
Factor Stochastic Volatility Models for

Portfolio Construction

Taylor Brown

B.A., University of Connecticut (2010)

M.S., University of Connecticut (2013)

A Dissertation Presented to the Graduate Faculty

of the University of Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Statistics

University of Virginia

May, 2018

c○Copyright by Taylor Brown 2018

All Rights Reserved

Abstract

We propose a new factor stochastic volatility model that increases the accuracy of

short-term forecasts for financial assets. Our new model, called the Markov-Switching

Loadings (MSL) model, extends previous models by including latent processes that

control the mean vectors and covariance matrices of random sub-vectors of returns.

In addition, we describe our estimation routine, a novel particle Markov chain Monte

Carlo algorithm, which allows for efficient estimation of a wide range of models and

requires little tuning or model-specific derivations. We give two specifications of the

MSL model, and both are estimated and used to generate out-of-sample forecasts

for weekly returns of Select Sector SPDR exchange-traded funds over a time window

spanning the 2008 financial crisis. We examine these forecasts from a statistical per-

spective, as well as through a financial lens, by analyzing the returns of a hypothetical

investment strategy.

Acknowledgments

To Clare, and to my family.

i

ii

Contents

1 Introduction 1

1.1 Objective and Outline . 1

2 State Space Models and Particle Filtering 5

2.1 Definitions and Background . 5

2.2 SSMs for Financial Applications . 6

2.2.1 Motivation: Portfolio Selection 6

2.2.2 Approximating the Forecast Distribution: Approach 1 7

2.2.3 Approximating the Forecast Distribution: Two More Approaches 8

2.2.4 Approximating the Forecast Distribution: Approach 4 9

2.3 Particle Filtering with Known Parameters 10

2.3.1 Sequential Importance Sampling (SIS) 12

2.3.2 Sequential Important Sampling with Resampling (SISR) . . . 15

2.3.3 The Auxiliary Particle Filter (APF) 18

2.3.4 The Rao-Blackwellized Particle Filter (RBPF) 19

2.3.5 The Rao-Blackwellized Auxiliary Particle Filter (RBAPF) . . 22

2.3.6 A Note on Computation . 24

3 Parameter Estimation with Markov Chain Monte Carlo Techniques 29

3.1 General MCMC . 29

3.2 MCMC for SSMs . 34

3.2.1 Closed-Form Gibbs Sampling 35

3.2.2 Advanced Gibbs Sampling . 35

iii

3.2.3 Particle Based Approximations to State Distributions 36

3.2.4 Particle Markov Chain Monte Carlo 37

3.2.5 Accelerating the PMMH Algorithm 42

4 Multivariate Stochastic Volatility Models 47

4.1 Introduction . 47

4.2 An Initial Model . 48

4.3 Identifiability of the Initial Model . 49

4.4 Real Data Analysis with the Initial Model 51

4.4.1 Parameter Estimation . 53

4.4.2 Out-of-Sample Forecasting . 54

4.4.3 Alternative Models . 58

4.5 The Markov-Switching Loadings Models 59

4.5.1 MSL1 . 59

4.5.2 MSL2 . 62

4.6 Estimation of MSL Models . 64

4.6.1 Estimation of MSL1 . 64

4.6.2 Estimation of MSL2 . 67

4.7 Out-of-Sample Performance . 69

5 Summary 73

5.1 Overview . 73

A Appendix 75

A.1 Proofs . 77

A.2 Deriving MSL Mean Forecasts . 84

A.3 Deriving MSL Covariance Matrix Forecasts 85

A.4 Plots . 89

iv

List of Figures

2-1 Bootstrap filter resampling comparison 17

3-1 Noisy AR(1) PMMH scatterplot matrix 42

3-2 Noisy AR(1) PMMH traceplot . 42

3-3 Noisy AR(1) PMMH correlograms . 43

4-1 SPDR ETFs: returns and cumulative returns 52

4-2 Jacquier et al. out-of-sample performance 55

A-1 PMMH samples of B of Jacquier et al. model 89

A-2 PMMH samples 𝜑, 𝜇, 𝜎2 of Jacquier et al. model 90

A-3 PMMH samples of R of Jacquier et al. model 91

A-4 Jacquier et al. out-of-sample log volatilities and forecast scores 92

A-5 Jacquier et al. out-of-sample residuals 92

A-6 Jacquier et al. out-of-sample prewhitened residuals 93

A-7 Jacquier et al. out-of-sample naively whitened residuals 93

A-8 Cumulative returns from minimum variance portfolio strategy using

Jacquier et al. model . 94

A-9 PMMH samples of B of MSL1 model 94

A-10 PMMH samples of 𝜑𝑖 of MSL1 model 94

A-11 PMMH samples of 𝜇𝑖 of MSL1 model 95

A-12 PMMH samples of 𝜎2
𝑖 of MSL1 model 95

A-13 PMMH samples of R of MSL1 model 95

A-14 PMMH samples of 𝜆𝑖 of MSL1 model 96

v

A-15 PMMH samples of 𝑝 of MSL1 model 96

A-16 PMMH samples of B of MSL2 model 96

A-17 PMMH samples of 𝜇𝑖 Samples of MSL2 model 97

A-18 PMMH samples of 𝜑𝑖 of MSL2 model 97

A-19 PMMH samples of 𝜎2
𝑖 of MSL2 model 97

A-20 PMMH samples of R of MSL2 model 98

A-21 PMMH samples of 𝜆𝑖 of MSL2 model 98

A-22 PMMH samples of 𝑝𝑖 of MSL2 model 98

A-23 Comparison of 3 Models’ Forecast Scores 99

A-24 Whitened Forecast Errors for MSL1 and MSL2 100

A-25 Standardized Forecast Errors for MSL1 and MSL2 101

A-26 Comparison of 3 Models’ Filtered Log Volatilities 102

A-27 Comparison of 3 Models’ Investment Performance 103

vi

List of Tables

3.1 Noisy AR1 Parameter Estimates . 43

4.1 Initial Model Beta Estimates . 54

4.2 Initial Model State Process Estimates 54

4.3 Initial Model Error Variance Matrix Diagonal Estimates 54

4.4 MSL B Estimates . 66

4.5 MSL State Process Parameter Estimates 66

4.6 MSL R Estimates . 67

4.7 MSL 𝜆𝑖 and 𝑝𝑖 Estimates (𝑖 = 1, 2) 67

4.8 MSL2 B Estimates . 68

4.9 MSL2 State Process Parameter Estimates 68

4.10 MSL2 R Estimates . 68

4.11 MSL2 𝜆𝑖 and 𝑝𝑖 Estimates (𝑖 = 1, 2) 69

vii

viii

Chapter 1

Introduction

Objective and Outline

Modeling a vector-valued time series of stock returns, or more generally the returns

of any basket of financial instruments, is a very important and difficult task. The

forecasts are important because they assist in asset pricing, constructing portfolios,

and managing risk. The difficulty owes itself to many reasons.

First, each time’s forecast mean deviates from the zero vector in very subtle and

irregular ways. In other words, the mean is not likely a simple function of the process’

past values. Also, this quantity is very small relative to the variance terms. In

practice, estimation of the mean is often side-stepped: it is often assumed to be zero

after suitable transformations of the data, or it is assumed to be some known constant.

The correlations and variances are difficult to estimate as well. The first difficulty

is that a forecast’s covariance matrix has many terms. If the return vector at each time

is 𝑦𝑡 ∈ R𝑑𝑦 , then there are 𝑑𝑦(𝑑𝑦 + 1)/2 = 𝒪(𝑑2𝑦) terms in the forecast’s covariance

matrix. Second, these quantities are known to be time-varying as well, and any

procedure used to estimate them should take into account that they evolve together

on the space of positive-definite matrices.

Lastly, the type of data one uses constrains his choice of model. All financial data

arrive in real time, so only "causal" models may be considered if one’s primary goal

is forecasting. This restriction guarantees that forecasting or prediction equations are

1

available, and hopefully, the model’s computational costs are low enough to allow its

use in real time applications using data arriving at the desired sampling frequency.

Mindful of these constraints, this document pursues three goals:

1. to detail a practical portfolio managing framework that allows the use of a wide

variety of models;

2. to establish the usefulness of a relatively recent class of estimation algorithms,

and to increase the computational efficiency of some of its member algorithms;

3. to propose a new multivariate stochastic volatility model and to demonstrate

its forecasting ability.

In light of these goals, this document is organized as follows. First, chapter (2) de-

scribes general state space models, along with several key results. The primary focus

of this chapter is the description of algorithms that accomplish the task of "filtering."

For many models, filtering is often impossible to do exactly, and it is involved both in

parameter estimation and in developing recursive forecasting equations. These results

will be used in all of the following chapters.

Chapter (3) reviews the literature surrounding Bayesian parmeter estimation.

This chapter explains Markov chain Monte Carlo strategies generally, and it also

details how they are used to estimate SSMs in particular. Historically, Gibbs-based

strategies have been the most popular for the types of models that are considered in

the last chapter. However, the estimation technique that this document emphasizes

is a version of the relatively recent particle marginal Metropolis-Hastings algorithm.

Using this method carries with it three important benefits: it allows for a wider array

of models to be estimated and does not constrain the choice of prior distributions

for these models, they are easier to program owing to the fact that there are no

model-specific derivations of conditional posterior distributions, and there likely is no

computational tradeoff when compared with Gibbs sampling.

Finally, in chapter (4), factor stochastic volatility models are introduced. These

are a distinct subclass of state space models that meet all of the requirements men-

tioned above, and they are shown to have tremendous forecasting ability. Following a

2

brief literature review, two new formulations of a model are proposed that are shown

to have an increased capacity to represent some of the stylized features of financial

returns: the Markov-Switching Loadings Model 1 and the Markov-Switching Load-

ings Model 2. These models, along with some of their competitors, are estimated, and

their forecasting abilities are ranked using scoring rules and hypothetical performance

on a widely-used investing strategy.

The primary motivation for the work presented in this document is to develop

high-performance portfolio management strategies. Every investor, in addition to

monitoring the performance of his existing models, faces the ongoing challenge of

developing models that are more predictive, that can handle higher-dimensional data,

and that can handle data arriving at higher sampling frequencies. Ideally this investor

would pursue a top-down approach: as a first step, he would be able to specify a

model without regard to any practical issues related to its use. This document also

pursues a top-down approach. This will explain the overall preference for models that

require sampling-based algorithms, as well as the preference for Metropolis-Hastings

algorithms over Gibbs-based ones.

3

4

Chapter 2

State Space Models and Particle

Filtering

Definitions and Background

A state space model (SSM) is defined by two things: a 𝒴 ⊂ R𝑑𝑦 -valued observable

time series {𝑦𝑡}𝑇𝑡=1 := 𝑦1:𝑇 , and an 𝒳 ⊂ R𝑑𝑥-valued unobservable or latent time

series {𝑥𝑡}𝑇𝑡=1 := 𝑥1:𝑇 . Specifying a SSM requires the selection of several probability

distributions all specified by some parameter vector 𝜃. For convenience and clarity of

presentation, all probability measures in this paper will be assumed to be dominated

by the Lebesgue measure, and thus admit density functions. What are chosen are

𝑓(𝑥1 | 𝜃), the first time’s state distribution, along with the state transition densities,

{𝑓(𝑥𝑡 | 𝑥𝑡−1, 𝜃)}𝑇𝑡=2, and the observation densities, {𝑔(𝑦𝑡 | 𝑥𝑡, 𝜃)}𝑇𝑡=1.

Constructing the joint density of the complete data, which includes both the

observed and unobserved portions, is straightforward because 𝑦1:𝑇 are conditionally

independent given the states, and because the states are assumed to possess the

Markov property. Specifically, this means

𝑝(𝑦1:𝑇 | 𝑥1:𝑇 , 𝜃) =
𝑇∏︁
𝑡=1

𝑔(𝑦𝑡 | 𝑥𝑡, 𝜃) (2.1)

5

and

𝑝(𝑥1:𝑇 | 𝜃) = 𝑓(𝑥1 | 𝜃)
𝑇∏︁
𝑡=2

𝑓(𝑥𝑡 | 𝑥𝑡−1, 𝜃). (2.2)

The product of (2.1) and (2.2) yields the complete data likelihood: 𝑝(𝑥1:𝑡, 𝑦1:𝑡 | 𝜃), and

integrating out the unobserved 𝑥1:𝑡 from this yields the marginal likelihood 𝑝(𝑦1:𝑡 | 𝜃).

Most quantities of interest at each time can be written as a conditional expectation

involving integration with respect to the joint smoothing density, 𝑝(𝑥1:𝑡 | 𝑦1:𝑡, 𝜃).

Integration is generally difficult because this density is not tractable for general state

space models; only in two scenarios is direct calculation possible. The first scenario

is when 𝒳 is finite, as in the case of what are usually referred to as Hidden Markov

Models (HMMs). Integrating out 𝑥1:𝑡 from the complete data likelihood is expressed

as a sum over all length 𝑡 state sequences. The second scenario is when 𝑝(𝑥1:𝑡 | 𝜃) is

conjugate to 𝑝(𝑦1:𝑡 | 𝑥1:𝑡, 𝜃), giving the smoothing density a known form. This arises

in the case of linear-Gaussian state space models, wherein the use of the Kalman

Filter and the Kalman Smoother is possible [Shumway and Stoffer, 2006].

SSMs for Financial Applications

Motivation: Portfolio Selection

Before particle filters are defined, consider as a motivating example the task of

portfolio selection. An investor sits at time 𝑡 and possesses the set of available infor-

mation 𝑦1:𝑡. Using a decision variable 𝑤𝑡, he seeks to properly control or monitor the

distribution of his future returns 𝑝(𝑤′𝑡𝑦𝑡+𝑘 | 𝑦1:𝑡). This 𝑤𝑡 is a vector of weights, where

each weight element describes the amount of his wealth used to buy a particular asset.

There are two examples where summary measures of this probability distribution

are commonly used. First, techniques falling under the category of Mean-Variance

optimization methods [Markowitz, 1952] will pick, in some sense decided upon by the

investor, an optimal weight vector. The objective function that 𝑤𝑡 is chosen to maxi-

6

mize will depend on the mean and variance of this distribution, and will also depend

on how the investor will value expected returns compared with the variance. Another

example includes what is called Value at Risk (VaR), which deals with estimating

lower quantiles of this random variable. For example, the absolute value of the lower

1% quantile of the next day’s return distribution would consitute another measure of

investment risk. This one-number summary is highly reportable, and it is common

for practitioners to place restrictions on how large this number can be.

The following sections describe how these quantities can be obtained using particle

filtering approaches that work for almost any state space model. Afterwards, particle

filters are defined, and several specific algorithms are described in detail.

Approximating the Forecast Distribution: Approach 1

In the case of no model or parameter uncertainty, the forecast distributions can be

approximated in a timely manner using weighted samples from a particle filter. This

assumption of known parameters may be justified for particular models, or if a MCMC

algorithm yields very low-variance posterior distributions. Each time’s approximation

to the filtering distribution can be recursively computed using the weighted samples

from the previous time period. Once one accomplishes the intermediate step of ob-

taining this filtering distribution 𝑝(𝑥𝑡 | 𝑦1:𝑡, 𝜃), one may then use his weighted samples

to approximate a 𝑘-step ahead forecast distribution for his portfolio’s return. The

following decomposition would be used:

𝑝(𝑤′𝑡𝑦𝑡+𝑘 | 𝑦1:𝑡, 𝜃) =

∫︁
𝑝(𝑤′𝑡𝑦𝑡+𝑘 | 𝑥𝑡, 𝜃)𝑝(𝑥𝑡 | 𝑦1:𝑡, 𝜃)𝑑𝑥𝑡. (2.3)

Recall that the weight vector 𝑤𝑡 is either arbitarily chosen by the investor, or a

function of one or both of 𝜃 and 𝑥𝑡. If 𝑝(𝑤′𝑡𝑦𝑡+𝑘 | 𝑥𝑡, 𝜃) or some approximating

moment of this distribution is tractable, then the samples and weights approximating

the filtering distribution may be used to evaluate the mixture approximating (2.3).

If 𝑝(𝑤′𝑡𝑦𝑡+𝑘 | 𝑥𝑡, 𝜃) is not tractable, then the observation density 𝑔(𝑦𝑡+𝑘|𝑥𝑡+𝑘, 𝜃) most

likely is. Here, one may use the last resort of simulating forward 𝑘 times the states,

7

perhaps by using the model’s transition density 𝑓(𝑥𝑡 | 𝑥𝑡−1, 𝜃), and then use these

samples distributed according to 𝑝(𝑥𝑡+𝑘 | 𝑦1:𝑡, 𝜃) to construct a mixture of the densities

{𝑔(𝑦𝑡+𝑘 | 𝑥𝑖𝑡+𝑘, 𝜃)}. This option obviously comes at the expense of higher Monte Carlo

variance and slightly increased computation time.

Whichever option the investor chooses to target (2.3), the recursive nature of

the particle filter allows him to revise his decisions efficiently upon receiving new

information on the following day. First, he will revise his filtering approximation,

and all of these computations will begin anew.

However, it is unusual for the parameters to be known. Indeed, this is often just

an assumption made for practical convenience. The following sections draw on this

line of reasoning to detail two complete approaches which do not underestimate the

uncertainty of the parameters.

Approximating the Forecast Distribution: Two More Approaches

Approaches 2 and 3 for dealing with uncertainty about 𝜃 is suggested by the

following decomposition:

𝑝(𝑤′𝑡𝑦𝑡+𝑘 | 𝑦1:𝑡) =

∫︁∫︁
𝑝(𝑤′𝑡𝑦𝑡+𝑘 | 𝑥𝑡, 𝜃)𝑝(𝑥𝑡, 𝜃 | 𝑦1:𝑡)𝑑𝑥𝑡𝑑𝜃. (2.4)

This decomposition suggests two possible approaches. The first is to begin by simu-

lating from 𝑝(𝑥𝑡, 𝜃 | 𝑦1:𝑡) at each time point, and then using these samples to calculate

an expectation of 𝑝(𝑤′𝑡𝑦𝑡+𝑘 | 𝑥𝑡, 𝜃). For example, this is similar to the approach taken

in [Amisano and Geweke, 2008] when calculating approximations to the predictive

log Bayes factors. Simulations can be obtained from different MCMC techniques for

both the parameters and hidden states, or by using MCMC techniques to target the

parameters alone, and using these parameters to run particle filters to estimate the

terminal state. This approach has the highest potential for accuracy, but this comes

at the expense of large and increasing computing times.

The second approach suggested by this decomposition is to rewrite the same model

in an alternative form, a form that holds the unknown parameters as part of the state

8

vector and features as a filtering distribution 𝑝(𝑥𝑡, 𝜃 | 𝑦1:𝑡). The static parameters,

when thought of as a Markov chain, have known transition dynamics. At first glance,

it appears that the previous knowledge about particle filters can be used for inference

regarding 𝜃 in addition to the state. A particle filter would be set to run, and at any

time, an up-to-date distribution for all of the unknown quantities would be given.

However, using a particle filter on this new model is more difficult owing to the

lack of an "exponential forgetting property" of the filtering distributions [Kantas

et al., 2014]. This property is a sufficient condition for the asymptotic variances to be

bounded uniformly in time. When this property is not satisfied, it is often observed

empirically that when weight vectors {𝑤𝑖} are calculated for each sample {𝑥𝑖𝑡, 𝜃𝑖}, the

samples used will be of extremely high variance. For large enough 𝑡, most, if not all

of the samples will have the same value for the parameter. As a result, these samples

will be unfit to approximate (2.4).

One way to combat this problem comes from assuming that these parameters

are in fact not parameters at all, but are actually time-varying states. When this is

done, often known-variance random walk dynamics are assumed for the new portions

of the augmented state vector [Kitagawa, 1998]. Then the SSM’s state transition

will satisfy a sufficient condition (Assumption 9.4.9 [Cappé et al., 2005]) to guarantee

exponential forgetting. This option is akin to Approach 1 in that the parameters (here

they are tuning parameters) are assumed to be known. But this approach also has the

disadvantage that there are no directly applicable asymptotic results: even though

the augmented model might take advantage of central limit theorems targetting 𝑝(𝜃𝑡 |

𝑦1:𝑡), it is hard to see how this new working model’s filtering distribution compares

to the old model’s posterior distribution 𝑝(𝜃 | 𝑦1:𝑡).

Approximating the Forecast Distribution: Approach 4

This document advocates the fourth approach. It starts with obtaining a marginal

posterior distribution for the parameter using a stretch of historical data 𝑦1:𝑛. This

distribution could be used for the 𝑘-step ahead forecasts starting at time 𝑛 straight-

forwardly. But afterwards, once one is conditioning on historical information past

9

time 𝑛, instead of re-simulating the newer posterior as in approach (2), the now out-

dated parameter posterior distribution is simply used again. This approximation is

necessary if re-running the MCMC procedure is too computationally expensive. The

decomposition that would be used here builds on (2.3). It is

𝑝(𝑤′𝑡𝑦𝑛+𝑑+𝑘 | 𝑦1:𝑛+𝑑) =

∫︁∫︁
𝑝(𝑤′𝑡𝑦𝑛+𝑑+𝑘 | 𝑥𝑛+𝑑, 𝜃)𝑝(𝑥𝑛+𝑑 | 𝑦1:𝑛+𝑑, 𝜃)𝑝(𝜃 | 𝑦1:𝑛+𝑑)𝑑𝑥𝑛+𝑑𝑑𝜃

≈
∫︁∫︁

𝑝(𝑤′𝑡𝑦𝑛+𝑑+𝑘 | 𝑥𝑛+𝑑, 𝜃)𝑝(𝑥𝑛+𝑑 | 𝑦1:𝑛+𝑑, 𝜃)𝑝(𝜃 | 𝑦1:𝑛)𝑑𝑥𝑛+𝑑𝑑𝜃.

(2.5)

where 𝑑 is the number of days since the last MCMC batch posterior estimation. (2.5)

suggests first drawing parameter values {𝜃𝑖} from the samples targetting 𝑝(𝜃 | 𝑦1:𝑛)

at time 𝑛. Then, a particle filter is instantiated for each parameter, and from these,

one will have samples from 𝑝(𝑥𝑛+𝑑 | 𝑦1:𝑛+𝑑, 𝜃
𝑖) for any 𝑑 ≥ 0. From there, the same

mixture distribution choices detailed in the previous section will be available.

In practice, it is advisable to occasionally re-estimate the marginal posterior of

the parameter vector on a recent stretch of historical data, not allowing 𝑑 to get too

big. It is natural to ask what the "sweetspot" for 𝑑 ≥ 0 is. The smaller it is, the more

precise the forecast distribution will be, and the more expensive the calculations will

become. On the other hand, if 𝑑 is too large, then the posterior might be completely

outdated. This is an issue worth considering; however, this paper does not make any

attempts to answer this question.

Before these ideas can be discussed any further, particle filtering with known

parameters must be explained. An overview of this is detailed in the next section.

Particle Filtering with Known Parameters

Even though the marginal filtering distribution of the states is usually the target

distribution, particle filtering algorithms are more easily understood when the target

density is the joint smoothing density 𝑝(𝑥1:𝑡 | 𝑦1:𝑡). After all, if one has samples from

this density, 𝑥1:𝑡−1 can easily be integrated out. So there is nothing lost by taking

10

this seemingly indirect route.

Observing a key decomposition suggests a recursive technique to approximate

the densities at each time with weighted samples. As time passes, particles will be

lengthened, and the weights corresponding to each of them will be adjusted. In this

section, it is assumed that 𝜃 is known, so this dependence is not written in the notation

for the densities.

Particle filtering algorithms for estimating 𝑝(𝑥1:𝑡 | 𝑦1:𝑡) are based on Bayes’ rule

and the following two-step recursion, which follows from the Markov assumption of a

state space model:

𝑝(𝑥1:𝑡 | 𝑦1:𝑡−1) = 𝑓(𝑥𝑡 | 𝑥𝑡−1)𝑝(𝑥1:𝑡−1 | 𝑦1:𝑡−1) (2.6)

𝑝(𝑥1:𝑡 | 𝑦1:𝑡) =
𝑔(𝑦𝑡 | 𝑥𝑡)𝑝(𝑥1:𝑡 | 𝑦1:𝑡−1)

𝑝(𝑦𝑡 | 𝑦1:𝑡−1)
. (2.7)

As was mentioned in the previous section, computation of the denominator in (2.7)

is impossible for all but two cases. If 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑦1:𝑡−1) is conjugate to 𝑔(𝑦𝑡 | 𝑥𝑡),

then 𝑝(𝑥1:𝑡 | 𝑦1:𝑡) has a known distribution. Or, if 𝒳 is finite, then the normalizing

constant is a finite sum. The downside to designing a state space model with this

in mind is that the models are often too simplistic. They do not always fit the data

well, and this is likely to be true in particular for financial returns data.

Theoretically, particle filtering can be applied to a state space model of any form.

At its core, it is best thought of as the combination of two things: importance sampling

and resampling. This document’s synopsis closely follows the description of [Doucet

and Johansen, 2011], except for its explanation of auxiliary particle filters. The

importance sampling portion is sequential in nature, targeting at each time 𝑡 the

smoothing density 𝑝(𝑥1:𝑡 | 𝑦1:𝑡). At time 𝑡 − 1 the user will have 𝑁 samples of the

path 𝑥1:𝑡−1 from some importance density and weights corresponding with each of

these samples. These weights are calculated based on how "close" the importance

density is to the complete data likelihood, which is proportional to the target.

The creation of this class of algorithms is usually credited to [Gordon et al., 1993]

or [Kong et al., 1994], who were in turn inspired by the nonsequential "factored

11

sampling" algorithm of [Grenander et al., 1991]. Both deal with the situation of

missing data, but only the former deals explicitly with state space models. What

follows is a more general explanation of the basic Sequential Monte Carlo algorithm:

Sequential Importance Sampling. From here, more recent strategies can be seen as

being based on the same underlying principle.

Sequential Importance Sampling (SIS)

Start by picking a proposal distribution1 that factors as

𝑞(𝑥1:𝑡 | 𝑦1:𝑡) = 𝑞𝑡(𝑥𝑡 | 𝑥1:𝑡−1, 𝑦1:𝑡)𝑞(𝑥1:𝑡−1 | 𝑦1:𝑡−1), (2.8)

that dominates the complete data likelihood, is tractable, and can generate samples.

