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Dissertation Abstract 

This dissertation details research that advances green infrastructure (GI) and stream 

restoration modeling by integrating an equity objective into GI optimization, experimenting with 

a novel method of assessing restoration effects on dissolved inorganic nitrogen (DIN) uptake, 

and developing an integrated model for assessing the impacts of GI on in-stream DIN 

processing. Urban development has intensified stormwater runoff, flow velocities, and nutrient 

loads in streams, degrading natural channels and water bodies. To address these issues, 

stormwater GI and stream restoration are often cited as viable solutions. This dissertation 

enhances modern GI and restoration modeling in three areas. Chapter 1 explains the research 

motivations of chapters 2,3, and 4. Chapter 2 details the integration of a spatial social equity 

objective (LID/GI-Social vulnerability (SVI) index correlation objective) into a GI optimization 

model, that promotes equitable GI implementation in socially vulnerable areas. Chapter 3 

presents a novel adaptation of the Small Streams Hydro-Biogeochemistry Simulator (SSHBS) to 

assess the impact of various riffle, pool, and meander configurations on DIN uptake dynamics in 

an urban stream reach. Chapter 4 introduces a watershed-channel hydraulic stream-ecosystem 

model that is integrated into a single open-source Python notebook to evaluate the effects of GI 

on in-stream DIN processing. 

Chapter 2's analysis details the development of the LID/GI-SVI correlation objectives, 

which directs optimization algorithms towards runoff management and equitable GI distribution 

goals and allows for tradeoff analyses between local hydrologic and equity goals. Chapter 3's  

findings show how SSHBS can be a promising option for process-based assessments of stream 

restoration designs and how benthic area augmentation, riparian canopy removal, and multi-

feature channel designs can enhance simulated net DIN uptake in streams. Chapter 4 highlights 

the usefulness of an integrated model with results showing that: A relatively low percentage 

(0.86%) of DIN that enters a local urban stream from the watershed is retained or removed by the 

stream; Stream zones with higher light combined with lower leaf-litter have greater potential net 

DIN uptake; Higher groundwater DIN concentrations combined with infiltration-based GI could 

result in elevated in-stream concentrations and export of DIN. 
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Chapter 1: Introduction 

1.0 Research Motivations  

The expansion and concentrated development of impervious surfaces has presented a 

number of problems for local stream ecosystems as well as human inhabitants. Not only has 

increased urbanization facilitated the impairment of local streams though the intensification of 

stormwater runoff and elevated nutrient loads (USEPA, 2023), but it has also contributed to the 

decline in human livability, especially for socially vulnerable communities, by elevating 

temperatures due to the urban heat island effect (Sekertekin & Zadbagher, 2021), reducing green 

space and recreational opportunities (Gerecke et al., 2019), and increased flooding (Zhang et al, 

2018) among other drawbacks. Civil and environmental engineers have a prominent role in 

shaping the development of urban areas and have promoted the expansion of green infrastructure 

(GI) and stream restoration projects to regain some of the ecosystem services that have been lost. 

Although there are myriads of analytical tools and techniques that can help city planners estimate 

the potential benefits of GI and stream restoration projects before they take place, there is a 

pronounced lack of integrated models that account for more than just a single component of the 

urban system. GI modeling tools typically only consider hydrologic aspects of the watershed 

without considering the distribution of social benefits that could arise from city-scale GI 

implementation, nor have these models assumed the ability to quantify the impacts to in-stream 

ecosystem functionality that can arise from the urban GI.  In addition, stream restoration project 

plans are generally not assessed with process-based models of their potential benefits to in-

stream ecosystem functionality or within the context of the larger terrestrial watershed, but 
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instead, have almost strictly considered physical corrections to the channel form with the 

assumption that ecosystem functional restoration will follow.  

Green infrastructure (GI) is frequently lauded for its capacity to address stormwater-

related challenges in communities. However, it has also gained recognition for its potential to 

provide a range of ecosystem services to the areas where it is implemented (Madureira & 

Andresen, 2014; Scott et al., 2016). For instance, specific types of GI have demonstrated their 

effectiveness in mitigating the urban heat island effect (Block et al., 2014; Santamouris, 2014). 

GI generally leads to increased property values in accessible regions (Du & Zhang, 2020; 

Mazzotta et al., 2014) and can contribute to energy conservation and the generation of green 

employment opportunities (Celik & Binatli, 2018). Furthermore, GI has the potential to enhance 

the visual appeal of urban landscapes and play a role in enhancing the mental well-being and 

safety of the local community (Kondo et al., 2015; Roe et al., 2013; Wolch et al., 2014). 

However, it's important to acknowledge GI and its associated benefits are often distributed 

inequitably within cities (Keeler et al., 2019; Mell & Whitten, 2021; Porse, 2018). In the United 

States, urban inequality is closely tied to factors like race and poverty rates. Historically, African 

Americans and other ethnic minorities have deliberately faced marginalization concerning 

neighborhood investment, infrastructure planning processes, and other aspects of public 

decision-making (Wright, 2021). 

To devise strategic and efficient distributions of Green Infrastructure (GI), engineering 

researchers have combined advanced heuristic multi-objective optimization tools with 

hydrologic models. This approach helps identify near-optimal GI configurations that not only 

minimize costs but also reduce the impact of urban development on runoff (Eckart et al., 2018; 

Giacomoni et al., 2017; Sebti et al., 2016; Zhang & Chui, 2018). Chapter 2 of this dissertation 
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addresses a specific gap in the existing GI-optimization literature. While several studies have 

focused on GI optimization, there has been little consideration of the equity implications of these 

optimal distributions or how including an equity objective might alter optimization outcomes. 

Enhancing access to GI benefits in socially vulnerable communities is now a key priority for 

local policymakers and infrastructure planners. Chapter 2 explores the consequences of 

integrating a novel spatial social equity objective into an urban GI optimization model.  

The fundamental concept behind the widely used stream restoration method known as 

"Natural Channel Design" (NCD) is the close interconnection between the physical structure of 

stream channels and their ecological functionality (Rosgen, 1998), including in-stream nutrient 

retention. Consequently, most assessments and models related to stream restoration have 

primarily focused on understanding the relationship between modifications to channel form and 

their effects on in-stream flow dynamics and sediment patterns. However, there have been 

notable objections to this perspective, particularly from academics critical of NCD. These critics 

argue that solely manipulating channel form is insufficient for restoring the ecological function 

of rivers without considering ecological, chemical, and biological processes (Wohl et al., 2015; 

Palmer et al., 2014; Simon et al., 2007). They advocate for the integration of ecosystem process-

based approaches to assess the effectiveness of stream restoration designs. As highlighted by 

Wohl et al. (2015), there is a growing demand for a deeper understanding of how various aspects 

of physical complexity contribute to biogeochemical processes influencing nutrient retention, 

stream ecosystem productivity, and the degradation of contaminants.  

Since the late 20th century, designers of stream restoration projects have had access to 

various modeling tools to predict the effects of channel modifications on streamflow and 

sediment patterns. However, these models often lack the capability to account for integrated 
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hydraulic and ecosystem processes involved in nutrient transport and retention. More recently, 

process-based models have emerged to help estimate the nutrient retention and removal that can 

result from different stream restoration designs. Chapter 3 details a novel application of such a 

model, the Small Streams Hydro-Biogeochemistry Simulator (SSHBS – Lin et al., 2021), by 

testing its ability to evaluate potential impacts to the rates of dissolved inorganic nitrogen (DIN) 

uptake and retention in an urban stream that can arise from a variety of riffle, pool, and 

meandering channel configurations. Although it's important to note that while SSHBS has been 

validated with detailed in-stream measurements in our experimental stream reach, our specific 

simulation results lack empirical validation.  However, the study underscores the practicality of 

employing SSHBS as a modeling tool for stream restoration designers and how it can be 

valuable for estimating the impacts of geomorphic restoration features on net DIN uptake rates, 

which suggests strong potential for enhancing current methodologies for stream restoration 

design.  

Typically, assessments of urban landscape restoration plans focus on model simulations 

to gauge the benefits of GI, such as managing stormwater runoff, reducing pollutants, and 

mitigating urban heat (Fletcher et al., 2013; Pataki et al., 2011). However, these modeling studies 

often lack the capability to shed light on the potential impacts of watershed GI on stream 

ecosystem processes by regulating upland runoff and nutrient loading regimes. Grimm et al. 

(2003) highlighted a persistent gap in the coupling of stream-reach models with watershed 

models, a situation that remains unchanged today. They argued that addressing management 

challenges like eutrophication necessitates comprehensive analytical tools that encompass both 

terrestrial and fluvial components.  
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While various models exist for assessing GI's effects on stormwater runoff and 

groundwater, and for estimating alterations in channel hydraulics due to different runoff and 

baseflow conditions, and even the evaluation of in-stream ecosystem processes,  no model to 

date has treated these elements as an interconnected system. As such, chapter 4 addresses the 

lack of accessible modeling tools that mechanistically link watershed runoff, nutrient sources, 

channel hydraulics, and aquatic ecosystems to evaluate GI's impact on nutrient reduction and 

urban stream dynamics. It details the development and calibration of an integrated watershed-

channel hydraulic stream-ecosystem model, packaged into a single open-source Python 

notebook. The novel integrated model couples the Stormwater Management Model (SWMM), 

Hydrologic Engineering Center’s River Analysis System (HEC-RAS), and stream channel 

metabolism modules from Stream Model Based on Spiraling and Ecological Stoichiometry 

Specific Fluxes (STOICMOD) and Small Streams Hydro Biogeochemistry Simulator (SSHBS). 

Chapter 4 shows the integrated model's utility and limitations in assessing GI's effects on urban 

streams and provides insights applicable to local watershed management and suggests future 

development of the integrated modeling goal.  

In summary, this dissertation explores new methods for modeling GI and stream 

restoration, integrating urban social vulnerability and stream ecosystem dynamics. These 

approaches enhance conventional practices, typically focused on isolated elements within urban 

hydrology. Adopting these methods allows for more flexible strategies applicable to diverse 

areas, surpassing current limitations and seeking a comprehensive understanding of urban water 

environments. 

 

 



6 
 

1.1 Chapter 1 Works Cited 

Block, A. H., Livesley, S. J., & Williams, N. S. G. (2014). Responding to the Urban Heat Island: 

A Review of the Potential of Green Infrastructure Literature Review. www.vcccar.org.au 

Celik, S., & Binatli, A. O. (2018). Energy Savings and Economic Impact of Green Roofs : A 

Pilot Study Energy Savings and Economic Impact of Green Roofs : A Pilot Study. 

Emerging Markets Finance and Trade, 54(8), 1778–1792. 

https://doi.org/10.1080/1540496X.2018.1434620 

Du, M., & Zhang, X. (2020). Land Use Policy Urban greening : A new paradox of economic or 

social sustainability ? Land Use Policy, 92(December 2019), 104487. 

https://doi.org/10.1016/j.landusepol.2020.104487 

Eckart, K., McPhee, Z., & Bolisetti, T. (2018). Multiobjective optimization of low impact 

development stormwater controls. Journal of Hydrology, 562, 564–576. 

https://doi.org/10.1016/j.jhydrol.2018.04.068 

Fletcher, T. D., Andrieu, H., & Hamel, P. (2013). Understanding, management and modelling of 

urban hydrology and its consequences for receiving waters: A state of the art. Advances in 

Water Resources, 51, 261–279. https://doi.org/10.1016/j.advwatres.2012.09.001 

Gerecke, M., Hagen, O., Bolliger, J., Hersperger, A. M., Kienast, F., Price, B., & Pellissier, L. 

(2019). Assessing potential landscape service trade-offs driven by urbanization in 

Switzerland. Palgrave Communications, 5(1), 1–13. https://doi.org/10.1057/s41599-019-

0316-8 

Giacomoni, M. H., & Joseph, J. (2017). Multi-objective evolutionary optimization and Monte 

Carlo simulation for placement of low impact development in the catchment scale. Journal 

of Water Resources Planning and Management, 143(9). 

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000812 

Grimm, N. B., Gergel, S. E., McDowell, W. H., Boyer, E. W., Dent, C. L., Groffman, P., Hart, S. 

C., Harvey, J., Johnston, C., Mayorga, E., McClain, M. E., & Pinay, G. (2003). Merging 

aquatic and terrestrial perspectives of nutrient biogeochemistry. Oecologia, 137(4), 485–

501. https://doi.org/10.1007/s00442-003-1382-5 

Keeler, B. L., Hamel, P., McPhearson, T., Hamann, M. H., Donahue, M. L., Meza Prado, K. A., 

Arkema, K. K., Bratman, G. N., Brauman, K. A., Finlay, J. C., Guerry, A. D., Hobbie, S. E., 

Johnson, J. A., MacDonald, G. K., McDonald, R. I., Neverisky, N., & Wood, S. A. (2019). 

Social-ecological and technological factors moderate the value of urban nature. In Nature 

Sustainability (Vol. 2, Issue 1, pp. 29–38). Nature Publishing Group. 

https://doi.org/10.1038/s41893-018-0202-1 

Kondo, M. C., Low, S. C., Henning, J., & Branas, C. C. (2015). The Impact of Green Stormwater 

Infrastructure Installation on Surrounding Health and Safety. 105(3), 114–121. 

https://doi.org/10.2105/AJPH.2014.302314 

Lin, L., Reisinger, A. J., Rosi, E. J., Groffman, P. M., & Band, L. E. (2021). Evaluating Instream 

Restoration Effectiveness in Reducing Nitrogen Export from an Urban Catchment with a 

Data-Model Approach. Journal of the American Water Resources Association, 57(3), 449–

https://doi.org/10.2105/AJPH.2014.302314


7 
 

473. https://doi.org/10.1111/1752-1688.12922 

Madureira, H., & Andresen, T. (2014). Planning for multifunctional urban green infrastructures: 

Promises and challenges. Urban Design International, 19(1), 38–49. 

https://doi.org/10.1057/udi.2013.11 

Mazzotta, M. J., Besedin, E., & Speers, A. E. (2014). A meta-analysis of hedonic studies to 

assess the property value effects of low impact development. In Resources (Vol. 3, Issue 1). 

https://doi.org/10.3390/resources3010031 

Mell, I., & Whitten, M. (2021). Access to nature in a post covid-19 world: Opportunities for 

green infrastructure financing, distribution and equitability in urban planning. International 

Journal of Environmental Research and Public Health, 18(4), 1–16. 

https://doi.org/10.3390/ijerph18041527 

Palmer, M. A., Hondula, K. L., & Koch, B. J. (2014). Ecological restoration of streams and 

rivers: Shifting strategies and shifting goals. Annual Review of Ecology, Evolution, and 

Systematics, 45(1), 247–269. https://doi.org/10.1146/annurev-ecolsys-120213-091935 

Pataki, D. E., Carreiro, M. M., Cherrier, J., Grulke, N. E., Jennings, V., Pincetl, S., Pouyat, R. V, 

& Whitlow, T. H. (2011). Coupling biogeochemical cycles in urban environments: 

ecosystem services, green solutions. In Ecology and the Environment (Vol. 9, Issue 1). 

Porse, E. (2018). Open data and stormwater systems in Los Angeles: applications for equitable 

green infrastructure. Local Environment, 23(5), 505–517. 

https://doi.org/10.1080/13549839.2018.1434492 

Roe, J. J., Ward Thompson, C., Aspinall, P. A., Brewer, M. J., Duff, E. I., Miller, D., Mitchell, 

R., & Clow, A. (2013). Green space and stress: Evidence from cortisol measures in 

deprived urban communities. International Journal of Environmental Research and Public 

Health, 10(9), 4086–4103. https://doi.org/10.3390/ijerph10094086 

Rosgen, D. (1998). The reference reach: A blueprint for natural channel design. Engineering 

Approaches to Ecosystem Restoration, 1009–1016. https://doi.org/10.1061/40382(1998)166 

Santamouris, M. (2014). Cooling the cities - A review of reflective and green roof mitigation 

technologies to fight heat island and improve comfort in urban environments. Solar Energy, 

103, 682–703. https://doi.org/10.1016/j.solener.2012.07.003 

Scott, M., Lennon, M., Haase, D., Kazmierczak, A., Clabby, G., & Beatley, T. (2016). "Nature-

based solutions for the contemporary city/Re-naturing the city/Reflections on urban 

landscapes, ecosystems services and nature- based solutions in cities/Multifunctional green 

infrastructure and climate change adaptation: brownfield greening as an adaptation strategy 

for vulnerable communities?/Delivering green infrastructure through planning: insights 

from practice in Fingal, Ireland/Planning for biophilic cities: from theory to practice". 

Planning Theory and Practice, 17(2), 267–300. 

https://doi.org/10.1080/14649357.2016.1158907 

Sebti, A., Aceves, M. C., Bennis, S., & Fuamba, M. (2016). Improving nonlinear optimization 

algorithms for BMP implementation in a combined sewer system. Journal of Water 

Resources Planning and Management, 142(9). https://doi.org/10.1061/(ASCE)WR.1943-



8 
 

5452.0000669 

Sekertekin, A., & Zadbagher, E. (2021). Simulation of future land surface temperature 

distribution and evaluating surface urban heat island based on impervious surface area. 

Ecological Indicators, 122(November 2020), 107230. 

https://doi.org/10.1016/j.ecolind.2020.107230 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.ecolind.2020.107230


9 
 

Chapter 2: Integrating Social Equity into Multi-Objective 

Optimization of Urban Stormwater Low Impact Development 

This chapter resulted in one publication in the Journal of Water Resources Planning and 

Management in June 2023. 

  

Chapter 2 Abstract 

Recent studies have demonstrated some advantages of using advanced heuristic 

algorithms to identify near-Pareto-optimal future locations, types, and sizes for stormwater low-

impact development and green infrastructure (LID/GI) across a given urban landscape. However, 

previous optimization studies did not consider social equity as an objective, which poses 

problems because urban green infrastructure often is distributed inequitably. Increasing access to 

LID/GI in historically marginalized areas is a prominent environmental justice issue, and 

increasingly is becoming a primary consideration when prioritizing future locations, types, and 

sizes of urban LID/GI. This study integrated a novel spatial social equity objective [LID/GI–

Social Vulnerability Index (SVI) correlation objective, ρ] into a multiobjective LID/GI 

optimization model. The LID/GI-SVI correlation is an objective that directs the optimization 

algorithm to search for LID/GI distributions that maximize the linear correlation between LID/GI 

implementation and subbasins with higher estimated percentages of historically marginalized 

people. Our analysis focused on understanding the impacts of the LID/GI-SVI correlation 

objective on a LID/GI optimization model. This modeling study demonstrates that (1) the 

LID/GI-SVI correlation objective can be used to direct optimization algorithms to search for 

LID/GI distributions that can achieve runoff management objectives, increase green LID/GI 

implementation in more marginalized areas, and explore the potential trade-offs or synergies 

between hydrologic and equity goals; (2) LID/GI optimization formulations that consider only 

hydrologic objectives likely will not result in equitable LID/GI distributions; (3) LID/GI 

distributions that perform well on the LID/GI-SVI correlation may be composed of different 

types of LID/GI than less-equitable but more hydrologically favorable LID/GI distributions; and 

(4) for our study area, including spatial equity as an objective resulted in modest reductions in 

the hydrologic performance of near-Pareto-optimal LID/GI distributions. 
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2.0 Introduction 

Low impact development (LID) is a collection of structures or practices that are designed 

to  mimic natural hydrologic processes such as infiltration, storage, and evapotranspiration. The 

U.S Environmental protection agency (USEPA) uses the term green infrastructure (GI) to 

describe specific stormwater control measures as components of the overall LID concept 

(USEPA, 2022a). Common LID/GI types include but are not limited to raingardens, bioretention 

cells, green roofs, permeable pavement, grass swales, and green space. 

Many cities in the U.S. and globally have been active in implementing LID/GI in the face 

of increased impervious surfaces, aging infrastructure, elevated stormwater runoff due to climate 

change, and to meet federal non-point source discharge permit requirements (Chini et al., 2017; 

Copeland, 2013; Hopkins et al., 2018).  In the U.S., under the Clean Water Act (CWA) and other 

state laws, municipalities are required to control stormwater discharges as combined sewer 

overflows (CSO) or as discharge from municipal separate sewer systems (MS4). Though USEPA 

endorses the use of LID/GI to control nonpoint source stormwater discharges, there is no national 

set of standards or codes for LID/GI and so the extent of implementation is largely subject to 

local government policies and budgeting. Political barriers that exist to prevent or slow the 

transition to LID/GI include a lack of motivation from decision makers, community acceptance, 

limited or no incentives to private landowners and developers, and entrenched preferences for 

gray infrastructure in local policy (Dhakal & Chevalier, 2017; Johns, 2019). Many of the major 

cities in the U.S. that are most active in implementing LID/GI have been CSO municipalities 

which are subjected to more substantial fines when stormwater discharge requirements are not 

met (USEPA, 2022b). In areas with fewer regulatory motivations to implement LID/GI, like 

many MS4 municipalities, successful efforts to increase implementation of LID/GI have often 
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coincided with an institution of a local stormwater utility fee (Allen, 2020) and the establishment 

of strong partnerships between local government and/or non-government organizations that work 

to link the stormwater control goals of LID/GI to other public priorities (Harrington & Hsu, 

2018). 

Stormwater LID/GI has been promoted for its potential to provide multiple benefits to 

communities where they are implemented (Madureira & Andresen, 2014; Scott et al., 2016). 

Though less well understood than the hydrologic benefits (Venkataramanan et al., 2019), LID/GI 

does coincide with a range of social amenities and advantages. For example, some LID/GI types 

have shown promise in mitigating the urban heat island effect (Block et al., 2014; Santamouris, 

2014). LID/GI generally increases property values in accessible areas (Du & Zhang, 2020; 

Mazzotta et al., 2014) and could contribute to energy savings and the creation of green jobs 

(Celik & Binatli, 2018). LID/GI also can enhance the natural aesthetic of urban landscapes and 

contribute to improving the mental health and safety of a community (Kondo et al., 2015; Roe et 

al., 2013; Wolch et al., 2014).  

LID/GI and the associated benefits are often distributed inequitably within cities (Keeler 

et al., 2019; Mell & Whitten, 2021; Porse, 2018). In the U.S., race and rates of poverty are major 

indicators of urban inequity, as African Americans, ethnic minorities, and low-income 

households have historically been intentionally disenfranchised from neighborhood investment, 

infrastructure planning processes, and other arenas of public decision making (Wright, 2021). 

There is a clear need within the engineering community and beyond to put forth a conscious 

effort to correct past practices and to prevent future harm caused by inequitable green 

infrastructure planning (Anguelovski et al., 2020). Increasing access to LID/GI within minority 

and low-income communities has become a prominent environmental justice issue and is a major 
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priority in the planning of future locations of urban LID/GI (Garcia-Cuerva et al., 2018; Heck, 

2021; Luan et al., 2019; Mason et al., 2019; Meerow & Newell, 2017; Zhu et al., 2019). As of 

2021, federal infrastructure initiatives such as Justice40 have been introduced in the U.S. and 

have emphasized increasing infrastructure investment in historically marginalized communities 

(U.S. Executive Office of the President, 2021).  

In response to inequitable distributions of green infrastructure in urban areas, researchers 

and urban planners have been mapping indicators of social vulnerability to help identify priority 

locations for future LID/GI implementation. A Social Vulnerability Index (SVI) typically 

includes at minimum, census demographic and other publicly available socioeconomic data. 

SVIs can serve as visual aids for LID/GI planners by revealing distributions of historically 

marginalized populations within different areas of a city (Heckert & Rosan, 2016; Mandarano & 

Meenar, 2017). For example, Mandarano and Meenar (2017) developed a stormwater LID/GI 

priority census tract map for Philadelphia, Pennsylvania, by ordinally ranking census tracts for 

future LID/GI consideration based on multiple factors such as race, income, parental status, 

education level, along with the current extent of LID/GIs. Heckert and Rosan (2016) describe an 

index method that consolidates census block group data and other environmental justice 

indicators into a composite score to identify areas of relatively high levels of environmental 

inequity. Even local governments such as Montgomery County, Maryland, have begun to use 

vulnerability indicators for LID/GI planning (DEP, 2022). The USEPA Environmental Justice 

Screening tool (EJST) is a valuable resource for those interested in mapping potential equity 

voids and vulnerability indicator data within areas of the U.S. (USEPA, 2014). 

Determining optimal locations for future LID/GI can be a complex process. If placed in 

strategic locations throughout a given urban watershed, stormwater LID/GI can mitigate the 
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destruction of urban streams by reducing excess erosion, sedimentation, and pollution caused by 

runoff (Bernhardt, 2011; Dietz, 2007; Palmer et al., 2014). Within a given urban area, there can 

exist a vast number of feasible spaces or possible spatial distributions of LID/GI. Trial-and-error 

exploration of the vast decision space of possible LID/GI distributions, requiring modeling the 

hydrologic impacts of each distribution, can be impractical and ineffective. To address this 

challenge, engineering researchers have coupled advanced heuristic multi-objective optimization 

tools with hydrologic models to efficiently identify near Pareto-optimal spatial LID/GI 

distributions that minimize the cost and the impacts of development on runoff within a given 

urban area (Eckart et. al, 2018; Giacomoni et al., 2017; Sebti et al.,2016; Zhang & Chui, 2018). 

Sebti et al. (2016) analyzed three different optimization methods by comparing the LID/GI 

distribution results and performances on a set of runoff management objectives, finding that non-

linear methods such as genetic algorithms and simulated annealing have the potential to 

outperform linear programming methods for LID/GI spatial optimization. Giacomoni et al. 

