦ =

(
∂µ − ig

~τ

2
· ~Wµ

)
Φ (2.66)

Giµν = ∂µW
i
ν − ∂νW i

µ + gεijkW j
µW

k
ν (2.67)

V (Φ) = −µ2(Φ†Φ) + λ(Φ†Φ)2 (2.68)

Using the Higgs mechanism recipe, we also find the ground state of the field Φ to be

〈Φ†Φ〉 =
v2

2
where v2 =

µ2

λ
(µ2 > 0 and λ is real). (2.69)

By choosing a vacuum alignment

〈Φ〉 =
1√
2

 0

v

 (2.70)

we provide the necessary condition for SSB to happen. Since v is assigned for the VEV of Re(φ2),

leaving the other 3 scalar d.o.f of 0-VEV we expect to obtain 1 massive boson and 3 massless N-G

bosons which then are eaten up by the vector. To see the spectrum, one would go to “unitary

gauge” and write

Φ(x) = ei~τ ·
~ξ(x)
v

 0

v + η(x)

2

 (2.71)

It is noticed that the VEVs of η(x) and ξ(x) are zero. As seen in the description of Higgs mechanism,

~ξ would give rise to 3 N-G bosons and η(x) appears to be the Higgs boson. Again, under gauge

transformation U(x) ≡ e−i~τ ·
~ξ(x)
v the term accounted for the additional longitudinal components is

~τ

2
· ~W ′µ = U(x)

~τ

2
· ~WµU

−1(x)− i

g
[∂µU(x)]U−1(x) (2.72)

in which N-G bosons are absorbed in the second term. Consequently, the Lagrangian (2.65) trans-

forms in the chosen ground state as

L′S = −1

4
Gi
′
µνG

i′, µν + (D′µΦ′)†(D
′µΦ′) +

(
µ2

2
(v + η(x))2 − λ

4
(v + η(x))4

)
. (2.73)
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The mass term for gauge bosons W ′µ can be extracted from the second term

g2

8
(0 v)

(
~τ

2
· ~W ′µ

~τ

2
· ~W ′µ

) 0

v

 =
1

2

(gv
2

)2
~W ′µ · ~W

′µ . (2.74)

It is worth emphasizing the invariance of the mass term under SU(2) global symmetry. Hence, the

gauge bosons W±, W 0 obtain a mass of MW = gv/2. In addition to masses of gauge bosons, we

also generate the mass term of Higgs boson η from the potential in Eq. (2.73): mη =
√

2µ.

2.4 SM gauge theory via Higgs mechanism

In a theoretical consistent way, we are now ready to write down and discuss the spontaneous

breaking of the SM in order to generate masses for vector bosons, the W± and the Z, and fermions.

The fact that the electric charge is conserved and the photon is massless reassures us that the

subgroup SU(3)c × U(1)em of SM’s gauge group remains unbroken under the SSB. Therefore, we

will investigate the spontaneous breaking of the subgroup SU(2)L × U(1)Y of the electroweak

interaction in this section.

2.4.1 Generating masses for gauge bosons

To break the symmetry spontaneously, we introduce a fermion doublet, similar to the spinor

representation of SU(2) in Eq. (2.64), with T iL operators acting on it and it has an eigenvalue Y/2

of U(1)Y . The covariant derivative of the gauge SU(2)L × U(1)Y becomes

Dµ = ∂µ − ig ~T · ~Wµ − ig′
Y

2
Bµ (2.75)

where ~W and B are gauge fields of SU(2)L and U(1)Y , respectively. We know from our discussion

of SU(2)L gauge theory that the scalar field must have 4 d.o.f to give masses to 3 gauge bosons.

Thus, it is sufficient to use a complex doublet to generate masses for electroweak gauge bosons. We
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now define a doublet of the form

Φ =

 φ+

φ0

 with
Y

2
(Φ) =

1

2
. (2.76)

The covariant derivative of Φ is

DµΦ =

(
∂µ − ig

~τ

2
· ~Wµ −

i

2
g′Bµ

)
Φ. (2.77)

The scalar potential is

V (Φ) = −µ2(Φ†Φ) + λ(Φ†Φ)2 (2.78)

The VEV of the field Φ is given by

〈Φ〉 =

 0

v√
2

 (2.79)

where v =
√
µ2/λ resulting from minimizing the above potential.

The mass spectrum of gauge bosons can be seen in a chosen “unitary gauge”

Φ(x) = ei~τ ·
~ξ(x)
v

 0

v + η(x)

2

 . (2.80)

Again, 〈η〉 = 〈ξ〉 = 0. Under the transformation U(ξ(x)) as in SU(2)L gauge model, we have

~τ

2
· ~Wµ →

~τ

2
· ~W ′µ = U(ξ)

(
~τ

2
· ~Wµ

)
U−1(ξ)− i

g
[∂µU(ξ)]U−1(ξ). (2.81)

Moreover since the gauge includes U(1)Y group, its gauge field also transforms as

Bµ → B′µ = Bµ. (2.82)

Hence the kinetic term in the Lagrangian contains

• The mass term of SU(2)L gauge fields:

g2

8
(0 v)

(
~τ

2
· ~W ′µ

~τ

2
· ~W ′µ

) 0

v

 =
1

2

(gv
2

)2
~W ′µ · ~W

′µ (2.83)

Note that ~W ′µ =
(
W
′1
µ , W

′2
µ , W

′3
µ

)
.
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• The mass term of U(1)Y gauge fields:

g′2

8
(0 v)

(
B′µ B

′µ
) 0

v

 =
1

2

(
g′v

2

)2

B′µ ·B
′µ (2.84)

• The cross terms:

gg′

2
(0 v)

(
~τ

2
· ~W ′µ

)
B′

µ

 0

v

 =
1

2

(
−gg

′v2

2

)
W
′3
µ B

′µ (2.85)

From the above equations, one can put together a mass matrix for W
′3 and B′ as

M =
v2

4

 g2 −gg′

−gg′ g′2

 . (2.86)

Diagonalizing this matrix M yields two eigenvalues: 0 accounted for the massless photon and(
g2 + g′2

)
v2/4 accounted for the mass of Z-boson. The eigenvectors can be interpreted in terms

of a so-called “weak mixing angle” or “Weinberg angle”, θW , [17] as

Zµ = cos θWW
′3
µ − sin θWB

′
µ (2.87)

Aµ = sin θWW
′3
µ + cos θWB

′
µ (2.88)

where

cos θW ≡
g√

g2 + g′2
, sin θW ≡

g′√
g2 + g′2

. (2.89)

All in all, 4 gauge bosons of the SU(2)L × U(1)Y gauge theory are

• 2 charged gauge bosons W±µ = (W 1
µ ∓ iW 2

µ)/
√

2 with masses MW = gv/2,

• a neutral gauge boson Zµ with a mass MZ = v
√
g2 + g′2/2,

• a massless photon Aµ.
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It is noticed that an important prediction coming out from the investigation of the SM gauge theory

is

MW

MZ
=

g√
g2 + g′2

= cos θW . (2.90)

From now on it will be more convenient to write all expressions in terms of the above mass eigenstate

fields. For example, in a coupling of the vector fields to fermions, the covariant derivative can be

written as

Dµ = γµ∂µ − i
g√
2

(
W+
µ T

+
L +W−µ T

−
L

)
− i 1√

g2 + g′2
Zµ

(
g2T 3

L − g′
2Y

2

)
− i

gg′√
g2 + g′2

Aµ

(
T 3
L +

Y

2

)
, (2.91)

where T±L = (T 1
L ± iT 2

L) and ~TL = ~τ
2 for SU(2)L. From this point of view, one may ask if the SM

can predict masses of W’s and Z bosons in terms of known and measurable physical quantities such

as Fermi constant GF , angle θW , etc. We actually can proceed further regarding the identified

relation

GF√
2

=
g2

8m2
W

(2.92)

To estimate the mass of W’s boson, we need to know the coupling g. This can be done by considering

a gauge interaction with the Aµ boson

−i(eQL)ψ̄Lγ
µψLAµ. (2.93)

Comparing the Aµ interaction in Eqs. (2.91) and (2.93), note that QL = T 3
L + Y/2, we get

e =
gg′√
g2 + g′2

= g sin θW . (2.94)

This is another prediction belonging to the SM. Gathering all relations we have been talking about,

one can predict the mass of W’s bosons

m2
W =

√
2

8

e2

sin2 θWGF
=

1√
2

πα

sin2 θWGF
(2.95)

where α ≡ e2/(4π), called “electromagnetic coupling constant”. We know really well about the

coupling constant α and Fermi’s constant GF by the time SM was out forward. Hence measuring

the angle θW will help predict the masses MW and MZ .
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2.4.2 Generating masses for fermions

Another role played by spontaneous symmetry breaking is to give masses to the fermions.

For example, left-handed helicity components of leptons form doublets lL = (νL, eL)T while right-

handed one stays as singlet eR under SM gauge theory. Fermions (leptons and quarks) can acquire

masses if they have gauge invariant interactions with scalar fields. At the tree level, such Yukawa

interactions

Llepton = geēLΦeR + h.c. with 〈Φ〉 =

 0

v√
2

 (2.96)

are SU(2)L×U(1)Y gauge invariant. After the SSB, the mass of electron is given by me = gev/
√

2.

It is noticed that the value of v is known but that of ge is unconstrained and can be put in by hand.

Similarly, we obtain the masses of muon, mµ = gµv/
√

2, and tau, mτ = gτv/
√

2. Again, gµ and gτ

are free parameters and cannot be predicted by the SM. We will get more discussions on leptons

masses in the next chapter.

Quarks likewise acquire their masses from the SSB of the gauge-invariant interactions

Lquark = gdq̄LΦdR + guq̄LΦ̃uR + h.c. (2.97)

where qL = (uL, dL)T and Φ̃ = iτ2Φ∗. Mass terms have the form of (guv/
√

2) for up-type quarks

(u, c, t) and (gdv/
√

2) for down-type quarks (d, s, b). The fact that values of gu, gd, ... cannot be

measured results in no prediction of quark masses. Additionally, gauge invariance allows extra mass

terms such as leLΦµR, leLΦτR, lµLΦeR, ... Hence, in general we can construct the mass matrix for

the up- and down-quark sectors as

ψ̄uMUψu =
v√
2
· ψ̄u


guu guc gut

gcu gcc gct

gtu gtc gtt

 ψu, (2.98)
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and

ψ̄dMDψd =
v√
2
· ψ̄d


gdd gds gdb

gsd gss gsb

gbd gbs gbb

 ψd. (2.99)

Here we define ψu ≡ (u c t)T and ψd ≡ (d s b)T . The mass matrices MU and MD can be

complex and non-hermitian. Therefore, we diagonalize each of them using two unitary matrices to

obtain eigenvalues as

U †u,LMUUu,R = MU,diag, (2.100)

U †d,LMDUd,R = MD,diag, (2.101)

Taking the W coupling from Eq. (2.24) with the above notations we have

ψ̄′u,LU
†
u,LγµUd,Lψ

′
d,L = ψ̄′u,LVCKMγµψ

′
d,L (2.102)

where ψ′u,L = U †u,Lψu,L, ψ′d,L = U †d,Lψd,L and VCKM ≡ U †u,LUd,L which is well-known as the Cabibbo-

Kobayashi-Masakawa (CKM) matrix. We will go into details of the CKM matrix in the next

section because it contains important information on the strength of flavor-changing in the quark

sector.

2.4.3 CKM matrix for quark sector

The CKM matrix is generalized from the Cabibbo matrix [18] by Kobayashi and Masakawa

in 1973 [19,20]. It describes the mixings between the three quark families in the SM and therefore,

has the form of a 3× 3 matrix

VCKM =


Vdd Vds Vdb

Vsd Vss Vsb

Vbd Vbs Vbb

 . (2.103)
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In general, the matrix VCKM can have complex elements and is a unitary matrix with 9 parameters.

They are 3 rotational angles called Cabibbo angles [18] and 6 phases. However, 5 phases can be

removed by making phases rotations of quark fields as

qkL → eiαkqkL. (2.104)

Therefore, VCKM for 3 families has 3 mixing angles and 1 phase. One can parametrize VCKM

in many different ways but we found such a standard parametrization [21] as follows would be

sufficient.

VCKM =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.105)

where sij = sin θij , cij = cos θij , θij ∈ [0, π/2] and δ is the phase responsible for all CP -violating

phenomena in flavor-changing processes in the SM. Because of such a hierarchy in angles, i.e.

s12 � s23 � s13, one can set λ ≡ s12 and use the Wolfenstein parametrization [21,22]

VCKM,W =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (2.106)

in which A, ρ, η are real parameters of O(1). The CKM matrix elements play an important role

in the SM, so it is important to determine them precisely. Let us summarize the current status of

the CKM matrix [21].

(1) |Vud| ' 1 − λ2/2 = 0.97417 ± 0.00021 from superallowed 0+ → 0+ nuclear beta decays or

using pion decay by shooting a proton beam into a target.
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(2) |Vus| ' λ = 0.2248 ± 0.0006 from kaon decays and the ratio of the kaon and pion decay

constants.

(3) |Vcd| = 0.220 ± 0.005 from semileptonic charm decays, leptonic decays and neutrino scat-

tering data.

(4) |Vcs| = 0.995± 0.016 from semileptonic D or leptonic Ds decays.

(5) |Vcb| = (40.5± 1.5)× 10−3 from exclusive and inclusive semileptonic decays of B mesons to

charm.

(6) |Vub| = (4.09 ± 0.39) × 10−3 from B → Xulν̄ decays. However there are many theoretical

uncertainties in hadronic matrix elements.

(7) |Vtd| = (8.2± 0.6)× 10−3, |Vub| = (40.0± 2.7)× 10−3

from B − B̄ oscillations at loop-levels which are either box diagrams with top quarks or

loop-mediated rare K and B decays.

(8) |Vtb| = 1.009±0.031 from top decays t→Wb and t→Wq of the CDF and DØ experiments.

Using the prescription of Refs. [23–25] gives

λ = 0.22496± 0.00048, A = 0.823± 0.013, (2.107)

ρ̄ = 0.141± 0.019, η̄ = 0.349± 0.012.

The fit results in the numerical form of the CKM matrix

VCKM =


0.97434+0.00011

−0.00012 0.22506± 0.00050 0.00357± 0.00015

0.22492± 0.00050 0.97351± 0.00013 0.0411± 0.0013

0.00875+0.00032
−0.00033 0.0403± 0.0013 0.99915± 0.00005

 . (2.108)

Measuring the phase of the CKM matrix is crucial in the study of the CP violation. However we

will not go into the details of the measurement as the CP phase is not the focus of this dissertation.
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In the next chapter we will discuss the details of a lepton mixing matrix that is analogous to the

CKM matrix of quark sector.

2.5 Standard Model: Limitations and Challenges

Before closing this chapter let us summarize what we have learned so far about the SM. This

“renormalizable” theory has been proven in describing the three fundamental forces: electromag-

netic, weak and strong forces which form the gauge group SU(3)C × SU(2)L ×U(1)Y . Under such

a local symmetry, the Higgs mechanism arose to generate fermion and gauge boson masses. SM

has governed many experimental designs and been thoroughly tested at various experiments.

Even though the SM was very successful theory to describe the fundamental particles and

interactions, it is facing some challenges and limitations. Several of them are highlighted as follows.

• First of all, the SM does predict the existence of fermions and gauge bosons but cannot

adequately explain their observed masses as well as the mass hierarchy. Therefore one

needs inputs from experiments and some additional theories.

• In the SM, neutrinos have exactly zero mass. Neutrinos’ features include three neutrinos

belonging to three lepton families, conserved lepton number, distinguishable neutrinos and

antineutrinos in the sense that all neutrinos are left-handed and all antineutrinos are right-

handed. However, experimental data from neutrino oscillations have shown us that at least

two of three neutrinos have tiny but non-zero masses. Moreover, the origin of neutrino

masses remains mysterious.

• SM cannot predict flavor violating processes such as µ→ eγ or µ− e conversion.

• SM cannot answer questions related to dark matter and dark energy constituting 95.1%

of total mass - energy content of the Universe: What are they? What is the cause of the
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observed accelerated expansion of the Universe? etc.

Regarding the above challenges, we now have an urge for taking further steps into physics Beyond

the Standard Model. Next chapter will provide us details on evidences for the new physics which

are neutrino “oscillations”, masses and mixings. They will serve as a base for our research work

presented in the following chapters.



Chapter 3

Neutrinos

Neutrinos are subatomic particles produced by the decay of radioactive elements and are

elementary particles. The name “neutrino” meaning “little neutron” in Italian tells us that a

neutrino carries no charge and therefore, only undergoes weak force and gravity. Neutrinos are

also very elusive due to the fact that they hardly interact with matters when traveling across the

Universe. There are some interesting facts about neutrinos that people may not know. Every

second about 65 billion neutrinos pass through just 1 cm2 of area on the Earth. Surprisingly, we

feel nothing about such a huge amount of neutrinos traversing our body. In order to stop a beam

of neutrinos, one will need a wall of lead of 1.6 light years thickness. Until now, there is about 330

neutrinos/cm3 left over from the Big Bang which happened billions years ago. These are just a

few descriptions of the neutrino and we will learn more about this tiny creature in the following

sections.

3.1 Brief history of neutrinos

It started with the β-decay: AZ → AZ+1 +e− in which electron’s energy is not equal to mass

difference between AZ and AZ+1. In order to preserve energy-momentum in the β-decay, Wolfgang

Pauli proposed the existence of a light neutral particle of spin 1/2 in β-decay, called it “neutron” in

1930. However 2 years later James Chadwick discovered the real neutron: the proton-like neutral
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hadron so this made Pauli’s particle become unnamed for a while. In 1934, Enrico Fermi renamed

Pauli’s particle the “neutrino”. He published a successful theory which established the existence

of the neutrino but the particle itself remained elusive which might never be detected. From this

moment neutrinos come into real life and promote several experiments in a discovery of these tiny

particles.

In 1956, the electron neutrino, νe, had finally been observed. It came from the work of

two scientists Fred Reines and Clyde Cowan [26, 27] on designing a detector which incorporated

Cadmium (Cd) and was located underground in Savannah River, South Carolina. They used the

inverse beta decay

ν̄e + p→ e+ + n . (3.1)

This reaction is followed by a positron-electron annihilation to create two gamma rays. On the

other hand the neutron is captured by a Cd nucleus, producing another gamma ray when the

excited nucleus releases energy. In 1962, the second type of neutrino called muon neutrino, νµ, was

discovered in an accelerator at Brookhaven by Leon Lederman, Mel Schwartz and Jack Steinberger

[28]. It led to a Nobel prize in 1988. In 1975, with the discovery of the third charged lepton, τ , by

Marty Perl [29] (Nobel Prize 1995) many physicists postulated the idea of having a third neutrino

called ντ which was finally observed after 25 years in 2000 at Fermilab [30,31].

3.2 Neutrino Oscillations

In this section, I will briefly show you evidences of neutrino oscillations which have resulted

in the 2015 Nobel Prize in Physics [33] for Takaaki Kajita and Arthur B. McDonald. The discovery

of these oscillations shows that neutrinos have mass and the neutrino sector, therefore, has had

to be completely reconsidered. Two different causalities were interpreted: Solar Neutrino Problem

and Atmospheric Neutrino Anomaly.
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Figure 3.1: Solar neutrino observations

The solar neutrino problem started with Ray Davis’s Chlorine 37 solar neutrino experiment

[34,35] in which the electron neutrino flux from the Sun was only about one third of that expected

from the predictions of the standard solar model (SSM). In late 1980s, Kamiokande-II [36] observed

46(±15)% of the expected flux of greater than 9.3 MeV high energy solar neutrino. A few years

later, the GALLEX and SAGE [37] saw about 62(±10)% of SSM prediction for energies greater than

0.233 MeV. If we believe in experiment results, the candidate explanations for these observations

could be either there is something wrong with the solar model or there is something wrong with

the neutrinos. This is the first hint of neutrino oscillations.

Meanwhile, a so-called atmospheric neutrino anomaly [38,39] was raised by measuring atmo-

spheric neutrinos produced by cosmic rays striking nuclei in the Earth atmosphere. As a result,

hadronic showers typically containing π mesons are produced. These mesons then decay to other
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lighter and more stable particles, for example,

π+ → µ+ + νµ (3.2)

µ+ → e+ + νe + ν̄µ. (3.3)

The ratio of number of muon neutrinos to that of electron neutrinos that we expect to see at the

detector is 2-to-1. However, we observed this ratio to be 1.3-to-1 at the Super-Kamiokande in

1998 [40]. Since the observed ratio was deviated from the predicted one, it was a good indicator

for neutrino oscillations. The results of the Super-Kamiokande were marked as “the discovery of

neutrino oscillations”.

In order to understand how one type of neutrinos can change into another one, we describe

quantum mechanically the oscillation of one quantum state into another. Although neutrino is in a

well-defined flavor state when it is produced and when it interacts, it is not in a well-defined flavor

state when it travels between the two. In fact, one flavor state of neutrinos is a mixture of three

mass states with definite masses. Therefore, neutrino oscillations arise from a mixture between the

flavor and mass eigenstates of neutrinos.

|να〉 =
∑
i

U leptonαi |νi〉 (3.4)

where |να〉 is flavor eigenstate. α = e, µ, τ , |νi〉 is mass eigenstate. i = 1, 2, 3, and U leptonαi is the

lepton mixing matrix or the well-known Pontecorvo-Maki-Nakagawa-Sakata matrix which will be

discussed later in section 3.3. Assume that a neutrino is born with flavor α at t = 0 so Eq. (3.4)

can be rewritten as

|να(0)〉 =
∑
i

U leptonαi |νi(0)〉 (3.5)

In the rest frame of νi and at a later time t = τi we have

|νi(τi)〉 = e−imiτi〈νi(0)〉 . (3.6)

On the other hand, if one considers the process in the lab frame then

e−imiτi = e−i(Eit−piL) ' e−i(Ei−pi)L , (3.7)



39

where t ' L for the case of extremely relativistic neutrinos as we are investigating. It is noticed

that να produced with the definite 3-momentum ~p implies

Ei ' pi +
mi

2

2pi
. (3.8)

Hence

e−imiτi ' e−i(mi
2/2p)L ' e−i(mi

2/2E)L . (3.9)

After traveling a distance L Eq. (3.5) tells us

|να(L)〉 '
∑
i

U leptonαi e−i(mi
2/2E)L|νi〉 (3.10)

To clearly see how να transforms into another flavor neutrino νβ we write the mass eigenstate νi in

terms of the flavor eigenstate νβ as

|νi〉 =
∑
β

U leptonβi

∗
|νβ〉 . (3.11)

Eq. (3.10) now becomes

|να(L)〉 '
∑
β

∑
i

(
U lαi e

−i(mi2/2E)L U lβi
∗) |νβ〉 . (3.12)

where ‘l’ stands for ‘lepton’. The probability for a neutrino born with flavor α to “transform” into

another neutrino with flavor β after traveling a distance L is given by

Pνα→νβ = |〈 νβ | να(L) 〉|2 (3.13)

=
∑

i, j Uαi U
∗
βi U

∗
αj Uβj e

−i
m2
i−m

2
j

2E
L

Let us examine an example for 2-flavor neutrino oscillation in which flavor eigenstates are νe, νµ

and mass eigenstates are ν1, ν2 having masses of m1, m2.

|νe〉 = cos θ|ν1〉+ sin θ|ν2〉 (3.14)

|νµ〉 = − sin θ|ν1〉+ cos θ|ν2〉 (3.15)

For a neutrino, e.g., νe carrying an energy, E, by the time it reaches the detector which is a distance

L away from the source its quantum state becomes

|νe(L)〉 = cos θe−im
2
1L/2E |ν1〉+ sin θe−im

2
2L/2E |ν2〉 (3.16)
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By writing the mass eigenstates ν1, ν2 in terms of the flavor νµ

|ν1〉 = cos θ|νe〉 − sin θ|νµ〉 , (3.17)

|ν2〉 = sin θ|νe〉+ cos θ|νµ〉 , (3.18)

the probability for a neutrino born with flavor νe to change into one with flavor νµ after traveling

a distance L is expressed as

P (νe → νµ) = |〈 νµ | νe(L) 〉|2

=
1

2
sin22θ

(
1− cos∆m2

21L

2E

)
= sin22θ · sin2

(
∆m2

21L

4E

)
(3.19)

where ∆m2
21 = m2

2 −m2
1. It is noticed that there are two unknowns: the angle θ and the mass-

squared difference ∆m2
21 that present neutrino oscillation phenomenon. Therefore, if we can mea-

sure the neutrino oscillation probability as a function of the neutrino’s traveling distance L or the

neutrino’s energy E, it is possible to extract information on neutrino masses and mixings. It is

required in Eq. (3.19) that the minimum value of a generic mass-squared difference ∆m2 is about

2E/L. Therefore, for experiments searching for neutrino oscillations, this requirement is served as

the sensitivity of the experiments. Table (3.1) shows details on several different neutrino oscillations

experiments [41].

