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Abstract—Since Spectre, various detection-based Side-Channel Attack
mitigations have been proposed. They monitor systems for signs of
ongoing SCAs, supplement built-in security mechanisms, and can be
critical in detecting and preventing zero-day attacks.

Existing SCA and malware detection surveys tend to focus on machine
learning based classification methods. In this survey, we extend the
spotlight to include monitoring systems that provide the data and
alarm systems that act on the results. We provide a practical guide
for navigating implementational trade-offs by proposing cost metrics for
method comparison and measuring sensitivities to various parameters in
system design.

I. INTRODUCTION

Microarchitectural side-channel attacks are a class of information-
stealing attack that exploit discrepancies between a system’s physical
implementation and logical design. Before 2018, academics and
hardware designers believed that side-channel attacks are only a
threat to improperly designed cryptographic algorithms and can be
easily addressed by constant-time programming and a host of similar
techniques. As a consequence, side-channel attacks were studied and
monitored, but not treated as a major security concern.

In 2018, the discovery of Spectre and Meltdown attacks shook
the hardware security community by demonstrating how the vast
complexity underlying modern processors could be used to execute
side-channel attacks previously thought impossible. The discovery
of Spectre and Meltdown demonstrate the immense complexity of
modern CPUs, and the security issues that comes with it. Spectre
brought behind-the-scenes optimizations into the spotlight, as well as
the enormous CPU flaw exposed by the ability to reach impossible

Type Description Advantage Disadvantage

Patching Patch software to
avoid triggering
hardware vulner-
abilities.

No hardware changes. Need to secure all
software, can be bro-
ken by software up-
dates.

Hardware [27],
[31], [36]

Modify hardware
design to fore-
stall attacks.

Guaranteed security. Require hardware
changes; adaptions
required to
new hardware
optimizations.

Detection [20]
[1] [16]

Monitor
execution to
detect attacks.

Covers 0day attacks,
requires no hardware
change.

Reliability and over-
head.

TABLE I: Software, passive, or and detection-based side-channel
mitigations.

program states via transient execution combined with return oriented
programming, threatening data previously considered impossible to
exfiltrate.

Since then, there has been great interest in transient execution at-
tack mitigations. Mitigations can be categorized as software, passive,
or detection-based (see Table I). Software and passive mitigations
can cover massive attack surfaces. They have hitherto rightly been
treated as the primary method of defending against side-channel vul-
nerabilities. However, as novel hardware optimizations are introduced
and new attacks surface [3], [24], existing mitigations need to be
expanded to cover the newly exposed surfaces. Any delay in doing
so results in zero-day attacks.

To bridge the gap in defenses, detection-based mitigations such
as NightsWatch [16] and PerSpectron [15] have been developed to
monitor the execution of workloads and report either anomalies in
workload execution (known as Anomaly-based Detection) or execu-
tion patterns that match the signature of side-channel attacks (known
as Signature-based detection) [29]. Before 2018, a substantial amount
of work has already accumulated of execution-signature based mal-
ware detection. The threat of Spectre and Meltdown caused much
research interest from malware researchers and hardware researchers
alike. Older malware detection methods have been adapted for side-
channel detection, new methods have been developed, and numerous
survey papers exist on the topic [14], [19].

While Spectre-era side-channel defense surveys [19] provide broad
and detailed analyses of the statistical and machine learning method-
ologies for distinguishing between samples taken from malicious and
benign processes, they tend to neglect an explanation of the method
by which these samples are collected in the first place. From existing
surveys, it is unclear how to tackle the tradeoffs involved in the design
of the sampling systems.

In this work, we will focus on active detection-based mitigations
for Spectre and other attacks, while also drawing from the pre-
Spectre body of work on malware detection to inform our evaluation.
We present an in-depth, survey of implementational parameters of
Spectre detection systems, followed by a comprehensive, systematic
literature evaluation from an implementational perspective, with a
focus on practical features such as performance overheads, ease of
integration to real world systems, false-positive and false-negative
rates, quality of cross-validation, and potential to detect zero-day
attacks. We also perform experiments to evaluate the performance
of side-channel detectors across a wide range of system parameters,
including different machine learning methods, the type and number of
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performance counters tracked, and overhead and accuracy tradeoffs
caused by different sampling frequencies and monitoring granulari-
ties. We conducted this survey to fill in some gaps and provide more
useful guidance for industry practitioners as they choose the best
detector for their application.

