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Abstract 

When pristine testing conditions are used, an eyewitness’s high-confidence identification from a 

lineup can be a reliable predictor of their identification accuracy (Wixted & Wells, 2017). 

Further, Grabman, Dobolyi, Berelovich, and Dodson (2019) found that high-confidence 

identifications are more predictive of accuracy for individuals with stronger than weaker face 

recognition ability. We extend this research by investigating why strong face recognizers make 

more informative confidence judgments and fewer high-confidence errors through the 

framework of two different accounts: the optimality account (Deffenbacher, 1980) and the 

decision processes account (e.g., Kruger & Dunning, 1999). The optimality account holds that 

differences in the predictive value of confidence ratings made by strong versus weak face 

recognizers are a result of differences in the quality of their memory representations for faces, 

indicating that confidence-accuracy calibration would be equated between these two groups 

when overall accuracy is equated, while the decision processes account attributes differences in 

calibration to strong face recognizers’ superior metacognitive skills, which allow them to better 

evaluate their performance in the domain of face recognition. Therefore, to distinguish between 

these accounts, we manipulated exposure and retention interval to create conditions that 

produced comparable levels of identification accuracy between stronger and weaker face 

recognizers, and then examined their confidence-accuracy calibration. The decision processes 

account was supported, as differences in calibration between stronger and weaker face 

recognizers persisted even when overall identification accuracy was equated. Stronger face 

recognizers are better able to regulate their use of the confidence scale points with changes in 

identification accuracy. 

 Keywords: eyewitness identification, confidence, face recognition, calibration 
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A Decision Processes Account of the Differences in the Eyewitness Confidence-Accuracy 

Relationship between Strong and Weak Face Recognizers under Suboptimal Exposure and Delay 

Conditions 

In what are known as the Biggers criteria, the Supreme Court outlined five determinants 

of the admissibility and reliability of an eyewitness identification. One criterion, the level of 

certainty demonstrated by the witness (Neil v Biggers, 1972), is frequently addressed in 

eyewitness memory research. Research generally supports the Court’s inclusion of this criterion, 

as it has been shown that, under certain conditions, an eyewitness’s high-confidence 

identification from a police lineup can be highly predictive of their accuracy (Wixted & Wells, 

2017). When the identification is made from a fair lineup (i.e., where a naïve eyewitness is no 

more likely to select the suspect than a filler), this finding is robust to a variety of manipulations 

(e.g., the presence vs. absence of a weapon, same-race vs. cross-race identifications) and is 

consistent across both lab and field studies. 

However, the predictive value of confidence ratings assigned to lineup identifications 

could differ depending on the face recognition ability of the individual witness. Research on face 

recognition ability indicates that the ability to recognize unfamiliar faces varies substantially 

across individuals (see Wilmer, 2017 for a review). Some individuals have developmental 

prosopagnosia, or face-blindness, and are often unable to recognize faces of close friends and 

family members, while others, termed “super-recognizers,” are exceptionally skilled in this 

domain (Russell, Duchaine & Nakayama, 2009; Wan et al., 2017). Further, face recognition is an 

ability that is weakly correlated with measures of memory or general intelligence (Gignac, 

Shankaralingam, Walker, & Kilpatrick, 2016; Goldstein, Johnson, & Chance, 1979; Hildebrandt, 
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Wilhelm, Schmiedek, Herzmann, & Sommer, 2011; Shakeshaft & Plomin, 2015; Wilhelm et al., 

2010, Wilmer, 2017; Wilmer et al., 2012; Zhu et al., 2010) and is highly heritable (Shakeshaft & 

Plomin, 2015; Wilmer at al., 2010; Zhu et al., 2010). 

Recently, Grabman, Dobolyi, Berelovich, and Dodson (2019) showed that confidence 

ratings were much more predictive of the accuracy of lineup identifications when they were 

provided by stronger than weaker face recognizers. Using a standard eyewitness lineup 

paradigm, these researchers found that weak face recognizers are more likely than strong face 

recognizers to make high-confidence misidentifications. We extend this research by providing an 

explanation of why face recognition ability is associated with the informativeness of confidence 

ratings. Specifically, we will distinguish between two potential accounts: the optimality account 

and the decision processes account. 

Deffenbacher’s (1980) optimality account argues that the predictive value of confidence 

increases when the encoding and retrieval conditions for the associated decision (e.g., the lineup 

identification) are increasingly optimal. This account suggests that face recognition ability 

moderates the confidence-accuracy relationship by influencing the quality of the information that 

is encoded and retrieved. Differences in the quality of the representation determine the predictive 

value of confidence. Stronger face recognizers have richer memory representations and 

consequently make confidence ratings with high predictive value. Likewise, weaker face 

recognizers have impoverished representations of faces and therefore their confidence ratings 

have little predictive value. Thus, the key prediction of this account is that if the quality of the 

memory representation determines the confidence-accuracy relationship, then stronger and 

weaker face recognizers should behave similarly – i.e., similar calibration of confidence to 

accuracy – under conditions that produce similar levels of identification accuracy. 
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An alternative account holds that differences in the confidence-accuracy relationship 

between weaker and stronger face recognizers are fueled by the different decision processes 

these two groups use to evaluate what they remember and how they assign confidence ratings. 

According to this decision account, expertise in a given domain allows individuals to evaluate 

their performance in that domain more precisely (Kruger & Dunning, 1999; see also Bol, Hacker, 

O’Shea, & Allen, 2005; Chi, 1978; Moreland, Miller, & Laucka, 1981). Therefore, the expertise 

or enhanced ability of stronger face recognizers gives their confidence ratings more predictive 

value than those of weaker face recognizers. As a result, this account predicts better calibration 

for stronger face recognizers even when identification accuracy is comparable between stronger 

and weaker face recognizers. In other words, the decision account suggests better ability in a 

particular domain will lead to better metacognitive ability in that domain, emphasizing the 

contribution of metacognition to the confidence-accuracy relationship. 

In short, the optimality and decision accounts make different predictions about the 

confidence-accuracy relationship when identification accuracy is comparable between 

individuals of different face recognition ability. To distinguish between these two accounts, it is 

necessary to create conditions that produce comparable levels of identification accuracy between 

individuals of weaker and stronger face recognition ability. We do this by manipulating both: a) 

the delay between viewing target faces and making lineup identifications, and b) the frequency of 

participants’ exposure to the target faces.  

The finding that eyewitness memory performance worsens with increasing delay is well-

established and widely replicated, using delays ranging from one hour to nine months (e.g., 

Brewer, Weber, & Guerin, 2019; Juslin, Olsson, & Winman, 1996; Lin, Strube, & Roediger, 

2019; Palmer, Brewer, Weber, & Nagesh, 2013; Read, Lindsay, & Nichols, 1998; Sauer, Brewer, 
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Zweck, & Weber, 2010). Despite these changes in accuracy with delay, many studies find the 

confidence-accuracy relationship remains strong, especially for responses made with high 

confidence (Semmler, Dunn, Mickes, & Wixted, 2018; Wixted, Read, & Lindsay, 2016). 

 In their field study, Sauer et al. (2010) had participants view a target person for 10 

seconds from 10 meters away. Participants in the immediate condition were then presented with 

a target-present or target-absent lineup and asked to select the face of the person they just saw or 

indicate that the person was not present and then to rate their confidence in their decision. 

Participants in the delay condition took between 20 and 50 days to respond to an email, from 

which they completed this same task online. Sauer and colleagues found greater accuracy in the 

immediate than the delay condition both when a face was selected from a lineup (62% versus 

47%, respectively) and when ‘not present’ was selected (82% versus 66%), indicating that the 

delay manipulation clearly affected performance. Further, though the confidence-accuracy 

relationship generally remained stable, there were notable differences between the immediate 

and delay conditions. Compared to the immediate condition, the delay condition exhibited 

greater overconfidence and decreased diagnosticity at each level of confidence. Finally, using 

delays ranging from 10 minutes to 10 days, Lin et al. (2019) found that while participants made 

fewer correct positive identifications after longer than shorter delays, there was a strong 

confidence-accuracy relationship that persisted even after the longest delay. Overall, confidence 

is still predictive of accuracy with longer delays, but the accuracy of identifications and 

probative value of confidence ratings decline. One limitation in this literature is a paucity of 

studies using three or more retention intervals, which is necessary to establish the trajectory of 

the forgetting curve. Including three retention intervals also permits a more forensically relevant 

examination of changes in eyewitness memory with delay as identifications are never made 
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immediately after a crime, and the length of the delay between a crime and an identification 

varies widely. We use retention intervals of five minutes, one day, and one week. 