Table 3.1: Sensitivity of different neutrino oscillation experiments

Source Experiments Type of ν Ē( MeV) L(km) min(∆m2)

Reactor Chooz, Daya Bay, ν̄e ∼ 1 1 ∼ 10−3

RENO, Double Chooz

Reactor KamLAND ν̄e ∼ 1 100 ∼ 10−5

Accelerator past νµ, ν̄µ ∼ 103 1 ∼ 1

Accelerator K2K, MINOS, T2K, νµ, ν̄µ ∼ 103 1000 ∼ 10−3

OPERA, NOνA

Atmospheric ν’s Super-K, MINOS, IceCube νµ,e, ν̄µ,e ∼ 103 104 ∼ 10−4

Sun νe ∼ 1 1.5× 108 ∼ 10−11
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3.3 Neutrino masses and mixings

As discussed in section 3.2, if neutrinos have mass and therefore are able to change their fla-

vors, both of the atmospheric and solar neutrino anomalies could be revealed. This is because muon

neutrinos from the atmosphere which might oscillate into tau neutrinos would be experimentally

undetectable. Similarly, if electron neutrinos from the Sun can change into muon or tau neutrinos,

they will interact at a significantly lower rate so one cannot detect them.

Recall the Eq. (3.4) in the previous section, we will now discuss on how to achieve the lepton

mixing matrix. Let us consider the following charged current interaction between leptons and the

W+ boson

LCC = glν̄
0
LγµL

0
LW

µ+ + h.c. (3.20)

where ν0
L =

(
ν0
eL, ν

0
µL, ν

0
τL

)T
and L0

L =
(
e0
L, µ

0
L, τ

0
L

)T
are gauge eigenstates whereas νL =(

ν0
1L, ν

0
2L, ν

0
3L

)T
and LL = (eL, µL, τL)T are mass eigenstates. A relation between gauge and

mass eigenstates is established as

L0
L = UlLLL , ν0

L = UνLνL . (3.21)

Therefore, the charged current interaction can be written as

Lc = glν̄Lγµ U
−1
νL
UlL LLW

µ+ + h.c. (3.22)

= glν̄Lγµ U
lepton LLW

µ+ (3.23)

where U lepton = U−1
νL
UlL is called the lepton mixing matrix. It is noticed that U lepton is a unitary

matrix, just like VCKM . Generally, matrix elements of U lepton are expected to be complex.

Assuming that there are 3-flavor neutrino mixing in vacuum, one can describe all enthralling

neutrino oscillation data. The decay width of the Z-boson data tells us that only 3 light flavor

neutrinos coupled to Z [42]. If there exists massive neutrinos their masses must be above MZ/2

in order to avoid the Z from decaying into 2 ν’s. The currently published data from Planck [43]
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has shown that at least 3 of the neutrinos, denoted as ν1, ν2, ν3 in Eq. (3.4), must be light with

masses . 0.23 eV and must have different real and positive masses, m1 6= m2 6= m3. Within the

framework of 3-neutrino oscillations, the neutrino flavor eigenstates νe, νµ, and ντ are related to

the neutrino mass eigenstates ν1, ν2, and ν3 by the U lepton as
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




ν1

ν2

ν3

 . (3.24)

This matrix U lepton was first introduced in 1962 by Z. Maki, M. Nakagawa and S. Sakata [44] to

support the idea of neutrino oscillations predicted by B. Pontecorvo in 1967 [45, 46]. It was then

named after the founders as PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix. Henceforth we

will use a notation UPMNS to refer to the matrix.

In general, if there are n flavor neutrinos and n massive neutrinos then the UPMNS is a

n× n complex matrix having 2n2 parameters. Since UPMNS is unitary the number of parameters

is reduced to n2 which is composed of n(n− 1)/2 Euler angles and n(n+ 1)/2 phases. If neutrinos

are so-called Dirac particles, i.e. particles and anti-particles are distinct, one can absorb 2n − 1

phases leaving (n− 1)(n− 2)/2 independent phases. For n = 3, UPMNS can be parameterized by

3 Euler angles and 1 “ Dirac phase” as follows

UPMNS = V =


c12 c13 s12 c13 s13 e

−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13

s12 s23 − c12 c23 s13 e
iδ −c12 s23 − s12 c23 s13 e

iδ c23 c13

 (3.25)

where sij ≡ sin(θij), cij ≡ cos(θij), θij =
[
0 , π

2

]
, δ = [0 , 2π] is the Dirac phase. However if

neutrinos have so-called Majorana nature, i.e. neutrinos are their own anti-particles, then UPMNS

contains n(n + 1)/2 phases because massive Majorana neutrino fields cannot “absorb” phases as

opposed to Dirac fields. In the case of n = 3 we now have additional 2 “Majorana phases” and

UPMNS can be cast in the product

UPMNS = V · P (3.26)
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where

P =


1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

 (3.27)

and α21, α31 are Majorana phases. We will get to further details on Dirac and Majorana neutrinos

in the next section. The three θij angles are measured mainly with three types of experiments:

atmospheric neutrino mixing, solar neutrino mixing and reactor neutrino mixing.

Let us go back to the Super-Kamiokande experiment in 1998 [40] that raised the atmospheric

neutrino anomaly. Due to the fact that the observation of muon neutrinos yielded a significantly

smaller number than expected, the standard interpretation is that muon are oscillating into tau

neutrinos. The data can be well described by approximately maximal atmospheric mixing |Uµ3| ≈

|Uτ3| ≈ 1/
√

2. This corresponds to

sin θ23 ≈ 1/
√

2 or θ23 ≈ 45o (3.28)

The angle θ23 is also known as the atmospheric mixing angle. Moreover, we can identify the heavy

atmospheric neutrino of mass m3 as being approximately

ν3 ≈
νµ + ντ√

2
(3.29)

Other experiments such as MINOS [47,48] and IceCube also study atmospheric neutrinos and their

data are included in the global fit which will be listed in Table (3.2).

Solar neutrino mixing experiments involve measurements of the angle θ12 or “solar mixing

angle”. The standard interpretation is that the electron neutrinos νe disappear on the way to

detectors on Earth because they oscillates into muon or tau neutrinos. The trimaximal solar

mixing |Ue2| ≈ |Uµ2| ≈ |Uτ2| ≈ 1/
√

3 implies that

sin θ12 ≈ 1/
√

3 (3.30)
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or θ12 ≈ 35o. In consistent with the mixing, a solar neutrino of mass m2 was given approximately

by

ν2 ≈
νe + νµ − ντ√

3
. (3.31)

SNO [49] and KamLAND [50] were the other two main experiments studying solar neutrinos.

The last neutrino mixing angle θ13 was established to be non-zero by reactor experiments

Double Chooz [51], Daya Bay [52], and RENO [53]. The measured value of θ13 was sufficiently large

so it widens the door to look into and measure the unknown CP violating phase δ in the UPMNS

and neutrino masses. The latest results were well-reported:

Double Chooz: sin2 2θ13 = 0.090+0.032
−0.029 , (3.32)

Daya Bay: sin2 2θ13 = 0.084± 0.005 , (3.33)

RENO: sin2 2θ13 = 0.082± 0.009± 0.006 . (3.34)

This corresponds to

|Ue3| = sin θ13 ≈ 0.15, (3.35)

or a reactor angle θ13 ≈ 8.5o.

Because the oscillation of neutrinos can only tell us about the mass-squared difference so the

order and the absolute values of m1, m2, and m3 on the mass scale remain unknown. This brings

up the well-known neutrino mass hierarchy problem or to be more friendly, neutrino mass ordering.

In the case of 3-neutrino mixing there are two mass-squared difference which are ∆m2
21 6= 0 and

∆m2
31 6= 0. As a convention we assume that m1 < m2, so that ∆m2

21 > 0. Therefore it breaks down

to two different scenarios:

• Normal Hierarchy: m1 < m2 < m3

• Inverted Hierarchy: m3 < m1 < m2
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At this point, Fig. (3.2) will provide a brief summary of neutrino mass hierarchy in combination with

the information about neutrino masses m1, m2, and m3 resulting from neutrino mixing experiments.

The recent global fit values of neutrino oscillation parameters are given in Table (3.2).

Table 3.2: Mixing parameters from global three-neutrino oscillation data taken from [54, 55]. The
definition of ∆m2 used is: ∆m2 = m2

3 −
(
m2

2 +m1
1

)
/2. Thus, ∆m2 = ∆m2

31 − ∆m2
21/2 > 0, if

m1 < m2 < m3 (normal hierarchy), and ∆m2 = ∆m2
32 + ∆m2

21/2 < 0 for m3 < m1 < m2 (inverted
hierarchy).

Mixing Parameters Normal Hierarchy Inverted Hierarchy

sin2 θ12 0.308± 0.017 0.308± 0.017

sin2 θ23 0.437+0.033
−0.023 0.455+0.139

−0.031

sin2 θ13 0.0234+0.0020
−0.0019 0.024+0.0019

−0.0022

δ/π 1.39+0.38
−0.27 1.31+0.29

−0.33

∆m2
21 = m2

2 −m2
1 (7.54+0.26

−0.22)× 10−5eV2 (7.54+0.26
−0.22)× 10−5eV2

∆m2 = |m2
3 − (m2

1 +m2
2)/2| (2.43± 0.06)× 10−3eV2 (2.38± 0.06)× 10−3eV2

Despite the fact that we cannot know exactly the absolute neutrino masses we have enough

information to constrain the neutrino mass. Cosmological results tell us that the sum of all neutrino

masses has to be less than 0.23 eV [43]. In addition, from neutrino oscillation experiments we learn

that the largest mass-squared difference is ∆m2
atm ≈ 2.4 × 10−3 eV2 [41]. One implies that the

heaviest neutrinos will have mass mν & 4.9 × 10−2 eV. Therefore, if we combine the results from

cosmology and neutrino oscillation experiments one can set a constraint on the mass of a heaviest

neutrino to be

4.9× 10−2 eV . mheaviest
ν . 0.23 eV (3.36)
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Figure 3.2: While m2
2 > m2

1, it is presently unknown whether m2
3 is heavier or lighter than the other

two, referred to as normal (left panel) or inverted (right panel) mass squared ordering. Moreover
the value of the lightest neutrino mass is currently unknown indicating by a question mark (?) in
each case.

3.4 Dirac and Majorana Neutrino Masses

In this section, we discuss the nature of massive neutrinos which will have very crucial impact

on the understanding of the origin of neutrino masses and mixings. For a fermion field, we have a

free Lagrangian

L = iψ̄γµ∂µψ −mψ̄ψ (3.37)

It is well-known that the term mψ̄ψ is the mass of the fermion. However, Lorentz invariance allows

another kind of mass terms which is ψTC−1ψ, where C is the charge conjugate matrix. Under

ψ → eiαψ transformation or a so-called U(1)em symmetry, the first mass term is invariant whereas

the second one is not. We call the first mass term Dirac mass and the second one Majorana mass.

Charged fermions including leptons (e, µ, τ) and quarks (u, d, c, s, t, b) must be Dirac fermions

because they have non-zero charges. However with an electrically neutral particle as the neutrino,
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U(1)em symmetry does not force it to be Dirac. It is generally possible that neutrinos can be either

Dirac or Majorana type and therefore possess Dirac or Majorana masses.

3.4.1 Dirac neutrino mass

If neutrinos are Dirac type then neutrinos and antineutrinos are distinctive. In this case, they

carry different lepton numbers i.e. L(ν) = 1 and L(ν̄) = −1. Therefore, the total lepton number

L = Le + Lµ + Lτ is a conserved quantity in particle interactions. Dirac neutrino masses are

obtained as similarly as the SM quark and charged lepton masses. Once we add the right-handed

neutrino νR to the SM, we can write a gauge-invariant Yukawa coupling to the SM Higgs field Φ

as in an interaction term

gνe l̄eLΦ̃νeR + h.c. (3.38)

where leL =

 νeL

eL

, Φ̃ = iτ2Φ∗ =

 φ0∗

−φ−

 and 〈Φ̃〉 =

 v√
2

0

. The Dirac neutrino mass

term, therefore, can be cast in the form

gνe
v√
2
ν̄eLνeR (3.39)

and electron neutrino obtains its Dirac mass

mDirac
νe = gνe

v√
2

(3.40)

Similarly we can get Dirac masses for other neutrinos. If the Dirac mass is the only source of mass

one can deduce the Yukawa coupling gν < O
(
10−11

)
since the mass of neutrinos is about O(eV )

and v ≈ 246 GeV. Although the value of Yukawa coupling is mathematically acceptable, it does

not make sense in Physics because such a small number is highly unnatural. Nevertheless it is

possible to have gν ∼ O
(
10−11

)
set in dynamically, for example, by a symmetry in which gν = 0

at the tree level, or through new concepts such as extra spatial dimensions.
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3.4.2 Majorana neutrino mass

If neutrinos are their own anti-particles, it is said to be Majorana type neutrinos. It is noticed

that if the fermion field ψ satisfied the condition of being self charge conjugate, i.e.

ψ = ψc ≡ Cψ̄T (3.41)

then the mass term ψ̄ψ is driven to the mass term ψTC−1ψ. Since the neutrino and antineutrino

are now the same particle, they have the same lepton number and therefore, there are no conserved

lepton numbers in this case. In fact Majorana masses violate total lepton number conservation by

two units ∆L = 2. One can write a Majorana mass term of the form

MR νTRCνR (3.42)

After all right-handed neutrinos are gauge singlets and, hence, nothing prevents them from getting

(large) Majorana mass term. One can generate Majorana mass via the interaction

yM∆lLlL (3.43)

where lL are lepton doublets and ∆ is a Higgs triplet under SU(2)L. Another way could be the

coupling between 2 lepton doublets and 2 Higgs doublets, H, in which Majorana neutrino mass can

result from some additional dimension-5 operators [46,56]

1

2
HlTLκHlL. (3.44)

Here κ has the dimension [mass]−1.

At this moment, the nature of neutrino mass has not been revealed yet. Experiments of the

flavor neutrino oscillations cannot tell whether neutrinos are Dirac or Majorana fermions. The

only possibility is to investigate the total lepton number violating processes through which we can

address the question of the Majorana nature of neutrinos. Until now, the neutrinoless double beta

decay (0νββ) has been the most advanced experimentally and theoretically [57–59]. This process
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is written in a simple form

(A,Z)→ (A,Z + 2) + e− + e− (3.45)

and described by a Feynman diagram at the quark level as shown in Fig. (3.3). If there is a positive

Figure 3.3: Diagram of the 0νββ process due to the exchange of massive Majorana neutrinos in
n+ n→ p+ p+ 2e, here denoted generically by νM .

signal of the above process it will lead to an establishment of Majorana neutrinos, although it will

not be easy to determine the absolute mass of the neutrino. Further experiments are needed to

unravel the mysteries of the neutrinos:

• The origin of neutrino masses: why they are so light?

• Are neutrinos Dirac or Majorana?

• Is there CP Violation in the neutrino sector?

• The origin of mass hierarchy and mixings?

Apparently, SM cannot give us satisfactory answers for these open questions that puzzle scientists

for years. Thus one must go beyond the edge and strive for New Physics to explain observed

evidences for neutrino masses. Whilst many theoretical attempts lead to small neutrino masses of

both Majorana and Dirac types, we will focus on the possibility that there is a heavy right-handed
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neutrino resulting in tiny masses for light neutrinos. A celebrated example of such a mechanism is

the “Seesaw mechanism” which will be discussed in the following section.

3.5 Seesaw mechanism of neutrino masses

In the theory of particle physics, the seesaw mechanism generically models the observed

neutrino masses ∼ O(eV ) which are millions of times lighter than quarks and charged leptons

masses. In this section we will briefly review three popular types of models called Type-I, Type-II,

and Type-III Seesaw. Each of them concerns different extensions of the SM but has the same

goal which is to generate two mass scales - one heavier than the other. The simplest one is type-I

seesaw in which right-handed neutrinos are added and act as singlets under SU(2). The type-II

seesaw uses a scalar triplet Higgs to couple with a fermion bilinear. The last one, type-III seesaw,

achieves its goal by adding one real fermion triplet to the SM. The detailed discussion mainly

follows [46,60].

3.5.1 Type-I Seesaw

By introducing right-handed neutrino νR for each family of fermions, we now have both of

Dirac and Majorana mass terms as seen in Eq. (3.39) and (3.42)

L = mD (ν̄LνR + ν̄RνL) +MR νTRCνR + h.c. (3.46)

We can set ν ≡ νL and N ≡ Cν∗R and obtain the mass matrix for ν and N as

(
νT NT

)  0 mD

mT
D MR

C

 ν

N

 (3.47)

Several scenarios can be considered in this case:

• MR � mD: neutrinos are essentially Dirac.
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• MR ' mD: neutrinos are combination of Dirac and Majorana types.

• MR � mD: neutrinos are essentially Majorana.

It would be interesting to consider the scenario in which MR � mD because MR can be larger

than the electroweak scale ΛEW . Diagonalizing the neutrino mass matrix in Eq. (3.47) gives us

eigenvalues

MN = MR (large mass scale), (3.48)

Mν = −mT
DM

−1
R mD (small mass scale).

As an example, in one family if we take mD ∼MW (mass of the W boson) and MR ∼MGUT then

mν ∼ 10−3 eV which can account for solar neutrino masses. Having said that such νR’s are too

heavy so one can not produce and detect the νR’s at the LHC, or the seesaw mechanism is not

testable. It is also noticed that the number of added νR’s determines the number of massive light

neutrinos. Therefore, we must add, at least, two νR’s to compensate for both solar and atmospheric

neutrino mass differences. The diagram shown in Fig. (3.4) gives us a clearer visualization of the

type-I seesaw mechanism.

Figure 3.4: Diagrammatic representation for type-I seesaw mechanism.
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3.5.2 Type-II Seesaw

Another possibility to generate two mass scales is adding a SU(2)L triplet Higgs with Y/2 = 1

which plays the same role as the νR’s in the type-I seesaw. The Higgs is defined as

∆L ≡
1√
2
~∆L · ~τ =

 ∆+/
√

2 ∆++

∆0 −∆+/
√

2

 (3.49)

where ~∆L =
(
∆++,∆+,∆0

)
and ~τ =

(
τ+ ≡ σ1 + iσ2√

2
, τ0 ≡ σ3, τ

− ≡ σ1 − iσ2√
2

)
. Here σ1,2,3 are

Pauli matrices. From the Lagrangian

L = g∆l
T
LCσ2∆LlL + h.c. (3.50)

νL’s acquire Majorana masses mν = g∆v∆ through the VEV of the neutral component of the scalar

triplet:

〈∆L〉 =

 0 0

v∆ 0

 . (3.51)

The following cubic scalar potential

∆V = µ∆ΦTσ2∆∗LΦ +M2
∆Tr∆

†
L∆L + ... (3.52)

results in the VEV of the scalar Higgs of the form 〈∆L〉 '
µ∆v

2

M2
∆

. It is noticed that the VEV is

induced by the term linear in ∆L in the scalar potential and is highly suppressed if M∆ � v causing

neutrinos are naturally light in this case. Therefore, one does not need to fine-tune the couplings

g∆ or µ∆ in order to achieve the tiny neutrino masses. The diagram in Fig. (3.5) will represent the

idea of type-II seesaw mechanism in such a vivid way.

3.5.3 Type-III Seesaw

As far as we go, type-I and type-II seesaw have done a good job on explaining the light

neutrino masses with minimal extensions of the SM. One may look back the Yukawa interaction
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Figure 3.5: Diagrammatic representation for type-II seesaw mechanism.

(3.46) for right-handed neutrinos in type-I seesaw and realize that we can do exactly the same thing

for a new fermion triplet (Y/2 = 0) ~TF = (TF1, TF2, TF3) within one family. As discussed in the

type-I seesaw, we will need at least two fermion triplets to provide two massive light neutrinos. A

similar Feynman diagram as in Fig. (3.6) will be made for such new fermions whose Lagrangian

(for one generation as an example) is

L = gT l
TC~τ · ~TFΦ +MT

~T TF C ~TF (3.53)

which gives the mass matrix for neutrino 0 gT v/
√

2

gTT v/
√

2 MT

 (3.54)

For MT � v we, again, obtain the light neutrino mass after a SU(2)×U(1) symmetry breaking in

the form of

mν = −gTT
1

MT
gT v

2. (3.55)

At this point, a few remarks are in order:

• Under the assumption of single type of new particles added to the SM, three types of seesaw

mechanism satisfy all possibilities of replicating dimension-5 operator as in Eq. (3.44).

• If the new scales MR, M∆, and MT are huge and not accessible to experiments then it is

hard to test these seesaw mechanisms.
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Figure 3.6: Diagrammatic representation for type-III seesaw mechanism.

As a result, it motivated many theorists to step in and build models in order to have Majorana

neutrino mass and seesaw mechanism accessible at the accelerators. One of those will be introduced

in next section.

3.6 Left-Right symmetric model

A more elegant approach to the neutrino Majorana mass term is the so-called Left-Right

(L-R) symmetric model [61, 62] constructed under SU(2)L × SU(2)R × U(1)B−L gauge group. At

some energy scale vR, the SU(2)R × U(1)B−L gauge symmetry is spontaneously broken down to

U(1)Y whose generators are now

Y = T3R + YB−L and Q = T3L + Y . (3.56)

The L-R symmetric model has the right-handed neutrinos as a part of SU(2)R doublets along with

the right-handed charged leptons as oppose to the type-I seesaw mechanism. Notice that νR’s

remain singlets under SU(2)L. The particle content as well as particles’ quantum numbers under

the SU(2)L × SU(2)R × U(1)B−L gauge group are listed as follows
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~ Fermions (in generic symbols)

lL =

 νL

eL

 = (2, 1, YB−L = −1/2) , (3.57)

lR =

 νR

eR

 = (1, 2, YB−L = −1/2) , (3.58)

qL =

 uL

dL

 = (2, 1, YB−L = 1/6) , (3.59)

qR =

 uR

dR

 = (1, 2, YB−L = 1/6) . (3.60)

~ Higgs fields

Φ =

 φ0
1 φ+

2

φ−1 φ0
2

 = (2, 2, YB−L = 0) , (3.61)

∆L,R =

 ∆+
L,R√
2

∆++
L,R

∆0
L,R −∆+

L,R√
2

 , (3.62)

where ∆L = (3, 1, YB−L = 1) , ∆R = (1, 3, YB−L = 1) . (3.63)

For the purpose of illustrating Dirac and Majorana mass terms of right-handed neutrinos, we

concentrate on the lepton sector and skip ∆L. We have the VEVs

〈Φ〉 =

 κ 0

0 κ′

 , 〈∆R〉 =

 0 0

vR 0

 . (3.64)

Therefore from the Lagrangian

LL−R = h1 l̄L Φ lR + h2 l̄L Φ̃ lR + h.c. (3.65)

+ ig∆R
lTR σ2 τ2 ∆R lR + h.c.

We obtain the neutrino Majorana and Dirac mass terms of the forms (g∆R
vR)νTRσ2νR and (h1κ+

h2κ
′)
(
ν†LνR + ν†RνL

)
respectively.
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This model also extends the number of gauge bosons by W±R and ZR of the SU(2)R gauge

symmetry. So far, the breaking scale has had a lower bound of ΛEW = 246 GeV and no current

upper bound. One expects to validate this model by its primary signals ū+ d→ W−R → νR + l at

the LHC. Regarding these searches, the WR bosons have masses above ∼ 3 TeV.

3.7 Overall remarks

• Neutrino oscillation evidences from solar and atmospheric neutrino anomalies open a door

to new physics beyond the SM. There are, at least, two in three light neutrinos have tiny

but non-zero masses.

• Neutrino oscillations arise from a mixture between the flavor and mass eigenstates of neu-

trinos via the PMNS matrix.

• Until now, the nature of neutrinos which is Dirac or Majorana type remains unrevealed. If

ν is Dirac then why the coupling constant gν ≤ O(10−11). If ν is Majorana then the lighter

of the 2 states can be very light.

• Many theoretical models were built to explain the tininess of neutrino masses but so far

none of them have been validated.

• Although the seesaw mechanisms gain their theoretical recognitions when leading us to

small neutrino masses they involve very large-scale new particles beyond SM. Such particles

are too heavy to be produced and detected at the LHC or other colliders.



Chapter 4

The Minimal EW-νR Model

4.1 Motivation

The mystery of the origin of neutrino masses and mixings remains unrevealed despite the fact

that we had several mechanisms providing possible explanations for it. The seesaw mechanisms

that we have already reviewed in the previous chapter were the most successful ones. However, in

a general seesaw the right-handed neutrinos are singlets under SU(2)L ×U(1)Y and the Majorana

neutrino masses, MR can be of the order of Grand Unified Theory (GUT) mass scale which is

1015−16 GeV naturally. Such a huge mass will not be accessible at the colliders, e.g. the LHC, and

therefore the corresponding seesaw mechanism is not testable.

On the other hand the L-R symmetric model discussed previously has suggested a possibility

of producing and detecting the right-handed neutrinos at the LHC by making νR’s doublets under

an extended SU(2)R gauge group (still remain singlets under the SU(2)L). However the associated

WR gauge boson masses have been bounded from below at around 3 TeV [63].

The above facts give rise to the following questions

• Is it possible to make the seesaw testable?
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• Can MR be of the order of the electroweak scale, ΛEW ∼ 246 GeV so one could directly

look for its signatures at future colliders?

• Can we have things done by keeping the SM gauge group SU(3)C × SU(2)L × U(1)Y and

having no more forces added?

• Can neutrinos be non-sterile or fertile under SM gauge group?

In 2007, P.Q. Hung has proposed a so-called Electroweak-scale Right-handed Neutrino (EW-νR)

Model [64] which satisfied all of the above criteria. From that moment, it opens a new whole fertile

land for the study of neutrino.