Our exploration is centered on Spectre detection mechanisms, but
we draw from the malware detection and general side-channel de-
tection mechanisms as well. We go in-depth on approaches based on
existing hardware performance counters, but we also discuss methods
that use instrumentation [25], simulation-based data gathering, and
novel hardware features specifically designed for the purpose [15],
[35].

II. BACKGROUND

As a result of their complicated architecture, modern processors
are susceptible to a variety of security flaws that hackers exploitto
steal information directly. Side Channel Attacks allow hackers go a
step farther by indirectly retrieving secret information by monitoring
a system’s cache. Now a significant problem for high-level PCs and
Cloud Machines containing sensitive data, such attacks measure the
shared cache memory’s access time and use variations thereof to
infer sensitive data. This is worsened by speculative execution, an
optimization that boosts the machine’s performance but results in
unintuitive execution behavior and difficult-to-secure caches. During
the subsequent speculative execution, a virus or attack could use these
leftover memory accesses to gain access to the system’s data. The
form of attack is a vast topic that encompasses a variety of exploits
employing various approaches to discover secret information via CPU
side channels [12], [20].

A. Performance Counters

Hardware performance counters are registers with a special func-
tion integrated into modern microprocessors. They can be configured
to track a number of important computer system metrics for analysis
purposes. These metrics may include, clock cycles, cache hits and
misses, and branch misses. In our situation, the hardware-based
performance counters are mostly used in the occurrence of an event
such as side channel attacks. Due to the fact that they are hardware-
based in the CPU, they are very quick and incur no performance
overhead, making them ideal for real-time detection. Interfaces to
access hardware performance counters include PAPI (Performance
Application Programming Interface) [7] and linux-perf [1].

B. Side-Channel Mitigations

Passive mitigations often attempt to minimize the capacity of
attackers to (1) cause temporary execution, (2) access sensitive
data during transient execution, and/or (3) transmit stolen data to
committed execution via patching software and hardware. While these
approaches provide security-by-design, they add complexity to the
hardware design process since they must be constantly enforced as
hardware architecture evolves to prevent innovative attacks that use
different areas of the micro-architecture to bypass defenses.

Active mitigations, on the other hand, are typically software-based
mitigations that identify the existence of malware or an assault in the
cache and inform the user during run-time. They can be configured
to detect signatures similar to known assaults or atypical execution
patterns that do not match existing workload signatures [29]. This
affords them the opportunity to detect previously unidentified side-
channel attacks. Active mitigations should not be considered a
replacement for security-by-design, but rather as a supplement that
can be used to provide early alerts of new attack variants and help
hardware designers in implementing the required security measures.

Following the collection of data, a statistical model or a form of
machine learning may be utilized to differentiate between attacks and
non-attacks. Existing side-channel surveys concentrate extensively on
this step, the type of computer utilized, the performance counters
measured, and even the experiment’s precision. These, however,
exclude essential statistics such as performance overhead and granu-
larity implementation. More often than not, articles rehash the same
material without adding to the body of knowledge on the subject by
performing real-time detection for various cache-involving execution
approaches [20].

Active side-channel detection techniques typically require data to
be gathered using existing hardware performance counters, but there
are proposals using instrumentation, simulation-based data gathering,
and occasionally novel hardware features designed specifically to
detect side-channel attacks [15], [35]. The collected data is forwarded
to a classification algorithm, typically a machine learning model, to
recognize certain specific events that occur in a CPU, along with
an estimate of the virus’s likelihood. Existing side-channel research
focuses mostly on methodological considerations and the capacity of
various defenses to detect various types of attacks. One of the key
strengths of active mitigations is their potential to detect zero-day
attacks, which exploit previously undiscovered security flaws.

C. machine learning Based Attack Detection

machine learning is a class of statistical methods that learns to
use past fed input data without being told explicitly. They need
large amounts of data and usually process a pattern through neural
networks. In trying to detect side channel attacks, machine learning
can be a very useful technique for targeting attacks by learning of the
ways in which it manipulated different parts of the machine. machine
learning has already shown it can be used for cybersecurity, with its
use in malware detection and post-silicon validation [21]. Currently,
ML models generated operate in a black-box fashion. The research
done in the machine learning area has therefore gone into creating
explainable machine learning models that can create a label with a
reason for the output [10]. This can help to incorporate more relevant
samples and generate more accurate results. In case of side channel
detection mechanisms, the goal would be to figure out all the kind
of attacks possible.