 Exposure duration is typically operationalized as the amount of time participants are 

exposed to the target face. Manipulations of five seconds (short exposure duration) versus 90 

seconds (long exposure duration) are common, showing improved identification accuracy in the 

longer condition (Bornstein, Deffenbacher, Penrod, & McGorty, 2012; Palmer et al., 2013; see 

also Semmler et al., 2018). However, despite changes in overall accuracy, Palmer et al. (2013) 

found that the confidence-accuracy relationship does not change as a result of exposure duration. 

Following Dobolyi and Dodson (2013), we use repetition as a proxy measure for exposure 

duration, manipulating the number of times participants were shown the target face (one time vs. 

four times).  

To summarize, the goal of the current experiment is to test two accounts of the effects of 

face recognition ability on the confidence-accuracy relationship. All extant studies that have 

compared the confidence-accuracy relationship between stronger and weaker face recognizers 

confound differences in accuracy with differences in face recognition ability. Because stronger 

face recognizers tend to be more accurate than weaker face recognizers, it has been difficult to 

determine whether differences in the confidence-accuracy relationship are due to differences in 

accuracy, differences in face recognition ability, or a combination of these factors. We solve this 

problem by manipulating delay and exposure to create a variety of levels of identification 

performance which allow us to determine whether differences in the confidence-accuracy 

relationship are best explained by differences in accuracy or differences in face recognition 

ability. There is a longstanding tradition of testing separate accounts of individual differences in 

one dimension of memory performance by controlling and matching performance on another 
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potentially confounding dimension of memory (e.g., Carpenter & Schacter, 2018; Dodson, Bawa, 

& Krueger, 2007; Jacoby et al., 2005; Morcom, Li, & Rugg, 2007). When performance is 

equated, the optimality account argues that differences in face recognition ability will have little 

influence on the confidence-accuracy relationship. In contrast, the decision account predicts that 

stronger face recognizers will show a more robust confidence-accuracy relationship than weaker 

face recognizers even under conditions of comparable identification performance. In addition to 

allowing us to create performance-matched conditions, these delay and repetition manipulations 

are used, in concert with confidence ratings, face recognition ability, and another forensically 

relevant variable – decision time (e.g., Sauerland & Sporer, 2009) – to predict identification 

accuracy, as modeling the conjunctive effects of these estimator variables in a single model is a 

secondary goal of this study. 

Method 

Participants 

Participants were 1046 individuals between the ages of 19 and 78 (M = 39.42, SD = 

11.77; 50% female) who were recruited using Turkprime (Litman, Robinson, & Abberbock, 

2017) to interface with Amazon’s Mechanical Turk (mTurk) in exchange for payment. No 

consensus standards are available for a-priori power estimates for mixed effects logistic 

regression models, but given conservative recommendations of 50 responses per modeled 

variable (van der Ploeg, Austin, & Steyerberg, 2014) as well as findings that estimates are 

generally reliable for sample sizes greater than 30 with at least 10 responses per participant 

(McNeish & Stapleton, 2016), this sample size is deemed sufficient. The University of Virginia 

Institutional Review Board (IRB) approved this research. 
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Materials 

Lineups. Participants viewed 12 lineups. These lineups consisted of formal photographs 

of six individuals with neutral facial expressions wearing identical maroon-colored t-shirts 

(Meissner, Brigham, & Butz, 2005), presented in a 2 x 3 array. All lineups were fair, meaning no 

face stood out and all faces were equally likely to be selected by a viewer naïve to the target (see 

Dobolyi & Dodson, 2013 for more details on lineup generation). Specifically, for all lineups, we 

calculated Tredoux’s (1999) E, a score that ranges from 1 to the nominal size of the lineup, and 

estimates the functional size of a lineup. A perfect score is equal to the number of faces in the 

lineup: for example, a score of six for a six-person lineup. The average E-score for the 12 lineups 

is 4.48 (95% CI = 4.09, 4.87). To ensure the lineup identification task relied on face recognition 

(and not picture-matching), at encoding, participants saw different photos of potential lineup 

targets, depicting the targets in street clothing and with casual expressions (e.g., smiling). 

Face Recognition Task. We administered the Cambridge Face Memory Test (CFMT; 

Duchaine & Nakayama, 2006) to assess participants’ face recognition ability. This task includes 

72 trials, presented in three increasingly difficult blocks, and is scored by taking a simple sum of 

the correct responses (scores range from 0-72, with chance = 24). In all blocks, participants are 

asked to select the face they previously viewed from among three choices, and lighting changes 

as well as visual noise are introduced in the latter blocks to increase difficulty. Figure 1 shows 

the distribution of CFMT scores from the present study. Internal reliability for the CFMT was 
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high (Cronbach’s α = .92). 

 

Figure 1. Distribution of CFMT scores for 1046 participants in the study. The blue line represents the 

median score (Median = 57), while the faded area surrounding represents ± 1 Median Absolute Deviation 

(MAD = 13.34). 

 

Procedure 

During encoding, participants viewed 12 faces: six of these faces one time each (weakly 

encoded faces) and the other six faces four times each (strongly encoded faces). Faces were 

displayed for three seconds with a one-second interstimulus interval. Participants were randomly 

assigned to one of four counterbalancing groups, which varied the presentation order of these 

faces as well as which faces were strongly and weakly encoded, with the following stipulations: 
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1) For faces shown four times each, the same face would appear twice in the first half of the 

encoding phase and twice in the second half and 2) the same face would not appear 

consecutively. Additionally, to control for primacy and recency effects, two filler faces appeared 

at the beginning of the encoding phase and another two filler faces appeared at the end but did 

not appear during the 

test phase. 

Prior to the 

encoding phase, we 

instructed 

participants that they 

would “see a series 

of faces. Some faces 

you will see only 

once, and others you will see four times. Please pay close attention because after a delay we will 

ask you questions about who you saw.” We further informed them that they would be randomly 

assigned to either a 5-minute, 1-day, or 1-week delay. As an attention check, before showing the 

encoding phase stimuli, we presented a question: “Some faces you will see only once, but how 

many times will you see the other faces?” Those responding anything other than ‘4’ were asked 

to reread the instructions. Failing this check a second time resulted in termination of study 

procedures. (37 participants failed this check and are not included in the results or descriptive 

statistics). 

Participants completed the lineup task (see Figure 2 for an example) after a delay of five 

minutes (n = 334), one day (n = 327), or one week (n = 385). We instructed them that they would 

Encoding Test

Delay

Figure 2. Example of the lineup identification task. Participants’ task was 

to select the person from the encoding phase or to indicate that this person 

was ‘Not Present’ in the lineup. 
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see a series of lineups where a single face they viewed previously may or may not be present and 

that “previously viewed faces may look different in their lineup mugshots. This can be due to 

changes in lighting, clothing, facial hair, and/or other reasons.” Their task was to either identify 

the face they remembered from before, or to indicate that they did not recognize any of the faces 

in the lineup by selecting ‘not present.’ After making their selection, participants were instructed 

to indicate their confidence in the accuracy of their response using a 6-point scale ranging from 

0% (guessing) to 100% (completely confident) in 20% increments.  

To demonstrate the lineup task, we asked participants to pretend that they viewed a 

particular yellow smiley face. We then immediately presented a lineup of six colorful smiley 

faces. Only those who correctly selected the yellow smiley face proceeded to the test lineups. (66 

participants failed this check and are not included in the results or descriptive statistics). In 

addition to the participants who were excluded due to failing these attention checks, 450 trials 

(3.6% of trials) were excluded based on decision time. Specifically, those with decision times of 

less than .1 seconds or outside three median absolute deviations were removed. 

Half of the 12 test lineups contained an individual viewed during encoding (i.e., ‘target 

present’; TP), whereas the other half replaced this face with another person closely matched on 

descriptive characteristics (i.e., ‘target absent’; TA). Each lineup served as either a TP or TA 

lineup depending on its randomly assigned counterbalancing group. Participants completed the 

set of lineups associated with the counterbalancing group to which they were assigned at 

encoding. Lineup orders in all four counterbalancing groups followed two stipulations: 1) no 

more than three TP/TA lineups appeared consecutively and 2) no more than three lineups 

associated with strongly/weakly encoded faces appeared consecutively. After responding to all 
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12 lineups, participants completed the CFMT, followed by a short demographic survey that 

included questions about race, age, and sex. 

Results 

All of the deidentified data and the analysis code are located on the Open Science 

Framework (OSF): https://osf.io/tduzw/. The purpose of this experiment is to examine why face 

recognition ability influences the confidence-accuracy relationship for lineup identifications. 

