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Abstract

The majority of stars reside in multiple systems, especially binaries. The formation

and early evolution of binaries is a longstanding problem in star formation that is

not yet fully understood. In particular, how the magnetic field observed in the star-

forming cores of molecular clouds shapes the binary characteristics remains relatively

unexplored. In this thesis, we present a systematic study of magnetized binary for-

mation using the Enzo magnetohydrodynamics code. We investigate separately the

initial core fragmentation leading to the formation of two binary seeds, and the bi-

nary orbital evolution during the subsequent protostellar mass accretion phase. The

famous “magnetic flux problem” in star formation is also studied numerically in detail.

Star-forming dense cores are observed to be significantly magnetized. If the mag-

netic flux threading the cores is dragged into the stars, the stellar field would be

orders of magnitude stronger than observed; most of the core magnetic flux must be

decoupled from the matter that enters the star. In our simulations, we find that the

accumulation of the decoupled flux near the accreting protostar leads to a magnetic

pressure buildup. The high pressure is released anisotropically along the path of least

resistance. It drives a low-density expanding region in which the decoupled magnetic

flux is expelled. In the presence of an initial core rotation, the structure presents

an obstacle to the formation of a rotationally supported disk, in addition to mag-

netic braking, by acting as a rigid magnetic wall that prevents the rotating gas from

completing a full orbit around the central object.

In the study of the magnetized binary formation during the protostellar mass

accretion phase, we demonstrate numerically that a magnetic field of the observed

strength can drastically change two of the basic quantities that characterize a binary

system: the orbital separation and mass ratio of the two components. We find that
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in dense cores magnetized to a realistic level, the angular momentum of the material

accreted by the protobinary is greatly reduced by magnetic braking. Accretion of

strongly braked material shrinks the protobinary separation by a large factor com-

pared to the non-magnetic case. The magnetic braking also changes the evolution

of the mass ratio of unequal-mass protobinaries by producing material of low spe-

cific angular momentum that accretes preferentially onto the more massive primary

star rather than the secondary. In addition, the magnetic field greatly modifies the

morphology and dynamics of the protobinary accretion flow.

We also investigate the effects of the misalignment between the magnetic field and

rotation axis on the properties of the protobinaries; such a misalignment was recently

revealed by millimeter interferometric observations of protostellar systems. Somewhat

surprisingly, we find that the misaligned magnetic field is more efficient at tightening

the binary orbit compared to the aligned field. The main reason is that the misalign-

ment weakens the magnetically-driven outflow, which allows more material to accrete

onto the binary. The additional mass being accreted onto the binary carries insuffi-

cient specific angular momentum, which leads to an even tighter binary. A large field-

rotation misalignment also helps produce rotationally-supported circumbinary disks

even for relatively strong magnetic fields, by weakening the magnetically-dominated

structure close to the binary that is responsible for strong magnetic braking in the

aligned case.

Finally, we present preliminary results on simulations that follow both the (magne-

tized) core fragmentation into binary seeds and the subsequent protobinary evolution

during the mass accretion phase. We find that fragmentation can occur in a strongly

magnetized core as long as the initial density perturbation is large. The resulting

binary seeds generally have a large separation and eccentricity. After the first close
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approach, the binary can either merge or dynamically relax to a stable orbit depend-

ing on the magnetic field strength and orientation. Additional simulations and more

detailed analysis are needed to obtain a complete picture of how binary systems form

and evolve in magnetized clouds.
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Chapter 1

Introduction
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The last two decades have seen giant leaps in our understanding of star formation

owing to the advances in both instrumentation and computing technology. With in-

creasing resolution, recent observations of the earliest phase of star formation have

revealed a large fraction of binary and multiple systems among young protostars.

With the full ALMA coming online in the near future, the pace of discovery will

accelerate. The available results indicate that most stars are born in binary and mul-

tiple systems. Multiplicity may well be the dominant outcome of the star formation

process.

Given its undisputed importance, how binary and multiple systems form and

evolve has long been a topic of theoretical study in star formation. The general

accepted mechanism for binary and multiple formation is through collapse and frag-

mentation of molecular cloud cores (Boss & Bodenheimer 1979). It has been stud-

ied extensively through numerical simulations, using both SPH (Smoothed-Particle-

Hydrodynamics) and grid-based code. Such studies are starting to include radiative

transfer and magnetic fields, leading to increasingly realistic three-dimensional (3D)

models of the formation of binary and multiple systems. In this thesis, I will mainly

focus on the effects of magnetic field on the formation and subsequent evolution of

the simplest stellar systems - binary stars, with an emphasis on the orbital properties

of the youngest binaries.

1.1 Observations of Multiplicity

The existence of binary and multiple systems was revealed soon after the birth of

modern astronomy in the seventeenth century. Two centuries later, Kuiper (1953)

first recognized the importance of multiplicity measurements for main-sequence (MS)

stars. After the discovery of young binary companions in some T Tauri stars (Joy &

van Biesbroeck 1944; Herbig 1962; Dyck et al. 1982), attention was drawn to the mul-

tiple stellar systems in pre-main sequence (PMS) objects (Zinnecker 1984), as a new
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probe of the physical processes in the early phase of star formation. In recent years,

more advanced technologies such as long-baseline interferometer, adaptive optics and

chronograph have brought stellar companions into better focus. The capability of

large surveys further refined the statistical properties of binary and multiple systems

in both the Galactic field and nearby star forming regions.

Before discussing the observational results, we first clarify the definitions and

terminologies in the existing literature. According to Batten (1973), the fractions of

systems containing exactly n stars are denoted as fn . The multiplicity frequency or

multiplicity fraction MF = 1− f1 = f2 + f3 + f4 + ..., gives the fraction of non-single

systems in a given sample. This is more commonly written as

MF =
B + T +Q

S + B + T +Q
(1.1)

where S,B,T,Q are the number of single, binary, triple, and quadruple, etc sys-

tems(Reipurth & Zinnecker 1993). Another common characteristic of multiplicity,

the companion star fraction CSF = f2+2f3+3f4+ ... quantifies the average number

of stellar companions per system; it is commonly written as,

CSF =
B + 2T + 3Q

S + B + T +Q
(1.2)

which in principle can be greater than 1 (e.g. Ghez et al. 1997). Finally, the fraction

of higher-order multiples is simply HF = 1− f1 − f2 = f3 + f4 + ....

The pioneering multiplicity survey of solar-type stars conducted by Duquennoy

& Mayor (1991) (hereafter DM91) is a key reference for the binary and multiple

statistics in Galactic field for two decades. DM91 studied 164 objects out to 22 pc

by collating results from many separate studies and obtaining their own new radial

velocity measurements. However, significant incompleteness potentially affected the

conclusions of DM91, which motivates Raghavan et al. (2010) to improve the study

with sample of 454 F6-K3 stars out to 25 pc, using many improved observational
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methods. Their observed fractions of single, binary, triple and quadruple stars are 56±
2% : 33±2% : 8±2% : 3±1%, yielding a completion-corrected multiplicity frequency

of 46%, and implying that among solar type stars, the majority are single. However,

the multiplicity does have a dependence on stellar mass. Specifically, super-solar

dwarfs have a marginally higher multiplicity rate than sub-solar dwarfs: MFMS
1−1.3M⊙

=

50 ± 4% versus MFMS
0.7−1M⊙

= 41 ± 3%. Similarly, CSFMS
1−1.3M⊙

= 75 ± 5% and

CSFMS
0.7−1M⊙

= 56 ± 4%. Nonetheless, almost half of the sun-like low-mass stars

reside in multiple systems in the nearby Galactic field, which raises the interesting

question of how the multiple systems form, and whether today’s single stars, including

our Sun, are born alone or as the product of dynamical evolution of multiple systems.

Over the past decades, increasing efforts have been devoted to the study of bina-

ries and multiples during the early protostellar phase of star formation, in an attempt

to answer the above questions. However, most protostars are still deeply embedded

in their nascent cloud cores, which pose serious challenges to companion searches.

With extinctions that can exceed AV ∼ 100 mag, infrared, submillimeter or radio

continuum techniques are required. Traditionally, protostars are categorized on the

basis of their spectral energy distribution and relative amount of circumstellar enve-

lope material. Class 0 sources are the least evolved objects, with more mass in the

circumstellar material than in the central object, which makes them detectable only

at longer wavelengths (submillimeter or radio). In contrast, the envelope mass of

Class I sources is lower than that of the central object; they are often detectable at

near-infrared wavelengths.

To date, about 350 Class I sources have been observed with seeing-limited imaging

and about 100 of them with high-resolution imaging techniques. The direct imaging

survey of Connelley et al. (2008) yielded 27 companions in the 200− 2000 AU range

out of 136 targets, whereas the adaptive optics surveys of Duchêne et al. (2007) and

Connelley et al. (2009) found 15 companions in the 50 − 200 AU range out of 88

targets. Hence, the combined total frequency of companions to Class I sources in the
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50− 2000 AU separation range is CSFClassI = 36.9± 5.2%.

The rarity of Class 0 sources limits their observations to very small samples, which

can yield uncertain statistics. The optimal observational probe of Class 0 multiplicity

is millimeter (850µm−7mm) interferometer mapping, with a typical linear resolution

of only 50−100 AU. Pioneering work was done by Looney et al. (2000), who observed

7 Class 0 and I sources; further samples of embedded sources were observed by, e.g.

Chen et al. (2008; 2009), Maury et al. (2010), Enoch et al. (2011), and Tobin et

al. (2013). However, no consensus on the Class 0 multiplicity is reached due to the

limited sample size in each study. The combined 14 Class 0 sources of Looney et al.

(2000) (BIMA) and Maury et al. (2010) (PdBI) appear to hint that the multiplicity

of the most embedded protostars is likely lower than that of Class I sources over the

50−1500 AU separation range (see also Enoch et al. 2011). On the other hand, Chen et

al. (2013) presented 1.3mm and 850µm dust continuum data from the Submillimeter

Array (SMA) for 33 Class 0 sources and found that no less than 21 of the sources

show evidence for companions in the projected separation range from 50 to 5000 AU.

They obtained a multiplicity frequency MFClass0 = 64 ± 8% and a companion star

fraction CSFClass0 = 91±5%. This result is consistent with the possibility that most

stars are born as binaries or multiples, although insufficient resolution and lack of

kinematics data may reduce the credibility of their conclusion.

In summary, binary and multiple systems are common during all stages of stellar

formation and evolution. There is a strong tendency of increasing binary frequency

in the early phase of star formation. Thus, most stars may not be born single. It is

of great importance to understand the theoretical mechanisms of the formation and

subsequent dynamical evolution of binary and multiple systems, in order to explain

the stellar population throughout our Galaxy. Because binaries are the majority of

multiple systems, we focus on this type of simplest multiples in the thesis.
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1.2 Theory of Binary Formation

The first mechanism of binary star formation was proposed by Laplace in 1796, in

which he suggested a binary was formed from separate stellar nuclei that somehow

came to orbit each other. Since then, five general mechanisms for binary star for-

mation have been proposed. The first, capture, was suggested by Stoney in 1867,

in which two independently-formed, unbound stars form a binary pair due to cer-

tain dissipative process. The second, fission, was proposed by Kelvin and Tait in

1883, and was strongly advocated by Jeans (1929). In the fission process, a single

rapidly-rotating star near break-up splits into two objects due to dynamic instability.

The final three mechanisms are core fragmentation, disk fragmentation and turbulent

fragmentation, which all share similar physics of thermal and rotational instability.

Fragmentation in star formation was originally proposed by Hoyle (1953) for a

dynamically-unstable isothermal cloud which fragments into several stellar cores as

it collapses. This first process, called core or prompt fragmentation, provides a way

of forming not only binaries, but higher-order multiple systems as well. The second

mechanism of this type is the disk fragmentation, which requires a massive protostellar

disk to become gravitationally unstable due to the growth of an m = 1 mode (accre-

tion flow; e.g. Adams et al. 1989; Bonnell 1994; Kratter et al. 2010). Finally, recent

studies have explored the turbulence induced fragmentation (Bate 2009a; Offner et

al. 2010), where non-linear perturbations in a turbulent cloud can create sub-regions

with high overdensities (low Jeans-mass) to condense into multiple protostellar seeds.

1.2.1 Capture

Two independently formed, unbound stars can become bound in a binary system if

there is dissipation of their kinetic energy, which we name capture. The dissipation

can occur in one of three ways, including 1) three-body encounter; 2) tidal interaction

between two stars during close encounter (Press & Teukolsky 1977); and 3) two-body
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interaction in a dissipative medium. Such a medium can either be residual gas left in

a cluster after its formation, or gaseous disks surrounding one or both of the stars.

Capture through three-body interactions or tidal dissipation are most likely in very

dense environments such as globular clusters (Portegies Zwart et al. 1997), in order to

produce a high capture rate for forming bound binary systems. However, most star-

forming regions are much more sparse than required for capture to be effective within

ages of < 106 yr (e.g. Hill & Day 1976; Clarke 1992). This leaves the possibility of

capture due to two-body interactions in a dissipative medium. The extended disks

surrounding young stars have been shown to significantly affect capture rates, as the

cross-section for disk interaction is increased dramatically over the three-body capture

mechanism. Although low-velocity encounters between stars with disks can produce

binaries, numerical simulations have shown that the relative stellar velocities in this

scenario are too large for disks to absorb the corresponding kinetic energy (Clarke

& Pringle 1993; Ostriker 1994). The calculation by Heller (1991) showed that the

capture rate of two-body interactions could be as low as 0.05 − 0.1 per star per 106

year in Orion. Hence, capture may play an important role in forming binary systems

only in very dense star clusters.

1.2.2 Fission

The mechanism of binary formation via fission of a young protostar is expected to

occur after a central core has condensed and started non-isothermal evolution. Upon

forming the protostellar core by gas accretion, the protostar tends to spin-up because

of angular momentum conservation. It is well-known that if the ratio of the rotational

energy to the gravitational energy β exceeds a critical value, the object becomes un-

stable to non-axisymmetric perturbations (Lyttleton 1953; Ostriker & Bodenheimer

1973). The growth of these perturbations could lead to the breakup of the protostar

into several orbiting components and to form binary systems. However, only close

binaries may form by this method, due to the limited amount of angular momentum
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contained in the protostar.

Hydrodynamical calculations have demonstrated that fission of a rapidly-rotating

protostar usually does not occur (Durisen & Tohline 1985; Williams & Tohline 1988;

Boss 1989b), because the fission mechanism depends crucially on the equation of

state of the fluid. If the fluid is incompressible, fission may occur when the object

flattens into an oblate spheroid shape in equilibrium. However, the fluid in proto-

stars is highly-compressible; it is much denser towards the center. Such a configura-

tion makes the fission mechanism difficult to operate. Instead, the rapidly spinning

protostar deforms into a bar-shaped object with spiral arms at the ends of the bar.

The spiral arms transport angular momentum outward from the core through gravi-

tational torques, which will reduce β below the critical value for fission. This process

takes place on the time scale of several rotation periods. Therefore, it appears that

fission does not contribute significantly to the formation of binary systems.

1.2.3 Fragmentation

Core Fragmentation

A viable mechanism for the formation of binary systems is through core or prompt

fragmentation, which happens either before or shortly after a free-fall collapse phase.

First, during the isothermal collapse, the cloud quickly becomes Jeans unstable for

fragmentation where the Jeans mass decreases with increasing density (e.g. Larson

1969; Boss & Bodenheimer 1979; Tohline 1982). A second such event could occur after

the dissociation of molecular hydrogen, namely the near-isothermal second-collapse

phase (Bonnell & Bate 1994b; Machida et al. 2008). In some situations, core frag-

mentation is still possible during the adiabatic phase (Machida et al. 2008).

Core fragmentation during the first collapse phase depends heavily on the initial

density perturbations (e.g. Boss & Bodenheimer 1979), as well as anisotropic forces

caused by the cloud rotation, magnetic field, and turbulence. For a non-magnetized
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cloud in solid-body rotation, of spherical or spheroidal shape, the fragmentation is

dependent on α0 and β0, the ratios of the initial thermal and rotational energies

to the magnitude of the gravitational energy of the cloud, respectively. According

to Miyama et al. (1984) and Tsuribe & Inutsuka (1999), fragmentation occurs if

α0β0 < 0.12, as long as the cloud remains isothermal. The resulting binary fragments

are likely to have a separation of 102−104 AU, which corresponds to the Jeans length

in this phase. Thus in the non-magnetic regime, wide binary systems could form in

a relatively fast rotating cloud with a large β0 in this fashion.

During the adiabatic collapse phase, fragmentation is usually difficult because

the thermal pressure tends to suppress the growth of any density perturbations in

the core. However, fragmentation can still occur for cores with large rotation. For

a molecular hydrogen (γ = 1.4) cloud, the fragmentation criterion roughly obeys

α0 < 0.09βi
0.2 (Boss 1986). In such conditions, the adiabatic core can fragment via a

bar-like structure when the density perturbation is large, or via a ring-like structure

when perturbation is small (Machida et al. 2008). Nevertheless, this still opens the

questions of how to form very close binaries with separations < 1 AU. Bonnell &

Bate (1994b) showed that close binary systems could form through fragmentation

in the second collapse phase, while molecular hydrogen is dissociating and the gas

polytropic index drops to around γ = 1.1. The binaries formed in this stage can have

separations as close as a few stellar radii to ∼ 1 AU.

Therefore, core fragmentation depends critically on the density and angular mo-

mentum distribution of a cloud in different phases. As we will also show in this thesis,

the magnetic field can significantly alter the property of the resulting binary systems

by affecting the angular momentum distributions in the cloud.

Disk Fragmentation

Fragmentation in rotationally-supported protostellar disks can occur either via rapid

accretion onto massive disks, or through star-disk interactions in a dense cluster envi-
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ronment. To achieve fragmentation, the disk has to become gravitationally unstable,

which can be characterized by the Toomre parameter Q ≈ Ωcs/(πGσ) (where Ω is

the angular velocity in the disk, cs is the sound speed, and σ is the surface den-

sity). If Q > 1, the disk is locally stable against axisymmetric gravitational distur-

bances. However, it can be unstable to non-axisymmetric gravitational disturbances

if 1 < Q ≤ 3. The two mechanisms for disk fragmentation mainly operate through

these non-axisymmetric disturbances.

In the first mechanism, massive disks around protostars can become susceptible to

gravitational instabilities if there is ongoing accretion onto the outer edge of the disk

(Kratter et al. 2010). The observed T-Tauri disks typically contain only ∼ 1%− 5%

of the primary stellar mass (Andrews & Williams 2005), but recent observations are

beginning to reveal more massive disks at even earlier protostellar stages (Class 0

and I; Jørgensen et al. 2009; Tobin et al. 2012). Enoch et al. (2009) discovered a

large embedded disk with Mdisk ∼ 1.0M⊙ and Rdisk ∼ 300 AU surrounding a Class

0 protostar in Serpens FIRS 1. Such embedded disks can continue to accrete from

the outer collapsing envelope. When the rate of accretion onto the disk exceeds the

rate onto the central star, mass starts to pile up in the disk, causing the massive disk

to become gravitationally unstable and fragment. The secondary object born in the

disk can accrete quickly to catch up with the primary in mass (Bonnell & Bate 1994a;

Krumholz et al. 2009; Kratter et al. 2010).

The second mechanism occurs only in a very dense cluster environment where

close encounters between young stars can disturb their circumstellar disks and excite

a two-armed spiral mode (Watkins et al. 1998c; Thies et al. 2010) into the disks.

The non-axisymmetric m = 2 mode can trigger gravitational instability that fur-

ther fragments the circumstellar disks. However, this mechanism mostly leads to the

formation of brown dwarfs and even planetary companions; it is not a significant

contributor to the majority of binary systems. Variations of this mechanism include

star-disk interactions and disk-disk interactions. The star-disk scenario usually in-



11

volves a nearly diskless perturber star interacting with a massive (∼ 0.5M⊙) and

extended ( >∼ 100 AU) disk (Boffin et al. 1998; Thies et al. 2010). In the case of

disk-disk interaction, the gravitational instability is more likely to operate for non-

coplanar disks (Watkins et al. 1998c). Furthermore, if the two circumstellar disks

collide at the closest approach, the compressed disk material can sweep up into a

shock layer that produces new protostellar condensations (Watkins et al. 1998b; Shen

et al. 2010).

Turbulent Fragmentation

In contrast to the moderate perturbations typically envisioned in the core fragmenta-

tion mechanism, turbulent fragmentation is caused by strongly non-linear instabilities.

The turbulent motion often drives sub-regions to become overdense and collapse more

rapidly than the free-fall timescale of the background core, leading to the production

of a secondary or multiple clumps.

Many observations show that cloud cores have significant non-thermal motions,

which can be attributed to turbulence. The turbulence is thought to dissipate as a

cloud collapses (e.g. Larson 1981). In the early phase of cloud collapse, the cloud can

acquire angular momentum from turbulence, in addition to the large-scale ordered

rotation of the cloud. Numerical simulations show that more fragments appear in

a cloud with a larger turbulent energy in the initial state (Goodwin et al. 2007).

Binary systems frequently form through turbulent fragmentation when the initial

cloud has a turbulent energy exceeding ∼ 5% of the gravitational energy (Goodwin

et al. 2004a; 2004b). It is tempting to conclude that all stars are born as binary or

multiple systems, even if a cloud core has a low level of turbulence. However, the

binary frequency found in these turbulence calculations is higher than that observed,

which is likely due to the neglect of the magnetic field and radiative feedback.

Numerical simulations with radiative feedback (Bate 2009b; Offner et al. 2009)

have shown that fragmentation is dramatically suppressed for massive circumstellar
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disks and dense filaments around existing protostars. The radiative heating from

the central star stabilizes the circumstellar disk against small-scale fragmentation

that would otherwise result in brown dwarfs. However, including radiation does not

prohibit the formation of binary and multiple systems; fragmentation can still occur

on scales of ∼ 1000 AU during the early collapse of the turbulent core. On the other

hand, the magnetic field is shown to be more catastrophic for fragmentation (e.g.