D. Cache Side Channel Attacks

1) Prime + Probe: Prime + Probe attacks are a type of cache
side channel attack that exploits caching to exfiltrate data access
patterns patterns and sensitive data. They can target various levels of
the cache hierarchy from LLC [5] to the micro-ops cache [24]. The
attack consists of three phases: PRIME, IDLE, and PROBE. During
PRIME, A spy evicts cache lines and fills the cache with a portion
of its own memory known as an ”eviction set.” In IDLE, the spy
waits for a predetermined amount of time while the target performs
sensitive tasks. During the PROBE phase, the spy attempts to retrieve
the eviction set. If the eviction set is not in the cache, as evident by
loading taking a long time, the spy infers that the victim has visited
sensitive memory locations that mapped to the same cache lines as
the eviction set.

2) Flush + Reload: Flush + Reload improves upon Prime+Probe
by using the CLFLUSH instruction to reliable flush victim data from
the cache. It has the highest resolution among cache side channel
attacks and can even collect keystroke data, but requires the ability to
flush the victim’s memory from cache. Flush+Flush has only 3 stages:
FLUSH and RELOAD. During FLUSH, victim memory is flushed
from cache. The attack then goes into the RELOAD phase, where
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the victim is allowed to execute and is timed. Long reload times
indicate that the victim did not access the shared page’s sensitive
data, allowing the spy to establish the victim’s access patterns to
sensitive data [5].

E. Speculative Side-Channel Attacks

Together with Meltdown, Spectre [22] was a security flaw found in
2018 that could also steal information from any computer at the time.
The Spectre attack employs branch prediction flaws to circumvent
user and operating system isolation. There are two primary forms
of the spectre exploit: variant 1 and variant 2. The first variant
exploits speculative execution to evade memory access boundaries
check conditional branch instructions [22]. The problem arises when
the process accesses out-of-bounds memory speculatively, prior to the
completion of validation checks. During this time frame, speculative
memory can leave gaps and leaks that can be exploited by hackers
via the generated side channel. For indirect branches, the second
type employs speculative execution rather than branch detection. An
attacker is able to modify these branch predictors to execute new
code and reveal sensitive data [20].

For each variant, Spectre is able to retrieve sensitive informa-
tion and load them into speculative memory. The information is
then leaked to the attacker via another side (covert) channel like
Prime+Probe or Flush+Reload.

Spectre is able to bypass existing side-channel mitigations and
can show its own unique performance counter motifs (for example,
in our exploration, we observe that processes executing the Spectre
attack exhibit abnormally low branch miss rates that are not expected
for typical side-channel attacks). However, as Spectre requires a
traditional Side-Channel to transfer the stolen data from speculative
to committed execution, we expect it to exhibit performance counter
motifs identical to other side-channel attacks unless it disguises itself
by inserting noise or adversarially avoiding machine-learning based
detection mechanisms [10], [33].

III. SYSTEM PARAMETERS AND THEIR IMPACT

In this section, we present a deep dive into real-time microarchitec-
tural side-channel attack detection methods, and discuss the design
choices available and how they affect tradeoffs with performance,
accuracy, and ease of implementation. Most of the research surveyed
are OS-level mitigations, integrating with linux-perf to gather
perfomance data for classification into side-channel and non-side-
channel categories. We explore the research surveyed along the
following axes:

A. Level of Oversight

For side-channel attack detection, the level in which the process can
be done varies. In this current taxonomy, every paper uses an OS for
Granularity of Oversight. This means that they are either simulations
that are run on MARSSx86 emulators or actual machines with intel
chips/x86 [4], [30]. Most of these papers offer the same solution, so
it is more likely than not that they build on each other’s work and
experiment on a higher, OS, level of architecture. The PerSpectron
paper is the only one that does not follow this [15]. It has a Micro-
architectural Proposed granularity of oversight. This helps it to detect
attacks before they start, and offers a deeper level of security than at
the OS level of detection.