Why, for instance, are weaker face recognizers more likely than stronger face recognizers to 

make high confidence misidentifications? To begin answering this question, we fit a logistic 

mixed effects model predicting identification accuracy from the fixed factors of Confidence, 

CFMT, Decision Time, Delay (5-minute, 1-day, 1-week), and Repetition (presenting target faces 

four times or one time), with random intercepts of Participant and Lineup. The random intercepts 

of Participant and Lineup instruct the model to consider the differential contributions of each 

participant and each lineup to the fixed effects. Specifically, the inclusion of the participant 

intercept partials out systematic error variance due to unmeasured characteristics of these 

individuals (e.g., fatigue, motivation). Similarly, the presence of the lineup intercept reduces the 

Type I error rate compared to regression or other models by considering the variability in the 

memorability of different items (Murayama, Sakaki, Yan, & Smith, 2014).  

Continuous predictors (Confidence, CFMT, Decision Time) were centered and scaled 

prior to model fitting. We used separate models to analyze responses in which participants 

selected a face (chooser responses) and those in which participants selected ‘not present’ 

(nonchooser responses) because growing research shows that analyzing chooser and nonchooser 

data together with a single model can obscure effects within the nonchooser data, such as a 

https://osf.io/tduzw/


GETTLEMAN 13 

reliable, albeit weak, relationship between confidence and nonchooser accuracy (e.g., Brewer & 

Wells, 2006; Grabman et al., 2019; Wixted & Wells, 2017).   

With both the chooser and nonchooser models, we started by fitting full 5-way, 4-way, 3-

way, 2-way, and main effects models using the lme4 package (Bates, Maechler, Bolker, & 

Walker, 2015, version 1.1-17) in R v.3.5.1 (R Core Team, 2018). We then selected the most 

parsimonious model from each start point using a backward stepwise elimination procedure 

based on Akaike’s Information Criterion (AIC; Akaike, 1974). This method removed model 

terms that improved AIC without violating the principle of marginality (e.g., a two-way term 

could not be dropped if it was nested in a higher three-way term; Burnham & Anderson, 2002; 

Nelder, 1977). (See Appendix A for the chooser model selection table). Next, we selected the 

best-fitting of these reduced models as determined by lowest AIC. Likelihood ratio tests (LRTs) 

were performed using the afex package (Singmann, Bolker, Westfall, & Aust, 2018; version 0.23-

0) to assess the significance of the best model’s terms. The effects package (Fox, 2003; version 

4.1-2) computed model estimates and 95% confidence intervals.  

Finally, we used three different methods to assess absolute fit for the best models. First, 

we used the DHARMa package (Hartig, 2018; version 0.2.4) to perform Kolmogorov-Smirnov 

goodness-of-fit tests (KS tests), comparing the observed data to a cumulative distribution of 

1,000 simulations from model estimates. Second, we used the same package to check for signs of 

model misspecification by examining residual plots for each predictor. Lastly, we used the 

MuMIn package (Barton, 2018; version 1.43.6) to calculate both the conditional (R2
GLMM(c)) and 

marginal (R2
GLMM(m)) pseudo-R2 for fixed effects. The difference in these measures is that the 

conditional statistic includes variance accounted for by the random effects in the model (i.e., 

participant and lineup), whereas the marginal statistic is limited to fixed effects. 
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Chooser Accuracy 

We first examined chooser accuracy, or identification accuracy when participants select a 

face (as opposed to ‘not present’) from a lineup. To include as much data as possible, following 

Dobolyi and Dodson (2018), we predicted chooser accuracy using the following types of 

responses: correct identifications from target-present lineups (TPc), foil identifications from 

target-present lineups (TPfa), and foil identifications from target-absent lineups (TAfa). In other 

words, the accuracy of these three types of responses served as the dependent variable for the 

chooser accuracy mixed effects model, in which each response was modeled separately. The 

frequencies of these types of chooser responses by repetition condition, delay, and confidence 

level are presented in Table 1, along with the frequencies of nonchooser responses: correct 

rejections from target-absent lineups (TAc) and incorrect rejections from target-present lineups 

(TPm). 

Table 1 

Frequency of Lineup Responses by Repetition, Delay, and Level of Confidence 
   Confidence  
Repetition Delay Response 0 20 40 60 80 100 Total 

4 times 5 minutes TPc 9 38 69 93 145 198 552 

TPfa 9 44 48 61 24 6 192 

TAfa 12 107 124 92 65 17 417 

TAc 32  100 129 125 115 62 563 

TPm 15 42 54 52 47 23 233 

1 day TPc 7 40 56 95 102 97 397 

TPfa 10 54 68 72 37 9 250 

TAfa 13 130 126 112 62 17 460 

TAc 34 85 123 112 74 44 472 

TPm 20 64 64 70 42 23 283 

1 week TPc 11 97 87 75 70 35 375 

TPfa 22 112 94 60 32 6 326 

TAfa 43 196 125 93 39 11 507 

TAc 86 171 138 116 68 30 609 

TPm 75 101 110 61 50 22 419 

1 time 5 minutes TPc 6 40 60 68 52 39 265 

TPfa 6 73 71 66 48 13 277 

TAfa 20 102 114 101 55 11 403 

TAc 32 113 112 147 122 51 577 

TPm 22 99 106 87 79 44 437 

1 day TPc 4 31 52 49 36 16 188 
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TPfa 17 88 87 68 50 17 327 

TAfa 21 105 125 108 57 19 435 

TAc 39 91 124 111 92 38 495 

TPm 28 89 108 98 77 31 431 

1 week TPc 12 59 37 32 25 9 174 

TPfa 25 151 112 72 27 6 393 

TAfa 50 204 120 78 43 9 504 

TAc 73 157 141 124 69 38 602 

TPm 87 147 127 85 68 25 539 

 

 

 

The best-fitting model of chooser accuracy contains several main effects and two-way 

interactions. In Wilkinson-Rogers (1973) notation, this model is as follows: Accuracy ~ 

Repetition + Confidence + Delay + DecisionTime + CFMT + Repetition:Confidence + 

Repetition:Delay + Repetition:DecisionTime + Repetition:CFMT + Confidence:Delay + 

Confidence:CFMT + DecisionTime:CFMT + (1|Participant) + (1|Lineup). This model adequately 

fits the data according to the two measures of absolute fit (KS D = .013, p = .211; pseudo-

R2
GLMM(m) = .190; pseudo-R2

GLMM(c) = .278) as well as visual inspection of the residual plots. 

Overall, this chooser model is based on 6442 responses from 1019 participants. 

LRTs showed significant main effects of Repetition, χ2(1) = 112.51, p < .001, Confidence, 

χ2(1) = 333.12, p < .001, Delay, χ2(2) = 11.69, p = .003, Decision Time, χ2(1) = 8.84, p = .003, 

and face recognition ability (i.e., CFMT score), χ2(1) = 87.45, p < .001. All of these main effects 

were moderated by two-way interactions, which are plotted in Figures 3 and 4 and described in 

more detail in the succeeding paragraphs. The two panels in Figure 3 show how chooser 

accuracy changes as a function of both the participant’s confidence in their identification and (a) 

their face recognition ability (CFMT score) as well as (b) their delay condition. In both Figures, 

the lines represent the estimates from the mixed effects model, and the shading indicates the 95% 

Note. TPc and TPfa refer to a correct response and a foil identification from a target-present lineup, 

respectively. TAfa and TAc refer to a foil identification and a correct response (‘not present’) from a 

target-absent lineup, respectively. TPm refers to a ‘not present’ response to a target-present lineup. 
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confidence interval. Note that the Repetition x Delay (p = .066) and Decision Time x CFMT (p 

= .078) interactions are non-significant.  

 

 

 

 

 

 

Figure 3a shows the interaction between Confidence and face recognition ability (CFMT 

score), χ2(1) = 40.02, p < .001. Confidence ratings are increasingly more predictive of chooser 

accuracy with increasing face recognition ability (i.e., individuals with higher CFMT scores). 

Specifically, for stronger face recognizers, high-confidence responses are much more likely to be 

correct than low-confidence responses. However, as shown in Figure 3a and replicating Grabman 

et al. (2019), the value of confidence as a predictor of lineup accuracy diminishes rapidly for 

Figure 3. Two-way interactions between Confidence and (A) score on the Cambridge Face Memory Test 

(CFMT) and (B) Delay in the chooser model. Colored lines represent model estimates, with error shading 

indicating the 95% confidence interval. Notably, high confidence errors are more pronounced when 

participants are worse face recognizers (A) and when delay between encoding and recognition increases 

(B). 
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individuals with worse face recognition ability. Those who are weaker face recognizers are much 

more likely to make a high confidence misidentification than individuals who are stronger face 

recognizers. Figure 3b shows that chooser accuracy generally worsens as delay increases. The 

interaction between Confidence and Delay, χ2(2) = 27.70, p < .001, indicates that the effect of 

delay on accuracy is greater for responses made with high versus low confidence. 