(2017) coupled a stormwater management model (SWMM) with the Non-Dominated Sorting 

Genetic Algorithm-II (NSGA-II) and introduced a new hydrologic objective into their 

formulation to help identify optimal local subbasins where green roofs and permeable pavement 

could be implemented within a small watershed. Eckart et al. (2018) was the first to demonstrate 

the coupling of the stormwater management model (SWMM) to the Borg evolutionary algorithm 

(Hadka & Reed, 2013) to search for optimal LID/GI distributions that would best treat total and 

peak runoff within a small urban area in Windsor, Ontario. Past optimization studies such as 

these have demonstrated the usefulness of applying heuristic algorithms for locating near Pareto-

optimal locations, sizes, and LID/GI types that minimize the impacts of stormwater runoff and 

cost.  However, no LID/GI optimization study has considered the equity implications of optimal 
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LID/GI distributions and how an equity objective can change optimization results. Improving 

access to the benefits of LID/GI within socially vulnerable communities is becoming a clear goal 

for local policy makers and infrastructure planners. The purpose of this study is to gain an 

understanding of the impacts of integrating a novel spatial social equity objective into an urban 

LID/GI optimization model.  

In this study, a storm water management model (SWMM) has been coupled to the Borg 

multi-objective evolutionary algorithm to search for Pareto-optimal LID/GI distributions 

(subbasin locations, sizes, and types) that differentially favor multiple conflicting objectives. We 

combine a state-of-the-art optimization algorithm with the social vulnerability index mapping 

concept by introducing a novel objective function (the LID/GI – Social Vulnerability Index (SVI) 

correlation, ρ) that directs the optimization model to search for LID/GI distributions that 

maximize the linear relationship between implementation and subbasin SVI values. Note that the 

authors do not view linearization of this relationship as the preeminent form of an equity 

objective, just one of many that could be used to enhance equitable LID/GI implementation 

within optimization models. We analyze and compare results for three sets of optimization 

formulations. The first formulation searches for optimal LID/GI distributions using two 

hydrologic goals: minimization of average peak stream flow and minimization of total runoff 

exported from the watershed. The second formulation solely searches for distributions with a 

strong positive linear relationship between LID/GI implementation and socioeconomic indicators 

of historic marginalization. The third formulation considers both the hydrologic objectives and 

the correlation between LID/GI placement and subbasin SVI values by considering all objectives 

in the first and second formulations; that is the third formulation has two hydrologic objectives 

and the objective of correlation between LID/GI placement and socioeconomic indicators of 
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historic marginalization. We produce maps of near Pareto-optimal LID/GI area distributions and 

quantify the potential impacts of a unique optimization objective on both hydrologic and equity 

outcomes. 

2.1 Methods 

 In this section we introduce the study area and provide the optimization formulation 

details. We explain three key methods that were involved in constructing our LID/GI 

optimization model. First, an SVI was developed from census block group socio-economic data 

and was used to estimate the location of preferred subbasins for future LID/GI implementation 

and greening in the upper Meadow Creek watershed. Second, using LID/GI Virginia design and 

placement recommendations, we approximated the feasible LID/GI areas within each subbasin 

using simple GIS methods. Finally, we coupled a SWMM model to the Borg multi-objective 

evolutionary algorithm.  We then explain our approach to the tradeoff analyses of the 

optimization results. 

2.1.1 Study Area Description 

An optimal distribution of LID/GI should strive to compensate for past racial injustices 

that have occurred locally, particularly in areas that have a history of discrimination and 

exclusionary infrastructure policies against socially vulnerable groups. Our case study area is the 

upper Meadow Creek watershed located in Charlottesville and Albemarle County, Virginia. 

Unlike Philadelphia, the Charlottesville area was not redlined (Hillier, 2003) by the Home 

Owners’ Loan Corporation (HOLC) (Klosterwill et al. 2020). However, the same social 

imperatives that reproduced residential segregation based on race during the period of post-

WWII suburbanization through selective access to mortgage credit were present. The primary 
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mechanism through which existing patterns of racial segregation were maintained involved legal 

restrictions on who could purchase and hold a title to a home (Yager, 2017). These racial 

covenants typically barred non-whites and were permanent fixtures of residential properties in 

exclusive neighborhoods. Following the 1948 Shelley v. Kramer decision, racial covenants were 

no longer legally enforceable and the loss of this tool for maintaining residential segregation 

contributed to the creation of public housing developments in Charlottesville to receive African 

Americans displaced by urban renewal (Harris et al. 1991; Dukes 2019). A 2007 report published 

by the National Community Reinvestment Coalition (NCRC) found that the Charlottesville area 

ranked 251st (last) among the metropolitan areas examined in terms of “lending disparities 

between African-American borrowers and white borrowers” (p. 11) underscoring the influence of 

race on access to mortgage credit despite a lack of official HOLC “redlining” maps locally. The 

2017 Unite the Right rally and ensuing violence focused national attention on the Charlottesville 

area and the considerable work that remains to address and redress past injustices.  

The upper Meadow Creek watershed is within three separate MS4 jurisdictions- the City 

of Charlottesville, Albemarle County, and the University of Virginia. The primary motivation for 

implementing LID/GI in the study area is to satisfy MS4 and Chesapeake Bay Program total 

maximum daily load (TMDL) requirements (Albemarle County, 2022; Charlottesville, 2019). 

There currently is no formal, centralized process for planning, identifying, and implementing 

LID/GI in the study area, though all three jurisdictions are evolving their stormwater programs to 

incorporate more LID/GI to mitigate flood risks and to enhance the quality of life of those living 

and working in the area. Immediately prior to urbanization, agricultural and reforestation 

practices dominated the local landscape of Meadow Creek while mill ponds were constructed on 

many of the rivers in the upper James River watershed, of which Meadow Creek is a part 
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(Rivanna Conservation Society, 1996; Mattson et al. 1995). Like other areas in the Chesapeake 

Bay watershed, the agricultural era resulted in the mobilization of a substantial amount of 

sediment. The expansion of urban impervious surfaces, which now cover approximately 40% of 

the study area (Chesapeake Conservancy, 2019), increased volumes and velocities of stormwater 

runoff, eroded the built-up alluvial sedimentation, incised the streams, and exposed steep banks 

of erodible sediment. This ultimately resulted in the acceleration of erosion, sedimentation, 

pollutant loading, and the destruction of aquatic habitat leading the Virginia Department of 

Environmental Quality to officially add Meadow Creek to its list of impaired waters (VDEQ, 

2020). After the original impairment designation in 2006, major stream restoration activities 

followed (The Nature Conservancy, 2013), but future upland LID/GI is needed to prevent future 

degradation of Meadow Creek and facilitate addressing TMDL impairments in the local and 

larger watersheds. 

Figure 2-1 shows the upper Meadow Creek watershed, its subbasins, and their location 

within the larger Rivanna watershed and Central Virginia.  Our hydrologic model of the 1415-

hectare, upper Meadow Creek watershed is composed of twenty-six subbasins, ranging in size 

from 31 to 118 hectares that serve as the possible locations for future LID/GI within our model. 
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Figure 2-1: The upper Meadow Creek Watershed within the Rivanna River Watershed located in central 

Virginia, U.S.A (Source: ESRI World Topographic Map). 

 

2.1.2 Calculating a social equity index for the Meadow Creek Subbasins  

Marginalized populations within the Meadow Creek watershed were mapped at the 

subbasin level with the demographic index equation described by the USEPA Environmental 

Justice Screening Tool (EJST) technical documentation (USEPA, 2014) as the social 

vulnerability index (SVI) in this study: 

𝑆𝑉𝐼 =  
(% 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 + %𝑙𝑜𝑤 𝑖𝑛𝑐𝑜𝑚𝑒)

2
             (1) 

Note that the demographic index and other data can be extracted directly from the EJST web 

interface, but we extracted the raw percent minority and percent low-income data directly from 

the American Community Survey database (U.S. Census Bureau, 2019) and calculated the 

demographic index values within the upper Meadow Creek watershed at the census block group 

level. On average, the census block groups in the upper Meadow Creek area contain 1,340 

residents. The simple demographic index was deemed sufficient to use as an SVI for this study 

since it is positively correlated with other potential social vulnerability indicators, such as no 
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high school diploma (%), children (%), and linguistically isolated (%), and it is negatively 

correlated with median income for the study area. The demographic index metric is used as a 

minimal form of an SVI that can be calculated at the census block group scale for areas within 

the U.S. An alternative, more tailored vulnerability index for the upper Meadow Creek watershed 

could be constructed through further community discussion and input. 

Since our model subbasins do not spatially align with the census block groups, the 

subbasins were assigned SVI values by calculating an area-weighted average of the census block 

group SVI values. Figure 2-2 illustrates the area-weighted average SVI values for the twenty-six 

Meadow Creek subbasins derived from the census block group data. As census block groups are 

developed to partition areas towards more homogeneous socioeconomic characteristics, 

remapping census information to sub-census block group levels introduces local uncertainty.  

However, considering the ubiquitous absence of finer resolution sociodemographic survey data, 

such as how the population is distributed within each census block group to enable population-

weighting, the area-weighted averaging method for assigning SVI values to the local subbasins 

has been judged to be sufficient for the purposes of this study. 
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Figure 2-2: Census Block Group Demographic Index Values (left) mapped to the Upper Meadow Creek 

Subbasins (right) using an area-weighted averaging approach. 

 

2.1.3 Feasible Area and Cost Constraints on LID/GI Distributions 

Major constraints within our LID/GI optimization model are the feasible areas where 

each LID/GI type can be placed within the urban watershed and the maximum LID/GI 

construction costs. Feasible areas for rain gardens, bioretention, green roofs, grass swales, 

permeable pavement, and impervious conversion were determined in this study based on five 

criteria primarily in accordance with Virginia BMP clearinghouse (VDEQ & VWRRC, 2013). 

Four of the five criteria include: building setback which is the minimum distance between a 

structure and various LID/GI types, drainage area size which refers to the land area that drains 

stormwater to a specific LID/GI, slope of the drainage area, the hydrologic soil group (HSG) 

which is a classification of the runoff potential of a given soil type.  

Raster data included products from a 10-meter digital elevation model downloaded from 

the U.S. geological survey’s National Map database  (USGS, 2019), soil hydrologic group data 

from the soil survey geographic database (ESRI & SSURGO,2021), and the Chesapeake Bay 



21 
 

Conservancy’s land use raster (Chesapeake Conservancy, 2019) resampled to a 10-meter 

resolution. A binary threshold filter was applied to the data to convert the raster spaces to 

Boolean matrices of the same dimension. For each data set, raster spaces that met major Virginia 

BMP clearinghouse recommendations (VDEQ & VWRRC, 2013) were mapped to a value of 1 

and spaces that did not meet a specific criterion to a value of 0. We then multiplied all the binary 

matrices together for each LID/GI type to obtain final feasibility maps that included only spaces 

that met all criteria. 

Table 2-1 summarizes most of the criteria used to determine the feasible areas for 

permeable pavement, grass swales, rain gardens and bioretention within the Meadow Creek 

watershed.  Land use was another criterion that was used to approximate the feasible areas for 

each LID/GI type. Using the Chesapeake Conservancy land use 1-meter raster data, we assumed 

that grass swales, rain gardens, and bioretention cells were only feasible in pervious areas 

without canopy cover. Permeable pavement, green roofs, and impervious conversion were 

assumed to be feasible only in specific impervious areas. Table 2-2 shows which land covers 

corresponded to feasible areas for each LID/GI type in this study. 

 

Table 2-1: GIS layers and physical criteria of feasible areas for each LID type. 

LID Type 
GIS Layer Criteria 

Building Setback 

(m) 

Drainage Area 

(ha) 

Slope 

(%) 

Hydrologic Soil 

Group 

Permeable 
 Pavement 

15.24 0.05 <1 A,B,C,D 

Grass Swale 15.24 < 2.02 <4 A,B 

Rain Garden 3.048 < 0.20 1 to 5 A,B 

Bioretention 15.24 0.2 to 2.02 1 to 5 A,B 
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Table 2-2: Land uses used to approximate the feasible areas for each LID type. 

LID Type 

Land Use 

Turf 

Grass 

Pervious 

Developed 
Cropland 

Pasture/

Hay 

Parking/Drive

ways 

Commercial 

Buildings 

Impervious 

(No roads or 

buildings) 

Permeable 

Pavement     x   
Grass Swale x x x x    
Green Roof      x  
Rain Garden x x x x    
Bioretention x x x x    
Impervious 

Conversion       x 

 

The authors chose to apply additional constraints to impervious surface conversion and 

the green roof space because they are relatively expensive and/or require significant land use 

changes to implement. The feasible areas for green roofs and impervious conversion are much 

greater than the feasible areas for the other LID/GI types and utilizing all that area for LID/GI 

would likely be economically unfavorable to commercial property owners. Thus, replacing all 

commercial building roofs with green roofs and replacing all sidewalks and parking lots with 

green space was judged to be impractical in this study area, so, to ensure that green roof and 

impervious surface conversion would not be overrepresented in the near optimal solutions we 

reduced the feasible space to 1% of the total subbasin area for impervious conversion and 

reduced the overall available feasible green roof space by two-thirds. Ideally, deciding what is 

practical in terms of LID/GI implementation values would be determined by decision makers and 

property owners in the design process. The total maximum areas allowed by the optimization 

model account for all the modifications to the feasible areas and are summarized in table 2-3 for 

each LID/GI type. 
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Table 2-3: Total Allowable Area for each LID Type. 

LID Type 
Total Feasible Area 

(ha) 

 

Permeable 

 Pavement 
2.4  

Grass Swale 3.5  

Green Roof 24.3  

Rain Garden 9.9  

Bioretention 0.1  

Impervious 

 Conversion 
12.9  

 

It is possible that two different LID/GI types can be feasible in a single location but to 

simplify the optimization model and to help prevent unreasonable exclusion of any single 

LID/GI approach, we developed an LID/GI implementation hierarchy that is based on total 

maximum allowable area. If the space for two LID/GI types overlap, the optimizer will only 

consider the LID/GI type with the least overall allowable area for that space. For example, if a 

single space was found to be feasible for both permeable pavement and impervious removal, 

then the optimizer will recognize it as only a permeable pavement space. Likewise, if a space 

was found to be feasible for a rain garden and a grass swale, the optimizer will only consider 

grass-swales for that space.  

Table 2-4 summarizes the estimated LID/GI costs used in this study.  To estimate the 

construction cost of different LID/GI types, we primarily relied on a few publicly available 

sources, while the price of impervious surface removal was estimated based on a local consulting 

firm quote. The construction cost values are estimates and do not include maintenance, land, 

opportunity costs or any other costs. This is particularly relevant to impervious surface 

conversion where economic value may be lost due to a reduction in activities such as parking. 
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Green roofs, permeable pavement, and impervious removal costs were assumed to be dependent 

on total implemented area while the other LID/GI types were priced based on the impervious 

area treated.  

Table 2-4: Estimated Construction Costs for each LID type. 

 

To further streamline the computation process, a few additional constraints were 

programmed into our LID/GI optimization model regarding feasibility and the decision variables. 

All LID/GI were programmed with default design parameters. When user input was required for 

design parameters, we referenced design recommendations from the Virginia BMP clearinghouse 

design specifications. The drainage areas within the optimization models and the percentages of 

impervious surfaces of those drainage areas are assumed to be constants that fall within VDEQ & 

VWRRC recommendations. Rain gardens and bioretention drainage areas are assumed to be 

twenty times greater than their surface areas while grass swale drainage areas were set to be 

twenty-five times greater. Grass swales, raingardens, and bioretention drainage areas were 

LID TYPE Construction Cost Source 

Permeable Pavement $26.77/m2 (VDEQ & VWRRC, 2013) 

Grass Swale 
$18.15/ m2 impervious 

treated 
(Maryland DOE, 2016) 

Green Roof $102.92/m2 (VDEQ & VWRRC, 2013) 

Rain Garden 
$10.73/ m2 impervious 

treated 
(Maryland DOE, 2016) 

Bioretention 
$15.32/ m2 impervious 

treated 
(Maryland DOE, 2016) 

Impervious Removal $16.41/m2 Local Consulting Sources 
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assumed to be 25% impervious while permeable pavement drainage areas were assumed to be 

100% impervious within our LID/GI optimization model.  

2.1.4 The upper Meadow Creek SWMM Model 

The runoff reduction performance of LID/GI distributions was quantified using an 

USEPA SWMM model for the upper Meadow Creek watershed. The SWMM model used in this 

study is a modified version of a model that was constructed in 2010 through a collaboration 

between the U.S. Army Corp of Engineers, URS Corporation, and the city of Charlottesville 

(Charlottesville et. al 2008, 2009). The original model included eighty-seven subbasins for upper 

Meadow Creek. To meaningfully simplify the decision space of the optimization model, the 

original subbasin model was converted to a twenty-six subbasin model by merging adjacent 

subbasins that drained to common junctions within the model. Impervious surface information as 

well as infiltration parameters were updated in the twenty-six-subbasin model using the 

sensitivity-based radio tuning calibration (SRTC) tool available in the PCSWMM software. After 

the SWMM model updates, there were no major differences in the calibration results of the two 

models. The twenty-six subbasin SWMM model in this study has been calibrated using one local 

rain event and validated using five later events. The calibration and validation events were 

observed in the spring and summer of 2021 and spring of 2022. For each recorded rain event, the 

rainfall was recorded using a HOBO® Pendant Event data logger tipping-bucket rain gauge 

located in the center of the upper Meadow Creek watershed approximately 100 meters from the 

stream. Stream stage was recorded using a HOBO U20L-01 transducer. Stage measurements 

were converted to discharge using a rating curve developed over a period of 18 months. 

Discharge was recorded at the upper Meadow Creek outlet using a SonTeK Flow Tracker 2 

acoustic velocimeter and depth was recorded using a staff gage and pressure transducer.  The 

about:blank
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calibrated Nash-Sutcliffe Efficiency (NSE) was 0.84 and the average NSE across four validation 

rain events was 0.76, indicating an acceptably calibrated hydrologic model. Further details on the 

SWMM model calibration can be found in appendix A on table A-1 and figures A-1 to A-6. 

2.1.5 The Multi-Objective Optimization Formulation  

To quantify LID/GI hydrologic performance, we simulated an SCS type II 24-hour design 

storm with a 1-year return period (3.04 inches per day for Charlottesville, Virginia) using the 

upper Meadow Creek SWMM Model. Our LID/GI optimization model consists of 156 decision 

variables with continuous values between 0 and 1 that represent the fraction of the feasible 

LID/GI area for the 6 LID/GI options in each of the twenty-six subbasins. We compared results 

from three optimization formulations that we will refer to as the Hydrologic, Equitable, and 

Hydro-Equitable formulations. The mathematical objectives for the three optimization 

formulations are described below. 

Formulation 1: The Hydrologic Formulation identifies LID/GI distributions that minimize the 

total runoff volume exported from the upper Meadow Creek watershed and peak stream flow 

averaged over ten restored reaches of Meadow Creek. The ten restored reaches span the restored 

sections of Meadow Creek, which go as far downstream as the outlet. These reaches were chosen 

because maintaining the integrity of previously restored areas is a major local stormwater 

management goal within the study area. The objective function for the first formulation can be 

summarized with equation 2 below.    

 min (𝑸𝒑, 𝑽𝒓𝒖𝒏𝒐𝒇𝒇)          (2) 

Qp is the average peak stream flow rate at ten restored stream reach locations and Vrunoff denotes 

the total volume of runoff exported from the watershed. 
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Formulation 2: The Equitable Formulation searches for LID/GI distributions that maximize the 

linear relationship between subbasin SVI values and green LID/GI area implemented as a ratio of 

subbasin area: 

 max (𝝆𝑿,𝒀)                         (3) 

Equation 3 is the Pearson correlation coefficient between subbasin SVI values X and the green 

LID/GI area ratios (green LID/GI area divided by total subbasin area) Y. Green LID/GI area 

includes all LID/GI types except for permeable pavement. Higher amounts of LID/GI per 

subbasin area were assumed to increase the likelihood of local resident access to the LID/GI and 

thus greenery. Equation 3 is referred to as the “LID/GI-SVI correlation” or simply “ρ” (we use 

“R” to refer to any other correlation coefficient). The maximum value for the LID/GI-SVI 

correlation equals 1, though there may only exist solutions that approach 1 depending on the 

problem definition and constraints of the model. We round the correlation coefficient to two 

decimals, which makes a ρ value of 1 achievable.  

It should be noted that while this metric prioritizes implementing LID/GIs in direct 

proportion to vulnerability as desired by an equity metric, it does not specify what that 

proportion should be. As such, multiple LID/GI distributions could achieve similar values of ρ 

with different slopes between LID/GI area ratio and demographic index scores. What an 

appropriate slope might be is likely location-dependent, and perhaps nonlinear. Other equity 

objective forms such as categorical, exponential, piecewise etc. could be explored instead of a 

linear function in future work. 

Formulation 3: The Hydro-Equitable Formulation searches for LID/GI distributions that 

minimize the average peak stream flow and total runoff exported from Meadow Creek while also 
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maximizing the linear dependence between subbasin SVI values and green LID/GI 

implementation.  

            𝐦𝐢𝐧  (𝑸𝒑, 𝑽𝒓𝒖𝒏𝒐𝒇𝒇, −𝝆𝑿,𝒀)           (4) 

The three formulations were optimized given different cost constraints ranging from five 

to forty-million dollars. A forty-million-dollar limit is a reasonable upper threshold to explore 

given a multiple year investment in LID/GI that, theoretically, could be funded through 

stormwater utility taxes levied within the study area. Unlike the city of Charlottesville, 

Albemarle County does not currently have a stormwater utility tax based on impervious surface 

area that could help fund LID/GI projects in the study area, but if the county did adopt the same 

stormwater utility tax policy as Charlottesville, a total of 1.8 million dollars could potentially be 

raised annually in the upper Meadow Creek watershed. If loftier stormwater policies were 

adopted (Arlington County, 2022), such as those of Arlington, Virginia, up to six million dollars 

could be raised each year within the upper Meadow Creek Watershed.  

Before optimization trials were run, SWMM simulations were conducted to obtain 

baseline results for the scenario with no LID/GI added. The hydrologic performance of different 

LID/GI distributions on peak and total runoff are reported in percentage reductions in runoff 

from the baseline scenario. To examine the impact of ρ on LID/GI distributions and compositions 

produced using our optimization model, we focus on results from the forty-million-dollar 

construction cost constraint. To examine the influence of ρ on runoff reduction performance, we 

examine the near Pareto-optimal LID/GI distributions across a range of cost constraints.  

2.1.6 Coupling SWMM and Borg 

Optimization of the LID/GI distributions was performed by a master-worker 

parallelization of the Borg algorithm (Hadka & Reed, 2015). Borg is a multi-objective 
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evolutionary algorithm that seeks to find a set of non-dominated solutions across multiple 

objectives, meaning no solution in the set outperforms another on all objectives. This set of 

solutions is also called the Pareto frontier. For a given optimization trial, Borg will generate a 

random initial set of LID/GI distributions as depicted in figure 2-3. Once LID/GI distributions 

were generated in a Python data frame, the fitness of LID/GI distributions was quantified using 

open-source Python libraries including the combination of two SWMM application programming 

interface (API) libraries. We developed Python code that allows for the rapid generation and 

testing of a vast number of individual LID/GI distributions. SWMMIO (Erispaha, 2022) and 

pySWMM (McDonnell et al., 2020) were used to update the SWMM input files of newly 

generated LID/GI scenarios, implement LID/GI within the model, execute SWMM simulations, 

and to evaluate results entirely in Python. When our SWMM model was coupled to Borg using 

the Python wrappers, the evolutionary algorithm took control of scenario generation, model 

simulation, results evaluation, and the optimal sorting of different LID/GI distributions.  

 

Figure 2-3: A simplified workflow diagram of the SWMM-BORG LID optimization model. 



30 
 

 

After the initial LID/GI distribution set is generated and tested, the main algorithm loop 

continues as the non-dominated LID/GI distributions are archived for recombination to produce 

new sets of solutions to be evaluated. To find the best approximation of the Pareto frontier, Borg 

deploys an elitist selection strategy, where only the most fit or best performing LID/GI 

distributions survive. This algorithmic recombination is analogous to “mating” the LID/GI 

distribution decision variables of the elite LID/GI distributions. The main loop seen in figure 3 

continues for a user specified number of LID/GI distribution evaluations. We executed the 

optimization model using the University of Virginia’s high-performance computing system and 

ran 150,000 LID/GI distribution evaluations. This took 20 hours using 3 cores. 

It should be noted that evolutionary algorithms such as Borg are not guaranteed to 

converge to the global non-dominated set given a finite number of evaluations (Laumanns et al., 

2002), but they represent the current state of the art for high-dimensional, nonlinear, multi-

objective optimization problems. Borg utilizes a combination of techniques such as randomized 

restarts and auto- adaptive multi-operator recombination within a single optimization framework 

that can produce sets of Ɛ-nondominated solutions. Ɛ values are domain-specific thresholds of 

indifference on each objective defined by the Borg user. That is, a user is indifferent to 

improvements < Ɛi on objective i. Ɛ values organize the objective space into hypercubes of side 

length Ɛ, called Ɛ-boxes, and the non-dominated sort is performed over the Ɛ-boxes rather than 

the solutions themselves. If multiple solutions reside in the same Ɛ-box, only that closest to the 

ideal point of the box is retained, and in the case of ties, only the first evaluated solution is kept. 

This limits the size of the archive and speeds up convergence. We use the terms Ɛ-nondominated 
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and near Pareto-optimal interchangeably in this study. The Ɛ values used for the objectives in our 

study are provided in table 2-5.  