The motivation of introducing mirror fermions in [64] was manifold. First of all, it is aesthet-

ically satisfactory to have parity restoration at a higher energy scale while the maximal parity vio-

lating interaction (V−A interaction) in SM can be emerged from spontaneous symmetry breaking.

This is one of the main reasons for various left-right symmetric models in the literature [114–117].

Secondly, electroweak phase transition is intrinsically non-perturbative so it is important to study

non-perturbative effects in SM by discretizing it on the lattice. We have learned from the no-go

theorem proved by Nielsen and Ninomiya [118] that the number of left-handed Weyl fields must be

equal to that of right-handed Weyl fields, coupled to the same chiral gauge fields. Since the SM is

chiral and only left-handed doublets coupled to W ’s, one cannot put SM on the lattice. Sophisti-

cated techniques like using Wilson fermion, Ginsparg-Wilson fermion, staggered fermion, or domain

wall fermion etc., which by violating at least one of the assumptions in the no-go theorem to get rid

of the unwanted species, are often employed to handle this problem in practice. For new physics

model builders, it is attractive to add mirror fermions to the SM which makes the theory becomes

vector-like at a higher scale and hence one can avoid the fermion doubling problem if formulating

on the lattice. Chiral gauge anomalies will then be cancelled automatically in this class of models.

The third motivation is the electroweak scale non-sterile right-handed neutrinos introduced in [64].

For each generation, the right-handed neutrino is introduced together with a right-handed heavy
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charged fermion partner to form a SM SU(2) doublet. Similarly a left-handed heavy mirror charged

lepton will be introduced for each right-handed SM charged lepton. Majorana masses can then be

given to these right-handed neutrinos via the vacuum expectation value (VEV) of a Higgs triplet

with hypercharge Y = 2 with mass at the electroweak scale, rather than the grand unification scale

in the usual scheme. Tiny Dirac masses can also be given via small VEVs of Higgs singlets with

Y = 0. This is the electroweak scale see-saw mechanism in mirror fermion model which is testable

at the LHC [74,119].

In the following sections we will first see how the EW-νR model was built step-by-step.

Secondly we will investigate a SSB of the SU(2)L × U(1)Y to U(1)EM in this model, resulting in

masses of fermions, especially that of Dirac and Majorana neutrinos. The last section will mainly

focus on phenomenological constraints of the EW-νR model.

4.2 Definition, gauge group, and particle content

EW-νR is a model in which the right-handed neutrinos νR have Majorana mass of O(ΛEW )

naturally and they are non-sterile under SU(2)L × U(1)Y . We are able to obtain such a seesaw

mechanism within the SM gauge group

GSM = SU(3)c × SU(2)L × U(1)Y (4.1)

by increasing its fermion as well as its Higgs content, all of which are listed below. In order to do

so we introduce and add a so-called “Mirror fermions”. The formation of mirror fermions follows

a “rule” in which for every SM left-handed doublets there is a corresponding right-handed mirror

doublet and for every SM right-handed singlet there is a corresponding left-handed mirror singlet.

Let us first start with building the particle content. We take, for example, the first generation
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of the lepton sector of the SM:

lL =

 νL

eL

 , eR , (4.2)

which are a SU(2)L doublet and singlet, respectively. We have learned from the interaction between

SM fermions and scalar doublet Φ that the product l̄LΦ or l̄LΦ̃ transforms as a singlet under SU(2)L.

On the other hand, the general seesaw mechanism tells us the νR is also a singlet of SU(2)L and,

therefore, can get a Dirac mass by Yukawa coupling to the above products. The down side of this,

again, is a huge Majorana mass of νR. Hence, this EW-νR model arranges νR into a doublet along

with a right-handed mirror lepton as

lMR =

 νR

eMR

 , eML , (4.3)

where the superscript ‘M ’ stands for ‘mirror fermions’. The charged left-handed singlet mirror

lepton, eML is the mirror counterpart of eR. It is emphasized that mirror leptons are totally different

from the ordinary SM leptons. They can have the same quantum numbers but not necessarily have

the same masses. In this case, anomaly cancellation runs entirely within the lepton sector including

both SM and mirror leptons so one can reassure that we do not encounter any trouble with adding

such mirror particles [64]. Because of the existence of right-handed mirror doublets coupling to the

same SM gauge fields, the gauge group becomes

GSM → SU(3)c × SU(2)W × U(1)Y (4.4)

where ‘W’ stands for ‘weak’. From hereon, we will use it as our official gauge group.

On the other hand, it is noticed that anomaly cancellation requires the existence of mirror

quarks. Therefore we must add them into the model by making same arguments as with the lepton

sector. As a result, the first quark generation appears as

SM: qL =

 uL

dL

 , uR, dR ; Mirror: qMR =

 uMR

dMR

 , uML , d
M
L . (4.5)
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One can straightforwardly generalize the above discussion for three families of leptons and quarks.

Hence we will use the notations in Eq. (4.2), (4.3) and (4.5) as generic ones to refer to all three

fermion families from hereon.

On the scalar sector side, so far the minimal EW-νR model contains one SM Higgs doublet

Φ in order to generate masses for charged SM fermions. Since the subject of this model is neutrino

masses, we wish to find scalar fields giving rise to Dirac and Majorana mass terms. We notice that

a bilinear such as l̄Ll
M
R = ν̄LνR + ēLe

M
R can transform as a singlet under SU(2)L. Therefore in

order to acquire the Dirac neutrino mass, let us assume the existence of a singlet scalar field φS

carrying a hypercharge Y/2 = 0 [64]. Its coupling with the fermion bilinear is

LS = gSl l̄L φS l
M
R + h.c. = gSl

(
ν̄LνR + ēLe

M
R

)
φS + h.c. (4.6)

Now let us turn to the νR Majorana mass term for whom fermion bilinear lM,T
R σ2 l

M
R (Y/2 = −1)

transforms as either a singlet or a triplet under SU(2)L × U(1)Y . We see that the Higgs singlet

cannot be the candidate in this case since charge conservation is violated. This leaves us with the

choice of a scalar triplet Higgs field χ̃ = (3, Y/2 = +1) having the form

χ̃ =
1√
2
~τ · ~χ =

 1√
2
χ+ χ++

χ0 − 1√
2
χ+

 . (4.7)

The role of these Higgs fields in generating fermion masses, especially neutrino masses will be

discussed carefully in next sections.

4.3 Dirac and Majorana neutrino masses in the EW-νR model

• Dirac Neutrino Mass

Let us recall the coupling of singlet scalar field φS from Eq. (4.6). With the VEV 〈φS〉 = vS ,

we get the Dirac neutrino masses

mD
ν = gSl vS . (4.8)
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If this is the case in which right-handed neutrinos have pure Dirac mass terms, one could

set a small vS value to make the Dirac mass naturally small. However, the Z-boson decay

width [42] forces the right-handed neutrinos to be heavier than half of the Z otherwise the

number of light neutrinos will exceed three. Therefore such an ideal is ruled out and we

must obtain the neutrino mass via the regular seesaw mechanism.

• Majorana Neutrino Mass

With the complex scalar Higgs triplet χ̃ being chosen in (4.7), one can write a gauge

invariant Yukawa coupling:

LM = gM lM,T
R σ2 τ2 χ̃ l

M
R (4.9)

= gM νTR σ2 νR χ0 − 1√
2
νTR σ2 e

M
R χ+

− 1√
2
eM,T
R σ2 νR χ+ + eM,T

R σ2 e
M
R χ++ .

With the VEV of 〈χ0〉 = vM , (4.9) gives rise to the Majorana mass of the right-handed

neutrino:

MR = gMvM . (4.10)

Again, one would like to have MR ≥MZ/2 in order to preserve the highly precise Z decay

width measurement.

Furthermore, it is also possible to have such a Majorana mass of the left-handed neutrino

through a Yukawa coupling gLl
T
L σ2 τ2 χ̃ lL. The issue is that this term could potentially

ruin all efforts to promote the seesaw mechanism involving one very small - one very large

neutrino mass [64]. To get rid of this term, [64] imposed a global symmetry U(1)M such

that

(
lMR , q

M
R

)
→ eiθM

(
lMR , q

M
R

)
, (4.11)

χ̃→ e−2iθM χ̃, φS → e−iθM .

and all other particles are singlets of U(1)M . Although the symmetry can abandon the

Majorana mass ML at tree level, it cannot do the same at the one-loop level. The mass
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appears to be

ML = λ
1

16π2

(mD
ν )

2

MR
ln
MR

MφS

, (4.12)

where λ and MφS are the quadratic coupling and the mass of the Higgs singlet φS . If λ < 1

then ML is smaller than a typical seesaw light mass (mD
ν )2/MR by at most two orders of

magnitude.

Having said that we still keep this ML term in the Majorana mass matrix for a general purpose:

M =

 ML mD
ν

mD
ν MR

 (4.13)

where mD
ν , MR and ML are given in Eqs. (4.8), (4.10), and (4.12) respectively. If the Yukawa

coupling gSl ∼ O(gM ) and vM � vS we have the following eigenvalues

mν = ML −
(mD

ν )
2

MR
= −

g2
Sl

gM
· vS
vM
· vS(1− ε) and MR (4.14)

with ε < 10−2. To accommodate the need of MR ≈ ΛEW ≈ 246 GeV regarding the constraint on

light neutrino massesmν ≤ 0.23 eV [43], we can alternate the coupling gSl resulting in corresponding

values of vS . For example, vS ∼ 105−6 eV with gSl ∼ O(1) and vS ∼ ΛEW with gSl ∼ O(10−6) [64].

One may ask about the hierarchy of vS/ΛEW ∼ 10−6. Apparently it is not as severe as the one

related to the GUT-scale (∼ O(106) GeV). More detailed discussion can be found in [64].

4.4 Charged fermion masses (lepton and quark)

As mentioned in the previous section, in order to generate charged fermion masses (say,

leptons) we will need to consider the SM Yukawa couplings to the Higgs doublet Φ as follows:

LYSM = gl l̄L Φ eR + h.c. , (4.15)

LYM = gMl l̄MR Φ eML + h.c. . (4.16)
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After SSB, Φ acquires its VEV 〈Φ〉 =
(
0, v2/

√
2
)T

. Note that the VEV of Φ is written in terms

of v2 which is different from the total v ≈ 246 GeV. From Eqs. (4.6), (4.15), (4.16) one obtains a

mass matrix for charged SM and mirror leptons

Ml =

 ml mD
ν

mD
ν mlM

 (4.17)

where ml = gl v2/
√

2 and mlM = gMl v2/
√

2. Diagonalizing the matrix (4.17) results in two

eigenvalues

m̃l −ml −
(mD

ν )2

mlM −ml
, m̃lM = mlM +

(mD
ν )2

mlM −ml
. (4.18)

By making an assumption mlM � ml and using the fact that mD
ν � ml,mlM as discussed in the

neutrino mass section the eigenvalues in (4.18) become m̃l ≈ ml and m̃lM ≈ mlM .

The same exercise can be done for the quark sector by simply replacing: ml → mq, mlM →

mqM . Hence, quarks acquire their masses through Yukawa couplings

LSq = gSq q̄L φS q
M
R + h.c. = gSq

(
ūLu

M
R + d̄Ld

M
R

)
φS + h.c. , (4.19)

LQYSM = gd q̄L Φ dR + gu q̄L Φ̃ uR + h.c. , (4.20)

LQYM = gMd q̄MR Φ dML + gMu q̄MR Φ̃ uML + h.c. . (4.21)

Diagonalizing the quark mass matrix gives rise to eigenvalues

m̃q = mq −
(mD

ν )2(gSq/gSl)
2

mqM −mq
, m̃qM = mqM +

(mD
ν )2(gSq/gSl)

2

mqM −mq
(4.22)

where q = u, d, ..., mq = gqv2/
√

2, and mqM = gMq v2/
√

2. Again, if we assume mqM � mq, one

has m̃q ≈ mq, m̃qM ≈ mqM .

4.5 ρ parameter and possible signatures of EW-νR model

In the SM, the ρ parameter at the tree level which is defined as

ρ ≡
M2
W

M2
Z cos2 θW

(4.23)
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is measured to be 1 to a good precision. Therefore, when introducing new Higgs fields other than

Φ one must make sure that there is a remaining custodial symmetry resulting in ρ = 1. In Higgs

sector, a number of Higgs multiplets φk of isospin Tk, hypercharge Yk and VEV vk will contribute

to ρ as

ρ =

∑
k

[
Tk(Tk + 1)− 1

4Y
2
k

]
v2
kck∑

k
1
2Y

2
k v

2
k

(4.24)

where ck = 1/2 (1) for a real (complex) multiplet. Using the formula (4.24) we have

• ρ = 1 if we only have the SM doublet Φ.

• ρ = 1/2 if we only have the Higgs triplet χ̃.

• ρ =
v2

2 + 2v2
M

v2
2 + 4v2

M

if we have both Φ and χ̃. Apparently one would have ρ 6= 1 when a doublet

and a triplet are present.

In order to restore Custodial global SU(2) symmetry (ρ = 1) at tree level [66], we add

ξ = (3, Y/2 = 0)

and group it with χ̃ = (3, Y/2 = 1) in [65–69]

χ =


χ0 ξ+ χ++

χ− ξ0 ξ+

χ−− ξ− χ0∗

 (4.25)

The doublet Higgs Φ and Φ̃ can also be grouped in a 2× 2 matrix representation as

Φ2 =

 φ0∗ φ+

φ− φ0

 (4.26)

It we set 〈χ0〉 = 〈ξ0〉 = vM and refer to the VEV 〈φ0〉 = v2/
√

2 we can write the VEVs of χ and

Φ2

〈χ〉 =


vM 0 0

0 vM 0

0 0 vM

 , 〈Φ2〉 =


v2√

2
0

0
v2√

2

 (4.27)
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In fact, with v =
√
v2

2 + 8v2
M = ΛEW ≈ 246 GeV we have MW = gv/2 and MZ = MW / cos θW .

With this proper vacuum alignment SU(2)L × U(1)Y is explicitly broken down to U(1)em and the

global SU(2)D custodial symmetry is preserved.

This completes the scalar sector in this minimal EW-νR model. Before moving on to discuss

the possible signature of the model, let us give a brief summary of the particle content as follows

Leptons and quarks (generic notations):

• Doublets

∗ SM: lL =

 νL

eL

 ; qL =

 uL

dL



∗ Mirror: lMR =

 νMR

eMR

 ; qMR =

 uMR

dMR


• Singlets

∗ SM: eR; uR, dR

∗ Mirror: eML ; uML , d
M
L

Higgs fields:

• A singlet scalar Higgs φS with 〈φS〉 = vS .

• Doublet Higgs:

Φ =

 φ+

φ0

 with 〈φ0〉 = v2/
√

2.

• Higgs triplets

∗ χ̃ (Y/2 = 1) = 1√
2
~τ .~χ =

 1√
2
χ+ χ++

χ0 − 1√
2
χ+

 with 〈χ0〉 = vM .
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∗ ξ (Y/2 = 0) in order to restore Custodial Symmetry with 〈ξ0〉 = vM .

∗ VEVs:

v2
2 + 8v2

M = v2 ≈ (246 GeV)2

In the original version [70], this Higgs doublet couples to both SM and mirror fermions. An extended

version was proposed [71] in order to accommodate the 125-GeV SM-like scalar and, in this version,

Φ2 only couples to SM fermions while another doublet called Φ2M whose VEV is 〈φ0
2M 〉 = v2M/

√
2

couples only to mirror fermions. Since this thesis focuses only on SM fermions, we will concentrate

only on Φ2.

We are now ready to explore the possibility of a direct detection of the right-handed Majorana

neutrino of O(ΛEW ) at the colliders. Based upon the fact that νR can couple to the W and Z

bosons and both νR and eMR can decay to νL and eL respectively through the scalar singlet φS .

Since the νR is a Majorana neutrino type, the main signal could be the same-sign dilepton events

which is expressed as

eM,−
R +W+ + eM,−

R +W+ → e−L + e−L +W+ +W+ + 2φS . (4.28)

It is worthwhile to emphasize that this kind of events is very distinctive in comparison with that

of the Dirac neutrino type.

4.6 Phenomenological constraints

We will now review several phenomenological constraints of the EW νR model as discussed

in [71] and [73]. In this review section, we will discuss two sets of results for the EW νR model

obtained in [71] (the electroweak precision constraints) and [73] (constraints from the 125-GeV

SM-like scalar).
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4.6.1 Electroweak precision constraints on the EW νR model [71]

The presence of mirror quark and lepton SU(2)-doublets can, by themselves, seriously affect

the constraints coming from electroweak precision data. As noticed in [70], the positive contribution

to the S-parameter coming from the extra right-handed mirror quark and lepton doublets could

be partially cancelled by the negative contribution coming from the triplet Higgs fields. Ref. [71]

has carried out a detailed analysis of the electroweak precision parameters S and T and found that

there is a large parameter space in the model which satisfies the present constraints and that there

is no fine tuning due to the large size of the allowed parameter space. It is beyond the scope of

the thesis to show more details here but a representative plot would be helpful. Fig. (4.1) shows

the contribution of the scalar sector versus that of the mirror fermions to the S-parameter within

1σ and 2σ. In the above plot, [71] took for illustrative purpose 3500 data points that fall inside the

2σ region with about 100 points falling inside the 1σ region. More details can be found in [71].

MFS
~-0.2 0 0.2 0.4 0.6 0.8

S
S~

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
 constraint σ  1 +
 constraintσ  2 ×

Figure 4.1: Constrained S̃S versus S̃MF
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4.6.2 Review of the scalar sector of the EW νR model in light of the discovery of

the 125-GeV SM-like scalar [73]

In light of the discovery of the 125-GeV SM-like scalar, it is imperative that any model

beyond the SM (BSM) shows a scalar spectrum that contains at least one Higgs field with the

desired properties as required by experiment. The present data from CMS and ATLAS only show

signal strengths that are compatible with the SM Higgs boson. The definition of a signal strength

µ is as follows

σ(H-decay) = σ(H-production)×BR(H-decay) , (4.29)

and

µ(H-decay) =
σ(H-decay)

σSM (H-decay)
. (4.30)

To really distinguish the SM Higgs field from its impostor, it is necessary to measure the partial

decay widths and the various branching ratios. In the present absence of such quantities, the best

one can do is to present cases which are consistent with the experimental signal strengths. This is

what was carried out in [73].

The minimization of the potential containing the scalars shown above breaks its global sym-

metry SU(2)L × SU(20R down to a custodial symmetry SU(2)D which guarantees at tree level

ρ = M2
W /M

2
Z cos2 θW = 1 [73]. The physical scalars can be grouped, based on their transformation

properties under SU(2)D as follows:

five-plet (quintet) → H±±5 , H±5 , H
0
5 ; (4.31)

triplet → H±3 , H
0
3 ;

triplet → H±3M , H
0
3M ;

three singlets → H0
1 , H

0
1M , H

0′
1 ,

The three custodial singlets are the CP-even states, one combination of which can be the 125-GeV
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scalar. In terms of the original fields, one has

H0
1 = φ0r

2 , (4.32)

H0
1M = φ0r

2M ,

H0′
1 =

1√
3

(√
2χ0r + ξ0

)
.

These states mix through a mass matrix obtained from the potential and the mass eigenstates are

denoted by H̃, H̃ ′, and H̃ ′′, with the convention that the lightest of the three is denoted by H̃, the

next heavier one by H̃ ′ and the heaviest state by H̃ ′′.

To compute the signal strengths µ, Ref. [73] considers H̃ → ZZ, W+W−, γγ, bb̄, τ τ̄ . In

addition, the cross section of gg → H̃ related to H̃ → gg was also calculated. A scan over the

parameter space of the model yielded two interesting scenarios for the 125-GeV scalar:

(1) Dr Jekyll’s scenario in which H̃ ∼ H0
1 meaning that the SM-like component H0

1 = φ0r
2 is

dominant.

(2) Mr Hyde’s scenario in which H̃ ∼ H0′
1 meaning that the SM-like component H0

1 = φ0r
2 is

subdominant.

Both scenarios give signal strengths compatible with experimental data as shown below in Fig. (4.2).

As we can see from Fig. (4.2), both SM-like scenario (Dr Jekyll) and the more interesting

scenario which is very unlike the SM (Mr Hyde) agree with experiment. As stressed in [73],

present data cannot tell whether or not the 125-GeV scalar is truly SM-like or even if it has a

dominant SM-like component. It has also been stressed in [73] that it is essential to measure the

partial decay widths of the 125-GeV scalar to truly reveal its nature. Last but not least, in both

scenarios, H0
1M = φ0r

2M is subdominant but is essential to obtain the agreement with the data as

shown in [73].

As discussed in detail in [73], for proper vacuum alignment, the potential contains a term
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Figure 4.2: Figure shows the predictions of µ(H̃ → bb̄, τ τ̄ , γγ, W+W−, ZZ) in the EW νR model
for examples 1 and 2 in Dr. Jekyll and example 1, 2 and 3 in Mr. Hyde scenarios as discussed
in [73], in comparison with corresponding best fit values by CMS [75–78].

proportional to λ5 (Eq. (32) of [73]) and it is this term that prevents the appearance of Nambu-

Goldstone (NG) bosons in the model. The would-be NG bosons acquire a mass proportional to

λ5. An analysis of CP-odd scalar states H0
3 , H

0
3M and the heavy CP-even states H̃ ′, and H̃ ′′ was

presented in [73]. The phenomenology of charged scalars including the doubly-charged ones was

also discussed in [65].

The phenomenology of mirror quarks and leptons was briefly discussed in [70] and a detailed

analysis of mirror quarks was presented in [74]. It suffices to mention here that mirror fermions

decay into SM fermions through the process qM → qφS , lM → lφS with φS ”appearing” as missing

energy in the detector. Furthermore, the decay of mirror fermions into SM ones can happen outside
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the beam pipe and inside the silicon vertex detector. Searches for non-SM fermions do not apply

in this case. It is beyond the scope of the thesis to discuss these details here.

This concludes the brief summary of the EW νR model [70]. The original minimal model

contains just one singlet Higgs field φS . As we shall see in the next chapter, we will present a

different model which will incorporates in the A4 symmetry and necessitate an extension to four

Higgs singlet fields with no phenomenological constraints at the present time.



Chapter 5

Model of Neutrino Masses and Mixings

The discovery and subsequent analyses of neutrino oscillation phenomena have revealed a

trove of valuable information concerning the mixing matrix UPMNS and the mass difference squared

in the neutrino sector. It is worth stressing that the mere presence of neutrino masses as implied by

the oscillation data [79] provides the first evidence of physics beyond the Standard Model (BSM).

What might be the origin of neutrino masses? Why are they so tiny (mν < O(eV )) as compared

with even that of the lightest of elementary particles: the electron? Why is the leptonic mixing

matrix UPMNS so different from VCKM of the quark sector? Is there any chance that some of the

physics that are responsible for the tininess of the neutrino masses as well as their mixings could

somehow be experimentally accessible at the Large Hadron Collider (LHC) in the near future or

even at the International Linear Collider at a not-too-distant future?

The vast difference between neutrino masses and those of other elementary particles is a big

mystery. There could be several ways in which neutrinos can obtain masses, all of which go beyond

the Standard Model. The most obvious one is to add right-handed neutrinos which are singlets of

the SM and couple them through Yukawa interactions with the left-handed lepton doublets and

the SM Higgs doublet. In this simplest Dirac mass scenario, the Yukawa coupling would have

to be unnaturally small i.e. gν . O(10−11) in order to accommodate mν < O(eV ). A more

elegant scenario is the quintessential see-saw mechanism [80] where the right-handed neutrinos
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acquire a Majorana mass term MRν
T
Rσ2νR in addition to a Dirac mass term mDν

†
LνR + h.c.. The

diagonalization of the mass matrix yields two eigenvalues whose magnitudes are approximately

m2
D/MR and MR for MR � mD. In a generic see-saw scenario, right-handed neutrinos are SM

singlets (e.g. in an SO(10) scenario) i.e. they are sterile, and typically mD ∝ O(ΛEW ) and

MR ∝ O(ΛGUT ) or O(MWR
). Although this generic scenario can elegantly ”explain” the smallness

of neutrino masses, it goes without saying that the prospect of directly testing the seesaw mechanism

by searching for right-handed neutrinos is very remote, both from an energetic point of view and

from a production point of view. (Although it is very popular, leptogenesis by itself is not such a

direct test.)

P.Q. Hung has proposed a model [70] of electroweak-scale right-handed neutrinos in which

(as we will briefly review below) νR’s belong to SU(2) doublets along with mirror charged leptons.

This has two distinct advantages: 1) νR’s are non-sterile and couple to the Z and W bosons; 2)

Since νR’s are members of doublets, a Majorana mass term necessarily comes from the vacuum

expectation value (VEV) of a triplet Higgs field which spontaneously breaks SU(2) × U(1)Y (in

addition to the Higgs doublet) and, as a result, MR ∝ O(ΛEW ). In this scenario, the EW νR model,

right-handed neutrinos can be produced and searched for at the LHC or at the proposed ILC.

On the scalar sector side, the minimal EW νR model contains one Higgs doublet, one complex

triplet, one real triplet and one Higgs singlet. The role of these Higgs fields in generating fermion

masses will be discussed below. In particular, we will discuss the importance of the Higgs singlet

on the issue of neutrino masses.