Hennebelle & Teyssier 2008), as we discuss next.

1.3 Magnetic Field and Binary Star Formation

The importance of the magnetic field in binary formation has long been recognized

(Bodenheimer 1995; Tohline 2002; Boss 2002). Observations of molecular clouds using

polarimetry (e.g. Ward-Thompson 2000) have shown ample evidence for ordered

magnetic fields on a wide range of scales (from tens of parsecs to 102 AU) and in

different stages of star formation. For example, Fig. 1-1 shows a 103 AU-scale, pinched

magnetic configuration in the dense core surrounding the protobinary system NGC

1333 IRAS 4A (Girart et al. 2006). This type of polarization observations only provide

magnetic field directions on the plane of sky.

The strength of magnetic fields in star forming clouds can be measured through

Zeeman effects (e.g. Troland & Crutcher 2008). The fields are observed to be strong

enough to affect the dynamical evolution of protostellar systems. The relative impor-

tance of magnetic fields to self-gravity in a cloud is usually measured by the so-called

“mass-to-flux ratio” λ in units of the critical value (2πG1/2)−1 (Nakano & Nakamura

1978). If the cloud core has λ < 1, it can be supported by magnetic forces alone.

Only in dense cores with λ > 1 can the self-gravity overwhelm the magnetic support

and lead to core collapse and star formation. Troland & Crutcher (2008) carried out

an extensive Zeeman survey of dense cores in nearby clouds, and determined a mean

mass-to-flux ratio λ ∼ 4.8; correcting for uncertain projection effects may bring this
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Fig. 1-1.— Ordered magnetic field (red line segments) as traced by polarized submil-
limeter emission from magnetically aligned dust grains in the envelope of the deeply
embedded, accreting protobinary system IRAS 4A in NGC 1333 (Girart et al. 2006).

value to ∼ 2. Therefore, dense cores are moderately magnetized, with λ typically of

a few to several. Such magnetic fields are not able to prevent the cores from collaps-

ing into stars, but are strong enough to fundamentally change the process of binary

formation by redistributing the angular momentum.

Theoretically, both particle-based and grid-based magnetohydrodynamics (MHD)

calculations suggest that a magnetic field of the observed strength tends to reduce the

degree of fragmentation on the initial core and any circumstellar disk that is formed

later. Such simulations typically start with a ∼ 1M⊙ dense core that has an m = 2

mode perturbation on the initial density distribution (similar to the set-up of Boss &

Bodenheimer (1979)). Thus the core has the propensity to become Jeans unstable on

two well-separated density peaks early in the isothermal collapse; this belongs to the

category of ‘core fragmentation’ introduced above. Machida et al. (2008) found that

fragmentation into wide binaries could occur if the initial magnetized core rotates
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fast enough; while close binaries could form if the initial magnetic energy was larger

than the rotational energy. Hennebelle & Fromang (2008) and Hennebelle & Teyssier

(2008) found that the magnetized core could only fragment when the initial density

perturbation was large enough (with an amplitude relative to the background > 50%).

Price & Bate (2007) and Bürzle et al. (2011) showed that cores could collapse to form

single, binary, or multiple protostar systems, depending on the initial magnetic field

strength and its orientation relative to the rotation axis. When fragmentation does

occur, binary star systems are the typical outcome, along with a few higher-order

multiple systems.

Although the existing MHD studies have successfully captured the initial frag-

mentation leading to the formation of binary protostellar seeds, there has not been

any systematic study of the effect of the magnetic field on the subsequent orbital

evolution as the protobinary accretes mass from the gas envelope. The main goal

of this thesis is to bridge the gap between the initial fragmentation phase and the

protostellar accretion phase, and to obtain a more complete picture of magnetized

binary star formation.

1.4 Thesis Overview

In this thesis, the role of magnetic fields on binary star formation and orbital evo-

lution is examined in the ideal-MHD limit. We separate the stage of protobinary

evolution from the initial fragmentation phase through modeling a pair of actively

accreting protostellar seeds. After detailed investigations of the magnetic effect on

protobinary orbital properties including separation and mass ratio, we revisit the clas-

sical problem of binary formation by Boss & Bodenheimer (1979) with much higher

resolution and longer time into the binary evolution. The numerical simulations are

carried out using the ENZO Adaptive-Mesh-Refinement (AMR) code, with a well-

tested magnetohydrodynamics implementation and sink particle treatment that are
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needed to tackle the magnetized binary formation problem. The thesis also compares

the numerical results to existing observations.

In Chapter 2, an introduction to the AMR MHD code ENZO is given. Details

of the Enzo algorithms including the magnetohydrodynamics solver and the sink

particle treatment are described. The chapter concludes with a pure hydrodynamical

test problem of the collapse of singular isothermal sphere, whose result is compared

against the well-established analytical solution (Shu 1977).

Chapter 3 extends the numerical test to the collapse of a 1M⊙ dense core with

an initially uniform density and magnetic field. The goal is to revisit the so-called

magnetic flux problem in star formation through a detailed 3D ideal-MHD calculation.

Because we do not assume any axisymmetry like in most previous studies (mainly

in 2D), the decoupled magnetic flux from the matter that enters the star can freely

expand to large distances along directions of least resistance. The expanding region is

named as the “decoupling-enabled magnetic structure” (DEMS), whose role in stellar

accretion and disk formation is investigated for both a non-rotating core and a rotating

core. This work is the first exploration of what happens to the decoupled magnetic

flux in 3D and has since been confirmed by several other groups (e.g. Seifried et al.

2011).

In Chapter 4, we focus on the second stage of binary formation and study the

orbital evolution of a protobinary system under the influence of magnetic field. We

initialize a magnetized singular isothermal sphere (SIS) with two protostellar seeds

in the center. The self-similar solutions of the major binary properties are derived

for the non-magnetic hydrodynamic case. These analytical solutions are directly

compared with the simulation results from the magnetic cases. The work covers a

large parameter space for the initial magnetic field strength. We first investigate the

evolution of a equal-mass binary pair in the magnetized envelope, with a particular

emphasis on the binary separation and orbital angular momentum. The effect of

magnetic field on the morphology of circumstellar and circumbinary disks is also
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discussed. In the end of chapter 4, we replace the initial equal-mass seeds with an

unequal-mass binary pair, and follow the evolution of their mass ratio. The result

from the magnetized cases can in principle explain the observed population of low

mass-ratio binaries.

The study in Chapter 5 is motivated by recent CARMA observations (Hull et al.

2013), which show that the magnetic field in dense cores appears to be oriented at a

random angle with respect to the rotation axis. Around single protostars, it has been

shown that the field misalignment helps the protostellar accretion flow retain enough

angular momentum to form large rotationally supported disks which are suppressed

when the field and rotation are aligned (Joos et al. 2012; Li et al. 2013). We thus

apply a similar idea to our models of protobinary evolution. The initial conditions

are similar to the ones in Chapter 4, except for allowing the initial magnetic field

direction to be misaligned with the cloud rotation. With the field misalignment, the

more angular momentum retained in the circumbinary gas does not lead to a wider

binary separation; instead, the binary is even tighter. To understand this somewhat

unexpected result, the interdependence of the mass, separation and orbital angular

momentum of the binary is examined with great care.

Having demonstrated the importance of the magnetic field for binary evolution

during the protostellar accretion phase, Chapter 6 deals with the full problem of

binary formation including both the prestellar and protostellar phases. We have

carried out simulations for different initial core magnetization and field orientations.

The early pre-stellar phase of isothermal collapse and fragmentation shows a good

agreement with existing literature. We are able to follow the binary orbits self-

consistently into the protostellar accretion phase. Finally, a new gravity solver for the

sink particles is developed to fix the occasional star ejection caused by local numerical

oscillations in the original solver. Currently, the simulations are not completed yet,

but we are able to show preliminary results. We will leave the more detailed analysis

to future studies.
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Chapter 2

Numerical Tool: ENZO

Adaptive-Mesh-Refinement

Magnetohydrodynamic Code
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2.1 Introduction

High performance computing has become a powerful tool for modern astrophysical

research in recent years. Along with observations and analytical theory, it pushes

forward our understanding of the cosmos. The complex and non-linear nature of

many astrophysical problems, including star formation, makes analytical solutions

difficult. The development of robust algorithms makes it possible to set up “numer-

ical laboratories” for investigating the astrophysical processes, especially (magneto-

)hydrodynamics.

The (magneto-)hydrodynamic algorithms generally divide into two classes: particle-

based Lagrangian methods and grid-based Eulerian schemes. In order to follow the

high spatial and temporal dynamical ranges involved in many astrophysical problems,

the ability to adaptively refine a region when necessary is highly crucial. The parti-

cle method (the most commonly used is Smoothed Particle Hydrodynamics) has this

adaptivity for free owing to its Lagrangian nature. Although the Eulerian solvers

in their original form do not provide such adaptivity, the Structured Adaptive Mesh

Refinement (S-AMR) introduced by Berger & Colella (1989) has since been success-

fully implemented in many grid-based codes including Enzo. The key principle of

S-AMR is to adaptively add and modify finer meshes (“grids”) over regions that re-

quire higher resolution. In the S-AMR framework, individual pieces of physics can

be implemented, such as self-gravity, magnetohydrodynamics, radiative transfer, and

sink particles; these features are included the ENZO code (Bryan & Norman 1997)

that is used in this thesis.

Enzo is a fully parallelized, grid-based MHD code that has been extensively used

over the past two decades on a wide variety of astronomical problems, including the

large-scale structures, the interstellar and intergalactic medium, turbulent flows, and

the formation of galaxies and the first stars. However, no application of Enzo has been

made to the core collapse leading to the formation of individual stellar systems. The
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physical module and numerical features of Enzo, especially the MHD solver and the

sink particle treatment, make it well-suited for tackling the problem of star formation

on the core scale (0.1 parsec) as shown in the following sections.

2.2 Enzo Algorithms

2.2.1 Adaptive Mesh Refinement

As a primary feature of Enzo, the AMR allows one to reach extremely large spatial

and temporal dynamical ranges with limited computational resources. Often, the

refinement occurs around small gravitational condensations or shocks. The S-AMR

algorithm evolves the grid structures as follows. While solving the set of equations

(e.g. MHD) on a coarse grid, the AMR solver monitors the quality of the solution

and add finer (child) meshes to the regions that require higher resolution. These finer

(child) meshes are then evolved as a separate initial boundary value (IBV) problem,

whose boundary conditions are interpolated from the coarser (parent) grid or from

other neighboring (sibling) grids with the same level of refinement. After evolving

the finer grid, the updated physical quantities are used to improve the solution on its

parent grid.

The hierarchy of grids is organized as a tree structure, which evolves recursively.

The root of the tree is the uniform top-level Cartesian grid, which has no parent.

Any other node in the tree represents a rectangular grid patch that is contained

inside its corresponding parent grid one level coarser. This data structure is shown in

Fig. 2-1. In addition, all grids on the same level are stored in an array of linked lists,

which enables fast locating of sibling grids and facilitates communication between

computation nodes.

Given the hierarchical structure of the grids, the time integration is also adaptive,

i.e. each level l has its own time step dtl. The evolution of grid hierarchy uses the

so-called Breadth-first Search (BFS) strategy, as to traverse the tree from the top
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Fig. 2-1.— Illustration of an AMR grid hierarchy.

level to the bottom level. At a given time t, all the grids on the same level l will first

evolve to t + dtl. It then moves down to the next level l + 1 and advances all the

grids on that level with timestep dtl+1 (dtl+1 < dtl) continuously, until they “catch

up” with the coarser parent grids at time t + dtl. Then there will be an update

step to modify the results of level l according to their underlying finer grids of level

l + 1, or adjacent finer grids sharing common interfaces (the so-called “projection”).

Afterward, all the grids at level l will advance by another dtl. This procedure repeats

itself until all grids have been advanced by the desired time (see Fig. 2-2).

The adaptive creation or removal of finer grids happens when a level l + 1 has

caught up to its parent level l, at which the entire hierarchy at level ≥ l will be

reconstructed. The hierarchy rebuilding is achieved by applying certain refinement
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Fig. 2-2.— Left: Example of the timesteps on a 2-level AMR hierarchy. Enzo does
not restrict the timesteps on the finer levels to be a factor of 1/2n smaller. Right:
The order in which the AMR grids are evaluated on each level.

criteria to the grids, and flagging zones that require extra grids. Such criteria depend

on the physical problem being simulated, e.g. the slope of density to capture shocks.

Once the new subgrids have been identified, the solutions from their parent grids are

interpolated in order to initialize the values on these new grids. Finally, any overlap

between the new subgrids and the old ones is identified, and the previous solutions

in overlapping regions is copied to the new subgrids. In this way, the entire hierarchy

can be rebuilt.

In summary, the AMR algorithm for any given level can be written as the following

pseudo-code:

EvolveLevel(level, ParentTime)

SetBoundaryValues

while (Time < ParentTime):

dt = ComputeTimeStep(level)

PrepareDensityField(dt)

SolveHydroEquations(dt)

SolveOtherEquations(dt)

SetBoundaryValues

EvolveLevel(level+1, Time)

Time = Time + dt

FluxCorrection
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Projection

RebuildHierarchy(level+1)

The pseudo-code for grid hierarchy reconstruction at every time step reads as

follows,

RebuildHierarchy(level)

for i_level = level to MaximumLevel - 1

for every grid on i_level

FlagCellsForRefinement

CreateSubgrids

AddLevel(i_level+1)

for every new subgrid

InterpolateFieldValuesFromParent

CopyFromOldSubgrids

2.2.2 Finite Volume Method

There are four classes of popular computational fluid dynamics (CFD) algorithms:

finite difference method, finite volume method, finite element method and spectral

method. Because of the advantage on shock-capturing, finite volume method has

become the most popular method for astrophysical Eulerian fluid solver in recent

years. It is best used to solve a system of conservation laws of the form

∂u

∂t
+∇ · f(u) = 0. (2.1)

where u represents a vector of states and f represents the corresponding flux tensor

or flow of u.

The conservative nature of finite volume method can be derived easily. After sub-

dividing the spatial domain into finite volumes or cells, the volume integral of Eq. 2.1
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over a particular cell i gives,

∫

Vi

∂u

∂t
dV +

∫

Vi

∇ · f(u) dV = 0. (2.2)

By approximating the first term using the volume averaged values and applying the

divergence theorem to the second term, we can get,

dūi

dt
+

1

Vi

∮

Si

f(u) · n dS = 0. (2.3)

Because the change of cell averages is the negative flux through the cell edges, the

flux is conserved from cell to cell.

Following this classical finite volume framework, Enzo employs the Godunov (Go-

dunov 1959) MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws)

scheme for solving the MHD equations; the method also provides a second-order accu-

rate solution to the Riemann problems across the cell boundary. The basic algorithm

of Godunov’s scheme can be implemented through the method of lines (LeVeque

2002). After discretization of Eq. 2.1 in both space and time, the conservation law

can be written in the integral form as,

∫

C
u(x, tn+1) dx−

∫

C
u(x, tn) dx =

∫ tn+1

tn
f(u(x0, t)) dt−

∫ tn+1

tn
f(u(x1, t)) dt (2.4)

where C = [x0,x1] is the domain of interest. In 1-dimension for example, the domain

can be discretized into N intervals as Ci = [xi−1/2, xi+1/2], with xi being the center of

the i-th cell. At time tn, the average value over the i-th interval can be approximated

by the discrete value uni . Hence, for each interval Ci, Eq. 2.4 is evaluated as,

un+1
i − uni =

∆t

∆x
(f(ui−1/2)− f(ui+1/2)) (2.5)

In order to minimize the oscillation of the solution near discontinuities or shocks, it is
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necessary to extrapolate the flux in Eq. 2.5 at the slope limited left and right states,

e.g. uLi+1/2 and uRi+1/2 for ui+1/2; this is the basic idea of the MUSCL scheme. This

type of conservative method is able to capture the correct shock speed even at low

resolutions (LeVeque 2002), which is crucial for many astrophysical problems.

The Godnov’s scheme solves the equation of conservation (Eq. 2.1) in three basic

steps. Suppose the volume-centered solution in each cell is known at time t = n∆t.

The first step is to reconstruct the face-centered left and right states from the volume-

centered quantities. Step 2 is the only physical step; it obtains the solution for the

Riemann problem at the cell interfaces using the left and right values calculated

in step 1. The final step is to update the conserved quantities after time interval

∆t using the fluxes obtained in step 2. Note that the time interval ∆t should be

limited such that the waves emanating from an interface do not interact with waves

created at the adjacent interfaces. This leads to the CFL (Courant-Friedrichs-Lewy)

condition |vmax| < ∆x
2∆t

where |vmax| is the maximum wave speed obtained from the

cell eigenvalues of the local Jacobian matrix (Courant, Friedrichs, & Lewy 1928).

Because of the purely numerical nature of the first and third step, one can modify

them without affecting the physical step. For example, several distinct reconstruction

methods are implemented in Enzo, including the piecewise linear method (PLM, van-

Leer 1979), and the piecewise parabolic method (PPM, Colella & Woodward 1984),

etc. There are also different Riemann solvers implemented in Enzo, such as the HLL

(Harten-Lax-van Leer) solver (Harten et al. 1983), the HLLC (Harten-Lax-van Leer

with Contact) solver (Toro 1999), the LLF (Local Lax-Friedrichs) solver (Kurganov

& Tadmor 2000), and the Roe solver (Roe 1981).

2.2.3 Magnetohydrodynamics

The above finite volume method can be used to solve the set of ideal magnetohydro-

dynamics equations. The main challenge is to maintain the divergence-free condition

for the magnetic field, as magnetic monopoles tend to be generated numerically. Var-
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ious schemes have been proposed for this purpose. The two most popular approaches

are Dedner’s hyperbolic cleaning method (Dedner et al. 2002) and constrained trans-

port method (Evans & Hawley 1988); both have been implemented in the Enzo code.

However, the latter has not been well-tested at this stage. In this thesis, we will

mainly adopt the Dedner’s cleaning scheme, whose algorithm is described below.

The set of ideal MHD equations in the conservative form can be written as,

∂ρ

∂t
+∇·(ρv) = 0, (2.6)

∂ρv

∂t
+∇·(ρvv + I(p+

B ·B
2

)−BB) = −ρ∇φ, (2.7)

∂E

∂t
+∇·[(E + p+

B ·B
2

)v −B(v ·B)] = −ρv · ∇φ, (2.8)

∂B

∂t
+∇·(vB−Bv) = 0, (2.9)

where v = (vx, vy, vz) denotes the fluid velocity, B = 1√
4π
(Bx, By, Bz) the magnetic

field, ρ the density, p the pressure, I the second order identity tensor, and E the

energy given by,

E =
p

Γ− 1
+ ρ

v · v
2

+
B ·B
2

, (2.10)

with Γ > 1 denotes the adiabatic index. The equations are closed by Poisson’s

equation for the gravitational potential φ:

∇2φ = 4πG(ρtotal − ρ0). (2.11)

Note that in Enzo the source term on the right-hand-side is the total mass density

contrast, i.e. ρtotal = ρgas+ρstars and ρ0 is the mean density. For the magnetic field we

have the divergence constraint ∇ ·B = 0, which always holds physically. However,

numerical simulations often introduce errors that will propagate in space and over

time, leading to violation of the divergence free condition. Whenever ∇ ·B 6= 0, the
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solution becomes unphysical.

The Dedner’s divergence cleaning method solves the Generalized Lagrangian Mul-

tiplier (GLM) formulation of MHD equations with an additional scalar field ψ that

satisfies a hyperbolic equation, as shown below.

∂ρ

∂t
+∇·(ρv) = 0, (2.12)

∂ρv

∂t
+∇·(ρvv + I(p+

B ·B
2

)−BB) = −ρ∇φ−B(∇ ·B), (2.13)

∂E

∂t
+∇·[(E + p+

B ·B
2

)v −B(v ·B)] = −ρv · ∇φ−B·(∇ψ), (2.14)

∂B

∂t
+∇·(vB−Bv + ψI) = 0, (2.15)

∂ψ

∂t
+ c2h∇ ·B = −c

2
h

c2p
ψ, (2.16)

where ch and cp are constants controlling the propagation speed and damping rate

of ∇ ·B. Eq. 2.16 takes this particular form so that ∇ ·B and ψ satisfy the same

differential equation, and that local divergence errors only propagate with finite speed

and dissipate quickly (see Dedner et al. (2002) for detailed derivations).

Note that in the GLM-MHD equations, all quantities are stored as volume-centered,

it is thus straightforward to solve this GLM-MHD system using the Godunov scheme

described in § 2.2.2. Besides, the method is dimensionally un-split in that the fluxes

are computed for all dimensions (x, y, and z) together, which is a rather stable and

self-consistent implementation in the current Enzo framework.

2.2.4 Sink Particle Treatment

The binary star formation problem we are investigating involves a vast dynamical

range, which makes its full solution computationally infeasible even with the AMR

capability. Spatially, the problem spans an order of ∼ 107 in length from the initial
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molecular cloud core (∼ 0.1 − 1.0 pc) to the final stellar size object (1011 cm). It

is impossible to carry out a single simulation to resolve both the largest and the

smallest structures, as the number of cells needed grows exponentially with increasing

resolution. Temporally, the CFL condition requires that the timestep of a certain

refinement level be less than the signal-crossing time of any grid cell on that level. The

hydrodynamics timestep can become smaller either by increasing spatial resolution or

through local density enhancement, as the time scale set by self-gravity varies ∝ ρ−1/2.

Often, the smallest timestep occurs in cells near the center of a collapsing core, where

the density can exceed 106 times that of the background. Therefore, it is desirable

to stop following the collapse at a certain scale, so as to prevent the timestep from

approaching a prohibitively small value and the number of finer cells from increasing

out of control.

In light of the above limitations, researchers have introduced the sink particle:

a Lagrangian point that accretes incoming material but has no internal structure;

therefore, no higher resolution is required for either time or space. It enables us to

focus the majority of computational effort on length scales (from 1017 cm to 1013 cm)

that matter most to the problem of star and disk formation.