In practice, this amounts to choosing 𝑞𝑡 at each time point. Then, it can be seen that

𝑝(𝑥1:𝑡 | 𝑦1:𝑡) = 𝐶−1𝑡

𝑝(𝑥1:𝑡, 𝑦1:𝑡)

𝑞(𝑥1:𝑡 | 𝑦1:𝑡)
𝑞(𝑥1:𝑡 | 𝑦1:𝑡)

= 𝐶−1𝑡

𝑔(𝑦𝑡 | 𝑥𝑡)𝑓(𝑥𝑡 | 𝑥𝑡−1)
𝑞𝑡(𝑥𝑡 | 𝑦1:𝑡, 𝑥1:𝑡−1)

𝑝(𝑥1:𝑡−1, 𝑦1:𝑡−1)

𝑞(𝑥1:𝑡−1 | 𝑦1:𝑡−1)
𝑞𝑡(𝑥𝑡 | 𝑦1:𝑡, 𝑥1:𝑡−1)𝑞(𝑥1:𝑡−1 | 𝑦1:𝑡−1).

This decomposition suggests the subsequent algorithm. Define 𝑤𝑖
𝑎:𝑏 = 𝑝(𝑥𝑖𝑎:𝑏, 𝑦𝑎:𝑏)/𝑞(𝑥

𝑖
𝑎:𝑏 |

𝑦𝑎:𝑏) and admit a couple of conventions: if 𝑎 > 𝑏, then 𝑤𝑖
𝑎:𝑏 = 1 and 𝑞(𝑥𝑖𝑎:𝑏 | 𝑦𝑎:𝑏) = 1.

Superscripts refer to the particle index, not time. Capitalizations emphasize which

quantities are random. For clarity, redundant subscripts may be dropped by set-

ting 𝑤𝑖
𝑎:𝑎 := 𝑤𝑖

𝑎. One can see that 𝑤𝑖
1:𝑡 = 𝑝(𝑥𝑖1:𝑡, 𝑦1:𝑡)/𝑞(𝑥

𝑖
1:𝑡 | 𝑦1:𝑡) is tractable.

To go from time 𝑡 − 1 to time 𝑡, you first sample from 𝑞𝑡(𝑥𝑡 | 𝑥1:𝑡−1, 𝑦1:𝑡) and ap-

pend this to the particle’s path, then update the old path’s unnormalized weights

𝑤𝑖
1:𝑡−1 = 𝑝(𝑥𝑖1:𝑡−1, 𝑦1:𝑡−1)/𝑞(𝑥

𝑖
1:𝑡−1 | 𝑦1:𝑡−1) by multiplying them by a quantity consist-

ing of evaluations of the model’s densities and the proposal density, 𝑔(𝑦𝑡 | 𝑥𝑖𝑡)𝑓(𝑥𝑖𝑡 |

𝑥𝑖𝑡−1)/𝑞𝑡(𝑥
𝑖
𝑡 | 𝑦1:𝑡, 𝑥𝑖1:𝑡−1). These are evaluated using the newest samples, the most

recent portion of your pre-existing particles, and the newest data point. Here is the
1This conditional density notation reflects the set of information that it is possible to condition

on. If the state space model is true, then some of the random variables conditioned on are redundant
due to conditional independence.

12

algorithm made explicit. Note that the outer loop over time is not pictured.

Algorithm 1 SIS
procedure sis(𝑔𝑡, 𝑓𝑡, 𝑞𝑡)

if 𝑡 equals 1 then
for 𝑖 = 1, . . . , 𝑁 do

samples[1,i] ← 𝑋𝑖
1 ∼ 𝑞1(𝑥1 | 𝑦1)

uNrmWts[i] ← 𝑤𝑖
1 =

𝑔(𝑦1|𝑋𝑖
1)𝑓(𝑋

𝑖
1)

𝑞1(𝑋
𝑖
1|𝑦1)

end for
else

for 𝑖 = 1, . . . 𝑁 do
samples[t,i] ← 𝑋𝑖

𝑡 ∼ 𝑞𝑡(𝑥𝑡 | 𝑥𝑖
𝑡−1, 𝑦𝑡)

uNrmWts[i] *=
𝑔(𝑦𝑡|𝑋𝑖

𝑡)𝑓(𝑋
𝑖
𝑡 |𝑥

𝑖
𝑡−1)

𝑞𝑡(𝑋
𝑖
𝑡 |𝑦𝑡,𝑥

𝑖
𝑡−1)

end for
end if

end procedure

Unless portions of the paths are discarded, this algorithm will yield samples from

𝑞(𝑥1:𝑡 | 𝑦1:𝑡) at any time point 𝑡. With each particle path sample 𝑥𝑖1:𝑡, there are

the associated unnormalized scalar weights 𝑤𝑖
1:𝑡, and the normalized weights �̃�𝑖

1:𝑡 =

𝑤𝑖
1:𝑡/

∑︀𝑁
𝑗=1𝑤

𝑗
1:𝑡. Later, these may be written in uppercase if the randomness of the

quantity is being emphasized.

An estimator of the general smoothed functional, 𝐸[ℎ(𝑥1:𝑡) | 𝑦1:𝑡], will require the

normalized weights. It will be computed as the following weighted average:

�̂�[ℎ(𝑥1:𝑡) | 𝑦1:𝑡] =
∑︁
𝑖

�̃�𝑖
1:𝑡ℎ(𝑥𝑖1:𝑡). (2.9)

This estimator is biased, yet consistent. The estimator of the likelihood, on the other

hand, is consistent and unbiased:

̂︀𝑝(𝑦1:𝑡) = 𝑁−1
𝑁∑︁
𝑖=1

𝑤𝑖
1:𝑡. (2.10)

Unfortunately, the variance of the SIS estimator (2.9) increases very quickly in

𝑡. How quickly the increase depends on the choice of proposal distributions and the

model being studied. How should the sequence of 𝑞𝑡s be chosen? In the particle filter-

ing literature, generally the minimization of the conditional variance of the scalar path

weights is discussed, Var(𝑤𝑖
1:𝑡 | 𝑤𝑖

1:𝑡−1), instead of a particular smoothed functional’s

13

variance or MSE2. In this way, results about how "good" a proposal distribution is will

not be contingent on any particular quantity of interest. This was justified by [Liu,

1996]. He approximates the MSE of a general smoothed functional estimator using

the delta method, and what results is an expression that is only a function of the

weights’ variance. This will only depend on the model and the proposal distribution.

With this criterion, the optimal proposal distribution would be

𝑞opt
𝑡 (𝑥𝑡 | 𝑥1:𝑡−1, 𝑦1:𝑡) = 𝑝(𝑥𝑡 | 𝑦𝑡, 𝑥𝑡−1) ∝ 𝑔(𝑦𝑡 | 𝑥𝑡)𝑓(𝑥𝑡 | 𝑥𝑡−1). (2.11)

On account of the conditional independence assumption of any state space model,

this is what 𝑝(𝑥𝑡|𝑥1:𝑡−1, 𝑦1:𝑡) simplifies to if the model is true. If one is able to sample

from this distribution, then one is able to sample from the smoothing distribution

exactly. The weight update is nonrandom because it is constant, and this means the

conditional variance will be zero. However, in the usual cases where it is possible to

sample from this distribution, sampling is unnecessary because one can compute the

distribution exactly (e.g. Kalman filter, HMMs). In the case of models that require

particle filtering, (2.11) can only serve as a guideline for a proposal distribution.

If care is not taken in choosing the proposal, paths will be suggested that do not

tightly hug the mode of 𝑝(𝑥1:𝑡 | 𝑦1:𝑡). Errors can build up over time as the latest

samples drift farther away from where they should be. Thinking of the paths like this

provides an intuitive understanding of why this happens, but it also can be looked at

from the point of view of the scalar path weights. As 𝑡 progresses, more of the weights

get pulled closer to zero, spreading out the distribution and enlarging the variance.

From this point of view, the problem is called weight degeneracy [Cappé et al., 2005]

(chapter 7.3).

2This is equivalent to minimizing any of the final weights, 𝑤𝑖
1:𝑡, or minimizing the likelihood

estimate, 𝑝(𝑦1:𝑡).

14

Sequential Important Sampling with Resampling (SISR)

One partial solution to this problem is called resampling. [Gordon et al., 1993]

cites [Smith and Gelfand, 1992] to justify their use of this technique. At any time

in the generic SIS algorithm, one has weighted samples {(�̃�𝑖
1:𝑡, 𝑥

𝑖
1:𝑡)}𝑁𝑖=1. Resampling

consists of revising these by discarding paths with low weights, and duplicating paths

with large weights. This "resetting" comes with the hope that subsequent draws will

have less overall variance. The simplest method to achieve this consists of drawing

revised samples’ counts from a multinomial distribution, although there are other

methods that are more efficient [Douc, 2005].

A draw consists of a path index number, so denoting the number of times path 𝑖

is drawn by 𝑀𝑖, then (𝑀1, . . . ,𝑀𝑁) ∼ Multinomial[(�̃�1
1:𝑡, . . . , �̃�

𝑁
1:𝑡), 𝑁]. Time 𝑡 Monte

Carlo variance is added with this resampling, but overall path weight variance is

sometimes held to be low. The algorithm is suggested by the following factorization:

𝑝(𝑥1:𝑡 | 𝑦1:𝑡) = 𝐶−1𝑟+1:𝑡𝑝(𝑥𝑟+1:𝑡, 𝑦𝑟+1:𝑡 | 𝑥𝑟)𝑝(𝑥1:𝑟 | 𝑦1:𝑟)

= 𝐶−1𝑟+1:𝑡

𝑝(𝑥𝑟+1:𝑡, 𝑦𝑟+1:𝑡 | 𝑥𝑟)
𝑞𝑟+1:𝑡(𝑥𝑟+1:𝑡 | 𝑦𝑟+1:𝑡, 𝑥𝑟)

𝑞𝑟+1:𝑡(𝑥𝑟+1:𝑡 | 𝑦𝑟+1:𝑡, 𝑥𝑟)𝑝(𝑥1:𝑟 | 𝑦1:𝑟)

= 𝐶−1𝑟+1:𝑡

𝑔(𝑦𝑡 | 𝑥𝑡)𝑓(𝑥𝑡 | 𝑥𝑡−1)
𝑞𝑡(𝑥𝑡 | 𝑥𝑡−1, 𝑦𝑡)

𝑝(𝑥𝑟+1:𝑡−1, 𝑦𝑟+1:𝑡−1 | 𝑥𝑟)
𝑞(𝑥𝑟+1:𝑡−1 | 𝑦𝑟+1:𝑡−1, 𝑥𝑟)

×

𝑞𝑡(𝑥𝑡 | 𝑥𝑡−1, 𝑦𝑡)𝑞(𝑥𝑟+1:𝑡−1 | 𝑦𝑟+1:𝑡−1, 𝑥𝑟)𝑝(𝑥1:𝑟 | 𝑦1:𝑟)

where 𝑟 is the last time resampling was performed. This suggests that after resam-

pling, the paths follow the posterior distribution exactly with uniform weights. Keep

in mind by the aforementioned conventions, if 𝑟 + 1 > 𝑡 − 1, then the last fraction

disappears, as well as 𝑞(𝑥𝑟+1:𝑡−1 | 𝑦𝑟+1:𝑡−1, 𝑥𝑟). Many papers omit this description by

assuming that resampling is performed at every time point. That convention is not

followed here. Below is the algorithm made explicit.

15

Algorithm 2 SISR
procedure sisr(𝑔𝑡, 𝑓𝑡, 𝑞𝑡)

if 𝑡 equals 1 then
for 𝑖 = 1, . . . , 𝑁 do

samples[1,i] ← 𝑋𝑖
1 ∼ 𝑞1(𝑥1 | 𝑦1)

uNrmWts[i] ← 𝑔(𝑦1|𝑋𝑖
1)𝑓(𝑋𝑖

1)

𝑞1(𝑋𝑖
1|𝑦1)

end for
lastLogCondLike ← log

[︀
𝑝(𝑦1)

]︀
if resampling criterion true then

resample(samples, uNrmWts) ◁ sets weights to uniform
end if

else ◁ 𝑡 > 1
for 𝑖 = 1, . . . 𝑁 do

samples[t,i] ← 𝑋𝑖
𝑡 ∼ 𝑞𝑡(𝑥𝑡 | 𝑥𝑡−1, 𝑦𝑡)

uNrmWts[i] * =
𝑔(𝑦𝑡|𝑋𝑖

𝑡)𝑓(𝑋𝑖
𝑡 |𝑥

𝑖
𝑡−1)

𝑞𝑡(𝑋
𝑖
𝑡 |𝑦𝑡,𝑥

𝑖
𝑡−1

)

end for
lastLogCondLike ← log

[︀
𝑝(𝑦𝑡 | 𝑦1:𝑡−1)

]︀
if resampling criterion satisfied then

resample(samples, uNrmWts) ◁ sets weights to uniform
end if

end if
end procedure

The conditional likelihood formulas are:3

𝑝(𝑦1) =
1

𝑁

∑︁
𝑖

𝑊 𝑖
1

𝑝(𝑦𝑡 | 𝑦1:𝑡−1) =
∑︁
𝑖

̃︁𝑊 𝑖
𝑟+1:𝑡−1

𝑔(𝑦𝑡 | 𝑋 𝑖
𝑡)𝑓(𝑋 𝑖

𝑡 | 𝑥𝑖𝑡−1)
𝑞𝑡(𝑋 𝑖

𝑡 | 𝑦𝑡, 𝑥𝑖𝑡−1)
. (2.12)

Resampling is not without other problems as well. One downside is a problem

called "sample impoverishment," and this occurs because resampling successfully ad-

justs the weights, but damages the paths. Whenever resampling is performed, path

portions that represent early stages of the chain are probabilistically discarded. Once

they are discarded, they can never return, because samples are only appended to one

side of the stored particles. For this reason, the particle filter is unsuitable to esimate

things of, say, the form 𝐸[ℎ(𝑥1) | 𝑦1:𝑡], if 𝑡≫ 1. When particle filtering is being used

for obtaining the forecasting density in a financial application, this usually does not

matter. When it is not, resampling should not be performed too often.

Below is a demonstration of the weight degeneracy/sample impoverishment trade-

off (2-1). The image on the left shows samples from a SISR algorithm with resampling

conducted at each time step. On the right, resampling is never performed. The data

3This formula is generally not written in papers because we do not assume resampling is being
conducted at every time step, which is a simplification. Despite being slightly more complicated,
understanding it this way allows for easier programming of the algorithm.

16

are simulated from the univariate stochastic volatility model of [Taylor, 1982], and

the exact parameters are assumed to be known by the user of the particle filter. This

model’s state process is a univariate autoregressive process of the first order. It rep-

resents the returns’ "log volatility," or more exactly, the logarithm of a factor of the

variance of a return series. For each time 𝑡:

𝑦𝑡 | 𝑥𝑡 ∼ Normal(0, 𝛽2 exp(𝑥𝑡)) (2.13)

𝑥𝑡 | 𝑥𝑡−1 ∼ Normal(𝛼𝑥𝑡−1, 𝜎2
𝑥), (2.14)

and the first state random variable is assumed to be distributed according to the state

chain’s stationary distribution, Normal(0, 𝜎2
𝑥/(1 − 𝛼2)).

Figure 2-1: Samples of {𝑝(𝑥𝑡|𝑦1:20)}20𝑡=1 from a basic bootstrap filter. On the left re-
sampling is performed at every time step. On the right, resampling is never peformed.

One difficulty with resampling is that it complicates asymptotic results; however,

solutions to this problem exist. Going from the SIS algorithm to the SISR algo-

rithm, the paths {𝑥𝑖1:𝑡}𝑁𝑖=1 are no longer sampled independently. Instead, these paths

"interact" via the resampling scheme. The first paper to prove convergence of es-

timators from Sequential Monte Carlo with resampling schemes was [Moral, 1996],

but this is also discussed in [Crisan and Doucet, 2002] and [Chopin, 2004]. The

monograph [Cappé et al., 2005] describes proofs of a law of large numbers and a

central limit theorem in some detail, describing the extension from the case of the

nonsequential algorithm of [Grenander et al., 1991].

17

The Auxiliary Particle Filter (APF)

A different partial solution, usually used in conjunction with resampling, is to

take better care in picking a proposal distribution. A better proposal will mitigate

the problem of weight degeneracy, just as resampling does. In the original bootstrap

filter [Gordon et al., 1993], the model’s state transition 𝑓(𝑥𝑡 | 𝑥𝑡−1) density is used as

a proposal. This seems natural at first, because the model assumes that that is how

the state evolves unconditionally of the observed data. It even simplifies the weight

update routine, and is the only possible choice if evaluating the transition density is

impossible. However, it is not the optimal proposal (2.11); there is nothing pulling

the samples close to the filtering distribution 𝑝(𝑥𝑡 | 𝑦1:𝑡) and thereby keeping the

variance of the weights low.

In the language of [Pitt and Shephard, 1999a], the naive proposal distribution is

not "adapted" to the most recent data point. They propose a generic scheme for

sampling that uses this information called "auxiliary particle filtering" (APF). The

APF ameliorates this problem by automatically choosing a proposal distribution that

more closely resembles the optimal one. The scheme makes use of an auxiliary random

variable at each time point 𝑡, call it 𝑘𝑡−1 ∈ {1, . . . , 𝑁}. Its probability mass function is

given by the stored path weights {�̃�1
1:𝑡−1, . . . , �̃�

𝑁
1:𝑡−1}. This variable represents which

recent sample should be chosen to propogate forward. The following procedure is

based on the observation that

𝑝(𝑥1:𝑡, 𝑘𝑡−1 | 𝑦1:𝑡) = 𝐶−1𝑟+1:𝑡

𝑝(𝑥𝑟+1:𝑡, 𝑘𝑡−1, 𝑦𝑟+1:𝑡 | 𝑥𝑟)
𝑞(𝑥𝑟+1:𝑡, 𝑘𝑡−1 | 𝑦1:𝑡)

𝑞(𝑥𝑟+1:𝑡, 𝑘𝑡−1 | 𝑦1:𝑡)𝑝(𝑥1:𝑟 | 𝑦1:𝑟)

= 𝐶−1𝑟+1:𝑡

𝑔(𝑦𝑡 | 𝑥𝑡)𝑓(𝑥𝑡 | 𝑥𝑡−1, 𝑘𝑡−1)𝑝(𝑘𝑡−1 | 𝑥1:𝑡−1, 𝑦1:𝑡−1)
𝑞𝑡(𝑥𝑡, 𝑘𝑡−1 | 𝑦𝑡, 𝑥𝑡−1)

𝑝(𝑥𝑟+1:𝑡−1, 𝑦𝑟+:𝑡−1 | 𝑥𝑟)
𝑞(𝑥𝑟+1:𝑡−1 | 𝑦𝑟+1:𝑡−1)

×

𝑞𝑡(𝑥𝑡, 𝑘𝑡−1 | 𝑦1:𝑡, 𝑥1:𝑡−1)𝑞(𝑥𝑟+1:𝑡−1 | 𝑦𝑟+1:𝑡−1)𝑝(𝑥1:𝑟 | 𝑦1:𝑟),

where adjustments are made to the underlying state space model because the random

index is part of the state process now.

To understand the APF, one must understand the choice of 𝑞𝑡. The optimal

proposal, 𝑝(𝑥𝑡, 𝑘𝑡−1 | 𝑦1:𝑡), is proportional to 𝑓(𝑥𝑡 | 𝑥𝑡−1, 𝑘𝑡−1)𝑝(𝑦𝑡 | 𝑥𝑡−1, 𝑘𝑡−1)𝑝(𝑘𝑡−1 |

18

𝑥1:𝑡−1, 𝑦1:𝑡−1), but generally 𝑝(𝑦𝑡 | 𝑥𝑡−1, 𝑘𝑡−1) is not available in closed-form. The

following factorization suggests an approximation based on a user-chosen function

𝜇𝑡(·):

𝑝(𝑥𝑡, 𝑘𝑡−1 | 𝑦1:𝑡, 𝑥1:𝑡−1) ∝ 𝑓(𝑥𝑡 | 𝑥𝑡−1, 𝑘𝑡−1)𝑝(𝑦𝑡 | 𝑥𝑡−1, 𝑘𝑡−1)𝑝(𝑘𝑡−1 | 𝑥1:𝑡−1, 𝑦1:𝑡−1)

= 𝑓(𝑥𝑡 | 𝑥𝑡−1, 𝑘𝑡−1)
[︂∫︁

𝑔(𝑦𝑡 | 𝑥′𝑡)𝑓(𝑥′𝑡 | 𝑥𝑡−1, 𝑘𝑡−1)𝑑𝑥′𝑡
]︂
𝑝(𝑘𝑡−1 | 𝑥1:𝑡−1, 𝑦1:𝑡−1)

≈ 𝑓(𝑥𝑡 | 𝑥𝑡−1, 𝑘𝑡−1)𝑔(𝑦𝑡 | 𝜇𝑡[𝑥𝑡−1, 𝑘𝑡−1])𝑝(𝑘𝑡−1 | 𝑥1:𝑡−1, 𝑦1:𝑡−1).

So, the normalized proposal distribution becomes

𝑞apf
𝑡 (𝑥𝑡, 𝑘𝑡−1 | 𝑦1:𝑡, 𝑥1:𝑡−1) =

𝑓(𝑥𝑡 | 𝑥𝑡−1, 𝑘𝑡−1)𝑔(𝑦𝑡 | 𝜇𝑡[𝑥𝑡−1, 𝑘𝑡−1])𝑝(𝑘𝑡−1 | 𝑥1:𝑡−1, 𝑦1:𝑡−1)∑︀
𝑘′𝑡−1

𝑔(𝑦𝑡 | 𝜇𝑡[𝑥𝑡−1, 𝑘′𝑡−1])𝑝(𝑘
′
𝑡−1 | 𝑥1:𝑡−1, 𝑦1:𝑡−1)

.

The most common choice for 𝜇𝑡 is the mode of 𝑓(𝑥𝑡 | 𝑥𝑡−1), but many other

choices have been studied [Whiteley and Johansen, 2011]. In words, the algorithm is

as follows: all of the particles are weighted by the first stage weights, which are pro-

portional to 𝑔(𝑦𝑡 | 𝜇𝑡[𝑥𝑡−1, 𝑘𝑡−1])𝑝(𝑘𝑡−1 | 𝑥1:𝑡−1, 𝑦1:𝑡−1). Then, based on these weights,

particle indices 𝑘𝑡−1 are sampled4, and the samples selected by these indices are then

propogated further via the state transition density. The algorithm is as follows.

The formulas for the conditional likelihood approximations are the same as the

SISR algorithms if one makes the appropriate substitution for 𝑞𝑡.

The Rao-Blackwellized Particle Filter (RBPF)

Another technique to reduce variance is called "Rao-Blackwellization" [Liu et al.,

2001], [Chen and Liu, 2000], [Andrieu and Doucet, 2002], however this is only useful

for models of a certain form. Let 𝑥𝑡 = (𝑥′1,𝑡, 𝑥
′
2,𝑡)
′, where 𝑥1,𝑡 and 𝑥2,𝑡 are subvectors

for any time’s state. The necessary form for a model of interest involves being able

4Confusingly, the literature on particle filtering will sometimes refer to the first stage of the
APF proposal as resampling, and sometimes explain the general particle filter as having the true
resampling step as coming first, instead of last. This document does not follow either of these
conventions.

19

Algorithm 3 APF
procedure APF(𝑔𝑡, 𝑓𝑡, 𝜇𝑡)

if 𝑡 equals 1 then ◁ same as SISR
for 𝑖 = 1, . . . , 𝑁 do

samples[1,i] ← 𝑋𝑖
1 ∼ 𝑞1(𝑥1 | 𝑦1)

uNrmWts[i] ← 𝑔(𝑦1|𝑋𝑖
1)𝑓(𝑋𝑖

1)

𝑞1(𝑋𝑖
1|𝑦1)

end for
lastLogCondLike ← log

[︀
𝑝(𝑦1)

]︀
if resampling criterion true then

resample(samples, uNrmWts)
end if

else ◁ 𝑡 > 1
for 𝑖 = 1, . . . 𝑁 do

firstStageUnNormalizedWeights[i] ← 𝑔(𝑦𝑡 | 𝜇𝑡[𝑥𝑡−1, 𝑘
𝑖
𝑡−1])𝑝(𝑘

𝑖
𝑡−1 | 𝑥1:𝑡−1, 𝑦1:𝑡−1)

end for
kTMinusOneArray = sample(1:N, firstStageUnNormalizedWeights)
for 𝑖 = 1, . . . 𝑁 do

samples[t,i] ← 𝑋𝑖
𝑡 ∼ 𝑓𝑡(𝑥𝑡 | 𝑥𝑡−1, 𝐾

𝑖
𝑡−1)

uNrmWts[i] * =
𝑔(𝑦𝑡|𝑋𝑖

𝑡)

𝑔(𝑦𝑡|𝜇𝑡[𝑥𝑡−1,𝐾𝑖
𝑡−1

])

∑︀
𝑗 𝑔(𝑦𝑡 | 𝜇𝑡[𝑥𝑡−1, 𝐾

𝑗
𝑡−1])𝑝(𝐾

𝑗
𝑡−1 | 𝑥1:𝑡−1, 𝑦1:𝑡−1)

end for
lastLogCondLike ← log

[︀
𝑝(𝑦𝑡|𝑦1:𝑡−1)

]︀
if resampling criterion satisfied then

resample(samples, uNrmWts)
end if

end if
end procedure

to decompose the smoothing density as

𝑝(𝑥1:𝑡 | 𝑦1:𝑡) = 𝑝(𝑥1,1:𝑡 | 𝑥2,1:𝑡, 𝑦1:𝑡)𝑝(𝑥2,1:𝑡 | 𝑦1:𝑡). (2.15)

If 𝑝(𝑥1,1:𝑡 | 𝑥2,1:𝑡, 𝑦1:𝑡) is tractable, and 𝑝(𝑥2,1:𝑡 | 𝑦1:𝑡) is not, then samples are only

needed for the latter. The particles are comprised of {𝑤𝑖
1:𝑡, 𝑥

𝑖
1,1:𝑡, 𝑥

𝑖
2,1:𝑡}, where the

𝑥𝑖1,1:𝑡 are nonrandom summaries of the distribution 𝑝(𝑥1,1:𝑡 | 𝑥𝑖2,1:𝑡, 𝑦1:𝑡), and the 𝑥𝑖2,1:𝑡
are "ordinary" samples in the sense they represent realizations of the random variable

or vector. For example, if the first distribution on the right hand side in (2.15) is

multivariate normal, then each 𝑥𝑖1,1:𝑡 is a sequence of mean vector/covariance matrix

pairs coupled with both a corresponding 𝑥𝑖2,1:𝑡 sample, and a weight 𝑤𝑖
1:𝑡. Consider

as another example a model where the tractable distribution is a finite state space

Markov chain. In that case, each particle element 𝑥𝑖1,1:𝑡 is a probability vector.