The plan of this chapter will be as follows. First we discuss the motivation for using the non-

Abelian discrete symmetry A4 [81] to describe the Dirac part of the neutrino mass matrix which,

in the EW νR model, is generated by the Higgs singlets. In this case, we increase the number of

Higgs singlets from one (the number in the original model) to four without any consequence as far

as the 125-GeV SM-like Higgs boson is concerned. The number of non-singlet Higgs fields is kept
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unchanged in view of the tight constraints coming from the properties of the 125-GeV object as

discussed in [73]. Secondly, we give a possibility to explain the difference between two well-known

PMNS and CKM matrices. We then move toward the charged lepton sector to explore some of

interesting features within the framework of this model of neutrino masses and mixings.

5.1 Motivation

It is a big puzzle why the quark mixing matrix, the so-called CKM matrix [82]

|VCKM | =


0.9743± 0.0002 0.2255± 0.0024 (5.10± 0.47)× 10−3

0.230± 0.011 1.006± 0.023 (40.9± 1.1)× 10−3

(8.4± 0.6)× 10−3 (42.9± 2.6)× 10−3 0.89± 0.07

 (5.1)

(which is not too different from the unit matrix) differs so much from the leptonic one, the so-called

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [82]

|UPMNS | =


0.779...0.848 0.510...0.604 0.122...0.190

0.183...0.568 0.385...0.728 0.613...0.794

0.200...0.576 0.408...0.742 0.589...0.775

 . (5.2)

Although the precise mass mechanism is far from being understood, it is not too unreasonable to

speculate that the aforementioned big difference arises from the way neutrinos obtain masses as

compared with the way charged fermions obtain theirs. In this section, we will present a model

in which it is the Dirac mass matrix of the neutrinos that is obtained by incorporating an A4

symmetry into the model. Before taking more steps to explore the model of neutrino masses and

mixings, let us briefly review the A4 symmetry.

• An introduction to A4 symmetry

The A4 group is a non-Abelian discrete group [81] and also known as the group of rotational

symmetry of a tetrahedron. This is a finite group of 12 permutations (or symmetries) of four
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elements, which can be organized in four classes whose number of elements are 1, 3, 4, 4. This

implies four irreducible representations of dimensions nk satisfying the condition

∑
k

nk
2 = 12 (5.3)

In this case, the only possible solutions for (5.3) are

n1 = n2 = n3 = 1 and n4 = 3 (5.4)

i.e. there are three 1-D and one 3-D representations of A4. We shall denote them as 1, 1′, 1′′, and

3. These representations obey the product rule given by (using the notation of [83]):

3× 3 = 1 (11 + 22 + 33) + 1′ (11 + ω222 + ω33) + 1′′ (11 + ω22 + ω233) (5.5)

+3 (23, 31, 12) + 3 (32, 13, 21) .

Here ω = ei2π/3, called the cube root of unity.

• A4 model-wide recognitions

The A4 symmetry is well-known not only in group theory but also in model buildings. Which

particles are assigned to which representations of A4 is a question which depends entirely on the

model one is dealing with. Below we briefly summarize two popular A4 models in order to show

the contrasts with ours.

A4 has widely been used to produce the tribimaximal form of the PMNS matrix [83]. In a

nutshell, as summarized nicely in [83], the A4 symmetry is usually applied to the charged lepton

mass matrix with the result being that the unitary matrix which diagonalizes the charged lepton

mass matrix takes on the form of the PMNS that was first proposed by Cabibbo and Wolfenstein

[84], namely

UCW =
1√
3


1 1 1

1 ω ω2

1 ω2 ω

 (5.6)
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In popular versions of A4-inspired models of neutrino mass and mixing, UCW is identified with the

unitary matrix UlL which diagonalizes the charged lepton mass matrix.

In one version [83], the left-handed lepton doublets are assigned to 3 while the right-handed

SU(2)-singlet charged leptons are assigned to 1, 1′, 1′′. There are three Higgs doublets belonging to

3. In another version, there are 4 Higgs doublets and the right-handed charged leptons belong to

a 3. As described in [83], the main feature of these models is the diagonalization of the charged

lepton mass matrix by UCW in Eq. (5.6) and the presence of three or four Higgs doublets. We

shall make some remarks concerning the implication of the 125-GeV SM-like boson on models with

extended Higgs sectors.

In [85], a supersymmetric model was written which now includes three families of SU(2)-

singlet vector-like heavy quarks and leptons, two Higgs doublets transforming as 1 and three Higgs

singlets that transform as 3 of A4. Here the SM right-handed fermions transform like 1, 1′, 1′′. Just

as with the models mentioned above [83], the construction is such that UCW in Eq. (5.6) is the

matrix which diagonalizes the charged lepton mass matrix.

The two examples discussed above are two of several scenarios making use of the A4 symmetry.

It is beyond the scope of this thesis to compare our approach with all others that are present in

the literature. The main point we would like to stress here is that the most popular scenario is one

in which the A4 symmetry is used to generate UCW in Eq. (5.6) for the charged lepton sector.

Also, right-handed neutrinos in most generic models are SM-singlets and their Majorana masses

are expected to be much larger than the EW scale.

Before discussing our approach based on A4, we would like to point out the main differences

with the aforementioned scenarios: 1) The conjugate of the matrix as shown in Eq. (5.6) is the one

that diagonalizes the neutrino Dirac mass matrix; 2) Right-handed neutrinos belong to SU(2)

doublets along with mirror charged leptons as espoused in [70] and are therefore non-sterile. Their
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Majorana masses are proportional to the EW symmetry breaking scale.

5.2 Assignment of particle content

As the most mysterious particles in the world neutrinos have been studied for years by many

physicists. The fact that neutrinos have masses motivates particle theorists to “create” an adequate

model which leads them to a clear understanding of neutrino masses. The EW-νR model combing

with the A4 symmetry is a new approach to our big goal because it introduces three new scalar

Higgs singlets φ1S , φ2S , φ3S without conflicting with the LHC data which severely constrained

the Higgs doublet sector. Moreover, the reason which makes the A4 symmetry become a good

candidate for this task is its simplicity and sufficiency.

Let us now present the assignments of the EW νR model’s content under A4 as shown in

Table (5.1).

Table 5.1: A4 assignments for leptons and Higgs fields

Field (ν, l)L (ν, lM )R eR eML φ0S φ̃S =

 φ1S

φ2S

φ3S

 Φ2

A4 3 3 3 3 1 3 1

Notice that if one had the singlet Higgs fields belonged to 1, 1
′
, and 1

′′
only, the neutrino Dirac

mass matrix would be diagonal which is not a desired scenario.
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5.3 Neutrino Dirac and Majorana masses with A4 symmetry

5.3.1 Neutrino Dirac mass matrix

As shown in [70], the neutrino Dirac mass in the EW νR model comes from the generic

Yukawa term gSl l̄L φS l
M
R + h.c. in Eq. (4.8). With the A4 assignments shown in Table (5.1), we

can write the following Yukawa interactions

LS = l̄L (g0Sφ0S + g1Sφ̃S + g2Sφ̃S) lMR + h.c. , (5.7)

where g1S and g2S reflect the two different ways that φ̃S couples to the product of l̄L and lMR as

shown in Eq. (5.5). We obtain the following neutrino Dirac mass matrix:

MD
ν =


g0Sv0 g1Sv3 g2Sv2

g2Sv3 g0Sv0 g1Sv1

g1Sv2 g2Sv1 g0Sv0

 , (5.8)

where v0 = 〈φ0S〉 and vi = 〈φiS〉 with ı = 1, 2, 3. Notice that this form of MD
ν is the same as the

one used by [83] for the charged lepton mass matrix.

When v1 = v2 = v3 = v, MD
ν can be diagonalized as follows (using 1 + ω + ω2 = 0 and

ω2 = ω∗)

U †νM
D
ν Uν =


m1D 0 0

0 m2D 0

0 0 m3D

 , (5.9)

where

Uν =
1√
3


1 1 1

1 ω2 ω

1 ω ω2

 . (5.10)

Notice that our Uν defined in Eq. (5.10) is just Uν = U †CW . At this point, we would like to establish

our notations for what will follow. In general, a mass matrix is diagonalized by two unitary matrices
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UL and UR i.e.

U †LMUR =MD , (5.11)

where MD is a diagonal mass matrix. A mass term of the form f̄0
LMf0

R can be rewritten as

f̄0
LULU

†
LMURU

†
Rf

0
R = f̄LMDfR where f̄0

LUL = f̄L and U †Rf
0
R = fR.

From Eq. (5.9), it is clear that

UνL = UνR = Uν . (5.12)

A remark is in order at this point. As we will see below, UPMNS is defined as UPMNS = U †νLUlL =

U †νUlL. What UlL might be will be the subject of the section on the charged lepton mass matrix.

The neutrino Dirac masses are

m1D = g0Sv0 + g1Sv + g2Sv (5.13)

m2D = g0Sv0 + g1Svω
2 + g2Svω (5.14)

m3D = g0Sv0 + g1Svω + g2Svω
2 (5.15)

Reality of the masses require that

g2S = g∗1S , (5.16)

where we have used ω2 = ω∗. Making use of 1 + ω + ω2 = 0, ω3 = 1 and Eq. (5.16), we obtain the

following sum rules

m1D +m2D +m3D = 3g0Sv0 , (5.17)

m2
1D +m2

2D +m2
3D = 3g2

0Sv
2
0 + 6|g1S |2v2 . (5.18)

5.3.2 Neutrino Majorana mass matrix

From the Lagrangian

LM = gM (lM,T
iR σ2)(i τ2 χ̃) lMjR + h.c. (5.19)
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In order to make the Lagrangian invariant under A4, we need χ̃ to transform as 1 or 3. For reasons

outlined in [73] having to do with the constraints coming from the presently known properties of

the 125-GeV SM-like boson, it is preferable that the Higgs triplet transforms as 1. We recall that

χ̃ =
1√
2
~τ · ~χ =

 1√
2
χ+ χ++

χ0 − 1√
2
χ+

 (5.20)

When
〈
χ0
〉

= vM one obtains the following right-handed Majorana mass

MR =


gM
〈
χ0
〉

0 0

0 gM
〈
χ0
〉

0

0 0 gM
〈
χ0
〉

 = gMvM I (5.21)

Therefore, the neutrino mass matrix is

Mν =

 0 MD
ν

MD
ν MR

 (5.22)

Here the 3× 3 see-saw mass matrix for the light neutrinos (νe, νµ, ντ ) becomes

mν ∼ −MD
ν M

−1
R MD,T

ν (5.23)

5.4 UPMNS vs. VCKM

5.4.1 The search for UlL

As mentioned above, we define the diagonalization of a mass matrix by Eq. (5.11). The

charged current interaction gν̄0
Lγ

µl0LW
+
µ can be written in terms of mass eigenstates as

g ν̄0
LUνL U

†
νL γ

µ UlL U
†
lLl

0
L W

+
µ = g ν̄L UPMNS γ

µ lL W
+
µ , (5.24)
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where νL and lL are mass eigenstates and where

UPMNS = U †νLUlL = U †νUlL . (5.25)

Notice that, by looking at UPMNS as determined from experimental data in Eq. (5.2), one can

safely say that UPMNS 6= U †ν . One needs UlL to be different from the unit matrix. But could UlL

be? What does the Yukawa coupling of the charged leptons to Φ2 tell us about UlL? (There is a

coupling between the mirror and SM charged leptons with the Higgs singlets but its contributions

to the masses are negligible as shown in [70]. We will ignore this contribution here.)

The SM Yukawa coupling is

LY = gl l̄L Φ2 eR + h.c. (5.26)

where Φ2 =

 φ+

φ0

,
〈
φ0
〉

= v2√
2

From Table (5.1), we have the following A4 assignments:

lL ∼ 3; eR ∼ 3; Φ2 ∼ 1. (5.27)

It can be seen that (5.26) is A4-invariant. From the product rule (5.5), one can see that this

A4-invariant Yukawa term gives a degenerate spectrum for the charged leptons, namely

Ml = gl
v2√

2


1 0 0

0 1 0

0 0 1

 (5.28)

Diagonalizing the matrix Ml by U †lL Ml UlR would imply that UlL = I.

If this were the whole story, one could have

UPMNS = U †ν =
1√
3


1 1 1

1 ω ω2

1 ω2 ω

 . (5.29)
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This implies that the PMNS matrix mainly comes from neutrino mixing matrix which results

from the couplings between leptons and the Higgs singlet φS . On the other hand, as reviewed in

section 2.4, we have acknowledged that

VCKM = U †u,L Ud,L. (5.30)

This mixing matrix comes totally from Yukawa couplings of quarks to the SM Higgs doublet Φ.

Therefore, in our analysis, the different sources of mixing matrices provide a reasonable explanation

for the intrinsic difference between the PMNS and CKM matrices.

However the story does not end here. The fact that UlL is a unit matrix is unacceptable for

two reasons: 1) me � mµ < mτ ; 2) UlL would be a unit matrix and one would obtain UPMNS = U †νL

in disagreement with experiment. It is then clear that the A4 symmetry which is respected by the

Yukawa interactions in Eq. (6.1) giving rise to the neutrino Dirac mass matrix has to be broken in

the charged lepton sector. In what follows, we will use a phenomenological approach toward this

A4 breaking, namely through an ansätz for UlL.

5.4.2 Ansätz for UlL

As discussed above, strict A4 symmetry in the charged lepton sector would imply that UlL = I.

We will parametrize the breaking of A4 by assuming a form which deviates from the unit matrix

by a small amount and which is unitary. Using UPMNS and Uν , one can then determine UlL. As

we shall see below, once UlL is known, one can reconstruct MlM†l . In this sense, our approach

is semi phenomenological because we do not use a specific symmetry assumption to construct the

charged lepton mass matrix.
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We propose the following ansätz

UlL =


1− λ2l

2 λl Alλ
3
l (ρl − iηl)

−λl 1− λ2l
2 Alλ

2
l

Alλ
3
l (1− ρl − iηl) −Alλ2

l 1

 (5.31)

where Al, ρl, ηl are real parameters of O(1) [22]. The subscript l indicates that A, ρ, η belong to

charged leptons.

We can now constrain λl, Al, ρl, ηl based on experimental data of UPMNS and unitarity

conditions and have

U = UPMNS = U †νUlL =
1√
3


1 1 1

1 ω2∗ ω∗

1 ω∗ ω2∗




1− λ2l

2 λl Alλ
3
l (ρl − iηl)

−λl 1− λ2l
2 Alλ

2
l

Alλ
3
l (1− ρl − iηl) −Alλ2

l 1


Recall that ω = ei2π/3 so ω∗ = ω2 and ω2∗ = ω. Therefore,

U =
1√
3


1 1 1

1 ω ω2

1 ω2 ω




1− λ2l

2 λl Alλ
3
l (ρl − iηl)

−λl 1− λ2l
2 Alλ

2
l

Alλ
3
l (1− ρl − iηl) −Alλ2

l 1

 (5.32)

= 1√
3


Alλ

3
l (1− ρl − iηl)−

λ2l
2 − λl + 1 −

(
Al + 1

2

)
λ2
l + λl + 1 Alλ

3
l (ρl − iηl) +Alλ

2
l + 1

ω2Alλ
3
l (1− ρl − iηl)−

λ2l
2 − ωλl + 1 −

(
ω2Al + ω

2

)
λ2
l + λl + ω Alλ

3
l (ρl − iηl) + ωAlλ

2
l + ω2

ωAlλ
3
l (1− ρl − iηl)−

λ2l
2 − ω

2λl + 1 −
(
ωAl + ω2

2

)
λ2
l + λl + ω2 Alλ

3
l (ρl − iηl) + ω2Alλ

2
l + ω


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Recall the standard parametrization of PMNS matrix ( [86], [87])

U = V


1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

 (5.33)

V =


c12 c13 s12 c13 s13 e

−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13

s12 s23 − c12 c23 s13 e
iδ −c12 s23 − s12 c23 s13 e

iδ c23 c13

 (5.34)

where sij ≡ sin(θij), cij ≡ cos(θij), θij ∈
[
0 , π

2

]
, α21, α31 are Majorana phases.

For the purposes of this thesis, the Majorana phases will not be taken into account, i.e. we can

set these phases to be equal to zero. Therefore, our PMNS matrix really has the form of V which

contains the Dirac phase.

Let us compare Eq. (5.32) with experimental data [82]

|U | =


0.779...0.848 0.510...0.604 0.122...0.190

0.183...0.568 0.385...0.728 0.613...0.794

0.200...0.576 0.408...0.742 0.589...0.775

 (5.35)
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we have the following constraints

(i) 0.779 <
1√
3
|Alλ3

l (1− ρl − iηl)−
λ2
l

2
− λl + 1| < 0.848 (5.36)

(ii) 0.510 <
1√
3
|−
(
Al +

1

2

)
λ2
l + λl + 1| < 0.604

(iii) 0.122 <
1√
3
|Alλ3

l (ρl − iηl) +Alλ
2
l + 1| < 0.190

(iv) 0.183 <
1√
3
|ω2Alλ

3
l (1− ρl − iηl)−

λ2
l

2
− ωλl + 1| < 0.568

(v) 0.385 <
1√
3
|−
(
ω2Al +

ω

2

)
λ2
l + λl + ω| < 0.728

(vi) 0.613 <
1√
3
|Alλ3

l (ρl − iηl) + ωAlλ
2
l + ω2| < 0.794

(vii) 0.200 <
1√
3
|ωAlλ3

l (1− ρl − iηl)−
λ2
l

2
− ω2λl + 1| < 0.576

(viii) 0.408 <
1√
3
|−
(
ωAl +

ω2

2

)
λ2
l + λl + ω2| < 0.742

(ix) 0.589 <
1√
3
|Alλ3

l (ρl − iηl) + ω2Alλ
2
l + ω| < 0.775

Solving these equations up to O(λ2) we get

−4.8517 < Al < −4.4580 (5.37)

−0.2404 < λl < −0.1882

−5.6339 < ρl < −5.5712

−4.7160 < ηl < 4.8912

5.5 Toward charged lepton masses

The knowledge of UlL alone does not allow us to determine the charged lepton mass matrix

Ml for we need also UlR. On the other hand, we can use UlL to diagonalize MlMl
† as follows.
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UlL
†MlMl

†UlL =


me

2 0 0

0 mµ
2 0

0 0 mτ
2

 (5.38)

giving

MlMl
† = UlL .


me

2 0 0

0 mµ
2 0

0 0 mτ
2

 . UlL
† (5.39)

Up to the order of λ2 we can approximate MlMl
† to be of the form

MlMl
† =


(1− λ2

l ) me
2 + λ2

l mµ
2 λl(mµ

2 −me
2) 0

λl(mµ
2 −me

2) λ2
l me

2 + (1− λ2
l ) mµ

2 Alλ
2
l (mτ

2 −mµ
2)

0 Alλ
2
l (mτ

2 −mµ
2) mτ

2

 (5.40)

From Eq. (5.40), we can see that MlMl
† is determined completely by the experimental values

of me, mµ, mτ , λl and Al. Notice that, in the degenerate case me = mµ = mτ = m, MlMl
† is

reduced to a diagonal matrix MlMl
† = m2I as one should expect.

A few remarks are in order here. One can view Eq. (5.40) as a constraint equation on the

charged lepton mass matrix Ml. This constraint equation on MlMl
† satisfies the experimental

constraints on UPMNS as long as λl and Al are within the allowed ranges (5.37). To be able to

determine the form ofMl, it is clear that one has to impose some kind of symmetry or at the very

least make an ansätz on Ml itself as long as MlMl
† satisfies Eq. (5.40).

Based on the above discussion, it is tempting to propose a similar ansätz for the quark sector

for the following reason. The charged leptons as well as the quarks obtain their masses through

the couplings with the Higgs doublet Φ2. It might not be unreasonable to speculate that whatever

mechanism giving rise to mass mixings in mass matrices could be similar for both quarks and
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charged leptons. One might have

UlL → UdL (5.41)

λl, Al, ρl, ηl → λd, Ad, ρd, ηd

UlL → UuL (5.42)

λl, Al, ρl, ηl → λu, Au, ρu, ηu

With the knowledge of VCKM = U †uLUdL [88], one can constraint the above parameters. Further-

more, MuMu
† and MdMd

† could have similar forms to the right-hand side of Eq. (5.40) with

the replacements λl, Al → λu, Au, me,mµ,mτ → mu,mc,mt and λl, Al → λd, Ad, me,mµ,mτ →

md,ms,mb respectively. This will be treated in Chapter 7.

5.6 Summary of the chapter

We have presented in this manuscript a model of neutrino masses and mixings based on the

discrete symmetry group A4 as applied to the electroweak(EW)-scale right-handed neutrino model

of [70]. In particular, this A4 symmetry is applied to the Higgs singlets which are responsible

for the neutrino Dirac masses of the EW-scale νR model with the aim of obtaining a particular

form of matrix namely UCW (Eq. (5.6)), which plays a crucial role in UPMNS . The Higgs singlet

was introduced in [70] in order to give the Dirac part of the neutrino masses. By applying the A4

symmetry to this sector, we found that the Higgs singlet is increased from one in the original model

to four i.e. 1 + 3 of A4. The diagonalization of the neutrino Dirac mass matrix generated by the

Yukawa coupling of the left-handed doublets (νL, eL) ∼ 3, the right-handed doublets (νR, e
M
R ) ∼ 3

with these four Higgs singlets is found to be realized by the matrix Uν = U †CW (Eq. (5.10)).

This is in contrast with many popular A4-based models where this type of matrix is the one that

diagonalizes the charged lepton mass matrix. This is our first step in getting to UPMNS namely
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UPMNS = U †νUlL. In obtaining Uν , we also derive a couple of sum rules concerning the Dirac masses

of the neutrinos. These might turn out to be useful in future studies of neutrino oscillations.

One particular interesting feature of this scheme is the fact that Uν is generated by the

Higgs singlets which do not affect the known properties of the newly discovered 125-GeV SM-like

scalar [73]. Notice that scenarios involving more than two Higgs doublets might encounter very

very tight constraints which may be hard to satisfy.

The second piece of UPMNS , namely UlL, comes from the breaking of the A4 symmetry in the

charged lepton sector as we have shown. It is proportional to the unit matrix in the exact symmetry

case (degenerate charged leptons). We take a phenomenological approach by parametrizing the

deviation from the unit matrix in terms of a Wolfenstein-like unitary matrix (Eq. (5.31)). We

obtain constraints on the parameters of that matrix by using the experimental values of UPMNS .

Since UlL diagonalizes the lepton mass matrix “squared”, namely UlL
†MlMl

†UlL, we obtain an

equation for MlMl
† (Eq. (5.40)) whose right-hand side is determined entirely by experimental

values of the charged lepton masses and the phenomenologically extracted parameters of UlL.

As shown in [70] and in this manuscript, the sources of masses for the neutrinos and for the

charged leptons are entirely different from each other: Higgs singlets and triplet for the neutrinos

and Higgs doublet for the charged leptons. Since the quarks also obtain their masses from the

Higgs doublet and since VCKM deviates a “little” from the unit matrix, we postulate that UuL and

UdL which appear in VCKM = U †uLUdL have the same form as UlL but endowed with their own

parameters. In this context, it is very appealing to see why UPMNS is very different from VCKM .



Chapter 6

Phenomenological Implications of the Lepton Sector

In this chapter we will discuss two interesting phenomenological consequences of the model

of neutrino masses and mixings which are lepton flavor violating (LFV) processes: µ → eγ and

µ − e conversion. As is well known, lepton flavor is an accidental conserved quantity in Standard

Model (SM) with strictly massless neutrinos. For example, a muon never decays radiatively into

an electron plus a photon and neutrinos do not oscillate in SM. However various experiments have

now established firmly that neutrinos do oscillate from one flavor to another. The common wisdom,

motivated by the physics of K−K oscillation in the kaon system, is to give tiny masses with small

mass differences to the various light neutrino species. Radiative decay of the muon into electron

is then possible but with an unobservable rate highly suppressed with the minuscule neutrino

masses [89,90]. Searches for lepton flavor violating rare processes in high intensity experiments are

thus important for new physics beyond the SM.

The above LFV processes are presented in details in the following two sections.

The first section contains an updated analysis for the general one-loop induced lepton flavor vi-

olating radiative decays li → ljγ in an extended mirror model. We then consider a case for the

specific µ→ eγ. Mixing effects of the neutrinos and charged leptons constructed with a horizontal

A4 symmetry are also taken into account. Current experimental limit and projected sensitivity on

the branching ratio of µ→ eγ are used to constrain the parameter space of the model. Calculations
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of two related observables, the electric and magnetic dipole moments of the leptons, are included.

We also discussed implications concerning the possible detection of mirror leptons at the LHC and

the ILC.

The second sections focuses on the muon-to-electron (µ− e) conversion in nuclei like aluminum, ti-

tanium and gold, which is studied in the context of a class of mirror fermion model with non-sterile

right-handed neutrinos having mass at the electroweak scale. At the limit of zero momentum trans-

fer and large mirror lepton masses, we derive a simple formula to relate the conversion rate with

the on-shell radiative decay rate of muon into electron. Current experimental limits (SINDRUM II)

and projected sensitivities (Mu2e, COMET and PRISM) for the muon-to-electron conversion rates

in various nuclei and latest limit from MEG for the radiative decay rate of muon into electron are

used to put constraints on the parameter space of the model. Depending on the nuclei targets used

in different experiments, for the mirror lepton mass in the range of 100 to 800 GeV, the sensitivities

of the new Yukawa couplings one can probe in the near future are in the range of one tenth to one

hundred-thousandth, depending on the mixing scenarios in the model.