Another advantage of sink particle is to prevent artificial fragmentation caused by

insufficient resolution near high density regions. According to Truelove et al. (1997),

at least four cells are required to resolve one Jeans length (λJ ∝ ρ−1/2), known as

the Truelove’s criterion. Since it is computationally difficult to resolve the Jeans

length all the way to the stellar density, sink particles can be created to handle the

gravitational collapse at high densities beyond what the maximum refinement level

could resolve.

The basic treatment of a sink particle includes: creation, accretion, merging with

other sinks, and gravitationally interacting with gas and other sinks. The implemen-

tation of sink particles is as follows. When a cell violates the Truelove’s criterion on

the highest refinement level, a new sink particle is inserted at the center of that cell.
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The initial mass of the sink particle is calculated such that after subtracting the sink

mass, the cell no longer violates the Truelove’s criterion. The initial velocity of the

sink particle is calculated using momentum conservation.

After creation, the sink particle accretes gas from its host cell according to the

formula of modified Bondi-Hoyle (BH) accretion (Ruffert 1994),

ṀBH = 4πρ∞r
2
BH

√

1.2544c2∞ + v2∞, (2.17)

where rBH is the Bondi radius, ρ∞, v∞ and c∞ are the gas density, velocity and

sound speed of the (uniform) medium far from the point mass. In the code, the

c∞ is set to the sound speed cs, and v∞ = vcell − vsink. The rBH is calculated as

rBH = GMsink/(c
2
∞+ v2∞). If the rBH is smaller than the cell size ∆x, the cell density

ρcell is used for ρ∞; otherwise an extrapolation assuming an r−1.5 density profile is

used.

A merging algorithm for sink particle is necessary to ensure the correctness of the

mass accretion prescription, and to save computation time when many sink particles

are created within a small volume. The sink particle merging is controlled by two

parameters: a merging mass Mmerg and a merging distance lmerg. In every timestep,

the merging is done in two steps. First, each small particle is merged to the nearest

big particle within the merging distance. Second, all remaining small particles after

the first step are grouped together using a Friend-of-Friend algorithm, in which the

merging distance lmerg is chosen as the linking length (Davis et al. 1985).

Finally, the gravity of sink particles is calculated using the particle-mesh method.

First, the masses of sink particles are deposited onto the grids using the cloud-in-

cell (CIC) interpolation technique to form a spatially discretized density field. Then

the total density field (ρtotal = ρgas + ρsink) is used to calculate the gravitational

potential on the periodic root grid (level = 0) through fast Fourier transformation.

The potential fields on finer grids are calculated by a multigrid relaxation technique,
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whose boundary conditions are interpolated from the potential values on their parent

grid. Gravitational accelerations are computed by finite-differencing potential values

and are then interpolated to the particle locations, where they are used to update the

particle’s position and velocity within one hydrodynamic timestep. This procedure

runs recursively on all child grids. Note that sink particles are stored in the highest

refinement level, and particles that move out of a subgrid patch are sent to adjacent

grid patches with the finest spatial resolution.

2.3 Collapse Test Problem

To ensure that the Enzo code is suitable for our study of star formation on the

core scale, we run a simple collapse test of a singular-isothermal-sphere (SIS) whose

analytical solution has been given by Shu (1977). The initial conditions of the cloud

core are as follows,

ρ(r) =
Ac2s

4πGr2
, (2.18)

vφ = 0, B0 = 0, (2.19)

R0 = 1017 cm,Mtotal ≈ 1.2M⊙, (2.20)

Mseed = 0.025M⊙, (2.21)

where the density is distributed as r−2, R0 and Mtotal are the initial size and mass of

the core, respectively; G is the gravitational constant, cs = 2×104 cm/s the isothermal

sound speed, and A is an overdense factor whose value must be greater than 2 for

the collapse to occur. We choose A = 4 in this test simulation; the core is out of

hydrostatic equilibrium initially and will start to collapse towards the cloud center

immediately. Note that the name “singular” comes from the unphysical density at

zero radius where it becomes infinity. To avoid this singular point computationally,

we flatten the density profile inside the innermost ∼ 130 AU initially and replace
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the mass deficit there (0.025M⊙) with a tiny sink particle Mseed in the center of the

cloud.

As shown by Shu (1977), the collapse of a singular isothermal sphere proceeds in

a self-similar fashion, meaning that any state of the system is a rescaled copy of the

initial state, or that the cloud looks the same at all times except for scale. The self-

similar solution also predicts analytically the mass accretion rate into the singularity

point - the stellar object - as,

Ṁ = 5.58c2s/G = 1.06× 10−5 M⊙/yr (2.22)

for A = 4 in our test. Encouragingly, our simulation result presents a nearly perfect

match with this analytical expectation, see Fig 2-3. This is a robust test of the

reliability and performance of Enzo code, which allows us to move forward to the

more complicated problem of binary star formation.



31

Fig. 2-3.— Top: Mass growth of the sink particle over time; bottom: Mass accretion
rate of the sink particle. Red dashed line denotes the analytical solution, and black
cross denotes results from the test simulation.
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Chapter 3

Magnetic Flux Expulsion in Star

Formation

This chapter is based on the published paper of Zhao et al. (2011, ApJ, 742, 10).
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3.1 Introduction

A longstanding problem in star formation is the so-called “magnetic flux problem”

(e.g., Nakano 1984, see his § 4). If the magnetic flux observed to thread a typical

star-forming dense core (Troland & Crutcher 2008) were to be dragged into a young

stellar object, the stellar field strength would be tens of millions of Gauss, more than

three orders of magnitude higher than the observed values (which are typically in the

kilo-Gauss range, e.g., Johns-Krull 2009). The vast majority of the original magnetic

flux of the dense core must be decoupled from the matter that enters the star. When

and how the decoupling occurs is a fundamental problem of star formation that has

yet to be completely resolved.

The magnetic flux problem lies at the heart of another fundamental problem in

star formation: disk formation. If the magnetic flux of a dense core is dragged by the

collapsing material into a forming star, as would be in the ideal MHD limit, it would

form a central split magnetic monopole that prevents the formation of a rotationally

supported disk through catastrophic magnetic braking (Allen et al. 2003; Galli et

al. 2006; Mellon & Li 2008; Hennebelle & Fromang 2008; Seifried et al. 2011). The

magnetic flux problem must be resolved in order for rotationally supported disks to

form.

The most widely discussed resolution of the magnetic flux problem is through

non-ideal MHD effects, including ambipolar diffusion, Ohmic dissipation and poten-

tially Hall effect (e.g., Nakano 1984; Li & McKee 1996; Ciolek & Königl 1998; Tassis

& Mouschovias 2007; Kunz & Mouschovias 2010; Krasnopolsky et al. 2011). For

example, Li & McKee (1996) showed that ambipolar diffusion can enable the pro-

tostellar envelope to collapse into the central stellar object without dragging along

the magnetic flux. The left-behind magnetic flux builds up in a small circumstellar

region, confined by the ram pressure of the protostellar collapse. It tends to dominate

the gas dynamics close to the protostar, particularly in the region of disk formation.
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Indeed, the magnetic field accumulated at small radii can be strong enough to sup-

press disk formation completely through efficient magnetic braking (Krasnopolsky &

Königl 2002; Mellon & Li 2009; Li et al. 2011). In this case, the resolution of the mag-

netic flux problem for the central star does not lead to a resolution of the magnetic

braking problem for disk formation.

There is, however, a significant limitation in the (non-ideal MHD) studies of the

magnetic flux problem and its consequences to date: the assumption of axisymmetry.

Although the axisymmetry greatly reduces the computational demand of the calcula-

tions, it limits how fast the magnetic flux released from the central object can expand

to large distances. In particular, it suppresses a likely mode for the flux expulsion:

dynamic expansion along the direction(s) of least resistance. In this Chapter, we de-

scribe the first detailed 3D study of what happens to the released flux using the Enzo

MHD code. We find that a magnetically dominated region is inflated by the released

flux. The region expands asymmetrically away from the central object, changing the

dynamics of the protostellar accretion and disk formation.

The rest of the chapter is organized as follows. In § 3.2, we describe the prob-

lem setup, including the equations to be solved, numerical method, and initial and

boundary conditions. The numerical results are presented and interpreted in § 3.3.

The last section, § 3.4, includes a discussion of the main results and a short summary.

3.2 Problem Setup

3.2.1 Basic Equations and Numerical Method

We study the formation of stars from the collapse of magnetized dense cores of molec-

ular clouds using the ENZO MHD code that includes a sink particle treatment. The

usual MHD equations are the magnetic induction equation,

∂B

∂t
= ∇× (v ×B), (3.1)
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and the equations for mass continuity, momentum and self-gravity,

∂ρ

∂t
+∇ · (ρv) = 0, (3.2)

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇P − 1

4π
B× (∇×B)− ρ∇φ, (3.3)

∇2φ = 4πG(ρtotal − ρ0), (3.4)

where φ is the gravitational potential, ρtotal = ρgas+ρstars, and ρ0 is the mean density.

The above equations are solved in three dimensions using a MHD version (Wang

& Abel 2009) of the ENZO adaptive mesh refinement code (Bryan & Norman 1997;

O’Shea et al. 2004). It incorporates a sink particle treatment (Wang et al. 2010).

The magnetic field is evolved with a conservative MHD solver that includes the

hyperbolic divergence cleaning of Dedner et al. (2002), as described in Chapter

2. The MHD version of the code is publicly available from the ENZO website at

http://code.google.com/p/enzo/. It has been used to follow successfully the forma-

tion and evolution of magnetized galaxies (Wang & Abel 2009) and star clusters

(Wang et al. 2010).

Our goal is to follow both the prestellar core evolution as well as the protostellar

mass accretion phase of star formation (after a central stellar object has formed). For

the latter, it is crucial to use a sink particle to approximate the stellar object, because

including the object in the computation without any special treatment would reduce

the time step to such a small value that the simulation would grind to a halt (e.g.,

Krumholz et al. 2004). In our simulations, we resolve the so-called “Jeans length”

defined as LJ = cs
(

π
Gρ

)1/2
(where cs is the isothermal sound speed), everywhere by at

least 8 cells, so that the Truelove’s criterion (Truelove et al. 1997) is satisfied. When

the density in a cell at the highest refinement level exceeds a threshold density ρth

(to be defined below), a sink particle is created at the cell center (see Federrath et al.
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2010 for a more elaborate treatment of sink particle). The particle is evolved using

an algorithm that is described in detail in Wang et al. (2010).

Briefly, the mass accretion rate onto a sink particle is done in two steps. First, the

particle accretes from its host cell using a formula inspired by that of Bondi-Hoyle

accretion (Ruffert 1994). The momentum of the accreted material is added to that of

the sink particle. The second step involves the merging of small sink particles. This

step is controlled by two parameters: the merging mass Mmerg and merging distance

lmerg. They are chosen to eliminate artificial particles and to maximize computation

efficiency. The simulations presented in this Chapter use Mmerg = 0.01M⊙ and

lmerg = 1015cm ≈ 8∆x ≈ 70AU . Our main results are insensitive to these parameters

as long as they are reasonably small.

When a mass is extracted from a cell, due to either sink particle formation or

accretion onto an existing sink, the magnetic field in that cell is not altered. That is,

the field strength remains the same. This is a crude way to represent the decoupling of

the magnetic field from matter at high densities that is expected physically (Nakano

et al. 2002) and demanded by the relatively weak magnetic fields observed on young

stars (see discussion in § 3.1). Determining what happens to the decoupled magnetic

flux in 3D is the main goal of our investigation in this Chapter.

3.2.2 Initial and Boundary Conditions

We model star formation in a magnetized dense core embedded in a more diffuse

ambient medium. We choose a spherical core of radius R = 5 × 1016 cm and an

initially uniform density ρ0 = 5× 10−18 g cm−3. These parameters yield a core mass

M = 1.32 M⊙ and a free-fall time tff = 9.4 × 1011 sec = 29.8 kyrs. We embed the

core in an ambient medium that is 100 times less dense than the core and that fills the

entire computational box, which is much larger than the core, with L = 5× 1017 cm

on each side. We set the temperature for both the core and the ambient gas to be

T ∼ 10K initially. The large box size is chosen to minimize the effects of the periodic
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boundary conditions on the core dynamics; the conditions are adopted to facilitate

the computation of self-gravity (through fast Fourier transform on the base grid). Our

initial conditions are similar to those adopted by Price & Bate (2007), Hennebelle &

Fromang (2008) and Bürzle et al. (2011).

As usual, we adopt a barotropic equation of state (EOS) that mimics the isother-

mal EOS at low densities and the adiabatic EOS at high densities:

P = ρc2s



1 +

(

ρ

ρcrit

)2/3


 , (3.5)

with a critical density ρcrit = 10−13 g cm−3 for the transition between the two regimes.

An isothermal sound speed cs = 0.2 km/s is chosen, corresponding to a temperature

T ∼ 10 K. The sound speed yields a ratio of thermal to gravitational energy α =

2.5Rc2s/(GM) = 0.29 for the core (Truelove et al. 1998). For simplicity, we impose

an initially uniform magnetic field everywhere along the z−axis, with a strength

B0 = 2.7 × 10−4 G. It corresponds to a dimensionless mass-to-flux ratio λcore = 2

for the core as a whole, in units of the critical value (2πG1/2)−1; such a value is

consistent with those predicted in dense cores formed in strongly magnetized clouds

through ambipolar diffusion (e.g., Lizano & Shu 1989; Basu & Mouschovias 1994;

Nakamura & Li 2005), and with the median value inferred by Troland & Crutcher

(2008) for a sample of dark cloud cores (after correcting statistically for projection

effects). We have also carried simulations for both weaker and stronger field cases,

with λcore = 4 and 1 respectively, and found qualitatively similar results. We should

note that the local mass-to-flux ratio on the central magnetic flux tube is somewhat

larger than the value for the core as a whole, by a factor of 1.5.

Besides the magnetic field, we impose, in some cases, a rigid body rotation on

the core. We adopt an angular velocity of Ω = 4.0 × 10−13 s−1, corresponding to a

ratio of rotational and gravitational energy β = 0.036. This value is within the range

inferred by Goodman et al. (1993) from NH3 observations of dense cores.
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We choose a relatively coarse base grid of 643, although the grid is automatically

refined, at the beginning of the simulation, by one level in the central part of the

computational domain that includes the dense core. We set the maximum refinement

level to 6 for our reference runs, which yields a smallest cell size of ∆x ∼ 8 AU. When

the Truelove criterion (with a Jeans number ∆x/Lj = 1/8, Truelove et al. 1997) is

violated on the finest grid at a threshold density of ρth = πc2s
G(8∆x)2

= 2.0×10−14g cm−3,

a sink particle is created. Effectively, ρth sets the density above which the gas and

magnetic field are decoupled. It corresponds to a hydrogen number density of about

1010 cm−3 for the reference runs, which is somewhat below the decoupling density (of

a few times 1011 cm−3) advocated by Nakano et al. 2002. We have experimented with

maximum refinement levels up to 8 (which has a threshold number density of about

2× 1011 cm−3), and obtained qualitatively similar results (see below).

3.3 Results

We carry out two sets of simulations: collapse with or without rotation. The former

is to illustrate how the magnetic flux decoupled from the stellar material escapes to

large distances and the latter the effects of the escaping flux on disk formation.

3.3.1 Non-Rotating Collapse

Sink Particle Evolution

At the heart of our star formation calculation lies the sink particle treatment. As

mentioned in § 3.2.1, the treatment is needed to allow the simulation to go beyond

the initial prestellar core evolution phase of star formation, into the protostellar mass

accretion phase. Just as importantly, it provides a simple way to decouple the mag-

netic flux from the material that enters the protostellar object, as demanded by

observations (see discussion in § 3.1).
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In the left panel of Fig. 3-1, we plot the mass of the star, as represented by the

sink particle, as a function of time. The object first appears around t ≈ 36 kyrs

(or ∼ 1.2 tff ). It grows quickly, with a relatively large initial mass accretion rate

of 10−4 M⊙ yr−1. The high initial accretion rate is expected for the uniform density

distribution that we adopted for the dense core. It could plausibly be identified with

the Class 0 phase of low-mass star formation (André et al. 1993). The accretion rate

decreases below 10−5 M⊙ yr−1 after t = 48 kyrs (or ∼ 1.6 tff ), when ∼ 0.75M⊙ (or

57% of the initial core mass) has landed on the central star.
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Fig. 3-1.— Left panel: Mass of the protostar (as represented by a sink particle) as a
function of time. The dotted vertical lines denote the range of time plotted in Fig. 3-4.
Right panel: Dimensionless mass-to-flux ratio within 200 AU of the star, indicating
that most of the magnetic flux associated with the stellar mass is left outside of the
small region (see text). The initial core mass-to-flux ratio λcore = 2 is plotted (dashed
line) for comparison.

To make sure that the sink particle treatment has indeed decoupled the magnetic

flux from the material that enters the stellar object, we plot in the right panel of

Fig. 3-1 the dimensionless ratio λ of all mass (including sink) and all magnetic flux

within a small radius (200 AU) around the sink particle. The flux is computed on the

x-y plane that passes through the star (i.e., the constant z = z⋆ plane where z⋆ is the

stellar position in the z−direction); this plane will be referred to as the equatorial
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plane of the star or equatorial plane for short hereafter. There is a general trend for

λ to increase with time, reaching values as high as 50, which is much higher than

the dimensionless mass-to-flux ratio for the core as a whole (λcore = 2). Clearly, the

magnetic flux near the protostar did not increase as fast as the stellar mass, and

the vast majority of the flux originally associated with the stellar mass must reside

outside the small region. It is natural to ask: where did this flux go?

Decoupling-Enabled Magnetic Structure

It turns out that the decoupled flux is trapped in a strongly magnetized, low-density

structure that expands with time. The left panel of Fig. 3-2 shows the structure in

a map of column density (along z−direction) at a representative time t = 43 kyrs

(or ∼ 1.45 tff ). At this time, the evacuated region has a size of ∼ 1.2 × 1016 cm

(or about 800 AU). It grows in time, as indicated by the velocity vectors inside the

region. The right panel of Fig. 3-2 plots the z−component of the magnetic field, Bz,

on the equatorial plane of the star. It shows that the hollow region coincides with a

region of intense magnetic field, leaving little doubt that the structure has a magnetic

origin.

One may be tempted to call the low-density structure a “magnetic bubble”. How-

ever, as shown in Fig. 3-3, “bubble” does not provide an adequate description of the

structure in 3D; the dense feature surrounding the evacuated region in the column

density map (Fig. 3-2) turns out to be a ring rather than a shell. The reason is that,

in the absence of the decoupled magnetic flux, the collapsing core material would

settle preferentially along field lines into a dense, flatten, structure—a “pseudodisk”

(Galli & Shu 1993). The left-behind magnetic flux evacuates part of the pseudodisk,

creating the structure showing in Fig. 3-3, where a bundle of magnetic field lines

is pinched near the equator by a dense ring. We will refer to the structure as the

“decoupling-enabled magnetic structure” (DEMS for short hereafter).

The strongest evidence for the DEMS being really driven by the magnetic flux
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Fig. 3-2.— Left panel: Column density (along z−direction) and velocity field (on the
equatorial plane) of the inner region of the collapsing core at a representative time
t = 43 kyrs (or ∼ 1.45 tff ), showing an expanding, evacuated region to the lower-left
of the star (marked by an asterisk on the map). Superposed on the map are contours
of constant Bz (the z-component of the magnetic field) on the equatorial plane. Right
panel: Color map of Bz on the equatorial plane, showing that the evacuated region
coincides with a region of intense magnetic field. The tick marks above each panel
are in units of 5× 1017 cm (size of the simulation box).

decoupled from the material accreted onto the stellar object comes from Fig. 3-4,

where we plot the ratio of the stellar massM⋆ to the magnetic flux in the structure Φd.

The quantity Φd is computed on the equatorial plane of the star. It includes all cells

inside a boundary beyond which Bz falls off steeply (see Fig. 3-2). Not surprisingly,

the cells are mostly located inside the dense ring. We are able to determine the

ratio over only a limited range in time, because the DEMS becomes apparent only

after t ∼ 40 kyrs, and it starts to merge into the background (making an accurate

identification of the DEMS difficult) after t ∼ 60 kyrs. As the stellar mass nearly

doubles during the early part of this period (see Fig. 3-1), the mass-to-flux ratio
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Fig. 3-3.— 3D view of the inner part of the collapsing core, showing the decoupling-
enabled magnetic structure (DEMS), where a bundle of twisted magnetic field lines
is surrounded at the “waist” by a dense ring. The star is shown as a red dot located
near the inner edge of the ring.

remains relatively constant, indicating that Φd increases together with M⋆. This

behavior is consistent with Φd being released by M⋆. Furthermore, the dimensionless

mass-to-flux ratio λ⋆,d = 2πG1/2M⋆/Φd is close to the global value for the initial core,

as one would expect if the initial core matter releases its flux on the way to the center.

The small deviation from the global value λcore = 2.0 can come from the fact that

local λ in the initial core is not exactly 2, and that the DEMS is identified by eye

and is not very precise. Nevertheless, the different pieces of evidence presented in this
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subsection leave little doubt that the DEMS is formed by the magnetic flux decoupled

from the accreted stellar mass.
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Fig. 3-4.— The dimensionless ratio λ⋆,d of the stellar mass M⋆ to the magnetic flux
in the decoupling-enabled magnetic structure (DEMS) Φd as a function of time. The
closeness of λ⋆,d to the value λcore = 2 for the core as a whole indicates that the flux
in the DEMS is released by the stellar material.

We have checked that the creation and evolution of the DEMS is insensitive to the

details of the sink particle treatment. For example, we have allowed more levels of

refinement (7 and 8 instead of 6) before the sink particle creation, with higher values

for the effective matter-field decoupling density ρth. The results are qualitatively

similar, although the shape and orientation of the DEMS are somewhat different.

We have also varied the critical density ρcrit in the equation of state, and obtained a

broadly similar result. These tests support the conclusion that the DEMS is robust.
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Its existence also makes physical sense because, as the decoupled flux accumulates

near the protostar, the magnetic pressure builds up, which can only be released

through expansion. In hindsight, it is hard to imagine any other outcome.