The primary decomposition expressing the workings of this algorithm involves

writing the right hand side of (2.15) as

𝐶−1𝑟+1:𝑡𝑝(𝑥1,1:𝑡 | 𝑥2,1:𝑡, 𝑦1:𝑡)𝑎𝑡−1:𝑡𝑤𝑟+1:𝑡−1𝑝(𝑥2,1:𝑡 | 𝑦1:𝑡) (2.16)

where 𝑎𝑡−1:𝑡 = 𝑓(𝑥2,𝑡 | 𝑥2,𝑡−1)𝑝(𝑦𝑡 | 𝑦1:𝑡−1, 𝑥2,1:𝑡)/𝑞𝑡(𝑥2,𝑡 | 𝑥2,𝑡−1, 𝑦𝑡) is the unnormalized

20

weight adjustment, 𝑤𝑟+1:𝑡−1 = 𝑝(𝑥2,𝑟+1:𝑡−1, 𝑦𝑟+1:𝑡−1 | 𝑥2,𝑟)/𝑞(𝑥2,𝑟+1:𝑡−1 | 𝑦𝑟+1:𝑡−1, 𝑥2,𝑟)

is the previous unnormalized weight, and

𝑝(𝑥2,1:𝑡 | 𝑦1:𝑡) = 𝑞𝑡(𝑥2,𝑡 | 𝑥2,𝑡−1, 𝑦𝑡)𝑞(𝑥2,𝑟+1:𝑡−1 | 𝑦𝑟+1:𝑡−1, 𝑥2,𝑟)𝑝(𝑥2,1:𝑟 | 𝑦1:𝑟) (2.17)

denotes the current distribution of the samples for 𝑥2,1:𝑡, assuming resampling was

last performed at time 𝑟.

When conditioning on the most recent particles, one is able to use his inner5 closed

form model to accomplish the following update:

𝑝(𝑥1,1:𝑡 | 𝑥2,1:𝑡, 𝑦1:𝑡) =
𝑝(𝑦𝑡 | 𝑥1,𝑡, 𝑥2,1:𝑡)𝑝(𝑥1,𝑡 | 𝑥1,𝑡−1, 𝑥2,1:𝑡)𝑝(𝑥1,1:𝑡−1 | 𝑦1:𝑡−1, 𝑥2,1:𝑡)

𝑝(𝑦𝑡 | 𝑥2,1:𝑡, 𝑦1:𝑡−1)
.(2.18)

Also, the first time’s filtering distribution is:

𝑝(𝑥1,1, 𝑥2,1 | 𝑦1) = 𝐶−11 𝑝(𝑥1,1 | 𝑥2,1, 𝑦1)
𝑝(𝑦1 | 𝑥2,1)𝑓(𝑥2,1)

𝑞1(𝑥2,1 | 𝑦1)
𝑞1(𝑥2,1 | 𝑦1) (2.19)

This algorithm (4) is written below explicitly. Note that 𝑝(𝑦1 | 𝑥2,1) and each 𝑝(𝑦𝑡 |

𝑥2,1:𝑡, 𝑦1:𝑡−1) are available in closed form.

The likelihood estimates are similar to the ones before:

𝑝(𝑦𝑡 | 𝑦1:𝑡−1) =
𝑁∑︁
𝑖=1

�̃� 𝑖
𝑟+1:𝑡−1

𝑓(𝑋 𝑖
2,𝑡 | 𝑥𝑖2,𝑡−1)𝑝(𝑦𝑡 | 𝑦1:𝑡−1, 𝑋 𝑖

2,1:𝑡)

𝑞𝑡(𝑋 𝑖
2,𝑡 | 𝑥𝑖2,𝑡−1, 𝑦𝑡)

, (2.20)

and

𝑝(𝑦1) =
1

𝑁

𝑁∑︁
𝑖=1

𝑝(𝑦1 | 𝑋 𝑖
2,1)𝑓(𝑋 𝑖

2,1)

𝑞1(𝑋 𝑖
2,1|𝑦1)

. (2.21)

The formulas for the approximations to the expectations of functions of the state

or based on the Law of Total Expectation. The quantity 𝐸[ℎ(𝑥1𝑡, 𝑥2𝑡) | 𝑦1:𝑡] =

5It is recommended to program a RBPF in an object-oriented manner. An instance of a Kalman
Filter or HMM class can be held and manipulated inside a RBPF class. To obtain this value,
each particle can have its, say, Kalman Filter class call the method that returns the most recent
conditional likelihood.

21

Algorithm 4 RBPF
procedure RBPF(𝑝𝑡, 𝑓𝑡)

if 𝑡 equals 1 then
for 𝑖 = 1, . . . , 𝑁 do

particles.samples[1,i] ← 𝑋𝑖
2,1 ∼ 𝑞1(𝑥2,1|𝑦1)

particles.innerMods[i].prior = 𝑝(𝑥𝑖
1,1 | 𝑋

𝑖
2,1)

particles.innerMods[i].posterior = 𝑝(𝑥𝑖
1,1 | 𝑋

𝑖
2,1, 𝑦1) ◁ This step and the last step are the first iteration of the

closed-form filter.
tempInnerCondLike = 𝑝(𝑦1 | 𝑋𝑖

2,1)← particles.innerMod[i].getCondLike() ◁ New likelihood is by-product of
updated posterior.

particles.uNrmWts[i] ←
𝑝(𝑦1|𝑋𝑖

2,1)𝑓(𝑋𝑖
2,1)

𝑞1(𝑋𝑖
2,1|𝑦1)

end for
lastLogCondLike ← log

[︀
𝑝(𝑦1)

]︀
if resampling criterion true then

resample(particles)
end if

else ◁ 𝑡 > 1
for 𝑖 = 1, . . . 𝑁 do

particles.samples[t,i] ← 𝑋𝑖
2,𝑡 ∼ 𝑞𝑡(𝑥2,𝑡 | 𝑥𝑖

2,𝑡−1, 𝑦𝑡)

particles.innerMods[i].prior.update()
particles.innerMods[i].posterior.update(𝑦𝑡)
tempInnerCondLike = 𝑝(𝑦𝑡 | 𝑦1:𝑡−1, 𝑋

𝑖
2,1:𝑡)← particles.innerMod[i].getCondLike()

particles.uNrmWts[i] * =
𝑓(𝑋𝑖

2,𝑡|𝑥
𝑖
2,𝑡−1)𝑝(𝑦𝑡|𝑦1:𝑡−1,𝑋𝑖

2,1:𝑡)

𝑞𝑡(𝑋
𝑖
2,𝑡|𝑥

𝑖
2,𝑡−1

,𝑦𝑡)

end for
lastLogCondLike ← log

[︀
𝑝(𝑦𝑡 | 𝑦1:𝑡−1)

]︀
if resampling criterion satisfied then

resample(particles)
end if

end if
end procedure

𝐸(𝐸[ℎ(𝑥1𝑡, 𝑥2𝑡) | 𝑥2𝑡, 𝑦1:𝑡] | 𝑦1:𝑡) is approximately

𝑁∑︁
𝑖=1

�̃� 𝑖
𝑟+1:𝑡−1𝐸[ℎ(𝑥1𝑡, 𝑥

𝑖
2𝑡) | 𝑥𝑖2𝑡, 𝑦1:𝑡]. (2.22)

Note that an expression for the inner conditional expectation will often be available

in closed form.

The Rao-Blackwellized Auxiliary Particle Filter (RBAPF)

Indeed, the ideas of the last two particle filters can be combined into one algo-

rithm; it is possible to construct a "Rao-Blackwellized Auxiliary Particle Filter,"

or a "Marginal Rao-Blackwellized Particle Filter" [Nordh, 2014], [Fritsche et al.,

2009], [Jianjuna et al., 2007]. This algorithm utilizes (2.15) just as before, however, it

makes use of an auxiliary random variable, just as the APF does. The samples target

the second factor on the right hand side with an importance distribution motivated

by the reasoning described in the description of the APF.

22

This following formula is analagous to equation (2.16):

𝑝(𝑥1,1:𝑡 | 𝑥2,1:𝑡, 𝑘𝑡−1, 𝑦1:𝑡)𝑝(𝑥2,1:𝑡, 𝑘𝑡−1 | 𝑦1:𝑡)

= 𝐶−1𝑟+1:𝑡𝑝(𝑥1,1:𝑡 | 𝑥2,1:𝑡, 𝑘𝑡−1, 𝑦1:𝑡)𝑎𝑡−1:𝑡𝑤𝑟+1:𝑡−1𝑝(𝑥2,1:𝑡 | 𝑦1:𝑡)

where 𝑎𝑡−1:𝑡 = 𝑓(𝑥2,𝑡 | 𝑥2,𝑡−1, 𝑘𝑡−1)𝑝(𝑦𝑡 | 𝑦1:𝑡−1, 𝑥2,1:𝑡, 𝑘𝑡−1)/𝑞𝑡(𝑥2,𝑡, 𝑘𝑡−1 | 𝑥2,𝑡−1, 𝑦𝑡) is

the unnormalized weight adjustment, 𝑤𝑟+1:𝑡−1 = 𝑝(𝑥2,𝑟+1:𝑡−1, 𝑦𝑟+1:𝑡−1, 𝑘𝑡−1 | 𝑥2,𝑟)/𝑞(𝑥2,𝑟+1:𝑡−1 |

𝑦𝑟+1:𝑡−1, 𝑥2,𝑟) is the previous unnormalized weight, and

𝑝(𝑥2,1:𝑡 | 𝑦1:𝑡) = 𝑞𝑡(𝑥2,𝑡, 𝑘𝑡−1 | 𝑥2,𝑡−1, 𝑦𝑡)𝑞(𝑥2,𝑟+1:𝑡−1 | 𝑦𝑟+1:𝑡−1, 𝑥2,𝑟)𝑝(𝑥2,1:𝑟 | 𝑦1:𝑟)

denotes the current distribution of the samples for 𝑥2,𝑡−1, assuming resampling was

last performed at time 𝑟. This decomposition again shows the multiplicative weight

update, multiplying 𝑤𝑟+1:𝑡−1 by 𝑎𝑡−1:𝑡. It also shows the two places where the inner

closed-form model is being used: the successive updates of 𝑝(𝑥1,1:𝑡 | 𝑥2,1:𝑡, 𝑘𝑡−1, 𝑦1:𝑡),

and nonrandom evaluations of 𝑝(𝑦𝑡 | 𝑦1:𝑡−1, 𝑥2,1:𝑡, 𝑘𝑡−1). This algorithm shares (2.19)

with the RBPF as well. Regarding the inner model updating, this model assumes a

slightly modified version of (2.18):

𝑝(𝑥1,1:𝑡 | 𝑥2,1:𝑡, 𝑘𝑡−1, 𝑦1:𝑡)

=
𝑝(𝑦𝑡 | 𝑥1,𝑡, 𝑥2,1:𝑡, 𝑘𝑡−1)𝑝(𝑥1,𝑡 | 𝑥1,𝑡−1, 𝑘𝑡−1, 𝑥2,1:𝑡)𝑝(𝑥1,1:𝑡−1 | 𝑦1:𝑡−1, 𝑘𝑡−1, 𝑥2,1:𝑡)

𝑝(𝑦𝑡 | 𝑥2,1:𝑡, 𝑘𝑡−1, 𝑦1:𝑡−1)
.

The proposal distribution at each time point 𝑞𝑡(𝑥2,𝑡, 𝑘𝑡−1 | 𝑥2,𝑡−1, 𝑦𝑡) is chosen to mimic

the optimal proposal 𝑝(𝑥2,𝑡, 𝑘𝑡−1 | 𝑥2,𝑡−1, 𝑦1:𝑡):

𝑝(𝑥2,𝑡, 𝑘𝑡−1 | 𝑥2,𝑡−1, 𝑦1:𝑡) ∝ 𝑓(𝑥2,𝑡 | 𝑥2,𝑡−1, 𝑘𝑡−1)𝑝(𝑦𝑡 | 𝑥2,𝑡−1, 𝑘𝑡−1)𝑝(𝑘𝑡−1 | 𝑥2,𝑡−1, 𝑦1:𝑡−1)

= 𝑓(𝑥2,𝑡 | 𝑥2,𝑡−1, 𝑘𝑡−1)
[︂∫︁

𝑔(𝑦𝑡 | 𝑥′1,𝑡, 𝑥′2,𝑡)𝑝(𝑥′1,𝑡, 𝑥′2,𝑡 | 𝑥2,𝑡−1, 𝑘𝑡−1)𝑑𝑥′𝑡
]︂
×

𝑝(𝑘𝑡−1 | 𝑥2,𝑡−1, 𝑦1:𝑡−1)

≈ 𝑓(𝑥2,𝑡 | 𝑥2,𝑡−1, 𝑘𝑡−1)𝑔(𝑦𝑡 | 𝜇𝑡[𝑥𝑡−1, 𝑘𝑡−1])𝑝(𝑘𝑡−1 | 𝑥1:𝑡−1, 𝑦1:𝑡−1).

23

The rest of the algorithmic details follow straightforwardly.

A Note on Computation

A primary computational difficulty with implementing these particle filters is the

problem of arithmetic underflow. Given a base 𝑏 and a precision 𝑝, a floating point

number consists of three numbers: a significand, an exponent and a sign bit. Every

floating point number stored inside a computer will be represented as a signicand times

the base raised to the exponent, all multiplied by a power of −1. This significand

is written in base 𝑏, has 𝑝 digits, and its leading digit is nonzero (except in the case

of subnormal numbers, which are not discussed here). Typically, the base is two,

although other bases such as 10 and 16 are frequently used as well.

In the IEEE Standard for Floating Point Arithmetic (IEEE 754) a double precision

floating point number consists of one bit to store the sign of the number (positive

or negative), 11 bits for the signed exponent integer 𝑒 (ranging from -1024 to 1023),

and 52 bits for the significand (1.𝑏51𝑏50 · · · 𝑏0)2. In base ten, the significand provides

approximately 15-17 significant digits because 2−53 ≈ 1.11 × 10−16. The formula for

such a double precision floating point number is

(−1)sign(1.𝑏51𝑏50 · · · 𝑏0)2 × 2𝑒. (2.23)

There are two ways that numerical error can enter into a program. Either a real

number is not exactly representable by a floating point number, or the real number

exceeds a lower or upper bound. Frequently, both problems arise in programs imple-

menting particle filtering algorithms; however, this document primarily concerns itself

with numerical underflow, which is an example of the second situation. This occurs

when the target (positive) real number is below the smallest positive representable

number. In this case, the ideal exponent of this number is smaller than the minimum

that is allowed by the computer’s floating point representation. In particle filtering,

this problem often appears in calculations using the particle weights.

How often this happens depends on the specifics of the model and the algorithm

24

under consideration. For example, many models of interest in this document consider

Gaussian densities. In this case, evaluating these densities consists of exponentiating

negative quadratic forms. If this negative power is smaller than −1024, the most

extreme allowed exponent, then the evaluation will underflow, and the floating point

number will be rounded to 0. This can cause a wide variety of numerical problems.

Theoretically, a division-by-0 error might be guaranteed to be impossible; however,

numerically, it may be likely, especially if preventative measures are not taken. Con-

sider another example: a particle filter that resamples infrequently and experiences

weight degeneracy (see 2.3), or possesses a large number of particles. These will

increase its chances of getting false 0s for unnormalized weights. After normalizing

these, the probabilities could be very far off from the true theoretical ones.

These 0 or near-0 unnormalized weights cause errors in the calculations of the ap-

proximations to expectations, likelihoods, and distribution functions. To circumvent

these problems, one might consider keeping track of unnormalized log weights. After

examining expression (2.23), it can be seen that using the log of the unnormalized

weights and evaluating log densities is much safer. This is a good start. However,

exponentations are not always unavoidable. When they are necessary, exponentiating

these small (negative numbers that are large in absolute value) can potentially cause

underflow. For example, if one has unnormalized log weights {𝑧𝑖}, then the expec-

tations must be approximated with the formula
∑︀

𝑖 ℎ(𝑥𝑖)𝑒
𝑧𝑖/

∑︀
𝑗 𝑒

𝑧𝑗 . Underflow from

these exponentials will incorrectly cause some samples to have 0 weight, and so will

harm the output of these calculations. One way to address this issue is to divide the

numerator and denominator of this fraction by some well-chosen number. It’s easy

to see the expectation formula is algebraically equivalent to

∑︀
𝑖 ℎ(𝑥𝑖)𝑒

𝑧𝑖−𝑚∑︀
𝑗 𝑒

𝑧𝑗−𝑚
, (2.24)

where 𝑚 is usually chosen to be the maximum of the log of the unnormalized weights.

If 𝑚 is a negative number, all of the unnormalized weights are negative, so it will shift

all 𝑧𝑖 upward and fewer numbers will underflow. If 𝑚 is positive, then not all of the

25

unnormalized weights are at risk for underflow, and shifting all of them downward will

ensure the extremely negative numbers will round to zero after being exponentiated.

Likelihood calculations are also possibly affected by issues of underflow. A par-

ticle filter’s approximations to each observation’s conditional likelihood involves a

computation with many (log)weights. It is at risk of causing underflow because ex-

ponentiation of the log weights is unavoidable. For example, if one is using a SISR

algorithm, the log likelihood update formula for 𝑡 ≥ 2 is given by (2.12). The fol-

lowing formula, which is equivalent algebraically, is less prone to numerical errors:

log 𝑝(𝑦𝑡|𝑦1:𝑡−1) = 𝑚1 −𝑚2 − log
∑︁
𝑖

exp
{︁

log𝑊 𝑖
𝑟+1:𝑡−1 −𝑚2

}︁
+

log
∑︁
𝑖

exp
{︁

log𝑊 𝑖
𝑟+1:𝑡−1 + log 𝑔(𝑦𝑡|𝑋 𝑖

𝑡) + log 𝑓(𝑋 𝑖
𝑡 |𝑥𝑖𝑡−1) − log 𝑞𝑡(𝑋

𝑖
𝑡 |𝑦𝑡, 𝑥𝑖𝑡−1) −𝑚1

}︁
(2.25)

where 𝑚1 = max𝑖{log𝑊 𝑖
𝑟+1:𝑡−1 + log 𝑔(𝑦𝑡|𝑋 𝑖

𝑡) + log 𝑓(𝑋 𝑖
𝑡 |𝑥𝑖𝑡−1) − log 𝑞𝑡(𝑋

𝑖
𝑡 |𝑦𝑡, 𝑥𝑖𝑡−1)}

and 𝑚2 = max𝑖{log𝑊 𝑖
𝑟+1:𝑡−1}. If these summands are at risk of being too large,

subtracting their maximum diminishes the risk of overflow into positive numbers. If

these summands are at risk of being too small (large in absolute value, but negative),

then subtracting the maximum from each summand has the same benefits that were

mentioned above.

Adjusting formulas like these in this manner is applying what isknown as the "log-

sum-exp trick." As another illustrative example, consider the formula for an Auxiliary

Particle Filter’s log conditional likelihood update. It applies the same trick, only in

26

more places, subtracting a maximum before exponentiating:

log 𝑝(𝑦𝑡|𝑦1:𝑡−1) = 𝑚1 + log
∑︁
𝑖

exp
[︁
log𝑊 𝑖

𝑟+1:𝑡−1 + log 𝑔(𝑦𝑡|𝑋 𝑖
𝑡) − log 𝑔(𝑦𝑡|𝜇𝑡[𝑥𝑡−1, 𝐾

𝑖
𝑡−1]) −𝑚1

]︁
+

𝑚2 + log
∑︁
𝑗

exp
[︁
log 𝑔(𝑦𝑡|𝜇𝑡[𝑥𝑡−1, 𝐾

𝑗
𝑡−1]) + log 𝑝(𝐾𝑗

𝑡−1|𝑥1:𝑡−1, 𝑦1:𝑡−1) −𝑚2

]︁
−

𝑚3 − log
∑︁
𝑖

exp
[︁
𝑊 𝑖

𝑟+1:𝑡−1 −𝑚3

]︁
.

(2.26)

Despite being slightly more computationally demanding, these two tricks are ap-

plied whenever possible in the software used for this document.

27

28

Chapter 3

Parameter Estimation with Markov

Chain Monte Carlo Techniques

General MCMC

The previous chapter assumes the vector of unknown parameters 𝜃 ∈ Θ ⊂ 𝑅𝑑𝑝

is completely known, a situation that is unusual in practice. In order to deal with

parameter uncertainty, this chapter details how to estimate this quantity in a Bayesian

framework. Samples from either 𝑝(𝑥1:𝑇 , 𝜃 | 𝑦1:𝑇) or 𝑝(𝜃 | 𝑦1:𝑇) are desired. Simulating

indepenent samples from this distribution is difficult, so Markov chain Monte Carlo

(MCMC) techniques construct a Markov chain evolving on either the state space

𝒳 𝑇×Θ or the space Θ, which possesses the target posterior as an invariant/stationary

distribution. Under certain conditions, a law of large numbers and a central limit

theorem will hold, allowing one to estimate functionals of the chain by taking pseudo-

time averages. Two very informative tutorials on MCMC techniques from the general

point of view are [Geyer, 2005], [Roberts and Rosenthal, 2004].

Denote 𝜋(𝑑𝑥) as the target distribution of the MCMC sampling scheme. As a

reminder, 𝑥 will no longer denote a realization of a state random variable. Rather, it

will denote a realization of any Markov chain in any of the parameter spaces that were

mentioned before; to avoid confusion, the state space of this chain will be denoted

𝒳 , and its 𝜎-algebra 𝒜. The letter "𝑑" is used as a reminder that 𝜋 is a measure.

29

Writing it this way follows the same convention followed by many MCMC resources.

Next let 𝐾(𝑥, 𝑑𝑦) : 𝒳 × 𝒜 → [0, 1] be a transition kernel. Not all measures that

are mentioned are absolutely continuous with respect to Lebesgue measure, and so do

not admit densities. The Metropolis-Hastings sampler, for example, will not fit this

description. Also, transition kernels are written in a left to right manner to match

the notation of other MCMC tutorials. This is a break from the notation style being

used to describe particle filters in the previous sections.

General MCMC algorithms will be dealt with before addressing estimation of

SSMs. Several definitions are given, then two main theorems are discussed. First,

the definition of a "stationary distribution" is given. The Markov chains discussed

throughout this section will always be assumed to possess a stationary distribution.

Definition 1. A Markov chain with transition kernel 𝐾 has stationary distribution

𝜋 if for all 𝑥, 𝑦 ∈ 𝒳

𝜋(𝑑𝑦) =

∫︁
𝒳
𝜋(𝑑𝑥)𝐾(𝑥, 𝑑𝑦). (3.1)

In other words, applying the transition kernel does not change the marginal distri-

bution of the chain. Practically speaking, the task for a Bayesian statistician using a

MCMC technique is to design a chain that possesses the posterior distribution of in-

terest as its stationary distribution. In this way, even though draws may be correlated

with each other, individually, they are all still samples from the desired distribution.

Instead of verifying stationarity of a chain, it is often easier to verify the condition

of "reversibility," which is a sufficient condition for stationarity.

Definition 2. A Markov chain with stationary distribution 𝜋 is reversible if

∫︁
𝐴

∫︁
𝐵

𝜋(𝑑𝑥)𝐾(𝑥, 𝑑𝑦) =

∫︁
𝐵

∫︁
𝐴

𝜋(𝑑𝑥)𝐾(𝑥, 𝑑𝑦) (3.2)

for all 𝐴,𝐵 ∈ 𝒜.

In other words, the joint distribution of the chain at two consecutive time points

is "symmetric."

30

For a law of large numbers to hold, Markov chains need two other conditions,

in addition to the possession of a stationary distribution. First, they need to be

"irreducible."

Definition 3. Let 𝜑 be a nonzero 𝜎-finite measure on the Markov chain’s measure

space (𝒳 ,𝒜). The Markov chain is called 𝜑-irreducible if for every 𝑥 ∈ 𝒳 and every

𝐴 ∈ 𝒜, 𝜑(𝐴) > 0 implies that there exists an 𝑛 ∈ N such that 𝐾𝑛(𝑥,𝐴) > 0.

This condition guarantees that certain sets are reachable (eventually) from every-

where on the state space. There are many measures that work with this definition.

In particular, 𝜑 may be chosen in a way that puts positive measure on very few

sets. This is less informative than a "maximal" irreducibility measure. The unique

maximal irreducibility measure 𝜓 can be constructed by taking a weighted average of

the chain’s transition kernels; the resulting kernel is called the resolvent [Meyn and

Tweedie, 2009]. This measure, 𝜓, gives positive measure to the maximum number of

sets, and has nullsets that are essentially unreachable. When using Markov chains

to sample from a stationary distribution 𝜋, 𝜋-irreducibility is of interest. Intuitively,

if some set has positive measure under 𝜋, then it would be undesirable for the chain

never to have any chance of getting there.

In addition to being irreducible, it is desirable that the chain is "aperiodic," or

not "periodic."

Definition 4. A Markov chain with stationary distribution 𝜋 is periodic with period

𝑑 if there exists 𝑑 ≥ 2 disjoint subsets 𝒳1, . . . ,𝒳𝑑 ⊂ 𝒳 such that 𝜋(𝒳𝑖) > 0 for any 𝑖,

and

𝐾(𝑥,𝒳𝑖+1) = 1

for any 𝑥 ∈ 𝒳𝑖, 1 ≤ 𝑖 < 𝑑, along with 𝐾(𝑥,𝒳1) for all 𝑥 ∈ 𝒳𝑑.

It is rare for MCMC chains to be aperiodic. This document favors versions of

the Metropolis-Hastings algorithms, which produce chains that have positive proba-

bility of not moving over one time period. This property immediately eliminates the

possibility of aperiodicity.

31

The following is the first theorem justifying the use of MCMC techniques for

posterior simulation. Using the definitions given so far, this theorem implies that the

chain is "ergodic," which is a sufficient, but not necessary, condition for a strong law

of large numbers.

Theorem 1. Let 𝑋1, 𝑋2, . . . be a 𝜑-irreducible and aperiodic Markov equipped with

a countably generated 𝜎-field, and a stationary distribution 𝜋. Then the chain is

ergodic, or in other words,

lim
𝑛→∞

⃦⃦
𝑃 𝑛(𝑥, ·) − 𝜋(·)

⃦⃦
= 0 (3.3)

for 𝜋-almost all 𝑥.

Now that a convergent estimator can be obtained by taking psuedo-time averages

of a Markov chain, the next issue is estimation of an estimator’s standard error. For

this task, a central limit theorem is desired. Unlike central limit theorems for iid

random samples, a central limit theorem for Markov chains is not guaranteed by

the existence of second moments of 𝑔 under 𝜋. Most central limit theorems need

additional assumptions of stronger types of ergodicity.

Definition 5. A Markov chain with stationary distribution 𝜋 is uniformly ergodic if

⃦⃦
𝐾𝑛(𝑥, ·) − 𝜋(·)

⃦⃦
𝑇𝑉

≤𝑀𝜌𝑛, 𝑛 = 1, 2, . . . (3.4)

for some 𝜌 < 1 and 𝑀 <∞.

