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ABSTRACT

Matrix product state and X-ray absorption

by

Yifei Shi

The first part of the thesis is dedicated to the study of Matrix Product State (MPS).

Initially named “finitely correlated state”, MPS is the basis of the Tensor Network

State that is widely used to represent quantum many-body wave functions, and is also

the essential concept in powerful numerical tools like Density-Matrix Renormalization

Group. It is an ansatz that only samples a very small portion of the complete Hilbert

space, but can represent ground states of 1-dimensional gapped local Hamiltonians

efficiently.

We will first look at the quantum fluctuation of observables in such states. In

particular, we consider the Full Counting Statistics of MPS, which is separated into

a bulk and boundary term. We identify a central limit theorem like behavior in the

limit of large system sizes, and write the corrections of the central limit theorem for

a finite size system in terms of the Edgeworth series. We also show that, for special

cases of MPSs, like the famous Affleck, Lieb, Kennedy and Tasaki state, because of

the topological nature of the state, this description is no longer valid. Next we look

at the time-evolution of an MPS under time-dependent Hamiltonians. We show that

in the “injective” case, the Schrodinger equation can be written in terms of the MPS

matrices in an interesting way. We show, however, it can never produce an exact

time-evolution that changes the entanglement structure of the state.

x



The second part of the thesis focuses on X-ray absorption and scattering. We are

particularly interested in the resonant inelastic X-ray scattering (RIXS), which has

been rapidly developing recently. However, there is still an on-going debate about

whether the RIXS spectrum of cuprate systems shows collective or quasi-particle

physics. We first use a simple perturbation method to get a basic idea about the

physics of the process. Then we use a determinant method and the quasi-particle

picture to study the RIXS response of a variety of cuprate systems, like CLBLCO,

YBCO, and Bi-2201, and find excellent agreement with experiments. We also de-

velop a method to account for the superconducting gap within a meanfield approach

and study it in detail for a model of p-wave superconductor. Although the gap is

small compared to other band structure parameters, the effect of the gap is rather

significant.
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CHAPTER I

Introduction to Matrix Product State

1.1 The fundamental problem in condensed matter physics,

and the MPS approach

A fundamental problem in condensed matter physics is the extremely large number

of degrees of freedom in the system. For a system of N spin 1/2 particles, the Hilbert

space is 2N dimensional. Modern computational techniques can deal with N ∼ 30,

considering that in reality there are N ∼ 1022 particles on a macroscopic level, it

becomes completely impossible to solve the problem exactly, other than in very special

models. Even if we consider a system with only 100 spins, which in some cases is just

enough to show statistical behavior, there will be a 1030 dimensional Hilbert space.

If we ever try to store an exact state of the system into a computer, assuming each

coefficient is represented by a double-precision number that takes 8 bytes, then a

total disk space of ∼ 1019 Terabytes (TB) is needed. If a 1TB hard drive weights 0.5

pounds, then the total mass of the hard drives needed is about 400 times larger than

the mass of Mount Everest.

To deal with this problem, theoretical methods like mean field theory, perturbation

theory are commonly used, and numerically, methods like Monte Carlo and density

matrix renormalization group (DMRG) are the main tools. DMRG is proven to
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be really effective in 1 dimension [78], it is a variational method based on matrix

product state (MPS), an ansatz of states that is particularly simple but effective [60],

at representing the ground state of local gapped Hamiltonians. Here “local” means

the interaction terms in the Hamiltonian decay at least exponentially in space, and

gapped means the excited states have finite energy difference from the ground state,

even in the thermodynamic limit (the gap will always exist for a finite system without

degeneracy). In Chap I and Chap II, we focus on the basic concepts and applications

of MPS, to get an idea about how MPS can deal with the fundamental problem.

1.1.1 The AKLT state, where everything started

We start from the most famous example of MPS, the Affleck, Lieb, Kennedy and

Tasaki (AKLT) state [1], the Hamiltonian is a spin-1 chain:

H =
∑
<i,j>

~Si · ~Sj + ∆(~Si · ~Sj)2 (1.1)

At ∆ = 1
3
, the Hamiltonian is special and can be written in term of “projectors”.

Consider that for spin-1, (~Si + ~Sj)
2 = 2S2 + 2~Si · ~Sj, it has eigenvalues 6, 2 or 0 if the

total spin is 2, 1, or 0. An operator in this form: Pi,j = 1
24

(~Si + ~Sj)
2((~Si + ~Sj)

2 − 4),

would give 1 if the total spin is 2, and 0 if the total spin if 1 or 0. Pij is then called

a projector onto the spin-2 subspace. We found that at ∆ = 1
3
, H is just a sum of

projectors: H =
∑

i(
1
6
Pi,i+1 − 1

3
), where Pi,i+1 projects from the Hilbert space of two

spin-1 degree of freedom to the subspace where neighboring spin-1s have a total spin

2. Since the projector always has a non-negative expectation value, to minimize the

energy, all the projectors should give 0, i.e. the neighboring spin-1s always have total

spin 0 or 1. This can be satisfied by imagining that there are 2 spin-1
2
s on each site,

in order to give a total spin of 1. these spins are restrained to be in a triplet state.