 

 

 

Figure 4 shows generally higher accuracy for faces that had been seen four times than 

one time during the encoding phase. However, the separate panels reveal that the effects of 

repetition (4x vs. 1x) on chooser accuracy interact with confidence, face recognition ability, and 

decision time. In Figure 4a, the interaction between Confidence and Repetition, χ2(1) = 28.05, p 

Figure 4. Two-way interactions between Repetition and (A) Confidence, (B) score on the Cambridge 

Face Memory Test (CFMT), and (C) Decision Time in the chooser model. Colored lines represent model 

estimates, with error shading indicating the 95% confidence interval.  
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< .001, indicates that the benefit of having viewed the target face repeatedly is greater for 

identifications made with high, compared to low, confidence. Similarly, the interaction between 

face recognition ability (i.e., CFMT score) and Repetition, χ2(1) = 3.88, p = .049, in Figure 4b 

shows that stronger face recognizers benefit more from increased exposure to the target face than 

do weaker face recognizers. 

The interaction between Decision Time and Repetition, χ2(1) = 5.95, p = .015, is 

represented in Figure 4c. For faces seen four times at encoding, consistent with the literature 

(Brewer & Wells, 2006; Sauer et al., 2010; Sauerland & Sporer, 2009), lineup identification 

accuracy worsens as decision time increases. For faces seen once only, accuracy is generally the 

same regardless of how long it takes to make the selection from the lineup. Given that chooser 

accuracy in the 1x faces condition (19.2%, 95% CI [15.8, 23.0]) was much worse than in the 4x 

faces condition (32.3%, 95% CI [27.6, 37.4]), it is likely that the overall poor performance for 

lineups associated with the 1x faces condition is interfering with the predictive ability of decision 

time.   

Suspect-ID Accuracy 

 Mickes (2015; see also Wixted & Wells, 2017) has argued that identification accuracy 

should be measured as the ratio of correct identifications from target-present lineups (TPc) to the 

sum of this value plus foil identifications from target-absent (TAfa) lineups – a score known as 

suspect ID accuracy (i.e., TPc/[TPc+(TAfa/6)] for fair lineups). Foil responses to target-present 

lineups (TPfa) are excluded in suspect-ID accuracy since police know that target-present foils are 

innocent individuals. Therefore, suspect-ID accuracy duplicates the perspective of law 

enforcement by determining the likelihood that an identified individual is the guilty suspect (i.e., 

TPc) as opposed to an innocent filler (i.e., TAfa/6 with fair lineups).  
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We used a proxy measure for suspect-ID accuracy where all TA foil responses were 

retained as it is not feasible to divide the number of TA foil responses by six within the mixed 

effects model framework. Specifically, the dependent variable for our suspect-ID accuracy model 

differed from that for our chooser accuracy model in that it did not include TPfa responses. 

Using this accuracy measure, we fit a generalized linear mixed effects model predicting suspect-

ID accuracy from the same fixed factors (Confidence, CFMT, Decision Time, Delay, and 

Repetition) and random intercepts (Participant and Lineup) as in the chooser accuracy model, 

using the same procedure. In Wilkinson-Rogers notation, the best-fitting model of suspect-ID 

accuracy is: Accuracy ~ Repetition + Confidence + Delay + DecisionTime + CFMT + 

Repetition:Confidence + Repetition:Delay + Repetition:DecisionTime + Repetition:CFMT + 

Confidence:Delay + Confidence:DecisionTime + Confidence:CFMT + DecisionTime:CFMT + 

Repetition:Confidence:DecisionTime + Confidence:DecisionTime:CFMT + (1|Participant) + 

(1|Lineup). (See Appendix B for the model selection table). This model adequately fits the data 

according to the two measures of absolute fit (KS D = .015, p = .232; pseudo-R2
GLMM(m) = .201; 

pseudo-R2
GLMM(c) = .228) as well as visual inspection of the residual plots. Overall, this model is 

based on 4677 responses from 1003 participants. 

The suspect-ID analysis is generally consistent with the chooser analysis. Specifically, 

the main effects of Repetition, Confidence, Delay, Decision Time, and CFMT are significant in 

both the suspect-ID accuracy and chooser accuracy models, as are the interactions between 

Repetition and Confidence, Repetition and Decision Time, Confidence and Delay, and 

Confidence and CFMT. Additionally, the interaction of Decision Time and CFMT is non-

significant in both models. However, the interaction between Repetition and Delay, indicating a 

greater decrease in accuracy with delay for lineups associated with faces seen once only than 
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faces seen four times, is only significant in the suspect-ID accuracy model, χ2(2) = 6.73, p 

= .034, though it was marginally significant in the chooser accuracy model. Similarly, the 

interaction between Repetition and CFMT is only significant in the chooser accuracy model, 

χ2(1) = 3.88, p = .049, though it is a weak effect. All effects that are strong in one model (e.g., p 

< .01) are also strong in the other model. See Appendix C for an LRT table containing all model 

terms. 

Face Recognition Ability and the Confidence-Accuracy Relationship 

Our main question is whether the optimality or decision processes account best explains 

stronger face recognizers’ more informative use of confidence. As a first step in answering this 

question, we examined calibration scores, which measure how well confidence ratings align with 

lineup identification accuracy. Excellent calibration, for example, is shown when individuals 

assign high, medium, and low confidence ratings to responses of high, medium, and low 

accuracy. We computed a chooser calibration score for each individual by taking the absolute 

value of the difference between (a) the actual accuracy at each level of confidence for a chooser 

response (i.e., either a correct identification or a false identification from either a target-present 

or target-absent lineup) and (b) the predicted accuracy of this response, as indicated by the 

confidence rating (e.g., Koriat & Goldsmith, 1996). This difference score is then weighted by the 

frequency of responses at each level of confidence. Calibration scores are error scores because 

they measure the deviation between predicted and actual accuracy and they range from 0 (perfect 

calibration) to 1.  

 We used multiple linear regression to examine the influence of face recognition ability 

(CFMT score, centered and scaled) and overall chooser accuracy (centered and scaled) on 

participants' calibration scores. Overall chooser accuracy (Accuracy) is computed for all 
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participants who made at least one chooser response. The accuracy values (1s or 0s, indicating 

correct or incorrect) for all chooser (TPc, TPfa, and TAfa) responses for a participant are 

averaged in calculating that participant’s overall chooser accuracy score. We included Accuracy 

as a continuous predictor, instead of Repetition and Delay, because Repetition and Delay were 

manipulated in order to create a range of conditions under which accuracy is comparable 

between strong and weak face recognizers. In order to distinguish between the optimality and 

decision processes accounts, it is necessary to remove differences in accuracy as a confounding 

variable.  

 As a reminder, the optimality account predicts similar calibration scores for stronger and 

weaker face recognizers when there are no differences in accuracy between these individuals. On 

the other hand, the decision account predicts better calibration for stronger than weaker face 

recognizers across all levels of accuracy. After performing a Yeo-Johnson power transformation 

(Yeo & Johnson, 2000) on calibration score to satisfy the homoscedasticity assumption of linear 

regression, we found a significant regression equation (F(3, 10151) = 24.00, p <.001), with an 

adjusted-R2 of .063. Both CFMT ( = -.12, t(1015) = -3.68, p <.001) and Accuracy ( = -.18, 

t(1015) = -5.59, p <.001) significantly predict Calibration, but these main effects were moderated 

by a significant interaction between CFMT and Accuracy ( = .08, t(1015) = 2.44, p = .015), 

which is plotted in Figure 5.  

 Figure 5 shows that changes in identification accuracy have a much greater effect on the 

calibration scores of weaker than stronger face recognizers. For stronger face recognizers, 

represented by the higher CFMT scores at the upper end of the x-axis, there is minimal 

separation between the lines representing the different accuracy levels. This indicates that 

 
1 Degrees of freedom are 1015 for this analysis because 27 participants made only nonchooser responses and thus 

were not included in this model. 
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calibration remains similar across the different levels of identification accuracy for those with 

strong face recognition ability. For weaker face recognizers, as shown by the separation in the 

lines at the lower end of the x-axis, declining identification accuracy is associated with 

worsening calibration scores. Put another way, at high levels of identification accuracy 

(represented by the purple and blue lines), there are similar calibration scores for individuals at 

all levels of face recognition ability. By contrast, lower levels of accuracy (represented by the red 

and yellow lines) are associated with greater differences in calibration scores between stronger 

and weaker face recognizers due to weak face recognizers’ diminished calibration. On the 

surface, these results appear to provide support for both the optimality and the decision accounts. 