DEMS and Collapse Dynamics

The DEMS modifies the dynamics of core collapse and star formation in several ways.

The most obvious is the change to the density distribution and velocity field in the

equatorial region where most of the mass accretion occurs. The DEMS produces an

evacuated region that expands against the dense, collapsing pseudodisk, as shown

in the left panel of Fig. 3-2. There are initially several small, irregular, low-density

regions. Only one develops into a full-blown DEMS through runaway expansion. It

starts to grow quickly after enough magnetic flux has accumulated in the region that

a high magnetic pressure is built up to overwhelm the ram pressure of the collapsing

flow. The expansion occurs presumably along the path of least resistance, which

happens to lie in the direction towards the lower-left corner in Fig. 3-2; this direction

is probably related to the cubic simulation box and Cartesian grid, which break the

symmetry in the collapsing flow1. As mentioned earlier, by the time t = 60 kyrs (or

about 2 tff ), the structure grows to a size comparable to the initial core radius, and

starts to merge into the background.

To examine the expansion dynamics more quantitatively, we plot in Fig. 3-5 the

distributions of the magnetic pressure, the thermal pressure Pth = ρc2s, and the ram

pressure associated with the radial component of the velocity Pr,ram = ρv2r , in the

equatorial plane, along the dotted line shown in the left panel of Fig. 3-2. Note the

sharp increase (by a factor of ∼ 103) in the magnetic pressure around r ∼ 1016 cm,

which marks the boundary of the DEMS. Inside the boundary, the magnetic pressure

is more or less uniform. It is much higher than the thermal pressure, by a factor

1We have experimented with runs where subsonic turbulent velocity fields are imposed on the
dense core at the beginning of the simulation. The symmetry-breaking turbulence does not change
the DEMS qualitatively.
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of ∼ 102, corresponding to a low plasma β ∼ 0.01 (defined as the ratio of plasma

pressure to magnetic pressure). The high magnetic pressure is what drives the region

to expand. The expansion is slowed down by the ram pressure of the collapsing

material outside the strongly magnetized region, which is somewhat smaller than,

but comparable to, the magnetic pressure. The spike just outside r = 1016 cm on

the curve of ram pressure is due to the dense, expanding ring that is prominent in

Fig. 3-2. The ring is the collapsing pseudodisk material that has been swept up

by the expanding, magnetically dominated region. It has a peak density nearly two

orders of magnitude higher than the surrounding medium. The ring is not yet massive

enough in our current simulation to become self-gravitating, but we speculate that

this might happen under other circumstances; in such cases, the ring may fragment

into secondary objects. We will postpone an exploration of this possibility to a future

investigation.

A direct consequence of the one-sided expansion of the magnetically dominated

region is that accretion onto the central object must proceed in a highly asymmetric

fashion. The asymmetric accretion is shown vividly in the left panel of Fig. 3-2, where

velocity vectors are plotted in the equatorial plane of the star. While the collapsing

flow in the upper-right half of the plane can fall into the star directly, that on the

lower-left half is mostly obstructed by the DEMS. Based on the highly asymmetric

accretion pattern, one may expect the stellar object to pick up some velocity. We

find that the star particle in our simulation does move, but only at a small speed of

order 0.1 km/s, too small to be of any dynamical significance. The reason for the

slow stellar motion is probably the following: in the absence of any external force,

the total linear momentum of the system, which is initially zero, must be conserved.

In particular, the collapsing flow on the lower-left side of the star is diverted by the

DEMS to flow towards the star along the dense ring. Its momentum may cancel

out that of the unobstructed collapsing flow from the other side to a large extent, at

least in this particular simulation. Whether the slow stellar motion is true in general
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Fig. 3-5.— Comparison of the magnetic (solid line), thermal (dotted) and ram pres-
sure due to radial motion (dashed), in the equatorial plane, along a representative
direction (shown as dotted line in the left panel of Fig. 3-2).

remains to be determined.

The diversion of the magnetized collapsing flow around the DEMS creates an

interesting feature: the twisting of magnetic field lines, which is clearly visible in

Fig. 3-3. The twisting is normally not expected in a non-rotating collapse. However,

when the direct path to the star is blocked by the DEMS, a parcel of collapsing

flow moves around the structure, twisting the field lines tied to the parcel in the

process. Indeed, the magnetic tension associated with the twisted field lines produces

an bipolar outflow moving away from the equatorial plane (most visible from the

velocity field in the x-z or y-z plane, not shown), similar to the cases where an initial

core rotation is present (e.g., Tomisaka 1998). Such an outflow has not been seen in
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previous non-rotating collapse calculations.

3.3.2 Rotating Collapse

We have shown that the decoupling-enabled magnetic structure strongly affects the

dynamics of non-rotating collapse. Here, we wish to examine its influence on the

dynamics of rotating collapse in general and disk formation in particular. For this

purpose, we impose on the core an initial solid-body rotation with Ω = 4.0×10−13 s−1,

keeping other parameters the same as in the non-rotating collapse discussed in § 3.3.1.
Fig. 3-6 (left panel) shows a snapshot of the rotating collapse at a representative

time t = 47.5 kyrs (or ∼ 1.6 tff ), when the stellar object has accreted ∼ 0.67M⊙.

The overall morphology is broadly similar to that of the non-rotating case shown in

Fig. 3-2, with an evacuated DEMS expanding against a collapsing flow. An obvious

difference is, of course, rotation. The rotation is not fast enough, however, to stop the

collapse centrifugally, even along directions not directly affected by the DEMS. The

lack of complete centrifugal support is illustrated in the right panel of Fig. 3-6, where

we plot the infall and rotation speeds along a DEMS-free direction (marked in the

right panel as a dotted line). The rotation speed remains well below the Keplerian

value, except in the region inside a radius of ∼ 8 × 1014 cm, where the two become

comparable. In this small region, the collapse is slowed down, but not stopped. Its

infall speed is ∼ 1.5 − 2 km/s, much higher than the sound speed (0.2 km/s). The

supersonic infall leaves little doubt that a large-scale rotationally supported structure

is not formed in this direction, presumably because of strong magnetic braking, which

has been shown to be capable of suppressing disk formation in previous ideal MHD

simulations (Allen et al. 2003; Mellon & Li 2008; Hennebelle & Fromang 2008; Seifried

et al. 2011).

The DEMS makes disk formation even more difficult. The reason is that the

DEMS is a rather rigid structure that prevents the rotating material from completing

a full orbit around the central star. To be more quantitative, we compare the magnetic
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Fig. 3-6.— Left panel: Same as the left panel of Fig. 3-2 but for rotating collapse.
Again, an expanding low-density region is clearly visible. Right panel: Infall (dotted
line) and rotation (solid) speed on the equatorial plane along the dotted line shown
in the left panel. A Keplerian profile is also plotted (dashed) for comparison.

pressure to the ram pressure due to rotation Pφ,ram = ρv2φ along a circle of 400 AU in

radius in the equatorial plane in Fig. 3-7. Clearly, the magnetic pressure inside the

DEMS (∼ 0◦ − 100◦ and ∼ 290◦ − 360◦) is higher than the rotational ram pressure

outside the DEMS (the two peaks of ram pressure correspond to locations on the

dense ring). The DEMS is effectively a magnetic wall that stops the rotating motion

of the material that runs into it. This is a new form of magnetic braking that has

never been discussed before in core collapse and disk formation.

The rotation has an effect on the shape of the dense ring. Whereas the ring is

more or less (mirror) symmetric with respect to a plane in the non-rotating collapse

(see the dotted line in Fig. 3-2), it is much less so in the rotating collapse. The reason
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Fig. 3-7.— Comparison of the magnetic pressure (solid line) and the ram pressure
due to rotation in the equatorial plane, on a circle of ∼ 400 AU in radius (shown in
the left panel of Fig. 3-6). The azimuthal angle is measured counterclockwise from
the x-axis. The magnetic pressure inside the DEMS (∼ 0◦ − 100◦ and ∼ 290◦ − 360◦)
is much higher than the rotational ram pressure outside (∼ 100◦−290◦), making disk
formation difficult.

is that one side of the DEMS expands against the rotating flow, and its expansion is

slowed down by rotation (see the lower side of the DEMS in the left panel of Fig. 3-6).

The other side expands into a medium that is already rotating away from it to begin

with, and its expansion is sped up by rotation. The net result is that the lateral

expansion of the DEMS becomes asymmetric in the presence of rotation. The effect

is particularly strong at early times, when the rotation speed has yet to be greatly

reduced by magnetic braking and the DEMS.
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3.4 Discussion and Summary

We find a new feature in the protostellar collapse of magnetized dense cores: an

expanding low-density region driven by the magnetic flux decoupled from the material

that has accreted onto the star. This decoupling-enabled magnetic structure (DEMS)

has implications for both high resolution star formation simulations and for collapse

dynamics including disk (and possibly binary) formation.

The DEMS formation is a natural consequence of simulating magnetized star

formation using the sink particle formalism. Sink particles are needed to represent

the formed stellar objects because such objects are much smaller and much denser

than their parental dense cores (e.g., Krumholz et al. 2004). When the matter from

a cell is added to a sink particle, the magnetic flux from the cell cannot be added to

the sink as well, on both physical and numerical grounds. Physically, the addition

of the magnetic flux to the sink particle would make the stellar field strength much

higher than observed (which is, of course, the well known “magnetic flux problem”).

Numerically, the sink particle cannot hold a large magnetic flux, which would produce

a large, unbalanced magnetic force in the host cell of the sink particle. The needed

decoupling of the magnetic field from matter during sink particle mass accretion

makes the creation of the DEMS unavoidable in an ideal MHD simulation of the

protostellar phase of star formation.

The DEMS that we found is conceptually related to the highly magnetized inner

region of protostellar collapse in the presence of non-ideal MHD effects, found previ-

ously either semi-analytically (in 1D) or through 2D (axisymmetric) simulations. It

has been shown that, in the presence of ambipolar diffusion, most of the magnetic

flux left behind by the stellar mass is trapped in a strongly magnetized region inside

a C-shock (Li & McKee 1996, Ciolek & Königl 1998). The situation is similar in

the presence of Ohmic dissipation (Li et al. 2011). In both cases, because of the

axisymmetry assumed, the collapsing flow has to cross the strongly magnetized inner
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region where the left-over magnetic flux is parked in order to reach the center. As

a result, the highly magnetized region is loaded with high-density material (at least

near the equatorial plane, see, e.g., Fig. 4 of Li et al. 2011). Strictly speaking, the

region is not a (low-density) DEMS, although it does share the same origin as the

DEMS: both are driven by the decoupled magnetic flux. Indeed, one may view the

case considered in this Chapter as the high-ionization limit of the general non-ideal

case in which the ideal MHD approximation breaks down only at the highest densities

(and the breakdown is mimicked here by the sub-grid physics associated with sink

particle treatment). In this limiting case, a very small region of intense magnetic field

is expected to form close to the protostar and be trapped by the ram pressure of the

infalling material in 2D. In 3D, we find a completely different behavior: an asymmet-

rically expanding DEMS. The reason is that, in 3D, the collapsing core material does

not have to go through the strongly magnetized region to reach the central object;

it can simply go around the region. The DEMS in 3D is able to choose a path of

least resistance (which may be influenced by grid geometry), breaking the restrictions

imposed in strictly axisymmtric simulations.

The DEMS is a new feature never reported before in 3D numerical simulations of

star formation (see, however, Seifried et al. 2011, who recently found a similar feature

independently). Hennebelle & Fromang (2008) followed the collapse of magnetized

cores using an AMR MHD code, but did not mention any structure similar to our

DEMS. The reason for the absence of DEMS in their simulations is probably that they

did not use any sink particle in their simulations and thus did not address the issue

of magnetic decoupling that is needed to resolve the magnetic flux problem. Machida

et al. (2010) did use sink particles in their nested grid MHD simulations. They did

not find any DEMS-like structure either, because they removed the magnetic flux

associated with the mass accreted onto the sink particle by hand, on the assumption

that the magnetic flux is destroyed by Ohmic dissipation (see Shu et al. 2006 for the

reason why the flux cannot be not destroyed). The flux removal is probably also the
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reason why the DEMS was not present in SPH MHD simulations (e.g., Price & Bate

2007; Bürzle et al. 2011). Padoan & Nordlund (2011) carried out global simulations

of star formation in turbulent, magnetized clouds using sink particles. They did not

find any DEMS around individual stars either, probably because the ordered magnetic

field in their simulations is much weaker than in ours. If a dense core has a larger

initial mass-to-flux ratio than adopted here, there would be less magnetic flux to

decouple from a given stellar mass, and the smaller decoupled flux would drive a less

prominent DEMS.

Although we believe that the DEMS is robust in the limit considered in this

Chapter where the matter and magnetic field are well coupled except at the highest

densities, it remains unclear how it will be affected by non-ideal MHD effects, includ-

ing ambipolar diffusion, Ohmic dissipation and Hall effect, all of which can play a role

in the magnetic field evolution during core collapse and disk formation, at least in 2D.

The logic next step is to carry out 3D AMR MHD simulations that include both sink

particles and non-ideal MHD effects. It would be interesting to determine the extent

to which the collapsing flow reaches the star either by crossing field lines in a strongly

magnetized region through non-ideal MHD effects (as in the current 2D simulations,

such as Li et al. (2011)) or by going around the strongly magnetized region, as we

find in this Chapter. Another effect is the turbulence-enhanced reconnections (e.g.,

Kowal et al. 2009), which may reduce the amount of the magnetic flux dragged close

to the central object and weaken the DEMS.

To summarize, we have carried out simulations of magnetized core collapse and

star formation using a MHD version of the ENZO AMR code. A sink particle treat-

ment is used to decouple the magnetic flux from the material that enters the star,

which must happen to resolve the well-known “magnetic flux problem” in star forma-

tion. We find that the decoupled flux creates a low-density high magnetic pressure re-

gion that expands anisotropically away from the protostar. This decoupling-enabled

magnetic structure has profound effects on the dynamics of core collapse, making
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the protostellar accretion flow highly asymmetric and the formation of a rotation-

ally supported disk more difficult. It is a generic feature of star formation in strongly

magnetized cloud cores that should be included in future simulations, especially those

using sink particle treatment.
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Chapter 4

Orbital and Mass Ratio Evolution

of Protobinaries Driven by

Magnetic Braking

This chapter is based on the published paper of Zhao & Li (2013, ApJ, 763, 7).
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4.1 Introduction

The majority of the Galactic field stars reside in multiple systems (Duquennoy &

Mayor 1991; Fischer & Marcy 1992; Mason et al. 1998; Shatsky & Tokovinin 2002;

Goodwin & Kroupa 2005; Raghavan et al. 2010; Janson et al. 2012); most of those

systems (∼ 75%) are binaries (Duquennoy & Mayor 1991; Tokovinin & Smekhov

2002). The multiplicity of young stellar objects is even higher (Reipurth & Zinnecker

1993; Mathieu et al. 2000; Duchêne et al. 2004; Duchêne et al. 2007), indicating

that the formation of multiple systems, especially binaries, is a major, perhaps the

dominant, mode of star formation.

How binaries form and evolve remains uncertain. This is particularly true for

the earliest, Class 0, phase, when the stellar seeds are still deeply embedded inside a

massive envelope. Although millimeter interferometric observations such as Looney

et al. (2000) have uncovered some Class 0 binaries, their number is still small, and

the distribution of orbital separation of such protobinaries is not well constrained.

Maury et al. (2010) surveyed 5 Class 0 sources with PdBI at sub-arcsecond resolution,

and found a surprising result: only one of the sources has a potential protostellar

companion, and the companion is ∼ 1, 900 AU away from the primary. Combining

their sample with that of Looney et al. (2000), Maury et al. (2010) found that none

of the 14 Class 0 sources in the combined sample has a companion with separation

between ∼ 150 − 550 AU, which is inconsistent with the binary fraction of ∼ 18%

for Class I sources in the same separation range (Connelley et al. 2008). A similar

difference was found in the CARMA survey of 6 Class 0 and 3 Class I sources in the

Serpens molecular cloud (Enoch et al. 2011). None of the Class 0 objects has any

detectable protostellar companion closer than 2,000 AU (down to the resolution limit

∼ 250 AU), whereas one Class I object has a companion at a projected distance of

∼ 870 AU. Although the statistical significance of the difference is still relatively low,

it brings into sharp focus the possibility that the distribution of orbital separation of
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protobinaries may differ significantly from that of their more mature counterparts. In

other words, binaries may migrate substantially from their birth locations, a situation

somewhat analogous to that inferred for hot Jupiters, although it is unclear whether

protobinaries would migrate inward or outward to fill the apparent gap between ∼
150 − 550 AU. The direction (inward vs outward) of protobinary orbital migration

should be better constrained observationally with large surveys of deeply embedded

sources using ALMA and JVLA.

In this Chapter, we will focus on one possible mechanism for moving the protobina-

ries away from their birth locations: magnetic braking. It may seem counter-intuitive

that magnetic fields can change the binary orbit, because the magnetic forces do not

act on the stars directly. However, the orbits of protobinaries are determined mainly

by the angular momentum of the material to be accreted, which can be strongly

affected, perhaps even controlled, by the magnetic field, through magnetic braking.

The main goal of this investigation is to quantify the extent to which the protobinary

orbit is modified by a magnetic field of the observed strength.

The strength of magnetic fields in star formation is usually measured by the dimen-

sionless mass-to-flux ratio λ. It is the mass of a region divided by the magnetic flux

threading the region in units of the critical value (2πG1/2)−1 (Nakano & Nakamura

1978). For a sample of dense cores in the nearby dark clouds, Troland & Crutcher

(2008) inferred a mean value for λlos ∼ 4.8, based on the field strength and column

density along the line-of-sight. Geometric corrections for projection effects should

reduce this value by a factor of 2-3, yielding an intrinsic value of λ of a few typically.

Such a magnetic field is generally not strong enough to prevent the dense core from

gravitational collapse and star formation. It is, however, strong enough to affect the

angular momentum evolution of the collapsing core in general and binary formation

in particular.

There have been several studies of the magnetic effects on binary formation (e.g.,

Price & Bate 2007; Hennebelle & Teyssier 2008; Machida et al. 2010). These studies
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focused primarily on the classical mode of binary formation inside an isolated rotating

core, through core fragmentation induced by an m = 2 density perturbation (e.g.,

Boss & Bodenheimer 1979, see Kratter 2011 for a recent review and Chapter 1 for

an overview of different mechanisms of binary formation). A general conclusion is

that the fragmentation can be suppressed by a rather weak magnetic field if the core

is only weakly perturbed. For example, Hennebelle & Teyssier 2008 found that, for

a density perturbation of 10%, the fragmentation is suppressed by a magnetic field

corresponding to λ = 20 (see their Fig. 3), much weaker than the observationally

inferred field. In dense cores that are magnetized to a more realistic level (with λ ∼ a

few), fragmentation can still occur, although a large amplitude perturbation is needed

(Price & Bate 2007; Hennebelle & Teyssier 2008). A limitation of the existing MHD

calculations is that they are confined mostly to the pre-stellar phase of core collapse

and fragmentation leading up to the formation of two binary seeds. How the binary

seeds evolve during the subsequent protostellar mass accretion phase in the presence

of a dynamically important magnetic field remains little explored. It is the focus of

our investigation.

Our investigation of the magnetic effects on protobinary evolution was carried out

using the MHD version of the ENZO AMR hydro code described in Chapter 2 that

includes a sink particle treatment (Bryan & Norman 1997; O’Shea et al. 2004; Wang

& Abel 2009; Wang et al. 2010). In § 4.2, we discuss the setup for the initial binary

seeds and the rotating magnetized protobinary envelope to be accreted by the seeds,

as well as the numerical code used. In § 4.3, we present numerical results for the

evolution of initially equal-mass binary seeds. We find that a magnetic field of the

observed strength can shrink the protostellar orbit by more than an order of magni-

tude compared to the non-magnetic case. It also greatly changes the dynamics and

morphology of the protostellar accretion flow near the binary. For initially unequal

mass binary seeds, the issue of mass ratio evolution becomes important. In § 4.4,

we follow the the evolution of unequal-mass protobinaries accreting from envelopes
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magnetized to different levels. We find that the well-known tendency towards equal

mass in the non-magnetic case due to preferential mass accretion onto the secondary

is weakened or even suppressed by magnetic braking. We summarize the main results

and put them in context in § 4.5.

4.2 Problem Setup

As mentioned in the introduction, the focus of our investigation is on the protostellar

accretion phase of binary formation, where the magnetic effects are least explored. We

will therefore skip the pre-stellar phase of core evolution leading up to the production

of a pair of binary seeds, and assume that, at the beginning of our calculations,

the seeds are already formed and are ready to accrete from a rotating, magnetized

envelope. The setup is similar in spirit to the influential work of Bate & Bonnell (1997)

and Bate (2000), who studied the effects on binary properties of mass accretion from

an unmagnetized envelope (see also Artymowicz 1983). We postpone a treatment of

both the pre-stellar and protostellar phases of binary formation to a later chapter (see

Chapter 6). In what follows, we describe the initial conditions for the envelope and

binary seeds as well as the numerical code used for following the envelope collapse

and protobinary accretion.

Although protostellar envelopes are often observed to be irregular and filamentary

(e.g., Tobin et al. 2010), it is instructive to model them simply, so that the basic effects

can be illustrated as cleanly as possible. Since the formation and evolution of binaries

involve complex dynamics that are challenging to simulate and interpret, it is useful

to set up the calculations in such a way that the numerical results can be checked

against analytic expectations. One way to achieve this is to start with a self-similar

initial configuration for the envelope, with an r−2 density distribution given by (Shu

1977)

ρ(r) =
Ac2s

4πGr2
, (4.1)
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where cs is the isothermal sound speed, and A is an over-density parameter. The

collapse of such an initial configuration is expected to remain self-similar (Shu 1977),

and the self-similarity has proven to provide a powerful check on the numerically

obtained solutions (see, e.g., Allen et al. 2003; Mellon & Li 2008; 2009; Kratter et al.