6.1 One-loop induced LFV radiative decays µ→ eγ

The EW-scale νR model presented in the chapter 4 entails extra SU(2) chiral doublets (the

mirror fermions) which have many consequences. These mirror fermions enter loop corrections to

various quantities and processes such as the electroweak precision parameters, rare processes, etc.

The first type of effects that needs to be examined is the contributions of these extra chiral

doublets to the electroweak precision parameters. These calculations have been performed in [71]

and it was found that there is a large parameter space where the EW-scale νR model satisfies the

EW precision constraints. In a nutshell, the contributions from the mirror fermions are partially

cancelled by those of the scalar sector, in particular the SU(2) triplet scalar.
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The next place where mirror fermions enter through loop corrections is rare processes such

as µ → e γ and τ → µγ. In [91], such processes have been discussed in a generic fashion, with an

emphasis on the possible correlation between the observability of the aforementioned rare processes

and the decay lengths of the mirror charged leptons, both of which are of phenomenological inter-

ests. In this thesis, we will present an update of the process µ → e γ taking into account recent

developments of the model, including experimental inputs from the recently-discovered 125 GeV

SM-like scalar [4, 5]. They are summarized below.

Most importantly for this section is the recent work [92] concerning neutrino and SM charged

lepton masses and mixings. The fact that the SM lepton mixing matrix UPMNS (the Pontecorvo-

Maki-Nakagawa-Sakata mixing matrix) is so different from the quark counterpart, VCKM (the

Cabibbo-Kobayashi-Maskawa mixing matrix), has given rise to many models, many of which invoke

the presence of some kind of discrete symmetry. Among these different proposals for the discrete

symmetry is the popular A4 symmetry which has been used to reproduce the tribimaximal form

of UPMNS. This symmetry is usually applied to the charged lepton sector [83] and involves four or

more Higgs doublets. (Such a large number of Higgs doublets might be hard to accommodate the

125 GeV SM-like scalar with the desired observed properties.) The new twist of [92] is to exhibit

the A4 symmetry in the neutrino Dirac mass sector and the scalar sector involved is composed of

SU(2) × U(1)Y -singlet scalars which are not constrained by LHC data. These singlet scalars are

composed of a singlet and a triplet of A4. This model reproduces the desired PMNS matrix and

makes predictions on the charged lepton mass matrix in the form of MlMl
†. The singlet scalars

play a crucial role in the process µ→ e γ in the EW-scale νR model as shown in [91] and updated

below in light the aforementioned developments. The results presented in this section contain a

deep correlation between the branching ratio B(µ→ e γ) and the neutrino sector in the form of the

PMNS matrix for both normal and inverted hierarchies, as well as the form of the mirror lepton

mixing matrix. It will be shown that the exclusion zones in the plots of the branching ratio of

B(µ → e γ) versus the Yukawa coupling strengths to the singlets depend a bit on how strong the
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A4-triplet scalars couple to the leptons.

This section is organized as follows. First, in section 6.1.1, we summarize very briefly the

results of neutrino and charged lepton masses and mixings [92]. Next, in section 6.1.2 we proceed

with the actual calculations of the general process li → ljγ, the anomalous magnetic dipole moment

∆ali and the electric dipole moment dli for the lepton li. We then perform detailed numerical

analysis on the specific µ → eγ will be in section 6.1.3. Implications of our results concerning the

possible detection of mirror leptons at the LHC and the ILC are discussed in section 6.1.4. We

finally summarize and conclude in section 6.1.5. A few useful formulas are collected in Appendix

A.

6.1.1 Review of neutrino and charged lepton masses and mixings in the EW-scale

νR model

Since the ideas and notations coming out of this review will be important for the calculation

of the rate of µ → eγ, we will present a little more details here. In [92], a model of the Dirac

part of neutrino masses was constructed using the widely popular A4 symmetry. Under A4, (ν, l)L,

(ν, lM )R, eR and eML transform as 3, where e and ν are generic notations for the charged and neutral

leptons. Using the A4 multiplication rule 3× 3 = 1(11 + 22 + 33) + 1′(11 + ω222 + ω33) + 1′′(11 +

ω22+ω233)+3(23, 31, 12)+3(32, 13, 21) with ω = ei2π/3, it was argued in [92] that the appropriate

set of singlet scalars is composed of an A4 singlet φ0S and an A4-triplet {φiS} (i = 1, 2, 3). To

reflect the two different ways that the A4-triplet can couple to the leptons, [92] wrote down the

Lagrangian

LS = −l̄0L (g0Sφ0S + g1Sφ̃S + g2Sφ̃S) lM,0
R + H.c. , (6.1)

where l0L and lM,0
R are gauge eigenstates which are related to the mass eigenstates by

l0L = U lLlL , lM,0
R = U l

M

R lMR . (6.2)
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For the purpose of the subsequent sections, we rewrite Eq. (6.1) as follows

LS = −l̄L U l†L UνU
†
νMφUνU

†
νU

lM

R lMR + H.c. (6.3)

= −l̄L U †PMNS M̃φ U
M
PMNSl

M
R + H.c. , (6.4)

where

M̃φ = U †νMφUν , (6.5)

and

UMPMNS = U †νU
lM

R . (6.6)

The above construction can be straightforwardly generalized for the right-handed leptons and left-

handed mirror leptons. Hence the total LS becomes

LS = −l̄L U †PMNS M̃φ U
M
PMNSl

M
R − l̄R U

′†
PMNS M̃

′
φ U
′M
PMNSl

M
L + H.c. (6.7)

where M̃ ′φ = U †νM ′φUν and M ′φ is the same as Mφ given by Eq. (5.8) with g0S → g′0S , g1S → g′1S

and g2S → g′2S . Reality of the eigenvalues of M ′φ also implies g′2S = g′∗1S . In analogous to UPMNS

and UMPMNS, we have defined the following mixing matrices for the second term of Eq. (6.7)

U ′PMNS = U †νU
l
R , (6.8)

and

U ′MPMNS = U †νU
lM

L , (6.9)

where U lR and U l
M

L are the unitary matrices relating the gauge eigenstates and the mass eigenstates

l0R = U lRlR , lM,0
L = U l

M

L lML . (6.10)

6.1.2 The calculation

The one-loop irreducible diagram for li → ljγ is shown in Fig. (6.1). Other two diagrams

not shown are reducible associated with the one-loop dressing for the external fermion lines. They
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are crucial for the cancellation of ultraviolet divergences and gauge invariance in our calculation.

The relevant Yukawa couplings between the leptons, mirror leptons and the A4 singlet and triplet

scalars can be deduced by recasting the Lagrangian LS in Eq. (6.7) into the following component

form

LS = −
3∑

k=0

3∑
i,m=1

(
l̄Li ULkim lMRm + l̄Ri URkim lMLm

)
φkS + H.c. (6.11)

where

ULkim ≡
(
U †PMNS ·M

k · U lMPMNS

)
im

, (6.12)

=
3∑

j,n=1

(
U †PMNS

)
ij
Mk
jn

(
UMPMNS

)
nm

, (6.13)

and

URkim ≡
(
U ′ †PMNS ·M

′ k · U ′ lMPMNS

)
im

, (6.14)

=
3∑

j,n=1

(
U ′ †PMNS

)
ij
M ′ kjn

(
U ′MPMNS

)
nm

. (6.15)

The matrix elements for the four matrices Mk(k = 0, 1, 2, 3) are listed in Table I. M ′ kjn can be

obtained from Mk
jn listed in Table I with the following substitutions g0S → g′0S and g1S → g′1S .

li lj

γ

lMm lMm

φkS

Figure 6.1: One-loop induced Feynman diagram for li → ljγ in EW-scale νR model.
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Table 6.1: Matrix elements for Mk(k = 0, 1, 2, 3).

Mk
jn Value

M0
12,M

0
13,M

0
21,M

0
23,M

0
31,M

0
32 0

M0
11,M

0
22,M

0
33 g0S

M1
11,M

2
11,M

3
11

2
3Re (g1S)

M1
22,M

2
22,M

3
22

2
3Re (ω∗g1S)

M1
33,M

2
33,M

3
33

2
3Re (ωg1S)

M1
12,M

1
21

2
3Re (ωg1S)

M2
12,M

3
21

1
3 (g1S + ωg∗1S)

M3
12,M

2
21

1
3 (g∗1S + ω∗g1S)

M1
13,M

1
31

2
3Re (ω∗g1S)

M2
13,M

3
31

1
3 (g1S + ω∗g∗1S)

M3
13,M

2
31

1
3 (g∗1S + ωg1S)

M1
23,M

1
32

2
3Re (g1S)

M2
23,M

3
32

2ω∗

3 Re (g1S)

M3
23,M

2
32

2ω
3 Re (g1S)

6.1.2.1 The process li → ljγ (i 6= j) in EW-scale νR Model

Lorentz and gauge invariance dictate the form of the amplitude for the process l−i (p) →

l−j (p′) + γ(q) to be

M
(
l−i → l−j γ

)
= ε∗µ(q)ūj(p

′)
{
iσµνqν

[
CijL PL + CijRPR

]}
ui(p) , (6.16)

where PL,R = (1 ∓ γ5)/2. The coefficients CijL,R can be extracted from the one-loop diagram

(Fig. (6.1)),

CijL = +
e

16π2

3∑
k=0

3∑
m=1

{
1

m2
lMm

[
miURkjm

(
URkim

)∗
+mjULkjm

(
ULkim

)∗]
I

(
m2
φkS

m2
lMm

)

+
1

mlMm

URkjm

(
ULkim

)∗
J

(
m2
φkS

m2
lMm

)}
, (6.17)

CijR = +
e

16π2

3∑
k=0

3∑
m=1

{
1

m2
lMm

[
miULkjm

(
ULkim

)∗
+mjURkjm

(
URkim

)∗]
I

(
m2
φkS

m2
lMm

)

+
1

mlMm

ULkjm
(
URkim

)∗
J

(
m2
φkS

m2
lMm

)}
. (6.18)
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Here we have assumed the mirror lepton masses are much larger than the external fermion masses

mlMm
� mi,j and set mi,j → 0 in the loop functions I(r) and J (r), which are simply given by

I(r) =
1

12(1− r)4

[
−6r2 log r + r(2r2 + 3r − 6) + 1

]
, (6.19)

J (r) =
1

2(1− r)3

[
−2r2 log r + r(3r − 4) + 1

]
. (6.20)

In our numerical work for µ → eγ presented in section 6.1.3, we will consider the mirror lepton

masses of the order a few hundred GeV and the A4 singlet and triplet scalar masses of the order

10 MeV, thus the ratio r = m2
φkS

/m2
lMm
∼ 10−8 is very tiny. For all practical purposes, one can

replace Eqs. (B.1) and (B.2) by the limits limr→0 I(r) = 1/12 and limr→0 J (r) = 1/2 respectively.

Formulas of I and J for the general case of mi,j 6= 0 are given in the Appendix A.

The partial width for li → ljγ is given by

Γ (li → ljγ) =
1

16π
m3
li

(
1−

m2
lj

m2
li

)3 (
|CijL |

2 + |CijR |
2
)

. (6.21)

6.1.2.2 Magnetic Dipole Moment

The magnetic dipole moment anomaly for lepton li can be easily extracted from the above

calculation with the following result

∆ali =
2mli

e

(
CiiL + CiiR

2

)
= +

1

16π2

{
3∑

k=0

3∑
m=1

2
(
|ULkim |2 + |URkim |2

) m2
li

m2
lMm

I

(
m2
φkS

m2
lMm

)

+

3∑
k=0

3∑
m=1

Re
(
ULkim

(
URkim

)∗) mli

mlMm

J

(
m2
φkS

m2
lMm

)}
. (6.22)
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6.1.2.3 Electric Dipole Moment

The electric dipole moment operator for a fermion f is usually defined as

LEDM = −i
df
2
f̄σµνγ5fFµν , (6.23)

where Fµν is the electromagnetic field strength and the coefficient df the electric dipole moment.

The electric dipole moment for lepton li can also be easily extracted from the above calculation

with the result

dli =
i

2

(
CiiL − CiiR

)
,

= +
e

16π2

3∑
k=0

3∑
m=1

1

mlMm

Im
(
ULkim

(
URkim

)∗)
J

(
m2
φkS

m2
lMm

)
. (6.24)

6.1.3 Numerical Analysis

In the previous sections we are showing theoretical analyses for the general case of li → ljγ

decays. Hereinafter, let us take i, j to be µ, e in order to tailgate current experimental data for

the process µ→ eγ. The branching ratio B(µ→ eγ) is then given by

B(µ→ eγ) = τµ · Γ (µ→ eγ) (6.25)

where τµ is the lifetime of the muon [94]

τµ = (2.1969811± 0.0000022)× 10−6 s . (6.26)

In our numerical analysis, we will adopt the following approach:

• For the masses of the singlet scalars φkS , we take

mφ0S : mφ1S : mφ2S : mφ3S = MS : 2MS : 3MS : 4MS

with a fixed common mass MS = 10 MeV. As long as mφkS � mlMm
, our results will not be

affected much by the exact mass relations among these singlet scalars.
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• For the masses of the mirror lepton lMm , we take

mlMm
= Mmirror + δm

with δ1 = 0, δ2 = 10 GeV, δ3 = 20 GeV and vary the common mass Mmirror from 100 GeV

to 800 GeV.

• We assume all the Yukawa couplings g0S , g1S , g2S , g′0S , g′1S , and g′2S to be all real1 . As

mentioned before, g2S = (g1S)∗ and g′2S = (g′1S)∗ due to the reality of the mass eigenvalues

of the Dirac neutrino masses. For simplicity, we also take g0S = g′0S , g1S = g′1S and study

the following 6 cases:

(1) g0S 6= 0, g1S = 0. The A4 triplet terms are switched off.

(2) g1S = 10−2× g0S . The A4 triplet couplings are merely one percent of the singlet ones.

(3) g1S = 10−1 × g0S . The A4 triplet couplings are 10 percent of the singlet ones.

(4) g1S = 0.5× g0S . The A4 triplet couplings are one half of the singlet ones.

(5) g1S = g0S . Both A4 singlet and triplet terms have the same weight.

(6) g0S = 0, g1S 6= 0. The A4 singlet terms are switched off.

• For the three unknown mixing matrices UMPMNS, U ′PMNS and U ′MPMNS, we will consider two

scenarios:

∗ Scenario 1

UMPMNS = U ′PMNS = U ′MPMNS = U †CW

∗ Scenario 2

UMPMNS = U ′PMNS = U ′MPMNS = UPMNS

1 In this study, we do not analyze the possibility of electric dipole moments for the charged leptons in which
complex Yukawa couplings must be assumed.
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Recall that the standard parameterization of the PMNS matrix is given by

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 · V

where sij ≡ sin θij , cij ≡ cos θij and V = Diag(1, eiα21/2, eiα31/2) is the Majorana phase

matrix. We will ignore the Majorana phases in this analysis.

In Table (6.2) we list the 1σ range of the mixing parameters as given by the recent

analysis of global three-neutrino oscillation data in [54, 55]. With the central values

for the mixing parameters given in Table II as inputs, we obtain two possible solutions

of the PMNS matrix:

UNH
PMNS =


0.8221 0.5484 −0.0518 + 0.1439i

−0.3879 + 0.07915i 0.6432 + 0.0528i 0.6533

0.3992 + 0.08984i −0.5283 + 0.05993i 0.7415


for normal hierarchy, and

U IH
PMNS =


0.8218 0.5483 −0.08708 + 0.1281i

−0.3608 + 0.0719i 0.6467 + 0.04796i 0.6664

0.4278 + 0.07869i −0.5254 + 0.0525i 0.7293


for inverted hierarchy. For each scenario, we consider these two possible solutions for

the UPMNS. Due to the small differences between these two solutions, we expect our

results are not too sensitive to the neutrino mass hierarchies.

• Limits on B(µ→ eγ) from MEG experiment [95] and its projected sensitivity [96]:

B(µ→ eγ) ≤ 5.7× 10−13 (90 C.L.)[MEG, 2013] , (6.27)

B(µ→ eγ) ∼ 4× 10−14 [Projected Sensitivity] . (6.28)
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• ∆aµ from E821 experiment [97]:

∆aµ ≡ aexp
µ − aSM

µ = 288(63)(49)× 10−11 . (6.29)

Table 6.2: Mixing parameters from global three-neutrino oscillation data taken from [54,55].

Mixing Parameters Normal Hierarchy Inverted Hierarchy

sin2 θ12 0.308± 0.017 0.308± 0.017

sin2 θ23 0.437+0.033
−0.023 0.455+0.139

−0.031

sin2 θ13 0.0234+0.0020
−0.0019 0.024+0.0019

−0.0022

δ/π 1.39+0.38
−0.27 1.31+0.29

−0.33

δm2 = m2
2 −m2

1 (7.54+0.26
−0.22)× 10−5eV2 (7.54+0.26

−0.22)× 10−5eV2

∆m2 = |m2
3 − (m2

1 +m2
2)/2| (2.43± 0.06)× 10−3eV2 (2.38± 0.06)× 10−3eV2

Since the dominant contributions to the loop amplitude arise from the mass insertion of

the internal mirror lepton line in Fig. (6.1), only the last terms in Eqs. (6.17), (6.18) and (6.22)

are significant numerically. As long as mφkS � mlMm
, the current MEG limit (Eq. (6.27)) on the

branching ratio B(µ→ eγ) imposes the constraint∣∣∣∣∣∣
∑
k,m

URk1m

(
ULk2m

)∗(100 GeV

mlMm

)∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑
k,m

ULk1m

(
URk2m

)∗(100 GeV

mlMm

)∣∣∣∣∣∣
2

≤ 7.9× 10−19 ,

while the result from the Brookhaven E821 experiment on ∆aµ (Eq. (6.29)) imposes∑
k,m

Re
(
ULk2m

(
URk2m

)∗)(100 GeV

mlMm

)
≤ 8.6× 10−4 .

In Figs. (6.2)-(6.7) we plot the contour of Log10B(µ → eγ) (upper panel) and Log10∆aµ

(bottom panel) in the (g0S or 1S ,Mmirror) plane for both normal (left panel) and inverted (right

panel) neutrino mass hierarchies for scenarios 1 (red curves) and 2 (blue curves) with the six cases

of couplings aforementioned: (1) g0S 6= 0, g1S = 0 (Fig. 6.2), (2) g1S = 10−2 × g0S (Fig. 6.3),

(3) g1S = 10−1 × g0S (Fig. 6.4), (4) g1S = 0.5 × g0S (Fig. 6.5), (5) g0S = g1S (Fig. 6.6), and (6)

g0S = 0, g1S 6= 0 (Fig. 6.7), respectively.

At the upper panel of each of these figures, the (light) gray area is excluded by the current

limit of Log10B(µ→ eγ) = −12.24 from MEG experiment [95] for scenario (1) 2 respectively. The
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Figure 6.2: Contour plots of Log10B(µ → eγ) (top panel) and Log10∆aµ (bottom panel) on the
(g0S ,Mmirror) plane for normal (left panel) and inverted (right panel) hierarchy in scenarios 1 (red
curves) and 2 (blue curves) with g0S = g′0S and g1S = g′1S = 0. For details of other input parameters,
one can refer to the text in section 6.1.3.

projected sensitivity of Log10B(µ → eγ) = −13.40 [96] is also shown for each scenario in the two

plots in the upper panel for comparison.

At the bottom panel of each of these figures, the red (blue) area is defined by the Log10∆aµ =

−8.54 [97] from the E821 experiment of the Brookhaven National Lab (BNL) for the discrepancy

between the SM model prediction and the measurement for the muon anomalous magnetic dipole

moment for scenario 1 (2), respectively.
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Figure 6.3: Same as Fig. (6.2) with g0S = g′0S and g1S = g′1S = 10−2 · g0S instead.

From all the plots in these figures, we observe the following general features.

• In the same mass range of the mirror leptons the LFV process µ→ eγ is more sensitive to

the couplings by almost two order of magnitudes as compared with the anomalous magnetic

dipole moment of the muon. This is partly due to the fact that the B(µ → eγ) is quartic

in the couplings, while in ∆aµ they are quadratic.

• As one turns on the A4 triplet coupling g1S from 0 to g1S = g0S (Fig. (6.2) to Fig. (6.6)),

the contours for Log10B(µ→ eγ) (upper panels) are shifting toward to the left, indicating

the role of the triplet singlets become more relevant and thus the constraints on parameter
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Figure 6.4: Same as Fig. (6.2) with g0S = g′0S and g1S = g′1S = 10−1 · g0S instead.

space become more stringent from the current MEG limit. However in the last case of

Fig. (6.7) when the A4 singlet coupling g0S is set to zero such that only the triplet singlets

are contributing in the loop diagram, the contours of Log10B(µ→ eγ) are slightly shifting

back toward to the right. Similar behaviors can be found for the contours of Log10∆aµ,

but the effects are tiny and not easily seen on the log scale, except for the last three cases

of Figs. (6.5)-(6.7) (lower panels).

Regarding the sensitivity on the two scenarios, we can obtain the following statement by

comparing the red and blue contours corresponding to the scenarios 1 and 2 in each of these
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Figure 6.5: Same as Fig. (6.2) with g0S = g′0S and g1S = g′1S = 0.5 · g0S instead.

figures.

• The sensitivity of the couplings in the B(µ→ eγ) has been weakened by one to two order of

magnitudes for scenario 2 as compared to scenario 1. This is due to the fact that in scenario

2, the three unknown unitary mixing matrices are now departure from U †CW , which allows

the couplings take on larger values since the amplitudes involve products of the couplings

and the elements of mixing matrices. However this sensitivity is not present for the muon

anomalous magnetic dipole moment as the distance between the two red and blue contours

for the two scenarios in the lower panels of all these plots are well within a small range of
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Figure 6.6: Same as Fig. (6.2) with g0S = g′0S = g1S = g′1S instead.

the coupling g0S (or g1S in Fig. (6.7)). For example, at Mmirror = 100 GeV, the allowed

value of g0S varies from 10−4.5 to 10−1.8 (10−1.9 to 10−1.4) as seen from the upper (lower)

panels of Figs.(6.2)-(6.6).

Regarding the sensitivity on the neutrino mass hierarchies, one can obtain the following

statements by comparing the left and right panels in each of these figures.

• As one slowly turns on the A4 triplet coupling g1S = 0 (Fig. (6.2)) to g1S = 10−1 × g0S

(Fig. (6.4)), the red contours of Log10B(µ→ eγ) of scenario 1 in the left and right panels
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Figure 6.7: Same as Fig. (6.2) with g0S = g′0S = 0 and g1S = g′1S instead.

in all these plots remain the same, while the blue contours of scenario 2 in the right panels

move toward to the left. This indicates that noticeable differences in the contours of

Log10B(µ→ eγ) between the normal and inverted neutrino mass hierarchies can be seen in

these cases. In general the couplings are about an order of magnitude more sensitive in the

inverted mass hierarchy than the normal one for scenario 2. However, for g1S ≥ 0.5× g0S ,

these differences diminish.

• There are no discernible differences between the two mass hierarchies for the muon anoma-

lous magnetic dipole moment in both scenarios for all 6 cases of couplings.
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6.1.4 Implications

The constraints on the Yukawa couplings coming from µ→ eγ has several implications among

which two are particularly relevant.

• The size allowed for the Yukawa couplings by present limits on B(µ→ eγ) has an important

implication on the decay lengths of the mirror leptons. It is beyond the scope of this thesis

to discuss this in detail here but a few remarks are in order. In the search for mirror

leptons, one would like to look for characteristic signatures which can be distinguished

from SM background. One of such signatures could be events with displaced vertices, in

particular events with decay lengths which are macroscopic (l > 1 mm). How this type of

events can be correlated to µ → eγ is a topic which was already mentioned in [91]. With

the present update which includes a more detailed analysis taking into account mixings in

the lepton sector, one can have a better idea of the correlation between the feasibility to

observe µ→ eγ and the detection of mirror leptons.

A mirror lepton can decay directly into SM leptons with an accompanying Higgs singlet.

For example, one can have lMRi → lLj + φkS where i, j = e, µ, τ and k = 0, 1, 2, 3. The

decay length will depend on the magnitude of the Yukawa couplings as well as on the

various mixing parameters contained in Eq. (6.7). We just take one example here for the

sake of discussion. The interaction Lagrangian for µMRi → lLj + φkS can be expressed as
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(ēLM12 + µ̄LM22 + τ̄LM32)µMR where (for scenario 2 with the normal hierarchy)

M12 = (5.834× 10−6 − 0.000025i)g0Sφ0S + (6.30)

(g1S(0.324 + 0.159i) + g2S(0.407− 0.171i))φ1S +

(g1S(0.154 + 0.200i) + g2S(0.192 + 0.238i))φ2S +

(g1S(0.074− 0.325i) + g2S(0.201− 0.102i))φ3S

M22 = 0.999933g0Sφ0S +

(g1S(−0.262 + 0.332i) + g2S(−0.262− 0.332i))φ1S +

(g1S(0.146− 0.193i) + g2S(0.146 + 0.193i))φ2S +

(g1S(0.067− 0.255i) + g2S(0.067 + 0.255i))φ3S

M32 = (0.00006 + 0.00002i)g0sφ0S +

(g1S(−0.054− 0.276i) + g2S(−0.145 + 0.257i))φ1S +

(g1S(−0.163− 0.043i) + g2S(0.269 + 0.405i))φ2S +

(g1S(0.166− 0.503i) + g2S(−0.157− 0.077i))φ3S

Depending on the particular search (e, µ or τ), a displaced vertex might occur. For instance,

if one focuses on τ , and if giS � g0S , the constraint on g0S < 10−3 (see the above figures)

implies that µMRi → τL +φkS would have a macroscopic decay length. There are many such

cases but it is beyond the scope of this thesis to discuss this issue at length. We merely

point out the relationship between the constraints coming from µ→ eγ and the implication

on the search for mirror leptons.