First, the optimality account is supported because calibration is similar between stronger and 

weaker face recognizers at higher levels of overall accuracy. And, the decision account is 

supported because stronger face recognizers are better calibrated at lower levels of overall 

accuracy. 
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 To further assess the influence of face recognition ability on the relationship between 

confidence and accuracy, we investigated the calibration curves that are the basis for the 

calibration scores. On the plots of the calibration curves, the y-axis represents the proportion of 

correct responses at each level of confidence displayed on the x-axis. To simplify matters, Figure 

6 shows calibration curves for the top and bottom quartiles of accuracy, shown in the left and 

right facets, for individuals in the highest tertile, middle tertile, and lowest tertile of face 

recognition ability (CFMT score). The left side of Figure 6 shows that individuals at all levels of 

Figure 5. Interaction between CFMT and Chooser Accuracy in the CFMT x Accuracy model. Colored lines 

represent parameter estimates, with error shading indicating the 95% confidence interval. Standardized values 

indicate the number of standard deviations from the mean overall chooser accuracy percentage. 
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face recognition ability are comparably calibrated when identification performance is high. 

Interestingly, when identification accuracy is low, as shown on the right side of Figure 6, 

individuals at all levels of face recognition ability – including strong face recognizers – are 

vulnerable to making high confidence errors. In fact, when identification accuracy is low, the 

shape of the calibration curve is similar for individuals at all levels of face recognition ability. 

How then can stronger face recognizers be better calibrated than weaker face recognizers at low 

levels of accuracy? This is where it is important to examine the frequency of use of the different 

confidence ratings in Figure 6 because an individual’s calibration score depends on (a) the 

deviation between the confidence rating and the actual level of performance at this rating; and 

(b) the frequency of use of the confidence rating.   
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Figure 6. Confidence-accuracy curves as a function of Chooser Accuracy and CFMT Group 

(separated by tertiles). The diagonal line represents perfect calibration, and the numbers at each data 

point refer to the frequency of responses. Error bars indicate the 95% confidence interval. 
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 In comparing the left and right facets of Figure 6, it is notable that stronger and weaker 

face recognizers differ dramatically in their frequency of use of the different confidence ratings, 

shown by the numbers at each data point in the figure. For example, under conditions that 

promote low levels of identification accuracy (right side of Figure 6), stronger face recognizers 

are nearly seven times more likely to use the lowest (0%/20%) than highest (80%/100%) levels 

of confidence. By contrast, weaker face recognizers use the different confidence scale points at a 

similar rate regardless of the level of accuracy of their identification. 

Face Recognition Ability and Use of the Confidence Scale 

 To statistically analyze the relationship between face recognition ability, chooser 

accuracy, and the frequency of use of the different confidence ratings, we fit a cumulative link 

mixed model (CLMM) predicting the frequency of use of the confidence scale points from the 

fixed factors of CFMT (centered and scaled) and Accuracy (centered and scaled) with a random 

intercept of Participant. Frequency of use of the confidence ratings was tested as an ordinal 

response variable with each confidence rating (0, 20, 40, 60, 80, and 100) as a level. Models 

were fit using clmm2 in the ordinal package (Christensen, 2019; version 2019.4-25) in R v.3.5.1 

(R Core Team, 2018) and were compared with each other using AIC. LRTs assessed the 

significance of the terms of the best-fitting model: the model that contains the interaction and 

main effects and uses a flexible threshold. (See Appendix D for the model selection table). Note 

that equidistant threshold models were also evaluated, but flexible threshold models were 

preferred. The difference between flexible and equidistant thresholds is that the former assumes a 

relatively unstructured yet ordered response, where the difference between levels is not 

functionally equivalent, while the latter assumes equal spacing between levels. 
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 LRTs showed significant main effects of face recognition ability (i.e., CFMT score), χ2(1) 

= 5.80, p = .016 and Accuracy, χ2(1) = 113.26, p < .001. These main effects were moderated by 

an interaction between face recognition ability and Accuracy, χ2(1) = 26.24, p < .001. The effects 

package (Fox, 2003; version 4.1-2) was used to compute model estimates and 95% confidence 

intervals for this interaction, which were subsequently plotted using a package currently in 

development to facilitate plotting of ordinal effects (Dobolyi, 2019). 

 

 

  

Confirming and expanding upon the pattern depicted in Figure 6, Figure 7 shows that the 

frequency of use of the different levels of confidence (i.e., probability of use on the y-axis) 

changes with differing (a) levels of identification accuracy and (b) face recognition ability. Each 

facet presents the probability of use of the different confidence ratings at low (.25), moderate 

(.50), and high (.75) levels of identification accuracy for three representative levels of CFMT 

Figure 7. Interaction between CFMT and Chooser Accuracy in the CLMM model. The points 

indicate the predicted frequency of use of each confidence rating for the representative (i.e., median 

+/- one median absolute deviation) CFMT scores at the three levels of identification accuracy. Error 

bars indicate the 95% confidence interval. 
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performance: the left facet shows one absolute deviation below the median (CFMT score of 44), 

the middle facet shows the median (CFMT score of 57), and the right facet shows one absolute 

deviation above the median (CFMT score of 70). Comparing the left and right facets, it is evident 

there is a dramatic difference in the use of confidence with changes in accuracy between weaker 

and stronger face recognizers. For example, the right facet shows that stronger face recognizers 

(represented by the CFMT score of 70) adjust their use of the confidence scale under conditions 

that induce higher or lower levels of accuracy. They use the highest levels of confidence 

(80%/100%) roughly four times more often when identification accuracy is high (the blue data 

points) than low (red data points). A similar pattern occurs for stronger face recognizers with the 

frequency of use of the lowest levels of confidence. By contrast, the left facet shows that weaker 

face recognizers (represented by the CFMT score of 44) fail to adjust their frequency of use of 

the confidence ratings under conditions that promote higher or lower levels of accuracy. They 

use the different levels of confidence at a similar rate regardless of their overall level of 

identification accuracy. 

Overall, then, effectively regulating confidence is what allows stronger face recognizers 

to remain well-calibrated despite large changes in identification accuracy, whereas weaker face 

recognizers show a decreased ability to regulate confidence with declines in identification 

accuracy. Importantly, ineffectively regulating confidence is what causes weaker face recognizers 

to make more high confidence errors than stronger face recognizers under conditions when both 

groups show comparable levels of identification accuracy. 

Nonchooser Accuracy 

Finally, we investigated nonchooser accuracy, or the accuracy of lineup decisions for 

which participants selected ‘not present’ instead of identifying a face. For this analysis, we 
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considered the accuracy of correct rejections from target-absent lineups (TAc) and incorrect 

rejections from target-present lineups (‘miss’; TPm). As shown earlier, Table 1 provides the 

frequencies of these types of responses by repetition condition, delay, and confidence level. The 

best-fitting model of nonchooser accuracy is represented in Wilkinson-Rogers notation as: 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + CFMT + Repetition:Delay + 

Repetition:DecisionTime + Repetition:CFMT + Confidence:DecisionTime + (1|Participant) + 

(1|Lineup). (See Appendix E for the model selection table). According to KS tests (KS D = .011, 

p = .496) and visual inspection of the residual plots, this model adequately fits the data. 

However, the marginal pseudo-R2 was considerably lower than in the chooser model (pseudo-

R2
GLMM(m) = .019; pseudo-R2

GLMM(c) = .024). Given that two out of three absolute fit indices as 

well as our relative fit measure (i.e., AIC) supported proper model specification, we proceeded 

with this nonchooser model. Overall, this nonchooser model is based on 5660 responses from 

992 participants. 



GETTLEMAN 29 

 

Figure 8. A) Confidence and B) CFMT main effects on Nonchooser Accuracy. Lines represent model 

estimates, with error shading representing the 95% confidence interval. Notably, performance improves 

with higher levels of confidence and greater face recognition ability. 

 

 Figure 8 shows the main effects of both Confidence and CFMT on nonchooser accuracy. 

Figure 8a indicates that nonchooser accuracy improves as participants express higher 

Confidence, χ2(1) = 4.41, p = .036. However, this effect is small, as is typical in nonchooser 

models (Dodson & Dobolyi, 2016; Sauerland & Sporer, 2009), since accuracy only improves by 

approximately 7% as ratings increase from 0% to 100% confidence. The main effect of CFMT, 

χ2(1) = 8.90, p = .003, represented in Figure 8b, shows that nonchooser accuracy increases with 

greater face recognition ability (i.e., higher CFMT score), though this effect is small numerically 

as accuracy improves by a total of 5% between the lowest and highest CFMT scores. 
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Figure 9. Interaction between Delay and Repetition in the nonchooser model. Colored lines represent 

model estimates, with error bars indicating the 95% confidence interval.  