B. Sampling Interval

The literature reports sampling intervals in various units, but most
works provide an interval measured in milliseconds (e.g. [21], [1],
[11]). Reported units include:
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Fig. 1: Overhead decreases with increasing sampling frequency.

• Time (The majority in ms, with some reports in Hz and µs) [4],
[28]

• Encryption Rounds (when the victim is AES) [17]
• Cycles (Ranging from 25,000 to 1,000,00) [6], [35]
• A range (for variable-frequency sampling schemes like Cache-

Zoomer [8], whose sampling frequency depends on processor
clock rate and cache activity)

Sampling frequencies in literature exhibit a wide variation. Typical
systems report a time-based sampling frequency, with an interval
between 1ms and 1000ms. Frequencies under 1ms are also reported,
but rare due to quickly increasing overheads. To control the overhead,
The PerSpectron paper [15] proposes extra hardware to take and
record performance counter samples without interrupting the flow
of execution, and is able to sample at 0.003ms per sample. This is
the lowest sampling frequency reported in the literature. Many papers
take samples using linux-perf and report a sampling frequency
of 1ms [2], [34], [37], which is the default sampling frequency in
linux-perf.

Shorter sampling intervals produce greater overheads, but this
comes with two advantages. First, a shorter interval allows the
detection mechanism to isolate attack-phases for a clearer signal,
and makes them harder to defeat via evasive attacks like Kurvila’s
Paper [10]. Second, they have a better chance at terminating an attack
before it can complete, as the attacker is more likely to be caught in
the act of performing the attack. This makes them suitable for fully
automated systems that automatically terminates suspicious activity.

C. Detection Methodology (Statistical / ML / Rule-based)

Two historical papers from the CC Hunter line of research classify
processor behavior observations into safe and malicious categories
by thresholding statistics on a histogram of memory addresses. CC-
hunter [4] uses memory autocorrelations to detect periodic cache
attacks. ReplayConfusion [35] takes this logic one step further by re-
executing the program with different cache mappings and observing
the difference in autocorrelation. Notably, they rely on thresholds
picked by researchers and do not perform training.

In contrast, most of the papers surveyed [10], [20], [28] use
traditional supervised learning methods like Ridge Regression, SVM,
and Random Forrest to classify data as safe or malicious.

There are also an abundance of research [5], [32] that use deep
learning to detect real-time side-channel attacks. They measure
metrics like branch misses, cache levels, and cache misses, and use
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ML in software to implement their models. Compared to traditional
ML models, they can recognize more complex patterns but are less
explainable and can overfit. There are proposals to address this with
explainable ML [10], [21].

In our own tests (see Figure 3), we explore some of these tradeoffs.
For data gathered through standard performance counter sampling,
we find that deep learning was not necessary and that random forests
provide much performance at little cost.

D. Attacks Targeted

Cache Side Channel Attacks are a large range of attacks involving
a variety of antiquated and modern malware. Consequently, the sort
of attack has varying effects depending on where it occurs within the
system. The papers in this taxonomy provide a variety of malware
and attacks: Malware Cache Side Channel Attacks, Covert Timing
Channel Attacks, and Spectre Side Channel Attacks. Malware Cache
Side Channel Attacks are the subject of articles such as [5], [28],
which demonstrate how more information can be accessed from the
system or hardware. They explain the many types of malware that
induce side-channel assaults and the necessary detection techniques.
Covert Timing channel assaults transmit data to a target system by
altering its behavior over time. This is used by attackers to tailor
the system to their needs and gain access to its private portions. The
[4], [35] articles discuss this type of attack as their primary objective,
while also touching on malware detection for instances such as Trojan
Horse attacks.

Recent research has paid significant attention to Spectre, and
[1], [12], [13], [20], [30], [32], [38] demonstrates how real-time
detection of Spectre side-channel attacks can be studied. Non-spectre
publications appear to concentrate mostly on cache behavior, but
spectre-targeting defenses frequently incorporate branch behavior, as
branch mistraining is essential for controlling speculative execution.
Particularly, Spectre attacks are characterized by extraordinarily high
branch miss rates, as mistraining repeatedly teaches the CPU a false,
predictable pattern before each mis-speculation attack.