2010; and discussion in § 4.3).

We choose an over-density parameter A = 4 (corresponding to a ratio of thermal

to gravitational energy of α = 3/(2A) = 0.375), so that the initial configuration is

denser than the famous equilibrium singular isothermal sphere by a factor of 2. The

mass enclosed within any radius r can be integrated as,

M(r) =
Ac2s
G
r. (4.2)

For an adopted core radius R = 1017 cm and isothermal sound speed cs = 0.2 km/s

(corresponding to a temperature of ∼ 10 K), the above equation yields a total core

mass Mtot = 1.2M⊙ and an average free-fall time tff ≈ 88 kyr.

We generalize the isothermal configuration to include both rotation and magnetic

fields. To preserve the self-similarity, the rotation speed cannot depend on radius

but can have an angular dependence (Allen et al. 2003). A convenient choice is

vφ = v0 sin θ (where θ is the polar angle measured from the rotation axis), which

ensures that the angular speed is finite on the axis. We pick v0 = cs, in order to

have as large a rotation speed as possible, so that the binary can be well resolved,

especially for strongly magnetized cases where the binary separation is reduced by

a large factor compared to the non-magnetic case; even faster, supersonic, rotation

may produce undesirable shocks. The adopted rotation profile corresponds to a ratio

of rotational to gravitational energy β = (v0/cs)
2/(3A) ≈ 0.083, somewhat higher

than used in other works (e.g., Machida et al. 2010). Nonetheless, it is still within

the range inferred by Goodman et al. (1993) from NH3 observations of dense cores.

We choose an initially uni-directional magnetic field along the rotation axis (or
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the z-axis in the simulations), with the field strength decreasing away from the axis as

1/̟ (where ̟ is the cylindrical radius), such that the mass-to-flux ratio is constant

spatially. To avoid singularity at the origin, we soften the profile to 1/(̟ + rh), so

that

Bz(̟) =
Ac2s√
Gλ

1

̟ + rh
, (4.3)

where λ in the denominator is the dimensionless mass-to-flux ratio of the envelope in

units of the critical value (2πG1/2)−1, and the parameter rh is defined below. Even

though dense cores typically have λ of a few (see discussion in § 4.1), we will consider a
much wider range of λ =2, 4, 8, 16 and 32, as well as the non-magnetic case (λ = ∞),

so as to capture any trend that may exist in the protobinary properties as the field

strength increases gradually.

To study the protobinary evolution, we follow Bate & Bonnell (1997) and Bate

(2000) and insert two equal-mass “seeds” near the center of the protostellar envelope

at the beginning of the calculation; non-equal mass binaries will be treated separately

in § 4.4. We assume that each of the binary seeds has a small initial mass of 0.05M⊙.

To determine the initial binary separation, we assume that the binary seeds get both

their masses and orbital angular momentum from a sphere of radius rh = 8.30 ×
1015 cm in the initial envelope that contains 0.1M⊙. In other words, we assign both

the mass and angular momentum inside rh to the binary seeds. The initial orbital

angular momentum is thus

Lb = L(rh) =

rh
∫

0

π
∫

0

2π
∫

0

ρv0 sin θ̟r
2 sin θ drdθdφ =

Ac2sv0
3G

r2h, (4.4)

which, for circular orbits, yields an initial binary separation of

a =
16A2c4sv

2
0r

4
h

9(GMb)3
= 3.687× 1015 cm ≈ 246 AU, (4.5)

where Mb = 0.1 M⊙ is the total mass of the binary.
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We carry out simulations with periodic boundary conditions inside a box of length

5×1017 cm on each side, which is significantly larger than the protobinary envelope (of

radius 1017 cm). The region outside the envelope is filled with a uniform isothermal

medium of the same density (and temperature) as that at the outer boundary of the

envelope (ρa ≈ 1.91×10−19 g cm−3), so that the pressures are initially balanced across

the boundary. To speed up computation, we adopt a relatively coarse base grid of

643, but allow for 8 levels of refinement, with a smallest cell size of about 2.0 AU.

As usual, we adopt a barotropic equation of state (EOS) that mimics the isother-

mal EOS at low densities and adiabatic EOS at high densities:

P (ρ) = ρc2s



1 +

(

ρ

ρcrit

)2/3


 , (4.6)

with a critical density ρcrit = 10−13 g cm−3 for the transition between the two regimes.

We treat the binary stars as sink particles. The sink particle treatment is described

in detail in Wang et al. 2010. Briefly, each particle accretes according to a modified

Bondi-Hoyle formula (see Ruffert 1994). New sink particles are created at the center

of those over-dense cells that violate the Jeans criterion at the highest refinement

level, i.e. when ρcell > ρJ = π
G
( cs
N∆x

)2 = 7.90 × 10−14g · cm−3, where we have used

a Truelove’s (Truelove et al. 1997) safety number N = 16 and a finest cell size

∆x = 3.05 × 1013 cm. Newly created sink particles are subject to merging, which

is controlled by two parameters: the merging mass Mmerg = 0.01M⊙ and merging

distance lmerg = 5 × 1014 cm (for details, see Wang et al. 2010). These values are

chosen to eliminate artificial particles and to maximize computation efficiency. Our

main results are insensitive to these parameters as long as they are reasonably small.

We have tested the sink particle accretion algorithm against known semi-analytic

solutions of the collapse of (non-magnetic) singular isothermal sphere (Shu 1977) and

found good agreement. For example, the collapse of our chosen initial configuration

(Eq. [5.1] with A = 4) yields, after some initial adjustment, a constant mass accretion
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rate of 1.06× 10−5 M⊙ yr−1, which matches Shu’s result almost exactly (see Chapter

2 for details).

In a magnetized medium, we let the sink particle accrete only the mass but not

the magnetic field; the field is left behind. This treatment is a crude representation

of the decoupling of the magnetic field from the matter expected at high densities

(Nakano et al. 2002; see discussion in Zhao et al. 2011).

4.3 Magnetic Braking and Protobinary Orbital Evo-

lution

Before discussing detailed quantitative results, we first describe the qualitative effects

of the magnetic field on the (initially equal-mass) protobinary orbit by contrasting

the two extreme cases: the case without a magnetic field (the HD or hydro case

hereafter), and the strongest field case (λ = 2, which is consistent with available

Zeeman measurements, see Troland & Crutcher 2008). Both simulations reached a

rather late time (t greater than about 80 kyr, comparable to the free-fall time at

the average density), when the binary seeds have finished many orbits around each

other. In Fig. 4-1, we show the snapshots of the two cases near the middle point of

the simulation, at t ≈ 39 kyr. They look strikingly different. In the HD case, there

are two well separated stars, each surrounded by a circumstellar disk. The disks are

surrounded by a well-defined circumbinary structure, with two prominent spiral arms

embedded in it. The circumstellar disks and circumbinary structure are similar to

those found in previous non-magnetic calculations, such as Bate (2000) and Hanawa

et al. (2010). They are the result of the conservation of angular momentum in the

rapid collapsing region of the envelope, and redistribution of angular momentum close

to the binary through gravitational torques.

These well-known features are completely absent in the strongly magnetized λ = 2

case. They are replaced by two irregular lobes, which were studied in detail in Zhao et
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al. (2011) (see also Chapter 3); they are the so-called “magnetic decoupling-enabled

structures” (or DEMS for short) produced by the magnetic flux decoupled from the

matter that enters the stars (sink particles). The DEMS are magnetically dominated,

low-density, expanding regions. They surround the protobinary, whose separation is

much smaller than that of the HD case (see Fig. 4-1). Clearly, the magnetic field has

greatly modified not only the circumstellar and circumbinary structures, but also the

binary orbit. In the following subsections, we will discuss these modifications more

quantitatively.
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Time= 39.457 kyr, Length= 3.00e+16 cm

Fig. 4-1.— Distribution of the logarithm of the column density Σ (in g · cm−2 )
along z-direction and velocity field on the equatorial plane. Both the HD (left panel)
and λ = 2 (right panel) case are at t ≈ 39 kyr. The well-defined circumstellar and
circumbinary disks in the former are replaced by two magnetically dominated lobes
in the latter. The binary stars are marked by crosses.
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4.3.1 Binary Separation and Angular Momentum-Mass Re-

lation

Hydro Case: Checking against Expectations

We begin our quantitative discussion with binary separation. It is shown as a function

of time in Fig. 4-2 for all initially equal-mass simulations. The evolution of the

binary separation is particularly interesting in the HD case. It decreases initially for

about 20 kyr, before increasing almost linearly with time1. The linear increase is a

natural consequence of the initial protostellar envelope configuration chosen, which

is self-similar over a range of radii (excluding the regions close to the center and the

outer edge). The configuration is expected to collapse self-similarly, with the binary

separation increasing linearly with time (for the same reason that the size of the

expansion wave in the well-known inside out collapse of a singular isothermal sphere

increases linear with time; Shu 1977), after some initial adjustment. The decrease in

binary separation during the initial adjustment comes about because we have put all

of the angular momentum of the material inside a small sphere into the orbit of the

initial binary seeds. This leads to an overestimate of the initial binary orbital angular

momentum (and thus the separation) because a fraction of the angular momentum

should be left behind in the circumstellar disks and circumbinary structure. We have

experimented with binary seeds formed out of a smaller sphere that have smaller

initial masses and separation. They exhibits a similar linear growth of separation

with time after a shorter adjustment period. In other words, the protobinary reaches

the expected self-similar state more quickly. The agreement of the numerical result

with expectations gives us confidence that the ENZO-based AMR code can treat the

protobinary evolution problem properly.

Another check on the numerical solution comes from the expected scaling between

1The wiggles on the curve is due to small orbital eccentricity (of order 10% or less) excited during
the protobinary evolution. We will postpone a detailed study of the magnetic effect on eccentricity
to a future investigation.
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Fig. 4-2.— Evolution of binary separation with time for HD (black solid), λ = 32
(purple dotted), λ = 16 (blue long-dashed), λ = 8 (green dash-dot-dot-dotted), λ = 4
(yellow dash-dotted), and λ = 2 (red thick solid) cases. Note the large difference
between the HD and the realistically magnetized (λ = 2 and perhaps 4) cases.

the orbital angular momentum and total mass of the protobinary. The scaling can

be obtained as follows. We assume that the gas in our singular isothermal enve-

lope accretes shell by shell onto the binary. The total mass M(r) and total angular

momentum L(r) for a sphere of radius r are given, respectively, by Eq. (4.2) and

L(r) =
Ac2sv0
3G

r2. (4.7)

If all of the mass and angular momentum of the material within the sphere are accreted
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onto the binary, then the orbital angular momentum Lb and binary mass Mb must be

related through

Lb(Mb) =
2Gv0
3Ac2s

M2
b . (4.8)

This relation is shown as the dashed line (scaled down by a factor of ∼ 1.5) in Fig. 4-3,

together with the angular momentum-mass (or Lb-Mb) relations obtained in all of

our simulations. Again, the HD case is particularly noteworthy. Its Lb −Mb relation

closely matches the analytical prediction from eq. (4.8), except for a correction factor

of ∼ 1.5. The correction is to be expected because the mass and orbital angular

momentum of the protobinary at any given time does not come from a region of

perfectly spherical shape (assumed in deriving the above equation). More slowly

rotating material near the rotation axis can collapse more quickly onto the binary

than that near the equator, lowering the actual angular momentum of the binary

relative to its mass. In any case, the broad agreement between the numerical result

on the Lb-Mb relation and the analytical expectation lends further credence to the

correctness of the hydro simulation.

Magnetic Effect on Protobinary Orbit

Fig. 4-2 shows a general trend that the binary separation decreases with increasing

magnetic field strength. The difference is especially striking at late times, when the

separation increases with time for the HD case but stays roughly constant or decreases

for the magnetized cases. By the time t ≈ 80 kyr, the protobinary separation in the

HD case reaches ∼ 500 AU, which is much larger than that in the λ = 4 (∼ 50 AU)

and λ = 2 (∼ 10 AU) case. There is little doubt that a realistic magnetic field

(corresponding to a dimensionless mass-to-flux ratio of a few, see Troland & Crutcher

2008 and discussion in § 4.1) can shrink the protobinary orbit by a large factor.

The reduction in binary separation is related to a decrease in the orbital angular

momentum of the system. This is shown explicitly in Fig. 4-3. There is a general trend
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Fig. 4-3.— The relation between the orbital angular momentum and total mass of
the protobinary. The dash line is the the analytical prediction from Eq. 4.8 (reduced
by a correction factor of ∼ 1.5). The different curves are: HD (black solid), λ = 32
(purple dotted), λ = 16 (blue long-dashed), λ = 8 (green dash-dot-dot-dotted), λ = 4
(yellow dash-dotted), and λ = 2 (red thick solid).

for the orbital angular momentum to decrease with increasing magnetic field strength.

When the mass of the stellar seeds quadruples from 0.1 to ∼0.4 M⊙, the orbit angular

momentum in the HD case increases by more than an order of magnitude, whereas

that in the strongly magnetized λ = 2 case increases by merely a factor of 2. In the

latter case, there is a large amount of mass added to the protobinary but relatively

little angular momentum. Since the binary separation a is sensitive to the orbital

angular momentum Lb (i.e., a ∝ L2
b for a fixed binary mass Mb), even a relatively

modest change in the angular momentum would lead to a significant change in the
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separation.

We conclude from Figs. 4-3 and 4-2 that the main magnetic effect on the pro-

tobinary evolution is to reduce its orbital angular momentum compared to the non-

magnetic case, which in turn leads to a tighter orbit. This result may appear puzzling

at the first sight, because the magnetic forces do not act directly on the binary seeds.

However, they do act on the material to be accreted by the seeds. By changing the

angular momentum of such material, the magnetic field can greatly affect, perhaps

even control, the orbital evolution of the protobinary. In the next subsection, we

explore in some detail the mechanism through which the magnetic field shrinks the

protobinary orbit.

4.3.2 Magnetic Braking and Angular Momentum Removal

from Protobinary Accretion Flow

It is well-known that magnetic fields interact strongly with fluid rotation, through

magnetic braking. If the infalling material has a large fraction of its angular momen-

tum removed prior to its arrival at the binary seeds, it would add mass but relatively

little angular momentum to the protobinary system. As a result, the binary separa-

tion would increase less rapidly with time compared to the hydro case; it may even

decrease with time if the magnetic braking is strong enough.

The presence of magnetic braking can be seen directly from Fig. 4-4, where we plot

the field lines at the representative time t ≈ 39 kyr for the λ = 2 case. The initially

straight field lines are twisted by the fluid rotation into a helical shape, especially in

the polar regions. The magnetic tension force associated with the twist acts back on

the fluid, braking its rotation.

To quantify the strength of the magnetic braking, let us consider a finite volume

V with surface S. Inside this volume, the total magnetic torque relative to the origin
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Fig. 4-4.— 3D view of the magnetic field lines and an iso-density surface in the inner
part of the protobinary accretion flow at the representative time t ≈ 39 kyr, showing
the field twisting that is the smoking gun of magnetic braking. The plotted region
has a dimension of 5× 1015 cm.

(from which a radius vector r is defined) is

Nm =
1

4π

∫

[r× ((∇×B)×B)] dV, (4.9)

where the integration is over the volume V . Typically, the magnetic torque comes



70

mainly from the magnetic tension rather than pressure force. The dominant magnetic

tension term can be simplified to a surface integral (Matsumoto & Tomisaka 2004)

Nt =
1

4π

∫

(r×B)(B · dS), (4.10)

over the surface S of the volume. This volume-integrated magnetic torque is to be

compared with the rate of angular momentum advected into the volume through fluid

motion,

Na = −
∫

ρ(r× v)(v · dS), (4.11)

which will be referred to as the advective torque below.

Since the initial angular momentum of the protobinary envelope is along the z-axis,

we will be mainly concerned with the z−component of the magnetic and advective

torque,

Nt,z =
1

4π

∫

(xBy − yBx)(B · dS) (4.12)

and

Na,z = −
∫

ρ(xvy − yvx)(v · dS), (4.13)

which can change the z−component of the angular momentum Lz within the volume

V .

As an example, we show in Fig. 5-6 the distributions of the magnetic and advective

torques Nt,z and Na,z for cubic boxes of different sizes that are centered at the origin,

at the representative time t ≈ 39 kyr for the λ = 2 case. As expected, the volume-

integrated magnetic torque is negative for boxes of most sizes; it removes angular

momentum from the material inside the boxes through magnetic braking. At the time

shown, the braking torque is particularly large outside ∼ 1016 cm from the origin,

reaching absolute values of order 1041 g cm2s−2 or larger. To appreciate how large this

torque is, we note that the orbital angular momentum of the protobinary in the hydro

case is ∼ 4.4× 1052 g cm2s−1 around the same time. This angular momentum would
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be removed by the above magnetic torque on a time scale of 13 kyr, much shorter

than the envelope collapse time. Given the magnitude of the magnetic torque, it is

not surprising that the orbital angular momentum (and thus the separation) of the

protobinary can be reduced significantly.

Fig. 4-5.— The magnetic (black ‘+’) and advective (blue ‘x’) torque and the sum
of the two (red) for cubic boxes of different half-width b for the λ = 2 case, at a
representative time t ≈ 39 kyr. A positive torque increases the angular momentum
within a volume whereas a negative one decreases it.

The magnetic torque changes with time, however. At the time shown in Fig. 5-6,

the magnetic torque overwhelms the advective torque for boxes of most sizes, leading

to a net decrease of the angular momentum with time for the material in these boxes.

This may not happen at other times. To evaluate the accumulative effects of the
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magnetic and advective torque over time, we define for each box of half width b

Lt,z(b, t) =
∫ t

0
Nt,z(b, t

′)dt′ (4.14)

and

La,z(b, t) =
∫ t

0
Na,z(b, t

′)dt′ (4.15)

which are the amount of the z−component of the angular momentum inside the box

changed by the magnetic and convective torque, respectively, up to time t. These

two quantities are to be compared with the actual change of the angular momentum

inside each box between time t and t = 0,

∆Lz(b, t) = Lz(b, t)− Lz(b, t = 0). (4.16)

Barring a significant gravitational torque, one expects ∆Lz(b, t) to be close to

La,z(b, t) in the hydro case, because fluid advection should be the main channel for

angular momentum change. This is indeed the case, as illustrated in panel (a) of Fig.

4-6, where both ∆Lz(b, t) and La,z(b, t) are plotted as a function of the box size b

at the representative time t ≈ 39 kyr. The change in angular momentum ∆Lz(b, t)

does follow closely the advected angular momentum for boxes of sizes larger than

∼ 1016 cm. For boxes of smaller sizes, there is significantly more angular momentum

advected into a box than the actual angular momentum change in it, indicating that

a good fraction of the angular momentum advected into the box is transported back

out, presumably by the gravitational torques associated with the spiral arms that are

visible in the left panel of Fig. 4-1. The gravitational torques may also be responsible

for the small excess of La,z(b, t) over ∆Lz(b, t) for the larger boxes.

The situation is very different in the presence of a relatively strong magnetic field,

as shown in panel (b) of Fig. 4-6. Plotted are Lt,z(b, t), La,z(b, t), and Lt,z(b, t) +

La,z(b, t) together with ∆Lz(b, t) as a function of box size at t ≈ 39 kyr for the λ = 2
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case. The total change of the angular momentum due to the magnetic and advective

torque acting on the boundary of a box, Lt,z(b, t)+La,z(b, t), is very close to the actual

change in angular momentum inside the box, ∆Lz(b, t), indicating that any additional

torques (such as gravitational torques), if present, play a relatively minor role in angu-

lar momentum transport. This is not surprising, because the prominent spiral arms of

the hydro case are disrupted by the magnetic field completely. More importantly, the

sum Lt,z(b, t)+La,z(b, t) has a magnitude much smaller than |Lt,z(b, t)| and |La,z(b, t)|
individually, which means that most of the angular momentum advected into a box is

removed by the magnetic braking, leaving little net angular momentum change in it.

This is unequivocal evidence that the magnetic braking in the λ = 2 case controls the

angular momentum evolution of the protostellar accretion flow, which in turn shapes

the orbit of the protobinary.

The effect of magnetic braking is even stronger than indicated by panel (b) of

Fig. 4-6. This is because La,z(b, t) is the net angular momentum advected into a box,

i.e., the sum of the positive angular momentum advected into the box L+
a,z(b, t) and the

negative angular momentum advected out of the box L−
a,z(b, t). In the λ = 2 case, the

magnetic braking drives an outflow, which produces a negative angular momentum

L−
a,z(b, t) that is not much smaller in magnitude than L+

a,z(b, t). In other words, the

angular momentum advected by infall into a box is larger than that shown in Fig. 4-6,

and most of this larger angular momentum is removed by both the magnetic braking

itself and the braking-induced outflow.

To illustrate the effect of magnetic braking more visually, we plot in Fig. 4-7 the

distribution of specific angular momentum on the equatorial plane for the hydro and

λ = 2 case at the representative time t ≈ 39 kyr. It is clear that, for the hydro case,

the specific angular momentum is roughly constant within a dimensionless radius

of ∼ 0.05 (or ∼ 2.5 × 1016 cm), indicating that the collapsing material has a more

or less conserved angular momentum before it is accreted by the protobinary. The

relatively large specific angular momentum of the accreted material is what drives
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the binary separation to increase. In the λ = 2 case, the specific angular momentum

of the material to be accreted is much smaller; it is reduced by twisted field lines (see

Fig. 4-4) as the material falls toward the binary. It is the accretion of the severely

braked, low angular momentum material that drives the protobinary closer with time.