Lastly, we found a significant interaction between Repetition and Delay, χ2(2) = 6.68, p 

= .035, which is shown in Figure 9. Nonchooser accuracy worsened with increasing delay for 

lineups associated with both 4x faces and 1x faces; however, the effect of delay was stronger for 

lineups associated with 4x faces. The main effect of Decision Time (p = .241) as well as the 

Repetition x Decision Time (p = .148), Repetition x CFMT (p = .051), and Confidence x 

Decision Time (p = .102) interactions are non-significant. 

Discussion 

An eyewitness’s confidence in an initial lineup identification is generally a reliable 

predictor of their accuracy (Wixted & Wells, 2017), and recent research has shown that this 
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confidence-accuracy relationship is stronger for individuals with greater face recognition ability 

(Grabman et al., 2019). The question we answer in this paper is why stronger face recognizers 

show a more robust confidence-accuracy relationship than do weaker face recognizers. We 

address this question by distinguishing between two different accounts: the optimality account 

and the decision processes account. The optimality account attributes differences in the 

confidence-accuracy relationship between stronger and weaker face recognizers to stronger face 

recognizers’ richer memory representations of faces, which improve their overall accuracy and 

give their confidence ratings more predictive value. The decision account posits that stronger 

face recognizers’ superior ability in the domain of face recognition affords them superior 

metacognitive abilities in this domain, which allow them to better evaluate their performance and 

make more informed confidence judgments. One way of distinguishing between these two 

accounts is by creating conditions that produce comparable levels of identification performance 

between individuals of varying face recognition ability. The optimality account predicts a similar 

confidence-accuracy relationship between individuals of better and worse face recognition ability 

when their overall accuracy is similar because similar identification performance is produced by 

similar representations for the target face. By contrast, the decision account predicts that stronger 

face recognizers will show a stronger confidence-accuracy relationship, relative to weaker face 

recognizers, even under conditions of comparable identification performance. 

Consistent with our past findings (Grabman et al., 2019; Grabman & Dodson, in press), 

we show that face recognition ability moderates the relationship between confidence and 

identification accuracy. Figure 3a shows that identification accuracy varies with confidence for 

stronger face recognizers, as identifications given high confidence ratings were far more likely to 

be correct than those made with low confidence. By contrast, accuracy was similar for weaker 
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face recognizers across all levels of confidence. Therefore, those with worse face recognition 

ability are more likely to make high-confidence misidentifications, giving their confidence 

ratings less utility than those of better face recognizers. But, since stronger face recognizers are 

generally more accurate than weaker face recognizers, there is no information in Figure 3 that 

allows us to point to either the optimality account or the decision account to explain why the 

confidence-accuracy relationship is more robust in stronger than weaker face recognizers. 

However, by manipulating delay and exposure to create a variety of levels of identification 

performance, we are able to equate performance between stronger and weaker face recognizers, 

allowing us to determine whether differences in accuracy or differences in face recognition 

ability best explain differences in the confidence-accuracy relationship.   

The key theoretical contribution of our results is that we dissociate two metacognitive 

processes that contribute to the calibration of confidence to accuracy: 1) the correspondence 

between confidence and accuracy is primarily influenced by overall accuracy; but 2) the 

frequency of use of the confidence scale is mainly affected by face recognition ability. Figure 6 

shows that the correspondence between confidence and accuracy is primarily determined by the 

overall rate of identification accuracy. When overall accuracy is low (right panel of Figure 6), 

both stronger and weaker face recognizers exhibit a general pattern of overconfidence and poor 

correspondence between confidence and accuracy. It is important to emphasize that even strong 

face recognizers are vulnerable to making high confidence errors under conditions associated 

with low accuracy. But, when overall accuracy is high (left panel of Figure 6), then individuals 

of all levels of face recognition ability show a strong correspondence between accuracy and 

confidence. There is no evidence that stronger face recognizers show a stronger confidence-

accuracy relationship than weaker face recognizers when overall identification accuracy is 
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comparable between these groups. In short, in this paradigm, the relationship between 

confidence and accuracy appears to be mainly affected by the overall level of identification 

accuracy.   

What distinguishes stronger from weaker face recognizers is the frequency of use of the 

different confidence ratings. For example, under conditions of low accuracy (Figure 6, right), 

stronger face recognizers make fewer high confidence (80%/100%) errors (26 total) than weaker 

face recognizers (192 total) due to their more informative use of the confidence scale. 

Specifically, Figure 7 shows that when overall identification accuracy is poor (i.e., the red line), 

stronger face recognizers much more frequently use the lower than the higher end of the 

confidence scale, and the opposite pattern is true when overall accuracy is high (i.e., the blue 

line). By contrast, weaker face recognizers use the different points on the confidence scale at 

generally the same rate regardless of whether overall accuracy is poor or high.   

Differences in the frequency of use of the confidence ratings do not appear to be caused 

by differences in the way that stronger and weaker face recognizers interpret the meaning of 

particular points on the confidence scale. In other words, the placement and criteria used for 

making a particular confidence rating appear to be similar for all individuals, regardless of their 

face recognition ability. Consider the pattern when all individuals show comparably high 

accuracy, as represented by the blue lines in Figure 7. Is it possible that stronger face recognizers 

(right panel in Figure 7) more often use the top half of the confidence scale than do weaker face 

recognizers (left panel in Figure 7) because stronger face recognizers use a more liberal criteria 

for these confidence ratings – i.e., they require less or less precise information to give a 

confidence rating of 60, 80 or 100? If stronger and weaker face recognizers used different criteria 

and interpreted the confidence scale differently, then this would affect the ratio of correct 
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identifications and false alarms for these levels of confidence, which in turn would affect 

accuracy at these levels of confidence. But, Figure 6 shows that when overall identification 

accuracy is comparable between stronger and weaker face recognizers, there is also comparable 

accuracy at each level of confidence. Therefore, we see little evidence that the meaning of a 

particular confidence point is different for individuals of differing face recognition ability. 

How then are stronger face recognizers able to regulate their use of the confidence scale 

more effectively than weaker face recognizers such that they more often use higher and lower 

points on the confidence scale when identification accuracy is high and low, respectively? We 

speculate that the decision process that distinguishes stronger from weaker face recognizers 

involves an awareness of the likely accuracy of a particular response. This awareness may be 

thought of as a kind of second-order metacognitive judgment. Drawing on the work of Jang, 

Wallsten, and Huber (2012; see also Fleming and Daw, 2017), the type of evidence that is the 

basis for an identification decision is not necessarily identical to the evidence that contributes to 

a confidence rating. Specifically, face recognition ability determines metacognitive awareness of 

the likely accuracy of a response, which in turn contributes to the frequency of use of confidence 

ratings. Stronger face recognizers likely have an increased awareness that a response is more 

likely to be correct after a five-minute delay than after a week’s delay, and consequently, more 

frequently use the top half of the confidence scale in the former than the latter condition. By 

contrast, weaker face recognizers’ diminished metacognitive awareness contributes to their use 

of the confidence scale points at the same rate regardless of whether overall identification 

performance is excellent (75% accuracy), middling (50% accuracy), or poor (25% accuracy).   

This difference in regulating use of the confidence scale is what allows stronger face 

recognizers to remain relatively well-calibrated, as shown in Figure 5, despite large changes in 
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identification accuracy. By contrast, failure to appropriately regulate confidence ratings leads 

weaker face recognizers to become much worse calibrated with declining identification accuracy. 

Therefore, changes in identification accuracy cannot explain the differences in calibration 

between individuals of varying levels of face recognition ability. Instead, differences between 

stronger and weaker face recognizers in the frequency of use of the confidence scale points – 

fueled, we believe, by the relative insight into a decision’s likely accuracy – are responsible for 

changes in the confidence-accuracy relationship with face recognition ability. 

Our results are difficult to explain with standard signal detection models of memory. The 

standard signal detection model assumes that a confidence rating is based on the same 

information that is used to make a memory judgment. Consequently, this model predicts that 

when stronger and weaker face recognizers show (a) comparable overall levels of identification 

performance and (b) comparable accuracy at each level of confidence (i.e., similar confidence-

accuracy relationship), then they should also show a similar frequency of use of the different 

confidence ratings – contrary to what we observed. Instead of the standard signal detection 

model, our data are better explained by models that decouple the information that drives a 

memory decision from the information that contributes to a confidence rating. 