Table 2-5: Chosen Ɛ values for each objective 

Qp (m3/s) R (m3) ρ 

0.000283 (0.01 CFS) 0.283 (10 ft3) 0.01 

 

Because the Equitable Formulation was only composed of a single objective, we used 

Pareto sorting instead of Ɛ-non-dominance sorting for this formulation. In Pareto sorting, 

solutions within the same Ɛ-box, including ties, are archived. This allows the Borg algorithm to 

store alternative sets of LID/GI distributions that produce the same ρ value. Without this 

modification, only a single LID/GI distribution would be archived under the Equitable 

Formulation.   

2.1.7 Tradeoff Analysis 

The primary analytical goal of this study is to examine the potential impact of ρ on Ɛ-

nondominated distributions, compositions, hydrologic performances, and equity. We hypothesize 

that the Hydro-Equitable Formulation will discover near Pareto-optimal LID/GI distributions that 

are more equitable but less hydrologically optimal than those found under the Hydrologic 

Formulation but more hydrologically optimal and less equitable than the LID/GI distribution 

produced under the Equitable Formulation. This should occur based on the definition of non-

dominance; however, it is possible that more equitable but equally hydrologically favorable 

solutions to those from the Hydrologic Formulation could be discovered by adding an equity 

objective if improving equity does not strongly conflict with reducing peak and total runoff. To 
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test our first hypothesis, we conducted Wilcoxon rank sum tests to determine if median 

nondominated performance is significantly different between the three formulations. 

 Depending on the problem formulation and chosen Ɛ values, by the end of an 

optimization trial Borg may archive dozens to hundreds of Ɛ-nondominated solutions that span a 

range of objective value combinations. For Ɛ-nondominated solutions produced under the Hydro-

Equitable Formulation, we quantified the expected tradeoffs between ρ values and runoff 

reduction performance at multiple cost constraints. If the strictly equitable distributions are 

expected to underperform compared to the "Hydrologic" distributions on runoff objectives, as we 

state in the first hypothesis, then we should expect a tradeoff between those two objectives under 

the same formulation and cost constraint. Therefore, our second hypothesis is that choosing an 

LID/GI distribution with a higher ρ-value will result in a decline in hydrologic performance. To 

test this hypothesis, Ɛ-nondominated solutions with ρ values from 0.6 to 0.7, 0.7 to 0.8, 0.8 to 

0.9, and 0.9 to 1 were categorized into four respective bins and the average hydrologic 

performance of each bin was compared across all cost constraints.  

2.2 Optimization Results  

2.2.1 Quantifying the impact of integrating the LID/GI-vulnerability correlation on Ɛ-

nondominated LID/GI distributions and compositions with a forty-million- dollar cost 

constraint.  

At each cost constraint, the Hydrologic Formulation produced relatively few Ɛ-

nondominated distributions, all with similar hydrologic performances. This suggests peak flow 

reduction and total runoff reduction are not strongly conflicting. Under the Pareto-sorting 

method, the Equitable Formulation archived up to tens of thousands of non-dominated LID/GI 

distributions at each cost constraint. Since the Equitable Formulation nondominated sets were so 
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large, we randomly sampled 1000 distributions to analyze. Under the Hydro-Equitable 

formulation, between 100 and approximately 1000 LID/GI distributions were archived as an Ɛ-

nondominated set at each cost constraint, suggesting stronger conflicts between equity and 

hydrologic performance. To compare the performance of solutions across these formulations, we 

selected one representative solution from each. For the Hydrologic and Hydro-Equitable 

formulations, we chose the solution with the lowest Mahalanobis distance (Encyclopedia of 

Mathematics, 2020) from the mean objective values across all nondominated solutions in their 

respective Pareto sets. The Equitable Formulation did not consider hydrologic objectives and 

produced nondominated solutions with identical ρ objective values, so we chose the solution 

with the shortest Mahalanobis distance from the mean cost and mean linear slope of LID/GI area 

ratios vs. SVI among the nondominated equitable solutions. We refer to these as the Hydrologic 

Solution, Hydro-Equitable Solution, and the Equitable Solution. Figure 2-4 shows the LID/GI 

area distributions for the three selected solutions under the forty-million-dollar-cost constraint. 

Most of the subbasins across all three solutions exhibited green LID/GI area ratios between 0.00 

and 0.024; exceptions occurred under the Hydrologic Solution (panel a), which resulted in green 

LID/GI area ratios between 0.024 and 0.039 in four separate subbasins that are located in the 

central part of the study area. Under this solution, the green LID/GI area ratios were not 

significantly correlated with the SVI values (ρ = 0.13, p > 0.05) but were significantly correlated 

with feasible raingarden area (R= 0.7, p<0.05). Hydrologic performance is greatest under this 

solution, which led to a 10.6% reduction in the average peak streamflow in restored reaches of 

the stream and 13.6% reduction in total runoff. 
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Figure 2-4: Ɛ-nondominated green LID area distributions and performance summary for selected 

solutions at the forty-million-dollar cost constraint under the Hydrologic (a), Equitable (b), and Hydro-

Equitable (c) formulations. 

Map b of figure 2-4 shows the selected green LID/GI area ratios of the Equitable 

Solution. This green LID/GI area ratio map resembles the SVI map since the green LID/GI area 

ratios are dependent on individual subbasin SVI values (ρ = 0.98, p < 0.05). The Equitable 

Solution green LID/GI area ratios were also most highly correlated with percent impervious 

conversion (R = 0.8, p < 0.05), feasible green roof areas (R = 0.54, p<0.05), and percent 

impervious (R= 0.47, p<0.05). Hydrologic performance was poorest under the Equitable 

Solution, which only reduced the average peak stream flow in restored reaches of the stream by 

2.5% and total runoff export by 3.6%.     

Map c in figure 2-4 shows the green LID/GI area ratios under the selected solution from 

the Hydro-Equitable Formulation. The green LID/GI area ratios produced under this solution are 

greatest in the central and southwest subbasins while there were two subbasins where green 

LID/GI area ratio was above 0.024. The green LID/GI area ratio implementations are 

significantly correlated with the subbasin SVI values (ρ=0.79, p < 0.05) and with feasible 

impervious conversion area (R= 0.39, p < 0.05). The hydrologic performance under the Hydro-

Equitable Solution was more similar to that of the Hydrologic Solution than to the Equitable 
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Solution, resulting in reductions of the average peak stream flow in restored reaches of the 

stream by 10.4% and total runoff export by 12.1%. 

The distribution of total green LID/GI area (not ratio) has also been analyzed in relation 

to the SVI values. Figure 2-5 shows the cumulative percentage of total green LID/GI area that 

was implemented for each of the above solutions from the three formulations versus subbasin 

SVI values. The Hydrologic Solution implemented more green LID/GI area in the subbasins with 

lower SVI values compared to the selected solutions from other two formulations. For example, 

the Hydrologic Solution resulted in the implementation of approximately 54% of the green 

LID/GI to subbasins within the upper half of the SVI values, as compared to over 67% for the 

other two solutions. Table 2-6 summarizes the green LID/GI area distributions between different 

percentiles of SVI values for each of the selected solutions.   

 

 

Figure 2-5: Percentage of Green LID implemented within subbasins vs. subbasin SVI values. 
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Table 2-6: Percentage of green LID area implementation by SVI percentile for the three formulations. 

 

 

 

 

 

The LID/GI type composition was another significant decision variable change that 

occurred between the three solutions at the forty-million-dollar cost limit constraint. These 

solutions’ LID/GI distributions were composed of different amounts of LID/GI types depending 

on the formulation. Figure 2-6 illustrates the overall LID/GI type composition differences for 

each of the three solutions considered. Bioretention, which is not depicted in figure 2-6, 

composed a relatively negligible share of the total LID/GI implemented under all three 

formulations. 

 

 

 

 

 

 

Figure 2-6: LID type composition percentages (%) of selected solutions from each formulation under the 

forty-million-dollar cost constraint. 

 

Under the Hydrologic Solution, the LID/GI types that were implemented most 

extensively were impervious conversion (42%), impervious surface conversion (37%), and 

permeable pavement (8%). Under the Equitable Solution, impervious surface conversion was the 

SVI Percentile Hydrologic (%) Equitable (%) Hydro-Equitable (%) 

Top 5th 14.4 30.9 23.8 

Top 3rd 32.5 48.5 42.5 

Top 50th 53.7 73.3 67.2 

Bottom 50th 46.3 26.7 32.8 

Bottom 3rd 17.3 10.7 11.8 

Bottom 5th 9.2 4.0 3.3 
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most extensive LID/GI type with 58% of the total LID/GI area share. Other than the impervious 

surface conversion, this solution’s LID/GI composition was more diverse than the selected 

solutions from the other formulations, with green roofs (25%) and grass swales (9%) composing 

a greater share of total LID/GI area implemented. The LID/GI composition of the Equitable 

Solution was more predictable in this study area, as the demographic index values were found to 

be significantly correlated with the total feasible areas of impervious surface conversion (R = 

0.47, p < 0.05) and green roofs (R = 0.56, p < 0.05) within each subbasin. The LID/GI type 

composition under the Hydro-Equitable Solution was similar to both of the other solutions with 

impervious surface conversion (39%), raingardens (32%), and permeable pavement (9%) being 

the top LID/GI type choices like the Hydrologic solution but with elevated green roof (11%) and 

grass swale (8%) implementation like the Equitable Solution. Note that figure 2-6 does not 

include drainage area treated by each of the LID/GI types.  

 

2.2.2 Cost-Benefit analysis of the three formulations   

 Figure 2-7 shows the performance of nondominated LID/GI distributions versus cost 

constraint limits. We plotted the average values for peak streamflow on the left panel and total 

runoff reduction on the middle panel. Error bars were added to all points to show the range in 

hydrologic performance across all the Ɛ-nondominated distributions, though they may not be 

visible if the ranges are very small. Increasing the cost limit under the Equitable Formulation did 

not improve hydrologic performance much compared to the other two formulations, as peak 

streamflow and total runoff export was only reduced by about 1.5% and 2.2% respectively from 

the lowest to the highest cost constraint. The Equitable Formulation also resulted in LID/GI 

distributions that were significantly under the cost constraints, which also explains the lowered 

performance. The hydrologic performances under the Hydrologic and Hydro-Equitable 
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Formulations improved at a similar rate with peak streamflow being reduced between the highest 

and lowest constraint by 8.3% under the Hydrologic Formulation and the Hydro-Equitable 

Formulation. Total runoff export was reduced by approximately 10.0% under the Hydrologic 

formulation and by 10.1% under the Hydro-Equitable formulation. Two-sample Wilcoxon Rank 

Sum test results reveal that the median hydrologic performance and ρ values of Ɛ-nondominated 

distributions were significantly different at all cost constraints for all formulations (p < 0.05). 

The right plot in figure 2-7 is the LID/GI-SVI correlation versus cost constraint for 

nondominated LID/GI distribtuions which illustrates the difference in the spatial equity of 

LID/GI distributions under each of the formulations. According to the LID/GI-SVI correlation, 

the Hydro-Equitable formulation does produce LID/GI distributions that are more equitable than 

those produced under the Hydrologic Formulation but less equitable than those produced under 

the Equitable Formulation.  

 

Figure 2-7: Cost-Benefit Curve for average peak stream flow (left),total runoff export (middle), LID-SVI 

correlation (right). 

2.2.3 Quantifying the sensitivity of hydrologic performance to changes in ρ value choices.  

The potential to discover multiple Ɛ-nondominated LID/GI distributions is one advantage 

of using Borg in this type of optimization study. As mentioned earlier, the Hydro-Equitable 

Formulation archived between 100 and approximately 1000 LID/GI distributions in the Ɛ-

nondominated set at each cost constraint. For example, optimization under this formulation with 
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a forty-million-dollar cost constraint resulted in the production of 114 Ɛ-nondominated archived 

LID/GI distributions with ρ values ranging from 0.54 to 0.96. To quantify the possible tradeoffs 

between ρ values and hydrologic performance at multiple cost intervals under the Hydro-

Equitable formulation, Ɛ-nondominated solutions were sorted into four bins at 0.1 increment ρ 

values from 0.6-0.7 to 0.9-1. The average hydrologic performance is plotted for each ρ value 

interval category at each cost constraint in figure 2-8. 

 

Figure 2-8: Average hydrologic performance of Ɛ-nondominated solutions at each cost constraint 

according to ρ interval. 

Overall, choosing a near Pareto-optimal LID/GI distribution with a higher ρ value is 

expected to result in a loss in hydrologic performance, confirming our first hypothesis. However, 

the tradeoff is minor compared to that between cost and hydrologic performance. On average, 

choosing a solution in the next highest ρ value interval category among other Ɛ-nondominated 

solutions at a given cost constraint will result in only a loss of 0.2% in peak stream flow 

reduction and 0.3% in total runoff export reduction on average. This suggests that one could 

always choose the most equitable LID/GI distribution at a particular cost constraint, without 

significantly sacrificing hydrologic performance in the upper Meadow Creek watershed.  
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2.3 Discussion 

2.3.1 The impacts of the LID/GI-equity correlation objective on LID/GI distributions, 

LID/GI type compositions, and equitability at the forty-million-dollar cost constraint.  

Our results at the forty-million-dollar cost constraint show that an objective such as the 

LID/GI-equity correlation may be a necessary component of LID/GI-optimization models of 

similar scales if local management goals include both runoff management and maximizing green 

LID/GI implementation in more marginalized areas. Each formulation produced solutions with 

major differences in green LID/GI distributions and LID/GI type compositions. We have shown 

that under the Hydrologic Formulation at a forty-million-dollar cost constraint, the greatest green 

LID/GI implementation rates occurred in four subbasins in the central part of the study area, 

whereas under the Equitable Formulation the green LID/GI distributions were dependent on the 

subbasin SVI values. The Hydrologic and the Hydro-Equitable Solutions consisted of mostly 

rain gardens and impervious surface conversion. The Equitable Solution resulted in impervious 

surface conversion implementation with the remainder being mostly shared by a combination of 

green roofs, grass swales, and permeable pavements.  The highest green LID/GI area ratios were 

implemented in subbasins at the central and southeast parts of the upper Meadow Creek 

watershed under the selected solution from the Hydro-Equitable Formulation which are 

composed of mostly residential areas surrounded by commercial and university districts.  

Because ρ was not included as an objective in the Hydrologic Formulation, it is not 

surprising that the LID/GI distribution in the selected solution from this formulation had a ρ 

value that was insignificant (ρ=0.13, p > 0.05) and that LID/GI distribution of the selected 

solution from the Hydrologic Formulation was slightly skewed towards subbasins with lower 

SVI values. The solution from the Equitable Formulation produced more equitable green LID/GI 
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distributions but at great sacrifice to hydrologic performance.  As hypothesized, the selected 

solution from the Hydro-Equitable formulation did result in hydrologic performance that was 

similar to that of the solution selected from the Hydrologic Formulation but with an LID/GI 

distribution that was significantly more equitable. 

2.3.2 The impacts of the LID/GI-equity correlation objective on hydrologic performance 

and equity at multiple cost constraints. 

Recall our first hypothesis that the Hydro-Equitable formulation will produce Ɛ-

nondominated LID/GI distributions with objective values that are between those of solutions 

from the other formulations. The median hydrologic performance was found to be statistically 

different between all formulations at all cost constraints as revealed through two-sample 

Wilcoxon rank sum tests. The median hydrologic performance of solutions from the Hydrologic 

Formulation was superior to that of the Hydro-Equitable Formulation for all but one scenario. 

Likewise, the Hydro-Equitable Formulation produced improved hydrologic performance 

compared to the Equitable Formulation at all costs constraints. Two-sample Wilcoxon rank sum 

tests also revealed that the Hydro-Equitable ρ values were significantly lower than the Equitable 

ρ values (p < 0 .05) 

Though our results mostly confirm our first hypothesis, there are a few notable caveats. 

As mentioned above, results showed a single scenario where the median peak streamflow 

reduction of solutions in the Hydro-Equitable Formulation was better than that of the Hydrologic 

Formulation. Furthermore, the peak streamflow reduction performance was just 0.5% greater on 

average for the Hydrologic versus the Hydro-Equitable Formulation across all cost constraints 

and 1.3% greater for total runoff export reduction. In terms of how equity is defined in this study, 

the Hydro-Equitable Formulation produces LID/GI distributions that are significantly more 
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equitable than the Hydrologic Formulation. According to our results, and depending on the 

perspective of local stakeholders, integrating the ρ objective into similarly scaled optimization 

models could improve the equity of LID/GI distributions with minimal sacrifice to hydrologic 

performance. 

A simple sensitivity analysis revealed that, out of the two hydrologic objectives, total 

runoff export reduction was slightly more sensitive to incremental changes in ρ than total runoff 

reduction across Ɛ-nondominated LID/GI distributions in the Hydro-Equitable Formulation. The 

sensitivity analysis also provided evidence that allows for the confirmation of our second 

hypothesis, that hydrologic performance will decline with increasing ρ values. Though, there are  

a few specific instances where peak stream flow reduction improved with increasing ρ, total 

runoff reduction was found to decline over all ρ intervals at each cost constraint.  

2.3.3 Recommendations and Insights 

Maps produced using the methods in this study can be used in the planning of local 

LID/GI expansion to areas with higher percentages of historically marginalized populations. The 

maps should not be intended for final design recommendations but could be used for strategic 

LID/GI planning on a city-wide scale. The maps of nondominated LID/GI distributions like 

those produced in figure 2-4, could represent LID/GI implementation targets for each of the 

subbasins under consideration and could be used to help inform local stormwater LID/GI 

awareness, outreach, and implementation campaigns.  

Combining SVI mapping and LID/GI optimization methods offers advantages over using 

either approach individually. This integration allows for a comprehensive analysis of tradeoffs 

between traditional hydrologic goals and socially desirable objectives specific to an area. Solely 

relying on SVI maps for increasing implementation in marginalized communities doesn't provide 
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insights into how LID/GI performs relative to optimal conditions in that area. As demonstrated in 

this study, implementing LID/GI in marginalized areas led to suboptimal runoff management 

when compared to what's achievable at Meadow Creek. Similarly, solely emphasizing hydrologic 

objectives doesn't ensure equitable LID/GI distribution. The multi-objective optimization 

approach generates solutions that can align with multiple LID/GI implementation goals, 

harmonizing various objectives effectively. 

Numerous studies have shown that socially vulnerable communities tend to inhabit areas 

with the highest temperatures in urban environments, which are often associated with increased 

impervious surfaces and reduced vegetation (Huang et al., 2011; Mitchell & Chakraborty, 2018; 

Saverino et al., 2021). Additionally, research has indicated that impervious surfaces and reduced 

vegetation are key factors influencing urban runoff generation (Bera et al., 2022; Moglen, 2009). 

It might seem logical to assume that prioritizing runoff management in LID/GI planning would 

naturally lead to greater implementation in marginalized communities. However, this study 

highlights that this assumption doesn't always hold true, as the outcome depends on the specific 

runoff management goals of the area in question. 

2.3.4 Scope and Limitations 

We acknowledge that the equity objective chosen here is simply an example of an equity 

metric that would favor increasing LID/GI implementation in areas of greater social 

vulnerability, but that there could be many alternative formulations that better reflect an equitable 

distribution of LID/GI benefits. Future work should iteratively explore alternative formulations 

with the community to identify what social equity indicators are most acceptable and 

quantifiable for their area (Fletcher et al., 2022). For the purposes of this study, we assumed that 

the LID/GI implementation was a sufficient surrogate metric for increasing LID/GI access, as is 
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a common assumption among green LID/GI planners. The optimization objectives can be altered 

to include different runoff management and LID/GI implementation goals and constraints. For 

example, the equity objective could be modified to include other specific ecosystem services 

provided by LID/GIs, and the costs could be quantified differently. But the basic methodology 

can handle a wide range of alternative formulations to allow customization to each local 

watershed and community.  

There are some important limitations to consider when using LID/GI optimization results 

produced using methods described in this study. Site-scale LID/GI design that is smaller than the 

upper Meadow Creek subbasins is beyond the scope of this study and would require more 

detailed design practices. To conduct an optimization study that was replicable by others, we 

chose spatial data that was likely to be available at most locations across the U.S. We 

recommend that these methods be applied only with the highest resolution socioeconomic data 

that is available to minimize the error introduced into the chosen social vulnerability index.  

As the expansion of LID/GI may result in increasing property values within LID/GI 

accessible areas, the displacement or migration of marginalized people out of implementation 

areas is a viable concern that is not addressed by our algorithm. It is not enough to strategically 

place LID/GI in more marginalized communities. New urban LID/GI plans must also coincide 

with local policies that limit green gentrification (Anguelovski et al., 2020).  

Where implemented, it is important for city managers and property owners to ensure that 

all stormwater facilities are maintained. If facilities are not maintained, then they can have Net 

DINegative impacts on nearby communities. It is important that individual communities both 

support and understand future LID/GI plans before implementation (Dean et al., 2021) and that 
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these communities have the capacity to maintain stormwater facilities either through funding of 

resources and/or volunteer participation (Mandarano & Meenar, 2017). 

2.4 Conclusions 

 The primary objective of this study was to integrate a novel spatial social equity 

objective, constructed using modern social vulnerability mapping concepts, into a multi-

objective optimization model for stormwater low impact development (LID/GI). This objective 

successfully maximized the linear correlation between green-LID/GI implementation and areas 

with higher percentages of historically marginalized people with small sacrifices in hydrologic 

performance under most cost constraints. Major conclusions that can be drawn from the results 

of this study include the following: 1) The LID/GI-SVI correlation objective can be used to 

direct optimization algorithms to search for LID/GI distributions that can achieve runoff 

management objectives, increase green LID/GI implementation in more marginalized areas, and 

explore the potential tradeoffs between hydrologic and equity goals. 2) LID/GI optimization 

formulations that only consider hydrologic objectives will likely not result in equitable LID/GI 

distributions. 3) LID/GI distributions performing well on the LID/GI-SVI correlation may be 

composed of different types of LID/GI compared to less equitable but more hydrologically 

favorable LID/GI distributions. 4) Integrating the LID/GI-SVI correlation objective slightly 

impaired runoff objectives, which suggests that these objectives moderately conflict with each 

other in our study area. Replication of these methods in other study areas is necessary to draw 

further conclusions regarding the integration of similar social equity objectives into urban 

stormwater LID/GI optimization models and to further test the hypotheses explored in this study.  
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Chapter 3: Simulating the Effects of Channel Restoration Designs 

on in-Stream Nitrogen Uptake 

 

This chapter is currently being prepared for publication. 

Chapter 3 Abstract 

The proliferation of impervious development in urban areas has intensified stormwater 

runoff, increased flow velocities, and elevated nutrient loads. This has caused degradation in 

natural channels and receiving water bodies through processes like erosion, scouring, 

sedimentation, and eutrophication. Channel restoration, a prevalent engineering practice, is 

employed to rectify deteriorated streams. Environmental scientists and aquatic ecologists 

contend that effective restoration should augment stream functions, boosting assimilative and 

nutrient retention capabilities. In this study, we have used the Small Streams Hydro-

Biogeochemistry Simulator (SSHBS) to assess a variety of configurations of riffles, pools, and 

meanders along an unrestored stream segment in an urban watershed within Baltimore County.  

SSHBS has previously been used and validated with empirical observations on our study stream.  

Our objective is to address the following research questions: How do geomorphic restoration 

alterations impact the rates of dissolved inorganic nitrogen (DIN) uptake in an urban stream? Our 

findings indicate the following: 1) Enhanced benthic area, especially from pools and meandering 

features, increased simulated whole Reach net DIN uptake through amplified denitrification 

under closed-canopy conditions; 2) The removal of riparian canopy, often coinciding with 

channel restoration efforts, boosted net DIN uptake most significantly, via increased algal DIN 

uptake; 3) The pool (P) and riffle-meander (RM) scenarios showcased similar rates of simulated 

net DIN uptake under both canopy conditions; 4) Designs combining riffle, pool, and meander 

features performed better compared to those with fewer features; 5) The return of tree canopy 

growth is expected to reduce the overall increase in net DIN uptake for all restoration designs, 

primarily due to reduced algal activity from lower levels of photosynthetically active radiation 

reaching the stream. Restorations with a combination of features, particularly those incorporating 

a pool, could be more effective in sustaining net DIN uptake rates compared to single-feature 

channel scenarios upon the return of tree canopy growth. Although the specific simulation 

outcomes lack field validation, our study demonstrates the viability of SSHBS as a modeling tool 

for stream restoration designers seeking to estimate the effects of geomorphic restoration features 

on net DIN uptake rates. This research has the potential to enrich prevailing methodologies for 

stream restoration design. 
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3.0 Introduction 

Over the past century, land in the United States has become increasingly developed for 

commercial, industrial, residential, and other anthropogenic purposes. Impervious land 

development has elevated volumes and velocities of stormwater runoff and nutrient loadings in 

urban areas, causing the degradation of naturally formed channels and benthic habitat through 

erosion, scouring, sedimentation, and eutrophication. Stream restoration has become a common 

engineering practice deployed to repair degraded streams. Common goals of stream restoration 

include improving water quality, increasing biodiversity, improving riparian and in-stream 

habitat, stabilizing the channel, protecting proximal infrastructure, and enhancing aesthetics. 

Stream restoration often requires a variety of manipulations of the riparian ecosystem and the 

stream geomorphology, such as: planting native riparian vegetation; structural alteration of the 

channel with the creation of meanders, riffles, and pools to regulate flow; and the reconnection 

of the streambank to the floodplain (Bennett et al., 2011).  

In the Chesapeake Bay area, there is increased pressure to design stream restorations that 

aim to improve water quality and to reduce nitrogen (N) and phosphorus (P) daily loads 

(Williams et al., 2017). Hall et al. (2014) concludes that meeting total maximum daily load 

(TMDL) requirements with in-stream restoration practices must include enhancing stream 

functions that increase assimilative and retention capacity of the entire ecosystem. Other 

researchers have pointed to the importance of stream ecotones such as the stream-floodplain-

connection and benthic transient storage zones as opportunities to enhance denitrification 

(Kaushal et al., 2008; Klocker et al., 2009; Lawrence et al., 2013; Roley et al., 2012). 