Neighboring spin-1
2
s on different sites are taken in a singlet state Then the total spin

2



Figure 1.1: The AKLT state. Black circles represent the physical spin-1 space on
each site, which is considered as two spin-1/2s and then projected onto total spin-1
subspace. Blue line means the two auxiliary spin-1/2s are in a singlet state. This
makes sure the projector Hi,i+1 gives 0.

of 2 spin-1s on neighboring sites would be the addition of 2 spin-1/2s, which is always

1 or 0, as shown in Fig 1.1 [79]. Below, spin-1 states are denoted by +, 0,− and

spin-1
2

states by ↑, ↓.

With the help of this picture we can write the state explicitly. Define the following

matrices for each spin-1 state:

A+ =

1 0

0 0


 0 1

−1 0

 =

0 1

0 0



A0 =
1√
2

0 1

1 0


 0 1

−1 0

 =

− 1√
2

0

0 1√
2



A−=

0 0

0 1


 0 1

−1 0

 =

 0 0

−1 0


Here the A matrices act on the spin-1

2
Hilbert space, they are written as mutiplication

of 2 matrices, the first one is the projection onto spin triplet state, as the black circle

in Fig 1.1, the second one takes |↑↑〉+ |↓↓〉 to |↑↓〉− |↓↑〉, so the As eventually projects

from the maximally entangled state of the spin-1
2

state to the desired spin-1 states.

3



And we can write:

| AKLT 〉 ∝
∑
{si}

Tr(
∏
i

As1As2 ...Asn)|s1s2...sn〉 (1.2)

We use {si} to represent a spin configuration, |s1, s2, ..., si, ..., sN〉, and the summation

is over all position spin configuratinos {si}. States with this form are called Matrix

Product States. The coefficient of a spin configuration is given by the trace of product

of matrices for this configuration. This form can be generalized to any 1-dimensional

system. If we have a spin chain of N sites, and the physical space on each site has

dimension d, we break it into an auxiliary Space of D × D, with 2 auxiliary spins.

Neighboring auxiliary spins are in a maximumly entangled state:
∑D

i=1 |i〉|i〉.

��
��
��
��u u u u

∑
i |i〉|i〉 Asi,j

Next we use matrix (Ask[k])i,j to project from D×D dimensional auxiliary space to

d dimensional physical space. Here [k] is the site number, sk is the spin on site k. i

and j are the indices of the matrix. We get:

| ΨM〉 =
∑
{si}

∏
i

Tr(As1[1]A
s2
[2]...A

sN
[N ])|s1, s2, ..., sN〉(PBC) (1.3)

for periodic boundary condition(PBC), and

| ΨM〉 =
∑
{si}

∏
i

As1[1]A
s2
[2]...A

sN
[N ]|s1, s2, ..., sN〉(OBC) (1.4)

for open boundary condition(OBC). Here A[1] and A[N ] are row and column vectors

respectively.

4



1.1.2 Schmidt decomposition and Conanical form

Here we look at a useful way of treating a many-body wave function, which is

especially convenient for MPSs. If we have a wave function on N sites, if we divide

system into subsystem A(L sites) and B(N − L sites), we can always write:

| ψ〉 =
dL∑
i=1

dN−L∑
j=1

Cij|i〉A ⊗ |j〉B (1.5)

| i〉 and | j〉 are some basis set for A and B. We can do a single value decomposition:

C = UDV , U and V are unitary, and D is diagonal with semipositive elements, called

Schmidt coefficients λα. Then the wave function is:

|ψ〉 =

χ∑
α=1

λα(
dL∑
i=1

Uiα|i〉A)⊗ (
dN−L∑
j=1

Vαj|j〉B)

=

χ∑
α=1

λα|φ[A]
α 〉 ⊗ |φ[B]

α 〉 (1.6)

χ is the number of non-zero Schmidt coefficients. The basis functions φ are or-

thonormal: 〈φ[A]
β |φ

[A]
α 〉 = δαβ and 〈φ[B]

β |φ
[B]
α 〉 = δαβ. Eq (1.6) is called the Schmidt

decomposition. If the state is written in this form, we look at the reduced density

matrix of subsystem A, then:

ρA =

χ∑
α=1

λ2
α | φ[A]

α 〉〈φ[A]
α | (1.7)

and the rank of ρA(B) is just χ.