• The other implication concerns the VEV of the singlet Higgs fields. Since the seesaw

mechanism implies the masses of the light neutrinos are given by ∼ m2
D/M and with

M ∼ O(ΛEW ), it was stated in [64] that mD ∼ O(100 keV) and that the singlet VEV

∼ O(100 keV) if gS ∼ O(1). However, constraints from µ → eγ imply g0S < 10−3 which

now brings the singlet VEV up to O(100 MeV). In fact it can even be of the order O(1 GeV).
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From this observation, it is safe to say that there does not appear to be much of a hierarchy

problem in the EW-scale νR model.

6.1.5 Summary of the section

In this chapter, we present an update on a previous analysis [91] for the process µ → eγ

performed in the original EW-scale νR model [64] to an extended model [73]. Mixings effects of

neutrinos and charged leptons constructed with a A4 symmetry as recently studied in [92] are also

taken into account. In this context, the rare process µ → eγ is link to interesting new physics

beyond the SM in the lepton sector, like neutrino and charged lepton mass mixings, neutrino mass

hierarchies, mirror leptons as well as singlet and triplet scalars of A4, etc. The related muon

anomalous magnetic dipole moment is also studied in detail for the model.

To summarize, we find that

• One can deduce more stringent constraints on the parameter space of the EW-scale νR

model by using the LFV process µ → eγ than the muon anomalous magnetic dipole mo-

ment.

• The branching ratio B(µ → eγ) shows some sensitivity to the neutrino mass hierarchies

in scenario 2 but not scenario 1, depending on the A4 triplet coupling constants. However

we are not advocating the use of the process µ → eγ to settle the issue of neutrino mass

hierarchies. After all, this is a rare process.

• More stringent constraints can be deduced in scenario 1 than scenario 2 using B(µ→ eγ).

• Future data from MEG experiment with the projected sensitivity will impose further con-

straints on the parameter space of the model.

• The muon anomalous magnetic dipole moment is sensitive neither to the neutrino mass
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hierarchies nor the scenarios for all 6 cases of the couplings studied here for the model.

Searching for new physics via rare processes is complementary to direct production of new

particles at colliders. For µ→ eγ, the relevant new particles in the model are the mirror leptons and

scalar singlets running inside the loop diagram. As shown in our analysis, the Yukawa couplings

of the Higgs singlets to the leptons in the EW-scale νR model are constrained to be small in order

to be consistent with the current experimental limit on B(µ → eγ). Thus searching for mirror

particles of this model at the LHC would be quite interesting since, due to small couplings, they

might decay outside the beam pipe and inside the silicon vertex detectors. The A4 singlet and

triplet scalars are likely to escape detection as missing energies. As an outlook, one would like to

generalize this work to µ − e conversion. This work has been done and will be presented in the

following section.

6.2 Muon-to-Electron Conversion

Previously on the µ → eγ analysis, the most updated limit on B(µ → eγ) is from MEG

experiment [98]

B(µ→ eγ) ≤ 4.2× 10−13 (90% C.L.) (MEG 2016) , (6.31)

and its projected improvement [96] is

B(µ→ eγ) ∼ 4× 10−14 . (6.32)

Recent data from T2K experiment [99] agrees well with the global analysis of neutrino oscillation

data [100–102], suggesting that the normal neutrino mass hierarchy (NH) with a CP violating Dirac

phase δCP ∼ 3π/2 is slightly preferred. The best fit result for the central values of the PMNS matrix
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elements in the normal neutrino mass hierarchy can be extracted from [100]

UNH
PMNS =


0.8251 0.5453 0.08679 + 0.1195i

−0.4568 + 0.0670i 0.5854 + 0.04428i 0.6649

0.3171 + 0.07377i −0.5963 + 0.04875i 0.7322

 . (6.33)

For the µ − e conversion in nuclei, the present experimental upper limits on the branching

ratios were obtained by SINDRUM II experiment [103,104] for the targets titanium and gold,

B(µ− + Ti→ e− + Ti) < 4.3× 10−12 (90% C.L.) , (6.34)

B(µ− + Au→ e− + Au) < 7× 10−13 (90% C.L.) . (6.35)

Significant improvements are expected for µ − e conversion at future experiments like Mu2e at

Fermilab in US and COMET at J-PARC in Japan. Projected sensitivities of µ − e conversion

are [105–109]

B(µ− + Al→ e− + Al) < 3× 10−17 (Mu2e,COMET) , (6.36)

B(µ− + Ti→ e− + Ti) < 10−18 (Mu2e II,PRISM) . (6.37)

A positive signal of any of the above processes (or any process with charged lepton flavor violation

(CLFV)) at the current or projected sensitivities of various high intensity experiments would be a

clear indication of new physics as well, just like neutrino oscillations. Given the fact that no new

physics has showed up yet at the high energy frontier of the Large Hadron Collider (LHC), it is

not a surprise that many recent works have been focused on new physics implication of CLFV in

the high intensity frontier. For a review on this topics and its possible connection with the muon

anomaly, see [110] and references therein.

In section 6.1, we updated a previous calculation [91] for the radiative process µ→ eγ in the

mirror fermion model with electroweak scale non-sterile right-handed neutrinos [64] to an extended

version [92] where a horizontal A4 symmetry in the lepton sector was imposed. In this section we
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extend this previous analysis [111] to the µ − e conversion in nuclei, in particular for aluminum,

gold and titanium.

An outline of the section is as follows. In section 6.2.1, the calculation of µ−e conversion in the

extended mirror fermion model is presented. In section 6.2.2, we derive a simple relation between

the µ − e conversion rate and the radiative decay rate of µ → eγ in the limit of zero momentum

transfer and large mirror lepton masses. Numerical results are shown in section 6.2.3. To summarize

we conduct section 6.2.4. In Appendix A, we briefly review the effective Lagrangian [112, 113] for

describing µ−e conversion; and in Appendix B, we collect some useful formulas used in section 6.2.2.

6.2.1 Mirror Fermion Model Calculation

In this section, we compute the effective coupling constants induced at one loop level in the

extended model for the µ− e conversion.

6.2.1.1 Photon Contributions and the Monopole and Dipole Form Factors

In this work we will focus on the contributions from the photon exchange as shown in the

Feynman Diagrams of Fig. (6.8). We also compute the contributions from the Z-exchange but

since they are suppressed by m2
µ/m

2
Z we will not present them here. The invariant amplitude for

µ−(p)→ e−(p′)γ∗(q) with an off-shell photon can be parametrized as

iMγ = −eue(p′)iΓµγ(q)uµ(p)A∗µ(q) (6.38)

where Γµγ(q) has the following Lorentz and gauge invariant decomposition

Γµγ(q) =
(
fE0(q2) + γ5fM0(q2)

)(
γµ − qµ/q

q2

)
+
(
fM1(q2) + γ5fE1(q2)

) iσµνqν
mµ

. (6.39)

The monopole form factors fE0, fM0 and the dipole form factors fM1, fE1 can be obtained by

generalizing our previous on-shell calculation of µ → eγ in the same model [111] to the case of
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Figure 6.8: One-loop induced Feynman diagrams from photon and Z boson exchanges for µ − e
conversion in electroweak-scale νR model.

off-shell photon γ∗. From the Feynman diagrams of Fig. (6.8), we obtain the following expressions

fE0,M0(q2) = +
1

32π2

∑
k,m

∫ 1

0
dx

∫ 1−x

0
dy

{
xyq2

∆km(q2)

(
ULk1m

(
ULk2m

)∗
± URk1m

(
URk2m

)∗)
−

[
log

(
∆km(q2)

∆km(0)

)
−
(
M2
m ± (1− x− y)2mµme

) (
∆−1
km(q2)−∆−1

km(0)
)]

×
(
ULk1m

(
ULk2m

)∗
± URk1m

(
URk2m

)∗)
+ (1− x− y)(mµ ±me)Mm

(
∆−1
km(q2)−∆−1

km(0)
)

×
(
ULk1m

(
URk2m

)∗
± URk1m

(
ULk2m

)∗)}
(6.40)

for the monopole form factors, and

fM1,E1(q2) = − mµ

32π2

∑
k,m

∫ 1

0
dx

∫ 1−x

0
dy

1

∆km(q2)

×
{

(1− x− y) (ymµ ± xme)
(
ULk1m

(
ULk2m

)∗
± URk1m

(
URk2m

)∗)
+(x+ y)Mm

(
ULk1m

(
URk2m

)∗
± URk1m

(
ULk2m

)∗)}
(6.41)

for the dipole form factors. Here, we have defined

∆km(q2) = (x+ y)M2
m + (1− x− y)(m2

k − xm2
e − ym2

µ)− xyq2 − i0+ , (6.42)

where mk denotes the mass of scalar singlet φkS for k = 0, 1, 2, 3 and Mm the mass of mirror lepton

lMm for m = 1, 2, 3.
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At q2 = 0, we have fE0,M0(0) = 0 as one would expect. Thus the following reduced monopole

form factors f̃E0,M0 with an explicit factor of q2 extracted from fE0,M0 are often defined in the

literature,

fE0,M0(q2) =
q2

m2
µ

f̃E0,M0(q2) . (6.43)

For small q2, one can set f̃E0,M0(q2) ≈ f̃E0,M0(0) with

f̃E0,M0(0) =
m2
µ

32π2

∑
k,m

∫ 1

0
dx

∫ 1−x

0
dy

xy(
∆km(0)

)2 {(ULk1m

(
ULk2m

)∗
± URk1m

(
URk2m

)∗)
×
(

2∆km(0) +M2
m ± (1− x− y)2mµme

)
+
(
ULk1m

(
URk2m

)∗
± URk1m

(
ULk2m

)∗)
(1− x− y)(mµ ±me)Mm

}
. (6.44)

The explicit factor of q2 in Eq. (6.43) will cancel the 1/q2 of the photon propagator in Fig. (6.8).

This leads to four-fermion vector-vector interaction and hence the reduced monopole form factors

will contribute to the effective coupling C
(q)
V (R,L) in the effective Lagrangian of (A.1) in Appendix

A. We will discuss more about these four-fermion interactions in the next subsection.

At q2 = 0, the contributions from the magnetic and electric dipole terms of Eq. (6.39) to the

amplitude Mγ in Eq. (6.38) can be reproduced by the following effective Lagrangian

Lγ,eff =
e

2mµ
eσαβ (fM1(0) + γ5fE1(0))µFαβ + H.c. . (6.45)

Comparing Eq. (6.45) with the first line of the general form of the Lagrangian for µ− e conversion

given in (A.1) in Appendix A, one can deduce the dimensionless effective couplings CDR,DL as

linear combinations of the static limit of the dipole form factors fE1 and fM1,

CDR,DL
Λ2

=
e

2m2
µ

(±fE1(0)− fM1(0)) . (6.46)
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6.2.1.2 Four-Fermion Coupling Constants C
(q)
V (L,R) - Photon Exchange

The amplitude for µ(p)q(k) → e(p′)q(k′) from the monopole form factors of the photon

exchange in Fig. (6.8) can be obtained as

Mγ = −e2Qque(p
′)
(
fE0(q2) + fM0(q2)γ5

)(
γµ −

qµ/q

q2

)
uµ(p)

1

q2
uq(k

′)γµuq(k) , (6.47)

where q = p−p′ = k′−k, and fE0, fM0 are given in Eq. (6.40). The qµ term in (6.47) can be dropped

due to quark current conservation. As mentioned earlier, the 1/q2 of the photon propagator will

be cancelled from a factor of q2 in fE0,M0. Thus in terms of the reduced form factors f̃E0,M0 of

Eq. (6.43), the amplitude Mγ can be rewritten as

Mγ = − e2Qq
m2
µ

[(
f̃E0 − f̃M0

)
uLe(p

′)γµuLµ(p) +
(
f̃E0 + f̃M0

)
uRe(p

′)γµuRµ(p)
]

×
[
uLq(k

′)γµuLq(k) + uRq(k
′)γµuRq(k)

]
, (6.48)

where f̃E0,M0 are defined in Eq. (6.44) for small q2. At q2 = 0, this amplitude can be reproduced

by the following Fermi interaction

L′γ,eff = −e
2Qq
m2
µ

[(
f̃E0(0)− f̃M0(0)

)
eLγµµL +

(
f̃E0(0) + f̃M0(0)

)
eRγµµR

]
× [qγµq] . (6.49)

By matching Eq. (6.49) with the second line of the general form of the Lagrangian for µ − e

conversion given in (A.1) in Appendix A, we deduce the following relations for the dimensionless

effective couplings C
(q)γ
V (L,R)

C
(q)γ
V (L,R)

Λ2
=

e2Qq
m2
µ

(
f̃E0(0)∓ f̃M0(0)

)
. (6.50)

Note that we have the relation C
(u)γ
V (L,R) = −2C

(d)γ
V (L,R). This implies the vector effective couplings

C̃
(n)γ
V (L,R) for the neutron from the photon exchange are vanishing. This is expected since neutron

carries no electric charge.

We also note that for the photon contributions, only C
(q)
V R and C

(q)
V L are non-vanishing. Other

four-fermion effective couplings will be non-vanishing only from Z exchange, scalar exchange or
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box diagrams, which are negligible as compared with the photon exchange contributions. We prove

this in Appendix C.

6.2.2 The relationship between µ− e Conversion and µ→ eγ

Since the momentum transfer q2 is expected to be quite small in the µ− e conversion process

in nuclei, we can make a Taylor expansion for the various form factors deduced in the previous

section around q2 = 0. Thus for small q2, we have

fE0,M0(q2) ≈ q2

32π2

1

M4
m

∑
k,m

{(
ULk1m

(
ULk2m

)∗
± URk1m

(
URk2m

)∗)
×
[
M2
m (I(rkm) + 2I30(rkm))±mµmeI10(rkm)

]
(6.51)

+
(
ULk1m

(
URk2m

)∗
± URk1m

(
ULk2m

)∗)
Mm (mµ ±me) I20(rkm)

}
,

and

fM1,E1(q2) ≈ − mµ

32π2

∑
k,m

{
1

M2
m

(mµ ±me)
(
ULk1m

(
ULk2m

)∗
± URk1m

(
URk2m

)∗)
I(rkm)

+
1

Mm

(
ULk1m

(
URk2m

)∗
± URk1m

(
ULk2m

)∗)
J (rkm)

}
− mµq

2

32π2

{
1

M4
m

(mµ ±me)
(
ULk1m

(
ULk2m

)∗
± URk1m

(
URk2m

)∗)
I40(rkm)

+
1

M3
m

(
ULk1m

(
URk2m

)∗
± URk1m

(
ULk2m

)∗)
I50(rkm)

}
. (6.52)

Here rkm = m2
k/M

2
m and the expressions for the Feynman parameterization integrals I, J and

Ii0 (i = 1, 2, · · · , 5) can be found in Appendix B.

From (A.2) in Appendix A, the conversion rate (for γ exchange) is given by

Γconv =
m5
µ

4Λ4

(∣∣∣∣CDRD + 4C̃
(p)
V RV

(p)

∣∣∣∣2 +

∣∣∣∣CDLD + 4C̃
(p)
V LV

(p)

∣∣∣∣2
)
, (6.53)

where CDR,DL is given by (6.46), and C̃
(p)
V R,V L are given by (A.3) and (A.5) in Appendix A. To

obtain (6.53), we have used the following result valid for the neutron,

C̃
(n)
V (L,R) =

∑
u,d,s

C
(q)
V (L,R)f

(q)
V n = 0 . (6.54)
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Using the above approximate form factors (6.51) and (6.52) for small q2, we can derive

CDR,DL ≈ eΛ2

32π2mµ

∑
k,m

{
I(rkm)

M2
m

(
mµUR,Lk1m

(
UR,Lk2m

)∗
+meUL,R k1m

(
UL,R k2m

)∗)
+
J (rkm)

Mm
UR,Lk1m

(
UL,R k2m

)∗
+
q2

M2
m

[
I40(rkm)

M2
m

(
mµUR,Lk1m

(
UR,Lk2m

)∗
+meUL,R k1m

(
UL,R k2m

)∗)
+
I50(rkm)

Mm
UR,Lk1m

(
UL,R k2m

)∗ ]}
, (6.55)

and summing over the contributions from light quarks, we have

C̃
(p)
V L,V R ≈

e2Λ2

16π2M4
m

∑
k,m

{
M2
m (I(rkm) + 2 I30(rkm))UR,Lk1m

(
UR,Lk2m

)∗
+ mµmeI10(rkm) UL,R k1m

(
UL,R k2m

)∗
(6.56)

+ MmI20(rkm)
(
mµUR,Lk1m

(
UL,R k2m

)∗
+meUL,R k1m

(
UR,Lk2m

)∗)}
.

Dropping the q2 terms in CDR,DL and keeping only those terms up to O(1/M2
m) in C̃

(p)
V L,V R, we

obtain for the conversion rate

Γconv(q2 → 0) ≈
m5
µ

4

1

(32π2)2

×
∑
k,m

{∣∣∣∣16π2D

mµ
CkmL + 8V (p)e2I(rkm) + 2 I30(rkm)

M2
m

ULk1m

(
ULk2m

)∗∣∣∣∣2
+

∣∣∣∣16π2D

mµ
CkmR + 8V (p)e2I(rkm) + 2 I30(rkm)

M2
m

URk1m

(
URk2m

)∗∣∣∣∣2} , (6.57)

where

CkmL,R =
e

16π2

{
I(rkm)

M2
m

(
mµUR,Lk1m

(
UR,Lk2m

)∗
+meUL,R k1m

(
UL,R k2m

)∗)
+
J (rkm)

Mm
UR,Lk1m

(
UL,R k2m

)∗}
. (6.58)

Recall that for the on-shell process µ→ eγ, we have

Γµ→eγ =
1

16π
m3
µ

∑
k,m

(
|CkmL |2 + |CkmR |2

)
. (6.59)
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Thus, one obtains

Γconv(q2 → 0) ≈ πD2Γµ→eγ +
m5
µ

(64π2)2

∑
k,m

{
2DV (p) (8πe)2 I(rkm) + 2I30(rkm)

mµM2
m

×
(
CkmL ULk1m

(
ULk2m

)∗
+
(
CkmL

)∗ (
ULk1m

)∗
ULk2m

+ CkmR URk1m

(
URk2m

)∗
+
(
CkmR

)∗ (
URk1m

)∗
URk2m

)
(6.60)

+

(
8V (p)e2I(rkm) + 2I30(rkm)

M2
m

)2 (
|ULk1m

(
ULk2m

)∗
|2 + |URk1m

(
URk2m

)∗
|2
)}

.

Note that since CkmL,R is scaled by 1/Mm, the second and the third terms in (6.60) are suppressed by

1/Mm and 1/M2
m respectively, as compared with the first term. If one drops these two suppressed

terms further, one obtains a simple relation

Γconv(q2 → 0) ≈ πD2Γµ→eγ . (6.61)

Thus,

BµN→eN =
Γconv

Γcapt
≈ πD2 Γµ

Γcapt
Bµ→eγ , (6.62)

where Γµ is the total decay width of the muon.

6.2.3 Numerical analysis

In our analysis, we adapt the same assumptions for the parameter space as was done in [111]

and presented in section 6.1.3. We summarize them as follows.

• For the mass parameters, we take the masses of the singlet scalars φkS to be

m0 : m1 : m2 : m3 = MS : 2MS : 3MS : 4MS , (6.63)

where the common mass MS is set to be 10 MeV; and for the mirror lepton masses, we set

Mm = Mmirror + δm (6.64)

where δ1 = 0, δ2 = 10 GeV, δ3 = 20 GeV and the common mass Mmirror is varied in the

range of 100−800 GeV. Our results are insensitive to these choices as long as mk/Mm � 1.
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• Note that the relations g2S = (g1S)∗ and g′2S = (g′1S)∗ hold due to the hermiticity of the

neutrino Dirac mass matrix. However, all the Yukawa couplings g0S , g1S , g2S , g
′
0S , g

′
1S ,

and g′2S are assumed to be real.

• Out of the four mixing matrices, only the one UPMNS associated with the left-handed SM

fermions are known. Following [111], we will consider two scenarios below:

∗ Scenario 1: UMPMNS = U ′PMNS = U ′MPMNS = U †CW

∗ Scenario 2: UMPMNS = U ′PMNS = U ′MPMNS = UPMNS

where UCW is given by (5.6). For the PMNS mixing matrix, we will use the best fit result

in (6.33). In the two scenarios that we are studying, our results do not depend sensitively

on the mass hierarchies.

• We will study the following two cases for the Yukawa couplings.

(1) g0S = g′0S and g1S = g′1S = 10−2g0S . Hence the contributions from the A4 triplet is

small.

(2) g0S = g′0S = g1S = g′1S . Both A4 singlet and triplet terms carry the same weight.

In Figs. (6.9), (6.10), (6.11) and (6.12) we plot the contour of log10B(µ− e conversion) with

γ dominance in the (log10(g0S),Mmirror) plane for Scenarios 1 and 2 with the normal neutrino

mass hierarchy for the 2 cases of couplings aforementioned respectively. The blue and green solid

lines correspond to the current limits from SINDRUM II experiments for µ − e conversion to

titanium (6.34) and gold (6.35) respectively. The red solid and dashed lines correspond to the

current limit (6.31) and projected sensitivity (6.32) for µ → eγ from MEG experiment. The cyan

and blue dashed lines correspond to the projected sensitivities for µ − e conversion to aluminum

and titanium from COMET, Mu2e (6.36) and Mu2e II, PRISM (6.37) experiments respectively.

Several comments are in order here.
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Figure 6.9: Contour plots of Log10B(µ− e conversion) on the (g0S ,Mmirror) plane for normal mass
hierarchy in Scenario 1 with g0S = g′0S and g1S = g′1S = 10−2g0S . The legend shows current
experimental limits and projected sensitivities from COMET, Mu2e, SINDRUM II, PRISM and
MEG. For details of other input parameters, one can refer to the text in section 6.2.3.

• We have studied in some details the effects of different settings of couplings on our results.

Generally, we observe that as one varies the A4 triplet coupling g1S from 10−2g0S to g0S

(from Figs. (6.9) to (6.12)) the contour plots for log10B(µ − e conversion) are shifted to

the left. The A4 triplet is playing a significant role in putting constraints on the parameter

space for the CLFV processes, such as µ→ eγ and µ− e conversion in the model.

• For the sensitivity of the two scenarios, we find that

∗ Generally, Scenario 2 is less stringent constraint than Scenario 1.

∗ In particular, when the A4 singlet couplings are dominated, Scenario 2 is less stringent

than Scenario 1 by at least two order of magnitude (10−3 vs. 10−1), regarding the

constraint on the couplings (as shown in Figs. (6.9) and (6.10)). This is due to the
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Figure 6.10: Contour plots of Log10B(µ−e conversion) on the (g0S ,Mmirror) plane for normal mass
hierarchy in Scenarios 2 with g0S = g′0S and g1S = g′1S = 10−2g0S .

fact that in Scenario 2, the three unknown unitary mixing matrices are now departure

from UPMNS which allows for larger effects since the amplitudes involve products of

both the couplings and the elements of mixing matrices.

∗ However, as one turns on the contribution from the A4 triplet in Fig. (6.11) and

Fig. (6.12), the discrepancy between two scenarios 1 and 2 shrink (10−2 vs. 10−3.2).

It implies that Scenario 2 is more sensitive to the change in the structure of A4

couplings.

• Finally, regarding the incorporation of the current limit on B(µ → eγ) from MEG exper-

iment and its projected sensitivity into the contour plots of log10B(µ− e conversion), one

can obtain the following statements by looking at Figs. (6.9)-(6.12):

∗ The plots illustrate nicely the close relation between the two CLFV processes µ→ eγ
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Figure 6.11: Contour plots of Log10B(µ−e conversion) on the (g0S ,Mmirror) plane for normal mass
hierarchy in Scenarios 1 with g0S = g′0S = g1S = g′1S .

and µ−e conversion in nuclei using the simple formula (6.62) we derived in Sec. 6.2.2.

∗ In the same parameter space, µ→ eγ shows a tighter constraint than µ−e conversion

by the fact that it excludes almost half of the searched region for the branching ratio

of µ− e conversion. Therefore, our work helps narrow down future searches for µ− e

conversion at Fermilab/Mu2e, J-PARC/COMET and PRISM.

∗ With the current upper bounds from various experiments, the radiative decay µ→ eγ

is providing more stringent constraints on the couplings than the µ−e conversion (10−4

vs. 10−3, about one order of magnitude better). However, for the future projected

sensitivities at Mu2e and COMET, µ− e conversion is slightly more stringent, about

half an order of magnitude stronger constraints on the couplings. For PRISM, it can

be about an order of magnitude more stronger.
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Figure 6.12: Contour plots of Log10B(µ−e conversion) on the (g0S ,Mmirror) plane for normal mass
hierarchy in Scenarios 2 with g0S = g′0S = g1S = g′1S .