Additionally, algal assimilation of NO3-N and NH4-N has been found to provide significant but 

temporary reductions of inorganic nitrogen export from streams (Crumpton & Isenhart, 1987; 
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Hall & Tank, 2003; Webster et al., 2003). Reisinger et al. (2019) showed that stream restorations 

can enhance nitrogen uptake in the stream, but these enhancements can be mostly attributed to 

the removal of tree canopy which increases the available light for primary production.  

Stream restoration is a multi-billion-dollar industry in the United States (Bernhardt et al., 

2005) that has become more commonplace with the advent of a compensatory stream mitigation 

program vis-a-vis section 404 of the Clean Water act (Doyle & Douglas Shields, 2012; Lave et 

al., 2010). The largely private practice industry and applied science of stream restoration has 

been dominated by the “Natural Channel Design” (NCD) approach (D. Rosgen, 1998). The NCD 

method is a multi-step stream engineering design process involving the restoration of a degraded 

stream’s sediment and streamflow regimes towards that of a natural reference stream through 

manipulation and maintenance of channel geomorphology. A central tenet of NCD is that stream 

form and function are highly interrelated. Critics of NCD have often cited a high failure rate and 

have found it questionable to assume that channel form manipulation alone can restore fluvial 

ecological functioning without accounting for ecological, chemical, and biological processes  

(Wohl et al., 2015; Palmer et al., 2014; Simon et al., 2007). In response to this criticism, Rosgen 

(2011) emphasized the importance of including physical, biological, chemical, aesthetic, social, 

and economic goals in sustainable NCD projects (D. L. Rosgen, 2011). Nevertheless, the 

academic community has proceeded to advocate for the integration of more ecosystem process-

based approaches to evaluate the efficacy of stream restoration designs.  

As summarized by Wohl et al. (2015), there is increasing demand for a better 

understanding of how various aspects of physical complexity can assist biogeochemical function, 

stream ecosystem productivity, and contaminant degradation, and how small alterations in 

stream forms can make a difference to instream nutrient spiraling. Nutrient spiraling is a concept 
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that describes how nutrients move, cycle, and transform within stream ecosystems as they travel 

downstream. It is a useful concept related to modeling how nutrients transform between different 

biogeochemical species and how they are retained within in-stream ecosystems. Nutrient 

spiraling lengths are related to how well a stream retains nutrients and is impacted by physical 

characteristics of a stream channel along with many other anthropogenically affected variables 

(Newbold et al., 1982). Nutrient spiraling length is the expected distance a nutrient molecule 

travels down a stream before uptake occurs. Nutrient spiraling lengths increase with stream 

depth, where the surface water volume to benthic area is increased, and with stream velocity, 

where the hydraulic residence times are reduced (Peters et al., 2011). Process-based modeling 

tools that can simulate the effects of a variety of different stream restoration designs on in-stream 

ecological functioning and DIN spiraling are especially useful since physical experimentation 

with stream channels is expensive and rare. 

Since the late 20th century, stream restoration designers have had access to an array of 

modeling tools that can help to estimate the impacts of channel alterations on the streamflow and 

sediment regimes. However, these models typically lack functions for integrated hydraulic and 

ecosystem processes. Recently, more process-based models have been developed that can assist 

in the estimation of nutrient retention and removal resulting from different stream restoration 

designs that are responsive to altered stream hydraulics. Though the model is not fully process-

based, Calfe et al. (2022) coupled HEC-RAS with an R script model for nitrate removal to 

analyze the cumulative effects of restoration scenarios on a full stream network with a water and 

solute mass balance approach. At a smaller scale, Lin et al. (2021) developed the Small Stream 

Hydro-Biogeochemistry Simulator (SSHBS) and used it to compare ecological processing rates 

between two reach segments, one restored and one unrestored, at Scott’s Level Branch (SLB) in 



58 
 

Baltimore County, Maryland. As will be demonstrated in this study, SSHBS can also be used to 

simulate a variety of ecological effects of different channel designs and to analyze the key 

relationships between simulated in-stream ecological and nutrient retention processes.  

We conduct a channel restoration scenario analysis and answer the following research 

questions: 1) How do channels with simulated riffle, pool, and meandering features impact DIN 

uptake rates at an unrestored reach at SLB? 2) How does the removal of canopy influence net 

DIN uptake across a variety of channel restoration designs? 3)What are the most significant 

differences in DIN uptake rates between different restoration designs? We adapted a version of 

the SSHBS model that was first deployed by Lin et al. (2021) at paired restored and unrestored 

reaches at SLB to answer these questions.  We carry out a set of numerical experiments, varying 

channel restoration features to estimate the impacts on DIN (NO3-N and NH4-N) uptake rates 

and evaluate the individual and integrated impacts of the different restoration features. 

3.0.1 Study Area 

 In this study we test how various riffle, pool, and meander restoration designs impact 

simulated DIN dynamics at a 133-meter-long reach at SLB within the Gwynn’s Falls watershed. 

This site, because of prior stream restorations in the area and field monitoring (Reisinger et al 

2019), has been modeled before using SSHBS (Lin et al 2021). This reach that is the subject of 

our numerical experiments was unrestored prior to 2019 but has since undergone restoration  that 

are unrelated to this study. Figure 3-1 depicts our study area which consists of 72 hectares of 

suburban land cover.  The catchment area is approximately 40% impervious surface and 32% 

turfgrass that mostly consists of lawn (Chesapeake Conservancy, 2019). A set of the streams 

within the Scotts Level Branch watershed have undergone restorations since 2014 with the 

USEPA touting the effort as a “non-point source success story” (EPA, 2022) for sediment and 
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nutrient reduction. To protect the downstream Chesapeake Bay, Baltimore County has planned to 

reduce nutrient load reductions (as compared to the 2009 levels) for the SLB restoration by 29% 

for total nitrogen and by 41.5% for total phosphorus (Baltimore County, 2013a, 2013b).  

 

Figure 3-1: Scotts Level Branch Study Area and Unrestored Outlet Reach 

3.1 Methods 

3.1.1 Simulating in-stream flow with SSHBS. 

SSHBS is a hybrid process and data-driven stream ecosystem model that can be used to 

evaluate in-stream nutrient processing (Lin et al., 2021), including the potential impacts of 

different stream restoration designs. SSHBS partitions a study stream into longitudinally 

connected geomorphic zones that receive lateral water and nutrient inputs from upstream and 

terrestrial hillslopes. SSHBS simulates daily average hydraulic parameters at different cross-

sections along the study reach using a combination of observed discharge data and a lookup table 

for key stream hydraulic parameters generated by a routing model. Observed flow data was 
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retrieved from the SLB USGS stream gage at Rockdale, MD (USGS, 2023), which is 

downstream of our study reach. Flow was estimated at each point along the study reach by 

scaling the observed discharge to drainage area.  Using the area-weighted flow, Manning 

Equation parameters (slope, Manning n, hydraulic radius, cross-sectional area, and volume) are 

back-calculated using the lookup table. We use the unrestored Manning’s equation cross-section 

data obtained by Lin et. al (2021) in the study as the base case scenario. The modeling period 

spans the time period between January 2012 to December 2017. The in-stream flow model is 

explained in more detail by Lin et al. (2021) and in appendix B of this paper. The Manning 

equation lookup tables are included in the supplementary information.  

3.1.2 Simulating in-stream nutrient flux with SSHBS. 

In addition to flow, SSHBS input data also includes lateral water input concentrations of 

nitrogen and phosphorus, photosynthetically active radiation (PAR), water temperature, and 

organic detritus (leaf litter) loadings. Lin et al. (2021) estimated PAR at the stream and leaf litter 

loadings for the unrestored reach using the Regional Hydro-Ecological Simulation System 

(RHESSys). Daily nitrogen and phosphorus concentrations at this reach were estimated using  

the Weighted Regressions on Time, Discharge, and Season (WTRDS) method (Hirsch et al., 

2010), calibrated with weekly concentration and discharge measurements in an adjacent, similar 

watershed that were conducted as part of the Baltimore Ecosystem study since 1998 (Baltimore 

Ecosystem Study, 2019) and by in-stream measurements at SLB by Reisinger et al. (2019). 

RHESSys is a Geographic Information System (GIS)- based model that employs mathematical 

functions to simulate a range of biogeochemical and hydrological processes, encompassing 

surface/subsurface  hydrologic flows, microclimate variations, canopy radiation interactions, and 

the cycling of carbon and nitrogen within vegetation and soil. Within each stream reach zone, 
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SSHBS computes fluxes and transformations of carbon, nitrogen, and phosphorus between the 

water column, algae and benthic microbes, and organic detritus. These fluxes are governed by 

flow conditions, temperature, light, and ecological processes occurring within each reach zone 

including algal uptake, denitrification, nitrification, immobilization, and mineralization. Figure 

3-2 is a conceptual diagram of the nutrient fluxes that are simulated by SSHBS. The setup of the 

in-stream ecosystem model used in this study is explained in more detail by Lin et al. (2021) 

with key functions briefly explained in appendix B. 

Figure 3-2: Flow diagram of ecosystem processes involved in modeling carbon, nitrogen, and phosphorus 

flux using SSHBS. 

3.1.3 Simulating N Uptake Rates for Riffle, Pool, and Meander Channel Restoration 

Scenarios Under Open and Closed Canopy Conditions 

The 133-meter-long unrestored SLB reach has been divided into 20 sections, each 6.66 

meters in length in longitudinal order under unrestored non-meandered conditions. We 

implement riffles and pools by adjusting Manning’s n values and the slopes at specified channel 

sections. Riffle reaches were adjusted to have increased slopes and Mannings n values, which 
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resulted in a decreased hydraulic radius. Pools were set to have nearly flat slopes which 

increased the hydraulic radius of the cross-section. Modifications to these parameters alter the 

stream benthic area and the hydraulic residence times of the different zones of the stream which 

directly impacts the magnitude of nutrient spiraling lengths and uptake of nutrients (Cunha et al., 

2018). Meandering cross-sections were lengthened, and the slopes were decreased accordingly to 

account for longitudinal elevation changes. All tested channel configurations maintain a 

consistent net elevation change with the longitudinal distance of the unrestored stream. For 

example, with the implementation of a riffle with an increased slope, the slope of the 

downstream reaches was decreased so that the net elevation change of the stream does not 

change over the length of the stream with all of the tested restoration scenarios. 

  By manipulating the slopes, Manning’s n values, and reach lengths of the original look-

up table information provided by (Lin et. al 2021), we created ten different reach features: a 

riffle, a pool, a post-riffle, a post-pool, a meander, a meandered-riffle, a meandered-pool, a 

meandered-post-riffle, a meandered-post-pool, and a meandered-post-riffle-pool reach to model 

along with the unrestored reaches. Table 3-1 summarizes the slopes and Manning’s N values that 

were changed accordingly to create the different reach features.  
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 Table 3-1: Slopes and Mannings N values for each of the reach features.  

Scenario Slope (%) Manning's N 

Unrestored 1.16 0.035 

Riffle 2.28 0.055 

Pool 1.00E-04 0.035 

Post-Riffle 0.60 0.035 

Post-Pool 1.74 0.035 

Meander 0.81 0.035 

Meandered-Riffle 2.28 0.055 

Meandered Pool 1.00E-04 0.035 

Meandered-Post-Riffle 0.07 0.035 

Meandered-Post-Riffle-Pool 1.21 0.035 

Meandered-Post-Pool 0.41 0.035 

 

 

Meandering features were implemented in SSHBS by modeling the reach as a sinusoidal 

equation (w) that increases the length of the unrestored reach: 

𝑤 = A ∗ sin(0.19 ∗ 𝑥)     (1) 

where x is the downstream longitudinal distance from 0 to 133-meters and A is the meander 

amplitude or the maximum lateral distance that the stream deviates from the original unrestored 

centerline as a result from the simulated meandering pattern, which was set to 1.5 meters. By 

measuring the distance of the stream centerline to nearby vegetation using Google Earth Pro, 1.5 

meters was judged to be a feasible upper threshold for an engineered sinusoidal meandering 

pattern at SLB. The authors of this paper did not consider underground piping or other 

infrastructure when deciding to test a 1.5-meter amplitude. However, implementing a sinusoidal 

pattern would necessitate obtaining data about these elements. The parameters seen in equation 1 

produce meanders with four complete periods over the centerline of the original 133-meter reach 
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length. The new length of the stream as a result of meandering patterns was found with the 

arclength formula for w applied over the longitudinal length of the reach. 

𝐿 =  ∫ √1 + (1.5 ∗ cos (0.19 ∗ 𝑥))2
133

0
    (2) 

A total of eight channel restoration scenarios were explored to evaluate the potential 

impacts that restoration features could have on DIN uptake (table 3-2). Plan-views of the 8 

scenarios are shown in figure 3-3. 

Table 3-2: Channel Restoration Scenarios and Feature Lengths 

Reach 

Scenarios 

Total Reach 

Length (m) 

Riffle 

Length (m)  

Pool 

Length (m) 

UN 133 0 0 

R 133 26.6 0 

P 133 0 26.6 

RP 133 20.0 20.0 

M 190.5 0 0 

RM 190.5 38.1 0 

PM 190.5 0 38.1 

RPM 190.5 28.6 28.6 
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Figure 3-3: The eight plan-view depictions of the channel restoration scenarios that were evaluated in this 

study. (Graph axes are not to-scale.) 

Since tree canopy was expected to have a significant impact on the uptake rates in the 

stream, a total of 16 scenarios were executed in this study- the 8 channel restorations detailed 

above with closed-canopy PAR data, plus the same 8 channel scenarios with open canopy PAR 

data. Though PAR data can be obtained using sensors installed in the field, sensors were not 

present at this study location over the simulation time period, so hourly PAR data (μmol*m2*s-1) 

was simulated using the SLB RHESSys model. RHESSys was chosen because it has the 

capability of simulating canopy attenuation of solar radiation. The closed canopy PAR data 
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included RHESSys solar radiation output from the immediate surface area of the stream reach, 

which is covered by riparian canopy under the unrestored scenario. The open-canopy PAR data 

included RHESSys solar radiation results from nearby area that contained no tree canopy over 

the simulation period. 

We simulated seasonal denitrification, algal DIN uptake, mineralization, and calculated 

Net DIN uptake rates between all of the simulated scenarios over the periods of January 2012 to 

December 2017. We compare the simulated DIN processing rates between all 16 scenarios and 

conduct Dunn tests for non-parametric pairwise comparisons to identify differences between all 

of the restoration scenarios that are the most probable in regard to annual DIN uptake rates. We 

consider any differences in uptake rates to be significant with a p value less than 0.05. 

3.2 Results 

The simulated whole reach denitrification, algal DIN uptake, mineralization, and net DIN 

uptake rates by season is shown in figure 3-4. Unsurprisingly, open canopy increased Reach net 

uptake rates versus closed canopy scenarios across all channel designs. Figure 3-5 shows the 

PAR for the closed and open canopy scenarios as simulated using RHESSys. Open scenarios 

exhibit higher PAR during the summer and fall compared to the closed canopy scenarios, which 

was more shaded during the leaf-out periods.  
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Figure 3-4: Simulated whole reach DIN uptake and release rates in kilograms per day by season between 

2012 – 2017 at SLB. 

 

Figure 3-5: Simulated PAR results from the RHESSys model at the SLB whole reach under closed and 

open canopy conditions. 
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 Denitrification was the greatest contributor to net annual N uptake under the closed 

canopy condition. Figure 3-6 shows the change in annual denitrification rates in kg per year for 

each scenario under both canopy conditions. Under the open canopy and closed canopy 

conditions, respectively, all scenarios showed significantly different denitrification rates relative 

to the unrestored channel scenario. Figure 3-7 are heat maps for the open and closed canopy 

conditions that indicate which scenario denitrification rates are significantly different from each 

other according to Dunn tests for non-parametric pairwise comparisons. All reach modifications 

showing significant differences in denitrification rates compared to each other except the pool 

(P) and riffle-meander (RM) scenarios under both canopy conditions. The open canopy condition 

resulted in remarkable reductions in the median denitrification rates in the stream, reductions that 

can be attributed to the increased algal DIN uptake, which slightly decreased the DIN 

concentration in the water column that was available for denitrification. Moreover, the 

denitrification rate was lower under the unrestored and riffle channels in the open canopy 

condition compared to the original unrestored channel under the closed canopy condition. 

Denitrification was lowest in the winter followed by the fall and highest in the summer followed 

by the spring across all 16 scenarios. Table 3-3 shows the changes in denitrification by season in 

kilograms per year for each reach scenario relative to the unrestored-closed-canopy scenario. The 

addition of a pool and the combination of a riffle and a pool had the greatest impact on the 

simulated daily denitrification rates compared to the other feature configurations, especially in 

conjunction with meandering.  
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Figure 3-6:  Changes in annual whole reach denitrification relative to the closed-canopy unrestored 

scenario. 

 

Figure 3-7: Dunn test for non-parametric pairwise comparison results for whole reach denitrification. 

Black squares indicate that there was not a significant difference between paired scenarios (p > 0.05). 
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Table 3-3: Changes in total reach denitrification rates by season in kilograms per year for each channel 

scenario relative to the closed canopy unrestored scenario. 

 

Algal DIN uptake was the greatest contributor to net uptake of DIN in the stream under 

the open canopy condition. Figure 3-8 shows the change in annual algal DIN uptake rates in kg 

per year for each scenario under both canopy conditions. Under the open canopy condition, there 

were no significant differences in algal uptake between all channel scenarios. Under the closed 

canopy condition, the riffle (R), meander (M), and riffle-meander (RM) scenarios were not 

significantly different from the unrestored channel scenario. Figure 3-9 are heat maps for the 

respective open and closed canopy conditions that indicate which channel scenario algal DIN 

uptake rates are significantly different from each other according to Dunn tests for non-

parametric pairwise comparisons. Under an open canopy, algal DIN uptake rates were greatest in 

the spring and summer compared to the other seasons. Under closed canopy scenario, algal DIN 

uptake was greatest in the spring and was dormant for all the other seasons. Table 3-4 shows the 

increases in algal uptake by season in kilograms per year for each reach scenario relative to the 

closed-canopy unrestored scenario. Overall, open canopy was the greatest influence on algal DIN 

uptake compared to the channel restoration features.  

UN R P RP M RM PM RPM

Winter -5.8E-02 -4.7E-02 2.2E-02 -4.7E-02 1.3E-02 8.4E-02 1.3E-01 1.7E-01

Spring -8.7E-02 -6.9E-02 5.0E-02 -6.9E-02 1.5E-02 1.2E-01 2.0E-01 2.6E-01

Summer -9.4E-02 -7.9E-02 7.5E-02 -7.9E-02 -1.1E-02 8.1E-02 2.1E-01 2.7E-01

Autumn -4.9E-02 -4.0E-02 5.2E-02 -4.0E-02 7.3E-03 6.5E-02 1.4E-01 1.9E-01

UN R P RP M RM PM RPM

Winter - 1.71E-02 1.23E-01 1.71E-02 1.08E-01 2.16E-01 2.82E-01 3.40E-01

Spring - 2.70E-02 2.16E-01 2.70E-02 1.63E-01 3.32E-01 4.57E-01 5.53E-01

Summer - 2.49E-02 2.94E-01 2.49E-02 1.49E-01 3.13E-01 5.38E-01 6.49E-01

Autumn - 1.40E-02 1.64E-01 1.40E-02 9.06E-02 1.82E-01 3.13E-01 3.81E-01

Season
Open Reach Scenarios

Season
Closed Reach Scenarios
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Figure 3-8: Changes in annual whole reach algal DIN uptake relative to the closed-canopy unrestored 

scenario. 

 

Figure 3-9: Dunn test for non-parametric pairwise comparison results for whole reach algal DIN uptake 

and mineralization. Black squares indicate that there was not a significant difference between paired 

scenarios (p > 0.05). 
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Table 3-4: Changes in total reach algal DIN uptake by season in kilograms per year for each reach 

scenario relative to the closed canopy unrestored scenario. 

Season 
Open Reach Scenarios 

UN R P RP M RM PM RPM 

Winter 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Spring 1.2 1.1 1.1 1.1 1.3 1.3 1.3 1.3 

Summer 1.5 1.6 1.6 1.6 1.7 1.6 1.7 1.7 

Autumn 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 

Season 
Closed Reach Scenarios 

UN R P RP M RM PM RPM 

Winter - 1.0E-03 8.5E-03 1.0E-03 5.0E-03 1.1E-02 1.5E-02 1.7E-02 

Spring - 8.6E-03 3.7E-02 8.6E-03 1.1E-02 3.1E-02 4.8E-02 5.2E-02 

Summer - 4.4E-04 3.4E-03 4.4E-04 1.4E-03 2.6E-03 5.3E-03 6.0E-03 

Autumn - 2.3E-10 4.2E-09 2.3E-10 4.8E-10 1.9E-09 6.0E-09 6.9E-09 

 

Mineralization was the simulated process in SSHBS that contributes to the net release of 

N in the stream and is highly correlated with Algal DIN uptake under all respective scenarios and 

seasons (0.95 ≤ R2 ≤ 0.99). Figure 3-10 shows the change in annual mineralization rates in kg 

per year for each scenario under both canopy conditions. Under just the open canopy condition 

there were no significant differences in mineralization rates between all channel scenarios. Under 

the closed canopy condition, the riffle (R), meander (M), and riffle-meander (RM) scenarios 

were not significantly different from the unrestored channel scenario. Figure 3-9 are heat maps 

for the open and closed canopy conditions that indicate which scenario mineralization rates are 

significantly different from each other according to Dunn tests for non-parametric pairwise 

comparisons. Under an open canopy, mineralization was greatest in the spring and summer 

compared to the other seasons. Under closed canopy scenario, mineralization was greatest in the 

spring and was nearly dormant for all the other seasons. Table 3-5 shows the increases in 

mineralization by season in kilograms per year for each reach scenario relative to the closed-
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canopy unrestored scenario. Overall, open canopy was the greatest influence on mineralization 

compared to the channel restoration features.  

 

Figure 3-10: Changes in whole reach annual N mineralization relative to the closed-canopy unrestored 

scenario 

Table 3-5: Changes in total reach mineralization rates by season in kilograms per year for each reach 

scenario relative to the closed canopy unrestored scenario. 

Season 
Open Reach Scenarios 

UN R P RP M RM PM RPM 

Winter 1.2E-02 1.2E-02 1.4E-02 1.2E-02 1.3E-02 1.4E-02 1.5E-02 1.6E-02 

Spring 2.7E-02 2.6E-02 2.7E-02 2.6E-02 3.0E-02 3.0E-02 3.1E-02 3.0E-02 

Summer 3.7E-02 3.8E-02 3.9E-02 3.8E-02 4.0E-02 4.0E-02 4.1E-02 4.2E-02 

Autumn 1.6E-02 1.6E-02 1.7E-02 1.6E-02 1.7E-02 1.7E-02 1.8E-02 1.8E-02 

Season 
Closed Reach Scenarios 

UN R P RP M RM PM RPM 

Winter - 1.3E-04 1.2E-03 1.3E-04 6.4E-04 1.7E-03 2.3E-03 2.7E-03 

Spring - 2.2E-04 1.0E-03 2.2E-04 2.9E-04 8.4E-04 1.3E-03 1.4E-03 

Summer - 1.2E-05 1.0E-04 1.2E-05 3.9E-05 7.5E-05 1.5E-04 1.7E-04 

Autumn - 7.3E-12 1.3E-10 7.3E-12 1.5E-11 6.1E-11 1.9E-10 2.2E-10 

 

Net DIN uptake is the sum of denitrification and algal DIN uptake subtracted by 

mineralization. Figure 3-11 shows the changes in annual net uptake rates in kilograms per year 

relative to the unrestored scenario. Under the open canopy condition, most channel reach 
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scenarios showed significant differences in net DIN uptake, except for a few cases. Specifically, 

the pool (P), riffle-pool (RP), and riffle-meander (RM) scenarios did not significantly differ in 

their daily uptake rates from each other under the open canopy condition, Similarly, there were 

no significant differences observed between the unrestored (UN) and riffle (R) channel scenarios 

in their daily uptake rates under the open canopy condition. All reach scenarios were 

significantly different from each other under the closed-canopy condition except the pool (P) and 

the riffle-meander (RM) scenarios. Figure 3-12 are heat maps for the open and closed canopy 

conditions that indicate which scenario’s net DIN uptakes rates are significantly different from 

each other according to Dunn tests for non-parametric pairwise comparisons. Table 3-6 shows 

the increases in net DIN uptake by season in kilograms per year for each reach scenario relative 

to the closed-canopy unrestored scenario. Overall, pool features, and open canopy were the 

greatest influences on net DIN uptake, which was further enhanced by the meandering pattern. 

 

Figure 3-11: Changes in whole reach annual net DIN uptake relative to the closed-canopy unrestored 

scenario. 
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Figure 3-12: Dunn test for non-parametric pairwise comparison results for whole reach net DIN uptake. 

Black squares indicate that there was not a significant difference between paired scenarios (p > 0.05). 

 

Table 3-6: Changes in the total whole reach net DIN uptake by season in kilograms per year for each 

reach scenario relative to the closed canopy unrestored scenario.  