Definition 6. A Markov chain with stationary distribution 𝜋 is geometrically ergodic

if

⃦⃦
𝐾𝑛(𝑥, ·) − 𝜋(·)

⃦⃦
𝑇𝑉

≤𝑀(𝑥)𝜌𝑛, 𝑛 = 1, 2, . . . (3.5)

for some 𝜌 < 1 and 𝑀(𝑥) <∞ 𝜋-almost surely.

Both of these require that the transition distributions of the chain approach the

stationary distribution of the chain exponentially fast. The difference between the

32

two is that the same rate applies to any starting point 𝑥 for the former, and it may

vary for the latter. Here are four central limit theorems, all assuming different things

about not only the rate of convergence, but also how many moments exist for the

functional that is being averaged.

Theorem 2. Let 𝑋1, 𝑋2, . . . be a uniformly ergodic Markov chain with stationary

distribution 𝜋. Also assume that 𝐸𝜋[𝑔2] <∞. Then

√
𝑛

⎛⎝ 𝑛∑︁
𝑖=1

𝑔(𝑋𝑖)

𝑛
− 𝐸𝜋[𝑔]

⎞⎠ 𝐷→ Normal(0, 𝜎2) (3.6)

for some 𝜎2 as 𝑛→ ∞.

Unfortunately, uniform ergodicity is difficult to verify for the Metropolis-Hastings

algorithm.

Theorem 3. Let 𝑋1, 𝑋2, . . . be a geometrically ergodic Markov chain with stationary

distribution 𝜋. Also assume that for some 𝛿 > 0 𝐸𝜋[𝑔2+𝛿] <∞. Then

√
𝑛

⎛⎝ 𝑛∑︁
𝑖=1

𝑔(𝑋𝑖)

𝑛
− 𝐸𝜋[𝑔]

⎞⎠ 𝐷→ Normal(0, 𝜎2) (3.7)

for some 𝜎2 as 𝑛→ ∞.

Theorem 4. Let 𝑋1, 𝑋2, . . . be a geometrically ergodic and reversible Markov chain

with stationary distribution 𝜋. Also assume that 𝐸𝜋[𝑔2] <∞. Then

√
𝑛

⎛⎝ 𝑛∑︁
𝑖=1

𝑔(𝑋𝑖)

𝑛
− 𝐸𝜋[𝑔]

⎞⎠ 𝐷→ Normal(0, 𝜎2) (3.8)

for some 𝜎2 as 𝑛→ ∞.

The central limit theorem of [Kipnis and Varadhan, 1986] does not require any

ergodicity assumption.

33

Theorem 5. Let 𝑋1, 𝑋2, . . . be a 𝜑-irreducible, aperiodic and reversible Markov chain

with stationary distribution 𝜋. Then

√
𝑛

⎛⎝ 𝑛∑︁
𝑖=1

𝑔(𝑋𝑖)

𝑛
− 𝐸𝜋[𝑔]

⎞⎠ 𝐷→ Normal(0, 𝜎2) (3.9)

for some 𝜎2 as 𝑛→ ∞.

Given these results, how does one design the Markov chain to sample from the

posterior? The most popular choice of 𝐾 is known as the Metropolis-Hastings algo-

rithm

𝐾(𝑥,𝐴) =

[︃
1 −

∫︁
𝒴
𝑞(𝑥, 𝑦)𝑟(𝑥, 𝑦)𝑑𝑦

]︃
𝐼(𝑥,𝐴) +

∫︁
𝐴

𝑞(𝑥, 𝑦)𝑟(𝑥, 𝑦)𝑑𝑦 (3.10)

where 𝑞(𝑥, 𝑦) is a user-defined proposal density, 𝜋𝑢 is the unnormalized stationary

distribution, 𝐼(𝑥,𝐴) = 𝛿𝑥(𝐴) is the identity kernel and 𝑟(𝑥, 𝑦) = min
{︁

1, 𝜋𝑢(𝑦)𝑞(𝑦,𝑥)
𝜋𝑢(𝑥)𝑞(𝑥,𝑦)

}︁
is the Hastings’ ratio. Special cases of this algorithm include Gibbs sampling, where

𝑞(𝑥, 𝑦) = 𝜋(𝑦 | 𝑥), independent Metropolis-Hastings, where 𝑞(𝑥, 𝑦) = 𝑞(𝑦), random-

walk Metropolis-Hastings, where 𝑞(𝑥, 𝑦) = 𝑞(𝑥 − 𝑦), and when 𝑞 is symmetric (the

Metropolis algorithm). In any of these cases, this Markov chain is reversible (and

hence stationary), 𝜋-irreducible, and as was mentioned before, aperiodic.

MCMC for SSMs

After choosing a prior distribution for his parameters, 𝑝(𝜃), the investor is primar-

ily interested in the posterior of the unknown parameters 𝑝(𝜃 | 𝑦1:𝑡). He might also

be interested in the full posterior, 𝑝(𝑥1:𝑡, 𝜃 | 𝑦1:𝑡), particularly if he wishes to conduct

a retrospective analysis of the hidden states.

In principle, MCMC algorithms will allow him to sample from either of these dis-

tributions. However, it is more common to simulate from the latter, as it is propor-

tional to the "complete-data" likelihood (2.1). Even though it is lower-dimensional,

the marginal posterior is rarely proportional to anything that can be evaluated in

34

general SSMs; whenever samples from this distribution are required, they are usually

obtained by integrating out undesired portions of samples from the higher-dimensional

posterior.

Closed-Form Gibbs Sampling

Block-wise Gibbs sampling is one tool used to accomplish sampling from the full

posterior, wherein draws are taken from 𝑝(𝜃 | 𝑥1:𝑡, 𝑦1:𝑡) and 𝑝(𝑥1:𝑡 | 𝜃, 𝑦1:𝑡) in an

alternating fashion. Simulating from the former is relatively straightforward when

using priors with a certain form. However, simulating from the smoothing distribution

is only possible for a small class of SSMs. For example, with Linear-Gaussian state

space models, the procedure of [Carter and Kohn, 1994] is available.

Component-wise Gibbs sampling can also be used with certain models, which al-

ternates between sampling parameters and sampling each time’s state variable. This

is available, for instance, with discrete-valued HMMs [Fearnhead, 2011]. By taking

advantage of conditional independence, and the finiteness of the state space, normal-

izing constants can be evaluated for each state component’s conditional distribution.

However, this is not available for the types of models considered in this paper, and it

is generally desirable to block together correlated state samples to increase sampling

efficiency.

Advanced Gibbs Sampling

With more complex models, Gibbs sampling is still possible. However, the condi-

tional distributions will not always be tractable. For these particularly problematic

distributions, Metropolis-Hastings samplers, or accept-reject strategies are often used.

Say, for example, component-wise Gibbs algorithms are to be used. Because every

state space model makes the same assumptions about conditional independence, it is

35

always true that

𝑝(𝑥𝑖 | 𝑥1:𝑖−1, 𝑥𝑖+1:𝑇 , 𝑦1:𝑇 , 𝜃) ∝ 𝑝(𝜃)𝑓(𝑥1 | 𝜃)𝑔(𝑦1 | 𝑥1, 𝜃)
𝑇∏︁
𝑡=2

𝑓(𝑥𝑡 | 𝑥𝑡−1, 𝜃)𝑔(𝑦𝑡 | 𝑥𝑡, 𝜃)

∝ 𝑓(𝑥𝑖+1 | 𝑥𝑖, 𝜃)𝑓(𝑥𝑖 | 𝑥𝑖−1, 𝜃)𝑔(𝑦𝑖 | 𝑥𝑖, 𝜃).

for 2 ≤ 𝑖 ≤ 𝑛 − 1. In the case where these three densities can only be evaluated,

independence MH samplers can be used [Jacquier et al., 1994], [Shephard and Pitt,

1997], as well as accept-reject schemes [Kim et al., 1998].

There is no reason the block sizes have to be one of the two extremes–the state

paths can be sampled in blocks larger than 1 and smaller than 𝑛. Using larger

block sizes will likely improve mixing; however, it will also increase the difficulty of

designing proposal distributions. For example, [Shephard and Pitt, 1997] also use a

Gibbs sampler targeting blocks of states.

Particle Based Approximations to State Distributions

An alternative algorithm for sampling from the state smoothing distribution of

general SSMs is the Forward-Filtering-Backward-Sampling algorithm (FFBSa)1. In-

stead of iterating between components or blocks of states, these algorithms can be

used to sample all states at once within a Gibbs scheme alternating between the two

conditional posteriors [Niemi and West, 2010].

This is an approximate method that is suggested by the decomposition

𝑝(𝑥1:𝑇 | 𝑦1:𝑇 , 𝜃) = 𝑝(𝑥𝑇 | 𝑦1:𝑇 , 𝜃)
𝑇−1∏︁
𝑡=1

𝑝(𝑥𝑡 | 𝑥𝑡+1:𝑇 , 𝑦1:𝑇 , 𝜃)

= 𝑝(𝑥𝑇 | 𝑦1:𝑇 , 𝜃)
𝑇−1∏︁
𝑡=1

𝑝(𝑥𝑡 | 𝑥𝑡+1, 𝑦1:𝑇 , 𝜃)

= 𝑝(𝑥𝑇 | 𝑦1:𝑇 , 𝜃)
𝑇−1∏︁
𝑡=1

𝑝(𝑥𝑡 | 𝑥𝑡+1, 𝑦1:𝑡, 𝜃).

1These are not to be confused with closed-form Forward-Backward algorithms for Linear-Gaussian
models or discrete state space HMMs.

36

FFBSa first runs a particle filter forward and saves the particles and weights from each

marginal filtering distribution 𝑝(𝑥𝑡 | 𝑦1:𝑡). This is the "forward" part. The "backward"

part consists of recursively (backwards in time) sampling from the distributions 𝑝(𝑥𝑡 |

𝑥𝑡+1, 𝑦1:𝑡, 𝜃). This is done by first sampling from the last filtering distribution 𝑝(𝑥𝑇 |

𝑦1:𝑇 , 𝜃), then iterating backwards in time, revising the saved filtering distributions.

That is, for 𝑡 < 𝑇 , sample from 𝑝(𝑥𝑡 | 𝑥𝑡+1, 𝑦1:𝑡), where

𝑝(𝑥𝑡 | 𝑥𝑡+1, 𝑦1:𝑡, 𝜃) =
𝑓(𝑥𝑡+1 | 𝑥𝑡, 𝜃)𝑝(𝑥𝑡 | 𝑦1:𝑡, 𝜃)∫︀
𝑓(𝑥𝑡+1 | 𝑥𝑡, 𝜃)𝑝(𝑥𝑡 | 𝑦1:𝑡, 𝜃)𝑑𝑥𝑡

,

by reweighting the weights associated with 𝑝(𝑥𝑡 | 𝑦1:𝑡, 𝜃) according to how well they

cohere with 𝑥𝑖𝑡+1, and then sampling from the marginal’s samples according to those

new weights. Note that this FFBSa algorithm is different from the forward-filtering

backward smoothing algorithm (FFBSm), which yields only marginal distributions

𝑝(𝑥𝑡 | 𝑦1:𝑇 , 𝜃) [Doucet and Johansen, 2011].

Particle Markov Chain Monte Carlo

[Andrieu et al., 2010] detail two approaches to sample from either of the target

posterior distributions that were discussed above. They call these methods Particle

Marginal Metropolis Hastings (PMMH), and Particle Gibbs (PG). These algorithms

are based on the more general algorithm discussed in [Andrieu and Roberts, 2009],

which is not explicitly designed to make use of particle filters. PMMH and PG, on

the other hand, are, and they both can target either the full posterior of states and

parameters, or the marginal posterior of just parameters. This section will focus on

the PMMH algorithm.

To motivate the description of this algorithm, first consider the estimation of

a relatively simple state space model whose likelihood is tractable. In this case,

targeting the marginal posterior would involve the use of the following Hastings’

ratio:
𝑝(𝜃′)𝑝(𝑦1:𝑡 | 𝜃′)𝑞(𝜃 | 𝜃′)
𝑝(𝜃)𝑝(𝑦1:𝑡 | 𝜃)𝑞(𝜃′ | 𝜃)

.

37

However, because evaluating the likelihood is rarely possible, one needs to target the

full joint posterior, and integrate out the undesired state samples. If one is able to

sample directly from the model’s smoothing distribution 𝑝(𝑥1:𝑇 | 𝑦1:𝑇 , 𝜃), he might

consider using the proposal distribution 𝑝(𝑥′1:𝑇 | 𝑦1:𝑇 , 𝜃′)𝑞(𝜃′ | 𝜃). The Hastings’ ratio

for this algorithm would be

𝑝(𝑥′1:𝑇 , 𝑦1:𝑇 | 𝜃′)𝑝(𝜃′)𝑝(𝑥1:𝑇 | 𝑦1:𝑇 , 𝜃)𝑞(𝜃 | 𝜃′)
𝑝(𝑥1:𝑇 , 𝑦1:𝑇 | 𝜃)𝑝(𝜃)𝑝(𝑥′1:𝑇 | 𝑦1:𝑇 , 𝜃′)𝑞(𝜃′ | 𝜃)

=
𝑝(𝜃′)𝑝(𝑦1:𝑡 | 𝜃′)𝑞(𝜃 | 𝜃′)
𝑝(𝜃)𝑝(𝑦1:𝑡 | 𝜃)𝑞(𝜃′ | 𝜃)

. (3.11)

Again, though, the tractability of the likelihood is required. Moreover, sampling from

the smoothing distribution is of the same difficulty as evaluating the likelihood.

Recall from section (2.3) that particle filters offer approximate samples from the

smoothing distribution and estimations of the likelihood. One might consider ap-

proximating the above ideal algorithm by drawing one path from the approximation

of the smoothing distribution, and using the estimated likelihood when calculating

the Hastings’ ratio. Even though this might be an approximate strategy, it would

be tempting to consider because designing the low-dimensional proposal distribution

𝑞(𝜃′ | 𝜃) and the low-dimensional proposal distributions for the particle filter is rel-

atively easy. Removing the assumption of computationally convenient priors comes

with the cost of design difficulty of the proposal, but this would be mitigated as the

state samples "cohere" with the proposed parameters. Last, it is also much simpler to

program. Assuming the code for a particle filter is already written, a program imple-

menting the PMMH algorithm would strongly resemble the program implementing a

regular MH algorithm.

Fortunately, this seemingly approximate strategy turns out to be exact with only

a minimal set of assumptions [Andrieu et al., 2010](section 4.1). This can be seen

if the acceptance probability is written in terms of the exact target and proposal

distributions. Both of these are defined on a much higher-dimensional space, as

they describe all of the randomly-generated output from a run of the particle filter.

From this perspective, the acceptance ratio that was calculated previously is not

random because the likelihood estimate is a deterministic function of the particle

38

filter’s output. Also, because the distribution for all the particle filter output is

featured in both the target and proposal, these expressions cancel. This explains why

the acceptance probability is a relatively simple expression.

Before the densities for the high-dimensional random output are written, consider

how a particle filter generates all of its output. First, the parameter is proposed from a

portion of the MH proposal distribution. Then, using that parameter, a particle filter

is run through the entire dataset. Afterwards, one of the particle paths is selected

with probability proportional to its final unnormalized weight.

For 𝑡 = 1, . . . , 𝑇 − 1 define a𝑡 = (𝑎1𝑡 , . . . , 𝑎
𝑁
𝑡) to be the 𝑁 indices resampled at the

end of time 𝑡; also rewrite the particle filter’s 𝑁 state samples at time 𝑡 as x𝑡, and

denote by 𝑘′ a realization of the index of the final particle chosen. Then, the exact

MH proposal distribution on the higher dimensional space can be written as

𝑞(𝑘′, 𝑢′, 𝜃′ | 𝑘, 𝑢, 𝜃, 𝑦1:𝑇) = 𝑝(𝑘′ | 𝑢′)𝜓(𝑢′ | 𝑦1:𝑇 , 𝜃′)𝑞(𝜃′ | 𝜃), (3.12)

where 𝑢 = (x1:𝑇 , a1:𝑇−1) is the set of all random variables generated by a particle filter.

The random variable𝐾 ′ is similar to the ancestor indices in that they are both indices;

however it is different in the sense that there is only one that is chosen. Conditional

on 𝑢′, 𝐾 ′ is drawn from the set {1, . . . , 𝑁} with probability masses �̃�1
𝑇 , . . . , �̃�

𝑁
𝑇

2.

The exact target distribution is

𝑙(𝑢, 𝜃, 𝑦1:𝑇)𝑝(𝑘 | 𝑢)𝜓(𝑢 | 𝑦1:𝑇 , 𝜃)𝑝(𝜃 | 𝑦1:𝑇)

𝑝(𝑦1:𝑇 | 𝜃)
, (3.13)

where 𝑙(𝑢, 𝜃, 𝑦1:𝑇) is the particle filter’s likelihood estimate. Evaluating the Hastings’

ratio with (3.12) and (3.13) simplifies to a Hastings’ ratio that looks like the ideal

model’s, only with the particle filter’s estimated likelihood:

𝑙(𝑢′, 𝜃′, 𝑦1:𝑇)𝑝(𝑘′ | 𝑢′)𝜓(𝑢′ | 𝑦1:𝑇 , 𝜃′)𝑝(𝜃′)
𝑙(𝑢, 𝜃, 𝑦1:𝑇)𝑝(𝑘 | 𝑢)𝜓(𝑢 | 𝑦1:𝑇 , 𝜃)𝑝(𝜃)

𝑝(𝑘 | 𝑢)𝜓(𝑢 | 𝑦1:𝑇 , 𝜃)𝑞(𝜃 | 𝜃′)
𝑝(𝑘′ | 𝑢′)𝜓(𝑢′ | 𝑦1:𝑇 , 𝜃)𝑞(𝜃′ | 𝜃)

. (3.14)

Two conditions remain to be checked. First, this unnormalized target density needs

2This notation uses abbreviated subscripts. That is �̃�𝑖
𝑇 = �̃�𝑖

1:𝑇 .

39

to be integrable. Second, this high-dimensional joint distribution needs to have as its

marginal the correct target: 𝑝(𝑥1:𝑇 , 𝜃 | 𝑦1:𝑇). These both follow from the following

Lemma (proof in appendix).

Lemma 1. Let 𝑢, 𝜃, 𝑘, 𝑦1:𝑇 , 𝑥1:𝑇 be defined as they are above. Also, assume that

multinomial resampling is being performed at every time step. Then

∫︁
𝑙(𝑢, 𝜃, 𝑦1:𝑇)𝑝(𝑘 | 𝑢, 𝜃)𝜓(𝑢 | 𝑦1:𝑇 , 𝜃)𝑑[𝑢 ∖ 𝑥𝑘1:𝑇] = 𝑝(𝑥𝑘1:𝑇 , 𝑦1:𝑇 | 𝜃).

The integration is done with respect to all of the auxiliary random variables with

the exception of the index 𝑘′ and its associated path sample. Note that this may

be an abuse of notation, because the index/ancestor random variables are integrated

with respect to the counting measure.

It should be noted that the proof simplifies when the target is reduced to the

marginal posterior 𝑝(𝜃 | 𝑦1:𝑇). Because neither state paths, nor samples of 𝑘 need

to be retained, the proposal distribution simplifies to 𝜓(𝑢′ | 𝑦1:𝑇 , 𝜃)𝑞(𝜃′ | 𝜃). A

reference to a particle filter’s "unbiased" likelihood estimate refers to the fact that

the expectation of 𝑙(𝑢, 𝜃, 𝑦1:𝑇), taken with respect to the density 𝜓(𝑢 | 𝑦1:𝑇 , 𝜃) is equal

to 𝑝(𝑦1:𝑇 | 𝜃). With this property, the target distribution

𝑙(𝑢, 𝜃, 𝑦1:𝑇)𝜓(𝑢 | 𝑦1:𝑇 , 𝜃)𝑝(𝜃 | 𝑦1:𝑇)

𝑝(𝑦1:𝑇 | 𝜃)
(3.15)

has as its marginal the marginal posterior, and is integrable as long as the smaller-

dimensional posterior is. Although their description of particle filters differs from

the description given in this document, [Pitt et al., 2010] prove that many popular

particle filters feature unbiased likelihood estimates. The PMMH algorithm used to

estimate the models in chapter (4) uses a Rao-Blackwellized particle filter, and its

proof of unbiasedness is given in the appendix.

Below is a demonstration of the PMMH technique using simulated data from the

40

Algorithm 5 Particle Marginal Metropolis-Hastings
procedure pmmh(𝑞𝑡)

if 𝑡 equals 1 then
theta[1] ← 𝜃1

run particle filter through 𝑦1:𝑇 using 𝜃1

likes[1] ← 𝑝(𝑦1:𝑇 | 𝜃1)
states[1] ← 𝑋𝐾

1:𝑇 where 𝐾 ∼ Multinomial[1, �̃�1
𝑇 , . . . , �̃�𝑁

𝑇] ◁ optional
else

draw 𝜃′ ∼ 𝑞𝑡(𝜃′ | 𝜃𝑡−1)
run particle filter through 𝑦1:𝑇 using 𝜃′

tempState ← 𝑋𝐿
1:𝑇 where 𝐿 ∼ Multinomial[1, �̃�1′

1:𝑇 , . . . , �̃�𝑁′
1:𝑇] ◁ optional

𝑝← 1 ∧ 𝑝(𝜃′)𝑝(𝑦1:𝑡 | 𝜃′)𝑞(𝜃 | 𝜃′)/𝑝(𝜃)𝑝(𝑦1:𝑡 | 𝜃)𝑞(𝜃′ | 𝜃)
𝑢← 𝑈 ∼ Uniform(0, 1]
if u< p then

theta[t] ← 𝜃′

states[t] ←tempState ◁ optional
else

theta[t] ← theta[t-1]
states[t] ← states[t-1] ◁ optional

end if
end if

end procedure

following model:

𝑦𝑡 = 𝑥𝑡 + 𝑣𝑡, 𝑣𝑡
𝑖𝑖𝑑∼ Normal(0, 𝜎2

𝑣) (3.16)

𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝑤𝑡, 𝑣𝑡
𝑖𝑖𝑑∼ Normal(0, 𝜎2

𝑤). (3.17)

A time series of length 400 was generated with true parameters 𝛼 = .91, 𝜎2
𝑤 = 1 and

𝜎2
𝑣 = 1.52. 10, 000 iterations were performed, and on each iteration, a particle filter

with 750 particles was used. The chain was initialized with 𝛼0 = 0, 𝜎2,0
𝑤 = 4.8 and

𝜎2,0
𝑣 = .2.

For the proposal distribution, a random walk was chosen for the transformed

parameters (so one must take into account the Jacobian). 𝛼 was transformed into

logit((1 + 𝛼)/2) = log((1 + 𝛼)/(1− 𝛼)), and the two variance parameters were trans-

formed by taking their logarithm. The covariance matrix for this proposal distribution

was diagonal, with variances .04, 0.004, 0.06. Last, the priors were chosen to be un-

informative. A Uniform(-1,1) prior was chosen for 𝛼, and for both of the variance

parameters, an InverseGamma(.001, .001) prior was chosen.

The program took 1.04 hours to run. (3-1) shows a scatterplot matrix of the

draws, (3-2) the draws versus pseudo-time, and (3-3) shows a correlogram for the

three chains. In order to better show convergence, no burn-in was discarded and no

subsampling was performed. However, burn-in draws were discarded for parameter

41

estimation. The parameter estimates, along with their standard errors, as computed

by the R package mcmcse [Flegal et al., 2017], are shown in (3.1).

Figure 3-1: PMMH scatterplot matrix

Figure 3-2: PMMH draws

Accelerating the PMMH Algorithm

For more complex models, it becomes much more difficult to choose the proposal

distribution’s covariance matrix. In order to properly take into account the scale and

shape of the posterior, [Gelman et al., 2013] suggest that the covariance matrix be set

to a multiple of the posterior’s true covariance matrix (if the parameters are suitably

42

Figure 3-3: PMMH correlograms

alpha sigmaSquaredW sigmaSquaredV
est 0.9352618205 0.8284527762 2.3384284056
se 0.0044350049 0.0486459661 0.0289953628

Table 3.1: Noisy AR1 Parameter Estimates

transformed); if Σ is the true 𝑑-dimensional covariance matrix, then the optimal scale

for a random walk proposal is Σ(2.42/𝑑).

Unfortunately, this posterior covariance is rarely, if ever, known. Tuning the

algorithm’s settings to something that is close to this covariance matrix becomes more

difficult as the dimension of the parameter space increases. Moreover, in the case of

the PMMH algorithm, the situation is even more severe. It is not clear whether

a working 𝑑 should be set closer to the dimension of the ideal target, or closer to

the dimension of the actual target, taking into account all of the auxiliary random

variables. Interestingly, under certain conditions, as the number of particles grows,

this effective dimension reduces, as the algorithm more closely approximates the ideal

algorithm [Andrieu et al., 2010]. However, increasing the number of particles comes

at a computational expense. For these reasons, 𝑑 is tuned to be some percentage of

the dimension of the full parameter space.

In addition to its obscuring of standard Metropolis-Hastings tuning advice, the

PMMH is much more computationally demanding than standard Metropolis-Hastings

43

samplers. If 𝑀 samples are desired from the posterior of 𝑝(𝜃 | 𝑦1:𝑇), then using the

PMMH algorithm described in the previous section with 𝑁 particles requires 𝑇𝑁𝑀

state samples and weight updates, and (𝑇 − 1)𝑁𝑀 ancestor samples. Unfortunately,

this cost is difficult to parallelize away. MCMC iterations cannot easily be performed

in parallel, otherwise they will not form a Markov chain. Particle filter samples cannot

easily be sampled in parallel, either, due to the resampling mechanism. Taking all

these difficulties into account, and with the aim of maximizing the number of effective

samples per unit time, this section describes a number of techniques that are used in

the estimation of all models in chapter (4).

Following along the lines of [Haario et al., 2001], after some chosen iteration

number 𝑡0, the parameter proposal is allowed to adapt at every iteration. At each

adaptation point, the proposal’s covariance matrix is set to a scaled multiple of a

matrix "close to" the empirical covariance matrix. Before the scaling is done, a small

𝜖 is added to all of the diagonal elements to ensure that the covariance matrix remains

positive definite. In other words, 𝑞𝑖(𝜃′ | 𝜃) = N(𝜃′; 𝜃,Σ𝑖), where

Σ𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Σ0 𝑖 ≤ 𝑡0

2.42

𝑑

[︀
𝑆2
𝑖−1 + 𝜖𝐼𝑑𝜃

]︀
𝑡1 ≥ 𝑖 > 𝑡0

Σ𝑖−1 else.

(3.18)

Recursive formulas for the sample covariance matrix allow for more efficient programs.