E. Zero-Day Attack Detection

One of the key advantages of performance-counter based attack
detection is their potential to detect zero-day attacks. This can happen
in two ways:

• Signature-based detection, which detects new attacks based on
partial similarity to existing attacks

• Anomaly-based detection, which detects new attacks based on
difference from known-safe workloads

Signature-based zero-day detection can be useful in recognizing
new attacks, but fall short when presented with radically new attacks
that have no similarities with existing ones. Examples include [18],
[26].

Anomaly-based methods seek to identify both zero-day assaults
and existing threats. Using statistical or machine learning approaches,
they only analyze normal execution behavior. Attack detection is done
instead by defining large divergence from known-good behavior as
anomalous and raising alarms. Despite better potential to detect zero-
day attacks, there is significantly less research for anomaly-based
detection [37], and existing studies report higher false-alarm rates.
Additionally, when the execution behavior of the system changes
(such as when new workloads are added), anomaly-based methods
can fail.

F. Response to Suspicious Activity

Once the classification system triggers an alarm, there are a number
of ways the system responds to the alarm. In this section, we discuss
the different measures taken in the papers surveyed, and outline how
well these measures tolerate false alarms.

Works surveyed that do have a proposed alarm mechanism falls
under one of the the following categories:

1) The system may terminate the process that is executing the
malicious code [1], [11], [16], [20], [28].

2) The system may try to prevent malicious execution non-
destructively, such as freezing the suspicious process or exe-
cuting it in a sandbox to further check whether it is malicious
[35].

3) The system may log the incident for later discovery by a human
operator.

Each of the proposed countermeasures has its own advantages
and disadvantages. Terminating the process is the most aggressive
response, but it is also the most effective. It is also the most
straightforward to implement, as it does not require any additional
infrastructure. However, it is also the most disruptive, may cause the
process to lose unsaved work, and can lead to Denial of Service
attacks. The false-alarm tolerance depends on the way the system is
built to tolerate process terminations.

Logging the attack is much less costly, but depending on the
application, can be ineffectual for attack prevention. It does not
enable denial-of-service attacks, and can help system administrators
to identify and mitigate attacks. However, it requires additional
infrastructure to log the attacks, and requires human intervention to
take action. While it has some false-alarm tolerance, too many false
alarms can make real attacks difficult to detect.

Freezing the process strikes a balance between low disruptiveness
and high false-alarm tolerance. However, it can be more difficult
to implement, as it requires additional infrastructure to hold the
process’s state, and can cause rapidly increasing queue lengths if
triggered repeatedly in latency-critical systems. However, it is less
disruptive, and does not cause data loss. This response is also more
tolerant of false alarms, as it does not require the process to be
terminated.

IV. STANDARDS FOR EVALUATING SIDE-CHANNEL DEFENSE

PERFORMANCE

In this section, we present surveys of 70 attack detection methods,
and discuss the tradeoffs between them. We also confirm some of
their claims with our own experiments.

Most of the research surveyed are OS-level mitigations, integrating
with linux-perf to gather perfomance data for classification into
side-channel and non-side-channel categories.

Performance Overhead in Side-Channel detection mechanisms can
be grouped into 2 main categories, Hardware and Timing Overhead.

A. Sampling Overhead

A percentage-slowdown overhead was only reported in 17 out
of 75 relevant papers. The papers surveyed tend to show minimal
execution time increases between 1% to 5% , with one study reporting
overheads as high as 15.25% [18]. Other papers mention timing
overheads, but do not provide numerical measurements (e.g. [15],
[17], [20]). In the majority of the remaining papers surveyed, timing
overheads are conspicuously missing. Crucially, very few papers
provide any information on how timing overhead is affected by
adjusting data gathering parameters such as sampling frequency or
granularity of oversight.
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Fig. 2: Existing side-channel detection literature reports low over-
heads.

Without knowing the overhead, it is impossible to know whether
a given detection mechanism will slow workloads down too much
for detection to be practical. Without knowing the tradeoffs between
accuracy and overhead, it is impossible to know how to tune a
detection mechanism to achieve the desired balance between the two.

To give a sense of the trade-off between timing overhead and hard-
ware performance counter sampling frequency, we used the perf
tool to measure the overhead of sampling the performance counters
on a 2.6 GHz Intel Core i7-6700K CPU. We ran SPEC CPU 2017.
We then ran the same program while sampling the performance
counters at different frequencies. The overhead of sampling the
performance counters between 1KHz and 1/16HZ ranged between
6.4% and 0.61%.