Season 
Open Reach Scenarios 

UN R P RP M RM PM RPM 

Winter 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Spring 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 

Summer 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.3 

Autumn 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 

Season 
Closed Reach Scenarios 

UN R P RP M RM PM RPM 

Winter - 0.0 0.1 0.0 0.1 0.2 0.3 0.4 

Spring - 0.0 0.3 0.0 0.2 0.4 0.5 0.6 

Summer - 0.0 0.3 0.0 0.2 0.3 0.5 0.7 

Autumn - 0.0 0.2 0.0 0.1 0.2 0.3 0.4 

 

In general, our results show that all of the simulated channel restoration scenarios would 

increase whole reach DIN uptake at the SLB reach, though these increases are expected to be 

reduced significantly with the riparian canopy regrowth. Canopy along the flood plain and 

riparian areas are often removed during restoration, but it can return depending on longer term 
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plans. We quantified the possible impact of the regrowth of canopy situation at SLB for each of 

the eight channel scenarios and summarized those results in table 3-7. Our results suggest that all 

tested channel restorations are able to sustain whole reach DIN uptake rates more effectively 

compared to the unrestored channel scenario upon the return of canopy, particularly those 

restorations with multiple features. 

Table 3-7: Expected percent reductions in net DIN uptake if riparian canopy regrows for the eight 

channel restoration scenarios. 

 

 

 The results indicate that the restoration scenarios generally increase the daily whole reach 

uptake rates (kg/day) but they do not appear to have the same effect on the daily areal uptake 

rates (kg/m2 day). Actually, they appear to have reduced the areal uptake rates primarily by 

decreasing the algal DIN uptake per unit area. Figure 3-13 shows the daily DIN uptake rates per 

square meter by season.  

Channel Scenario % Reduction 

UN 80 

R 78 

P 65 

RP 61 

M 72 

RM 63 

PM 56 

RPM 52 
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Figure 3-13: Simulated daily DIN uptake per square meter and release rates by season between 2012 – 

2017 at SLB . 

 

These reductions can be attributed to the decrease in simulated water column DIN concentration 

due to the increases in whole reach denitrification and algal DIN uptake, which are depicted in 

figure 3-4. The larger benthic area leads to an overall increase in DIN uptake, thereby reducing 

the supply of DIN in the water column and subsequently lowering the areal uptake rates. This 

suggests that the variations in whole reach DIN uptake rates between the different channel 

scenarios are primarily influenced by the augmented benthic area, particularly under the closed 

canopy conditions. Figure 3-14 shows the benthic area by season for each of the channel 

restoration scenarios.  
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Figure 3-14: Benthic area by season for each of the channel restoration scenarios. 

3.3 Discussion 

3.3.1 Case Study Outcomes 

According to the original parameterization of SSHBS for SLB (UN: closed-canopy 

condition), denitrification was the greatest contributor to N uptake in the stream under closed-

canopy conditions. Increases in denitrification rates relative to the unrestored channel scenario 

were most prominent with the addition of a pool and the combination of a riffle and pool, which 

were both further enhanced by the meandering pattern. SSHBS simulation results show 

significant differences in denitrification rates between all the channel scenarios with the 

exception of the P and the RM scenarios according to the results from the Dunn test. This implies 

that we cannot be as confident that these two scenarios will have different denitrification rates 

and managers can be more confident that the option that is less expensive between the two would 

be more cost-efficient if enhancing denitrification is the goal. Denitrification rates under the open 

canopy condition were reduced compared to the closed canopy scenarios, where algal DIN 

uptake removed more of a share of water column DIN that would have been more available for 
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denitrification. When the canopy regrows, denitrification rates are expected to increase based on 

our simulation results.  

The canopy condition was the greatest influence on simulated algal DIN uptake, 

mineralization, and net DIN uptake at SLB (kg N/day), which is consistent with empirical 

evidence (e.g. Reisinger et al., 2019). Open canopy increased median whole reach Algal DIN 

uptake rates under the unrestored channel scenario by about 0.05, 1.2, 1.5, and 0.7 kilograms per 

year in the winter, spring, summer, and fall, respectively. The algal DIN uptake and 

mineralization rates were highly correlated with each other and had the same Dunn test results, 

which indicates that the model for mineralization for SSHBS is dependent on algal production 

and standing stock. All channel scenario algal DIN uptake and mineralization rates under the 

open canopy condition were all significantly different from each other. The Dunn test results for 

the closed canopy condition indicate that we cannot be confident that channel scenarios R, M, 

and RM would alter algal DIN uptake and mineralization compared to the unrestored channel 

and that scenarios P, RP, PM, and RPM scenarios may be equally effective at increasing algal 

DIN uptake and mineralization compared to the unrestored scenario and so the least expensive 

option would be desirable to managers if there are budget limitations.  

Denitrification accounted for approximately 93% of the whole reach net DIN uptake 

under the closed canopy condition on average across all channel scenarios, and approximately 

20% under the open canopy condition. In general, most of the channel scenarios resulted in 

significantly different whole reach DIN uptake, with only a few exceptions. Under the open-

canopy setting, the simulated whole reach DIN uptake did not show significant differences 

between the UN and R scenarios. Similarly, there was no significant difference between the P, 
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RP, and RM scenarios, while the P and RM scenarios also displayed no significant differences 

under the closed canopy condition. 

Overall, our findings suggest that all simulated channel restoration scenarios would 

enhance whole reach net DIN uptake at the SLB reach. However, these enhancements are 

anticipated to decrease notably due to the regrowth of riparian canopy. Restoration efforts 

typically involve removing canopy from floodplain and riparian areas, but these may recover 

over time based on the long-term plans for restoration. Our findings indicate that channel 

scenarios combining multiple features (RP, RM, PM, and RPM) are likely to exhibit lower 

reductions in net DIN uptake under the regrowth of canopy situation. Among the single and 

combination feature scenarios, pool scenarios are expected to show less reduction compared to 

others. 

3.3.2 Lessons, Limitations, and Future Work  

Based on this study, SSHBS appears to have considerable potential as a tool for 

evaluating the potential effects of a variety of stream restoration designs. SSHBS allows for the 

testing of different channel and canopy cover scenarios using known cross-sectional dimensions 

and simple manipulations of the Manning’s equation. In addition to evaluating restoration 

design, statistical comparison tests like the Dunn test employed in this study can be utilized on 

simulated outcomes. These tests help establish the level of confidence regarding the distinctions 

between various channel restoration scenarios. 

It should be noted that using the Manning's equation as the sole method for stream 

hydraulic analysis is not the conventional approach for designing various stream restoration 

projects. The Manning equation is more applicable to low flow conditions in which the surface 
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water slope is equal to the bed slope and may be less reliable during stormflow when the 

majority of the nutrient load is transported (Shields et al., 2008).  Typically, geomorphologists 

and engineers have the responsibility not just to estimate changes in stream velocity within 

engineered channels but also to delve into more complex hydraulic functions involving stream 

flow power, shear stress, bank resistance, and potential sediment movement (U.S. NRCS, 2007). 

These analyses are usually conducted at sub-daily or even sub-hourly intervals, which is 

necessary to fully grasp the extent of change and assess the risk of potential stream channel 

integrity issues.  This underscores the significance of collaboration between geomorphologists, 

focused on precise in-stream hydraulics modeling, and stream ecologists, working on stream 

channel flow equations, to provide a more comprehensive understanding of restoration projects. 

Furthermore, the Manning's equation, while straightforward for generating various channel 

features, has limitations in accurately representing different channel cross-section shapes, leading 

to equifinality. For instance, it cannot effectively differentiate between an atypical square channel 

often found in unrestored streams and a more naturally shaped one. Subsequent research will 

employ a channel flow model that can discern between various channel shapes. Additionally, the 

Manning’s equation assumes constant slope and hydraulic gradient of the channel under varying 

stream depth, which may lead to an underestimate of stream velocity at higher flows. HEC-RAS 

offers a more precise modeling of hydraulic gradients and customizability of different restored 

shapes compared to relying solely on the Manning's equation. 

Many stream restorations involve reconnecting the stream channel to the floodplain, 

which can enhance the terrestrial denitrification of overflowing water (Kaushal et al, 2008). The 

findings from this study suggest open canopy stream conditions promote more in-stream uptake. 

However, it does not shed light on potential reductions in DIN input into the stream, which could 
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occur due to the presence of riparian vegetation (Dosskey et al., 2010). The SSHBS model, in 

this study, focuses on DIN uptake within the stream channel and hyporheic storage zones within 

the stream bottom. The subsequent chapter of this dissertation provides some insights into how 

non-riparian green infrastructure can affect in-stream DIN uptake and export from the stream. 

However, it is important to note that future research should consider the influence of floodplains 

and riparian vegetation on DIN inputs and additional uptake resulting from restoration efforts. 

SSHBS is an open-source model amenable to modifications for specific stream 

restoration channel and riparian canopy designs. This study demonstrates that it can be modified 

to evaluate a variety of channel configurations and it comprehensively simulates ecosystem and 

nutrient flux processes using a minimum set of equations that can be adapted and calibrated in a 

variety of ways but there appears to be limitation to the potential for wide-spread use of SSHBS. 

Although cross-section geometry data can be collected using modeling or surveying techniques, 

SSHBS does require input and calibration data that is not readily collected at most tributaries. 

Under the calibration method used by Lin et. al (2021), data to simulate gross primary 

productivity and ecosystem respiration are required as well as several years of weekly samples of 

NO3, NH4, and PO4 concentrations in the study stream.  

The results of this model study indicate that stream restoration design analyses conducted 

with SSHBS may partially support the central tenet of NCD- that some engineered channels can 

greatly enhance net DIN uptake in streams, given large enough benthic area enhancements, 

though simulated whole reach DIN uptake was most augmented by open canopy, which is 

similar to what Reisinger et al. (2019) observed. Reisinger et al.’s (2019) assessment of real 

restorations did not account for variations in benthic areas between restorations, and due to the 

nature of empirical studies that compare different restorations at separate locations, could not 
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control key boundary conditions. These are the main advantages of conducting simulated studies 

using SSHBS since it allows for the testing of benthic area variation within a single reach while 

controlling important boundary conditions such as flow and DIN inputs from the watershed. 

Results from this simulated study suggest that benthic areas may be a key variable to consider 

when evaluating differences between restoration projects across separate locations. Future 

simulation studies should apply SSHBS to different study areas and further explore its uses and 

limitations.  

3.4 Conclusions 

In this study, we explored the potential impacts of riffle, pool, and meander channel 

configurations on net DIN uptake processes in an urbanized stream by conducting channel 

scenario analyses using a novel stream ecosystem model that was previously developed and 

calibrated (Lin et al., 2021). Though the specific simulation results in this study were not verified 

with field data, we demonstrated that SSHBS can be a viable modeling option for stream 

restoration designers who are interested in estimating the impacts of geomorphic restoration 

features on net DIN uptake rates in a stream, which could enhance current methods of stream 

restoration design. Our results suggest that: 1) Increases in benthic area, most prominently 

increased by pools and meandering features, enhanced simulated whole reach net DIN uptake 

through increased denitrification under the closed-canopy conditions; 2) The removal of riparian 

canopy, that often coincides with channel restoration efforts, was the most prominent catalyst for 

enhancing net DIN uptake through substantially increased algal DIN uptake; 3) The pool (P) and 

the riffle-meander (RM) scenario enhanced simulated net DIN uptake at statistically similar rates 

under the both open and closed canopy conditions; 4) Channel restoration designs with a 

combination of riffle, pool, and meander features performed better than those with just one or 
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two of these features; 5) The regrowth of canopy after removal is anticipated to reduce the 

overall increase in net DIN uptake for all restoration designs primarily because there is less DIN 

uptake by algae due to decreased photosynthetically active radiation reaching the stream. Upon 

the return of tree canopy growth, restorations with a combination of features, particularly those 

including a pool, might prove more effective in maintaining net DIN uptake rates in comparison 

to the single feature or unrestored channel scenarios. 
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Chapter 4: Estimating the Impacts of Green Infrastructure on 

Nitrogen Uptake in an Urban Stream through the Integration of 

Watershed, Channel Hydraulic, and Ecosystem models. 

This chapter is currently under preparation for publication. 

Chapter 4 Abstract 

Urbanization has significantly deteriorated regional water quality and stream ecosystems. 

To combat this, stormwater green infrastructure (GI) is recommended to mitigate local stream 

and receiving water body conditions. Elevated nutrient non-point source loading is a major 

contributor to this impairment, leading to eutrophication. The core research question of this study 

revolves around the capacity of integrated modeling tools to intricately connect different 

elements including watershed runoff, nutrient sources, channel hydraulics, and aquatic 

ecosystems. Specifically, this study aims to assess how these linked mechanisms can effectively 

evaluate the impact of GI on nutrient reduction and urban stream dynamics. We developed and 

tested an innovative integrated watershed-channel hydraulic stream-ecosystem model, packaged 

into a single open-source Python notebook. Our novel model couples the Stormwater 

Management Model (SWMM), Hydrologic Engineering Center’s River Analysis System (HEC-

RAS), and stream channel metabolism modules from the Stream Model Based on Spiraling and 

Ecological Stoichiometry Specific Fluxes (STOICMOD) and Small Streams Hydro 

Biogeochemistry Simulator (SSHBS). We calibrated and validated the modeling system against 

two years of data from an urban stream in central Virginia. Results show how this type of 

integrated model could benefit urban watershed managers by answering questions about linkages 

between urban runoff, nutrient loading, in-stream dissolved inorganic nitrogen (DIN) uptake 

rates, metabolic rates, algal mass, and benthic mass. We assess the impact of intense GI 

implementation on these parameters at select urban stream reaches. Key findings associated with 

our case-study area include: 1) Only 0.86% of DIN that enters the stream from the watershed is 

removed under all GI scenarios; 2) Stream zones with lower riparian canopy cover and lower 

leaf-litter input exhibit higher algal DIN uptake and lower mineralization contributing to greater 

net DIN uptake; 3) Watersheds with higher groundwater DIN concentrations relative to surface 

runoff concentrations may yield increased DIN export with infiltration-based GI because the 

stream ecosystem is unable to sufficiently process increased DIN during baseflow conditions; 4) 

Elevated DIN concentrations during baseflow periods can enhance denitrification rates; 5) Larger 

upstream subbasins with greater GI implementation have the greatest potential influence on net 

DIN uptake and other stream processes, but the greatest impacts on a per hectare of GI 

implemented basis may be the smaller subbasins that are more impervious. This study 

underscores the model's utility in assessing GI's effects on urban streams and provides insights 

applicable to local watershed management. 
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4.0 Introduction 

Urban streams often exhibit impaired ecological functioning as a result of increased 

nutrient loadings and increased stormwater runoff, a condition commonly referred to as “urban 

stream syndrome” (Walsh et al., 2005). Urban stream syndrome can often manifest as stream 

incision, benthic habitat destruction from increased erosion and sedimentation of the stream 

channel, diminished water quality, and increased nutrient export to downstream aquatic 

ecosystems (Meyer et al., 2005). Eutrophication is a particular concern in the Chesapeake Bay 

area where the degradation of the river-estuary continuum is unequivocally attributed to 

agriculture, urbanization, and climate change (Duan et al., 2012, 2021; Kemp et al., 2005; Prasad 

et al., 2014). The reduction of eutrophication continues to be a top priority for decision makers 

and interested non-governmental organizations (Chesapeake Bay Program, 2023a; USEPA, 

2022a). 

The high human population density and the increased importation, production, and 

release of nitrogen (N) and phosphorus (P) are what make urban centers major sources of 

nutrient pollution (Bernhardt et al., 2008; Smil, 2000). Vast amounts of N and P in urban areas 

can be directly sourced from leaky sanitary and sewage systems, fossil fuel byproducts, lawn 

fertilizer application, and pet waste and are exported from urban watersheds through different 

pathways (Hobbie et al., 2017). Green infrastructure (GI) has been implemented to help mitigate 

the impact of urbanization on receiving waterbodies by reducing stressors such as stormwater 

runoff and nutrient loadings (Palmer & Ruhi, 2019; Walsh et al., 2005).  

Stormwater green infrastructure can retain or delay runoff and nutrient constituents from 

entering streams. When stormwater is delayed through infiltration, it is hypothesized that there is 



90 
 

more opportunity for terrestrial and aquatic nutrient cycling processes such as plant uptake and 

redox to transform or remove these nutrients from the watershed and therefore decrease loadings 

into streams and export from the watershed downstream (Gold et al., 2019; Janke et al., 2014; 

Payne et al., 2014). Urban landscape restoration plans are typically evaluated through model 

simulations of GI benefits such as stormwater runoff and pollutant reduction, and urban heat 

reduction (Fletcher et al., 2013; Pataki et al., 2011). A variety of modeling tools are publicly 

available for estimating the benefits of urban landscape green infrastructure. For example, the 

Stormwater Management Model (SWMM) has been most widely used throughout the US to 

quantify the impacts of stormwater green infrastructure design and placement on runoff (Niazi et 

al., 2017; USEPA, 2023b); i-Tree Hydro has been used for simulating the ecosystem services of 

tree canopy and green space (Coville et al., 2020; i-Tree, 2023); The Hydrologic Modeling 

System (HEC-HMS) can be used to simulate hydrologic impacts of ponds and reduced 

imperviousness (Sahu et al., 2023; USACE, 2023);  The Regional Hydro-Ecologic Simulation 

System (RHESSys) has been used to simulate the hydrologic impacts of tree canopy and urban 

green infrastructure (Bell et al., 2017; Miles and Band, 2015; Tague & Band, 2004; Zhang et al., 

2023). A major gap in the use of these watershed models is that they focus exclusively on the 

terrestrial phase of the watershed and do not mechanistically simulate in-stream ecosystem 

processes that also influence nutrient retention and export.  

Dissolved inorganic nitrogen (DIN) and phosphorus (P) flowing from terrestrial through 

urban stream networks are susceptible to biogeochemical interactions. While in the stream, N 

and P molecules alternate between downstream travel and assimilation or removal from the water 

column by stream biota (Ensign & Doyle, 2006; Stream Solute Workshop, 1990), a process 

known as stream nutrient spiraling. Algae and heterotrophic microbes sequester N and P from the 
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water column to satisfy cellular nutritional requirements (Baulch et al., 2011; Pearce et al., 2022; 

Webster et al., 2003). Assimilation can be a major contributor to nutrient retention as it 

temporarily stores N and P in organic form, increasing residence time, before mineralization and 

release back into the water column at a later time. Denitrification removes nitrate-N entirely 

from the stream system (Kreiling et al., 2019), and may increase with residence time. 

Grimm et al. (2003) noted that stream-reach models have rarely been coupled with 

watershed models and argued that management issues such as eutrophication require integrated 

analysis tools that incorporate terrestrial and fluvial elements. Recent development in stream 

biogeochemistry modeling (Alexander et al., 2009; Bouwman et al., 2013; Jan et al., 2021; Lin et 

al., 2021; Lin & Webster, 2014; Marcé & Armengol, 2009; Webster et al., 2016; Ye et al., 2012) 

may enable a more complete analysis of the connection between upland green infrastructure and 

instream nutrient processing than was previously possible. Over the past couple of decades, the 

academic community has tested a limited number of prototypical integrated terrestrial and 

aquatic models, which have facilitated unique perspectives on the issue of urban watershed 

nutrient retention. For example,  Alexander et al. (2009) developed a stream network scale 

dynamic nitrogen transport and denitrification model and found evidence that highlights the 

relative importance of biogeochemical versus hydrological effects on nitrate removal. Marcé and 

Armengol (2009) customized a Hydrological Simulation Program- Fortran (HSPF) model to 

simulate streamflow, nutrient retention, and discharge, providing more evidence for the 

relationships between the proximity to human population centers and increased nutrient export. 

Webster et al. (2016) developed the Stream Model Based on Spiraling and Ecological 

Stoichiometry Specific Fluxes (STOICMOD), which incorporates concepts of nutrient spiraling, 

mass balance, and ecological stoichiometry to better explore the interrelationships between 
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stream biota such as algae and heterotrophic microbes and their impacts on nutrient retention. 

Lin et al. (2021) developed the Small Stream Hydro-Biogeochemistry Simulator (SSHBS) which 

is a hybrid process-data driven model that can simulate stream metabolism, algal uptake, 

denitrification, and mineralization in response to different restoration channel designs and 

landscape changes. The Chesapeake Bay Watershed model (Chesapeake Bay Program, 2023b) 

does include both terrestrial and aquatic phases, but at very reduced resolution and complexity. 

As researchers and managers seek more mechanistic ways of analyzing the impacts of 

urbanization, restoration, and GI on urban water quality, the next evolution in modeling whole 

urban nutrient retention is the development of coupled process-based terrestrial GI and aquatic 

biogeochemical models. Results from such an integrated model could be helpful to urban 

managers who are interested in estimating the impacts of GI on in-stream nutrient uptake. 

The objective of this study is to couple an urban green infrastructure model to a channel 

hydraulic model and an instream ecosystem model and package it into a single open-source 

python notebook. In addition to evaluating the integrated model applied to an urban case study, 

we answer the following research questions. 1) What are linkages between watershed runoff and 

nutrient loading with the estimated N uptake rates, stream metabolic rates, algal mass, and 

benthic mass in an urban stream? 2) How does intense implementation of different GI types at 

specific locations in an urban subbasin impact simulated DIN uptake rate, stream metabolic 

rates, algal mass, and benthic detritus mass at different reaches of an urban stream? To answer 

these questions, we develop python code that utilizes a combination of models including the 

Stormwater management model (SWMM), the U.S. Army Corp of Engineers (USACE) 

Hydrologic Engineering Center’s River Analysis System (HEC-RAS), and stream uptake 

functions from STOICMOD and SSHBS. We implement the model framework in an urban 
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stream in Charlottesville, VA. We then use the model to compare the simulated instream DIN 

uptake rates and watershed export of 26 different GI scenarios to the status-quo (no additional GI 

added) scenario. 

4.0.1 Case Study Area 

This study evaluates an integrated model using data from stream sections in the Meadow 

Creek watershed, spanning Charlottesville and Albemarle County, VA (figure 4-1). Focusing on 

the upper Meadow Creek, a 1415-hectare, urbanized area (40% impervious), primarily 

residential (70%) with a notable commercial zone (20%). Stormwater runoff and pollution 

reduction are top priorities for both city and county (Albemarle County, 2023; Charlottesville, 

2019). 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Upper Meadow Creek Study Area Location (A), Land Cover (B), and Zoning (C). 

 



94 
 

Urbanization has drastically changed the landscape of Charlottesville and the Meadow 

Creek watershed since the early 20th century. Excess impervious surface coverage has increased 

volumes and velocities of stormwater runoff, eroded alluvial fill derived from former agricultural 

land use, incising the streams, exposing steep banks of erodible sediment, and accelerated 

sedimentation, pollutant loading, and physical destruction of the aquatic habitat. This 

degradation led to the Virginia Department of Environmental Quality (VDEQ) to officially add 

Meadow Creek to its list of impaired waters (VDEQ, 2020). After the original impairment 

designation in 2006, major stream restoration activities followed (The Nature Conservancy, 

2013) and were credited with nutrient reduction capabilities (Cho et al., 2014).  However, stream 

nutrient retention processes have not been well-studied at Meadow Creek. Since late 2020, 

photosynthetically active radiation (PAR), dissolved oxygen, electrical conductivity, and water 

level sensors have been installed at multiple locations at Meadow Creek with the goal of 

characterizing stream ecosystem conditions that facilitate in-stream dissolved inorganic nitrogen 

(DIN) uptake (de Azevedo Torrellas; 2021). See the Data Availability statement for access to the 

ecosystem data that were collected over a two-year period (2021-2022). 

4.1 Methods 

4.1.1 Developing an Integrated Ecosystem Service Model for Meadow Creek 

This section provides details about the development of a novel integrated model to study 

the connection between upland urban GI impacts on runoff and nutrient loading, channel 

hydraulics, and in-stream ecosystem processes related to DIN retention in urban streams. We 

couple three models that are free and publicly accessible, into a single open-source model 

system. Stormwater GI performance, runoff, pollutant, and baseflow inputs to our study stream 
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are simulated using SWMM; HEC-RAS is used to simulate in-stream steady-state flow hydraulic 

parameters (flow cross-sectional area, benthic area, flow velocity, and flow volume). We use 

STOICMOD and SSHBS uptake functions to simulate in-stream ecosystem processes associated 

with nutrient retention and removal from the water column including primary production, 

ecosystem respiration, Algal DINutrient uptake, denitrification, and mineralization. Figure 4-2 is 

a diagram depicting how we couple the three models. 

 

Figure 4-2: Integrated Watershed-Stream Ecosystem Model Diagram. 

 

4.1.2 Calibrating and Validating the Integrated Model 

 We calibrated our integrated model estimates of runoff, groundwater flow, and nutrient 

concentrations for the year 2021 and validated for the year 2022 against stream flow and daily 

nutrient concentrations obtained via synoptic sampling at each of the three stream reach sections 

(figure 4-3). We obtained depth measurements at the outlet using pressure transducer 

measurements recorded at a 15-minute interval and translated the depth to discharge using a 



96 
 

rating curve. The stream flow is manually calibrated using the Nash-Sutcliffe Efficiency (NSE) 

and Kling-Gupta Efficiency (KGE) metrics. The SWMM model was calibrated and validated 

with continuous simulations of rainfall and runoff for the years 2021 and 2022, respectively. The 

SWMM model was run on a 15-minute timestep, and the flow results were averaged to a daily 

timestep for calibration and analysis. The daily averaging of SWMM flow results simplified the 

calibration procedure and rendered SWMM outputs compatible with the in-stream ecosystem 

model inputs, which were modeled on a daily time-step. The parameters in SWMM that were 

adjusted during the flow calibration process were the aquifer soil porosity and conductivity and 

the infiltration Green and Ampt variables. 