Unlike their algorithm, however, this document picks some time 𝑡1 where adapta-

tion ends. In this way, after time 𝑡1, the sampler regains the Markov property, and

the results from earlier in this chapter can still be used to derive properties of the

estimators. Samples before this time are discarded along with any additional burn-in

that is chosen at the user’s discretion.

Another beneficial technique is to, when possible, use Rao-Blackwellized particle

filters inside this PMMH algorithm. Comparing the weight update formulas in section

(2.3), it can be seen that Rao-Blackwellized particle filters have smaller variance

compared to regular SISR filters. This is owing to the fact that RBPFs do not need

44

to sample the entire state vector.

This idea is not completely novel. It was anticpated by [Jacob et al., 2009] and

implemented in [Kokkala and Särkkä, 2014] for a model that is much different than the

ones considered in this document. However, to the best of the author’s knowledge, no

proof has previously been given that the estimate of the RBPF likelihood is unbiased,

which is the main requirement for this sampler to be exact. A proof of the following

lemma is given in the appendix.

Lemma 2. The Rao-Blackwellized particle filter’s likelihood estimate

𝑝(𝑦1:𝑇 | 𝜃) = 𝑝(𝑦1 | 𝜃)
𝑇∏︁
𝑡=2

𝑝(𝑦𝑡 | 𝑦1:𝑡−1, 𝜃)

is unbiased, when multinomial resampling is conducted at every time point.

The formulas for 𝑝(𝑦𝑡 | 𝑦1:𝑡−1) and 𝑝(𝑦1) are given by equations (2.20) and (2.21).

Another practical "trick" that can be used is to run 𝑛𝑝 > 1 particle filters in

parallel at every iteration of the chain. After they are all able to yield their estimate

for the likelihood, the average of their approximations may be used to calculate the

acceptance probability at the current iteration. The formula for the reduced-variance

estimator is

𝑝(𝑦1:𝑇 | 𝜃) = 𝑛−1𝑝

𝑛𝑝∑︁
𝑖=1

𝑝𝑖(𝑦1:𝑇 | 𝜃).

The fact that this PMMH algorithm continues to be exact follows trivially from

the linearity of the expectation operator. Also, because these particle filters do not

interact, it is "pleasingly parallel" and thus relatively simple to implement. The

number of particle filters running at each iteration (𝑛𝑝) may be set to the number

of available threads on a computer. At the time of writing this, the author is using

an Intel Xeon Processor E3-1241 v3, where the number of available threads is 8. It

is very likely that the performance of this algorithm could be drastically improved

if this same strategy was implemented on a graphics processing unit (GPU) where

the number of available threads is much higher. This development is left for future

research.

45

This adaptive version of the PMMH algorithm is given in detail below. This

Algorithm 6 Adaptive Particle Marginal Metropolis-Hastings
procedure adapmmh

set 𝑑 to be some percentage of the full parameter space
if 𝑡 equals 1 then

theta[1] ← 𝜃1

run 𝑛𝑝 (possibly Rao-Blackwellized)particle filters through 𝑦1:𝑇 in parallel each using 𝜃1

likes[1] ← 𝑛−1
𝑝

∑︀𝑛𝑝

𝑖=1 𝑝
𝑖(𝑦1:𝑇 | 𝜃1)

else if 𝑡0 ≥ 𝑡 > 1 or 𝑡 > 𝑡1 then
draw 𝜃′ ∼ 𝑞𝑡(𝜃′ | 𝜃𝑡−1)
run 𝑛𝑝 Rao-Blackwellized particle filters through 𝑦1:𝑇 in parallel each using 𝜃′

likes[t] ← 𝑛−1
𝑝

∑︀𝑛𝑝

𝑖=1 𝑝
𝑖(𝑦1:𝑇 | 𝜃′)

𝑝← 1 ∧ 𝑝(𝜃′)𝑝(𝑦1:𝑡 | 𝜃′)𝑞(𝜃 | 𝜃′)/𝑝(𝜃)𝑝(𝑦1:𝑡 | 𝜃)𝑞(𝜃′ | 𝜃)
𝑢← 𝑈 ∼ Uniform(0, 1]
if u< p then

theta[t] ← 𝜃′

else
theta[t] ← theta[t-1]

end if
else if 𝑡1 ≥ t > 𝑡0 then

change covariance of 𝑞𝑡 using 3.18
draw 𝜃′ ∼ 𝑞𝑡(𝜃′ | 𝜃𝑡−1)
run 𝑛𝑝 (possibly Rao-Blackwellized)particle filters through 𝑦1:𝑇 in parallel each using 𝜃′

likes[t] ← 𝑛−1
𝑝

∑︀𝑛𝑝

𝑖=1 𝑝
𝑖(𝑦1:𝑇 | 𝜃′)

𝑝← 1 ∧ 𝑝(𝜃′)𝑝(𝑦1:𝑡 | 𝜃′)𝑞(𝜃 | 𝜃′)/𝑝(𝜃)𝑝(𝑦1:𝑡 | 𝜃)𝑞(𝜃′ | 𝜃)
𝑢← 𝑈 ∼ Uniform(0, 1]
if u< p then

theta[t] ← 𝜃′

else
theta[t] ← theta[t-1]

end if
end if

end procedure

algorithm is used in the following chapter to estimate the models of interest that

guide investment decisions.

46

Chapter 4

Multivariate Stochastic Volatility

Models

Introduction

[Lopes and Polson, 2010] and [Chib et al., 2009] review multivariate stochastic

volatility models, separating this large grouping into several categories. This proposal

chooses to focus on factor stochastic volatility (FSV) models, which resemble the

univariate stochastic volatility model described in section (2.3) in that they feature a

latent process that directly controls the conditional covariance matrix.

The name for these factor stochastic volatility models comes from the assumption

that there exists a lower-dimensional random "factor" vector, denoted by f𝑡, "driving"

the higher-dimensional returns. These factors are unobserved, and they are usually

assumed to be, conditionally on the state process, distributed independently across

time, but not identically. The mean of the factor is usually assumed to be fixed at

zero, however the variances of each factor are assumed to change stochastically over

time.

47

An Initial Model

As a starting point, consider the following model from [Jacquier et al., 1999]. The

𝑑𝑥-dimensional unobserved state process is assumed to be a vector autoregressive

process with a nonzero mean. The initial state’s distribution, as well as the state

transition equations for 𝑡 = 2, . . . , 𝑇 , are

x𝑡 − 𝜇 = Φ [x𝑡−1 − 𝜇] + w𝑡 (4.1)

x1 ∼ N

⎛⎝𝜇, diag

[︃
𝜎2
1

(1 − 𝜑2
1)
, . . . ,

𝜎2
𝑑𝑥

(1 − 𝜑2
𝑑𝑥

)

]︃⎞⎠ (4.2)

where Φ = diag(𝜑1, . . . , 𝜑𝑑𝑥) is composed of the autoregressive parameters for the

states. The sequence of state noise vectors {wt} are iid Gaussian with a covariance

matrix Q = diag(𝜎2
1, . . . , 𝜎

2
𝑑𝑥

). This parametrization is frequently referred to as the

"centered" parametrization, because the mean of the state process is not assumed to

be the zero vector.

The initial model’s observation equation is

y𝑡 = Bf𝑡 + v𝑡, (4.3)

where each y𝑡 is a vector of returns of dimension 𝑑𝑦 > 𝑑𝑥, B ∈ R𝑑𝑦×𝑑𝑥 is the matrix

of constant factor loadings, {v𝑡} is iid Gaussian noise with a diagonal covariance

matrix R, {z𝑡} is iid Gaussian noise with an identity covariance matrix, and each

f𝑡 = exp(diag[x𝑡/2])z𝑡 is a latent factor vector at time 𝑡. Here exp(·) represents the

matrix exponential. Moreover, the noise vectors {z𝑡} and {v𝑡} are assumed to be

independent of each other.

Equation (2.5) suggests how to obtain forecasts. This means what are needed are

expectations of the observations one step in the future, conditional on the current

48

state and parameter value. One can verify that 𝐸[y𝑡+1 | x𝑡, 𝜃] = 0, and

Var[y𝑡+1 | x𝑡, 𝜃] = BE𝑡B
′ + R (4.4)

E𝑡 = exp
{︀

diag[𝜇 + Φ (x𝑡 − 𝜇)] + Q/2
}︀
. (4.5)

Using the law of total variance again, it can be seen that the one-step-ahead forecast

moments are

𝐸[y𝑡+1 | y1:𝑡] = 0 (4.6)

Var[y𝑡+1 | y1:𝑡] = 𝐸
[︀
BE𝑡B

′ + R | y1:𝑡

]︀
. (4.7)

The second quantity can be approximated with the following formula:

1

𝑁𝜃

𝑁𝜃∑︁
𝑖=1

𝑁𝑥∑︁
𝑗𝑖=1

�̃�𝑗𝑖
𝑡 B

𝑖 exp

{︂
diag[𝜇𝑖 + Φ𝑖

(︁
x𝑗𝑖
𝑡 − 𝜇𝑖

)︁
] + Q𝑖/2

}︂
B𝑖′ + R𝑖. (4.8)

This average takes parameter values drawn from a collection of MCMC samples,

and for each one of these parameter values, the weighted average is taken over the

particle filter’s samples. If this is too computationally expensive, then the outer sum

can be removed by using only one particle filter. In this case, a suitable one-number

summary of the posterior distribution would be chosen as the parameter vector used

to instantiate a particle filter, for example the mean or the mode.

Identifiability of the Initial Model

An understanding of any issues of a model’s nonidentifiability is important for

choosing among different parametrizations of the model and restrictions on the pa-

rameter space. These choices, in turn, directly impact posterior interpretability, prior

choice, as well as efficiency of MCMC algorithms [Kastner and Frühwirth-Schnatter,

2014].

Identifiability is a common issue impacting factor stochastic volatility models

49

[Aguilar and West, 2000]. Many (but not all) of the issues of static factor mod-

els carry over to the case of dynamic factor models. Moreover, many of these issues

may or may not apply, depending on what kind of assumptions are made about the

model structure. To clarify this particular situation, this section offers a more de-

tailed description of all instances of nonidentifiability that may arise in the case of

the initial model of [Jacquier et al., 1999]. With this complete understanding it will

be possible to understand how the extended models, introduced later in this chapter,

handle their own issues of nonidentifiability.

First, consider post-multiplying the loadings matrix B by an invertible matrix P.

It is easy to see that that the observation equation satisfies

Bf𝑡 + v𝑡 = BPP−1f𝑡 + v𝑡. (4.9)

For an alternative state space model with a state process that corresponds with this

transformed factor vector P−1f𝑡, the alternative loadings matrix BP will yield the

same likelihood function as the initial model.

There does not exist a corresponding state process for every choice of invertible

matrix; however, consider as one example P = 𝑐𝐼𝑑𝑦 . Then, by properties of the

matrix exponential, the new state would correspond with the alternative factor vector

exp(diag[x𝑡 − 1𝑑𝑥2 log 𝑐]/2)z𝑡. This can be generalized with the following result.

Lemma 3. Let a factor stochastic volatility model be defined by the collection of

parameters {B,R,𝜇,Φ, 𝜎2
1, . . . , 𝜎

2
𝑑𝑥
}, and 𝑃 be a diagonal matrix with all its diag-

onal entries positive. Then the factor stochastic volatility model defined by the col-

lection of parameters {BP,R,𝜇 + 𝑢,Φ,Q} yields the same likelihood. Here 𝑢 =

(2 log(𝑃−1)11, . . . , 2 log(𝑃−1)𝑛𝑛)′, and log(·) denotes the matrix logarithm obtained by

taking the log of all the diagonal elements.

The second example of nonidentifiability comes from the possibility of "column-

switching." The idea is that, if one permutes the rows of the state vector and the

columns of the loadings matrix, the same likelihood will be obtained. Because this

document only considers factors of a certain form, more general factor rotations be-

50

yond permutations do not present any identifiability issues.

Lemma 4. Let a factor stochastic volatility model be defined by the collection of

parameters {B,R,𝜇,Φ,Q}, and let 𝑃 be a permutation matrix. Then the factor

stochastic volatility model associated with the parameters {𝐵𝑃 ′,R,P𝜇,PΦP′,P𝑄P′}

yields the same likelihood.

Last, the effects of "sign-switching" are considered. If one makes some of the

columns of B negative, then the conditional covariance matrix is left unchanged.

Lemma 5. Let a factor stochastic volatility model be defined by the collection of

parameters {B,R,𝜇,Φ,Q}, and let S be a diagonal matrix with all entries equal to

either ±1. Then the factor stochastic volatility model associated with the parameters

{BS,R,𝜇,Φ,Q} yields the same likelihood.

To prevent column-switching and scale ambiguity, this paper adopts the most

common restriction on B. The loadings matrix is assumed to be of the following

form:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

𝑏2,1 1 0 · · · 0
...

...
... · · · 0

𝑏𝑑𝑥,1 𝑏𝑑𝑥,2 𝑏𝑑𝑥,3 · · · 1

𝑏𝑑𝑥+1,1 𝑏𝑑𝑥+1,2 𝑏𝑑𝑥+1,3 · · · 𝑏𝑑𝑥+1,𝑑𝑥

...
...

... · · · ...

𝑏𝑑𝑦 ,1 𝑏𝑑𝑦 ,2 𝑏𝑑𝑦 ,3 · · · 𝑏𝑑𝑦 ,𝑑𝑥

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.10)

The third type of nonidentifiability, sign-switching, is dealt with by selecting a prior

that favors positive B elements.

Real Data Analysis with the Initial Model

This section analyzes weekly adjusted closing prices for the nine Select Sector

SPDR exchange traded funds (ETFs) spanning the time interval starting on 2005/12/23

51

and ending on 2014/5/1. This dataset was selected in part because it spans the fi-

nancial crisis of 2008. Models will be estimated using data prior to the crisis, and

then be used to generate out-of-sample forecasts on post-crisis data. In particular, it

is highly desirable for a model that is estimated this way to still be able to produce

accurate estimates of the covariance matrix throughout the more turbulent period.

Only by having a model "run the gauntlet" will one be able to know how robust its

measures of finacial risk are.

Each of these nine ETFs represents the nine sectors1 of the Standard and Poor’s

500 Index, a proxy for the American economy. The log returns, as well as the cumu-

lative sum of these log returns, are plotted below. The vertical bar in (4-1) roughly

marks the beginning of the financial crisis.

Figure 4-1: 9 SPDR ETFs: returns and cumulative returns

First, the model of [Jacquier et al., 1999] with one latent volatility process is

estimated using a relatively small set of data prior to this cut-off point. The resulting

1On 10/8/2015 a tenth real estate sector ETF was added to this collection.

52

parameter estimates are used to generate forecasts on a larger out-of-sample dataset

coming after the cut-off point. The forecast distributions are evaluated on the data,

and then these evaluations are used to suggest an alternative model.

Parameter Estimation

Even though this model has been estimated in the literature, priors were specified

without examining outside results. First, (𝜑 + 1)/2 was given a Beta(6.27, 2.07)

prior. This makes the prior mean and variance for 𝜑 .9 and .025, respectively. The

restriction that the log volatility process is stationary, i.e. that −1 < 𝜑 < 1, is

very common and economically reasonable. Setting the prior mean to .9 anticipates

positive autocorrelation. This volatility persistence or "volatility clustering" is a well-

known "stylized feature" of stock returns.

For all of the parameters in the vector B except the first, a Normal prior with

mean 1𝑑𝑦−1 and variance .125𝐼𝑑𝑦−1 was used. The top left element of B is set to 1,

and this element corresponds with the returns for "XLE", the energy sector. So, the

remaining coefficients have the interpretation of "relative market risk." A value higher

(lower) than 1 indicates that the variances and covariances for this sector increase by

a higher (lower) multiple.

An uninformative Normal(0,10) prior is put on 𝜇, an InverseGamma(.5,.5) prior

was put on 𝜎2, and last, it is assumed that the diagonal elements of R are all iid,

each with an InverseGamma(1,1) prior. These are both "fat-tailed" as they don’t

have means; moreover, they have modes around what would be suspected.

Algorithm (6) is used used to draw 50,000 samples from the target posterior. Each

particle filter uses 5 particles, and every iteration uses 8 particle filters in parallel.

The program took .15 hours to run on an Intel Xeon Processor E3-1241 v3 and had

an acceptance rate of 27.7%. As for the parameters themselves, their transformed

versions are proposed with a Gaussian multivariate random walk. The variance pa-

rameters and 𝜑 are transformed as follows: the logarithm of half of each variance

parameter is taken, and 𝜑 is transformed into log
(︀
[1 + 𝜑]/[1 − 𝜑]

)︀
. 500 samples were

discarded as burn-in because the covariance was adapting for the first 450 iterations.

53

The initial values were taken from the last iteration of a trial run of the algorithm.

More burn-in wasn’t discarded because the initial parameters were likely drawn from

a distribution very close to the stationary distribution.

Even though it does not generate state samples with the optimal proposal dis-

tribution, a regular Bootstrap Filter is used for this. The justification for this is

computational efficiency. As long as the code is specialized enough to avoid the un-

necessary density calculations for the weight update formula, a Bootstrap Filter is

faster than the more elaborate particle filters such as the Auxiliary Particle Filter.

The parameter estimates, along with their batch means standard errors, are

printed below in tables (4.1), (4.2), (4.3). The trace plots and histograms can be

seen in (A-1), (A-2), and (A-3). The trace plots do not discard any burn-in sam-

ples; however, the histograms and scatterplots do discard the initial 500 samples as

burn-in.

Table 4.1: Initial Model Beta Estimates

xlu beta xlk beta xlb beta xlp beta xly beta xli beta xlv beta xlf beta
est 0.80964 1.19713 1.34597 0.63260 1.19113 1.07208 0.75803 1.16886
se 0.00658 0.00732 0.00794 0.00393 0.00674 0.00621 0.00460 0.00719

Table 4.2: Initial Model State Process Estimates

phi mu sig. sq.
est 0.28926 0.76999 0.32545
se 0.02119 0.01397 0.01084

Table 4.3: Initial Model Error Variance Matrix Diagonal Estimates

xle r xlu r xlk r xlb r xlp r xly r xli r xlv r xlf r
est 6.52486 2.52616 1.31751 2.14624 0.80179 0.67280 0.75594 0.97397 2.05327
se 0.03263 0.01338 0.00816 0.01498 0.00442 0.00563 0.00581 0.00578 0.01305

Out-of-Sample Forecasting

Evaluating out-of-sample forecasts is done in three ways. First, (approximate)

scoring rules are used to measure this model’s forecasting ability. Scoring rules are

54

Figure 4-2: 9 SPDR ETFs: Out-of-sample returns, squared returns, filtered means,
and log forecast densities

functions that take both a forecast distribution and a materialized value, and then

return a real-valued number representing the accuracy of the forecast [Gneiting and

Raftery, 2007]. The first scoring rule used here is motivated by the log predictive

Bayes factor [Amisano and Geweke, 2008]. The log predictive Bayes factor in favor

of model ℳ1 over model ℳ2 is

log

[︂
𝑝(y101:436 | y1:100,ℳ1)

𝑝(y101:436 | y1:100,ℳ2)

]︂
= log

[︃∏︀336
𝑖=1 𝑝(y100+𝑖 | y1:100+𝑖−1,ℳ1)∏︀336
𝑖=1 𝑝(y100+𝑖 | y1:100+𝑖−1,ℳ2)

]︃

=
336∑︁
𝑖=1

log 𝑝(y100+𝑖 | y1:100+𝑖−1,ℳ1)

−
336∑︁
𝑖=1

log 𝑝(y100+𝑖 | y1:100+𝑖−1,ℳ2).

55

An approximation is used for each log forecast distribution:

𝑝(y100+𝑖 | y1:100+𝑖−1,ℳ𝑖) =

∫︁
𝑝(y100+𝑖 | 𝜃𝑖,y1:100+𝑖−1,ℳ𝑖)𝑝(𝜃𝑖 | y1:100+𝑖−1,ℳ𝑖)𝑑𝜃𝑖

≈ 𝑁−1𝜃𝑖

𝑁𝜃𝑖∑︁
𝑗=1

𝑝(y100+𝑖 | 𝜃𝑗,y1:100+𝑖−1,ℳ𝑖)

where each 𝜃𝑗 is drawn from the samples of the posterior distribution 𝑝(𝜃 | 𝑦1:100),

and particle filter approximations to the conditional likelihoods are used. Evaluating

approximations to the conditional likelihoods was extensively discussed in (2) wherein

using (2.5) was advocated. Also, instead of computing this difference of sums for every

model pair, the summands at each point in time are plotted. This technique is more

informative as it reveals exactly which point in time a model’s forecast failed.

Another approximation to this score function is also plotted: the sequence log 𝑝(𝑦𝑡+1 |

𝑦1:𝑡, 𝜃post). These are approximate likelihood calculations using a particle filter instan-

tiated with the posterior mean, where the posterior is calculated conditioning on the

first 100 observations. At the cost of ignoring parameter uncertainty, the benefit of

this second method is computational ease. Multiple particle filters are not used here,

so a serial program would finish much more quickly, or more computational effort

could be placed on increasing the number of particles to increase the precision of the

state estimation. A parallel program would not be necessary, here.

The first method mentioned above is implemented using 20 Auxiliary Particle Fil-

ters, each with 250 particles, and the second method is implemented using one particle

filter with 5000 particles. These two score functions illustrate the shortcomings of this

model in plot (4-2). Data arriving during the financial crisis yield low evaluations of

the log forecasting densities. (4-2) also shows that during periods of high volatility,

the mean of the filtering distribution for the log volatility increases, as expected. This

happens even though the parameters were estimated on a low-volatility dataset.

As a second means of forecast evaluation, the standardized forecast errors were

plotted. These standardized errors were calculated in two ways. Taken together,

these two methods show when the model’s forecast variances and covariances lose

56

accuracy. Figure (A-5) plots the original returns, and the de-correlated returns. The

de-correlated returns are obtained by pre-multiplying each return vector by the inverse

of the Cholesky decomposition of the forecast’s covariance matrix. The bottom row

plots the cumulative sums of these errors to better highlight the sign of their means.

It appears during the crisis period, the errors tend to be negative, and after the crisis

period, they tend to be positive.

Figure (A-6) shows the out-of-sample prewhitened errors as well. Each time series

is given its own plot window. Figure (A-7) shows the standardized errors. These

standardized errors are obtained by dividing each return element by its estimated

standard deviation. A comparison of these plots suggests that this model has difficulty

forecasting the changing correlations and variances during crisis events.

Finally, figure (A-8) shows the cumulative sums of returns from a minimum vari-

ance investment strategy. This strategy chooses each week’s weight vector to minimize

the overall portfolio variance, subject to the constraint that the elements of this weight

vector sum to 1. One can use Lagrange multipliers to show that this weight vector is

proportional to Σ−1𝑡 1𝑑𝑦 , where Σ𝑡 is the forecast’s covariance matrix. This "backtest"

ignores the effect of costs of trading such as commissions and slippage, assumes that

shorting is allowed, and that nonintegral amounts of shares are available for purchase.

To compare, the cumulative sums of returns from holding the "SPY" ETF are also

plotted. SPY tracks the S&P500 index, which has each company weighted by its

market capitalization.

When the single log volatility state increases, the future covariance matrix in-

creases by a multiple of BB′. It is true that the lack of adaptability might be mitigated

by adding more factors; indeed, the future covariance matrix could change in more

complicated ways, and this modification would be relatively easy to implement. How-

ever, this mitigation is "dangerous" in the sense that there is no guarantee that the

in-sample parameter estimates for B would yield accurate forecasts on out-of-sample

data. For example, if the estimates of another column of B corresponded with a

factor that could be interpreted as "interest rate shocks," then there is no guarantee

that future volatility dynamics would be driven by uncertainty over interest rates.

57

Alternative Models

These results motivate the need for a refined model, and indeed, there have been

many adjustments to this model proposed in the literature already. Both [Pitt and

Shephard, 1999b] and [Aguilar and West, 2000] assume that the covariance matrix of

v𝑡, in addition to the factors, is driven by exponentiated latent state processes as well.

In this way, individual elements along the diagonal of the forecast covariance matrix

are allowed to change over time. This model has the advantage that any number of

stocks could experience an increase in their return variances.

One downside to this approach, however, is that this addition increases the model’s

state dimension by 𝑑𝑦, which might be substantial. This is undesirable because it in-

creases the variance of (or the requisite number of particles for) the approximation of

the filtering distribution. Also, it might be inaccurate to assume that these idiosyn-

cratic variance components change in this manner, both independently of each other

and following AR(1) dynamics.

[Chib et al., 2006] propose a related and much more flexible model. They

add jumps to the observation equation and assume the idiosyncratic errors follow

a student-t distribution. This shares the same problems as the models above, and in

addition to this, it can have an enormous amount of parameters.

Another extension is given in [Lopes et al., 2006]. The authors allow elements

of the B matrix to follow independent first-order autoregressions and the mean of

the state process to be a "regime-switching" term. The hope is that this model will

capture slowly changing factor loadings, and the apparent jumping nature of the

market’s volatility. This has the same computational drawback as the previously

mentioned approach, and moreover, the authors only allow for jumps in the mean of

the overall volatility. The author agrees that abrupt shocks are a necessary and an

intuitively reasonable adjustment to include in the model, but there does not seem

to be any support for the hypothesis that the factor loadings should follow a random

walk.

58

The Markov-Switching Loadings Models

It can be seen after looking at (A-6) and (A-7) that the industries whose variances

are particularly underestimated are very likely to be the industries most affected by

the financial crisis. "XLY", "XLV" and "XLF" represent the consumer discretionary,

healthcare and financial sectors, respectively. These plots suggest not only that the

number of active factors is time-varying, but also that the makeup of pertinent fac-

tors is economically situational. Here, a novel factor stochastic volatility model that

exhibits a time-varying number of factors with random loading matrices is presented.

Two formulations are given: the first and second Markov-Switching Loadings Models

(MSL1) and (MSL2). Each is designed to better distinguish between market-wide

increases in volatility, and increases in volatility for random subsets of stocks.

MSL1

The following model will have its state broken into three components: 𝑥1𝑡, x2𝑡

and x3𝑡. Its last two sets of states are the log volatilities of two sets of equally sized

factor vectors f1𝑡 and f2𝑡. The first vector will always be "active" in the sense that

in the observation equation, it is multiplied by the same nonrandom loadings matrix.

On the other hand, the second factor vector is occasionally "inactive." This factor

vector is pre-multiplied by the same nonrandom loadings matrix, but this loadings

matrix is in turn multiplied by a random matrix D𝑥1𝑡 . The resulting loadings matrix

is a randomly sparsified version of the original loadings matrix B. Conditioning on

the event that D𝑥1𝑡 = 0𝑑𝑦×𝑑𝑦 , the second factor vector can be omitted from the

observation equation.