The results are shown in Figure 1. The figure shows the overhead
of the hardware-based detection mechanism as a function of sampling
frequency. The overhead is measured as the percentage of time
spent in the detection mechanism. The overhead is low at 6ms,
and decreases with increasing sampling frequency. This is expected,
as perf only actively interrupts the program’s execution to record
data during the sampling period. The overhead is consistent with
the overhead of the software-based detection mechanisms in the
literature.

Based on the literature survey and our measurements, software
measures for detecting side-channel attacks based on hardware perfor-
mance counters has acceptable ranges of overhead for most detection
frequencies. Higher-overhead approaches tend to use instrumentation
and other more invasive methods. Hardware-based methods tend to
have overheads that vary greatly, and different researchers report
different measures of overhead.

B. Classification Overhead

Many of the papers report overheads only for the sampling
mechanism, and not for the classification algorithms. For example,
while the PerSpectron [15] reports no numeric overhead, it derives its
”negligible” overhead estimate purely from the sampling mechanism
design. Although the classification algorithms may comprise a large
portion of the computational complexity of a detection scheme, re-
porting only the sampling and enforcing overhead can be appropriate
since classification overheads can be offloaded to other cores or a

0 5 10 15
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Ensemble
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NeuralNetwork

Xgboost
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DecisionTree
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0.00 0.25 0.50 0.75 1.00
Accuracy

Fig. 3: Accuracy and training time across different models.

co-processor, such that they can run parallel to the workload without
slowing it down. Methods for accomplishing this include:

• Using specialized edge ML accelerators to handle classification
[9].

• Using compressed sensing techniques to create small but de-
tailed performance monitoring packets that can be sent to remote
servers for analysis [34].

In figure 3, we measured time taken to train various statistical
models for classifying performance counter data, which provides a
baseline for estimating the inference overheads for these models.

C. Hardware Overhead

Hardware overheads are reported by several hardware-based de-
fense papers [6], [10], [30]. Most papers report overheads of less
than 5%, and more recent works tend to report overheads more
consistently.

A notable exception to the norm of reporting low overheads is
ReplayConfusion [35], which claims that there is no comprehensive,
low overhead defense for LLC-based covert channels.

In addition to under-reporting overhead like the software-based de-
tection literature, different hardware mechanism papers use different
metrics for overhead reporting, including changes in transistor count
[30], power draw [10], and hardware area [10].This makes it difficult
to compare overheads between the papers that do report them.

One notable work here is Kuruvila (2021), which extensively
tested non-interrupting custom HPC monitoring systems on various
hardware platforms, and reported overheads in both power draw and
hardware area. They also show a promising sign that the hardware
overheads of hardware-based detection mechanisms can be kept as
low as 1.2% without causing execution slowdowns.

D. Accuracy and Cross Validation

In this section, we focus on the most popular category of mech-
anisms, where hardware performance counters (HPCs) are used to
gather execution data and a machine learning algorithm is used to
classify them into safe and dangerous classes. Almost every paper in
this category reports accuracies of at least 90%. A notable mention is
[32], which claims a 100 percent accuracy for spectre and meltdown.

We did our own study to verify: (1) the reported accuracies
can be replicated without extensive tuning and cherry-picking; (2)
the reported accuracies apply to a wide range of workloads and
attacks; (3) variations in detection frequencies don’t cause significant
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differences in detection accuracy. We used SPEC CPU 2017 as
examples of safe workloads and side-channel attack proof-of-concept
examples from Google SafeSide to produce ”systems-under-attack”
data. Using the same data gathering setup from section IV-A, we
classified samples into ”safe and malicious” classes.

We also tested a variety of ML models on the data gathered. We
used model presets from the MLJAR-Supervised collection. Each
model carries a similar amount of computational complexity, except
”Baseline,” which always guesses the most likely class, and ”Linear,”
which is a simple linear logistic regression. ”Ensemble” produces
an average of the top three other models. We trained each model
for a similar amount of time on CPU and produced out-of-sample
classifications. There are papers reporting that ensemble methods
produce more reliable detection mechanisms [23] as we were able
to confirm in section IV-A.