A total of 213 water samples were collected across three locations at the most 

downstream cross-section of three main reach zones (figure 4-3). The samples were analyzed for 

ammonium (NH4) and nitrite/nitrate (NO2/NO3). Although there are other forms of N that we did 

not analyze, for simplification, we refer to these three N constituents collectively as dissolved 

inorganic nitrogen (DIN) concentrations. According to the grab sample data at the three reach 

zones, nitrate-N accounted for approximately 96% of the total DIN in the stream at any given 

time so the nitrate concentration  (CNO3-N) was assumed to be 0.96 of the total simulated DIN.  

The calibration of DIN in groundwater and storm event mean concentrations in runoff 

was accomplished by the use of two python libraries: SWMM API (Pichler, 2022) and the 

Platypus nondominated-sorting genetic algorithm II (NSGA II) for multi-objective optimization. 

Table 4-1 shows the calibrated groundwater and event mean concentrations of N based on the 

land use categories with the mean absolute error (MAE) of the mean concentrations for the DIN 

concentrations at each of the three stream reach zones serving as the three objectives of the 

calibration. The solution that produced the lowest average MAE of the mean concentrations 
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across all three reach zones was chosen among the Pareto optimal set of solutions and was used 

as the calibrated parameters for this study.  It's important to note that the SWMM water quality 

module doesn't account for seasonal trends or the impacts of varying flow conditions on N 

concentrations. It is also important to notice the greater concentration for groundwater relative to 

storm water runoff which induces a negative relationship between DIN concentrations and 

discharge in our modeled stream. Though not always the case in urban areas, groundwater 

concentrations of DIN can be higher than stormwater runoff concentrations due to excess lawn 

fertilizer application and/or leaky underground septic and sanitary systems (Pitt et al., 2023) 

compared to rainfall-runoff concentrations. Previous studies that have analyzed the nitrate-N 

isotopes at Meadow Creek suggest that leaky underground sanitary systems are indeed major 

sources of DIN at baseflow as seen in figure C-1 in appendix C (from de Azevedo Torrellas, 

2021). Additionally, a concentration vs. discharge graph seen in figure C-3 also supports 

parameterizing our integrated model with a negative relationship between DIN concentrations 

and discharge at our study area. Note that it was not possible to use a calibration objective for the 

DIN concentrations that captured day-to-day trends such as the R2 function. This lack in the 

ability to obtain a good fit between the observed and the simulated DIN concentrations can be 

attributed to errors that were introduced due to: the relatively few samples that were collected 

relative to the number of days that were simulated; the fact that the samples were retrieved at 

only a single time during the day and assigned as the whole-day’s concentration; and differences 

in the observed and simulated flow. Therefore, the objective of the DIN concentrations was not 

to obtain a good fit of the daily DIN trends, but rather to minimize the error between the average 

observed and the average simulated DIN concentrations.  



98 
 

Table 4-1: Calibrated groundwater and event mean dissolved inorganic nitrogen (DIN) concentrations. 

N Source  

Impervious Pervious 

Roads Residential Commercial Grasses 
Tree 

Canopy 

Groundwater 
 (mg N/L) 

1.46 1.68 2.54 1.56 0.48 

Stormwater 
Runoff  

(mg N/L) 
1.02 1 2 0.98 0.45 

 

Daily primary production and ecosystem respiration was modeled using the Bayesian 

Single-station Estimation (BASE) implemented in the R programming language (Grace, 2015) 

with measurements of dissolved oxygen, water temperature, electrical conductivity, PAR 

obtained at 15-minute intervals at the same three locations where the water grab sampling took 

place. BASE is a more standard stream metabolism model that uses ecosystem data and Bayesian 

statistics to estimate primary production and ecosystem respiration. We calibrated our primary 

production and ecosystem respiration process modules against the BASE stream metabolism 

results in the stream for the year 2021. Due to the high flashiness and sedimentation in Meadow 

Creek and wildlife damage, validation of the stream metabolism parameters for the year 2022 

was not possible due to insufficient data collection. Once the integrated model was satisfactorily 

calibrated, we analyzed relationships between instream uptake processes and total N uptake in 

Meadow Creek. We also compared minimum, mean, and maximum rates of simulated primary 

production, Algal DIN uptake, immobilizer assimilation, denitrification, and mineralization as 

well as stocks of benthic detritus and algae mass between the three reach zones. We further 

evaluate the integrated model and offer insight into the implications of the stream ecosystem 

results in the discussion. 
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Figure 4-3: The upper Meadow Creek reach zones, subbasins, major tributaries, and nutrient grab 

sampling points at each zone. 

4.1.3 SWMM Model 

The SWMM model used in this study is divided into 9 subbasins (Figure 4-3) ranging in 

size from 40 to 460 hectares according to the tributary network flowing into the main stem of the 

stream. SWMM is used to simulate stormwater runoff, groundwater flow, and nutrient inputs to 

the mainstream network reach zones numbered: 1,2, and 3 as indicated in figure 4-3. The 

SWMM model used in this study is a modified version of one developed by the city in 

partnership with URS Corporation and the U.S. Army Corp of Engineers (Charlottesville, 2008, 

2010). The original model included 87 subbasins in the study area. We added a water quality 

model, a groundwater model, and to improve computational time we reduced the number of 

subbasins. The 9-subbasin model was calibrated and validated using local rain gage data and 

observed discharge at the outlet of the study area. Discharge was derived from water depth that 

was recorded using a HOBO® pressure transducer and a rating curve that was developed over a 



100 
 

period of 18 months. Discharge for the rating curve was recorded at the watershed outlet using a 

SonTeK® Flow Tracker 2 acoustic velocimeter and depth was recorded using a staff gage. 

Stream stage was recorded using a HOBO U20L-01 transducer. SWMM is used to simulate 

storm runoff, nutrient inputs to the stream network, and baseflow. SWMM simulates the 

performance of stormwater GI with respect to reducing runoff and dissolved nutrient input to the 

stream during stormflow periods. SWMM GI modifies nutrient inputs to the stream by either 

treating the runoff entering specific GI or by increasing runoff infiltration, converting it into 

groundwater. The GI types that we consider in this study include rain gardens, green roofs, and 

impervious conversion to grasses and tree canopy. The only considered Green Infrastructure (GI) 

options that modify the EMC values of subbasins in SWMM are those involving the conversion 

of impervious surfaces to grasses or green space since they necessitate a land use change. 

We parameterized a DIN water quality model in SWMM by calibrating the 

concentrations of groundwater and stormwater according to different land uses in the area. We 

categorized the study area into five categories: impervious roads, impervious residential, 

impervious commercial/industrial, grasses, or tree canopy using land cover and zoning data from 

regional (Chesapeake Conservancy, 2019) and local geographic information system databases. 

Table 4-2 shows the land use composition of each of the 9 subbasins in the study area. 
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Table 4-2: Land use composition for each subbasin. 

Subbasin 

Impervious Pervious 

Roads Residential Commercial Grasses 
Tree 

Canopy 

S-1 5% 13% 18% 22% 42% 

S-2 4% 16% 7% 18% 55% 

S-3 5% 26% 17% 17% 35% 

S-4 2% 16% 18% 19% 45% 

S-5 2% 29% 46% 17% 6% 

S-6 4% 29% 26% 14% 28% 

S-7 6% 19% 22% 17% 36% 

S-8 11% 28% 20% 9% 32% 

S-9 1% 14% 2% 22% 61% 

 

4.1.4 HEC-RAS as the stream flow hydraulics module 

The Meadow Creek cross-sectional geometry was extracted using a 1m digital elevation 

model (DEM). Once flow from the SWMM model enters the stream network via tributaries or 

from upstream subbasins, our integrated model computes flow cross-sectional area, velocity, 

volume, and benthic area in the channel using a steady state HEC-RAS model. We divide the 

main stem into three reach zones, each containing a certain number of 30-meter-long cross-

sections. Figure 4-4 shows the 1m DEM used in our HEC-RAS model along with stream reach 

sections at every 30m interval. Stream flow and nutrient concentrations from SWMM along with 

the stream reach parameters computed using HEC-RAS become input parameters to modules 

derived from the STOICMOD-SSHBS nutrient uptake models.  
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Figure 4-4: The 1m DEM used in the HEC-RAS model for Meadow Creek with cross-sections at 30m 

intervals. 

 

4.1.5 STOICMOD-SSHBS as the stream nutrient processing module 

We use STOICMOD-SSHBS uptake equations for algal DIN uptake, denitrification, 

heterotrophic DIN uptake, mineralization, and respiration. These processes all influence 

watershed nutrient export and retention.  We detail the STOICMOD and SSHBS uptake 

functions that our integrated model calculates at every 30-meter cross-section area. The mass 

balance of N at each cross-section and through the integrated model is computed as: 

𝛥𝑁𝑖,𝑡 = 𝐶𝑖−1,𝑡𝑄𝑖−1,𝑡 + 𝐶𝑡𝑟𝑖𝑏𝑢𝑡𝑎𝑟𝑦,𝑡𝑄𝑡𝑟𝑖𝑏𝑢𝑡𝑎𝑟𝑦,𝑡 − 𝑈𝑝𝑡𝑎𝑘𝑒𝑖,𝑡 − 𝐶𝑖,𝑡𝑄𝑖,𝑡                          (1) 

ΔN is the change in mass of DIN in the water column, i is the cross-section, t is time, Ci-1,t and 

Qi-1,t are the concentration of DIN and the stream discharge, respectively, at the section directly 
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upstream of section i. Ctributary,t, and Qtributary,t are the concentration of N and the discharge, 

respectively, at a tributary feeding into the cross-section i (if applicable). Uptakei,t is the N 

removed from the water column via in-stream uptake processes. Ci,t and Qi,t are the concentration 

of N and outflow at section i.  Figure 4-5 is a diagram that summarizes all of the processes 

simulated using the STOICMOD-SSHBS functions with numbers in parenthesis next to the 

process labels corresponding to the functions outlined below.  

 

Figure 4-5: Carbon, nitrogen, and phosphorus processing pathways as modeled with STOICMOD-

SSHBS equations. 

The following uptake functions use measured input data including photosynthetically 

active radiation (PAR) at an hourly timestep, water temperature at a daily timestep, and an 

estimation of leaf litter (detritus) C, N, and P inputs to the stream. We measure PAR at one 

location using a HOBO® PAR Smart Sensor. PAR measurements were taken at all three zone 

sections, yet significant gaps exist in the data collected from the sensors at sections 1 and 2. 

These gaps were caused by animal tampering, resulting in sensor damage for long time periods 

over the simulation period. We also measured water temperature at each of the mainstream 
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reaches using a HOBO® Dissolved Oxygen Data Logger logging at a 15-minute interval. We do 

not have field measurements of daily stream detritus input, so we calibrated the daily C mass 

inputs into the stream at each reach zone to benthic respiration, assuming the daily watershed 

deposition patterns and C/N/P ratios were similar to Webster et al. (2016). See figure C-4 in 

appendix C for the leaf-litter C inputs per square meter at each reach zone. Note that zone 2 was 

parameterized to have 50% less leaf-litter input due to its lack of riparian canopy. 

STOICMOD-SSHBS models algal uptake using a modified Michaelis-Menten equation: 

𝐴𝑙𝑔𝑈𝑋,𝑖,𝑡 = 
𝑈𝑚𝑎𝑥−𝑋×𝐶𝑋,𝑖,𝑡

𝜅ℎ𝑎𝑙𝑓,𝑋+𝐶𝑋,𝑖,𝑡
× 𝐴𝑙𝑔𝐶𝑖,𝑡 × 𝑔𝑠 × 𝑄10𝑓   (2) 

Umax-X is the maximum daily uptake of nutrient X (X = N or P) per carbon algal biomass 

(mgX/mgC/d), CX,i,t is the water column concentration of N or P (mgX/m3) at reach cross-section 

i at time t, khalf-x is the nutrient specific half-saturation constant for uptake (mgX/m3), AlgCi,t 

(mgC/m2) is the standing crop of algal carbon biomass per benthic area at reach cross-section i at 

time t. The biomass limitation of Algal DINet primary production is computed as 

𝑔𝑠 = 
1

1+(𝜅𝑠×𝐴𝑙𝑔𝐶𝑖,𝑡)
      (3) 

 Q10f is a function for the ecosystem process sensitivity to temperature (T) as modulated by a 

scaling parameter ϕ which was calibrated to be 1.1 for autotrophs and 1.3 for heterotrophs, 

indicating a relatively low sensitivity to temperature for all uptake processes at Upper Meadow 

Creek. 

𝑄10𝑓 = 𝜙
𝑇𝑖,𝑡−1.2

10       (4) 



105 
 

Ks (mg/mgC) is the self-limitation coefficient. The magnitude of algal uptake is dependent on 

algal standing biomass (mgC/m2). The potential algae carbon biomass growth (GL, d
-1)  is a linear 

hyperbolic light-photosynthesis response function (Boston,1991):  

𝐺𝐿 = 𝐺𝑚𝑎𝑥 ∗ tanh (
𝛼∗𝑃𝐴𝑅𝑖,𝑡

𝐺𝑚𝑎𝑥
)     (5) 

where Gmax (d
-1) is the maximum algae growth rate, average daily PAR is the photosynthetically 

active radiation (μmol/m2 s), and α is an initial slope parameter (m2s/μmol). Note that PAR data 

that was obtained at zone 7 was used at all three reach zones since it was not available over the 

entire two-year period at the zones 1 and 2 so Gmax was used as a calibration parameter that 

distinguished photosynthetic activity at each zone due to these data gaps. In the future, we plan 

to employ regression or other modeling methods to complete or estimate the missing PAR data in 

zones 1 and 2. This future approach will ensure that Gmax remains consistent with values 

referenced in the literature. Zones 1 and 3 are largely covered by canopy where zone 2 is largely 

devoid of overhead canopy so Gmax was parameterized to be higher in zone 2. Gross primary 

production (GPP, mgC/d) is modeled using equation 6.  

𝐺𝑃𝑃𝑖,𝑡 = 𝐴𝑙𝑔𝐶𝑖,𝑡 × 𝐺𝐿 × 𝑔𝑠 × 𝑔𝑙 × 𝑄10𝑓   (6) 

Nutrient uptake is stoichiometrically related to C/N and C/P ratios. The internal nutrient stores 

limit on primary production is computed as:  

𝑔𝑙 = 𝑚𝑖𝑛 [1 −
𝑁/𝐶𝑚𝑖𝑛

𝑁/𝐶𝑖,𝑡
, 1 −

𝑃/𝐶𝑚𝑖𝑛

𝑃/𝐶𝑖,𝑡
]    (7) 

Where N/Cmin and P/Cmin are the N/C and P/C ratios that are necessary for algae subsistence and 

N/Ci,t and P/Ci,t are the N/C and P/C ratios at section i. Algal respiration proceeds as equation 8.  

𝑅𝑖,𝑡 = 𝑟𝑖 × 𝐵𝑖,𝑡 × 𝑄10𝑓    (8) 
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where ri (d
-1) is the respiration rate of algae and Bi,t (mgC/m2)is the standing stock of the algae 

carbon (equation 8 is used for other benthic organisms other than algae with different respiration 

rates). The sum of GPP and respiration (equation 9) is net primary production (NPPi,t) which 

supplements standing stocks of algal C as shown in equation 10: 

NPPi,t = GPPi,t – Ri,t      (9) 

𝐴𝑙𝑔𝐶𝑖,𝑡 = 𝐴𝑙𝑔𝐶𝑖,𝑡−1 + 𝑁𝑃𝑃𝑖,𝑡        (10) 

Entrainment and deposition processes occur in relation to stream velocity (v) and the 

adapted equations from Lin et al. (2021), based on Doyle (2005): 

𝐸𝐹𝑖,𝑡 = (0.85/ (1 + 𝑒
−(
𝑣𝑖,𝑡−𝜎

0.06
)))    (11) 

𝐷𝐹𝑖,𝑡  =  1 − 𝑒
(
−𝐿∗𝐵𝐴𝑖,𝑡∗0.05

𝜐𝑖,𝑡∗𝑉𝑖,𝑡
)
     (12) 

Where EFi,t is the fraction of benthic detritus that is entrained at section i at time t, DFi,t is the 

fraction of water column detritus that is deposited on the benthic area of cross-section i at time t. 

Detritus and microorganisms were parameterized to be more mobile and were parameterized to 

entrain at lower velocities compared to algal mass, so σ was parameterized with a value of 0.5 

for algae and 0.4 for detritus. Detritus and entrained algae within the water column are deposited 

as it moves downstream according to equation 12. Daily water column detritus is regulated by a 

daily deposition rate of detritus from the watershed along with entrainment and transport from 

upstream of each 30m cross-section. When detritus is deposited on the stream bottom, the 

constituent C, N, and P are subjected to microbial assimilation, respiration, and mineralization 

back into the water column in dissolved form. Algae and microbe mortality also supplements 

benthic detritus C, N, and P.  
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 Microbial nutrient uptake processes are conducted by one of two groups. The first 

microbial groups are “miners” which obtain all of their C, N, and P from benthic detritus 

(Detritusbenthic, mg/m2) at a maximum decay rate (kminers, d
-1) modulated by the Q10f: 

𝐺𝑚𝑖𝑛𝑒𝑟,𝑖,𝑡 = 𝐷𝑒𝑡𝑟𝑖𝑡𝑢𝑠𝑏𝑒𝑛𝑡ℎ𝑖𝑐,𝑖,𝑡 × 𝑘𝑚𝑖𝑛𝑒𝑟,𝑖,𝑡 × 𝑄10𝑓    (13) 

The second microbial group are the immobilizers which obtain C from benthic detritus according 

to a Michaelis-Menten type equation: 

𝐺𝑖𝑚𝑚𝑜𝑏𝑖𝑙𝑖𝑧𝑒𝑟,𝑖,𝑡 = 𝐷𝑒𝑡𝑟𝑖𝑡𝑢𝑠𝑏𝑒𝑛𝑡ℎ𝑖𝑐,𝑖,𝑡 × 𝑘𝑖𝑚𝑚𝑜𝑏𝑖𝑙𝑖𝑧𝑒𝑟,𝑖,𝑡 × 𝑄10𝑓 ×𝑚𝑖𝑛 (
𝐶𝑥,𝑖,𝑡

𝑘ℎ𝑎𝑙𝑓+𝐶𝑥,𝑖,𝑡
)  (14) 

where Gimmobilizer,i,t is the uptake of benthic detritus C by immobilizers (mgC/m2),  kimmobilizer is the 

maximum detritus decay rate (d-1), and khalf is the half saturation constant for immobilizers 

(mgX/m3). Immobilizers sequester N and P from the water column to maintain constant C/N and 

C/P ratios in accordance with their benthic detritus C uptake. 

Miners and immobilizers maintain a constant C, N, and P ratio and so mineralize 

according to their intake of those nutrients. For example, miners consume detritus which have a 

different C, N, and P ratio compared to the miners, so the miners will release the excess C, N, or 

P to match their constant ratio into the water column. Organic carbon on the benthic bottom 

respires along with miners and immobilizers, releasing dissolved C back into the water column, 

according to equation 8 above where Bi and ri are the standing crop of carbon biomass (mgC/m2) 

and the respiration rates (d-1) for either detritus, miners, or immobilizers., along with N and P 

according to respective C, N, P ratios.  

Algal, miner, and immobilizer mortality are linearly proportional to standing crop.  

Denitrification from the water column is simulated using the following equations:  
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𝜐𝑓 = 10
(−2.975−0.493×log10(𝐶𝑁𝑂3−𝑁)) × 0.01                  (15) 

𝐷𝑒𝑁 =  𝜐𝑓 × 𝐶𝑁𝑂3−𝑁      (16) 

υf is the uptake velocity for denitrification as described by Mulholland et. al (2008) and DeN is 

found by multiplying the uptake velocity by the CNO3-N, which is the concentration of nitrate-N in 

the water column, according to in-stream nutrient spiraling principles (Stream Solute Workshop, 

1990). Note that this equation for areal denitrification uptake velocity does not account for 

varying stream conditions (e.g. hyporheic zone depth and structure, or temperature). Note that 

CNO3-N, was assumed to be 0.96 times DIN according to the grab sample data. Table C-1 in 

appendix C summarizes the parameter variables, descriptions, and values in the appendix of this 

paper. 

 Following nutrient spiraling principles, nutrient uptake by algae or benthic microbes 

depends on the nutrient mass available in the water column within a given day at every cross-

section. Greater nutrient amounts in the water column, coupled with reduced velocities, result in 

shorter nutrient spiraling lengths downstream. Nutrient molecules change form as they travel 

downstream as they are consumed by benthic organisms and are then subsequently subject to 

mineralization at a later time. Stream cross sections with larger benthic areas exhibit more 

enhanced overall nutrient uptake from the water column. 

4.1.6 GI Scenario Analysis 

A scenario analysis is used to assess the impacts of different GI types and their location 

within the Meadow Creek subbasin network, implemented in SWMM, on in-stream N uptake 

processes. These scenarios are not meant to reproduce the most likely GI implementations, or the 
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range of potential designs.  A total of twenty-six locally extensive GI scenarios were developed 

in the study area – nine rain garden scenarios, eight green roof scenarios, and nine impervious 

conversions to tree canopy scenarios. Rain garden scenarios include implementing 10m by 10m 

rain gardens at every residential parcel within each subbasin. For each subbasin, the rain garden 

scenarios were assumed to treat 25% of the pervious and 25% of the impervious surfaces. Green 

roof scenarios involved the implementation of green roofs on all commercial building areas in 

each subbasin. Commercial building areas were determined from local structure and zoning GIS 

data. There are only eight green roof scenarios since subbasin 9 has a negligible amount of 

commercial building space. The nine impervious to greenspace scenarios are implemented by 

converting 25% of the commercial and residential impervious area to pervious grass and tree 

canopy, split evenly, in SWMM. Table 4-3 summarizes the number of residential parcels as well 

as the commercial roof and impervious areas that are utilized for each of the 26 GI scenarios 

explored in this study. To determine the impacts of urban GI on in-stream DIN retention 

processes, we calculated the percent change in gross primary production, Algal DIN uptake, 

immobilizer assimilation, denitrification, mineralization, benthic detritus, and algal mass at each 

downstream reach for each of the above-described GI scenarios. Note that the rain gardens have 

the most implementation potential and the availability of green roof space is significantly lower 

than the other two GI types. 
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Table 4-3: Number of rain garden parcels, commercial green roof area, and impervious conversions areas 

for each of the 26 GI scenarios. 

Subbasin 

Residential 

Parcel Rain 

Gardens 

Commercial 

Roof Area (ha) 

Impervious to  

Tree Canopy 

(ha) 

1 809 (80.9 ha) 6.3 41.3 

2 484 (48.4 ha) 0.8 15.2 

3 428 (42.8 ha) 0.8 10.4 

4 121 (12.1 ha) 0.8 5.6 

5 86 (8.6 ha) 1.1 7.5 

6 200 (20 ha) 7.6 11.7 

7 1311 (131.1 ha) 2.5 28.4 

8 219 (21.9 ha) 1.1 16.6 

9 528 (52.8 ha) - 4.9 

 

4.2 Results 

4.2.1 Integrated Model Calibration and Validation 

 We calibrated our integrated model to daily flow, nutrient concentrations, and primary 

productivity, for the year 2021 and validated nutrient concentrations for the year 2022. The 

calibrated Nash-Sutcliffe Efficiency (NSE) and the Kling-Gupta Efficiency (KGE) for daily flow 

is 0.69 and 0.70 respectively and the validated NSE and KGE is 0.57 and 0.54 respectively. 

Figure 4-6 shows the time series graph for our daily flow calibration and validation.  

 

 

 

 

 



111 
 

 

 

 

Figure 4-6: Time series graphs for daily flow calibration (upper graph) and validation (lower graph). 

 

DIN concentrations were calibrated and validated at each of the three stream reach zones 

using the mean absolute error (MAE). Table 4-4 summarizes the number of days that were 

sampled at each zone for the calibration and validation periods along with the respective MAE’s. 

Figure 4-7 is a time series showing observed and modeled DIN concentrations for each reach 

zone during the calibration and validation periods.  

Table 4-4: Mean absolute error values for daily DIN concentrations for the calibration and validation 

periods. 

Zone 

Calibration (2021) Validation (2022) 

# of days 

sampled 

MAE 

 (mg N/L) 

# of days 

sampled 

MAE  

(mg N/L) 

1 31 0.26 36 0.23 

2 31 0.31 37 0.3 

3 37 0.27 41 0.23 
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Figure 4-7: Time series showing observed and modeled DIN concentrations for each reach zone during 

the calibration and validation periods. 

 

While the model was not specifically calibrated to DIN loads, we compared the measured 

loads with the model loads at the stream outlet (zone 3) throughout the simulation period (figure 

4-8). The loads were not calibrated mainly because of the absence of flow data at the other two 

sections. This comparison demonstrates a closer correspondence between the measured and 

modeled data, yielding an R2 value of 0.24 over the simulation period. Although not exact, this 

load comparison boosts our confidence that the simulated loads, particularly at baseflow, are 

within in the expected range. 



113 
 

 

Figure 4-8: Measured (blue) and simulated (orange) DIN loads from zone 3 over the simulation period.  

Gross primary production and ecosystem respiration were calibrated for the year 2021 at 

each of the three stream reach zones also using the MAE metric. Table 4-5 summarizes the 

number of days that stream metabolism was modeled with BASE and the MAE values 

corresponding to the simulated stream metabolism results from our integrated model for the year 

2021. Figure 4-9 shows the monthly primary production and ecosystem respiration averages for 

both models in each zone.  

Table 4-5: Primary Production and Ecosystem Respiration MAE values between BASE and our 

integrated model. 

# of days 

modeled 

Primary 

Production 

Ecosystem 

Respiration 

MAE 

(g/m2) 

MAE 

(g/m2) 

158 0.22 0.38 

152 0.22 0.30 

222 0.23 0.28 
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Figure 4-9: Monthly primary production and ecosystem respiration at each section as modeled with 

BASE and our integrated model. 