4.3.3 Circumstellar and Circumbinary Structures

We have already seen from Fig. 4-1 that a realistic magnetic field of λ = 2 changes

the circumstellar and circumbinary structures of the HD case greatly: the prominent

features of the HD case, two well-defined circumbinary disks and a circumbinary disk

with two prominent spiral arms, are replaced by two low density lobes, which are

filled with the magnetic flux decoupled from the matter that has been accreted onto

the binary, i.e., the DEMS (Zhao et al. 2011; see also Seifried et al. 2011; Joos et

al. 2012; Krasnopolsky et al. 2012). These strongly magnetized structures present

an obstacle to mass accretion onto the protobinary. Although the DEMS tend to be

less prominent for weaker magnetic fields, they still dominate the face-on view of the

λ = 4 and 8 cases, especially at late times. An implication is that, for protostellar

envelopes magnetized to a realistic level (with λ ∼ a few), the protobinary mass

accretion does not follow the traditional path: from the envelope to a circumbinary

disk to circumstellar disks to individual stars. Rather, the envelope material collapses

directly close to the stars typically, and be accreted along azimuthal directions not

occupied by the DEMS.

Another magnetic effect on the circumbinary environment is illustrated in Fig. 4-8,

where we display both the edge-on and face-on view of the λ = 2 case at a relatively

early time t = 18 kyr. The edge-on view shows that the protobinary is surrounded

by two large, mostly expanding, regions (one each above and below the equator)

that are absent in the HD case. Their dynamics are dominated by the rotationally

twisted magnetic fields (see Fig. 4-4). It is in these regions that most of the angular
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momentum extracted magnetically from the material that falls into the stars is stored.

Such bipolar expanding regions are seen in many magnetized core collapse simulations

(for an early example, see Tomisaka 1998). They block the protobinary accretion over

most of the solid angle, and force the accretion to occur mainly through a flattened,

equatorial structure — a circumbinary pseudodisk (Galli & Shu 1993).

The pseudodisk is also clearly visible in the face-on view of the system in the right

panel of Fig. 4-8, as a nearly circular region of enhanced column density. Unlike the

circumbinary disk in the HD case (see the left panel of Fig. 4-1), the pseudodisk is

not rotationally supported. It falls supersonically inward, and the infall can be seen

in the velocity fields shown in Fig. 4-8. Another difference is that the circumbinary

pseudodisk does not have prominent spiral arms. This is not surprising, because the

pseudodisk is strongly magnetized, which makes gas compression more difficult. The

rapid infall also leaves little time for the spirals to develop. The lack of spiral arms is

consistent with our earlier result that the angular momentum transport in the λ = 2

case is dominated by magnetic braking rather than gravitational torque.

4.3.4 Protobinary Mass Growth

Despite the differences in the morphology and dynamics of the circumbinary environ-

ment with and without a magnetic field, the stars grow at remarkably similar rates in

all cases (of order ∼ 10−6 M⊙/yr). This is shown in Fig. 4-9, where the mass of each

component of the protobinary is plotted as a function of time, for different degrees

of magnetization. The reason for the similarity is that the mass accretion rate is

determined mainly by the dynamics on the envelope scale: the material collapsing

down from the envelope will find a way to the stars sooner or later, irrespective of

the details of the circumbinary environment. In the HD or weakly magnetized cases,

there is more material parked in the circumstellar and circumbinary disks, making

the mass accreting rate onto the stars lower. However, this effect is smaller than

that from the retardation of envelope collapse by magnetic tension in the stronger
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field cases. As a result, the protostellar mass accretion rate is somewhat lower in the

stronger field cases, although not by a large factor.

It is reassuring that the masses of the two initially equal-mass components stay

nearly the same for all cases, despite the fact that the inner protobinary accretion

flow can become rather disordered at times, especially for strongly magnetized cases.

The magnetic field does not appear to change much the rate of mass accretion by

one component relative to the other, although the situation is drastically different for

initially unequal mass protobinaries, as we demonstrate next.

4.4 Magnetic Braking and Mass Ratio of Unequal-

Mass Protobinaries

The vast majority of low (Sun-like) mass binaries are unequal-mass systems (Duquen-

noy & Mayor 1991; Raghavan et al. 2010). The mass ratio, defined as q = M2/M1

where M1 and M2 are the mass of the primary and secondary respectively, is one of

the fundamental parameters that characterize the binaries. Its observed distribution

provides important constraints on binary formation and evolution (see discussion in

§ 4.5).

The mass ratio q of protobinaries is expected to be affected by magnetic braking.

This is because the change of q depends on the specific angular momentum of the cir-

cumbinary material to be accreted relative to that of the binary. It is well known that

high angular momentum material tends to accrete preferentially onto the less-massive

secondary, which has a higher specific angular momentum than the primary, driving

the mass ratio toward unity (Bate & Bonnell 1997; Bate et al. 2002). As we have

seen above, magnetic braking can remove the angular momentum of the circumbinary

material efficiently. It is expected to weaken the tendency for preferential accretion

onto the secondary. We show that it is indeed the case in Fig. 4-10.

Shown in Fig. 4-10 are the mass ratios as a function of time for three cases λ = ∞
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(HD), 16 and 2. The initial conditions are the same as those for the equal-mass cases

discussed in § 4.3, except that the mass and angular momentum inside the radius

rh of the power-law envelope are given to a binary system of mass ratio q = 0.25

rather than q = 1. The mass ratio increases with time in the HD case, in agreement

with previous results. As expected, the magnetic field slows down the increase in

q compared to the HD case. Even a rather weak magnetic field of λ = 16 has an

appreciable effect on the mass ratio evolution. For the more realistic value of λ = 2,

the primary accretes much faster than the secondary, by a factor of 3-4, so that the

mass ratio remains roughly constant. The large contrast between the HD and λ = 2

case leaves little doubt that magnetic braking is an important factor to consider in

understanding the mass ratio distribution of binaries. We will leave a comprehensive

exploration of this issue to a future investigation.

4.5 Summary and Discussion

We have carried out a set of idealized numerical experiments to demonstrate the ef-

fects of the magnetic field on protobinary evolution during the mass accretion phase.

The protostellar envelope was idealized as a rotating, magnetized singular isother-

mal sphere. Its collapse onto a pre-existing pair of binary seeds was followed using

an MHD version of the ENZO AMR hydro code that includes a sink particle treat-

ment. We found that a magnetic field of the observed strength (corresponding to

a dimensionless mass-to-flux ratio of a few) can remove, through magnetic braking,

most of the angular momentum of the material that reaches the protobinary. The

reduction in the angular momentum of the protobinary accretion flow has two im-

portant consequences: compared to the non-magnetic case, (1) the protobinary orbit

becomes much tighter, and (2) the mass-ratio does not increase as fast with time for

initially unequal mass systems. In addition, the magnetic field drastically changes

the morphology and dynamics of the structures that surround the protobinary. It
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suppresses the formation of the familiar circumstellar and circumbinary disks in the

non-magnetic case, as well as the spiral arms embedded in them. These structures are

replaced by a bipolar magnetic-braking driven expanding regions, a dense, infalling,

circumbinary pseudodisk in the equatorial region, and low-density, highly magnetized

structures close to the protobinary that expand against the pseudodisk (the DEMS).

We conclude that both the basic characteristics (such as mass ratio and separation) of

the protobinaries and the environment in which binaries grow are strongly modified

by a realistic magnetic field.

The magnetic braking-driven inward migration of protobinaries may have observ-

able consequences. As mentioned in the introduction, the distribution of binary or-

bital separation during the earliest, Class 0 phase of star formation may be different

from those at later times. In particular, there is tentative evidence for a “desert”

free of Class 0 binaries with separation between ∼ 150− 550 AU (Maury et al. 2010;

Enoch et al. 2011), which is not present in the Class I or later phases. If confirmed

by future observations, this gap must be filled in by binaries from either outside the

gap or interior to it. The magnetic braking is an efficient way of shrinking the proto-

binary orbit. It can in principle move some binaries born on wide orbits outside the

gap into the gap. Indeed, Offner et al. (2009, 2010) found that most of the binaries

in their cluster formation simulations were born with relatively wide separations, as a

result of radiative feedback, which tends to suppress close binary formation through

disk fragmentation; the orbits of such wide binaries could be tightened by magnetic

braking2. A potential problem is that the braking may be so efficient during the

protobinary mass accretion phase (when a massive, slowly rotating envelope is still

present) that the binary separation would move quickly through the gap and pile up

below the resolution of the current generation of millimeter/submillimeter interferom-

2Bate (2012) found that the binaries in his radiation hydro simulations of cluster formation have
properties consistent with observations, indicating that magnetic effects are not needed. It would
be interesting to quantify how a magnetic field of the observed strength modifies the properties of
the binaries formed in a cluster environment.
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eters (∼ 50−100 AU). If this is the case, one would expect to find an over-abundance

of relatively close protobinaries with separation <∼ 100 AU that may be uncovered

by ALMA and JVLA. The same pileup at small separations would also occur if the

binaries born on tight orbits interior to the gap are kept from expanding into the gap

by magnetic braking.

The problem of potentially turning most wide binaries into close binaries is re-

lated to the magnetic braking catastrophe in disk formation (Galli et al. 2006). Both

semi-analytic arguments and numerical simulations have shown that, in magnetized

laminar dense cores of λ of a few, the formation of a rotationally supported disk is

suppressed by magnetic braking in the ideal MHD limit (Allen et al. 2003; Galli et

al. 2006; Price & Bate 2007; Mellon & Li 2008; Hennebelle & Fromang 2008; Seifried

et al. 2011; Dapp & Basu 2011). The magnetic braking must be weakened some-

how in order to form both large-scale disks and wide binaries. In the context of

disk formation, there are several proposed mechanisms for weakening the magnetic

braking, including the misalignment between the magnetic and rotation axes (Joos

et al. 2012), turbulence (Santos-Lima et al. 2012; Seifried et al. 2012; Myers et al.

2012), and the depletion of the slowly rotating protostellar envelope that acts to brake

the disk, either by outflow stripping (Mellon & Li 2008) or accretion (Machida et al.

2010). The last possibility is particularly intriguing, because it implies a rapid growth

of the rotationally supported disk during the transition from the deeply embedded

Class 0 phase to the more revealed Class I phase that can be observationally tested.

Similarly, the depletion of the protobinary envelope and the associated weakening

of magnetic braking may enable the separation of the protobinaries to grow quickly

during the Class 0-Class I transition. If this is the case, the orbits of wide binaries

may first shrink during the Class 0 phase due to efficient magnetic braking and then

re-expand as the protobinary envelope depletes. This and other possibilities for pro-

tobinary migration should be testable with high-resolution millimeter/submillimeter

interferometric observations, especially using ALMA and JVLA.
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Our calculations demonstrated that magnetic braking is important for the evolu-

tion of not only the binary separation, but also the mass ratio q. Raghavan et al.

(2010) found a roughly flat distribution for q between 0.2-0.95, with a valley below

0.2, and three spikes around 0.25, 0.35 and 1.0 (see the left panel of their Fig. 16). It

is tempting to attribute the last spike at q ∼ 1 to the preferential accretion of high

specific angular momentum material onto the lower-mass component found in hydro-

dynamical simulations (Bate & Bonnell 1997; Bate et al. 2002). However, the spike

around q ∼ 1 is just one of the three spikes in Raghavan et al.’s data, and it does not

show up in the sample of Duquennoy & Mayor (1991) at all (see their Fig. 10). In

any case, there are many more systems with mass ratio q well below unity than close

to unity. A mechanism must be found to prevent the majority of the low-mass ratio

protobinaries from becoming equal-mass systems. The magnetic braking highlighted

in this Chapter is one such mechanism. It is a key factor to consider in understanding

binary formation and evolution in dense cores that are observed to be significantly

magnetized.
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Fig. 4-6.— The integrated magnetic and advective torques Lt,z (black solid), La,z

(blue dotted), and their sum Lt,z+La,z (red dashed) together with the actual angular
momentum change ∆L (green thick solid) for cubic boxes of different half-width b.
The HD case is shown in panel (a) with zero Lt,z and the λ = 2 case is shown in
panel (b), both at a similar time t ≈ 39 kyr. The vertical dashed line in panel (a)
indicates the approximate position of the sink particles, whereas in panel (b) such
particle position lies below 1015 cm.
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Fig. 4-7.— Snapshot of the gas specific angular momentum (in g · cm2 · s−1 with
logarithm scale) on the equatorial plane of the inner accretion flow for the HD case
(left panel) and the λ = 2 case (right panel) at t ≈ 39 kyr, showing the strong braking
of the material to be accreted by the protobinary in the magnetized case compared
to the HD case. The arrows are velocity vectors, and the crosses mark stars. Only
the central region of 1017 cm on each side is plotted.
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Fig. 4-8.— Left panel: edge-on view of the column density in the λ = 2 case at
t = 18 kyr, showing two slowly expanding polar regions sandwiching an infalling, cir-
cumbinary pseudodisk in the equatorial region. Right panel: face-on view of the same
structure, showing that the circumbinary pseudodisk is not rotationally supported; it
collapses rapidly.



84

0 20 40 60 80 100
Time (kyr)

0.0

0.1

0.2

0.3

S
ee

d 
M

as
s 

(M
su

n)

Fig. 4-9.— Stellar mass (in solar units) growth of the initially equal-mass binary
system for HD (black solid), λ = 32 (purple dotted), λ = 16 (blue long-dashed),
λ = 8 (green dash-dot-dot-dotted), λ = 4 (yellow dash-dotted), and λ = 2 (red thick
solid) cases. Note that, in all cases, the two stars stay roughly equal-mass at all times.
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Fig. 4-10.— Evolution of the protobinary mass ratio q with time for envelopes that
have different levels of magnetization, with λ = ∞ (HD, black solid), 16 (blue dashed),
and 2 (red thick solid).
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Chapter 5

Effect of Magnetic Misalignment

on Protobinary Evolution

This chapter is based on a paper submitted to ApJ (Zhao, Li, & Kratter 2014).



87

5.1 Introduction

Stars form in dense cores that are often observed to be significantly magnetized

(Troland & Crutcher 2008). The spin-up of infalling gas due to angular momen-

tum conservation twists these magnetic field lines, at least in the ideal MHD limit.

This twisting and the associated magnetically driven outflow transport angular mo-

mentum outward from the forming star. For realistic levels of magnetization, both

analytical and numerical work has shown that this magnetic braking (in the ideal

MHD limit) suppresses the formation of rotationally supported disks (Allen et al.

2003; Galli et al. 2006; Price & Bate 2007; Mellon & Li 2008; Hennebelle & Fromang

2008; Dapp & Basu 2010; Krasnopolsky et al. 2012). However, Keplerian disks are

routinely observed around evolved Class II objects(e.g. Williams & Cieza 2011), and

increasingly around Class I (Jørgensen et al. 2009; Enoch et al. 2009; Takakuwa et

al. 2012), perhaps even Class 0 sources (Tobin et al. 2012).

The aforementioned studies have all assumed uniform rotation profiles aligned

with a uniform magnetic field. Observed cores, however, have both turbulent velocity

profiles (Goodman et al. 1993) and likely non-uniform, misaligned fields . Recent

CARMA survey of low mass Class 0 protostars indicates that a number of sources

have substantial misalignment between the magnetic field and bipolar outflow axis,

which is often taken as a proxy for the rotation axis (Hull et al. 2013). More recent

numerical simulations have shown that misalignment between the field and rotation

axis allows for the formation of extended disk in moderately magnetized cores due to

less efficient magnetic braking and weaker outflows (Joos et al. 2012; Li et al. 2013).

In this Chapter, we consider the influence of field alignment on the formation of

binary stars. Since both the formation and orbital parameters of binaries are linked

to the angular momentum evolution in the natal core (e.g., Hanawa et al. 2010), we

expect the field geometry to strongly influence the configuration of young binaries.

As discussed in Chapter 1, binary formation may be the dominant channel for star
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formation. Both field stars and pre-main sequence stars show high binary fractions.

For field stars of >∼ 1M⊙, the binary fraction is >∼ 50% (Duquennoy & Mayor 1991;

Raghavan et al. 2010; Janson et al. 2012). Young clusters show multiplicity fraction

in excess of 60−70% (Reipurth & Zinnecker 1993; Mathieu et al. 2000; Duchêne et al.

2004, 2007; Kraus et al. 2011). The high fraction of multiples at birth may indicate

that the majority of stars are formed in multiple systems, especially binaries.

In Zhao & Li (2013) (hereafter ZL13; see also Chapter 4), we studied the influence

of magnetic fields on the growth and orbital evolution of protobinary seeds embedded

in a magnetized core. We found that for magnetic fields aligned with the core rotation

axis, strong magnetic braking efficiently shrinks the binary separation on a timescale

shorter than 105 yrs by removing angular momentum from the infalling gas. In

contrast, similar simulations of binary formation in the hydrodynamic limit find that

the binary separations typically increase after birth due to the accretion of high

angular momentum material (Kratter et al. 2010). If most binaries form on wide

(∼ 500−1000 AU) orbits in magnetized cores, it could provide an explanation for the

non-detection of closer systems (∼ 150− 550 AU) in the Class 0 phase, as claimed by

Maury et al. (2010) and Enoch et al. (2011). Magnetic braking may shrink the orbits

of some of these wide binaries, and perhaps contribute to the higher binary fraction

for Class I sources (as high as ∼ 18% in the same separation range (Connelley et al.

2008)).

In this Chapter, we extend our study of protobinaries to include cores with tilted

magnetic fields. We compare the accretion history and orbital evolution of misaligned

and aligned systems. We use the MHD version of ENZO AMR code described in

Chapter 2 (see also Bryan & Norman 1997; O’Shea et al. 2004; Wang & Abel 2009;

Wang et al. 2010) to run a series of simulations analogous to ZL13 but with misaligned

fields. We show that the change in the efficiency of magnetic braking in the binary

case is not entirely analogous to that effect in the single star case. In § 5.2, we discuss
the initial setup for the binary seeds and the rotating magnetized gas envelope. Our
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main results are presented in § 5.3, where we show that the field misalignment reduces,

rather than increases, the binary separation compared to the case where the field and

rotation axes are aligned. We demonstrate how this result is echoed by the changes

in disk and outflow morphology in § 5.3.4. Finally, we discuss the implications of our

results for observed systems in § 5.4.

5.2 Problem Setup

To facilitate comparison with ZL13, we mimic their initial conditions (see also Chapter

4). We begin with a pair of binary seeds at the center of the dense core, and vary

both the strength and the orientation of the global magnetic field with respect to

the rotation axis. For completeness, we briefly summarize the initial conditions, and

describe the implementation of different magnetic field inclinations.

We initialize the protobinary envelope with a self-similar density profile (Shu

1977):

ρ(r) =
Ac2s

4πGr2
, (5.1)

where cs is the isothermal sound speed, and A an over-density parameter. Employ-

ing self-similar initial conditions provides a powerful check on numerical solutions.

We adopt an over-density parameter A = 4, corresponding to a ratio of thermal to

gravitational energy of α = 3/(2A) = 0.375. The mass enclosed within any radius r

is

M(r) =
Ac2s
G
r. (5.2)

As in ZL13, the total core gas mass is Mtot = 1.2M⊙, with a core radius R = 1017 cm

and isothermal sound speed cs = 0.2 km/s (corresponding to a temperature of ∼
10 K). The rotation speed of the core is chosen as vφ = v0 sin θ (where θ is the polar

angle measured from the rotation axis, and v0 = cs), which preserves the self-similar

collapse. Such a rotation profile corresponds to a ratio of rotational and gravitational
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energy β = (v0/cs)
2/(3A) ≈ 0.083. Note that this is somewhat higher than used

in other works (e.g. Machida et al. 2010), but is still within the range inferred by

Goodman et al. 1993 from NH3 observations of dense cores.

Unlike ZL13, we now allow the magnetic field to tilt by θ0 = 45◦ and 90◦ relative

to the axis of rotation. The strength of the uni-directional magnetic field has the

same initial profile of

Bz(̟) =
Ac2s√
Gλ

1

̟ + rh
, (5.3)

where the λ is the dimensionless mass-to-flux ratio of the envelope in units of the

critical value for a magnetically supported core (2πG1/2)−1, rh is the softening pa-

rameter to avoid the singularity at the origin. Note that the field strength decreases

away from the magnetic axis as 1/̟ (where ̟ is the cylindrical radius relative to the

magnetic axis), so that the mass-to-flux ratio is constant spatially. We perform 10

simulations: we have two tilt angles 45◦ and 90◦ for 5 levels of initial magnetization

of λ = 2, 4, 8, 16, and 32. These are compared with the aligned cases (with θ0 = 0◦)

of ZL13.

The binary stars are modeled in the same way as in ZL13 using sink particles.

The simulations are initialized with two sink particles separated by a ≈ 246 AU at

the center of the protostellar envelope (see Eq. 5 of ZL13). The seeds have a small

initial mass of 0.05M⊙ each and thus do not significantly modify the core potential.

The sinks are allowed to accrete mass from the surroundings based on the modified

Bondi-Hoyle formula (see Ruffert 1994).

5.3 Results

5.3.1 Protobinary Migration

We first investigate the effect of field misalignment on the evolution of the binary

orbit. Varying the magnetic field strength affects the binary separation more than
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varying the alignment. We show the influence of field strength on separation for the

orthogonal case (θ0 = 90◦) in Fig. 5-1. As in ZL13, the binary separation decreases

with increasing magnetic field strength. Contrary to the expectation based on the

single star case, weaker braking does not inhibit the shrinking of the binary orbit.
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Fig. 5-1.— Evolution of binary separation with time for HD (black solid), λ = 32
(purple dotted), λ = 16 (blue long-dashed), λ = 8 (teal dash-dot-dot-dotted), λ = 4
(green dash-dotted), and λ = 2 (red thick solid) cases. All magnetic cases have tilt
angle θ0 = 90◦.

For the same level of magnetization, we find that the binary separation is smaller

for larger tilt angles at any give time. This is illustrated in Fig. 5-2 for λ = 41. The

difference between the orthogonal case and the aligned case is modest. One might

1We mainly focus on the two extreme cases with θ0 = 0◦ and 90◦. The intermediate case θ0 = 45◦

largely lies in between.
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naively assume that the tighter binary separation in the tilted case is due to stronger

magnetic braking. However, this would contradict the results of Joos et al. (2012)

and Li et al. (2013). To ascertain the cause of angular momentum removal from the

binary we plot the evolution of orbital angular momentum for different tilt angles in

Fig. 5-3.