The observation equation can be written as follows:

y𝑡 = Bf1𝑡 + D𝑥1𝑡Bf2𝑡 + v𝑡. (4.11)

{v𝑡} are again iid Gaussian noise with a diagonal covariance matrix R. The random

loadings matrix D𝑥1𝑡 is a matrix-valued transformation of the first state component;

59

it is diagonal and can have up to 𝐾 elements that are 1. More detail on 𝑥1𝑡 is given

in the paragraph after the next.

Both factor vectors will also have nonzero means. This addition is motivated by

figure (A-5). By examining the cumulative sums of forecast errors, one is able to

see that these errors, which correspond with the one market factor, tend to have a

positive mean (at least in tranquil times). It is anticipated that the first group of

factors will have positive means. The positive mean of a factor is often referred to as

its "risk premium" in the financial literature. The second group of factors, because

its members are only active during market turmoil, is anticipated to have a negative

mean vector. The factors can be written as follows:

f𝑡 =

⎡⎢⎣ f1𝑡

f2𝑡

⎤⎥⎦ =

⎡⎢⎣ 𝜆1

𝜆2

⎤⎥⎦ +

⎡⎢⎣ exp(diag{x2𝑡}) 0

0 exp(diag{x3𝑡})

⎤⎥⎦
⎡⎢⎣ z1𝑡

z2𝑡

⎤⎥⎦ . (4.12)

The dynamics for all but the first state processes are independent AR(1) models. The

disturbances {w𝑡} = {w1𝑡,w2𝑡} follow iid Gaussian noise with the diagonal covariance

matrix Q = diag(Q1,Q2) = diag(𝜎2
1, 𝜎

2
2, . . . , 𝜎

2
𝑑𝑥−1). The state transition equations

can be written as

⎡⎢⎣ x2𝑡

x3𝑡

⎤⎥⎦ =

⎡⎢⎣ 𝜇1

𝜇2

⎤⎥⎦ +

⎡⎢⎣ Φ1 0

0 Φ2

⎤⎥⎦
⎛⎜⎜⎝
⎡⎢⎣ x2𝑡−1

x3𝑡−1

⎤⎥⎦−

⎡⎢⎣ 𝜇1

𝜇2

⎤⎥⎦
⎞⎟⎟⎠ +

⎡⎢⎣ w1𝑡

w2𝑡

⎤⎥⎦
⎡⎢⎣ x21

x31

⎤⎥⎦ ∼ N

⎛⎜⎜⎝
⎡⎢⎣ 𝜇1

𝜇2

⎤⎥⎦ ,
⎡⎢⎣ Q1(I−Φ2

1)
−1 0

0 Q2(I−Φ2
2)
−1

⎤⎥⎦
⎞⎟⎟⎠

where 𝜇 = (𝜇′1,𝜇
′
2)
′ = (𝜇1, . . . , 𝜇𝑑𝑥−1)

′ is the vector of state means, and Φ =

diag(Φ1,Φ2) = diag(𝜑1, . . . , 𝜑𝑑𝑥−1) is the diagonal transition matrix.

𝐾 represents the maximum number of sectors that can be affected by a "contained

panic." The panic is contained in the sense that it does not apply to all of the stocks

being modeled. Or, in other words, 𝐾 < 𝑑𝑦. This forces the first factor to pick up

on a market-wide increase in volatility while the second factor only affects sectors

60

involved in a contained panic factor. Care should be taken to not choose this number

to be too low. If this is done, then the second factor will fail to explain any crisis

event that affects more than 𝐾 sectors.

𝑆𝐾 =
∑︀𝐾

𝑘=0

(︀
𝑑𝑦
𝑘

)︀
will denote the total number of subsets, each representing a

unique collection of instruments that participate in a contained panic. In the following

analysis, these subsets are ordered lexicographically, and 𝑥1𝑡, a discrete Markov chain

evolving on {1, 2, . . . , 𝑆𝐾}, will represent the order index of a particular subset. For

example, if 𝑑𝑦 = 3 and 𝐾 = 2, then the lexicographically ordered subsets are

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}.

These correspond, respectively, with the values 1, 2, . . . , 7.

The transition matrix is specified by 𝑝I + (1𝑆𝐾
1′𝑆𝐾

− I)(1 − 𝑝)/(𝑆𝐾 − 1). At the

first time period, 𝑥11 is assumed to be distributed according to the discrete uniform

distribution. This transition matrix conveniently only adds one additional parameter

to be estimated. It assumes all states have the same probability of remaining in

that state (𝑝), and that from any state, there is an equal probability of going to any

different state.

For example, consider the situation when 𝑑𝑥 = 3, and D𝑥1𝑡 = diag(1, 1, 0, · · · , 0).

Then, the observation equation can be written as

y𝑡 = B𝑓11𝑡 + D𝑥1𝑡B𝑓21𝑡 + v𝑡. (4.13)

The primary factor 𝑓11𝑡 represents a typical market factor, has a positive mean and

exhibits stochastic volatility. The secondary factor also exhibits stochastic volatility,

but has a negative mean. Conditioning on the first component of the state, this

secondary factor will represent the first two stocks’ propensity to decrease their means,

increase their conditional variances, and increase their shared covariance. This can

61

be seen by noticing that 𝐸[D𝑥1𝑡B𝑓21𝑡 | x𝑡] = 𝜆2(𝐵1, 𝐵2, 0, . . . , 0)′ and that

Var
[︀
D𝑥1𝑡B𝑓21𝑡 | x𝑡

]︀
= 𝑒𝑥31𝑡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐵2
1 𝐵1𝐵2 0 · · · 0

𝐵2𝐵1 𝐵2
2 0 · · · 0

0 0 0 · · · 0
...

...
...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is important to remind the reader that this model possesses the structure re-

quired for a Rao-Blackwellized particle filter [Liu et al., 2001], [Andrieu and Doucet,

2002], and [Nordh, 2014]. This will reduce the requisite number of particles of a

particle filter, and thus increase the efficiency of the PMMH algorithms, as well as

decrease the computational cost of the rolling forecast estimates.

MSL2

The second Markow-Switching Loadings model is similar to the first. It has the

same autoregressive dynamics for all but the first state processes, and it features

the same observation equation. MSL2, like MSL1, also features a state component

representing which of the 𝑆𝐾 vectors should be chosen for the second column of B.

The only difference is that this Markov chain 𝑥1𝑡 possesses a different, hierarchical

formulation.

This hierarchical formulation can be seen if one writes this as two components,

i.e. by setting 𝑥1𝑡 = (𝑢𝑡, 𝑣𝑡)
′. The first component 𝑢𝑡 is a binary random variable

representing whether or not there is any contained panic taking place in the market.

Its transition matrix can be written as⎡⎢⎣ 𝑝1 1 − 𝑝1

1 − 𝑝2 𝑝2

⎤⎥⎦ . (4.14)

The probability of remaining in a state of no contained panic is 𝑝1, while the proba-

bility of remaining in a contained panic is 𝑝2.

62

The second component 𝑣𝑡 represents which grouping of stocks is affected by the

contained panic. It takes values in {1, 2, . . . , 𝑆𝐾} which are numbers that correspond

to the elements of the lexicographically ordered subsets of {0, 1}𝑑𝑦 which have at most

𝐾 1s with the rest 0s.

The next task is to describe the conditional transitions of 𝑣𝑡. A 𝑆𝐾 × 𝑆𝐾 tran-

sition matrix is needed for each value of 𝑢𝑡. In this particular case, two 130 × 130

matrices are needed: 𝑝(𝑣𝑡 | 𝑣𝑡−1, 𝑢𝑡 = 0) and 𝑝(𝑣𝑡 | 𝑣𝑡−1, 𝑢𝑡 = 1). Fortunately, these

matrices contain no unknown parameters. This is possible after making the following

economically reasonable assumptions.

First, it is assumed that if 𝑢𝑡 = 0, then transitioning into any state other than

the first is impossible. This corresponds with the interpetation of 𝑢𝑡. The resulting

conditional transition matrix has no free parameters; it is

𝑝(𝑣𝑡 | 𝑣𝑡−1, 𝑢𝑡 = 0) =

[︂
1𝑆𝐾

0𝑆𝐾
· · · 0𝑆𝐾

]︂
.

On the other hand, when 𝑢𝑡 = 1, it is assumed that

1. transitioning to a tranquil state is impossible from anywhere,

2. coming from a tranquil state, each configuration is an equally likely arrival

location, and

3. it is impossible to change from one panic configuration to another.

The first assumption coheres with the interpretation of 𝑢𝑡. The second assumption

is reasonable for this dataset because, to the best of the author’s knowledge, there

is no economic reason why one sector is more likely than another to be involved

in a contained panic. The third assumption is reasonable for the dataset under

consideration as well; markets are "efficient" in the sense that they likely take less than

a week to determine which sectors are affected by unfavorable news. The resulting

63

conditional transition matrix is specified as follows:

𝑝(𝑣𝑡 | 𝑣𝑡−1, 𝑢𝑡 = 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
𝑆𝐾−1

1
𝑆𝐾−1

· · · 1
𝑆𝐾−1

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Because these two matrices do not contain any unknown parameters, this implies that

MSL2 only has one more parameter than MSL1.

To complete the specification of MSL2, the distribution for the first state com-

ponent at time 1 must be specified. Just like in the specification of MSL1, it is

again assumed that 𝑥11 is distributed according to the chain’s stationary distribu-

tion: 𝑝(𝑥11) = 𝑝(𝑣1 | 𝑢1)𝑝(𝑢1). It is straightforward to verify that the stationary

distribution is 𝑝(𝑢1) =
(︁

1−𝑝2
2−𝑝1−𝑝2 ,

1−𝑝1
2−𝑝1−𝑝2

)︁
, while 𝑝(𝑣1 | 𝑢1 = 0) = (1, 0, . . . , 0)′ and

𝑝(𝑣𝑡 | 𝑢1 = 1) = (0, 1/(𝑆𝐾 − 1), 1/(𝑆𝐾 − 1), . . . , 1/(𝑆𝐾 − 1))′.

Estimation of MSL Models

This section describes an estimation routine for the parameters of the two MSL

models when 𝑑𝑥 is set to 3 and 𝐾 is set to 2. The two MSL models suffer from

the same nonidentifiability concerns as the inital model. Scaling, column-switching,

and sign-switching all possibly yield alternative state space models with an identical

likelihood functions. In this section, the same measures to deal with nonidentifiability

are taken.

Estimation of MSL1

Many of the priors for the initial model are used again for the estimation of the

MSL models. The priors for all but the first elements of B remain the same as the

previous model’s: a Gaussian distribution with mean 1 and covariance matrix .125I.

64

The priors for the diagonal elements of R remain the same as well. The previous

priors for the single 𝜑 are given to the two 𝜑𝑖s describing the dynamics of 𝑥2𝑡 and 𝑥3𝑡,

and the same technique is used to assign priors to the vectors 𝜇 and (𝜎2
1, 𝜎

2
2)′.

The two factor means 𝜆1 and 𝜆2, after being made positive, are each given indepen-

dent Half-Normal priors. That is 𝜆1 ∼ Half-Normal(10) and −𝜆2 ∼ Half-Normal(20).

Restricting 𝜆2 < 0 reinforces the interpretation that the second factor is a contained

panic factor. One of the stylized features of financial returns is that they are "asym-

metric," which describes the inverse relationship between return means, and return

dispersion. This prior/likelihood combination is very much in agreement with this

empirical observation.

Last, 𝑝 is given a Beta(6,1) prior. This Beta prior is chosen to reflect the pre-

existing knowledge about volatility clustering. Even though the term "volatility clus-

tering" usually refers to the positivity of the AR(1) coefficents of the state process

(in this case these are 𝜑1 and 𝜑2), it is also reasonable that the set describing which

sectors are involved in a contain panic is likely to remain the same from one time

period to the next.

The same PMMH algorithm (6) is used to draw 50,000 samples from the target

posterior. This time, however, a Rao-Blackwellized particle filter is used to approx-

imate likelihood evaluations. Every iteration runs 8 particle filters in parallel, each

with 5 particles. The transformed parameters are proposed with a multivariate Gaus-

sian random walk, and then transformed back into the quantities of interest. This

multivariate Gaussian proposal distribution begins its adaptation of its covariance

matrix at iteration 150, and finishes its adaptation at iteration 500. The initial pa-

rameters were taken from the last iteration of a trial-run of the algorithm. After a

burn-in portion of the 500 samples is discarded, the posterior mean estimates are cal-

culated. These estimates, along with their batch means standard errors, are printed

below in tables (4.4), (4.5), (4.6) and (4.7). The program took 2.78 hours to run on

an Intel Xeon Processor E3-1241 v3, and had an acceptance rate of 7.4%.

Both the initial model and MSL1 produce similar estimates for B. Comparing the

estimates of the elements of R, the MSL model’s estimates are always smaller than

65

Table 4.4: MSL B Estimates

xlu beta xlk beta xlb beta xlp beta xly beta xli beta xlv beta xlf beta
est 0.821 1.171 1.323 0.664 1.076 0.990 0.775 1.208
se 0.006 0.008 0.009 0.005 0.007 0.007 0.006 0.008

Table 4.5: MSL State Process Parameter Estimates

phi1 phi2 mu1 mu2 sigma1 sigma2
est 0.424 0.396 0.743 0.668 0.309 0.370
se 0.023 0.019 0.016 0.022 0.011 0.013

those of the initial model. This is to be expected as the MSL model tries to explain

more of the variability of the returns.

The MSL model’s estimates of the parameters governing the AR(1) processes are

similar to those of the initial model as well; even though there is an additional factor,

the persistence parameters, the means, and the variance of the log volatility are all

very close to the corresponding estimates of the previous model.

The estimate of the overall market risk premium parameter 𝜆1 is .302. This has

the interpretation that, assuming there will be no contained panic in the next time

period, the vector of expected log returns for the ETFs is 𝜆1B. In other words, each

stock, when it is known that there will be no market turmoil, makes about 30 basis

points every week. The mean of the panic factor, on the other hand, is estimated to

be −.525. When stock 𝑖 is assumed to be involved in a contained panic, its expected

return is B𝑖(.302 − .525). This means that when a stock is experiencing a contained

panic, it will lose on average 22 basis points per week. Last, 𝑝’s estimate is .84, which

means that the vector of the ETFs’ "panic configuration" has a strong tendency to

stay in the same state from one week to the next.

It bears reminding that these estimates were obtained using data prior to the

financial crisis. In the next section, these estimates are used to instantiate particle

filters to be used for online forecasting. Every week, on a rolling basis, predictions for

the following week are generated, analyzed, and used to make investment decisions.

66

Table 4.6: MSL R Estimates

xle rsd xlu rsd xlk rsd xlb rsd xlp rsd xly rsd xli rsd xlv rsd xlf rsd
est 6.315 2.158 1.258 1.591 0.626 0.435 0.550 0.669 0.859
se 0.045 0.015 0.013 0.017 0.005 0.007 0.005 0.007 0.010

Table 4.7: MSL 𝜆𝑖 and 𝑝𝑖 Estimates (𝑖 = 1, 2)

lambda1 lambda2 p
est 0.302 -0.525 0.840
se 0.008 0.015 0.004

Estimation of MSL2

To estimate the second Markov-Switching Loadings model, only three parame-

ter groups were given the same priors from the previous section. The elements of

the B vector were given the same independent Normal(1, .125) priors, the elements

of 𝜇 were given the same Normal(0, 3.16) priors, and 𝜆1 and −𝜆2 were each given

Half-Normal(3) priors. The uncertainty over what the other parameter values are was

expressed with a choice of uninformative priors. 𝜑1 and 𝜑2 were given Uniform(−1, 1)

priors, not favoring any volatility persistence, but still ensuring stationarity of the log

volatility processes. All variance parameters, 𝜎2
1, 𝜎2

2 and R were all given independent

Inverse-Gamma(.001, .001) priors. Last, 𝑝1 and 𝑝2 were given Uniform(0, 1) priors.

The same algorithm used to estimate MSL1 is also used to estimate MSL2 (6),

although it is tuned differently. 50,000 samples were drawn from the posterior, and at

every iteration, 8 Rao-Blackwellized particle filters, each with 10 particles, were used

to approximate the likelihood. A similar proposal distribution was used to change the

parameters. After each parameter was transformed to make its support unrestricted,

a multivariate Normal distribution was used to propose new values. This multivariate

Gaussian proposal started its adaptation at iteration 150 and finished its adaptation

at iteration 500. The starting parameter values were chosen from a trial run of the

program. The program took 16.69 hours to run on an Intel Xeon Processor E3-1241

v3, and achieved an acceptance rate of 6.9%. The trace plots in figures (A-16), (A-17),

(A-18), (A-19), (A-20), (A-21) and (A-22) show all the samples obtained; they do not

67

discard any burn-in samples. The histograms and scatterplots, on the other hand, do

discard the intial 500 samples. The posterior means, along with their standard error

estimates are displayed in tables (4.8), (4.9), and (4.11).

Table 4.8: MSL2 B Estimates

xlu beta xlk beta xlb beta xlp beta xly beta xli beta xlv beta xlf beta
est 1.372 1.304 0.881 0.257 0.416 0.261 0.191 0.350
se 0.012 0.016 0.010 0.005 0.005 0.003 0.003 0.004

Table 4.9: MSL2 State Process Parameter Estimates

phi1 phi2 mu1 mu2 sigmaSq1 sigmaSq2
est 0.388 0.930 1.024 0.370 0.016 1.561
se 0.009 0.003 0.018 0.040 0.002 0.059

Table 4.10: MSL2 R Estimates

xle rsd xlu rsd xlk rsd xlb rsd xlp rsd xly rsd xli rsd xlv rsd xlf rsd
est 7.752 0.936 1.868 1.371 0.873 0.974 0.693 1.002 1.802
se 0.078 0.045 0.023 0.022 0.009 0.011 0.006 0.009 0.018

It is interesting to note the change in the parameter estimates related to the second

factor. In MSL2, more structure was given to the transition matrix for 𝑥1𝑡. This was

done by assuming that many one-step transitions were impossible. As a result, a

contained panic is more extreme; these contained panics are associated with a larger

decrease in the forecast’s mean (�̂�2 = −2.872), they last for a shorter amount of time

(𝑝2 = 0.063), they have a log volatility that is more persistent (𝜑2 = 0.93), and there

is more uncertainty about this log volatility’s value (�̂�2
2 = 1.561).

Also note that the posterior mean for 𝜎2
1 is quite close to 0. If in fact 𝜎2

1 was 0, this

would simplify the model; it would lead to 𝑥2𝑡 = 𝜇1 for all 𝑡, causing {𝑓1𝑡} to be iid

Normal random variables with mean 𝜆1 and variance exp(𝜇1). Conditioning on the

event that 𝑥1𝑡 = 1, the returns would be Normally distributed, suggesting that the

fatness in the tails of weekly returns mostly comes from rare contained panic events.

68

Table 4.11: MSL2 𝜆𝑖 and 𝑝𝑖 Estimates (𝑖 = 1, 2)

lambda1 lambda2 p1 p2
est 0.296 -2.872 0.955 0.063
se 0.007 0.035 0.002 0.002

Out-of-Sample Performance

This section compares the out-of-sample forecasting performance of all the models

discussed. This is done in the same three ways that were used in (4.4.2): by evaluat-

ing score functions, examining forecast errors, and backtesting a minimum variance

portfolio investment strategy.

Figure (A-23) shows the one-step-ahead log conditional likelihoods. These are

computed averaging over 50 parameter draws from the time 100 posterior. Each

of these parameter draws instantiated a Rao-Blackwellized particle filter with 250

particles. It can be seen that MSL1 and MSL2, by this measure, have superior

forecasts for nearly the entire time window.

Before discussing the forecast error plots, formulas are given for the first and sec-

ond moments of the MSL forecasts. Proofs of these facts are located in the appendix.

As opposed to the initial model, neither MSL1 nor MSL2 have constant forecast

means. It can be seen that

𝐸[y𝑡+1 | x2𝑡,x3𝑡, 𝜃] = 𝜆1B + 𝜆2D
𝑡

𝑡+1B (4.15)

where D
𝑡

𝑡+1 = 𝐸[D𝑥1,𝑡+1 | x2𝑡,x3𝑡, 𝜃]. This is very much in agreement with stylized

features of financial returns. If 𝑥1,𝑡+1 is expected to be in the state associated with

no panic, returns are expected to be slightly positive (𝜆1B). On the other hand, if

𝑥1,𝑡+1 is expected to be in a state that signifies a panic, the affected sectors will have

a reduced expected return.

69

The conditional forecast’s variance, Var
(︀
y𝑡+1 | x2𝑡,x3𝑡, 𝜃

)︀
, is equal to

exp
(︀
𝜇1 + 𝜑1(𝑥2,𝑡 − 𝜇1) + 𝜎2

1/2
)︀
BB′ + R

+ exp
(︀
𝜇2 + 𝜑1(𝑥3,𝑡 − 𝜇2) + 𝜎2

2/2
)︀
𝐸
(︁
D𝑥1,𝑡+1BB′D′𝑥1,𝑡+1

| 𝑥2𝑡, 𝑥3𝑡
)︁

+ 𝜆22

{︁
𝐸
(︀
D𝑥1𝑡+1BB′D𝑥1𝑡+1 | 𝑥2𝑡, 𝑥3𝑡

)︀
−D

𝑡

𝑡+1BB′D
𝑡

𝑡+1

}︁
.

(4.16)

The first row is the familiar piece. It has the same form as the previous model’s

forecast’s variance (4.5). The rest of the expression allows only some of the terms of

the covariance matrix to change.

Obtaining expressions for the forecast mean and covariance matrix is done in

the same approach used to obtain (4.8). To obtain an approximation for the forecast

mean, 𝐸[y𝑡+1 | y1:𝑡], simply average over parameter draws and weighted state samples

the values associated with (4.15). The forecast’s covariance matrix involves a more

cumbersome expression. The law of total variance states

Var
[︀
y𝑡+1 | y1:𝑡

]︀
= Var

[︁
𝐸
(︀
y𝑡+1 | x2𝑡,x3𝑡, 𝜃

)︀
| y1:𝑡

]︁
+ 𝐸

[︁
Var

(︀
y𝑡+1 | x2𝑡,x3𝑡, 𝜃

)︀
| y1:𝑡

]︁
.

To obtain an approximation for the forecast covariance matrix, write the right hand

side of this expression in terms of expectations, and carry out the same procedure as

mentioned above.

To whiten/standardize the errors, the same procedure as in section (4.4.2) is

followed, only the observations are demeaned first. Figure (A-24) shows the whitened

errors for both models, and figure (A-25) shows the standardized errors for both

models. Comparing these errors with figures (A-6) and (A-7), more closely account

for the extreme observations, particularly for the financial sector ETF (XLF) during

the crisis period.

Figure (A-26) plots the filter means of the second and third state components

of each MSL model, the filtered state means of the intial model, and the filtered

probabilities that each MSL model is in some contained panic configuration. The

separation between the two log volatilities is much more extreme in the second MSL

70

model. In this model, the first log volatility process hugs its stationary mean closely

for much of the time. The second log volatility process is probably under-specified

as these filtered values do not look stationary. The process appears to have a higher

mean and variance during the crisis period. It is also worth considering whether to

add jumps to this state process. Around the time of the 240th week, both models

pick up a jump in the contained panic log volatility. MSL2’s filtered mean is much

more pronounced, however.

Finally, figure (A-27) shows the results of two minimum variance portfolio invest-

ment strategies using each of the three models. The first strategy sets the investment

weights at every week equal to the vector that minimizes forecasted variance. How-

ever, these weights will often be associated with a negative expected return. The

second, adjusted strategy simply sets these weights to the zero vector when this hap-

pens. It can be seen that all strategies yield higher terminal wealth than the passive

buy-and-hold strategy. Also, it appears that MSL2 is generally "pessimistic" in the

sense that quite often the expected returns associated with the minimum variance

portfolio yields a negative expected return. Again, these backtests do not account for

costs of trading, they assume that shorting is allowed, and they assume nonintegral

amounts of shares may be purchased or sold.

71

72

Chapter 5

Summary

Overview

This document has described a complete, top-down approach for portfolio con-

struction that allows the use of a very wide and general class of nonlinear and non-

Gaussian state space models, it has suggested enhancements to particle Markov chain

Monte Carlo algorithms as well as demonstrated their use on real-world datasets with

large and complex models, and it has proposed a novel factor stochastic volatility

model. In addition to these contributions, particle filtering and Markov chain Monte

Carlo algorithms for state space models have been reviewed in detail. The com-

bination of these two techniques, in the opinion of the author, constitute a strong

foundation upon which to build further developments.

73

74

Appendix A

Appendix

75

76

Proofs

Proof of Lemma 1. This proof adapts the proof given in [Andrieu et al., 2010] for the

simpler IMH algorithm.

The target distribution needs to be proportional to

𝑝(𝜃)𝑝(𝑦1:𝑇 |𝜃)𝑝(𝑘′|𝑢′)𝜓(𝑢′|𝑦1:𝑇 , 𝜃). (A.1)

Note that 𝑝(𝑦1:𝑇 |𝜃) is not a density; it is a functional of random variables. Its calcu-

lation requires 𝑥𝑏
𝑘
1
1 , . . . , 𝑥

𝑏𝑘𝑇
𝑇 .

Let 𝑞𝑡 refer to the proposal density of 𝑥𝑡, and 𝑟𝑡 refer to the pmf of the ancestor

indices. Define the joint density of all particle filter output, as well as the probability

of picking path 𝑘 from this output:

1. 𝜓(𝑢|𝑦1:𝑇 , 𝜃) =
∏︀𝑁

𝑖=1 𝑞1(𝑥
𝑖
1)𝑟1(𝑎

𝑖
1|x1)

∏︀𝑇−1
𝑡=2

∏︀𝑁
𝑗=1 𝑞𝑡(𝑥

𝑗
𝑡 |𝑥

𝑎𝑗𝑡−1

𝑡−1 , 𝑦𝑡)𝑟𝑡(𝑎
𝑗
𝑡 |x𝑡)𝑞𝑇 (𝑥𝑗𝑇 |𝑥

𝑎𝑗𝑇−1

𝑇−1 , 𝑦𝑇)

2. 𝑝(𝑘|𝑢) = 𝑟𝑇 (𝑘|x𝑇) = �̃�𝑇 (𝑥𝑘𝑇) ∝ 𝑔(𝑦𝑇 |𝑥𝑘
𝑇)𝑓(𝑥𝑘

𝑇 |𝑥
𝑏𝑘𝑇−1
𝑇−1)

𝑞𝑇 (𝑥𝑘
𝑇 |𝑥

𝑏𝑘
𝑇−1

𝑇−1)

.