Other studies have shown that differences in the use of the confidence scale impact the 

confidence-accuracy relationship. Carpenter et al. (2019) administered perceptual tasks and 

asked participants to rate their confidence after each task decision using a four-point scale. They 

then implemented training sessions, providing feedback to roughly half of participants regarding 

their task performance while the other half received feedback on their metacognitive calibration, 

or how well their confidence judgments predicted their accuracy. After calibration training, 

participants were more likely to use the highest confidence rating when evaluating correct 
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decisions compared to before training. Additionally, Koriat and Goldsmith (1996) found that the 

increased ability to distinguish correct from incorrect answers (i.e., better monitoring 

effectiveness) on recall tests than on recognition tests was a result of recall participants’ 

increased polarization, or their greater likelihood of using both extremes (compared to only the 

high extreme) of the confidence scale. Though neither finding shows differences in the use of the 

entire confidence scale between groups (as we show between stronger and weaker face 

recognizers), these studies do indicate that changes in the use of confidence ratings are 

responsible for differences in the confidence-accuracy relationship. 

Although our results clearly favor the decision processes account, it is important to note 

that this study is the first (to our knowledge) to document the contribution of expertise to 

calibration in the domain of face recognition ability. Improved confidence-accuracy calibration 

with expertise has been shown before, but specific to other domains, such as academic 

performance (Bol et al., 2005; Moreland et al., 1981; Shaughnessy, 1979), chess ability (Chi, 

1978), tennis skills (McPherson & Thomas, 1989), physics problems (Chi, Glaser, & Rees, 

1982), and social aptitude (Fagot & O'Brien, 1994), some of which require intentional and 

consistent practice to reach “expert” status, while face recognition ability is generally considered 

an innate skill (though see Balas & Saville, 2017 for contrasting evidence). 

For example, Shaughnessy (1979) asked students to evaluate their memory for items they 

had studied on four exams throughout a semester. For a total of 30 four-alternative multiple-

choice questions per exam, students gave confidence ratings for their responses using a four-

point scale ranging from “definitely incorrect” to “definitely correct” immediately after 

answering each question. Those who performed better on the exams were also better calibrated. 

To explain this difference in calibration, Shaughnessy suggested that individual differences in 
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memory-monitoring ability, above and beyond differences due to the strength of the memory 

trace, lead to more accurate memory assessments for students with better exam scores. He further 

proposed that since memory-monitoring ability is a skill, it can be improved through instruction, 

which can help poor students improve their calibration and memory self-assessments despite 

their inferior memory ability. This explanation is in line with the decision account as well as our 

results regarding metamemory judgments for face recognition performance, given that we 

matched memory performance for stronger and weaker face recognizers and still found a 

difference in calibration between the two groups. Overall, more research regarding the role of 

proficiency in determining the predictive value of confidence judgments for face recognition 

tasks is necessary, but our results strongly suggest that there is a causal relationship between 

expertise and calibration.  

Further, as mentioned previously, the primary purpose of the delay and exposure 

(repetition) manipulations was to establish conditions under which the performance of stronger 

and weaker face recognizers could be matched; however, the effect of delay on identification 

accuracy is also of interest. Replicating previous work (Juslin et al., 1996; Palmer et al., 2013; 

Read et al., 1998; Sauer et al., 2010), we observed a decrease in identification performance with 

increasing delay. Importantly, we used three retention intervals, allowing us to trace the 

trajectory of forgetting with respect to face-relevant information. The decline in accuracy 

between the 5-minute and 1-day delays was much greater than that separating the 1-day and 1-

week delays, suggesting that the first 24 hours after viewing a face (or suspect) are critical.  

Contrary to previous work (Palmer et al., 2013; Sauer et al., 2010; see also Wixted et al., 

2016), we did not find that high confidence is a protective factor against the effects of delay, 

using either chooser accuracy or our proxy measure for suspect-ID accuracy. A possible 
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explanation for this discrepancy is the difference in overall performance between our study and 

others in the literature. Overall performance in our study was significantly lower than in prior 

studies, with mean chooser accuracy scores of 38.1%, 27.5%, and 23.6% in the 5-minute, 1-day, 

and 1-week delay conditions, respectively. In contrast, prior work has found chooser accuracy 

scores of 62% and 47% (Sauer et al., 2010), 60.2% and 53.7% (Palmer et al., 2013), and 69% 

and 64% (Juslin et al., 1996) for the immediate and delay conditions. Differences in stimulus 

presentation could be responsible for this discrepancy in overall accuracy as previous work has 

used target persons (e.g., Palmer et al., 2013; Sauer et al., 2010) or mock-crime videos (e.g., 

Juslin et al., 1996), while we used photographs of target faces, which are likely less memorable 

(Goldstein, Chance, Hoisington, & Buescher, 1982). Additionally, these differences in stimulus 

presentation led to differences in the number of separate faces participants encoded; participants 

in our study encoded 12 faces, while participants only encoded either one or two faces in Juslin 

et al. (1996), Palmer et al. (2013), and Sauer et al. (2010). Therefore, encoding multiple faces 

(and viewing some of these faces for only one 3-second interval) could also have contributed to 

the relatively low level of overall accuracy we observed. However, using mock-crime videos and 

immediate versus two-week delays and with a mean decision accuracy score of 66%, Brewer et 

al. (2019) also found that high confidence was not protective against the effects of delay.  

Both face recognition ability and confidence predict the accuracy of nonchooser (i.e., ‘not 

present’) responses. Consistent with our previous findings (Grabman et al., 2019), stronger face 

recognizers were more accurate than weaker face recognizers in correctly rejecting lineups, 

indicating that better face recognition ability improves lineup performance when the target face 

is absent from the lineup as well as when it is present. Nonchooser accuracy was also higher for 

high confidence than low confidence responses, which is consistent with previous work (e.g., 
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Grabman et al., 2019; Wixted & Wells, 2017). However, it is important to emphasize that both 

face recognition ability and confidence are much stronger predictors of chooser accuracy than 

nonchooser accuracy.   

With respect to ecological validity, a possible limitation of our study is that the use of 

photographs of target faces is less realistic than showing participants a live person or mock-crime 

video. In our study, participants viewed photographs of multiple faces and were later shown one 

lineup associated with each face (12 lineups total) and asked to respond to each lineup by 

identifying an individual they viewed previously or indicating that none of these individuals 

were present in the lineup. In contrast, the real-world eyewitness experience typically involves 

witnessing a crime and subsequently responding to a single lineup constructed around the 

suspect for this crime (except in crimes with multiple perpetrators). However, the advantages of 

using 12 different target faces include increased stimulus generalizability as well as more data 

overall. Additionally, as is the case for actual eyewitnesses, participants viewed different pictures 

of the target individual at encoding and test, ensuring our paradigm relied on face recognition 

rather than simple picture-matching. 

 Another potential limitation is our assumption that equating performance between 

stronger and weaker face recognizers equates the quality of the memory representation. The 

Grabman et al. (2019) data speak to this point. This paper used an eyewitness identification 

paradigm that is nearly identical to the one used in the current paper. The one difference is that in 

Grabman et al. (2019), participants were asked to provide a justification for their identification 

decisions. Participants’ justifications can be separated into two broad categories: those indicating 

reliance on familiarity to make identification decisions (e.g., “This person looks familiar”) versus 

those referencing recollective information in making these decisions (e.g., “I remember his 
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nose”). Grabman et al. (2019) did not find an interaction between CFMT (face recognition 

ability) and Justification-type when modeling the chooser accuracy data, which suggests there is 

no difference in reliance on familiarity versus recollection between stronger and weaker face 

recognizers. Because there is no evidence that reliance on familiarity versus recollection differs 

according to face recognition ability, we believe our assumption is reasonable that when 

identification performance is comparable between stronger and weaker face recognizers, then the 

underlying memory representation is also comparable. Future studies should explore the 

relationship between face recognition ability and confidence-accuracy calibration using different 

stimulus presentations and retention intervals.  