For a MPS, the Schmidt decomposition is particularly usefull. If we divide the

state into left and right part,

| ΨM〉 =
D∑
α=1

| φleftα 〉⊗ | φrightα 〉 (1.8)
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with

φleftα =
∑
{s1,...si}

As1[1]A
s2
[2]...A

si
[i]|s1, s2, ..., si〉

φrightα =
∑

{si+1,...sN}

A
si+1

[i+1]A
si+2

[i+2]...A
si
[N ]|si+1, si+2, ..., sN〉 (1.9)

It already looks like the form in Eq (1.6), but φα may not be orthonormal. On the

other hand, if we change A[i] → X−1
i A[i]Xi+1, the state is invariant, this is some

type of gauge freedom. So we have the freedom to choose Xi, and can choose the

gauge so that Eq (1.8) is exactly the Schmidt decomposition. This gauge is called the

canonical gauge. In the case of PBC and Asi[i] are the same for every site, we can drop

the subscript [i], the canonical form has the following property [60]: the Asis have a

block diagonal form:

Asi =


λ1A

si
1 0 0

0 λ2A
si
2 0

0 0 ...


1 ≥ λi > 0, and Asij obey the constrains:

∑
i

Asij A
si†
j = I (1.10)∑

i

Asi†j ΛjA
si
j = Λj (1.11)

where j is the index of the diagonal block, and Λj is a positive diagonal matrix with

trace equal to 1. In this thesis, we are most interested in the case that the As only

have 1 block, since this is the “irreducible” case. We can then drop the j index and
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write:

∑
i

AsiAsi† = I∑
i

Asi†ΛAsi = Λ (1.12)

where Λ is diagonal, positive, full rank and has trace 1. This is also called the injective

case.

1.1.3 Properties of MPS

In this section we derive some important properties for a translational invariant

MPS with PBC:

| ΨA〉 =
∑
{si}

Tr(
∏
i

Asi)|{si}〉 (1.13)

First the overlap of the MPSs ΨA and ΨB is:

〈ΨB | ΨA〉 =
∑
{si}

Tr[(
∏
i

Asi)]Tr[(
∏
i

B∗si)]

= Tr(EN
AB) (1.14)

where EAB =
∑

i Āsi ⊗Bsi . In particular when A = B, |ΨA|2 = Tr[(EA)N ],

EA =
∑
i

Āsi ⊗ Asi (1.15)

which is also called transfer matrix of MPS. Assume EA can be diagonalized, EA =

V −1DV , where D is diagonal, then only the largest eigenvalues matter in the ther-

modynamic limit N → ∞. We are mostly interested in the case that the largest

eigenvalue is not degenerate, or the injective case [60], in this case the only largest

eigenvalue λM must be 1 if the state is normalized.
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The expectation value of an operator Ô can also be written in a nice way:

〈Ôi〉 = Tr((EA)N−1EO
A )

〈ÔiÔ
′
j〉 = Tr(EO

A (EA)j−i−1EO
′

A (EA)N−j+i−2) (1.16)

where EO
A =

∑
i,j Oi,jAsi ⊗ Āsj . An interesting quantity to look at is the two point

function: C(r) = 〈Ô0Ôr〉 − 〈O〉2, from Eq (1.16), when r is large enough, C(r) ∼

λr2 ∼ exp(−r/ξ), where λ2 is the second largest eigenvalue of EA, and ξ = log(1/λ2).

So the correlation for MPS can only decay exponentially (injective case) or stay as

a constant. We know that in a critical system, the correlation will in general be a

power law decay, so MPS can not truely represent a critical system, but instead will

give an effective correlation length of ξ ∼ logD. In practice, methods like DMRG can

still simulate ground states of gapped system effectively nonetheless.

As an example, let’s look the AKLT state in Eq (1.2), the EA matrix can be

calculated as: E=



1
2

0 0 1

0 −1
2

0 0

0 0 −1
2

0

1 0 0 1
2


, the eigenvalues of E are 1.5, -1/2, -1/2, -1/2.

That means that the state is not normalized yet, to normalize it we should multiply

the As by a factor of
√

2
3
, and the eigenvalues become: 1, -1/3, -1/3, -1/3. The

correlation of AKLT state decays as Cr ∼ (−1)re−r/log(3), the (−1)r factor means it

is anti-ferromagnetic.

1.2 Effectiveness of MPS

In Sec 1.1 we see that for a spin chain with N sites, MPS uses ∼ N number

of parameters to describe a state, instead of the full Hilbert space dimension ∼ eN ,

this is an extremely small portion when N is large. Then how do we know the MPS
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representation is useful at all? It turns out that if the Hamiltonian is a 1D local

Hamiltonians with a gap, MPS is a good approximation to the ground state[72].