The joint density is:

𝑝(𝑘|𝑢, 𝜃)𝜓(𝑢|𝑦1:𝑇 , 𝜃) = 𝑝(𝑘|𝑢, 𝜃)
𝑁∏︁
𝑖=1

𝑞1(𝑥
𝑖
1)𝑟1(𝑎

𝑖
1|x1)

𝑇−1∏︁
𝑡=2

𝑁∏︁
𝑗=1

𝑞𝑡(𝑥
𝑗
𝑡 |𝑥

𝑎𝑗𝑡−1

𝑡−1 , 𝑦𝑡)𝑟𝑡(𝑎
𝑗
𝑡 |x𝑡)𝑞𝑇 (𝑥𝑗𝑇 |𝑥

𝑎𝑗𝑇−1

𝑇−1 , 𝑦𝑇)

=
𝑁∏︁
𝑖=1

𝑞1(𝑥
𝑖
1)�̃�1(𝑥

𝑎𝑖1
1)

𝑇−1∏︁
𝑡=2

𝑁∏︁
𝑗=1

𝑞𝑡(𝑥
𝑗
𝑡 |𝑥

𝑎𝑗𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑎𝑗𝑡
𝑡)𝑞𝑇 (𝑥𝑗𝑇 |𝑥

𝑎𝑗𝑇−1

𝑇−1 , 𝑦𝑇)�̃�𝑇 (𝑥𝑘𝑇)

=
𝑁∏︁

𝑖=1,𝑖 ̸=𝑏𝑘1

𝑞1(𝑥
𝑖
1)�̃�1(𝑥

𝑎𝑖1
1)

𝑇∏︁
𝑡=2

𝑁∏︁
𝑗=1,𝑗 ̸=𝑏𝑘𝑡

𝑞𝑡(𝑥
𝑗
𝑡 |𝑥

𝑎𝑗𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑎𝑗𝑡
𝑡)

× 𝑞1(𝑥
𝑏𝑘1
1)�̃�1(𝑥

𝑏𝑘1
1)

𝑇∏︁
𝑡=2

𝑞𝑡(𝑥
𝑏𝑘𝑡
𝑡 |𝑥𝑏

𝑘
𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑏𝑘𝑡
𝑡).

77

So

𝑝(𝑦1:𝑇)𝑝(𝑘|𝑢, 𝜃)𝜓(𝑢|𝑦1:𝑇 , 𝜃)

= 𝑝(𝑦1)
𝑇∏︁
𝑡=2

𝑝(𝑦𝑡|𝑦1:𝑡−1)

×
𝑁∏︁

𝑖=1,𝑖 ̸=𝑏𝑘1

𝑞1(𝑥
𝑖
1)�̃�1(𝑥

𝑎𝑖1
1)

𝑇∏︁
𝑡=2

𝑁∏︁
𝑗=1,𝑗 ̸=𝑏𝑘𝑡

𝑞𝑡(𝑥
𝑗
𝑡 |𝑥

𝑎𝑗𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑎𝑗𝑡
𝑡)

× 𝑞1(𝑥
𝑏𝑘1
1)�̃�1(𝑥

𝑏𝑘1
1)

𝑇∏︁
𝑡=2

𝑞𝑡(𝑥
𝑏𝑘𝑡
𝑡 |𝑥𝑏

𝑘
𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑏𝑘𝑡
𝑡)

= 𝑁−1
𝑁∑︁
𝑖=1

𝑤1(𝑥
𝑖
1)

𝑇∏︁
𝑡=2

𝑁−1
𝑁∑︁
𝑖=1

𝑤𝑡(𝑥
𝑖
𝑡)

×
𝑁∏︁

𝑖=1,𝑖 ̸=𝑏𝑘1

𝑞1(𝑥
𝑖
1)�̃�1(𝑥

𝑎𝑖1
1)

𝑇−1∏︁
𝑡=2

𝑁∏︁
𝑗=1,𝑗 ̸=𝑏𝑘𝑡

𝑞𝑡(𝑥
𝑗
𝑡 |𝑥

𝑎𝑗𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑎𝑗𝑡
𝑡)𝑞𝑇 (𝑥𝑗𝑇 |𝑥

𝑎𝑗𝑇−1

𝑇−1 , 𝑦𝑇)

× 𝑞1(𝑥
𝑏𝑘1
1)�̃�1(𝑥

𝑏𝑘1
1)

𝑇∏︁
𝑡=2

𝑞𝑡(𝑥
𝑏𝑘𝑡
𝑡 |𝑥𝑏

𝑘
𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑏𝑘𝑡
𝑡)

= 𝑁−𝑇
𝑇∏︁
𝑡=1

𝑁∑︁
𝑖=1

𝑤𝑡(𝑥
𝑖
𝑡)

×
𝑁∏︁

𝑖=1,𝑖 ̸=𝑏𝑘1

𝑞1(𝑥
𝑖
1)�̃�1(𝑥

𝑎𝑖1
1)

𝑇−1∏︁
𝑡=2

𝑁∏︁
𝑗=1,𝑗 ̸=𝑏𝑘𝑡

𝑞𝑡(𝑥
𝑗
𝑡 |𝑥

𝑎𝑗𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑎𝑗𝑡
𝑡)𝑞𝑇 (𝑥𝑗𝑇 |𝑥

𝑎𝑗𝑇−1

𝑇−1 , 𝑦𝑇)

× 𝑞1(𝑥
𝑏𝑘1
1)

𝑤1(𝑥
𝑏𝑘1
1)∑︀

𝑖𝑤1(𝑥𝑖1)

𝑇∏︁
𝑡=2

𝑞𝑡(𝑥
𝑏𝑘𝑡
𝑡 |𝑥𝑏

𝑘
𝑡−1

𝑡−1 , 𝑦𝑡)
𝑤𝑡(𝑥

𝑏𝑘𝑡
𝑡)∑︀

𝑖𝑤𝑡(𝑥𝑖𝑡)

= 𝑁−𝑇
𝑁∏︁

𝑖=1,𝑖 ̸=𝑏𝑘1

𝑞1(𝑥
𝑖
1)�̃�1(𝑥

𝑎𝑖1
1)

𝑇−1∏︁
𝑡=2

𝑁∏︁
𝑗=1,𝑗 ̸=𝑏𝑘𝑡

𝑞𝑡(𝑥
𝑗
𝑡 |𝑥

𝑎𝑗𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑎𝑗𝑡
𝑡)𝑞𝑇 (𝑥𝑗𝑇 |𝑥

𝑎𝑗𝑇−1

𝑇−1 , 𝑦𝑇)

× 𝑞1(𝑥
𝑏𝑘1
1)𝑤1(𝑥

𝑏𝑘1
1)

𝑇∏︁
𝑡=2

𝑞𝑡(𝑥
𝑏𝑘𝑡
𝑡 |𝑥𝑏

𝑘
𝑡−1

𝑡−1 , 𝑦𝑡)𝑤𝑡(𝑥
𝑏𝑘𝑡
𝑡)

= 𝑁−𝑇
𝑁∏︁

𝑖=1,𝑖 ̸=𝑏𝑘1

𝑞1(𝑥
𝑖
1)�̃�1(𝑥

𝑎𝑖1
1)

𝑇−1∏︁
𝑡=2

𝑁∏︁
𝑗=1,𝑗 ̸=𝑏𝑘𝑡

𝑞𝑡(𝑥
𝑗
𝑡 |𝑥

𝑎𝑗𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑎𝑗𝑡
𝑡)𝑞𝑇 (𝑥𝑗𝑇 |𝑥

𝑎𝑗𝑇−1

𝑇−1 , 𝑦𝑇)

× 𝑞1(𝑥
𝑏𝑘1
1)
𝑔(𝑦1|𝑥

𝑏𝑘1
1)𝑓1(𝑥

𝑏𝑘1
1)

𝑞1(𝑥
𝑏𝑘1
1)

𝑇∏︁
𝑡=2

𝑞𝑡(𝑥
𝑏𝑘𝑡
𝑡 |𝑥𝑏

𝑘
𝑡−1

𝑡−1 , 𝑦𝑡)
𝑔(𝑦𝑡|𝑥

𝑏𝑘𝑡
𝑡)𝑓(𝑥

𝑏𝑘𝑡
𝑡 |𝑥𝑏

𝑘
𝑡−1

𝑡−1)

𝑞𝑡(𝑥
𝑏𝑘𝑡
𝑡 |𝑥𝑏

𝑘
𝑡−1

𝑡−1 , 𝑦𝑡)

78

= 𝑁−𝑇
𝑁∏︁

𝑖=1,𝑖 ̸=𝑏𝑘1

𝑞1(𝑥
𝑖
1)�̃�1(𝑥

𝑎𝑖1
1)

𝑇−1∏︁
𝑡=2

𝑁∏︁
𝑗=1,𝑗 ̸=𝑏𝑘𝑡

𝑞𝑡(𝑥
𝑗
𝑡 |𝑥

𝑎𝑗𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑎𝑗𝑡
𝑡)𝑞𝑇 (𝑥𝑗𝑇 |𝑥

𝑎𝑗𝑇−1

𝑇−1 , 𝑦𝑇)

× 𝑔(𝑦1|𝑥
𝑏𝑘1
1)𝑓1(𝑥

𝑏𝑘1
1)

𝑇∏︁
𝑡=2

𝑔(𝑦𝑡|𝑥
𝑏𝑘𝑡
𝑡)𝑓(𝑥

𝑏𝑘𝑡
𝑡 |𝑥𝑏

𝑘
𝑡−1

𝑡−1)

= 𝑁−𝑇
𝑁∏︁

𝑖=1,𝑖 ̸=𝑏𝑘1

𝑞1(𝑥
𝑖
1)�̃�1(𝑥

𝑎𝑖1
1)

𝑇−1∏︁
𝑡=2

𝑁∏︁
𝑗=1,𝑗 ̸=𝑏𝑘𝑡

𝑞𝑡(𝑥
𝑗
𝑡 |𝑥

𝑎𝑗𝑡−1

𝑡−1 , 𝑦𝑡)�̃�𝑡(𝑥
𝑎𝑗𝑡
𝑡)𝑞𝑇 (𝑥𝑗𝑇 |𝑥

𝑎𝑗𝑇−1

𝑇−1 , 𝑦𝑇)

× 𝑝(𝑦1:𝑇 , 𝑥
𝑘
1:𝑇 | 𝜃).

Finish by integrating with respect to 𝑢 ∖ 𝑥𝑘1:𝑇 .

Proof of lemma 2. This proof uses notation that is similar to the above. However, we

need to rewrite the resampling pmfs and the likelihood estimate a little differently.

They are:

1. 𝑟(𝑎𝑖1 | x1) =
𝑝(𝑦1|𝑥𝑖

2,1)𝑓(𝑥
𝑖
2,1)

𝑞1(𝑥𝑖
2,1|𝑦1)

[︂∑︀
𝑘

𝑝(𝑦1|𝑥𝑘
2,1)𝑓(𝑥

𝑘
2,1)

𝑞1(𝑥𝑘
2,1|𝑦1)

]︂−1

2. 𝑟(𝑎𝑖𝑡 | x𝑡−1:𝑡, a𝑡−1) =
𝑓(𝑋𝑖

2,𝑡|𝑥
𝑎𝑖𝑡−1
2,𝑡−1)𝑝(𝑦𝑡|𝑦1:𝑡−1,𝑋𝑖

2,1:𝑡)

𝑞𝑡(𝑋𝑖
2,𝑡|𝑥

𝑎𝑖𝑡−1
2,𝑡−1,𝑦𝑡)

[︃∑︀
𝑘

𝑓(𝑋𝑘
2,𝑡|𝑥

𝑎𝑘𝑡−1
2,𝑡−1)𝑝(𝑦𝑡|𝑦1:𝑡−1,𝑋𝑘

2,1:𝑡)

𝑞𝑡(𝑋𝑘
2,𝑡|𝑥

𝑎𝑘𝑡−1
2,𝑡−1,𝑦𝑡)

]︃−1

3. 𝜓(𝑢|𝑦1:𝑇 , 𝜃) =
∏︀𝑁

𝑖=1 𝑞1(𝑥
𝑖
2,1 | 𝑦1)𝑟(𝑎𝑖1|x1)

∏︀𝑇−1
𝑡=2

∏︀𝑁
𝑗=1 𝑞𝑡(𝑥

𝑗
2,𝑡|𝑥

𝑎𝑗𝑡−1

2,𝑡−1, 𝑦𝑡)𝑟(𝑎
𝑗
𝑡 |x𝑡−1:𝑡, a𝑡−1)𝑞𝑇 (𝑥𝑗2,𝑇 |

𝑥
𝑎𝑗𝑇−1

2,𝑇−1, 𝑦𝑇)

4. 𝑝(𝑦1:𝑇 | 𝜃) =

(︂
𝑁−1

∑︀𝑁
𝑖=1

𝑝(𝑦1|𝑥𝑖
2,1)𝑓(𝑥

𝑖
2,1)

𝑞1(𝑥𝑖
2,1|𝑦1)

)︂∏︀𝑇
𝑡=2

(︂
𝑁−1

∑︀𝑁
𝑖=1

𝑓(𝑋𝑖
2,𝑡|𝑥𝑖

2,𝑡−1)𝑝(𝑦𝑡|𝑦1:𝑡−1,𝑋𝑖
2,1:𝑡)

𝑞𝑡(𝑋𝑖
2,𝑡|𝑥𝑖

2,𝑡−1,𝑦𝑡)

)︂
.

Our goal is to show the the likelihood estimator is unbiased for the RBPF, or in

other words, that

∫︁
𝑝(𝑦1:𝑇 | 𝜃)𝜓(𝑢 | 𝑦1:𝑇 , 𝜃)𝑑𝑢 = 𝑝(𝑦1:𝑇 | 𝜃). (A.2)

Because our functional is a product, our general proof strategy is to iterate the

79

expectations. For three random variables 𝑥1, 𝑥2, 𝑥3, this would look like

𝐸[𝑥1𝑥2𝑥3] = 𝐸[𝑥1𝐸(𝑥2𝑥3 | 𝑥1)]

= 𝐸[𝑥1𝐸(𝑥2𝐸{𝑥3 | 𝑥2, 𝑥1} | 𝑥1)].

Denote 𝑚𝑇−1 = 𝐸[𝑝(𝑦𝑇 | 𝑦1:𝑇−1) | x1:𝑇−1, a1:𝑇−1], and for 𝑡 < 𝑇 − 1

𝑚𝑡 = 𝐸[𝑝(𝑦𝑡+1 | 𝑦1:𝑡)𝐸(𝑚𝑡+1 | x1:𝑡+1) | x1:𝑡, a1:𝑡].

From the definition of the likelihood approximation above:

𝐸

⎡⎣𝑝(𝑦1) 𝑁∏︁
𝑡=1

𝑝(𝑦𝑡+1 | 𝑦1:𝑡)

⎤⎦ = 𝐸
[︀
𝑝(𝑦1)𝐸(𝑚1 | x1)

]︀
.

Dropping dependence on theta,

𝑚𝑇−1 = 𝐸[𝑝(𝑦𝑇 | 𝑦1:𝑇−1) | x1:𝑇−1, a1:𝑇−1] (defn.)

= 𝐸

⎡⎣𝑓(𝑥𝑖2,𝑇 | 𝑥𝑎
𝑖
𝑇−1

2,𝑇−1)𝑝(𝑦𝑇 | 𝑦1:𝑇−1, 𝑥𝑖2,1:𝑇)

𝑞𝑇 (𝑥𝑖2,𝑇 | 𝑥𝑎
𝑖
𝑇−1

2,𝑇−1, 𝑦𝑇)

⃒⃒⃒⃒
x1:𝑇−1, a1:𝑇−1

⎤⎦ (linearity)

=

∫︁
𝑓(𝑥𝑖2,𝑇 | 𝑥𝑎

𝑖
𝑇−1

2,𝑇−1)𝑝(𝑦𝑇 | 𝑦1:𝑇−1, 𝑥𝑖2,1:𝑇)𝑑𝑥𝑖2,𝑇 (cancelling 𝑞)

=

∫︁
𝑝(𝑥𝑖2,𝑇 | 𝑥𝑎

𝑖
𝑇−1

2,1:𝑇−1, 𝑦1:𝑇−1)𝑝(𝑦𝑇 | 𝑦1:𝑇−1, 𝑥𝑖2,1:𝑇)𝑑𝑥𝑖2,𝑇 (cndtnl indep.)

=

∫︁
𝑝(𝑥𝑖2,1:𝑇 , 𝑦1:𝑇−1)

𝑝(𝑥
𝑎𝑖𝑇−1

2,1:𝑇−1, 𝑦1:𝑇−1)

𝑝(𝑦1:𝑇 , 𝑥
𝑖
2,1:𝑇)

𝑝(𝑦1:𝑇−1, 𝑥𝑖2,1:𝑇)
𝑑𝑥2,𝑇

=

∫︁
𝑝(𝑦1:𝑇 , 𝑋

𝑖
2,1:𝑇)

𝑝(𝑥
𝑎𝑖𝑇−1

2,1:𝑇−1, 𝑦1:𝑇−1)
𝑑𝑥2,𝑇 (notation)

=

∫︁
𝑝(𝑦𝑇 , 𝑥2,𝑇 | 𝑦1:𝑇−1, 𝑥

𝑎𝑖𝑇−1

2,1:𝑇−1)𝑑𝑥2,𝑇

= 𝑝(𝑦𝑇 | 𝑦1:𝑇−1, 𝑥
𝑎𝑖𝑇−1

2,1:𝑇−1).

80

Then

𝐸[𝑚𝑇−1 | x𝑇−1] =

∑︀
𝑖 𝑝(𝑦𝑇 | 𝑦1:𝑇−1, 𝑥𝑖2,1:𝑇−1)

𝑓(𝑋𝑖
2,𝑇−1|𝑥

𝑎𝑖𝑇−2
2,𝑇−2)𝑝(𝑦𝑇−1|𝑦1:𝑇−2,𝑥

𝑖
2,1:𝑇−1)

𝑞𝑇−1(𝑥
𝑖
2,𝑇−1|𝑥

𝑎𝑖
𝑇−2

2,𝑇−2,𝑦𝑇−1)∑︀
𝑗

𝑓(𝑥𝑗
2,𝑇−1|𝑥

𝑎
𝑗
𝑇−2

2,𝑇−2)𝑝(𝑦𝑇−1|𝑦1:𝑇−2,𝑥
𝑗
2,1:𝑇−1)

𝑞𝑇−1(𝑥
𝑗
2,𝑇−1|𝑥

𝑎
𝑗
𝑇−2

2,𝑇−2,𝑦𝑇−1)

.

So

𝑚𝑇−2 = 𝐸[𝑝(𝑦𝑇−1 | 𝑦1:𝑇−2)𝐸
{︀
𝑚𝑇−1 | x𝑇−1

}︀
| x1:𝑇−2, a1:𝑇−2]

= 𝐸

⎡⎣ 1

𝑁

∑︁
𝑖

𝑝(𝑦𝑇 | 𝑦1:𝑇−1, 𝑥𝑖2,1:𝑇−1)
𝑓(𝑥𝑖2,𝑇−1 | 𝑥

𝑎𝑖𝑇−2

2,𝑇−2)𝑝(𝑦𝑇−1|𝑦1:𝑇−2, 𝑥𝑖2,1:𝑇−1)

𝑞𝑇−1(𝑋 𝑖
2,𝑇−1 | 𝑥

𝑎𝑖𝑇−2

2,𝑇−2, 𝑦𝑇−1)

⃒⃒⃒⃒
x1:𝑇−2, a1:𝑇−2

⎤⎦
= 𝐸

⎡⎣𝑝(𝑦𝑇 | 𝑦1:𝑇−1, 𝑥𝑖2,1:𝑇−1)
𝑓(𝑥𝑖2,𝑇−1 | 𝑥

𝑎𝑖𝑇−2

2,𝑇−2)𝑝(𝑦𝑇−1|𝑦1:𝑇−2, 𝑋 𝑖
2,1:𝑇−1)

𝑞𝑇−1(𝑥𝑖2,𝑇−1 | 𝑥
𝑎𝑖𝑇−2

2,𝑇−2, 𝑦𝑇−1)

⃒⃒⃒⃒
x𝑇−2, a𝑇−2

⎤⎦
=

∫︁
𝑝(𝑦𝑇 | 𝑦1:𝑇−1, 𝑥𝑖2,1:𝑇−1)𝑓(𝑥𝑖2,𝑇−1 | 𝑥

𝑎𝑖𝑇−2

2,𝑇−2)𝑝(𝑦𝑇−1|𝑦1:𝑇−2, 𝑥
𝑖
2,1:𝑇−1)𝑑𝑥𝑇−1

=

∫︁
𝑝(𝑦𝑇 | 𝑦1:𝑇−1, 𝑥𝑖2,1:𝑇−1)𝑝(𝑥𝑖2,𝑇−1 | 𝑥

𝑎𝑖𝑇−2

2,1:𝑇−2, 𝑦1:𝑇−2)𝑝(𝑦𝑇−1|𝑦1:𝑇−2, 𝑥
𝑖
2,1:𝑇−1)𝑑𝑥𝑇−1

=

∫︁
𝑝(𝑦1:𝑇 , 𝑥

𝑖
2,1:𝑇−1)

𝑝(𝑦1:𝑇−1, 𝑥𝑖2,1:𝑇−1)

𝑝(𝑥𝑖2,1:𝑇−1, 𝑦1:𝑇−2)

𝑝(𝑥
𝑎𝑖𝑇−2

2,1:𝑇−2, 𝑦1:𝑇−2)

𝑝(𝑦1:𝑇−1, 𝑋
𝑖
2,1:𝑇−1)

𝑝(𝑦1:𝑇−2, 𝑥𝑖1:𝑇−1)
𝑑𝑥𝑇−1

=

∫︁
𝑝(𝑦1:𝑇 , 𝑥

𝑖
2,1:𝑇−1)

𝑝(𝑥
𝑎𝑖𝑇−2

2,1:𝑇−2, 𝑦1:𝑇−2)
𝑑𝑥𝑇−1

= 𝑝(𝑦𝑇−1:𝑇 | 𝑦1:𝑇−2, 𝑥𝑖2,1:𝑇−2).

Here’s the inductive step. Assume that for 𝑇 − 2 ≥ 𝑡 ≥ 1

𝑚𝑡 = 𝑝(𝑦𝑡+1:𝑇 | 𝑦1:𝑡, 𝑥
𝑎𝑖𝑡
2,1:𝑡).

We want to show that

𝑚𝑡−1 = 𝑝(𝑦𝑡:𝑇 | 𝑦1:𝑡−1, 𝑥
𝑎𝑖𝑡−1

2,1:𝑡−1).

First,

81

𝐸[𝑚𝑡 | x𝑡] =

∑︀
𝑖 𝑝(𝑦𝑡+1:𝑇 | 𝑦1:𝑡, 𝑥𝑖2,1:𝑡)

𝑓(𝑥𝑖
2,𝑡|𝑥

𝑎𝑖𝑡−1
2,𝑡−1)𝑝(𝑦𝑡|𝑦1:𝑡−1,𝑥𝑖

2,1:𝑡)

𝑞𝑡(𝑥𝑖
2,𝑡|𝑥

𝑎𝑖𝑡−1
2,𝑡−1,𝑦𝑡)∑︀

𝑗

𝑓(𝑥𝑗
2,𝑡|𝑥

𝑎
𝑗
𝑡−1

2,𝑡−1)𝑝(𝑦𝑡|𝑦1:𝑡−1,𝑥
𝑗
2,1:𝑡)

𝑞𝑡(𝑥
𝑗
2,𝑡|𝑥

𝑎
𝑗
𝑡−1

2,𝑡−1,𝑦𝑡)

.

Then we plug that in to obtain

𝑚𝑡−1 = 𝐸[𝑝(𝑦𝑡 | 𝑦1:𝑡−1)𝐸
{︀
𝑚𝑡 | x𝑡

}︀
| x𝑡−1, a𝑡−1]

= 𝐸

⎡⎣ 1

𝑁

∑︁
𝑖

𝑝(𝑦𝑡+1:𝑇 | 𝑦1:𝑡, 𝑥𝑖2,1:𝑡)
𝑓(𝑥𝑖2,𝑡 | 𝑥

𝑎𝑖𝑡−1

2,𝑡−1)𝑝(𝑦𝑡|𝑦1:𝑡−1, 𝑥𝑖2,1:𝑡)

𝑞𝑡(𝑥𝑖2,𝑡 | 𝑥
𝑎𝑖𝑡−1

2,𝑡−1, 𝑦𝑡)

⃒⃒⃒⃒
x𝑡−1, a𝑡−1

⎤⎦
= 𝐸

⎡⎣𝑝(𝑦𝑡+1:𝑇 | 𝑦1:𝑡, 𝑥𝑖2,1:𝑡)
𝑓(𝑥𝑖2,𝑡 | 𝑥

𝑎𝑖𝑡−1

2,𝑡−1)𝑝(𝑦𝑡|𝑦1:𝑡−1, 𝑥𝑖2,1:𝑡)

𝑞𝑡(𝑥𝑖2,𝑡 | 𝑥
𝑎𝑖𝑡−1

2,𝑡−1, 𝑦𝑡)

⃒⃒⃒⃒
x𝑡−1, a𝑡−1

⎤⎦
=

∫︁
𝑝(𝑦𝑡+1:𝑇 | 𝑦1:𝑡, 𝑥𝑖2,1:𝑡)𝑓(𝑥𝑖2,𝑡 | 𝑥

𝑎𝑖𝑡−1

2,𝑡−1)𝑝(𝑦𝑡|𝑦1:𝑡−1, 𝑥𝑖2,1:𝑡)𝑑𝑥𝑖2,𝑡

=

∫︁
𝑝(𝑦𝑡+1:𝑇 , 𝑦1:𝑡, 𝑥

𝑖
2,1:𝑡)

𝑝(𝑦1:𝑡, 𝑥𝑖2,1:𝑡)

𝑝(𝑥𝑖2,1:𝑡, 𝑦1:𝑡−1)

𝑝(𝑥2,1:𝑡−1, 𝑦1:𝑡−1)

𝑝(𝑦1:𝑡, 𝑥
𝑖
2,1:𝑡)

𝑝(𝑦1:𝑡−1, 𝑥𝑖2,1:𝑡)
𝑑𝑥𝑖2,𝑡

= 𝑝(𝑦𝑡:𝑇 | 𝑦1:𝑡−1, 𝑥
𝑎𝑖𝑡−1

2,1:𝑡−1),

which means

82

𝐸

⎡⎣𝑝(𝑦1) 𝑁∏︁
𝑡=1

𝑝(𝑦𝑡+1 | 𝑦1:𝑡)

⎤⎦ = 𝐸
[︀
𝑝(𝑦1)𝐸[𝑚1 | x1

]︀

= 𝐸

⎡⎢⎢⎣
⎛⎝𝑁−1 𝑁∑︁

𝑖=1

𝑝(𝑦1|𝑥𝑖2,1)𝑓(𝑥𝑖2,1)

𝑞1(𝑥𝑖2,1|𝑦1)

⎞⎠
⎛⎜⎝
∑︀

𝑖 𝑝(𝑦2:𝑇 | 𝑦1, 𝑥𝑖1)
𝑝(𝑦1|𝑥𝑖

2,1)𝑓(𝑥
𝑖
2,1)

𝑞1(𝑥𝑖
2,1|𝑦1)∑︀𝑁

𝑖=1

𝑝(𝑦1|𝑥𝑖
2,1)𝑓(𝑥

𝑖
2,1)

𝑞1(𝑥𝑖
2,1|𝑦1)

⎞⎟⎠
⎤⎥⎥⎦

= 𝐸

⎡⎣ 1

𝑁

∑︁
𝑖

𝑝(𝑦2:𝑇 | 𝑦1, 𝑥𝑖1)
𝑝(𝑦1|𝑥𝑖2,1)𝑓(𝑥𝑖2,1)

𝑞1(𝑥𝑖2,1|𝑦1)

⎤⎦
= 𝐸

[︃
𝑝(𝑦2:𝑇 | 𝑦1, 𝑥𝑖1)

𝑝(𝑦1|𝑥2,1)𝑓(𝑥2,1)

𝑞1(𝑥2,1 | 𝑦1)

]︃
=

∫︁∫︁
𝑝(𝑦2:𝑇 | 𝑦1, 𝑥𝑖1)𝑝(𝑦1|𝑥𝑖2,1)𝑓(𝑥𝑖2,1)𝑑𝑥1𝑑𝑥2

= 𝑝(𝑦1:𝑇).