In conclusion, we distinguished between two accounts of the differences in the 

eyewitness confidence-accuracy relationship between individuals with stronger and weaker face 

recognition ability by identifying an explanation for the superior calibration of stronger face 

recognizers. Our results support the decision processes account, suggesting that the 

metacognitive abilities afforded to stronger face recognizers by their expertise, or talents, in the 

domain of face recognition ability are responsible for the discrepancy in the use of confidence 

between stronger and weaker face recognizers. These metacognitive skills allow stronger face 

recognizers to consider factors affecting their identification accuracy when making associated 

confidence judgments. Without this same awareness, weaker face recognizers fail to 

appropriately adjust their use of the confidence scale with changes in accuracy. Taken together, 

we have shown that the correspondence between confidence and accuracy is primarily influenced 

by the overall level of identification accuracy, whereas the frequency of use of the confidence 

scale is primarily influenced by face recognition ability. Therefore, the “certainty of the witness” 

criterion put forth by the Supreme Court for assessing the reliability of an identification could be 
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equally applicable to all potential eyewitnesses, if those lacking in face recognition ability were 

able to improve their confidence judgments by considering and applying information regarding 

the likely accuracy of their identifications. 
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Appendix A 

Table A1 

The Model Selection Table for the Chooser Accuracy Mixed Effects Model  

Model Formula df AIC ∆AIC 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + 

CFMT + Repetition:Confidence + Repetition:Delay + 

Repetition:DecisionTime + Repetition:CFMT + Confidence:Delay 

+ Confidence:CFMT + DecisionTime:CFMT + (1 | Participant) + 

(1 | Lineup)  

  

18 6638.49 0.00 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + 

CFMT + Repetition:Confidence + Repetition:Delay +  

Repetition:DecisionTime + Repetition:CFMT + Confidence:Delay 

+ Confidence:DecisionTime + Confidence:CFMT + Delay:CFMT +  

DecisionTime:CFMT + Repetition:Confidence:Delay + 

Repetition:Confidence:DecisionTime + 

Repetition:Confidence:CFMT + Repetition:Delay:CFMT +           

(1 | Participant) + (1 | Lineup) 

  

27 6639.23 0.74 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + 

CFMT + Repetition:Confidence + Repetition:Delay +  

Repetition:DecisionTime + Repetition:CFMT + Confidence:Delay 

+ Confidence:DecisionTime + Confidence:CFMT + Delay:CFMT +  

DecisionTime:CFMT + Repetition:Confidence:Delay + 

Repetition:Confidence:DecisionTime + 

Repetition:Confidence:CFMT + Repetition:Delay:CFMT +           

(1 | Participant) + (1 | Lineup) 

  

27 6639.23 0.74 

Accuracy ~ (Repetition + Confidence + Delay + DecisionTime + 

CFMT)^5 + (1 | Participant) + (1 | Lineup) 

  

50 6668.90 30.41 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + 

CFMT + (1 | Participant) + (1 | Lineup) 

9 6739.34 100.85 

Note. Model formulae are in Wilkinson-Rogers notation (Wilkinson & Rogers, 1973). The table 

displays the model formula, degrees of freedom, and AIC for the best-fitting model from each 

start point (i.e., five-way full interaction, four-way interaction, three-way interaction, two-way 

interaction, and main effects only) in order of the overall best- to worst-fitting model based on 

AIC. The change in AIC between the current and overall best-fitting model is also included. Two 

of the model formulae in this table are the same (those for the three-way and four-way 

interaction models) since the best-fitting model from both of these start points converged on the 

identical model. 
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Appendix B 

 

Table B1 

The Model Selection Table for the Suspect-ID Accuracy Mixed Effects Model  

Model Formula df AIC ∆AIC 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + 

CFMT + Repetition:Confidence + Repetition:Delay + 

Repetition:DecisionTime + Repetition:CFMT + Confidence:Delay 

+ Confidence:DecisionTime + Confidence:CFMT + 

DecisionTime:CFMT + Repetition:Confidence:DecisionTime + 

Confidence:DecisionTime:CFMT + (1 | Participant) + (1 | Lineup) 

  

21 5490.09 0.00 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + 

CFMT + Repetition:Confidence + Repetition:Delay + 

Repetition:DecisionTime + Repetition:CFMT + Confidence:Delay 

+ Confidence:DecisionTime + Confidence:CFMT + 

DecisionTime:CFMT + Repetition:Confidence:DecisionTime + 

Confidence:DecisionTime:CFMT + (1 | Participant) + (1 | Lineup) 

  

21 5490.09 0.00 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + 

CFMT + Repetition:Confidence + Repetition:Delay + 

Repetition:DecisionTime + Repetition:CFMT + Confidence:Delay 

+ Confidence:CFMT + DecisionTime:CFMT + (1 | Participant) + 

(1 | Lineup) 

  

18 5490.24 0.15 

Accuracy ~ (Repetition + Confidence + Delay + DecisionTime + 

CFMT)^5 + (1 | Participant) + (1 | Lineup) 

  

50 5522.74 32.65 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + 

CFMT + (1 | Participant) + (1 | Lineup) 

9 5580.69 90.60 

Note. Model formulae are in Wilkinson-Rogers notation (Wilkinson & Rogers, 1973). The table 

displays the model formula, degrees of freedom, and AIC for the best-fitting model from each 

start point (i.e., five-way full interaction, four-way interaction, three-way interaction, two-way 

interaction, and main effects only) in order of the overall best- to worst-fitting model based on 

AIC. The change in AIC between the current and overall best-fitting model is also included. Two 

of the model formulae in this table are the same (those for the three-way and four-way 

interaction models) since the best-fitting model from both of these start points converged on the 

identical model. 
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Appendix C 

Table C1                      
The Likelihood Ratio Table for the Suspect-ID Accuracy Model              

Model Term df 
LR 

(χ2) 
p   

Repetition 1 63.96 <.001 *** 

Confidence 1 278.45 <.001 *** 

Delay 2 7.85 .020 * 

DecisionTime 1 7.83 .005 ** 

CFMT 1 64.72 <.001 *** 

Repetition:Confidence 1 21.7 <.001 *** 

Repetition:Delay 2 6.73 .034 * 

Repetition:DecisionTime 1 6.19 .013 * 

Repetition:CFMT 1 2.2 .138  
Confidence:Delay 2 19 <.001 *** 

Confidence:DecisionTime 1 3.19 .074 . 

Confidence:CFMT 1 38.15 <.001 *** 

DecisionTime:CFMT 1 3.3 .069 . 

Repetition:Confidence:DecisionTime 1 3.69 .055 . 

Confidence:DecisionTime:CFMT 1 2.06 .151   

Note. Signif. codes: ‘***’ <.001 ‘**’ .01 ‘*’ .05 ‘.’ .10.     
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Appendix D 

Table D1 

The Model Selection Table for the Use of Confidence Ratings Cumulative Link Mixed Model  

Model Formula 
Threshold 

Type 
df AIC ∆AIC 

Confidence ~ CFMT * Overall.Accuracy + (1 | Participant) Flexible 9 19015.08 0.00 

Confidence ~ CFMT + Overall.Accuracy + (1 | Participant) Flexible 8 19039.33 24.25 

Confidence ~ CFMT * Overall.Accuracy + (1 | Participant) Equidistant 6 19608.29 593.21 

Confidence ~ CFMT + Overall.Accuracy + (1 | Participant) Equidistant 5 19637.68 622.60 

Note. Model formulae are in Wilkinson-Rogers notation (Wilkinson & Rogers, 1973). 
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Appendix E 

 

Table E1 

The Model Selection Table for the Nonchooser Accuracy Mixed Effects Model  

Model Formula df AIC ∆AIC 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + 

CFMT + Repetition:Delay + Repetition:DecisionTime + 

Repetition:CFMT + Confidence:DecisionTime + (1 | Participant) + 

(1 | Lineup) 

  

14 7590.05 0.00 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + 

CFMT + Repetition:Delay + Repetition:DecisionTime + 

Repetition:CFMT + Confidence:DecisionTime + (1 | Participant) + 

(1 | Lineup) 

  

14 7590.05 0.00 

Accuracy ~ Repetition + Confidence + Delay + DecisionTime + 

CFMT + Repetition:Delay + Repetition:DecisionTime + 

Repetition:CFMT + Confidence:DecisionTime + (1 | Participant) + 

(1 | Lineup) 

  

14 7590.05 0.00 

Accuracy ~ Repetition + Confidence + Delay + CFMT +               

(1 | Participant) + (1 | Lineup) 

  

8 7593.94 3.89 

Accuracy ~ (Repetition + Confidence + Delay + DecisionTime + 

CFMT)^5 + (1 | Participant) + (1 | Lineup) 

50 7634.56 44.51 

Note. Model formulae are in Wilkinson-Rogers notation (Wilkinson & Rogers, 1973). The table 

displays the model formula, degrees of freedom, and AIC for the best-fitting model from each 

start point (i.e., five-way full interaction, four-way interaction, three-way interaction, two-way 

interaction, and main effects only) in order of the overall best- to worst-fitting model based on 

AIC. The change in AIC between the current and overall best-fitting model is also included. 

Three of the model formulae in this table are the same (those for the two-way, three-way, and 

four-way interaction models) since the best-fitting model from all of these start points converged 

on the identical model. 

 

 


	Method
	Participants
	Materials
	Procedure