6.2.4 Summary of the section

Mirror fermion model with electroweak scale non-sterile right-handed neutrinos is an inter-

esting extension of the SM. Aside from its aesthetically appealing to restoring parity symmetry at

higher energy scale, it can have immediate impacts for experiments in both complementary frontiers

of high energy and high intensity searching for new physics of lepton flavor violation.

In this study, we discussed µ − e conversion in nuclei and radiative decay µ → eγ in an

extended mirror fermion model with a A4 horizontal symmetry in the lepton sector. Currently

the most stringent constraint on the parameter space of the model is provided by the most recent

limit on the radiative decay µ→ eγ from MEG. In the future, Mu2e and COMET experiments can

provide more stringent constraints on the model from µ − e conversion in aluminum. The sensi-
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tivity of the new Yukawa couplings can be probed is of order 10−5, about one order of magnitude

improvement compared with current status from MEG. Small Yukawa couplings such as 10−5 can

give rise to distinct signatures in the search of mirror charged leptons and Majorana right-handed

neutrinos at the LHC (or planned colliders) in the form of displaced decay vertices with decay

lengths larger than 1 mm or so [119]. Although unrelated to the present analysis, a similar remark

can be made for the search for mirror quarks [74].



Chapter 7

Implications on Quark Mass Matrices

7.1 Motivation

Quark mass terms come from Yukawa interactions with the Higgs doublet but the SM cannot

predict the couplings. As far as we have known quark masses have been determined by experiments.

Moreover quark sector shows a very distinctive mass hierarchy in which mt/mu ∼ O(105) for the

up-type quarks and mb/md ∼ O(103) for the down-type quarks. These facts provide us freedom to

build a model of quark masses in order to reasonably explain the origin of quark masses and their

mass structure.

As discussed in chapter 5, the model of neutrino masses and mixings eventually necessitated

a slight breaking of the discrete A4 symmetry in order to avoid the case of degenerate charged

lepton from occurring. This led to the ansätz for UlL which has deviated from the unit matrix by

a small amount and still been unitary. Therefore the Wolfenstein-like parametrized form has been

proposed

UlL =


1− λ2l

2 λl Alλ
3
l (ρl − iηl)

−λl 1− λ2l
2 Alλ

2
l

Alλ
3
l (1− ρl − iηl) −Alλ2

l 1

 (7.1)

where Al, ρl, ηl are real parameters of O(1) [22]. The subscript ‘l’ indicates that A, ρ, η belong

to charged leptons.



127

On the other hand both quarks and charged leptons acquire their masses through the cou-

plings to the SM Higgs doublet Φ2. It might not be unreasonable to speculate that whatever

mechanism giving rise to mass mixings in mass matrices could be similar for both quarks and

charged leptons. The following ansätz could be made for quark sector

UlL → UdL (7.2)

λl, Al, ρl, ηl → λd, Ad, ρd, ηd

UlL → UuL (7.3)

λl, Al, ρl, ηl → λu, Au, ρu, ηu

With the current knowledge about the CKM matrix, defined as VCKM = U †uLUdL, and the absolute

quark masses mu,md, · · ·mb one can have the forms of MuM†u and MdM†d being similar to that

of MlM†l . From this we propose quark mass matrix forms and use the mentioned knowledge to

constrain their parameters.

The chapter is organized as follows. Firstly, we find a relation between λCKM (or λ for short),

λu and λd. This will serve as our base for any assumption we have made in this chapter. Secondly,

we present a possible quark mass matrix form and with a general checking on its eigenvalues we move

forward to construct Mu and Md by using the resulting Mu,dM†u,d to constrain the parameters

of up- and down-quark mass matrices. We also include numerical analysis to make sure that these

matrices are coherent with our current understanding about the quark sector.

7.2 Relation between λ, λu and λd

As argued in the previous section and in [92] we can reuse the Wolfenstein-like parameter-

ization method and apply it for UdL and UuL. The resulting mixing matrices have the following
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forms

UdL =


1− λ2d

2 λd Adλ
3
d(ρd − iηd)

−λd 1− λ2d
2 Adλ

2
d

Adλ
3
d(1− ρd − iηd) −Adλ2

d 1

 (7.4)

UuL =


1− λ2u

2 λu Auλ
3
u(ρu − iηu)

−λu 1− λ2u
2 Auλ

2
u

Auλ
3
u(1− ρu − iηu) −Auλ2

u 1

 (7.5)

Recall that

VCKM = U †uLUdL (7.6)

It is well-known that this CKM matrix [18, 19] can also be parametrized by three mixing angles

and the CP -violation phase [19]. The standard expression has been mentioned in Eq. (2.105). It

is convenient to write the matrix in terms of Wolfenstein parametrization as

VCKM =


V11 V12 V13

V21 V22 V23

V31 V32 V33

 =


1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (7.7)

Where λ = 0.22496± 0.00048, A = 0.823± 0.013, ρ̄ = 0.141± 0.019, η̄ = 0.349± 0.012 [21].

Comparing the CKM elements resulting from Eq. (7.6) and Eq. (7.7) gives us the Table (7.1).

We see that a relevant relation between λu, λd and λ is

λ = λd − λu (7.8)

Moreover by looking at the V13 and V31 terms from Table (7.1) it is reasonable to make an ansätz

in which

λu =
mu

mt
and λd ≈ λ (7.9)

Before using the above ansätz to construct quark mass matrices Mu and Md let us discuss on

which kind of matrix forms will be the candidate to describe the quark masses and mixings.
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Table 7.1: Wolfenstein vs. Wolfenstein-like parameters for CKM matrix

CKM elements Wolfenstein parameters Wolfenstein-like parameter

V11 1− λ2

2 1−
(
λ2u
2 +

λ2d
2 − λdλu

)
V12 λ λd − λu

Re(V13) Aλ3ρ Auλ
3
u(1− ρu) +Adλ

3
d(ρd − λu/λd)

Im(V13) −Aλ3η Auλ
3
uηu −Adλ3

dηd

V21 −λ − (λd − λu)

V22 1− λ2

2 1−
(
λ2u
2 +

λ2d
2 − λdλu

)
V23 Aλ2 Adλ

2
d −Auλ2

u

Re(V31) Aλ3(1− ρ) Adλ
3
d(1− ρd) +Auλ

3
u(ρu − λd/λu)

Im(V31) −Aλ3η Auλ
3
uηu −Adλ3

dηd

V32 −Aλ2 −
(
Adλ

2
d −Auλ2

u

)
V33 1 1

7.3 A general quark mass matrix and its eigenvalues

There has been several attempts unraveling the quark mass problem and the literature.

Especially, there are studies of the mass matrix presuming that it is hermitian, symmetric [126],

[127], [128], [129] or anti-hermitian [130]. These works have had the same goal which is to reduce

the number of parameters in the quark mass matrices Mu,d (18 for each if they are complex) by

putting zeros in the matrix elements, called zero texture of quark mass matrices [126, 131, 132].

This motivated us to introduce a suitable matrix texture in order to acquire quark masses after

diagonalizing the matrix.

We first start with a general quark mass matrix of three generations having a form of

Mq =


a b c

m e f

n r h

 (7.10)

where all elements are complex in this case. It is worth noticing that one must be really careful

when inputting zeros in the matrix since this action may lead to at least one zero eigenvalue.
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Therefore our work takes one more step further to look into eigenvalues of the matrix (7.10) before

making any assumption. Eventually we expect the eigenvalues λi of the matrix to be the quark

masses, say md,ms,mb for the down-quark sector. Eigenvalues of the matrix (7.10) are expressed

as

λ1 =
1

3 3
√

2
·A (7.11)

−
3
√

2

3
· −a

2 + ah+ ea− 3bm− 3cn− 3fr − h2 + eh− e2

A

+
1

3
(a+ h+ e)

λ2 = − 1

6 3
√

2
(1− i

√
3) ·A (7.12)

+
1

3 · 22/3
(1 + i

√
3) · −a

2 + ah+ ea− 3bm− 3cn− 3fr − h2 + eh− e2

A

+
1

3
(a+ h+ e)

λ3 = − 1

6 3
√

2
(1 + i

√
3) ·A (7.13)

+
1

3 · 22/3
(1− i

√
3) · −a

2 + ah+ ea− 3bm− 3cn− 3fr − h2 + eh− e2

A

+
1

3
(a+ h+ e)

where

A =
{

2a3 − 3a2h− 3ea2 (7.14)

+
√[

4(−a2 + ah+ ea− 3bm− 3cn− 3fr − h2 + eh− e2)3

+(2a3 − 3a2h− 3ea2 + 9abm+ 9acn− 18afr − 3ah2 + 12eah− 3e2a+ 27bfn− 18bhm

+9ebm+ 9chn+ 27cmr − 18ecn+ 9fhr + 9efr + 2h3 − 3eh2 − 3e2h+ 2e3)2
]

+ 9abm+ 9acn− 18afr − 3ah2 + 12eah− 3e2a+ 27bfn− 18bhm+ 9ebm

+ 9chn+ 27cmr − 18ecn+ 9fhr + 9efr + 2h3 − 3eh2 − 3e2h+ 2e3
}1/3

By analyzing the above eigenvalues if one makes any assumption then it is necessary to keep 3

parameters a, e, h. Note that |a| < |e| � |h|. Furthermore A is proven to be complex for any a, e, h
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in this case. We also have λ1 � λ2 > λ3 so a correspondence can be established

λ1 ←→ mb, λ2 ←→ ms, λ3 ←→ md . (7.15)

7.4 Finding quark mass matrices Mu and Md

Acknowledging the facts and arguments in previous sections, we are now on the mission of

finding possible forms of quark mass matrices. Recall that we have set λu =
mu

mt
and λd ≈ λ.

7.4.1 Down-quark sector

The current data from [21] record that md = 0.0048 GeV, ms = 0.095 GeV and mb =

4.42 GeV. A suggested form of Md is

Md =


ad bd cd

b∗d ed fd

c∗d f∗d hd

 →M†d =


a∗d bd cd

b∗d e∗d fd

c∗d f∗d h∗d

 (7.16)

Therefore,

Md =MdM†d =


ad bd cd

b∗d ed fd

c∗d f∗d hd




a∗d bd cd

b∗d e∗d fd

c∗d f∗d h∗d

 (7.17)

We shall compare (7.17) with the product MdM†d implied from the neutrino mass model [92] (up

to O(λ3
d) since λd ≈ λ)

MdM†d =


(1− λ2

d) md
2 + λ2

d ms
2 λd(ms

2 −md
2) Adλ

3
d m

2
b(ρd − iηd)

λd(ms
2 −md

2) λ2
d md

2 + (1− λ2
d)ms

2 Adλ
2
d(mb

2 −ms
2)

Adλ
3
d m

2
b(ρd + iηd) Adλ

2
d(mb

2 −ms
2) mb

2

 (7.18)
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This results in the following equations

M11
d = |ad|2 + |bd|2 + |cd|2 = (1− λ2

d) md
2 + λ2

d ms
2 (7.19)

M22
d = |bd|2 + |ed|2 + |fd|2 = (1− λ2

d) ms
2 + λ2

d md
2 (7.20)

M33
d = |cd|2 + |fd|2 + |hd|2 = m2

b (7.21)

M12
d = adbd + bde

∗
d + cdf

∗
d = λd(m

2
s −m2

d) (7.22)

M21
d = M12

d
∗

M13
d = adcd + bdfd + cdh

∗
d = Adλ

3
dm

2
b(ρd − iηd) (7.23)

M31
d = M13

d
∗

M23
d = b∗dcd + edfd + fdh

∗
d = Adλ

2
d(m

2
b −m2

s) (7.24)

M32
d = M23

d
∗

Since only ad, ed, hd must stay in the matrix it is reasonable to assume that |bd| � 1 and therefore

we can replace bd and b∗d by zeros. Moreover let us take ad, ed to be real as we would like to reduce

number of entries. After these assumptions the remaining parameters are exhibited in the following

equations

|ad|2 + |cd|2 = (1− λ2
d) md

2 + λ2
d ms

2 (7.25)

|ed|2 + |fd|2 = (1− λ2
d) ms

2 + λ2
d md

2 (7.26)

|cd|2 + |fd|2 + |hd|2 = m2
b (7.27)

cdf
∗
d = λd(m

2
s −m2

d) (7.28)

adcd + cdh
∗
d = Adλ

3
dm

2
b(ρd − iηd) (7.29)

edfd + fdh
∗
d = Adλ

2
d(m

2
b −m2

s) (7.30)

If setting

ad = ad1, ed = ed1 , (7.31)

cd = cd1 + icd2, fd = fd1 + ifd2, hd = hd1 + ihd2 ,
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we have

a2
d1 + c2

d1 + c2
d2 = (1− λ2

d) md
2 + λ2

d ms
2 (7.32)

e2
d1 + f2

d1 + f2
d2 = (1− λ2

d) ms
2 + λ2

d md
2 (7.33)

c2
d1 + c2

d2 + f2
d1 + f2

d2 + h2
d1 + h2

d2 = m2
b (7.34)

cd1fd1 + cd2fd2 = λd(m
2
s −m2

d) (7.35)

ad1cd1 + cd1hd1 + cd2hd2 = Adλ
3
dρdm

2
b (7.36)

ad1cd2 + cd2hd1 − cd1hd2 = −Adλ3
dηdm

2
b (7.37)

ed1fd1 + fd1hd1 + fd2hd2 = Adλ
2
d(m

2
b −m2

s) (7.38)

Notice that there are 8 unknowns and 7 equations. Therefore it is necessary to have other as-

sumptions on parameters of the matrix. Because of the hierarchy md � ms � mb one can predict

that

|ad| ∼ O(md) , (7.39)

|ed| ∼ O(ms) , (7.40)

|hd| ∼ O(mb) . (7.41)

Let us take

hd1 = 0.999 mb and hd2 ≈ 0 . (7.42)

and define

ad1 = b md , (7.43)

ed1 = c ms , (7.44)

cd1 = d ms , cd2 = k ms , (7.45)

fd1 = p ms . (7.46)

If b =
√
r (1− λ2

d) where r is some proportional factor and will be constraint later then Eq. (7.36)

gives

d =
Ad λ

3
d ρd m

2
b

(b md + hd1)ms
(7.47)
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On the other hand from Eq. (7.32) we have

b2m2
d + d2m2

s + k2m2
s = (1− λ2

d)m
2
d + λ2

dm
2
s

⇒ k =

√
(1− λ2

d − b2)m2
d + λ2

dm
2
s

m2
s

− d2 (7.48)

The fact that the determinant of the Md, denoted Det(Md) must satisfy

Det(Md) ∝ mdmsmb (7.49)

so that one can obtain 3 eigenvalues corresponding to 3 masses md,ms,mb. Since Det(Md) ≈

ad1ed1hd1 it is reasonable to assume that

ad1ed1 ≈ mdms as hd1 ≈ mb . (7.50)

From this we have

c ≈ 1/b . (7.51)

Hence Eq. (7.38) in which

c2m2
s + p2m2

s + f2
d2 = (1− λ2

d)m
2
s + λ2

dm
2
d , (7.52)

results in

fd2 = λdmd , (7.53)

p =
√

(1− λ2
d)− c2 . (7.54)

Since it is required that factors b, c, d, k, p are real we can constrain the values for Ad and ρd.

Numerically we found

r ≥ 1.11 , Ad ≤ 0.7 and ρd ≤ 0.6 . (7.55)

Therefore we obtain

Md =


b md 0 d ms + i(k ms)

0 ms/b p ms + i(λdmd)

d ms − i(k ms) p ms − i(λdmd) 0.999mb

 . (7.56)

From this junction some comments are in order
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• Wolfenstein-like parameters from our model with the appropriate assumptions having such

a good flexibility allow us to vary their values in order to get a reasonable agreement with

experimental data.

• It is vital to also have off-diagonal terms in the quark mass matrix since they account for

the mixings between quark generations.

As an example, let us take r = 1.11, Ad = 0.7, and ρd = 0.6 we have a numerical form of Md

Md =


1.0266md 0 0.2224ms + i(0.0302ms)

0 0.9741ms 0.0208ms + i(λdmd)

0.2224ms − i(0.0302ms) 0.0208ms − i(λdmd) 0.999mb

 . (7.57)

where λd = λ = 0.225. The eigenvalues of this matrix are listed (in GeV )

λ1 = 4.41966 , (7.58)

λ2 = 0.09254 , (7.59)

λ3 = 0.00482 . (7.60)

It is noticed that the combination of r = 1.11, Ad = 0.7, and ρd = 0.6 gives the eigenvalues that

are closest to the absolute masses given in [21] which are

md = 0.0048 GeV, ms = 0.095 GeV, mb = 4.42 GeV . (7.61)

Finally, plugging the above values into Eq. (7.37) we obtain |ηd| ' 0.1.

7.4.2 Up-quark sector

Masses of up-type quarks are given by [21] as

mu = 0.0023 GeV , mc = 1.275 GeV , mt = 173 GeV . (7.62)
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The suggested form of Mu is as follows

Mu =


au bu cu

b∗u eu fu

c∗u f∗u hu

 →M†u =


a∗u bu cu

b∗u e∗u fu

c∗u f∗u h∗u

 (7.63)

Therefore,

Mu =MuM†u =


au bu cu

b∗u eu fu

c∗u f∗u hu




a∗u bu cu

b∗u e∗u fu

c∗u f∗u h∗u

 (7.64)

If one compare (7.64) with the product MuM†u implied from a neutrino mass model [92] (up to

O(λ2
u) since λu = mu/mt):

MuM†u =


(1− λ2

u) mu
2 + λ2

u mc
2 λu(mc

2 −mu
2) 0

λu(mc
2 −mu

2) λ2
u mu

2 + (1− λ2
u) mc

2 Auλ
2
u(mt

2 −mc
2)

0 Auλ
2
u(mt

2 −mc
2) mt

2

 (7.65)

the following equations come out as a result

M11
u = |au|2 + |bu|2 + |cu|2 = (1− λ2

u) mu
2 + λ2

u mc
2 (7.66)

M22
u = |bu|2 + |eu|2 + |fu|2 = (1− λ2

u) mc
2 + λ2

u mu
2 (7.67)

M33
u = |cu|2 + |fu|2 + |hu|2 = m2

t (7.68)

M12
u = aubu + bue

∗
u + cuf

∗
u = λu(m2

c −m2
u) (7.69)

M21
u = M12

u
∗

M13
u = aucu + bufu + cuh

∗
u = 0 (7.70)

M31
u = M13

u
∗

M23
u = b∗ucu + eufu + fuh

∗
u = Auλ

2
u(m2

t −m2
c) (7.71)

M32
u = M23

u
∗

A similar analysis to that of the down quark sector can be carried out here but note that the

elements M13
u and M31

u are no longer non-zero as opposed to the case of down quark sector. Again
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we make such assumptions that

|bu| � 1 and au , eu is real . (7.72)

and set

au = au1 , eu = eu1 , (7.73)

cu = cu1 + icu2 , fu = fu1 + ifu2 , hu = hu1 + ihu2 ,

Using the above set-ups we have

a2
u1 + c2

u1 + c2
u2 = (1− λ2

u)m2
u + λ2

um
2
c (7.74)

e2
u1 + f2

u1 + f2
u2 = (1− λ2

u)m2
c + λ2

um
2
u (7.75)

c2
u1 + c2

u2 + f2
u1 + f2

u2 + h2
u1 + h2

u2 = m2
t (7.76)

cu1fu1 + cu2fu2 = λu(m2
c −m2

u) (7.77)

au1cu1 + cu1hu1 + cu2hu2 = 0 (7.78)

eu1fu1 + fu1hu1 + fu2hu2 = Auλ
2
u(m2

t −m2
c) (7.79)

Unlike the down quark case, we now have only 6 equations to accommodate for 8 unknowns.

Because of the hierarchy mu � mc � mt one can predict that

|au| ∼ O(mu) , (7.80)

|eu| ∼ O(mc) , (7.81)

|hu| ∼ O(mt) . (7.82)

Let us take

hu1 = 0.999 mt and hu2 ≈ 0 . (7.83)
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and define

au1 = b′ mu , (7.84)

eu1 = c′ mc , (7.85)

fu1 = p′ mc, fu2 = q′ mc , (7.86)

cu1 = d′ mu . (7.87)

If c′ =
√
r′(1− λ2

u) then from Eq. (7.79) we obtain

p′ =
Auλ

2
u(m2

t −m2
c)

(c′ mc + hu1)mc
(7.88)

Once we have c′ and p′, Eq. (7.75) gives

c′
2

+ p′
2

+ q′
2

=
(1− λ2

u)m2
c + λ2

um
2
u

m2
c

⇒ q′ =

√
(1− λ2

u)m2
c + λ2

um
2
u

m2
c

− c′2 − p′2 (7.89)

The fact that the determinant of the Mu, denoted Det(Mu) must satisfy

Det(Mu) ∝ mumcmt (7.90)

so that one can obtain 3 eigenvalues corresponding to 3 masses mu,mc,mt. Since Det(Mu) ≈

au1eu1hu1 it is reasonable to assume that

au1eu1 ≈ mumc since hu1 ≈ mt . (7.91)

From this we have

b′ ≈ 1/c′ . (7.92)

Next, Eq. (7.74)

d′
2
m2
u + c2

u2 = (1− λ2
u − b′

2
)m2

u + λ2
um

2
c . (7.93)

results in

d′ =

√
(1− λ2

u)− b′2 mu , (7.94)

cu2 = λumc . (7.95)
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Since it is required that factors b′, c′, d′, p′, q′ are real we can constrain the values for Au.

Numerically we found

r′ < 1 , Au ∼ O(1) . (7.96)

Therefore we obtain

Mu =


b′ mu 0 d′ mu + i(λu mc)

0 c′ mc p′ mc + i(q′ mc)

d′ mu − i(λu mc) p′ mc − i(q′ mc) 0.999mt

 . (7.97)

where λu = mu/mt. As an example, take r′ = 0.9 and Ad = 0.9 we have the numerical from ofMu

as follows

Mu '


1.05409mu 0 i(λu mc)

0 0.94868mc i(0.31623mc)

−i(λu mc) −i(0.31623mc) 0.999mt

 . (7.98)

The eigenvalues of this matrix are listed (in GeV )

λ1 = 172.984 , (7.99)

λ2 = 1.20862 , (7.100)

λ3 = 0.00242 . (7.101)

Recall that data from [21] are given

mu = 0.0023 GeV, mc = 1.275 GeV, mt = 173 GeV . (7.102)

Up to this point, a few comments are included.

• The up-quark mass matrix receives more freedom in its parameter space as compared with

the down-quark mass matrix.

• It also contains the off-diagonal terms to describe the mixings even though these terms are

small in general.
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In conclusion, we have the following forms of down and up quark mass matrices.

Md =


b md 0 d ms + i(k ms)

0 ms/b p ms + i(λdmd)

d ms − i(k ms) p ms − i(λdmd) 0.999mb

 , (7.103)

Mu =


b′ mu 0 d′ mu + i(λu mc)

0 c′ mc p′ mc + i(q′ mc)

d′ mu − i(λu mc) p′ mc − i(q′ mc) 0.999mt

 . (7.104)

7.5 Agreement with the experimental CKM matrix

It is well-established that the experimental values of Wolfenstein parameters used to construct

the CKM matrix are [21]

λ = 0.22496± 0.00048 , A = 0.823± 0.013 , (7.105)

ρ̄ = 0.141± 0.019 , η̄ = 0.349± 0.012 .

Therefore we have the numerical form

VCKM =


0.974696 0.22496 0.0013− 0.00327i

−0.22496 0.974696 0.04165

0.00805− 0.00327i −0.04165 1

 . (7.106)

On the other hand the model of neutrino masses and mixings has constrained

λd = λ , Ad ≤ 0.7 , ρd ≤ 0.6 , ηd ' 0.1 ; (7.107)

λu = mu/mt , Au = 0.9 , ρu = ηu = 0 . (7.108)

It is worth emphasizing that the parameters in our model are quite flexible so one can play with

values of parameters to get the best fit with the experimental VCKM . An example of the numerical
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VCKM resulting from the model is

VCKM−model = U †uL UdL

=


0.974699 −0.224947 0.001195− 0.000797i

−0.224947 0.974699 0.035425

0.006774− 0.000797i −0.035425 1

 . (7.109)

Comparing Eq. (7.106) and (7.109) we see that our result is in a good agreement with the exper-

imental CKM matrix. This may help increase the reliability of the quark mass matrices that we

have found.

Nevertheless, it is not the end of the story. Even though we are able to construct the

mass matrices from well-established experimental data, this work has not been completed without

understanding what kinds of dynamical mechanisms are behind the results. To us, this step is very

important because it may lead to a possibility of unravelling the mystery of the origin of masses

and mixings. This work is now in progress and will be reported in our upcoming paper [133].



Chapter 8

Conclusion

In this thesis we have presented the model of neutrino masses and mixings and discussed

in details some of its phenomenological implications related to lepton and quark mixing matrices,

lepton flavor violation in rare decays such as µ → eγ and µ − e conversion, and the possible

construction of quark mass matrices. These works have contributed to the overall understanding of

physics within and beyond the standard model in the sense that they have not only helped explain

experimental data but also predicted and suggested search regions for near future experiments.