4.2.2 Simulated Stream Ecosystem DIN Processing Rates  

DIN from the watershed enters the stream through the various tributaries in our integrated 

model and is subject to uptake processes as it travels longitudinally downstream. Figure 4-10 is a 

time series of simulated average daily uptake rates.  
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Figure 4-10: Modeled Algal DIN uptake, denitrification, immobilizer N assimilation, and N 

mineralization daily rates for reach zones 1, 2, and 3.  Net mineralization is graphed and tabulated as a 

negative value since it adds N back into the water column, counter to the other simulated processes. 

Denitrification exhibited the greatest DIN uptake rates in the stream at all three zones compared 

to the other processes. Denitrification was similar at all three zones but was slightly higher at 

zone 1 on average, where the DIN concentrations were highest. Denitrification rates are largely 

dependent on the DIN concentration in the stream according to our model and the concentration 

drops from upstream to downstream and that is reflected in the reach zone simulated 

denitrification rates. Algal DIN uptake was the second greatest contributor to DIN uptake and 
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was highest in zone 2. More algal DIN uptake at zone 2 makes sense due to the lower amount of 

canopy coverage at that zone which leads to more light energy being converted to algal mass. 

Immobilizers were estimated to have the lowest DIN uptake rates on average from the water 

column from each zone and were greatest in zones 1 and 3. Mineralization was greatest in zone 

1. The differences in mineralization may be explained by the lower leaf litter input 

parameterization at zone 2 compared to the other two zones, which led to lower benthic detritus 

standing stocks on average and therefore less mineralization. The differences observed in the 

mineralization rates between zones 1 and 3 may be explained by the higher deposition rate of 

detritus on the stream bottom and the greater algal mass at zone 1 compared to zone 3. Net DIN 

uptake per square meter was the sum of simulated algal uptake, denitrification, immobilization, 

and mineralization and was greatest at zone 2 on average, largely due to the lower mineralization 

and higher algal uptake rates at that zone.  

Standing stocks of algal and heterotrophic benthic biomass are also relevant parameters 

to the uptake of DIN within Meadow Creek. Figure 4-11 shows the standing stocks of benthic 

algal and detritus mass per square meter at each zone over the two-year simulation period. 

Across all three zones, simulated algae biomass was greatest in the late spring and lowest during 

the winter months while detritus showed a spike during the autumn leaf fall period but 

maintained relatively consistent stocks over the course of the rest of the year compared to the 

algae mass.  
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Figure 4-11: Daily standing stocks of algal and detritus biomass per square meters of benthic area at each 

zone over the two-year simulation period 

 

The majority of the DIN cycling in upper Meadow Creek occurred at zone 2, where 

approximately 124 kg were removed from the water column over the two-year simulation period 

followed by zone 3 with 55 kg removed and zone 1 with 23 kg removed. Of the estimated 23,620 

kg of DIN input in to stream from all nine subbasins combined over the two-year simulation 

period, approximately 202 kgs were estimated to be retained in the stream system through algal 

uptake, immobilizer assimilation, or removed through denitrification, which equals 

approximately 0.86%. This relatively low percentage suggests that upper Meadow Creek is 

nearly a flow-through system in terms of DIN as the stream itself plays a relatively small role in 

terms of N export from the watershed.  

4.2.3 Simulated Impacts of GI scenarios on in-stream N uptake 

 To evaluate the potential of each subbasin to impact DIN processing in the upper 

Meadow creek watershed, we tested 26 different single GI type scenarios. Our findings suggest 

that average ecosystem processing rates and standing stocks of benthic algae and detritus were 

not changed by more than 5% under all of the tested scenarios. The raingarden and impervious 
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conversion scenarios generally increased N uptake at all three stream reach zones with few 

exceptions at zone 3, while the green roof scenarios either slightly decreased average N uptake or 

did not impact it. The GI scenarios that were implemented at subbasin 1 yielded the greatest 

impacts to N uptake in the stream for all 3 GI types. Generally, the most downstream reach zone 

ecosystem was the most impacted by GI implementation versus the most upstream reaches. 

Figures 4-12, 4-13, and 4-14 are heat maps that show the impacts on the average daily DIN 

spiraling variables as a result of each GI scenario on each of the three zone reaches. 

Figure 4-12: Simulated percent changes in daily DIN spiraling variables at the three zones under the nine 

rain garden scenarios. Raingarden scenarios are numbered at the bottom according to the subbasin where 

single 10 x 10-meter raingardens were implemented at all residential parcels. The numbers in brackets on 

the left indicate the zone. 
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 As the darker shades indicate in figure 10, raingardens implemented at all residential 

parcels at subbasin 1 show the most change to the stream ecosystem in regard to DIN uptake. 

Under this scenario, the average DIN uptake rate increased in zones 1, 2, and 3 by 3.7%, 2.5%, 

and 4.4% ,respectively, relative to the status quo scenario. This increase coincided with increased 

average DIN concentrations, which elevated areal denitrification rates. Likewise, average 

mineralization and immobilizer uptake were reduced at all three zones while average stream flow  

velocities increased. The other notable changes observed in figure 4-12 occurred with raingarden 

implementations at subbasins 5 and 7 which yielded increases of average N uptake only at zone 3 

by 2.1% and 2.2%, respectively, while implementation at subbasin 8 reduced average N uptake 

slightly by 0.73%. 
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Figure 4-13: Simulated percent changes in daily DIN spiraling variables at the three zones under the 

eight green roof scenarios. Green roof scenarios are numbered at the bottom according to the subbasin 

where commercial roof areas were converted to green roofs in SWMM. The numbers in brackets on the 

left indicate the zone. 

 Green roofs were not as impactful to the stream ecosystem as the other two GI type 

scenarios, which was not surprising considering the smaller available area. The darker shades in 

figure 4-13 indicate that commercial roof conversions to green roofs at subbasin 1 are the most 

impactful compared to the other subbasin scenarios. Under this scenario, the average N uptake 

rate decreased in zones 1, 2, and 3 by 0.89%, 0.51%, and 0.98% respectively. This increase 

coincides with a decrease in average DIN concentrations and denitrification rates.  The green 

roof scenarios at subbasins 6 and 7 show slightly reduced average N uptake rates only at zone 3 

which also coincide with decreased average DIN concentrations at that zone. 
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Figure 4-14: Simulated percent changes in daily DIN spiraling variables at the three zones under the nine 

impervious conversions to green space scenarios. Impervious conversion scenarios are numbered at the 

bottom according to the subbasin where 25% of the impervious surfaces were converted to tree canopy 

and grasses. The numbers in brackets on the left indicate the zone. 

Like the other GI scenarios, impervious conversion to green space at subbasin 1 was the 

most impactful to the stream ecosystem in regard to DIN uptake. Under this scenario, the 

average N uptake rate increased in zones 1, 2, and 3 by 4.2%, 2.7%, and 4.9% respectively. This 

increase coincided with increased average DIN concentrations which elevated average 

denitrification rates. Likewise, mineralization and immobilizer uptake were reduced at all three 

zones while average stream velocities increased. The other notable changes observed in figure 4-

14 occurred with at subbasins 5 and 7 which yielded increases of average N uptake only at zone 
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3 by 2.7% and 2.1%, respectively, while implementation at zones 8 and 9 reduced average DIN 

uptake by 0.81% and 0.56% respectively. 

To identify the most effective GI type and subbasin for implementation, it may be 

important to assess in-stream impacts on a per-hectare basis. Rain gardens had the highest impact 

on in-stream nutrient uptake per hectare, followed by impervious conversion to green space. For 

visual representations, refer to Figures C-5 and C-6 in appendix C, illustrating the percent change 

in DIN spiraling variables on a per GI hectare basis. Notably, both GI types, particularly in 

subbasin 5, exhibited significant changes in net DIN uptake per hectare of GI implementation. 

This evidence suggests that subbasin 5, being the smallest and most impervious, might be the 

most influential for GI implementation on a per-hectare basis, especially at lower levels of GI 

implementation. 

The subbasin with the most potential to influence change to the stream ecosystem and 

DIN uptake with GI implementation was found to be subbasin 1, mostly because of its size and 

potential for GI implementation. The most impactful changes were related to flow velocity and 

DIN concentrations. Table 4-6 shows the average flow velocities and concentrations under each 

of the four flow quantiles for the GI scenarios at subbasin 1. 
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Table 4-6: Simulated average daily velocity and DIN concentrations for the status-quo and the GI 

scenarios at subbasin 1 at the four flow quantiles.  

Flow Quantile 
Flow Velocity (m/s) 

Status-Quo Rain Garden Green Roof Impervious Conversion 

1 0.353 0.358 0.353 0.358 

2 0.437 0.444 0.436 0.444 

3 0.494 0.5 0.494 0.501 

4 0.639 0.636 0.640 0.637 

Flow Quantile 
DIN Concentration (mg/L) 

Status-Quo Rain Garden Green Roof Impervious Conversion 

1 0.478 0.524 0.475 0.528 

2 0.857 0.88 0.853 0.883 

3 0.990 1.003 0.983 1.004 

4 0.994 1.014 0.985 1.019 

 

Flow velocities at the lower quantiles (at or below the 75th percentile of flow values) were 

elevated under the rain garden and impervious conversion scenarios at subbasin 1 compared to 

the status-quo scenario while the green roof scenario was more similar to the status-quo. Average 

flow velocities were reduced at the highest quantile of flow (above the 75th percentile of flow 

values) under the rain garden and impervious conversion scenarios compared to the status-quo 

scenario while the green roof scenario was more similar to the status-quo. The reduced velocities 

at stormflow contributed to less algal mass entrainment but the increased velocities at baseflow 

reduced the benthic immobilizer population and led to a decrease in the average immobilization 

of DIN from the water column under these scenarios.  

The rain garden and impervious conversion scenarios increased infiltration into the 

aquifer, which increased the groundwater flow into the stream. Under these scenarios, DIN 

concentration was elevated under all flow quantiles because groundwater was parameterized to 

have a higher DIN concentration then stormwater runoff. These observations appear to be the 

reason why denitrification was elevated under the rain garden and impervious conversion 
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scenarios, which are infiltration-based GI, while it was reduced under the green roof scenario. 

This change in denitrification was the major driver in the change in average net DIN uptake. 

Due to the higher DIN concentration parameterization for groundwater relative to runoff, 

the vast majority of the infiltration-based GI scenarios (rain gardens and impervious surface 

conversion) resulted in a net increase in DIN concentrations and export from the watershed. For 

example, the GI scenarios from subbasin 1 resulted in an additional 331 kgs and 452 kgs of DIN 

being input into the stream from the subbasins for the rain garden and impervious surface 

conversion scenarios, respectively, relative to the status quo scenario, with 0.86% of that being 

removed from the water column for all three scenarios. Although there are slight increases in 

DIN uptake with the rain garden and impervious conversion GI-types implemented at subbasin 1, 

the increased infiltration and higher concentrated groundwater flow resulting from these 

scenarios led to more DIN entering the stream and exported from the watershed. This was not the 

case for green roofs, where increased infiltration was not as much of a factor. See tables C-3 to 

C-6 in appendix C for a more details on the DIN inputs and zonal processing rates for each GI 

scenario. 

4.3 Discussion 

4.3.1 Utility of the Integrated Model  

The integrated model developed in this study is intended for use by urban hydrologic 

modelers who are familiar with the three coupled models: SWMM, HEC-RAS (which both are 

widely used in the fields of hydrology, environmental science, and engineering), and 

STOICMOD-SSHBS ecosystem functions The integrated model also requires familiarity with 

python programming especially knowledge on how to execute GI scenarios using python 

SWMM API (Pichler, 2022). The model for the upper Meadow Creek watershed, which is 
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contained within a python notebook, is posted to an open-source website (see data availability 

statement) for users to access freely. The python notebook contains tutorial instructions on how 

to set-up and execute the upper Meadow Creek model and how the notebook can be adapted for 

use at another study watershed. The open-source nature of the integrated model in python 

notebook form allows for customization of the code to fit specific conditions within a given 

watershed and allows for the model to be improved by any user. 

The integrated model requires a minimum of daily precipitation, flow, temperature, and 

hourly PAR. To calibrate with stream metabolism parameters, at least hourly PAR, dissolved 

oxygen concentrations, and electrical conductivity measurements would be required. Field 

sensors for all of these parameters are obtainable at a low cost. More years of data collection are 

recommended for the integrated model to capture seasonal patterns more effectively, which was 

not necessarily possible under this two-year case-study period. If these data are not available, it 

is possible to parameterize the integrated model with seasonal DIN groundwater and stormwater 

concentrations if necessary. The integrated model also requires nutrient sampling at the highest 

possible frequency, and stream geomorphology in the form of channel cross-sections and 

roughness. Our integrated model was calibrated and validated using measured streamflow and a 

limited number of DIN concentration data from water samples that were collected largely under 

baseflow conditions over a period of two calendar years. 

Coupling models for urban hydrology, stream channel hydraulics, and stream ecosystem 

processing enables the opportunity to examine whole watershed N retention processes, and the 

potential of watershed GI to improve N retention. The coupling of a watershed model to a more 

mechanistic aquatic ecosystem model allowed for a detailed investigation of stream ecosystem 

processes that are related to N uptake in the stream. Coupling SWMM and HEC-RAS to 
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STOICMOD-SSHBS enabled the estimation of the impacts of urban green infrastructure on 

nitrogen processing in a local urban stream. The modeling framework and code is adaptable to 

local modeling goals and data availability. This includes the analysis of increased imperviousness 

and urbanization and the impacts on stream ecosystems. If the modeling efforts are less focused 

on urban green infrastructure development or a more mechanistic terrestrial and/or groundwater 

model is desired, SWMM can be replaced by other terrestrial models such as RHESSys as long 

as they can be implemented in a compatible programming language.  

We used our integrated model to help estimate how in-stream ecosystem processes 

influence nitrogen uptake within Meadow Creek. Algal DIN uptake was more variable than the 

other simulated uptake rates which can be attributed to more variable stream velocities and 

entrainment patterns between the three reach zones. Denitrification was the greatest factor 

involved in N retention in Meadow Creek among the simulated processes. Combined algal DIN 

uptake and denitrification were greater than mineralization rates which contributed to an average 

net positive uptake of DIN from the water column at each zone. When mineralization was greater 

than algal uptake and denitrification during the winter months or during periods of low DIN 

concentration, there was a net release of N into the water column from the benthic biota, 

indicating that Meadow Creek can be a net source of DIN at certain times of the year, which is 

consistent with the spiraling paradigm. 

4.3.2 Integrated Model Uncertainty 

This study harbors notable sources of uncertainty, stemming from limited data collection 

and imprecise measurements of DIN concentrations and stream metabolism variables, alongside 

spatial and temporal aggregations of model data. The integrated model's component structure, 

especially concerning the groundwater flow and denitrification submodules, also contributes to 
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these uncertainties. A comprehensive uncertainty analysis for the integrated model falls beyond 

the present study's scope and is reserved for future research. 

In essence, our inability to capture day-to-day variations in DIN and stream metabolism 

data during calibration and validation restricts our confidence in the integrated model's results, 

which are primarily reported at an annual scale. Practical constraints prevented us from obtaining 

sub-hourly DIN concentration measurements on a daily basis, which could have enhanced our 

daily DIN results and potentially reduced equifinality in DIN calibration. Furthermore, the 

ecosystem model outcomes were derived from data (PAR, DIN concentrations, and flow) 

averaged on a daily basis, potentially overlooking the complete dynamics of sub-daily processes. 

Additionally, when simulating watershed processes, including the effects of green infrastructure, 

we employed a semi-distributed, largely lumped method over extensive subbasin areas, which 

might not accurately represent all specific locations within the modeled landscape. Flow 

predictions, particularly in post-storm baseflow, tend to be overestimated, likely due to SWMM's 

incapacity to model complex aquifer structures that may exist in urban regions. Moreover, the 

denitrification model relied on regression analysis from a different watershed, warranting 

improvement through a similar regression specific to our research area. Additionally, the 

inclusion of temperature and hyporheic exchange parameters within the channel denitrification 

functions would refine the model's accuracy. These issues are elaborated upon, where necessary, 

in the following paragraphs. Given these limitations, the integrated model has been sufficiently 

calibrated and validated for purposes of this study. 

Since only about 10% of the days were sampled for nutrient concentrations in the stream, 

calibration metrics that focused more on trends of the observed versus modeled data such as the 

R2 value were not possible to use for calibrating our integrated model to stream DIN 
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concentrations. The goodness-of-fit of between the observed and simulated DIN concentrations 

would be improved with greater sampling frequency and/or with the use of in-situ sensors that 

can capture DIN concentration data at continuous intervals. We obtained water samples every 1 

to 2 weeks but the DIN calibration would be much improved with a continuous in-situ optical 

sensor that could record concentrations at a sub hourly rate, which are now becoming more 

widely available to researchers.  

The calibration of primary production and ecosystem respiration was also conducted 

using results from the stream metabolism model where possible. Over the modeling period, the 

sensors that were deployed to collect input data for stream metabolism were subject to flashy 

stream conditions and wildlife tampering that significantly impaired stream metabolism data 

collection efforts particularly during the 2022 validation year. Additionally, most of the error 

observed in the stream metabolism calibration was observed in the colder months, which may be 

due to differences in temperature sensitivity between the two models as STOICMOD-SSHBS 

appears to be much more sensitive to temperature than BASE.  

Over the calibration and validation period, our simulated model overestimated the flow 

rate on average by 0.1 m3/s, overestimating low-to-moderate flows in quantiles 1,2, and 3 by 

0.16 m3/s and underestimating high flows within the fourth quantile of flow rates by 0.08 m3/s. 

The simulated total flow volume is approximately 30% greater compared to what was observed, 

mostly occurring at low flows. This is largely due to the difficulty and lack of success with 

calibrating the recession limbs of the hydrographs using SWMM during post-storm periods. 

Ultimately, this suggests that upper Meadow Creek is flashier and contains less groundwater 

input to the stream at baseflow than what was simulated. One possible explanation for the 

integrated model's inability to accurately simulate the flashiness of Meadow Creek is SWMM's 
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incapability of representing 'urban karst' conditions within the aquifer. Urban karst conditions 

pertain to human constructed subsurface pathways, such as stormwater and sanitary sewer pipes, 

which have the potential to modify groundwater flow patterns and expedite the drainage of 

aquifers compared to natural conditions (Bonneau et al., 2017). Another factor influencing the 

integrated model’s capability to represent Meadow Creek's flashiness could be the potential for 

increased infiltration and groundwater inflow into stormwater pipes (Bhaskar et al. 2015), which 

cannot be directly modeled using SWMM. Additionally, the lack of evapotranspiration in the 

model may also contribute to elevated baseflow. The opens-source nature of the integrated model 

could potentially allow for a manual correction of the simulated groundwater flow inputs to the 

stream which could improve the flow calibration, but the specifics of how to accomplish that is 

left to future users and developers of the model. 

4.3.3 Reducing DIN Export: Terrestrial and Fluvial Environment Contributions 

The study's findings reveal that Meadow Creek, an urban stream, plays a relatively minor 

role in reducing DIN export from the watershed, even in restored sections. Across all scenarios 

evaluated, less than 1% of the DIN transported by the stream was removed from the water 

column through various nutrient spiraling processes. This aligns with prior research (Claessens 

& Tague, 2009; Jansson et al., 1994; Pind et al., 1997), which indicates that streams typically 

remove or retain between 1% and 5% of the total N entering the stream from the watershed. 

Notably, urban streams tend to remove less than their forested counterparts. Consequently, the 

study underscores the urban terrestrial landscape as the primary avenue for mitigating DIN 

export from the watershed. Implementing strategies that curtail DIN inputs into the stream from 

the outset holds the key to more substantial reductions. 
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4.3.4 Simulated Impacts of Green Infrastructure on DIN Processing in the Stream 

The aim of the GI analysis conducted in this study using our integrated model was to 

examine the potential for intense, localized, single GI-type scenarios to influence DIN uptake in 

Meadow Creek. In general, the GI scenarios that were implemented at subbasin 1 were the most 

effective at increasing nitrogen uptake rates in the stream. This can be largely attributed to 

subbasin 1 being the most upstream and largest subbasin while having one of the greatest 

potentials for GI implementation. Other GI scenarios that induced notable changes to the 

simulated stream ecosystem processes include raingardens and impervious surface conversion at 

subbasins 5 and 7, which increased Net DIN uptake most significantly at zone 3. All increases in 

net uptake were due to increased denitrification stemming from increased DIN concentrations 

from infiltration-based GI types.  

 The vast majority of raingarden and impervious conversion scenarios led to an increase 

in DIN concentrations and export from our watershed. This is due to the calibration of our 

SWMM water quality model, which set groundwater concentrations to be significantly greater 

than runoff concentrations which is in line with observations at Meadow Creek (see figures C1 

and C2 in appendix C). Our parameterization of the SWMM water quality model resulted in 

higher DIN concentrations and input of N into the stream when infiltration-based GI scenarios 

were implemented. The increases in baseflow flow and average benthic area as a result of the 

infiltration-based GI-types increased DIN uptake in upper Meadow Creek, but this increase in 

uptake was not enough to offset the estimated increase in N input into the stream as a result of 

increased, higher concentrated, groundwater flow. These simulation results would likely be 

observed at other locations that are observed to have a negative concentration vs. discharge 

relationship and suggests that watershed export of N may be increased as a result of GI 
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implementation in areas where there are appreciable DIN sources within the aquifer. In these 

cases, our results suggest that commercial green roofs are a better option for reducing DIN,in the 

stream compared to rain gardens and impervious surface conversion because they do not increase 

groundwater flow into the stream, although they are not known for treating pollution as well as 

the other GI types. 

Results from this study indicate that implementing infiltration-based GI can 

unintentionally lead to increased DIN concentrations and stream export, contrary to typical 

expectations in watershed management practices if subsurface sources of DIN are not controlled. 

For instance, the runoff reduction method employed in Virginia emphasizes using infiltration-

based GI for water quality improvement (Virginia, 2011). However, this study highlights that 

intensive GI implementation should proceed cautiously, as it may not yield positive outcomes for 

urban water quality. To enhance confidence in this conclusion, it's imperative to refine the water 

quality modules of the integrated model. SWMM is the standard model for modeling urban GI 

impacts on runoff in the U.S. but the current binary SWMM water quality module (event mean 

concentration vs. groundwater concentrations calibrated to land uses) may oversimplify N 

concentration simulations in the stream. In addition to its inability to model karst conditions 

within the aquifer, SWMM lacks the capacity to consider varying concentrations resulting from 

different flow conditions and antecedent dry periods. Additionally, SWMM does not incorporate 

denitrification and uptake processes occurring within GI, which can impact N concentrations in 

infiltrated runoff. As noted in the previous chapter of this dissertation, riparian canopy, and the 

floodplain function as significant sinks for urban DIN, factors not currently integrated into the 

model. Addressing these aspects would bolster the model's accuracy and reliability in assessing 

water quality impacts. 
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Even though the infiltration-based GI-type scenarios were estimated to increase DIN 

export, which may very well be an accurate estimation if there are appreciable DIN sources 

within the aquifer, our case-study results do not necessarily suggest that GI implementation is a 

bad idea if other benefits of GI are considered. For example, the infiltration-based GI did 

significantly reduce peak flows in the stream and may reduce erosion and sedimentation. Figure 

4-15 shows an example of how each of the GI scenarios implemented at subbasin 1 could reduce 

peak flow during storms at zone 1, with impervious conversion showing the most reduction. 

Additionally, there may be social benefits to GI implementation which are not considered in this 

case-study. 

Figure 4-15: Hydrograph for stormflow and post-stormflow illustrating the impact of GI scenarios at 

subbasin 1 on peak flow within zone reach 1. Note that green roofs do not appear to be the best option for 

peak flow reduction but may be best for reducing DIN input into the stream. 

 

4.4 Conclusions 

In this study, we developed and tested an integrated watershed-channel hydraulic stream-

ecosystem model and packaged it into a single open-source python notebook. The integrated 

model is a novel coupling of a local Stormwater Management Model (SWMM), a Hydrologic 

Engineering Center’s River Analysis System (HEC-RAS) model, as well as modules from the 

Stream Model Based on Spiraling and Ecological Stoichiometry Specific Fluxes (STOICMOD) 

and Small Streams Hydro Biogeochemistry Simulator (SSHBS) as the stream ecosystem model. 
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Although the calibration and validation of the integrated model could be improved given a longer 

study period and increased frequency of in-stream nutrient concentration sampling, simulation 

results suggest that the model could be valuable to those studying the potential relationship 

between benthic ecosystem processes, GI implementation, and DIN uptake in an urban stream. 

Using the integrated model, we simulated denitrification, algal uptake, immobilization, and 

mineralization as well as standing stocks of benthic detritus and algae mass at various locations 

along an urban stream. Simulation results show for our case-study area that: 1) Roughly 0.86% 

of the DIN that entered the stream from the watershed was removed from the water column 

under the status-quo and all GI-type scenarios, indicating no significant changes in DIN retention 

as a result of GI implementation; 2) That stream reach zones with lower leaf-litter and benthic 

detritus input resulted in lower mineralization rates and higher Net DIN uptake rates. 3) 

Watersheds with higher groundwater N concentrations relative to surface runoff will yield a net 

increase in the export of DIN with the implementation of infiltration-based GI. 4) The major 

stream ecosystem changes that impacted net DIN uptake was increased N concentrations during 

baseflow periods, which increased simulated denitrification rates in the stream. 5) More 

upstream, larger subbasins, with greater feasible areas for GI implementation have the greatest 

potential to influence DIN uptake and other stream ecosystem processes while smaller more 

impervious subbasins may have more influence at lower levels of implementation. 