0 20 40 60 80
Time (kyr)

0

1•1015

2•1015

3•1015

4•1015

B
in

ar
y 

S
ep

ar
at

io
n 

(c
m

)

0

50

100

150

200

250

A
U

Fig. 5-2.— Evolution of binary separation with time for λ = 4 cases with different
tilt angles: 0◦ (black solid), 45◦(blue dash-dotted), and 90◦ (red dashed).

Fig. 5-3 shows that the orbital angular momentum is larger in the orthogonal case

than in the aligned case, consistent with the result of Joos et al. (2012) and Li et

al. (2013) for single star formation. However, the orbit is determined by the angular

momentum per unit mass, therefore we need to account for the influence of the field

misalignment on stellar accretion.
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Fig. 5-3.— Evolution of binary orbital angular momentum with time for λ = 4 cases
with different inclination angles: 0◦ (black solid) and 90◦ (red dashed).

We plot in Fig. 5-4 the stellar mass as a function of time for the λ = 4 case. It is

clear that the binaries accrete faster in cases with a larger tilt angle. The difference

is less than a factor of 2 for the two extremes (θ = 0◦ and 90◦), but is sufficient to

explain the smaller binary separation for the θ = 90◦ case compared to θ = 0◦ case

shown in Fig. 5-2.

For a binary system on a circular orbit, the orbital angular momentum is given

by

Lb =
q

(1 + q)2
G1/2Mb

3/2ab
1/2, (5.4)

where Lb, Mb, and ab are the orbital angular momentum, total mass and separation

of the binary, respectively, and q is the mass ratio of the two stars. The binary
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separation scales as ab ∝ Lb
2Mb

−3. Thus an increase of binary mass by a factor of

1.5 yields a binary separation ∼ 3 times smaller, given the same amount of available

angular momentum. The reduction in orbital separation due to faster mass accretion

is more than enough to offset the orbit widening due to the slightly larger orbital

angular momentum in the orthogonal case (see Fig. 5-3). The change in accretion

rate accounts for the factor of ∼ 2 difference in the binary separation shown in Fig. 5-2

between the aligned and orthogonal case. It is largely consistent with the results of

Joos et al. (2012) and Li et al. (2013). We now explore how field misalignment affects

mass accretion onto the stars.
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Fig. 5-4.— Stellar mass (in solar mass) growth with time for λ = 4 cases with different
inclination angles of magnetic field: 0◦ (black solid) and 90◦ (red dashed). In all cases,
each star is plotted separately.



95

5.3.2 Mass Accretion

We have shown that the variation in the mass accretion rate for different field geome-

tries is key in understanding the orbital evolution. The accretion of more low specific

angular momentum material in misaligned cases compensates for the weaker magnetic

braking. We now investigate the difference in binary mass growth for different tilt

angles by measuring the gas flow through different surfaces around the binary stars.

Let us consider the mass flux through the surface S of a finite volume V , which can

be expressed as,

Ṁg =
∫

ρv · dS (5.5)

Here positive mass flux represents inflow and negative represents outflow, e.g. fluid

being advected inward or outward through the specified surface. As an example,

we show in Fig. 5-5 the distribution of the mass flux Ṁg and its three Cartesian

components for cubic boxes of different sizes that are centered at the origin2. As

expected, the overall mass infall in the 90◦ case is almost 1.5 times as large as that

in the 0◦ case in the region with box half-width between 2× 1015 cm and 2× 1016 cm

(∼ 1000 AU). The main driver for such difference is the z-component of the mass

flux Ṁg, whose value is almost the opposite in the two cases. In the aligned case,

the magnetically-driven outflow dominates the gas dynamics within a distance of

∼ 4 × 1015 cm to ∼ 2 × 1016 cm from the center of mass. This outflow accounts for

the bulk of the overall difference in total mass flux. In the orthogonal case where

there is little toroidal field generated, and thus little or no outflow, the z-component

of the mass flux is mostly positive. Both the x and y component of Ṁg have similar

sign and magnitude in the two cases, except for the innermost region close to the

binary stars where the flows are becoming unstable (see section § 5.3.4).

The larger mass inflow may also be correlated with the topology of the magnetic

field. In the aligned field case, the vertical toroidal field is severely pinched along the

2We use cubes rather than spheres for simplicity as these align with the AMR grid geometry, and
thus require no interpolation between refinement levels.
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Fig. 5-5.— The total mass flux (black solid) and its three Cartesian components (blue
dash-dotted: x-component; green dotted: y-component; red dashed: z-component) for
cubic boxes of different half-width for the λ = 4, at a representative time t ≈ 37 kyr.
The left panel is the aligned case (0◦) and the right panel is the orthogonal case (90◦).
A positive flux increases the mass within a volume (inflow) whereas a negative one
decreases it (outflow).

equator as gas collapses towards the central objects. The resulting magnetic tension

force impedes the gas infall, so that one would expect a lower accretion rate as time

proceeds. On the contrary, in the orthogonal case, the magnetic tension force has

limited influence on the gas accretion. Although the rotating gas winds the magnetic

field around the binary seeds, the unwinding reaction by magnetic tension does not

stop the gas from flowing along the field lines, which lead directly to the center of the

system. Hence, the larger magnetic field inclination boosts the gas inflow around the

binary.

5.3.3 Angular Momentum Transport

Mass flow in and around the binary not only delivers angular momentum directly, but

also induces hydrodynamical torques (distinct from magnetic torque), which trans-

port angular momentum. We use a similar approach as in § 5.3.2 to quantify the

contributions from different torques to the angular momentum transport. For a finite
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volume V with surface S, the total magnetic torque relative to the origin (from which

a radius vector r is defined) is

Nm =
1

4π

∫

[r× ((∇×B)×B)] dV, (5.6)

where the integration is over the volume V . Typically, the magnetic torque comes

mainly from magnetic tension rather than the magnetic pressure. The dominant

magnetic tension term can be simplified to a surface integral (Matsumoto & Tomisaka

2004)

Nt =
1

4π

∫

(r×B)(B · dS), (5.7)

over the surface S of the volume. This volume-integrated magnetic torque is to be

compared with the rate at which angular momentum is advected into and out of the

volume through fluid motion,

Na = −
∫

ρ(r× v)(v · dS), (5.8)

which will be referred to as the advective torque below.

Since the initial angular momentum of the protobinary envelope is along the z-axis,

we will be mainly concerned with the z−component of the magnetic and advective

torque,

Nt,z =
1

4π

∫

(xBy − yBx)(B · dS), (5.9)

and

Na,z = −
∫

ρ(xvy − yvx)(v · dS). (5.10)

The advective torque can be separated into two components N out
a,z and N in

a,z, for flow

going out of and into the box, respectively.

In Fig. 5-6 we show the distributions of magnetic and advective torques Nt,z, Na,z,

and N out
az for cubic boxes of different sizes that are centered at the origin, again at the
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time t ≈ 37 kyr for both the 0◦ and 90◦ cases with the same initial λ = 4. The main

difference is the strength of outflows, which are stronger in the aligned case than in

the orthogonal case. This morphological difference is obvious from the column density

map and velocity field shown in Fig. 5-9 in § 5.3.4 below.

The absence of prominent magnetically-driven outflows in the orthogonal case

helps to maintain a bulk of mass along with their angular momentum to reside near the

binaries, lifting the positive change of the angular momentum in the region between

2× 1015 cm and 1× 1016 cm. Recall that the similar region also yields a larger mass

inflow in the 90◦ case.
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Fig. 5-6.— The magnetic (black dash-dotted) and advective (blue dotted) torque and
the sum of the two (red) for cubic boxes of different half-width b for the λ = 4 case, at
a representative time t ≈ 37 kyr. The outflow component of the advective torque is
shown in green dashed curve. Left panel is the aligned case (0◦) and the right panel is
the orthogonal case (90◦). A positive torque increases the angular momentum within
a volume whereas a negative one decreases it.

Interestingly, the magnetic torque is not smaller at all radii when the field is tilted

90◦. At large radii ( >∼ 5 × 1016 cm), the orthogonal rotator, produces a stronger

magnetic torque (see Mouschovias & Paleologou 1979) than the one in the aligned

rotator. The reverse is true as one moves to the inner region ranging from ∼ 1 ×
1016 cm to ∼ 5× 1016 cm (Mouschovias 1991). Moreover, the magnetic torque inside
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the innermost ∼ 8 × 1015 cm ≈ 600 AU region is comparable for both the aligned

and orthogonal cases, which somewhat contradicts the results of Joos et al. (2012).

In other words, the magnetic braking is more efficient in outer regions of the core,

but weaker close in, for the larger misalignment cases. Therefore, as the gas makes

its way onto the binary stars when the field misalignment is large, the gas first loses

more angular momentum relative to the aligned case, and then loses less closer in,

because of both weaker magnetic braking and lack of magnetically-driven outflow.

This is also consistent with the distribution of gas specific angular momentum shown

in Fig.5-7, where the orthogonal case is below the aligned case in the outer region,

and yet the opposite is true in the inner region. These subtle competing mechanisms

explain the broad similarity in the binary orbital angular momentum we present in

Fig. 5-3.

5.3.4 Disk and Outflow

The misalignment between the magnetic field and the rotation axis has a noticeable

effect on the disk morphology as well. In the aligned cases, ZL13 showed that strong

magnetic braking produces non-Keplerian pseudo-disks in the circumbinary region

(for λ less than about 8). In contrast, we find near-Keplerian circumbinary disks in

cases with large field misalignment, even for mass-to-flux ratios as small as λ ∼ 4.

Fig. 5-8 plots the distribution of azimuthal velocity vφ on the equator along the

midline of the two seeds, where the orthogonal case shows a ∼ 400 AU (6× 1015 cm)

size disk that follows the estimated Keplerian curve3 in the circumbinary region.

The same region is occupied by sub-Keplerian structures in the aligned case for the

same level of magnetization (λ = 4). Note that the strength of magnetic torque

does not differ much in both cases across 102 AU scale (see Fig. 5-6). However, the

large DEMS (Decouple-Enabled Magnetic Structures, about <∼ 400 AU in size at

t ∼ 37 kyr) destroys any rotationally-supported structure, which is an unavoidable

3Only the mass of the binary stars is used for calculating the Keplerian profile
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Fig. 5-7.— The integrated gas specific angular momentum. The aligned case is shown
in black solid curve while the orthogonal case is in red dashed. Both are for λ = 4
case, at a representative time t ≈ 37 kyr.

magnetically-dominated feature when field is aligned with the rotation axis (Zhao et

al. 2011; Krasnopolsky et al. 2012).

The DEMS also account for the survival of circumstellar disks. In ZL13, we find

that circumstellar disks are suppressed even for relatively weak magnetic field (λ less

than about 16), as soon as DEMS dominate the inner region close to the binary stars.

As we tilt the magnetic field, the DEMS become less prominent. Hence the circum-

stellar disks start to survive even for λ = 8 with tilt angle θ0 = 45◦, and for the

early time of λ = 4 with θ0 = 90◦ when the magnetic tension force is relatively weak.

The effect of field misalignment on the DEMS is also obvious by comparing the right

column plots in Fig. 5-9. Our study shows that large misalignment between the mag-
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Fig. 5-8.— The distribution of azimuthal velocity on the equator along the midline of
two binary seeds for the λ = 4 cases, at a representative time t ≈ 37 kyr. Left panel is
the aligned case and right being the orthogonal case. The estimated Keplerian profile
is shown in dashed curve.

netic field and rotation axis can prevent the magnetic dominated structures (DEMS)

from emerging in the central ∼ 102 AU region - the cradle of infant protostellar and

protobinary disks.

Fig. 5-9 (left column) also shows the effect of field misalignment on outflow struc-

tures, which is consistent with our discussion so far and Fig. 5-6. We do not observe

any obvious outflow structure in the orthogonal cases. The aligned case has large

magnetically-driven outflow launching regions both above and below the equator (see

also ZL13). The same regions are dominated by gas infall for the orthogonal case.

Interestingly, there are two prominent spirals in the face-on view (lower-right panel);

in 3D, they are the snail-shell like structures discussed in Li et al. (2013).

5.3.5 Mass Ratio

Besides orbital separation, another fundamental quantity that characterizes a binary

system is the mass ratio q = M2/M1 (M1 and M2 are the mass of the primary and

secondary, respectively). We have previously shown that the mass ratio is strongly
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affected by magnetic braking in the aligned case (ZL13). In particular, we found that

the magnetic braking can slow down or even eliminate the increase of q (e.g. growth

towards equal mass) with time for initially unequal mass binaries by weakening or

suppressing the preferential mass accretion onto the secondary. We have carried out

calculations similar to ZL13 for unequal binaries of initial q = 0.25 but with both

θ0 = 0◦ and 90◦. Fig. 5-10 compares the time evolution of mass ratio q for both the

aligned and orthogonal cases for different values of mass-to-flux ratio λ. It is clear

that tilting the magnetic field not only suppresses the accretion onto the secondary

compared to the hydrodynamic case, but can also increase the accretion onto the

primary compared to the aligned case. In the strongest field case of λ = 2, the mass

ratio actually decreases with time, the opposite of what one may expect based on

hydrodynamical simulations (Bate & Bonnell 1997; Kratter et al. 2010; ZL13). It

therefore appears that magnetic misalignment makes it easier for highly uneven mass

binaries to preserve their initial mass ratios during the protostellar mass accretion

phase. Why this is the case is unclear; it deserves further investigation, which is

beyond the scope of this Chapter.

5.4 Summary and Discussion

In this Chapter, we have investigated numerically the effect of misalignment between

the magnetic field and rotation axis on protobinary evolution during the mass accre-

tion phase, in direct comparison to our previous calculations with aligned magnetic

field (Zhao & Li 2013 and Chapter 4). We have found that a misaligned magnetic field

is more efficient than the aligned field at tightening the binary separation. The funda-

mental reason is that field misalignment suppresses the magnetically-driven outflows.

This suppression has three consequences. First, the weaker gas outflow allows more

of the infalling gas to accrete onto the binary stars, which increases the binary mass

relative to the aligned field case. Secondly, the weaker magnetically-driven outflow
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carries away less angular momentum from the infalling gas in the midplane. This

second effect on its own would lead to wider binary orbits. However, there exists a

competing mechanism where the same parcel of gas at larger radii has experienced

stronger magnetic braking when field misalignment is greater. Thus the excess ac-

creted gas provides only slightly bigger total angular momentum to the binary orbit.

Thus the magnetic field misalignment allows faster mass accretion accompanied by

a much smaller increase in angular momentum. Thus the binary separations in all

misaligned runs are smaller than their counterparts in Zhao & Li (2013).

The efficient tightening of the binary orbit by magnetic field misalignment lowers

the field strength required for the same degree of migration. As mentioned in the

introduction, the distribution of binary orbital separations during the earliest Class 0

phase of star formation may differ from those at later times. In particular, there may

exist a gap free of Class 0 binaries with separations between 150− 550 AU (Maury et

al. 2010; Enoch et al. 2011), which is not present in the Class I or later phases4. We

previously showed that magnetic braking is an efficient way of migrating protobinaries

born on wider orbits into this apparent separation gap (Zhao & Li 2013). The results

presented here indicate that to reach the same level of migration as in the aligned field

cases, one may only require a magnetic field that is half as strong if it is misaligned

with the rotation axis.

Our proposed mechanism of binary migration due to a tilted magnetic field may

be favorable in the context of disk formation in magnetized prestellar cores. Recent

numerical work has shown that rotationally supported disks may form under the com-

bination of low magnetic field strengths and large field misalignment (Li et al. 2013;

Joos et al. 2012; Krumholz et al. 2013). The CARMA sample of Hull et al. (2013)

shows that the distribution of the angle between the magnetic field and jet/rotation

axis is consistent with being random. This would indicate that in 50% of the sources

the two axes are misaligned by a large angle ( >∼ 60◦). If true, the large misalign-

4A recent SMA survey by Chen et al. (2013) finds more evidence for Class 0 binarity, but a few of
the apparent multiple systems may not evolve into binaries based on their sensitivity and resolution.
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ment would allow disk formation in moderately (λ greater than about 4) magnetized

prestellar cores (Li et al. 2013). Therefore for cores that form binary systems, the

misaligned and weaker magnetic field would enable efficient migration to fill the gap

observed in Maury et al. (2010), while still allowing for the formation of 102-AU scale

disks in the Class 0 phase. Furthermore, the survival of rotationally-supported cir-

cumbinary disks through tilting the magnetic field could explain some recent SMA

and ALMA binary observations. Takakuwa et al. (2012) identify a circumbinary disk

with possible spiral structures around protobinary system L1551 NE, which may arise

from local perturbations due to magnetic field misalignment or supersonic turbulence.

We will discuss the effects of turbulence in a future study.
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Fig. 5-9.— The column density and velocity field in both edge-on (left panels) and
face-on (right) view for the λ = 4 cases, at a representative time t ≈ 37 kyr. Upper
panel is the aligned case and bottom being the orthogonal case. The length of region
is 3× 1016 cm.
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Fig. 5-10.— Evolution of mass ratio for an initially unequal mass binary of q = 0.25.
Aligned cases are shown in solid lines and orthogonal cases are in dashed curves. The
black, blue and red lines are for λ = 32, 4, and 2, respectively.
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Chapter 6

Magnetized Binary Formation

from Prestellar Core Collapse to

Protobinary Evolution:

Preliminary Results
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6.1 Introduction

The formation of binaries and higher-order multiples is considered the dominant chan-

nel of star formation. As discussed in Chapter 1, at least half of all stars in the

Galaxy reside in multiple systems (e.g., Duquennoy & Mayor 1991; Raghavan et al.

2010; Janson et al. 2012). The fraction is even higher for young stellar objects (e.g.,

Duchêne et al. 2007). Among all observed multiple systems, about three-quarters are

binaries, which provides a strong motivation to study them. Despite the undisputed

importance of binaries and multiples, the observed statistical properties of such stel-

lar systems are not fully understood. Robust theory and computation are required

to explain their origins.

The key properties that define a binary system are its orbital separation, mass

ratio, and orbital eccentricity. The observed distribution of each property is rather

broad and flat, which must be explained by a complete star formation theory.

The distribution of binary separation for main-sequence stars in the Galactic field

is known to be extremely wide (0.01 AU <∼ r <∼ 104 AU), usually modeled as a log-

normal with a mean at ∼ 45 AU (Goodwin et al. 2007; Duchêne & Kraus 2013).

About one-third of these systems have separations less than about 1 AU. A simi-

lar distribution is also found for young stars in star-forming regions. For the more

evolved T-Tauri stars, the distribution of orbital separation is consistent with both

a broad log-normal distribution (e.g. Mathieu 1994; Kraus et al. 2011) and a slowly

declining power-law distribution (e.g., King et al. 2012a). The maximum separation

may vary with environments (e.g. dense clusters) and stellar mass (Kraus & Hillen-

brand 2012). For Class I protostars that are still embedded in their envelope, the

distribution of projected separation is consistent with Öpik’s power law (Öpik 1924)

out to 5000 AU. The Class 0 sources tend to show a deficit in binaries with separation

from 50 to 1500 AU (Maury et al. 2010; Enoch et al. 2011), however the conclusion

is not definitive because of the limited sample size.



109

The mass ratio, q = Msec/Mprim ≤ 1, can generally be derived from the observed

flux ratio. Its distribution for solar-type binaries in the Galactic field is almost flat

down to q ≈ 0.1, although there is a marginally significant peak at q >∼ 0.95 according

to Raghavan et al. (2010). However, the situation is more subtle because the mass

ratio distribution depends on the primary’s mass and the binary separation. Binaries

with separations closer than the mean are characterized by a strong peak at q ≈ 1,

whereas the wider binaries have a single peak around q ≈ 0.3. Surveys of pre-main-

sequence stars show a more or less flat distribution of binary mass ratio. The deeply

embedded Class 0 and Class I sources lack a well established distribution of binary

mass ratio, because of observational limitations.

The binary orbital eccentricity is another important parameter to characterize the

system. The expected distribution for a dynamically relaxed (“thermal”) population

is f(e) = 2e (Ambartsumian 1937). However, the observed eccentricity distribution

is essentially flat beyond a period of ∼ 100 days. It can be modeled as a broad Gaus-

sian distribution centered at ē ≈ 0.4, because of somewhat fewer high-eccentricity

systems (Stepinski & Black 2001). In any case, observations of binary eccentricity

are inconsistent with the “thermal” distribution.

All three key properties that characterize a binary system have rather broad and

flat statistical distributions, which is difficult to explain by existing theoretical studies.

Intriguingly, Bate (2012) simulated the formation of a star cluster using a radiative

SPH code, which produced binaries and multiple systems with statistic properties that

are nearly indistinguishable from the observed systems. In particular, the simulated

binaries have a wide range of separation (from 1 AU to 104 AU), even though all

of them started out with initial separations of order 10 AU. The orbits of some of

the binaries are tightened up through interaction with a circumbinary disk or decay

of unstable multiple systems. It is tempting to conclude that the problem of binary

formation is essentially solved.

The apparent agreement of Bate’s results with observations may be fortuitous,
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however. As stressed in the recent review of Clarke (2012), his simulation ignored

the magnetic field, whose existence in star forming regions is undeniable (e.g. Ward-

Thompson 2000; Girart et al. 2006). Theoretically, magnetic fields are dynamically

important to binary formation through redistributing angular momentum and driving

outflows; they strongly shape the property of binary systems formed in dense cores,

as we demonstrated in Chapters 3, 4 and 5 (Zhao & Li 2013; Zhao et al. 2013).

There have been several previous studies of the effects of the magnetic field on binary

formation through core fragmentation. Most of them are, however, limited to the

initial fragmentation phase leading to the formation of two seed protostars (Price

& Bate 2007; Hennebelle & Teyssier 2008; Machida et al. 2008). The preliminary

investigation presented in this Chapter aims at remedying this deficiency.

Core fragmentation simulations usually start with a ∼ 1M⊙ dense core that has an

m = 2 mode perturbation on the initial density distribution (similar to the set-up of

Boss & Bodenheimer (1979)). If massive enough, the core can become Jeans unstable

on two well-separated density peaks early in the isothermal collapse. Machida et al.