We have started with the review of the Standard Model of particle physics in Chapter 2

and extensions to SM due to the discovery of neutrino oscillation indicating neutrinos have non-

zero masses in Chapter 3. The urge for right-handed neutrinos to be detected at the LHC has

motivated the EW-νR model presented in Chapter 4. In this model νR’s are non-sterile and can

acquire their Majorana masses at the electroweak scale ΛEW ≈ 246 GeV. In order to not affect

the Z-width decay data, MR must be bounded from below at MZ/2. The EW-scale MR can be

naturally achieved by adding the mirror fermions (leptons and quarks) and 2 scalar triplets χ̃ and

ξ to the SM. Note that EW-νR model also preserve the SM gauge group.

The fact is that any model, if introduced, has to be considered within the experimental

constraints. A good agreement with experimental data results in increasing model’s reliability. The

EW-νR model has successfully passed the test of the electroweak precision on the oblique parameters
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S̃, T̃ and constraints from 125-GeV SM-like scalar. Since EW-νR adds extra chiral fermions (mirror

leptons and quarks) that contribute positively to the S̃ parameter the first check of experimental

constraints on S̃ and T̃ is very important. It is shown in Chapter 4 that the agreement has come

from the evidence in which the large positive contribution to S̃ from the mirror fermions are almost

cancelled by the negative contributions from the scalar triplets. Fig. (4.1) would provide a better

illustration to the point we have made here. The second check is on the accommodation for the

125-GeV Higgs boson. By adding a complex scalar doublet Φ2M to the minimal EW-νR model

which only couples to the mirror fermions we have shown a scalar spectrum that contains at least

one Higgs field with the desired properties as required by experiment.

The highlight of this thesis is the model of neutrino masses and mixings presented in Chapter

5. It is put forward by the big puzzle why the CKM matrix for quarks is too different from the

PMNS matrix for leptons and the fact that UPMNS ' UCW conjectured by Cabibbo and Wolfenstein

independently. We have found that the discrete A4 symmetry is one of the possibilities that can give

rise to the UCW . We then apply this symmetry to the minimal EW-νR model in order to achieve

UCW in the neutrino sector instead of the charged lepton sector as in some standard scenarios

described in Chapter 5. The driving forces are as follows

(1) We are able to avoid involving many Higgs doublets (5 or so) causing potential problems

with the 125-GeV scalar Higgs.

(2) The Dirac neutrino mass matrix entails a Higgs singlet that does not suffer any constraints

from the LHC. Therefore we have more freedom in adding singlets into our model.

Indeed we do have an extension to 4 Higgs singlets in the model considering the need of having off-

diagonal elements in the Dirac neutrino mass matrix. It has been shown that the PMNS matrix of

the leptons consists of UlL from couplings to the Higgs doublet and UνL from couplings to the Higgs

singlets whereas the CKM matrix of the quarks comes totally from couplings to the Higgs doublet.
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Hence one expects a natural difference between the PMNS and CKM matrices. Furthermore A4

symmetry is also required to be slightly broken to avoid the case of degenerate charged leptons.

From this we propose an anszät to have UlL expressed as the Wolfenstein-like unitary matrix.

This leads to the construction of the lepton mass matrix “squared”, namely MlM†l . Reasons to

introduce MlM†l are: 1) from this it is possible to construct the lepton mass matrix Ml with

further assumptions; 2) since charged leptons and quarks acquire their masses by couplings to

the Higgs doublet one can make an analogy to the lepton sector to find the quark mass matrix

“squared” MqM†q then deduce the quark mass matrix Mq.

Two very interesting phenomenological implications of the model of neutrino masses and

mixings are lepton flavor violating processes µ→ eγ and µ− e conversion discussed thoroughly in

Chapter 6. They have been investigated via one-loop induced diagrams incorporating in 4 Higgs

singlets in the loop. We also perform numerical analyses on the parameter space of these processes

regarding the current limits and projected sensitivities and find out that the Yukawa couplings

of Higgs singlets to the leptons is small ∼ O(10−5 − 10−3). Such small couplings can be quite

interesting because they affect the way we search for mirror particles and Majorana right-handed

neutrinos. In this case these particles might decay outside the beam pipe and inside the silicon

vertex detectors in the form of displaced vertices with decay lengths > 1 mm or so. The singlet

and triplet scalars in our model escape as missing energies. Additionally, although there are many

contributors to µ − e conversion rate such as photon (Z) exchange, Higgs exchange with light or

heavy quarks, and the box diagram, the photon exchange is proven to be dominant. Therefore we

are able to find a relation between µ−e conversion and µ→ eγ within a good approximation. This

relation is attractive because the current limit from µ → eγ excludes almost half of the searched

region for the branching ratio of µ− e conversion when we plot them on the same parameter space.

The results are shown in Figs. (6.9 - 6.12). Therefore our work may help narrow down future

searches for µ− e conversion at Fermilab/Mu2e, J-PARC/COMET and PRISM within this model.
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In addition to phenomenological implications of the lepton sector, the model of neutrino

masses and mixings also leads us to implications on quark mass matrices. Chapter 7 is dedicated

to study these. As inspired in the consideration of the lepton mass matrix squaredMlM†l the quark

mass one is proposed to have similar form with its own parameters. Due to the large number of

parameters it is necessary to trim some of them down by making assumptions. Using the knowledge

of quark masses and the CKM matrix we are able to constrain the remaining parameters. As a

result we obtain the up and down quark mass matrices whose parameters can be used to reconstruct

the CKM matrix. Overall, the numerical forms of up and down quark mass matrices as well as the

CKM matrix within this model are in good agreement with the experimental data. We have recently

begun a study of dynamical mechanisms behind the quark mass matrices that we have found. It is

crucial to understand the origin of quark masses and the very distinctive mass hierarchies.

Last but not least, a model of neutrino masses and mixings involving mirror fermions, Ma-

jorana right-handed neutrinos and Higgs singlet fields could lead to several consequences.

Which evidence support this model?

The positive signals from lepton flavor violating rare decays µ → eγ and µ − e conversion

and the forms of lepton and quark mass matrices are the main pieces of evidence supporting this

model.

Why haven’t we observed mirror fermions?

We were showing in Eqs. (4.6) and (4.19) that the mirror fermions can couple to SM fermions

through the interactions involving the Higgs singlet φS . Since in EW-νR model, φS has mass of
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O(105 eV), mirror fermions can probably enter the following decay modes

eMR → eL + φS , (8.1)

qMR → qL + φS . (8.2)

Hence mirror fermions are not stable and decay into the SM fermions. The mirror quarks could not

form mirror-hadrons through their strong nuclear interactions because they had already decayed

before those hadrons could be formed. The distinguished signals of mirror fermions at the LHC are

like-sign dilepton events with missing energies + jets. Searching for mirror particles can be done

in terms of “displaced vertices”.

Does the right-handed neutrino contribute to the total energy density? Is it

constrained by experimental neutrino masses?

It is not the case in this model because νR’s can decay into νL’s and φS ’s. This implies that

all the νR’s ”born” today in astrophysical processes also decay quickly and thus, do not contribute

to the total energy density of the Universe and are not constrained by cosmological data.

Does this model have a ‘dark matter’ candidate?

Since the νR’s are non-sterile they cannot become dark matter candidates. The only particles

in this model that seem to behave as the dark matter are Higgs singlets. With the mass around

O(100 MeV), they would become ‘cold dark matters’.

All in all, a model of neutrino masses and mixings is such an interesting model which not

only provides reasonable explanations for current phenomena but also leads us into some important

aspects in future research.



Appendix A

Effective Lagrangian For µ− e Conversion

Effective Lagrangian is a powerful technique to analyze low energy processes like µ → e

conversion in nuclei since the momentum transfer q2 is typically of the order O(m2
µ) � m2

N for

nucleus N . The most general CLFV effective Lagrangian which contributes to the µ−e conversion in

nuclei has been studied by various groups [112,113,123]. At the scale Λ where the heavy particles

(including particles beyond the SM as well as the heavy top, bottom and charm quarks) being

integrated out, the relevant terms for the model we are studying are

Leff = − 1

Λ2

[(
CDRmµeσ

αβPLµ+ CDLmµeσ
αβPRµ

)
Fαβ

+
∑

q=u,d,s

(
C

(q)
V Reγ

αPRµ+ C
(q)
V Leγ

αPLµ
)
qγαq + H.c.

]
. (A.1)

Here mµ is the muon mass; PL,R = (1∓ γ5)/2, σµν = i [γµ, γν ] /2; Fαβ is the electromagnetic field

strength; finally, CD(L,R) and C
(q)
V (L,R) are dimensionless coupling constants depending on specific

LFV model. In the specific mirror model calculation, we will be focusing on the photon and Z boson

exchange diagrams which contribute only to the magnetic and electric dipole moment operators as

well as the vector and axial vector lepton bilinears.

To determine the conversion rate, the above effective Lagrangian (A.1) is needed to scale

down to the nuclear scale where the hadronic matrix elements 〈N |qγµq|N〉, 〈N |FαβFαβ|N〉 are

evaluated. In addition, the muon and electron wave functions may be significantly deviated from
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Table A.1: Values of the dimensionless overlap integrals for aluminum, titanium and gold, evalu-
ated under the assumption that the proton and neutron distributions within each nuclei are the
same [113].

Nucleus D V (p) V (n)

27
13Al 0.0362 0.0161 0.0173
48
22Ti 0.0864 0.0396 0.0468
197
79 Au 0.189 0.0974 0.146

plane wave due to distortion by the coulomb potential of the nuclei. For high Z nuclei, relativistic

corrections to their wave functions are important as well. The formula for the conversion rate is

given by [113,123]

Γconv =
m5
µ

4Λ4

(∣∣∣∣CDRD + 4C̃
(p)
V RV

(p) + 4C̃
(n)
V RV

(n)

∣∣∣∣2 +

∣∣∣∣CDLD + 4C̃
(p)
V LV

(p) + 4C̃
(n)
V LV

(n)

∣∣∣∣2
)
.

(A.2)

In Eq. (A.2) the coupling constants C̃
(p,n)
V (R,L) are defined as [123]

C̃
(p)
V R =

∑
q=u,d,s

C
(q)
V Rf

(q)
V p , (A.3)

C̃
(n)
V R =

∑
q=u,d,s

C
(q)
V Rf

(q)
V n , (A.4)

C̃
(p)
V L =

∑
q=u,d,s

C
(q)
V Lf

(q)
V p , (A.5)

C̃
(n)
V L =

∑
q=u,d,s

C
(q)
V Lf

(q)
V n , (A.6)

where f
(q)
V p and f

(q)
V n are the known nucleon vector form factors

f
(u)
V p = 2, f

(d)
V p = 1, f

(s)
V p = 0 ,

f
(u)
V n = 1, f

(d)
V n = 2, f

(s)
V n = 0 .

(A.7)

The dimensionless quantities D and V (p,n) in Eq. (A.2) are the overlap integrals of the relativistic

wave functions of muon and electron in the electric field of the nucleus weighted by appropriate

combinations of proton and neutron densities [113]. Their values for the four nuclei aluminum,

titanium, gold and lead are listed in Table A.1 for reference.
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Table A.2: Standard model values of the capture rates for aluminum, titanium and gold in unit of
106 s−1 taken from Ref. [124].

Nucleus Γcapt (106 s−1)

27
13Al 0.7054
48
22Ti 2.59
197
79 Au 13.07

The µ− e conversion branching ratio is defined as

BµN→eN (Z,A) ≡ Γconv

Γcapt
, (A.8)

where Γconv is given by Eq. (A.2) and Γcapt is the standard model muon capture rate. The SM

capture rates for aluminum, titanium and gold have been determined experimentally [124] and they

are listed in Table A for convenience.



Appendix B

Formulas for I,J , Ii0(i = 1, · · · , 5)

For the general case of retaining the external fermion masses mi,j , the integrals I
(
m2
φkS

m2

lMm

)
and

J
(
m2
φkS

m2

lMm

)
in Eqs. (6.17)-(6.18) have to be replaced by I

(
m2
φkS

m2

lMm

,
m2
i

m2

lMm

,
m2
j

m2

lMm

)
and J

(
m2
φkS

m2

lMm

,
m2
i

m2

lMm

,
m2
j

m2

lMm

)
respectively, where

I(r, ri, rj) =

∫ 1

0
dx

∫ 1−x

0
dy

x(1− x− y)

x+ y + (1− x− y)(r − xrj − yri)− i0+
,

J (r, ri, rj) =

∫ 1

0
dx

∫ 1−x

0
dy

x+ y

x+ y + (1− x− y)(r − xrj − yri)− i0+
.

In the limit of zero momentum transfer, the Feynman parameterization integrals in the various

form factors can be carried out analytically. We collect their results here.

•

I(r) =

∫ 1

0
dz

∫ 1−z

0
dx

x(1− x− z)
(1− z + zr)2

(B.1)

=
1

12

1

(1− r)4

[
−6r2 log r +

(
2r2 + 3r − 6

)
r + 1

]
,

limr→0 I(r) =
1

12
and limr→1 I(r) =

1

24
.

•

J (r) =

∫ 1

0
dz

∫ 1−z

0
dx

x+ z

(1− z + zr)2
(B.2)

=
1

2 (1− r)3

[
−2r2 log r + r(3r − 4) + 1

]
,
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limr→0 J (r) =
1

12
and limr→1 J (r) =

1

24
.

•

I10(r) =

∫ 1

0
dz

∫ 1−z

0
dx
xz2(1− x− z)
(1− z + zr)2

(B.3)

=
1

72

1

(1− r)6

[
−12r2(3 + 2r) log r + (r − 1)

(
3r3 + 47r2 + 11r − 1

)]
,

limr→0 I10(r) =
1

72
and limr→1 I10(r) =

1

360
.

•

I20(r) =

∫ 1

0
dz

∫ 1−z

0
dx
xz(1− x− z)
(1− z + zr)2

(B.4)

=
1

36

1

(1− r)5

[
−6r2(3 + r) log r + (r − 1)

(
17r2 + 8r − 1

)]
,

limr→0 I20(r) =
1

36
and limr→1 I20(r) =

1

120
.

•

I30(r) =

∫ 1

0
dz

∫ 1−z

0
dx
x(1− x− z)
1− z + zr

(B.5)

=
1

36

1

(1− r)4

[
6r3 log r +

(
−11r2 + 18r − 9

)
r + 2

]
,

limr→0 I30(r) =
1

18
and limr→1 I30(r) =

1

24
.

•

I40(r) =

∫ 1

0
dz

∫ 1−z

0
dx
x2z(1− x− z)
(1− z + zr)2

(B.6)

=
1

144

1

(1− r)6

[
12r3(r + 4) log r −

(
r2 − 1

) (
37r2 − 8r + 1

)]
,

limr→0 I40(r) =
1

144
and limr→1 I40(r) =

1

360
.

•

I50(r) =

∫ 1

0
dz

∫ 1−z

0
dx
x(1− z)(1− x− z)

(1− z + zr)2
(B.7)

=
1

18

1

(1− r)5

[
12r3 log r −

(
3r4 + 10r3 − 18r2 + 6r

)
+ 1
]
,

limr→0 I50(r) =
1

18
and limr→1 I50(r) =

1

30
.
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Here r denotes the mass ratio m2/M2, where m and M are the masses of the scalar singlet and

mirror lepton respectively.



Appendix C

Four-Fermion Coupling Constants C
(q)
V (L,R)

The total contribution to C
(q)
V (L,R) is given by

C
(q)
V (L,R) = C

(q)γ
V (L,R)V + C

(q)Z
V (L,R) + C

(q)H (Box)
V (L,R) . (C.1)

We have already derived C
(q)γ
V (L,R)V in section 6.2.1.2. In this appendix, we show our work on finding

the C
(q)Z
V (L,R) from Z exchange and the C

(q)H (Box)
V (L,R) from scalar Higgs (box) exchange. Furthermore,

a discussion on how the latter 2 coupling constants are negligible compared with the former one is

also included.

C.1 Z Boson Exchange

For the Z boson contribution in Fig. C.1, in the limit of |q2| � m2
Z , we obtain the following

amplitude

MZ ≈ GF√
2

[
fZL uLe(p

′)γµuLµ(p) + fZRuRe(p
′)γµuRµ(p)

]
×
[
uq(k

′)
(
CqV γ

µ + CqAγ
µγ5

)
uq(k)

]
, (C.2)
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where fZL,R are form factors given by

fZL (q2) =
1

2π2

∑
k,m

∫ 1

0
dx

∫ 1−x

0
dy

×

{[
C lL log

(
∆km(q2)

∆km(0)

)
− C lRM2

m

(
∆−1
km(q2)−∆−1

km(0)
)]
× ULk1m

(
ULk2m

)∗
−mµme(1− x− y)2

(
∆−1
km(q2)−∆−1

km(0)
)
× C lRURk1m

(
URk2m

)∗
−Mm(1− x− y)

(
∆−1
km(q2)−∆−1

km(0)
)
× C lR

(
mµULk1m

(
URk2m

)∗
+meURk1m

(
ULk2m

)∗)
− xyq2

∆km(q2)
× C lL ULk1m

(
ULk2m

)∗}

+
1

2π2

(
C lL − C lR

)(
m2
µ −m2

e

){∑
k,m

∫ 1

0
dx log

(
∆e
km(x)

∆µ
km(x)

)
×

[
M2
m

1− x
ULk1m

(
ULk2m

)∗
+ mµme(1− x)URk1m

(
URk2m

)∗
+Mm

(
mµULk1m

(
URk2m

)∗
+meURk1m

(
ULk2m

)∗)]}
(C.3)

and fZR (q2) can be obtained from fZL (q2) in Eq. (C.3) with L↔ R for all the quantities with L,R

subscripts or superscripts. Here CfL = T 3(f) − Qf sin2 θW and CfR = −Qf sin2 θW are the chiral

couplings of fermion f with the Z boson. We have used the fact that for muon, electron and mirror

charged leptons they all have the same C lL,R. ∆km(q2) in Eq. (C.2) is given by Eq. (6.42) and

∆µ,e
km(x) is given by

∆µ,e
km(x) = xM2

m + (1− x)m2
k − x(1− x)m2

e,µ . (C.4)

µ e

q q

φkS

lm lm

γ, Z

Figure C.1: One-loop induced Feynman diagrams from photon and Z boson exchanges for µ → e
conversion in EW-scale νR model.
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In derivation of Eq. (C.2), we have dropped terms proportional to qµ and iσµνq
ν from the Z-

vertex diagram in Fig. C.1. The qµ term when multiples the quark current qγµ
(
CqV + CqAγ5

)
q and

invokes the free quark equation of motion will give zero in the vector part, while for the axial vector

part it will produce term proportional to the light quark mass. The iσµνq
ν term will give rise to

dimension-7 four-fermion operators with one derivative in the position space. Their contributions

will be suppressed by O(mµ/M) where M is the heavy mirror lepton mass scale inside the loop

as compared with the dimension 6 four-fermion operators. We will ignore these two terms in our

analysis for µ− e conversion.

At q2 = 0, we note that fZL,R 6= 0. For small q2, the factors of log
(
∆km(q2)/∆km(0)

)
and

∆−1
km(q2)−∆−1

km(0) in Eq. (C.3) can be approximated by using

log

(
∆km(q2)

∆km(0)

)
≈ − xyq2

∆km(0)
,

∆−1
km(q2)−∆−1

km(0) ≈ +
xyq2

(∆km(0))2 . (C.5)

For practical purpose, we will evaluate q2 = −m2
µ. The amplitude MZ in Eq. (C.2) can be

reproduced by the following Fermi interaction

LZ,eff =
GF√

2

[
fZL (−m2

µ)eLγµµL + fZR (−m2
µ)eRγµµR

] [
q
(
CqV γ

µ + CqAγ
µγ5

)
q
]

+ · · · (C.6)

where the “· · · ” denotes non-local operators. Once again, matching Eq. (C.6) with the second line

of Eq. (A.1), we obtain

C
(q)Z
V (L,R)

Λ2
= −GF√

2
CqV f

Z
L,R(−m2

µ) . (C.7)

As a bonus, we also obtain the effective axial vector coupling

C
(q)Z
A(L,R)

Λ2
= −GF√

2
CqAf

Z
L,R(−m2

µ) , (C.8)

which is nevertheless irrelevant for the coherent µ− e conversion processes in nuclei.
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Figure C.2: One-loop induced Feynman diagrams Higgs exchange with heavy quarks and mirror
quarks for µ→ e conversion in EW-scale νR model.

C.2 Scalar Higgs Exchange

The discussion will based upon two papers [125] and [73].

From Fig. (C.2) since only mirror fermions are involved, we looked at the couplings for Table

5 of the paper [73]. We first write down the Lagrangian for an interaction of the scalar Higgs to

the nucleus via a triangle diagram as shown in Fig. (C.2).

LH = − g

2mW s2M
H2M

∑(
mqM q̄MqM +mlM l̄M lM

)
(C.9)

where s2M = v2M/v. Without the trace anomaly, one has the trace of symmetric energy-momentum

tensor as

Θµ
µ = muūu+mdd̄d+mss̄s+

∑
k

mhh̄h, k = c, b, t, qM , lM . (C.10)

With the trace anomaly coming from the renormalization, one has

Θµ
µ =

β(αS)

4αS
GaµνG

µν,a + · · · , (C.11)

with its β-function

β(αS) =

(
2

3
nh − 9

)
α2
S

2π
+O

(
α3
S

)
.‘ (C.12)
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As discussed by Shifman, Vainshtein, and Zakharov [125], the valence quarks are not the heavy

quarks and they enter through the triangle diagram. This results in

∑
mhh̄h→ −

2

3
nh
αS
8π
GaµνG

µν,a + · · · (C.13)

Therefore the overall β-function is

β̃(αS) = −
9α2

S

2π
+ · · · (C.14)

Notice that in chiral limit which sets mu,md,ms → 0,

∑
mhh̄h→ −

2

3

αS
8π
nh G

a
µνG

µν,a . (C.15)

Hence we obtain the amplitude of the interaction via the triangle diagram presented in Fig. (C.2)

as follows

g

2mW s2M
H2M

〈
N

∣∣∣∣∑mqM q̄
MqM

∣∣∣∣N〉 (C.16)

=
g

2mW s2M
H2M

(
−2

3
nhM

)〈
N

∣∣∣∣αS8π
GaµνG

µν,a

∣∣∣∣N〉 .

Again, in the chiral limit, the term

〈N |Θµ
µ|N〉 '

〈
N

∣∣∣∣ β̃(αS)

4αS
GaµνG

µν,a

∣∣∣∣N〉
'

〈
N

∣∣∣∣− 9α2
S

2π

∣∣∣∣N〉 .

Or 〈
N

∣∣∣∣α2
S

2π

∣∣∣∣N〉 ' −1

9
〈N |Θµ

µ|N〉 . (C.17)

Comparing Eqs. (C.16) and (C.17) the amplitude of the scalar Higgs-nucleus interaction is given

by (
g

2mW s2M

)(
2nhMmN

27

)
H2M ψ̄NψN , (C.18)

where 〈N |Θµ
µ|N〉 = mN ψ̄NψN , mN is the nucleus mass. On the other hand, the EW-νR model

yields nhM = 6 so Eq. (C.18) becomes(
g

2mW s2M

)(
12mN

27

)
H2M ψ̄NψN . (C.19)



158

All in all. the diagram (C.2) gives

ēR µL I(q2)
12

27

(
g

2mW s2M

)2

(mlMmN )
1

q2 −m2
H2M

ψ̄NψN . (C.20)

where I(q2) is the loop integral. However the above expression has to be rewritten in terms of the

Higgs mass eigenstates. In the paper [73], we found the following scenarios

(1) Dr. Jekyll scenario in which 125 GeV Higgs H̃ ∼ H0
1 SM-like gives an example

H̃

H̃ ′

H̃ ′′

 =


0.998 −0.0518 −0.0329

0.0514 0.999 −0.014

0.0336 0.0123 0.999




H0

1

H0
1M

H0′
1

 (C.21)

(2) Mr. Hyde scenario in which 125 GeV Higgs H̃ ∼ H0′
1 (not SM-like) gives an example

H̃

H̃ ′

H̃ ′′

 =


0.3 −0.094 −0.949

0.334 −0.921 −0.197

0.893 0.376 0.246




H0

1

H0
1M

H0′
1

 (C.22)

In examples of the above two different scenarios, we can see that the 125 GeV Higgs is not the

proper exchanged scalar since the coefficients of coupling between H̃ and H0
1M are small. Therefore,

it has to be the next heavier one H̃ ′ having a mass ∼ 400 GeV [73].

Figure C.3: Box diagram for µ→ e conversion in EW-scale νR model.
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In conclusion, the contribution of scalar Higgs exchange to the total four-fermion coupling

constant in Eq. (C.1) is suppressed by the inverse of heavy Higgs masses and can be considered

negligible in comparison with that of the photon exchange.

C.3 Box diagram contribution

In order to prove the negligibility of the box diagram we will not go into detailed calculations

but make such a hand-waving argument instead. From Fig. (C.3) the amplitude of the diagram will

directly proportional to (gSlM )2 (gSqM )2. We have learned from the numerical analysis presented

in section 6.2.3 that the Yukawa couplings gSlM are of O
(
10−5

)
. These pieces make the total

amplitude become very small and therefore, we will not have to worry about the effects of the box

diagram in the µ− e conversion decay rate.
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