4.5 Data Availability Statement 

The data that support the findings of this study are openly available in GITHUB at URL: 

https://github.com/rsh6pb/Integrated-Model-Data. The integrated model code and input data as 

well as a user’s manual are available on GITHUB also at URL: 

https://github.com/rsh6pb/SHRSE-Integrated-Model. 

 

 

https://github.com/rsh6pb/Integrated-Model-Data
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Chapter 5: Concluding Remarks 

5.0 Dissertation Conclusions and Future Research Opportunities 

The expansion of impermeable urban development has amplified issues such as increased 

stormwater runoff, heightened flow velocities, and elevated nutrient levels in local and regional 

streams. These factors have led to the deterioration of natural channels and receiving water 

bodies, marked by processes like erosion, scouring, sediment buildup, eutrophication, and 

impaired water quality. To address these challenges, engineering measures like stormwater green 

infrastructure (GI) and stream restoration are recommended. These interventions have the 

potential to mitigate the degradation of local streams and downstream water bodies. From a 

practical and cost efficiency perspective, it is often advantageous to assess the potential impacts 

of various GI plans and stream restoration designs before their actual implementation. The 

central challenge tackled in this dissertation pertains to the fragmented and predominantly 

technocratic approaches adopted in watershed restoration modeling endeavors. 

Typically, different groups of experts, such as urban managers, geomorphologists, and 

stream ecologists, employ modeling tools within their specific areas of expertise, resulting in 

limited assessments of the benefits. This siloed approach restricts the ability of modern GI and 

stream restoration modeling to fully estimate the social and ecological advantages and risks 

comprehensively. As shown in the preceding chapters, contemporary modeling solutions 

necessitate the integration of various models to achieve a holistic analysis of the overall 

watershed benefits that can arise from engineered landscape and in-stream interventions. The 

results of this dissertation indicate that the use of more comprehensive models could offer 

valuable and specific insights into the potential consequences of urban green infrastructure (GI) 
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and stream restoration projects. These findings also highlight the possibility of improving 

integrated GI and stream restoration models in the future. 

The second chapter and first project of this dissertation emphasizes the importance of 

defining "optimal" GI plans in a way that incorporates more social objectives that are aligned 

with public sentiment and preferences in combination with hydrologic and hydraulic goals. 

Without this expansion of consideration, GI plans deemed optimal, strictly from hydrologic and 

economic perspectives, may not necessarily equitably benefit communities. The first study of 

this dissertation shows that GI optimization algorithms are highly adaptable, as seen in the 

integration of the LID/GI-Social Vulnerability Index (SVI) correlation objective. This integration 

demonstrates the potential to simultaneously achieve runoff management goals, increase GI 

implementation in marginalized areas, and explore the interplay between hydrologic and equity 

objectives. Overall, the analysis in chapter two underscores that GI planning is inherently a 

social process, and the most effective and acceptable plans should incorporate social goals. 

Future research that utilizes similar metrics as the LID/GI-SVI correlation objective should 

engage the community in an iterative process to determine the most acceptable and quantifiable 

social equity indicators for their specific area, as suggested by Fletcher et al. (2022). 

While GI is frequently hailed as a crucial management strategy for enhancing in-stream 

ecosystem conditions, the focus is often disproportionately on the physical engineering of stream 

channels towards more of natural channel design (NCD) or other designs that assume that 

geomorphic modification will necessarily result in ecosystem improvement. However, many 

stream restoration models that follow the NCD or other geomorphic design methods lack an 

analysis of potential impacts on in-stream nutrient reductions resulting from ecosystem 

processes. These benefits are often assumed without support from modeling results. The third 
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chapter of this dissertation introduces an adaptation of the Small Streams Hydro-

Biogeochemistry Simulator (SSHBS). This model is used to assess changes in in-stream nitrogen 

uptake dynamics resulting from various configurations of riffles, pools, and meanders in an 

unrestored urban stream segment in Baltimore County. The study demonstrates the utility of this 

process-based model in replacing assumptions about how modified stream hydraulics affect in-

stream ecosystem processes and nitrogen retention. Chapter three also underscores the 

importance of collaboration between geomorphologists and engineers, who study hydraulic 

changes in streams, and stream ecologists, who analyze stream metabolism and nutrient  

retention processes. To make process-based ecosystem models like SSHBS more accessible to 

stream restoration managers and integrated into restoration practices, comprehensive data 

collection efforts are essential for all potentially restorable urban streams. Where sufficient data 

exists, SSHBS can serve as a valuable tool for modelers to understand how enhanced benthic 

area, improved stream hydraulics, and various tree canopy conditions influence nitrogen uptake 

in restored streams. Furthermore, restoration evaluations using SSHBS offer distinct advantages 

over field-based studies that include testing a variety of restoration features and benthic area 

changes under the same boundary conditions at a single reach. 

Chapter four serves as a bridge between urban green infrastructure (GI) and in-stream 

ecosystem process modeling, showcasing the practical utility of integrated watershed-hydraulic-

stream ecosystem models for watershed managers. However, it also highlights the challenges and 

limitations inherent in developing and using such models using modern techniques. Building and 

utilizing integrated models currently necessitate the coupling of separate models, which may not 

fully capture the complex biophysical and biogeochemical dynamics within urban watersheds. 

Future studies adopting integrated models, like the one discussed in chapter four, should 
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incorporate more detailed water quality modules for terrestrial environments. These modules 

should account for nutrient uptake and removal processes within GI and the aquifer. Calibrating 

an integrated model requires extensive, high-frequency data collection that is not typical of most 

urban locations. Despite these challenges, Chapter four illustrates the capabilities and novel 

analyses enabled by integrated models. They can estimate the relative contributions of terrestrial 

and stream environments to nutrient export from urban watersheds. While substantial 

investments are made in stream restorations, this research, along with other studies, reveals that 

much of the nutrient export from a watershed is influenced by terrestrial factors beyond the 

control of in-stream ecosystem processes. Moreover, Chapter four suggests that intensive use of 

infiltration-based GI may inadvertently increase nitrogen export from a watershed, an unintended 

consequence of GI implementation. Integrated models can also illuminate the dominant in-

stream processes influenced by GI and other landscape decisions, as well as pinpoint the most 

influential locations for GI implementation and the necessary extent to achieve meaningful 

impacts on in-stream processes. 

This dissertation explores advanced methods for modeling Green Infrastructure (GI) and 

stream restoration, integrating urban social vulnerability and stream ecosystem dynamics into 

urban watershed management. These approaches aim to improve existing standards in urban GI 

and stream restoration, offering more holistic strategies adaptable to diverse study areas. The 

goal is to transcend limitations of current practices and achieve a comprehensive understanding 

and enhanced management of urban water environments. 
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Appendix A 

This document is a summary of the calibration and validation results for upper Meadow 

Creek watershed. Observed (Obs) and simulated (Sim) rainfall, peak streamflow, and total runoff 

export are tabulated in table A1 along with the coefficient of determination (R2) and the Nash-

Sutcliffe Efficiency (NSE) for each event. Figures A1 to A6 are the rainfall-streamflow 

hydrographs for each of the tabulated events.  

 

Table A-1: Summary of individual storm event calibration and validation results for chapter 2. 

  Rainfall Peak Streamflow 

Total Runoff 

Export R2 NSE 

  Event Depth Obs Sim Obs  Sim 

Calibration 1 27.2 12.1 16.1 110718.9 140055.1 0.96 0.84 

Validation 

1 11.7 8.3 5.4 52641.02 58814.09 0.79 0.74 

2 35.6 26.0 27.2 206571.4 195131.4 0.92 0.92 

3 19.1 7.8 11.5 64732.31 96673.72 0.93 0.61 

4 41.7 17.9 16.0 169929.4 210450.8 0.81 0.78 

5 66.0 55.4 58.8 555859.7 342350.7 0.79 0.75 

 

 

Figure A-1: Hydrograph and hyetograph for 8/9 April 2021 calibration storm event. 
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Figure A-2: Hydrograph and hyetograph for 3/4 June 2021 validation storm event 1. 

 

Figure A-3: Hydrograph and hyetograph for 10/11 June 2021 validation storm event 2. 
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Figure A-4: Hydrograph and hyetograph for 22/23 June 2021 validation storm event 3. 

 

Figure A-5: Hydrograph and hyetograph for 22/23 Mar 2022 validation storm event 4. 
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Figure A-6: Hydrograph and hyetograph for 22/23 June 2022 validation storm event 5. 
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Appendix B 

Summary of Small Streams Hydro-Biogeochemistry Functions 

Discharges and nutrient mass lateral inputs at any zone along the study stream are 

drainage area-weighted based on the observed downstream flow. Flow at each zone at a given 

time is calculated using the Manning’s equation below: 

𝑄𝑖,𝑡 =
𝐴𝑖,𝑡×𝑅𝑖,𝑡

2
3 ×√𝑆𝑖

𝑛𝑖
      (B1) 

where Qi,t (m
3/s)is drainage area-weighted discharge at zone i at time t. Ai,t (m2) and Ri,t (m) are 

the cross-sectional area of the water column and the hydraulic radius in discharge zone i at time 

t, Si is the zone reach longitudinal slope, and n is the zone Manning’s n roughness coefficient. 

Zone volume (m3) is given by:  

𝑉𝑖,𝑡 = 𝐴𝑖,𝑡 × 𝐿𝑖      (B2) 

where Li (m) is the length of each zone reach. The mass (Mi,t) of nitrogen or phosphorus (mg), 

concentrations (mg/m3) within the transient storage zone (𝐶𝑠𝑡𝑜𝑟,𝑖,𝑡), and the zonal flux (Fi,t) is 

computed, respectively as: 

𝑀𝑐𝑜𝑙,𝑖,𝑡 = 𝐶𝑐𝑜𝑙,𝑖,𝑡 × 𝑉𝑖,𝑡      (B3) 

𝐶𝑠𝑡𝑜𝑟,𝑖,𝑡 = 
𝑀𝑠𝑡𝑜𝑟,𝑖,𝑡

𝜏𝑖,𝑡
       (B4) 

𝐹𝑖,𝑡 =
𝑄𝑖,𝑡

𝑉𝑖,𝑡
×𝑀𝑐𝑜𝑙,𝑖,𝑡      (B5) 

where Ccol,i,t and is zone concentrations in the water column. τit is the zonal transient storage 

volume (m3) and is described in the supplemental information provided by Lin et. al (2021). The 
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changes in nutrient mass in the water column and transient storage zone over time are computed 

using equations B6 and B7. 

𝛥𝑆𝑐𝑜𝑙,𝑖,𝑡

𝛥𝑡
= 𝐹𝑖−1,𝑡 − 𝐹𝑖,𝑡 + 𝑆𝑖,𝑡 + 𝛼 ×  𝑉𝑖,𝑡 × (𝐶𝑠𝑡𝑜𝑟,𝑖,𝑡 − 𝐶𝑐𝑜𝑙,𝑖,𝑡) − 𝜏𝑖,𝑡 × 𝑈𝑐𝑜𝑙,𝑖,𝑡 (B6) 

𝛥𝑆𝑠𝑡𝑜𝑟,𝑖,𝑡

𝛥𝑡
=  𝛼 × 𝑉𝑖,𝑡 ×

𝐴𝑖,𝑡

𝜏𝑖,𝑡
× (𝐶𝑐𝑜𝑙,𝑖,𝑡 − 𝐶𝑠𝑡𝑜𝑟,𝑖,𝑡) − 𝜏𝑖,𝑡 × 𝑈𝑠𝑡𝑜𝑟,𝑖,𝑡    (B7) 

α is the channel storage exchange rate and Ucol,i,t and Ustore,i,t are the water column and transient 

storage zone uptake functions which are further explained in the next subsection. 

The zonal nutrient cycling functions represent the sum of algal uptake, denitrification, 

and mineralization. Algal uptake is modeled in SSHBS using a modified Michaelis-Menten 

equation: STOICMOD-SSHBS models algal uptake using a modified Michaelis-Menten 

equation: 

𝐴𝑙𝑔𝑈𝑋,𝑖,𝑡 = 
𝑈𝑚𝑎𝑥,𝑋×𝐶𝑋,𝑖,𝑡

𝜅ℎ𝑎𝑙𝑓,𝑋+𝐶𝑋,𝑖,𝑡
× 𝐴𝑙𝑔𝐶𝑖,𝑡 × 𝑔𝑠 × 𝑄10𝑓   (B8) 

Umax-X is the maximum daily uptake of nutrient X (X = N or P) per carbon algal biomass 

(mgX/mgC/d), CX,i,t is the water column concentration of N or P (mgX/m3) at reach cross-section 

i at time t, khalf-x is the nutrient specific half-saturation constant for uptake (mgX/m3), AlgCi,t 

(mgC/m2) is the standing crop of algal carbon biomass per benthic area at reach cross-section i at 

time t. The biomass limitation of Algal DINet primary production is computed as 

𝑔𝑠 = 
1

1+(𝜅𝑠×𝐴𝑙𝑔𝐶𝑖,𝑡)
      (B9) 

 Q10f is a function for the ecosystem process sensitivity to temperature (T): 

𝑄10𝑓 = 2
𝑇𝑖,𝑡−1.2

10       (B10) 
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Ks (mg/mgC) is the self-limitation coefficient. The magnitude of algal uptake is dependent on 

algal standing biomass (mgC/m2). 

The potential algae biomass growth is a function of the maximum algae growth rate 

(Gmax) (d
-1), the Light Response Function (LRF) developed by Webster et al. (2016) and 

available PAR (μmol/m2 s) reaching the stream ecosystem. 

𝐺𝐿 = 𝐺𝑚𝑎𝑥 ∗ 𝐿𝑅𝐹 ∗ 𝑃𝐴𝑅𝑖,𝑡     (B11) 

Net primary production GPP adds to the standing crop of algal carbon as: 

𝐺𝑃𝑃𝑖,𝑡 = 𝐴𝑙𝑔𝐶𝑖,𝑡 × 𝐺𝐿 × 𝑔𝑠 × 𝑔𝑙 × 𝑄10   (B12) 

𝐴𝑙𝑔𝐶𝑖,𝑡 = 𝐴𝑙𝑔𝐶𝑖,𝑡−1 + 𝐺𝑃𝑃𝑖,𝑡 

Nutrient uptake is stoichiometrically related to C:N and C:P ratios. The internal nutrient stores 

limit on net primary production (GPP) is:  

𝑔𝑙 = 𝑚𝑖𝑛 [1 −
𝐴𝑙𝑔𝑎𝑙 𝐶𝑒𝑙𝑙 𝑁:𝐶 𝑄𝑢𝑜𝑡𝑎

𝐴𝑙𝑔𝑎𝑙 𝐶𝑒𝑙𝑙 𝑁:𝐶
, 1 −

𝐴𝑙𝑔𝑎𝑙 𝐶𝑒𝑙𝑙 𝑃:𝐶 𝑄𝑢𝑜𝑡𝑎

𝐴𝑙𝑔𝑎𝑙 𝐶𝑒𝑙𝑙 𝑃:𝐶
]   (B13) 

Where the algal Cell N:C Quota (molN/molC) and Algal Cell P:C Quota (molP/molC) are the 

N/C and P/C ratios that are necessary for algae subsistence which have been parameterized to be 

0.0606 and 0.00377 section i.  

Denitrification is modeled in SSHBS using equations 13- 17. If the column nitrate 

concentration is greater than the transient storage zone nitrate concentration, then: 

𝜒 = 𝐶𝑁𝑂3,𝑖,𝑡
𝑏 × 𝐶𝑁𝑂3,𝑖,𝑡     (B14) 

𝐷𝑒𝑛𝑈𝑠𝑡𝑜𝑟,𝑖,𝑡 = 0.6 × 10
𝑎𝜒𝑠𝑡𝑜𝑟    (B15) 
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𝐷𝑒𝑛𝑈𝑐𝑜𝑙,𝑖,𝑡 =  0.6 × 10
𝑎𝜒𝑐𝑜𝑙     (B16) 

The variables a and b are obtained from a log transformed relationship between nitrate 

concentration and uptake velocity and methods first described by Mulholland et. al (2008). When 

the column nitrate concentration is less than the transient storage zone nitrate concentration, the 

following relationships apply: 

𝐷𝑒𝑛𝑈𝑠𝑡𝑜𝑟,𝑖,𝑡 =
10𝑎

100
× 𝜒𝑠𝑡𝑜𝑟     (B17) 

𝐷𝑒𝑛𝑈𝑐𝑜𝑙,𝑖,𝑡 = 0      (B18) 

Changes in zonal detritus mass (Dbenthic) that is available for benthic microbe 

decomposition are modeled from input detritus data as the difference between entrainment and 

deposition, which depend on zonal water velocity ϑ, the benthic area BA, and a mass transfer 

coefficient Vf . 

𝛥𝐷𝑏𝑒𝑛𝑡ℎ𝑖𝑐,𝑖,𝑡

𝛥𝑡
=
𝐸𝐹×𝐷𝑏𝑒𝑛𝑡ℎ𝑖𝑐,𝑖,𝑡+𝐷𝐹×𝐷𝑐𝑜𝑙,𝑖,𝑡

𝐵𝐴𝑖,𝑡
    (B19) 

𝐸𝐹 =  

(

 
 0.85

(1+ 𝑒
−(
𝜗𝑖,𝑡−0.4

0.06
)
)

)

 
 

∆𝑡

24

     (B20) 

𝐷𝐹 = 1 − 𝑒
(
−𝐿𝑖×𝐵𝐴𝑖,𝑡×𝑉𝑓

𝜗𝑖,𝑡×𝑉𝑖,𝑡
)
     (B21) 

In the SSHBS conceptual model, immobilizers are the group of microbial organisms that 

decompose benthic detritus for carbon C and sequester N and P from the water column in 

accordance with their subsistent C/N and C/P ratios, which are set to be 5 and 100 respectively. 
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The other group of benthic microbial organisms are miners, which obtain all their nutrients C, N, 

and P from benthic detritus. Decay of detritus C, N, and P are stoichiometrically related to 

microbial miner C/N and C/P ratios, which are set to be 15 and 1000, respectively, and excess N 

and P are mineralized by microbial miners and released into the water column. The death and 

mineralization of microbes and algae are modeled as linear functions of their respective standing 

crops and also result in nutrients being released back into the water column primarily in the form 

of NH4. Other processes that change the N composition of the water column include nitrification 

and respiration which are described more fully by Lin et. al (2021) and Webster et. al (2016). 
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Appendix C

 

Figure C-1: Distribution of δ15N and δ18O from different nitrate sources. Figure created by de Azevedo 

Torrellas (2021).The isotope ranges and denitrification lines were taken from Zhang et al., 2019. This 

figure shows that the most significant source of nitrate in the upper Meadow Creek watershed is likely 

leaky sewage and sanitary systems. MC1 -7 (seen on the right) are the 7 different sampling points along 

upper Meadow Creek from upstream to downstream. Point MC4 corresponds to the sampling point at 

zone reach 1 at this paper and MC7 corresponds to the sampling point at zone 3. 
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Figure C-2: Sampling points for isotope analysis. These points are more numerous than the number of 

sampling points used in chapter 4. 

 

Figure C-3: Dissolved inorganic nitrogen (DIN) Concentration vs. Discharge at Zone 3 of Upper 

Meadow Creek at baseflow. This graph suggests a slightly negative relationship between DIN 

concentrations and discharge at Meadow Creek. 
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Figure C-4: Leaf-litter C inputs per square meter at each reach zone.  Webster et. al (2016) leaf-litter 

inputs include a spike in leaf-litter fall during the October leaf-out period each year. Zone 2 leaf-litter fall 

is 50% of the other zone reaches due to its relatively lack in tree-canopy. 
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Figure C-5: Simulated percent changes in daily DIN spiraling variables at the three zones under the nine 

rain garden scenarios on a per hectare implemented basis. Raingarden scenarios are numbered at the 

bottom according to the subbasin where single 10 x 10-meter raingardens were implemented at all 

residential parcels. The numbers in brackets on the left indicate the zone. 
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Figure C-6: Simulated percent changes in daily DIN spiraling variables at the three zones under the nine 

impervious conversions to green space scenarios on a per hectare implemented basis. Impervious 

conversion scenarios are numbered at the bottom according to the subbasin. The numbers in brackets on 

the left indicate the zone. 
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Table C-1: STOICMOD-SSHBS in-stream ecosystem parameters. Asterisks (*) by the value indicate that 

it is a calibrated value. Otherwise, values were obtained by Lin et al. (2021) and Webster et al. (2016). 

Variable Description Units Value 

Umax,N Max Algal Uptake of N mgN/mgC/d 0.053 

Umax,P Max Algal Uptake of P mgP/mgC/d 0.00731 

khalf,algae,N Half saturation constant for algae N uptake mgN/m3 14 

khalf,algae,P Half saturation constant for algae P uptake mgP/m3 2 

ks Algals Self-limitation coefficient m2/mgC 0.0015 

φalgae Algae Q10 coefficient unitless 1.1* 

φdetritus+heterotrophs Detritus and heterotrophic Q10 coefficient unitless 1.3* 

α    Initial slope parameter for photosynthesis unitless 0.12* 

Gmax, zone 1 Maximum algae growth rate at zone 1 d-1 0.0035* 

Gmax, zone 2 Maximum algae growth rate at zone 2 d-1 0.004* 

Gmax, zone 3 Maximum algae growth rate at zone 3 d-1 0.0035* 

σalgae Entrainment parameter for algae unitless 0.5 

σdetritus Entrainment parameter for detritus unitless 0.4 

kminers Maximum detritus decay rate for miners d-1 0.01 

kimmobilization Maximum detritus decay rate for immobilizers d-1 0.1 

khalf,I,N Half saturation constant for immobilizers N uptake mgN/m3 90 

khalf,I,P Half saturation constant for immobilizers P uptake mgP/m3 20 

rdetritus Respiration rate for detritus d-1 0.08* 

rminers Respiration rate for miners d-1 0.05 

rimmobilizers Respiration rate for immobilizers d-1 0.2 
                                                                                                                                                                                  

Table C-2: Minimum, mean, and maximum simulated uptake rates at each zone. 

Daily Uptake  

 (mg N/m2)  

Zone 1 Zone 2 Zone 3 

Min Mean Max Min Mean Max Min Mean Max 

Algal 1 17 33 1 19 31 1 15 34 

Denitrification 10 28 33 7 27 33 7 24 32 

Immobilization 6 11 38 3 5 20 4 11 36 

Mineralization -9 -30 -52 -7 -20 -35 -9 -26 -45 

Net DIN 

Uptake 
-24 12 33 -8 21 35 -23 8 32 
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Table C-3: Minimum, mean, and maximum benthic algae and detritus mass at each zone. 

 

Table C-4: N inputs into the stream from the subbasin, total uptake from each zone reach, and the total % 

uptaken by the stream ecosystem under the status quo scenario. 

Status Quo 

N Input from Subbasins 
(kg) 

Zone 1 Uptake 
(kg) 

Zone 2 Uptake 
(kg) 

Zone 3 Uptake 
(kg) 

% 
Uptake 

23,620 23 124 55 0.86 

 

Table C-5: N inputs into the stream from the subbasin, total uptake from each zone reach, and the total % 

uptaken by the stream ecosystem under the rain garden scenarios. 

Subbasi
n 

Rain Garden 

N Input from Subbasins 
(kg) 

Zone 1 Uptake 
(kg) 

Zone 2 Uptake 
(kg) 

Zone 3 Uptake 
(kg) 

% 
Uptake 

1 23,951 23 127 55 0.86 

2 23,708 23 125 55 0.86 

3 23,737 23 125 55 0.86 

4 23,655 23 124 54 0.85 

5 23,702 23 124 55 0.85 

6 23,715 23 124 55 0.85 

7 23,844 23 124 55 0.85 

8 23,636 23 124 54 0.85 

9 23,614 23 124 54 0.85 

 

 

 

 

 

 

Daily Benthic Mass  

 (mg/m2)  

Zone 1 Zone 2 Zone 3 

Min Mean Max Min Mean Max Min Mean Max 

Algae 39 1278 5796 19 1509 5830 12 993 5526 

Detritus 928 1562 3034 503 879 1653 914 1589 3051 
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Table C-6: N inputs into the stream from the subbasin, total uptake from each zone reach, and the total % 

uptaken by the stream ecosystem under the green roof scenarios. 

Subbasi
n Green Roofs 

  
N Input from Subbasins 

(kg) 
Zone 1 Uptake 

(kg) 
Zone 2 Uptake 

(kg) 
Zone 3 Uptake 

(kg) 
% 

Uptake 

1 23,516 22 123 54 0.85 

2 23,603 23 124 55 0.86 

3 23,608 23 124 55 0.86 

4 23,612 23 124 55 0.86 

5 23,614 23 124 55 0.86 

6 23,577 23 124 54 0.85 

7 23,591 23 124 55 0.86 

8 23,630 23 124 55 0.85 

 

Table C-7: N inputs into the stream from the subbasin, total uptake from each zone reach, and the total % 

uptaken by the stream ecosystem under the impervious surface conversion scenarios. 

Subbasi
n 

Impervious Conversion 

N Input from Subbasins 
(kg) 

Zone 1 Uptake 
(kg) 

Zone 2 Uptake 
(kg) 

Zone 3 Uptake 
(kg) 

% 
Uptake 

1 24,072 23 128 55 0.86 

2 23,744 23 125 55 0.85 

3 23,760 23 125 55 0.85 

4 23,666 23 124 54 0.85 

5 23,715 23 124 55 0.85 

6 23,712 23 124 55 0.85 

7 23,860 23 124 55 0.85 

8 23,652 23 124 54 0.85 

9 24,059 23 124 54 0.84 

 

 

 

 