While the accuracies reported in literature are obtained on out-
of-sample data, the training and testing data tend to re-use the
same workloads, victims, and attacks. The high accuracy is a good
indication that these methods would defend well against attacks they
have seen before. However, this does not preclude previously unseen
workloads from raising false alarms or previously unseen attacks from
passing undetected.

E. Ease of Implementation

Since Cache side-channel attack detection is a relatively newer
research field, most papers in the taxonomy go through a very similar
approach to their algorithms and counters set. For example [12],
[28] both implement very similar monitoring deviations of CPU
performance counters to demonstrate how hardware level attacks can
be found during run time. The implementation of these is relatively
easy, since its mainly statistical analysis, and sometimes implement
algorithms, like AES, to monitor the hardware counters.

Some of the more difficult implementations shown are the ex-
plainable machine learning ones, which creates an ML framework,
such as HPCDR [10], to add on top of the existing machine learning
performance counter solutions. The reason for this is that the attacks
are detected at a different rate, and can even provide temporal
differences of hardware events in timestamps, not just statistics [21].

V. DISCUSSION

We set out to complete this project in an effort to do a survey
of numerous side-channel attack strategies from prior research. The
aim of current research is to detect the presence of several known
malware. In this section, we discuss the types of work towards which
we anticipate the field will move in the future.

• Further machine learning Research
• Further Hardware-based Research
• Further Signature-based attack detection Research
• Different Architecture Research

We feel that a number of the topics now being investigated
are contributing to the advancement of machine learning in this
discipline. The majority of the effort in older studies included in
this taxonomy involved manually running and comparing findings
[4]. This required a great deal of human input and labor, which
would be impractical when checking for several viruses. A notable
trend observed was that many contemporary research efforts employ
machine learning and machine learning classifiers to identify side-
channel threats. Most of them are also considering running many
machine learning models to determine which is the most optimal
while incurring little performance overhead. This information can

then be translated into Deep Learning Models, which can eventually
learn to detect any type of virus.

As previously indicated, the recommended Granularity of oversight
for the majority of these publications is Operating System-based. We
propose that in the future, the focus should be on examining novel
implementations, such as at the hardware level, to determine whether
any interesting results can be obtained. Given the proximity of the
mechanism to the other components, the benefits could include a
quicker response time.

One of the most important conclusions from this research is how
precise the attacks are. Prior to Meltdown and Spectre being a
prominent threat, the majority of research focused on a small sample
of malware, such as Trojan Horses. As soon as this transpired,
a number of publications initiated research on the Spectre and
meltdown viruses. This meant that the vast majority of machine
learning models were taught to detect these two specific viruses,
making them quite proficient at doing so. As a result, we have
discovered that the majority of published papers employ a limited
number of malware and attacks to test their study. Signature-based
attack detection procedures are essential since it is almost probable
that more intrusive and hazardous malware will emerge at some point,
and it is vital that our approach can identify even these in the system.
Signature-based attack detection, which appears to be one of the
future advances in this field for future malware, has received very
little attention, as demonstrated in prior sections.

An observable aspect of the current taxonomy is the proportion of
work that is x86 Intel/AMD architecture-based. We have observed
some development on the ARM and RISC-V architectures, but it
is extremely limited. Due to the fact that attack characteristics can
vary among architectures, it is crucial that we conduct additional
research on all of them. ARM, in particular, should be the focus of the
majority of research, as all current Apple Silicon Macs have ARM-
based CPUs. Given their market size, they may be susceptible to
several side-channel attacks that we have not exhaustively evaluated.

VI. CONCLUSION

This effort was undertaken to develop a comprehensive taxonomy
of the multiple techniques for detecting side-channel attacks on
diverse types of hardware. The effect of the Spectre and Meltdown
viruses led to the development of several novel mitigating strategies.
Experiments on the chip focus mostly on SCA monitoring and assault
detection.

Several types of known malware have been discovered through
study, and the incorporation of machine learning has proved to be
of considerable help to the field’s advancement. In our experimental
setting, we reviewed approximately 70 attack detection approaches
and the tradeoffs between them. By presenting cost metrics for
method comparison and quantifying sensitivity to various system
design characteristics, we gave a realistic road map for navigating
implementational trade-offs.
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