(2008) showed that the initial separation of the binary seeds produced in magnetized

cores is controlled mainly by the ratio of rotational and magnetic energies. If the

magnetic field is strong enough, it can suppress the core fragmentation completely,

leading to a potential “crisis” for binary formation (see also Price & Bate 2007,

Hennebelle & Teyssier 2008). If the initial amplitude of density perturbation is large

enough (of order 50%), binary seeds can be produced even for a realistic magnetic

field (Troland & Crutcher 2008). However, these calculations either stop or become

dominated by numerical artifacts before most of the protostellar accretion is complete.

For example, in Hennebelle & Teyssier (2008), the computation timestep decreases

dramatically soon after the binary seed formation, which prevents them from evolving

the system further. Machida et al. (2008) has no sink particle treatment, and their

central high density region is subject to strong artificial fragmentation. Price & Bate

(2007) follows the binary orbital evolution much further, but the magnetic field is



111

treated incorrectly in their SPH code (using a formulation that precludes the twisting

of field lines that is responsible for magnetic braking).

Despite recent progress, the theory of magnetized binary formation remains far

from complete. In this Chapter, we revisit the classic problem of binary formation

through core fragmentation, using the Enzo AMR MHD code described in Chapter

2. It enables us to follow both the initial fragmentation of the magnetized cores and

the subsequent orbital evolution of formed protobinary systems.

6.2 Problem Setup

6.2.1 Initial and Boundary Conditions

Wemodel the binary formation in a magnetized dense core embedded in a more diffuse

ambient medium. The spherical core has a radius of R = 1.0× 1017 cm (∼ 0.032 pc)

with an m = 2 perturbation on the otherwise uniform density distribution, i.e.,

ρ(φ) = ρ0(1 + A · cos(mφ)), (6.1)

where m = 2 is adopted, A = 0.5 is the perturbation amplitude, φ is the azimuthal

angle, and ρ0 = 1.25 × 10−18g·cm−3. The density profile determines the initial mass

of the core (M = 2.63M⊙) and the free-fall time (tff ≈ 60 kyrs). The dense core

is embedded in a low density ambient medium (ρmedium = 1.25 × 10−20g·cm−3) that

fills the rest of computational box. The gas is assumed to be isothermal initially

with a temperature of T ∼ 10K everywhere, in accordance with observations of star

forming molecular clouds. Note that the box size is about 2.5 times the size of the

core, which helps to reduce the influence of the periodic images that arise from the

periodic boundary conditions used in the Fast-Fourier-Transformation (FFT) solver

of self-gravity. These initial conditions are similar to those used by Machida et al.

2008.
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To minimize numerical fragmentation in the isothermal gas, we adopt a barotropic

equation of state (EOS), which mimics the isothermal EOS at low densities and the

adiabatic EOS at high densities,

P = ρc2s

[

1 + (
ρ

ρcrit
)2/3

]

(6.2)

where ρcrit = 4× 10−13g·cm−3 is the transition density between the two regimes, and

cs = 0.2 km/s is the isothermal sound speed for T ∼ 10 K gas. The sound speed

yields a ratio of thermal to gravitational energy α ≈ 0.29 for the dense core.

The core is also initially rotating and magnetized. We impose a rigid body rotation

on the core with an angular velocity of ω = 2.0×10−13s−1. This corresponds to a ratio

of rotational to gravitational energy β ≈ 0.057, which is within the observed range for

dense cores. The initial magnetic field threading the core is uniform everywhere; its

initial direction can either be parallel (0◦) or perpendicular (90◦) to the rotating axis.

We also consider different strengths of the initial magnetic field B0 = 1.35× 10−4 G,

6.75×10−5 G, 3.375×10−5 G, and 1.6875×10−5 G, corresponding to a dimensionless

mass-to-flux ratio (in units of the critical value (2πG1/2)−1) of λ = 2, 4, 8, and 16

respectively. These values of λ bracket those inferred from observations, which are

typically a few to several (Troland & Crutcher 2008; see Chapter 1). We should note

that the above λ values are calculated for the core as a whole; the local mass-to-

flux ratio near the central magnetic flux tube is somewhat larger, by a factor of 1.5.

For comparison, we run a simulation without the magnetic field, denoted as the HD

(hydrodynamics) case.

6.2.2 A New Solver for Sink Particle Gravity

For the purpose of this study, we developed a new gravity solver to replace the original

solver in Enzo that sometimes leads to unphysical ejection of sink particles.

The original gravity solver in Enzo uses the so-called Cloud-In-Cell (CIC) method
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for calculating the gravitational potential for both gas and particles. The central idea

is to deposit the mass of a particle onto its surrounding eight cells prior to calculating

the gravitational potential. The method works best for particles with mass that are

not too large compared with the gas mass in the nearby cells. Otherwise, a sink

particle of stellar mass can create a huge peak on the density field within the current

computation domain. In this situation, the subsequent gravity solver can become

very sensitive to numerical oscillations, which sometimes leads to unphysical values

of gravitational potential and acceleration. Unfortunately, the stellar objects in our

binary formation simulations can grow to large masses, creating density peaks that

are not well treated by the CIC method.

To make the Enzo code more suitable for binary formation problems, we developed

a new gravity solver that treats the gas and sink particles separately. In this method,

we no longer deposit the particle mass onto the cells to solve for the combined gravity

from the gas and sink particles. Instead, direct summation is implemented for particle-

gas and particle-particle interactions. The algorithm can be expressed in terms of

gravitational accelerations as follows,

agas(x) = afield(x) +
∑

particle i

GMi(ri − x)

|ri − x|3 , (6.3)

ai = afield(ri) +
∑

particle j 6=i

GMj(rj − ri)

|rj − ri|3
, (6.4)

where agas and ai are the accelerations for gas cell at position x and the i-th sink

particle at position ri respectively; afield denotes the acceleration field calculated from

the multi-grid or FFT solver in previous steps, G is the gravitational constant, andMi

is the mass of the i-th sink particle; Thus, we first use the pure gas mass distribution

to obtain the acceleration field afield over the computational domain, and the sink

particle contributions are added to derive the final accelerations for either particles

or gas components. The numerical steps of this new method are summarized below,
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EvolveLevel(level, ParentTime)

SetBoundaryValues

while (Time < ParentTime):

dt = ComputeTimeStep(level)

PrepareDensityField(dt, GasOnly)

ComputePotentialFieldFFT(level=0)

MultiGridSolverForPotential(level)

ComputeAccelerations(level)

{

for every grid on this level

ComputeAccelerationField(GasOnly)

if GAS

Accl_Gas = GasAccelerationField +

DirectSummationFromAllParticles

if PARTICLE_i

Accl_i=InterpolateAccelerationField_ParticleLocation +

DirectSummationOverParticles(j != i)

}

SolveHydroEquations(dt)

SolveOtherEquations(dt)

UpdateParticlePositions

SinkParticleCreation+Accretion+Merging

SetBoundaryValues

CommunicationAllParticles

EvolveLevel(level+1, Time)

Time = Time + dt

FluxCorrection

Projection
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RebuildHierarchy(level+1)

Currently, we are testing the new gravity solver in a variety of circumstances.

We find that it is a good remedy for the unphysical star ejection that occasionally

happens when using the original gravity solver. The method is not suitable, however,

in the early phase of the simulations when the masses of the star particles are small.

Part of the reason is that the self-gravity of the gas surrounding the (low-mass) sink

particle can dominate that of the particle itself, which produces some inconsistency

between the particle orbit and the location of local density peak. This inconsistency

requires further investigation in the future. In the meantime, we have decided to use

the original solver to follow the early collapse and fragmentation; when the unphysical

star ejection occurs, we switch to the new gravity solver and continue the simulation.

6.3 Results

We carry out a total of nine simulations, varying the initial magnetic field strengths

(λ = 2, 4, 8, 16) and orientations (0◦ and 90◦ relative to the rotation axis). Table 6.1

summarizes our preliminary results.

Table 6.1: Models and Basic Results

λ α Binary Merged Circumstellar Disk

2 0◦ Yes No
90◦ No No

4 0◦ Yes No
90◦ No No

8 0◦ No No
90◦ No Yes

16 0◦ No Yes
90◦ No Yes

HD / No Yes

Note that the core fragmentation into binary seeds does occur in every case, be-

cause of the large perturbation amplitude A = 0.5 on the initial density distribution.
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We have also tested the models with smaller amplitude A = 0.2, A = 0.3, and found

that the fragmentation is inhibited in cases of strong magnetization (λ ≤ 4). This

result is in good agreement with previous studies (e.g. Hennebelle & Teyssier 2008).

6.3.1 Magnetic Braking and Initial Fragmentation

We first present the qualitative effects of the magnetic field on the protobinary prop-

erties based on our preliminary results. In Fig. 6-1, 6-2, 6-3, 6-4, and 6-5, we show the

snapshots in the field-rotation aligned (0◦) cases when the binary seeds reach their

first close approach. Except for the HD and λ = 16 cases, the binary separation at

the first close approach is well-below 100 AU. It is an order of magnitude smaller than

the initial separation at the time of their formation, which is more than 2000 AU.

Such a large decline in separation can be caused both by the much shorter free-fall

timescale than the orbital timescale, and by the removal of binary orbital angular

momentum. However, the former factor is only able to reduce the binary separation

down to about 200 AU, as in the HD case. To reach down to the tens of AU range,

additional mechanisms are required to reduce the binary orbital angular momentum.

The main mechanisms to efficiently transport angular momentum are the magnetic

torque and gravitational torque. In the strongly magnetized cases, λ = 2 and 4, the

circumbinary regions have very little density enhancement, which limits the effect of

gravitational torques. On the other hand, magnetic torques can significantly affect

the binary orbital angular momentum through magnetic braking. As discussed in

our previous papers (Zhao & Li 2013; Zhao et al. 2013) and in previous Chapters,

magnetic braking constantly removes the angular momentum of the rotating gas that

would later be accreted onto the binary stars, leading to a binary system with a lower

orbital angular momentum and tighter separation. The same mechanism operates in

the early binary fragmentation phase as well. From birth to the first close approach,

each binary seed keeps accreting at a rate as high as ∼ 10−5 M⊙/yr (see Fig. 6-7).
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Fig. 6-1.— The logarithmic distribution of the column density Σ (in g · cm−2) for the
aligned (0◦) λ = 2 case at the first close approach of the binary stars. Left panel,
edge-on view. Right panel, face-on view.

Hence, as the cloud collapse proceeds, the binaries continue to accrete gas whose

angular momentum is reduced via magnetic braking. We tentatively conclude that

magnetic braking is the main reason for the difference in binary separation at first

close approach between the HD case and the strongly magnetized cases 1.

Note that after the first close approach, two runs (0◦: λ = 2 and λ = 4 case)

show a binary separation below ∼ 10 AU; we cannot accurately follow their evolution

further in time, because of a lack of resolution for the gravity solver. Such systems

are “effectively” merged.

1The 90◦ cases have qualitatively similar results, except for the flow morphology such as outflow
structures.
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Fig. 6-2.— Same as Fig. 6-1, but for λ = 4, 0◦ case.

6.3.2 Orbital Evolution and Protobinary Properties

Our simulations have all run beyond one-free fall time. In some cases, the binary

stars have revolved around each other several times during their main accretion phase.

However, using the original gravity solver, the star particles occasionally get ejected

in some random direction, as discussed in § 6.2.2. To get around this numerical

problem, we use our newly-developed gravity solver for sink particles to restart the

simulation right before the ejection. Fig. 6-6 shows that the star ejection no longer

occurs after adopting the new gravity solver.

Currently, our analysis for the binary properties is limited by the number of output

frames. We are waiting for more results from the restarted simulations with the new

gravity solver. As a result, the following analysis of the evolution of basic binary

quantities (including the binary mass, separation, and mass ratio) is preliminary.

Fig. 6-7 shows that the binary mass grows quickly even before the time of first
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Fig. 6-3.— Same as Fig. 6-1, but for λ = 8, 0◦ case.

close approach. Two binary seeds are created relatively far apart right around 1tff

with an initial mass <∼ 0.05M⊙ each. They then follow the collapse of the cloud

inward, and grow with a rapid accretion rate of Ṁ ∼ 10−5 M⊙/yr. The mass growth

later flattens as the binaries move further inward ( <∼ 1000 AU), possibly because

of the pressure near the centrifugal barrier or the magnetic structures (e.g. DEMS)

reduces the gas infall rate. The decrease in accretion rate is also seen in the single

star case shown in Fig. 3-1. Fig. 6-7 also shows that strong magnetic fields can

delay the collapse process in terms of the sink particle creation, which appears much

later in the λ = 2 case. Note that in the 90◦ magnetic runs, the binary mass grows

faster than that of the HD case and the 0◦ cases. This is consistent with the results

presented in Chapter 5 (see also Zhao et al. 2013), where we show a large magnetic

field misalignment helps suppress outflows and promote stellar mass growth.

Our result shows that the initial binary orbit is highly eccentric for all cases, and
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Fig. 6-4.— Same as Fig. 6-1, but for λ = 16, 0◦ case.

that the binary can survive the first close approach if the magnetic field is not too

strong. Fig. 6-8, shows that the initial binary separation is about 2300 AU when

the seeds are first created. The two stars then move rapidly closer with the free-

fall collapse of the core; the initial rate of orbital shrinkage depends little on the

magnetic field strength. In all cases, the initial binary orbit has an eccentricity close

to 1. However, in aligned strongly magnetized cases (0◦: λ = 4 and λ = 2 cases),

the two stars are likely to merge at the first close approach. In all other cases, the

binary survives and evolves with an eccentric orbit. Particularly, the case of λ = 8

and 90◦ has evolved twice as long as other cases, covering more than ten full orbits.

The eccentric nature of the orbits shows up in the periodic wiggles on the curves.

The effect of the magnetic field on the subsequent evolution of binary separation is

consistent with the result of Zhao & Li 2013; that is, stronger magnetic fields tend to

tighten the binary separations more.
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Fig. 6-5.— Same as Fig. 6-1, but for the non-magnetized HD case.

Finally, the mass ratio evolution (Fig. 6-9) shows that the binary components

have roughly similar masses over time, with some variations across different degrees

of magnetization. It is expected since the initial core fragmentation tends to produce

two equal mass binary pairs to begin with; their mass should grow at a similar rate.

We will leave more detailed analysis of the existing models and exploration of more

complicated models to future studies.
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Fig. 6-6.— Compare two gravity solvers at similar time t ≈ 77.5kyr. Upper panel:
the star on the left starts to be ejected vertically using the original Enzo gravity
solver. Lower panel: no star ejection occurs with the new gravity solver. Both figures
show the logarithmic distribution of the column density Σ (in g ·cm−2) for the aligned
(0◦) λ = 4 case with edge-on (left) and face-on views (right).
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Fig. 6-7.— Stellar mass (in solar units) growth for HD (black), λ = 16 (blue), λ = 8
(green), λ = 4 (yellow), λ = 2 (red) cases. Left panel are 0◦ cases, and right 90◦

cases.
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Fig. 6-8.— Evolution of binary separation with time for HD (black), λ = 16 (blue),
λ = 8 (green), λ = 4 (yellow), λ = 2 (red) cases. Left panel are 0◦ cases, and right
90◦ cases.
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cases, and right 90◦ cases.
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Chapter 7

Summary and Outlook
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7.1 Summary

This thesis presents a systematic study of the formation of binary stars from dense

cores of molecular cloud, with a particular focus on the effect of the magnetic field. We

divide the formation of binaries into two conceptually distinct phases: the prestellar

core evolution phase leading to the formation of two binary seeds and protostellar mass

accretion phase. We first focus on the protostellar phase and investigate the effect of

the magnetic effect on protobinary properties. The study covers a large parameter

space, including a wide range of magnetic field strengths and orientations. We only

show the preliminary results for the full problem of binary formation and leave a

more comprehensive investigation to the future. Our main results are contained in

Chapters 3-6.

In Chapter 3, to make sure that the sink particle treatment was done correctly,

we carried out a calculation of the collapse of a simple core with an initially uniform

density and magnetic field. We find that some strongly magnetized regions in the inner

part of the accretion flow are expanding outward instead of collapsing. The expansion

is driven by the magnetic flux that has been dragged in by the collapsing matter but

is left behind as the matter accretes onto the stellar object. The magnetic pressure

builds up near the protostar and releases along the directions of least resistance,

driving the expansion observed in the simulations. We termed the expanding regions

as the “decoupling-enabled magnetic structure” (DEMS). It is a form of magnetic

interchange instability, and is a generic feature of magnetized protostellar accretion

even in the presence of non-ideal MHD effects. The DEMS plays a crucial role in

protostellar disk formation. These strongly magnetized regions prevent the rotating,

collapsing accretion flow from completing a full orbit around the central stellar object.

In Chapter 4, we focus on the less studied protostellar accretion phase and in-

vestigate the magnetic effects on the evolution of protobinary orbital properties. We

start with a pair of binary seeds embedded in a magnetized envelope, and follow the
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mass and orbital evolution of the protobinary as it accretes mass and angular mo-

mentum from the envelope. We find that a magnetic field of the observed strength

is capable of removing most of the angular momentum of the material that reaches

the binary. The reduction in the angular momentum of the accretion flow has two

important consequences, compared to the non-magnetic case: (1) the protobinary

orbit becomes much tighter and (2) the mass ratio does not increase as fast with

time for initially unequal mass systems. In addition, the magnetic field drastically

changes the morphology and dynamics of the structures that surround the protobi-

naries. It suppresses the formation of circumstellar and circumbinary disks as well as

spiral arms found in the non-magnetic simulations. These structures are replaced by a

bipolar magnetic-braking-driven expanding regions, a dense circumbinary pseudodisk

in the equatorial region, and low-density, highly magnetized structures close to the

protobinaries that expand against the pseudodisk (the DEMS).

In Chapter 5, motivated by recent observations of misaligned magnetic field with

respect to the rotation axis in star forming dense cores, we simulate the effect of such

field misalignment on protobinary evolution. Our simulations show unexpectedly

that the binary separation is smaller in the misaligned case than in the aligned case.

The reason is that the field misalignment weakens the magnetically-driven outflow,

which has two competing effects on the binary separation. First, the weaker outflow

carries away less angular momentum from the infalling gas, which tends to increase

the binary separation, a, because it increases with the binary angular momentum Lb

as a ∝ Lb
2. However, the weaker outflow also allows more infalling gas to be accreted

onto the binaries, which is the reason for the smaller separation in the misaligned

case, because the separation a depends more strongly on the binary mass Mb (as

a ∝ Mb
−3) than on the angular momentum. Therefore, misaligned magnetic fields

are more efficient in shrinking the protobinary orbits.

Finally, in Chapter 6, we study the full problem of binary formation including

both the prestellar and protostellar phases. The simulation starts with a magnetized
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dense core that has an m = 2 mode perturbation on the initial density distribution

(Boss & Bodenheimer 1979). The early pre-stellar phase of isothermal collapse and

fragmentation shows a good agreement with previous work. In particular, we find

that even fairly strongly magnetized cores can fragment into binary seeds if the ini-

tial density perturbation is large (A = 0.5). The resulting binary seeds are widely

separated initially and on highly eccentric orbits. We were able to go beyond the pre-

vious work and follow the binary evolution into the protostellar phase. We find that

the highly eccentric binary seeds can survive at least their initial closest approach,

and retain their large eccentricity, if the magnetic field is not too strong. To resolve

the issue of occasional particle ejection, we developed a new gravity solver for sink

particles. However, the analysis is limited by the the relative short duration of the

existing simulations. Only preliminary results are presented. They form the basis of

future, more comprehensive investigations.

7.2 Future Work

The thesis has demonstrated in some detail the importance of the magnetic field in

star formation in general and binary formation in particular. Many open questions

remain unanswered, however. These include the effects of non-ideal MHD on binary

formation, and the effects of the magnetic field and outflow feedback on the statistical

properties of binary and multiple systems formed in a cluster environment. I hope to

embark on these challenges in my future work.

First, we will finish the analysis of Chapter 6 to obtain a more complete picture

of binary formation and evolution in magnetized dense cores. With the new gravity

solver in place, we can continue to follow the protobinary evolution much longer until

the binary stars have accreted most of the mass in their parent core. This should

enable us to perform in-depth study of both the initial fragmentation phase and the

protobinary orbital evolution phase. We will be in a position to determine the effects
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ofthe magnetic field on the three key parameters of a binary system (separation, mass

ratio, and eccentricity) for the entire process of binary formation and evolution.

The work described in this thesis was performed in the ideal MHD limit. However,

three non-ideal MHD effects (ambipolar diffusion, Ohmic dissipation, and Hall effect)

have long been recognized to play important roles in disk formation. Because of their

ability to diffuse the magnetic field at different density regimes, the non-ideal effects

could in principle weaken the magnetic braking to various degrees. For example, the

role of Ohmic dissipation in core fragmentation has been investigated by Machida et

al. (2008), who showed that fragmentation can take place in the central high density

regions where the magnetic field strength is greatly reduced by Ohmic dissipation.

However, ambipolar diffusion may greatly reduce the field strength and enable frag-

mentation at a much lower density than that required for Ohmic dissipation. Thus,

binary fragments may be produced with a larger initial separation if we include am-

bipolar diffusion. We believe future studies of binary formation with these non-ideal

MHD effects will be important and fruitful.

Finally, to reproduce the observed distributions of binary properties, large scale

star cluster formation simulation will be needed, since most stars are thought to form

in clusters rather than in isolation (Lada & Lada 2003). Existing numerical studies

along this line are rare and mainly account for pure hydrodynamic effects (Bate 2012).

However, the magnetic field and outflow feedback are observed to be dynamically

important in star cluster forming regions; they deserve a careful investigation. We

plan to use high resolution MHD simulations to understand the effects of the magnetic

field and outflow feedback on the statistical properties of binary and multiple systems

formed in star clusters. This line of research is timely, because more data and better

statistics of protostellar systems will soon become available from the new generation

of interferometers such as ALMA and JVLA.
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