Proof of Lemma 3. The matrix 𝑃 is diagonal with positive diagonal elements if and

only if there exists a diagonal matrix log(𝑃−1), where log(𝑃−1) is defined uniquely

as the logarithm of each of the diagonal elements of the inverse matrix. This allows

us to write

𝑃−1 exp
[︀
diag(𝑥𝑡)/2

]︀
= exp

[︀
log(𝑃−1)

]︀
exp

[︀
diag(𝑥𝑡)/2

]︀
= exp

[︁{︀
2 log(𝑃−1) + diag(𝑥𝑡)

}︀
/2
]︁

(*)

= exp
[︀
diag(𝑢+ 𝑥𝑡)/2

]︀
.

Note that (*) uses a property of matrix exponentials that doesn’t always hold. If the

matrices commute, however, then the product of these matrix exponentials equals the

exponential of the sum, and it is always true that 2 log(𝑃−1) commutes with diag(𝑥𝑡),

as they are both diagonal.

Clearly, the process 𝑢+𝑥𝑡 is a vector autoregressive process of the same form but

with new mean 𝜇+ 𝑢.

83

Proof of Lemma 4. Let P be the permutation that encodes the permutation 𝜋 : 𝑖 ↦→ 𝑗.

Because every permutation matrix is orthogonal,

𝐵Var(f𝑡 | 𝑥𝑡)𝐵′ = 𝐵𝑃 ′𝑃Var(f𝑡|𝑥𝑡)𝑃 ′(𝐵𝑃 ′)′.

Pre-multiplying both sides of equation 4.1 by P yields a system of state transition

equations corresponding to a vector autoregressive progress with parameters P𝜇,

PΦP′, P𝑄P′. Also, because it is true that for any diagonal matrix D, PDP′ will be

the diagonal matrix with 𝐷𝑖𝑖 in the 𝑗𝑗th spot, we have

Var(̃︀f𝑡|𝑥𝑡) = 𝑃Var(f𝑡|𝑥𝑡)𝑃 ′,

where ̃︀f𝑡 = exp
[︀
diag(Px𝑡)/2

]︀
z𝑡.

Proof of Lemma 5. This follows from the diagonality of S and D = diag(𝑒𝑥1,𝑡 , 𝑒𝑥2,𝑡).

Var(Bf𝑡 | x𝑡) = BDB′

= BSDSB′

= Var(BSf𝑡 | x𝑡).

Deriving MSL Mean Forecasts

Recall that a particle filter can approximate expectations with respect to the filter-

ing distribution. In the case of a Rao-Blackwellized particle filter, it can approximate

expectations with respect to the distribution 𝑝(x2𝑡,x3𝑡 | y1:𝑡, 𝜃). The general strategy

here is to iterate expectations and end up with a function of x2𝑡,x3𝑡.

We temporarily drop from the notation the dependence on the parameter values.

Here is the first step:

84

𝐸[y𝑡+1 | x𝑡+1]

= B𝐸[f1,𝑡+1 | x𝑡+1] + D𝑥1,𝑡+1B𝐸[f2,𝑡+1 | x𝑡+1] (4.11)

= B𝐸[𝜆1 + exp(diag{x2,𝑡+1})z1,𝑡+1 | x𝑡+1] + D𝑥1,𝑡+1B𝐸[𝜆2 + exp(diag{x3,𝑡+1})z2,𝑡+1 | x𝑡+1]

(4.12)

= B𝜆1 + D𝑥1,𝑡+1B𝜆2.

Here is step 2:

𝐸[y𝑡+1 | x2𝑡,x3𝑡] = 𝐸[𝐸
(︀
y𝑡+1 | x𝑡+1

)︀
| x2𝑡,x3𝑡]

= 𝐸[B𝜆1 + D𝑥1,𝑡+1B𝜆2 | x2𝑡,x3𝑡]

= B𝜆1 + D
𝑡

𝑡+1B𝜆2,

where D
𝑡

𝑡+1 = 𝐸[D𝑥1,𝑡+1 | x2𝑡,x3𝑡] is an expectation taken with respect ot 𝑝(𝑥1,𝑡+1 |

x2𝑡,x3𝑡).

Deriving MSL Covariance Matrix Forecasts

Again, we temporarily drop from the notation the dependence on the parameter

values. Here is step 1:

Var[y𝑡+1 | x𝑡+1]

= Var[Bf1,𝑡+1 + D𝑥1,𝑡+1Bf2,𝑡+1 + v𝑡+1 | x𝑡+1]

= BE1,𝑡+1B
′ + D𝑥1,𝑡+1BE2,𝑡+1B

′D′𝑥1𝑡
+ R

where Var[f1,𝑡+1 | x𝑡+1] = E1,𝑡+1 = diag(𝑒𝑥2,𝑡+1 , . . . , 𝑒𝑥(𝑑𝑥+1)/2,𝑡+1) and Var[f2(𝑡+1) |

x𝑡+1] = E2,𝑡+1 = diag(𝑒𝑥(𝑑𝑥+3)/2,𝑡+1 , . . . , 𝑒𝑥(𝑑𝑥,𝑡+1)

To complete step 2, use the following fact:

85

E
𝑡

1,𝑡+1

= 𝐸(E1,𝑡+1 | x2𝑡,x3𝑡)

= 𝐸

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

exp(𝑥2,𝑡+1) 0 0

0
. . . 0

0 0 exp(𝑥(𝑑𝑥+1)/2,𝑡+1)

⎤⎥⎥⎥⎥⎦
⃒⃒⃒⃒
x2𝑡,x3𝑡

⎞⎟⎟⎟⎟⎟⎠

= 𝐸

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
𝑒𝜇1+𝜑1(𝑥2,𝑡−𝜇1)+𝑤1,𝑡 0 0

0
. . . 0

0 0 𝑒𝜇(𝑑𝑥−1)/2+𝜑(𝑑𝑥−1)/2(𝑥(𝑑𝑥+1)/2,𝑡−𝜇(𝑑𝑥−1)/2)+𝑤(𝑑𝑥−1)/2,𝑡

⎤⎥⎥⎥⎥⎦
⃒⃒⃒⃒
x2𝑡,x3𝑡

⎞⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎣
𝑒𝜇1+𝜑1(𝑥2,𝑡−𝜇1)+𝜎2

1/2 0 0

0
. . . 0

0 0 𝑒𝜇(𝑑𝑥−1)/2+𝜑(𝑑𝑥−1)/2(𝑥(𝑑𝑥+1)/2,𝑡−𝜇(𝑑𝑥−1)/2)+𝜎2
(𝑑𝑥+1)/2

/2

⎤⎥⎥⎥⎥⎦ .

Similary E
𝑡

2,𝑡+1 equals

⎡⎢⎢⎢⎢⎣
𝑒𝜇(𝑑𝑥+1)/2+𝜑(𝑑𝑥+1)/2(𝑥(𝑑𝑥+3)/2,𝑡−𝜇(𝑑𝑥+1)/2)+𝜎2

(𝑑𝑥+1)/2
/2 0 0

0
. . . 0

0 0 𝑒𝜇𝑑𝑥−1+𝜑𝑑𝑥−1(𝑥𝑑𝑥,𝑡−𝜇𝑑𝑥−1)+𝜎2
1,𝑑𝑥−1/2.

⎤⎥⎥⎥⎥⎦

So

𝐸
(︀
Var[y𝑡+1 | x𝑡+1] | x2𝑡,x3𝑡

)︀
= 𝐸

(︁
BE1,𝑡+1B

′ + D𝑥1,𝑡+1BE2,𝑡+1B
′D′𝑥1,𝑡+1

| x2𝑡,x3𝑡

)︁
+ R

= BE
𝑡

1,𝑡+1B
′ + 𝐸

(︁
D𝑥1,𝑡+1BE2,𝑡+1B

′D′𝑥1,𝑡+1
| x2𝑡,x3𝑡

)︁
+ R

= BE
𝑡

1,𝑡+1B
′ + 𝐸

{︁
D𝑥1,𝑡+1𝐸

(︀
BE2,𝑡+1B

′ | 𝑥1,𝑡+1,x2𝑡,x3𝑡

)︀
D′𝑥1,𝑡+1

| x2𝑡,x3𝑡

}︁
+ R

= BE
𝑡

1,𝑡+1B
′ + 𝐸

{︁
D𝑥1,𝑡+1BE

𝑡

2,𝑡+1B
′D′𝑥1,𝑡+1

| x2𝑡,x3𝑡

}︁
+ R

86

and

Var
(︁
𝐸
[︀
y𝑡+1 | x𝑡+1

]︀
| x2𝑡,x3𝑡

)︁
= Var

(︀
B𝜆1 + D𝑥1,𝑡+1B𝜆2 | x2𝑡,x3𝑡

)︀
= Var

(︀
D𝑥1,𝑡+1B𝜆2 | x2𝑡,x3𝑡

)︀
= 𝐸

(︁
D𝑥1,𝑡+1B𝜆2𝜆

′
2B
′D′𝑥1,𝑡+1

| x2𝑡,x3𝑡

)︁
− 𝐸

(︀
D𝑥1,𝑡+1B𝜆2 | x𝑡

)︀
𝐸
(︀
D𝑥1,𝑡+1B𝜆2 | x2𝑡,x3𝑡

)︀′
= 𝐸

(︁
D𝑥1,𝑡+1B𝜆2𝜆

′
2B
′D′𝑥1,𝑡+1

| x2𝑡,x3𝑡

)︁
−D

𝑡

𝑡+1B𝜆2𝜆
′
2B
′D

𝑡′
𝑡+1

Put these two together and Var
(︀
y𝑡+1 | x2𝑡,x3𝑡

)︀
equals

BE
𝑡

1,𝑡+1B
′ + 𝐸

{︁
D𝑥1,𝑡+1BE

𝑡

2,𝑡+1B
′D′𝑥1,𝑡+1

| x2𝑡,x3𝑡

}︁
+ R

+ 𝐸
(︀
D𝑥1,𝑡+1B𝜆2𝜆

′
2B
′D𝑥1,𝑡+1 | x2𝑡,x3𝑡

)︀
−D

𝑡

𝑡+1B𝜆2𝜆
′
2B
′D

𝑡′
𝑡+1.

(A.3)

Things simplify in the special case of MSL1 and MSL2 used in the applied section.

In this case Var
(︀
y𝑡+1 | x2𝑡,x3𝑡

)︀
equals

exp
(︀
𝜇1 + 𝜑1(𝑥2,𝑡 − 𝜇1) + 𝜎2

1/2
)︀
BB′

+ exp
(︀
𝜇2 + 𝜑1(𝑥3,𝑡 − 𝜇2) + 𝜎2

2/2
)︀
𝐸
(︁
D𝑥1,𝑡+1BB′D′𝑥1,𝑡+1

| 𝑥2𝑡, 𝑥3𝑡
)︁

+ R + 𝜆22𝐸
(︀
D𝑥1,𝑡+1BB′D𝑥1,𝑡+1 | 𝑥2𝑡, 𝑥3𝑡

)︀
− 𝜆22D

𝑡

𝑡+1BB′D
𝑡

𝑡+1.

(A.4)

We reintroduce to the notation the dependence on 𝜃. Recall that our goal is an

approximation of

Var
[︀
y𝑡+1 | y1:𝑡

]︀
= Var

[︁
𝐸
(︀
y𝑡+1 | x2𝑡,x3𝑡, 𝜃

)︀
| y1:𝑡

]︁
+ 𝐸

[︁
Var

(︀
y𝑡+1 | x2𝑡,x3𝑡, 𝜃

)︀
| y1:𝑡

]︁
.

Write the above expression in terms of expectations, and average the quantities over

several parameter samples, and for each parameter’s particle filter, over the state

samples with their associated weights.

87

88

Plots

Figure A-1: PMMH samples of B of Jacquier et al. model

89

Figure A-2: PMMH samples 𝜑, 𝜇, 𝜎2 of Jacquier et al. model

90

Figure A-3: PMMH samples of R of Jacquier et al. model

91

Figure A-4: Returns, squared returns, filtered log volatilities and log conditional
likelihoods

Figure A-5: Returns, whitened residuals, and their cumulative sums

92

Figure A-6: prewhitened residuals

Figure A-7: Naively whitened residuals

93

Figure A-8: Cumulative returns from minimum variance portfolio strategy using
Jacquier et al. model

Figure A-9: PMMH B Samples of MSL1 model

Figure A-10: PMMH 𝜑𝑖 Samples of MSL1 model

94

Figure A-11: PMMH 𝜇𝑖 Samples of MSL1 model

Figure A-12: PMMH 𝜎2
𝑖 Samples of MSL1 model

Figure A-13: PMMH R Samples of MSL1 model

95

Figure A-14: PMMH 𝜆𝑖 Samples of MSL1 model

Figure A-15: PMMH 𝑝 Samples of MSL1 model

Figure A-16: PMMH B Samples of MSL2 model

96

Figure A-17: PMMH 𝜇𝑖 Samples of MSL2 model

Figure A-18: PMMH 𝜑𝑖 Samples of MSL2 model

Figure A-19: PMMH 𝜎2
𝑖 Samples of MSL2 model

97

Figure A-20: PMMH R Samples of MSL2 model

Figure A-21: PMMH 𝜆𝑖 Samples of MSL2 model

Figure A-22: PMMH 𝑝𝑖 Samples of MSL2 model

98

Figure A-23: Forecast Scores

99

Figure A-24: Whitened Forecast Errors for MSL1 and MSL2, respectively100

Figure A-25: Standardized Forecast Errors for MSL1 and MSL2, respectively

101

Figure A-26: Filtered Log Volatilities

102

Figure A-27: Cumulative Returns from Minimum Variance Portfolio Strategy

103

104

Bibliography

[Aguilar and West, 2000] Aguilar, O. and West, M. (2000). Bayesian dynamic fac-
tor models and portfolio allocation. Journal of Business & Economic Statistics,
18(3):338–357.

[Amisano and Geweke, 2008] Amisano, G. and Geweke, J. (2008). Comparing and
evaluating bayesian predictive distributions of assets returns. Working Paper Series
969, European Central Bank.

[Andrieu and Doucet, 2002] Andrieu, C. and Doucet, A. (2002). Particle filtering for
partially observed gaussian state space models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 64(4):827–836.

[Andrieu et al., 2010] Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle
markov chain monte carlo methods. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 72(3):269–342.

[Andrieu and Roberts, 2009] Andrieu, C. and Roberts, G. O. (2009). The pseudo-
marginal approach for efficient monte carlo computations. Ann. Statist., 37(2):697–
725.

[Cappé et al., 2005] Cappé, O., Moulines, E., and Rydén, T. (2005). Inference in
Hidden Markov Models. Springer, New York, New York.

[Carter and Kohn, 1994] Carter, C. K. and Kohn, R. (1994). On gibbs sampling for
state space models. Biometrika, 81(3):541–553.

[Chen and Liu, 2000] Chen, R. and Liu, J. S. (2000). Mixture kalman filters. J. R.
Statist. Soc. B, 62:493–508.

[Chib et al., 2006] Chib, S., Nardari, F., and Shephard, N. (2006). Analysis of high
dimensional multivariate stochastic volatility models. Journal of Econometrics,
134(2):341–371.

[Chib et al., 2009] Chib, S., Omori, Y., and Asai, M. (2009). Multivariate Stochastic
Volatility, pages 365–400. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Chopin, 2004] Chopin, N. (2004). Central limit theorem for sequential monte carlo
methods and its application to bayesian inference. Ann. Statist., 32(6):2385–2411.

105

[Crisan and Doucet, 2002] Crisan, D. and Doucet, A. (2002). A survey of convergence
results on particle filtering methods for practitioners. IEEE Transactions on Signal
Processing, 50(3):736–746.

[Douc, 2005] Douc, R. (2005). Comparison of resampling schemes for particle fil-
tering. In In 4th International Symposium on Image and Signal Processing and
Analysis (ISPA, pages 64–69.

[Doucet and Johansen, 2011] Doucet, A. and Johansen, A. M. (2011). A tutorial on
particle filtering and smoothing: fifteen years later.

[Fearnhead, 2011] Fearnhead, P. (2011). Mcmc for state space models. In
Steve Brooks, Andrew Gelman, G. L. J. and Meng, X.-L., editors, Handbook of
Markov Chain Monte Carlo. Chapman & Hall/CRC.

[Flegal et al., 2017] Flegal, J. M., Hughes, J., Vats, D., and Dai, N. (2017). mcmcse:
Monte Carlo Standard Errors for MCMC. Riverside, CA, Denver, CO, Coventry,
UK, and Minneapolis, MN. R package version 1.3-2.

[Fritsche et al., 2009] Fritsche, C., Schon, T. B., and Klein, A. (2009). The marginal-
ized auxiliary particle filter. 2009 3rd IEEE International Workshop on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 289–292.

[Gelman et al., 2013] Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and
Rubin, D. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC
Texts in Statistical Science. Taylor & Francis.

[Geyer, 2005] Geyer, C. J. (2005). Markov chain monte carlo lecture notes.

[Gneiting and Raftery, 2007] Gneiting, T. and Raftery, A. E. (2007). Strictly proper
scoring rules, prediction, and estimation. Journal of the American Statistical As-
sociation, 102(477):359–378.

[Gordon et al., 1993] Gordon, N., Salmond, D., and Smith, A. (1993). Novel approach
to nonlinear/non-gaussian bayesian state estimation. IEEE Proceedings F, Radar
and Signal Processing, 140(2):107–113.

[Grenander et al., 1991] Grenander, U., Chow, Y., and Keenan, D. (1991). Hands:
a pattern theoretic study of biological shapes. Research notes in neural computing.
Springer-Verlag.

[Haario et al., 2001] Haario, H., Saksman, E., and Tamminen, J. (2001). An adaptive
metropolis algorithm. Bernoulli, 7(2):223–242.

[Jacob et al., 2009] Jacob, P., Chopin, N., Robert, C. P., and Rue, H. (2009). Com-
ments on “Particle Markov chain Monte Carlo” by C. Andrieu, A. Doucet, and R.
Hollenstein. ArXiv e-prints.

106

[Jacquier et al., 1999] Jacquier, E., Polson, N. G., and Rossi, P. (1999). Stochastic
volatility: Univariate and multivariate extensions. Computing in Economics and
Finance 1999 112, Society for Computational Economics.

[Jacquier et al., 1994] Jacquier, E., Polson, N. G., and Rossi, P. E. (1994). Bayesian
analysis of stochastic volatility models. Journal of Business & Economic Statistics,
12(4):371–389.

[Jianjuna et al., 2007] Jianjuna, Y., Jianqiua, Z., and Klaasb, M. (2007). The
marginal rao-blackwellized particle filter for mixed linear/nonlinear state space
models.

[Kantas et al., 2014] Kantas, N., Doucet, A., Singh, S. S., Maciejowski, J., and
Chopin, N. (2014). On Particle Methods for Parameter Estimation in State-Space
Models. ArXiv e-prints.

[Kastner and Frühwirth-Schnatter, 2014] Kastner, G. and Frühwirth-Schnatter, S.
(2014). Ancillarity-sufficiency interweaving strategy (asis) for boosting mcmc esti-
mation of stochastic volatility models. Comput. Stat. Data Anal., 76(C):408–423.

[Kim et al., 1998] Kim, S., Shephard, N., and Chib, S. (1998). Stochastic volatil-
ity: Likelihood inference and comparison with arch models. Review of Economic
Studies, 65(3):361–393.

[Kipnis and Varadhan, 1986] Kipnis, C. and Varadhan, S. R. S. (1986). Central limit
theorem for additive functionals of reversible markov processes and applications to
simple exclusions. Comm. Math. Phys., 104(1):1–19.

[Kitagawa, 1998] Kitagawa, G. (1998). A self-organizing state space model.
93(443):1203–1215.

[Kokkala and Särkkä, 2014] Kokkala, J. and Särkkä, S. (2014). Combining Parti-
cle MCMC with Rao-Blackwellized Monte Carlo Data Association for Parameter
Estimation in Multiple Target Tracking. ArXiv e-prints.

[Kong et al., 1994] Kong, A., Liu, J. S., and Wong, W. H. (1994). Sequential impu-
tations and bayesian missing data problems. Journal of the American statistical
association, 89(425):278–288.

[Liu, 1996] Liu, J. S. (1996). Metropolized independent sampling with comparisons
to rejection sampling and importance sampling.

[Liu et al., 2001] Liu, J. S., Chen, R., and Logvinenko, T. (2001). Sequential Monte
Carlo Methods in Practice, chapter A Theoretical Framework for Sequential Impor-
tance Sampling with Resampling, pages 225–246. Springer New York, New York,
NY.

[Lopes and Polson, 2010] Lopes, H. and Polson, N. (2010). Bayesian inference for
stochastic volatility modeling. Risk, 1, 2:515–551.

107

[Lopes et al., 2006] Lopes, H. F., Carvalho, C. M., Bernardo, I., and Smith, A. P.
(2006). Factor stochastic volatility with time varying loadings and markov switch-
ing regimes.

[Markowitz, 1952] Markowitz, H. (1952). Portfolio selection. The Journal of Finance,
7(1):77–91.

[Meyn and Tweedie, 2009] Meyn, S. and Tweedie, R. L. (2009). Markov Chains and
Stochastic Stability. Cambridge University Press, New York, NY, USA, 2nd edition.

[Moral, 1996] Moral, P. D. (1996). Nonlinear filtering: Interacting particle resolution.

[Niemi and West, 2010] Niemi, J. and West, M. (2010). Adaptive mixture modeling
metropolis methods for bayesian analysis of nonlinear state-space models. Journal
of Computational and Graphical Statistics, 19(2):260–280.

[Nordh, 2014] Nordh, J. (2014). Rao-blackwellized auxiliary particle filters for mixed
linear/nonlinear gaussian models. In 2014 12th International Conference on Signal
Processing (ICSP), pages 1–6.

[Pitt et al., 2010] Pitt, M., Silva, R., Giordani, P., and Kohn, R. (2010). Auxiliary
particle filtering within adaptive metropolis-hastings sampling.

[Pitt and Shephard, 1999a] Pitt, M. K. and Shephard, N. (1999a). Filtering via sim-
ulation: Auxiliary particle filters. 94(446):590–??

[Pitt and Shephard, 1999b] Pitt, M. K. and Shephard, N. (1999b). Time varying
covariances: a factor stochastic volatility approach. In Bayesian Statistics 6, Pro-
ceedings of the Sixth Valencia International Meeting,(edited by JM Bernardo, JO
Berger, AP Dawid and AFM Smith), volume 547, pages 547–570.

[Roberts and Rosenthal, 2004] Roberts, G. O. and Rosenthal, J. S. (2004). General
state space markov chains and mcmc algorithms. Probab. Surveys, 1:20–71.

[Shephard and Pitt, 1997] Shephard, N. and Pitt, M. K. (1997). Likelihood analysis
of non-gaussian measurement time series. Biometrika, 84(3):653–667.

[Shumway and Stoffer, 2006] Shumway, R. H. and Stoffer, D. S. (2006). Time se-
ries analysis and its applications : with R examples. Springer texts in statistics.
Springer, New York.

[Smith and Gelfand, 1992] Smith, A. F. M. and Gelfand, A. E. (1992). Bayesian
statistics without tears: A sampling-resampling perspective. The American Statis-
tician, pages 84–88.

[Taylor, 1982] Taylor, S. (1982). Financial returns modelled by the product of two
stochastic processes, a study of daily sugar prices 1961-79. 1.

108

[Whiteley and Johansen, 2011] Whiteley, N. and Johansen, A. M. (2011). Recent
developments in auxiliary particle filtering. In Barber, C. and Chiappa, editors,
Bayesian Time Series Models. Cambridge University Press.

109

110

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	Introduction
	Objective and Outline

	State Space Models and Particle Filtering
	Definitions and Background
	SSMs for Financial Applications
	Motivation: Portfolio Selection
	Approximating the Forecast Distribution: Approach 1
	Approximating the Forecast Distribution: Two More Approaches
	Approximating the Forecast Distribution: Approach 4

	Particle Filtering with Known Parameters
	Sequential Importance Sampling (SIS)
	Sequential Important Sampling with Resampling (SISR)
	The Auxiliary Particle Filter (APF)
	The Rao-Blackwellized Particle Filter (RBPF)
	The Rao-Blackwellized Auxiliary Particle Filter (RBAPF)
	A Note on Computation

	Parameter Estimation with Markov Chain Monte Carlo Techniques
	General MCMC
	MCMC for SSMs
	Closed-Form Gibbs Sampling
	Advanced Gibbs Sampling
	Particle Based Approximations to State Distributions
	Particle Markov Chain Monte Carlo
	Accelerating the PMMH Algorithm

	Multivariate Stochastic Volatility Models
	Introduction
	An Initial Model
	Identifiability of the Initial Model
	Real Data Analysis with the Initial Model
	Parameter Estimation
	Out-of-Sample Forecasting
	Alternative Models

	The Markov-Switching Loadings Models
	MSL1
	MSL2

	Estimation of MSL Models
	Estimation of MSL1
	Estimation of MSL2

	Out-of-Sample Performance

	Summary
	Overview

	Appendix
	Proofs
	Deriving MSL Mean Forecasts
	Deriving MSL Covariance Matrix Forecasts
	Plots

	Bibliography