The reason is that for a subsystem of any size, MPS is only keeping a maximum of D

states, where D is the dimension of the matrices. And in 1D, it is believed that for the

ground state of gapped Hamiltonian, the Schmidt coefficients of the subsystem decays

exponentially [62], and only the states with largest coefficients matter. Unfortuanatly

this is not true in 2 or higher dimension.

1.3 Generalization of MPS

1.3.1 Graphic representation

MPS can be graphically represented, we denote the matrix A on each site by a

circle, and denote every index of the matrix by a leg, each connected leg means sum-

ming over the associated index:

sk

Aski,j : i
A

j
ΨM : A1 A2 A3 ... Ai An

The calculation of the normalization of a state can also be graphically represented:

Ā1 Ā2 Ā3 ... Āi Ān

A1 A2 A3 ... Ai An

1.3.2 Tensor Network States

With the graphical method we can easily create states made of tensors. They

are called Tensor Network State (TNS), an example is shown in Fig 1.2. If we cut

the system into two parts, then entanglement between the two parts can be roughly

estimated by counting the number of legs that are cut by the partition. Note that

9



Figure 1.2: A TNS, every dot represents a tensor, and every leg represents a index.
If we make a cut, the red line, the entanglement S ∼ # of legs cut by the partition.

if this kind of partition is made in 1D, there can only be two legs that are cut, but

in two or higher dimension this number increases with the length of the boundary

between the two parts.

One commonly used TNS is the straightforward generalization of MPS to 2D,

which is called Projected Entanglement Pair State (PEPS)[73], as shown in Fig1.3.

In a 2D PEPS, there’s a tensor (instead of a matrix as in MPS) on site r of the

lattice, A
[r]
ijkl, the 4 indices of the tensor connects to each of the 4 neighbors. Unlike

the simple case in MPS, the normalization of PEPS is computationally hard, and

there’s no general rule on whether there exists a canonical form [74], the reason is

that in 1D, if one cuts the MPS into 2 parts, the number of legs cut by the partition

is always 2, while in 2D, this number grows as the partition grows larger, and the

computational cost grows accordingly. To calculate the normalization and operator

expectation values, methods like tensor renormalization group are commonly used

[52].

The other example of TNS is the Multi-scale entanglement renormalization ansatz

(MERA)[75], shown in Fig1.4. It is designed to describe critical systems. The struc-

ture of MERA consists of many layers, corresponding to a coarse graining, or real
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Figure 1.3: Graphic representation of PEPS, in 2 dimension, it cal also describe
critical systems.

Figure 1.4: Graphic representation of MERA. It has many layers, representing the
real space renormalization procedure.

space renormalization procedure: the bottom layer(L{0}) is the initial state of the

system, then a “disentangler”(green box) is used to disentangle neighboring sites and

a projector (red triangle) is used to reduce the number of sites in the system by a

factor of 3, to get the next layer(L{1}). This procedure is repeated to get the final

state (blue dot), and the final state has no entanglement. In this system, if one makes

a partition in the bottom, then the minimal cut is to go up several layers until all the

cut area is in the same site, then go back to the bottom layer. The number of legs

cut by the partition is then: ∼ log3L, with L being the size of the cut region. Since

the entanglement of the subsystem for 1D system generally goes as ∼ logL [29], this

structure has advantages when dealing with critical systems.
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CHAPTER II

Full Counting Statistics and time evolution of

Matrix Product States

In Chap I we saw that MPSs are useful for describing the ground states of 1 di-

mensional local Hamiltonians. On the other hand, there are still many open problems

in this field, like what is the manifold of 1D MPS with a fixed matrix dimension D,

and what is the best MPS to approximate a certain state. In this chapter we study

MPS by exploring some interesting properties, the Full Counting Statistics [65] in

Sec 2.1 and time evolution in Sec 2.2.

2.1 Full Counting Statistics for Matrix Product State

2.1.1 Introduction to Full Counting Statistics

To formally introduce full counting statistics, we consider a discrete probability

distrubution P (N),
∑

N P (N) = 1, and a cumulant generating function:

χ(λ) = 〈eiλN〉 =
∑
N

eiλNP (N) (2.1)
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the cumulants are defined as the Taylor expansion of log(χ(λ)):

log(χ(λ)) =
∑
n

Cn
(iλ)n

n!
(2.2)

The first few cumulants are: C1 = 〈N〉, C2 = 〈N2〉 − 〈N〉2, C3 = 〈(N − N̄)3〉.

With the advantage of precision experiments in condensed matter physics, it is now

possible to probe the nature of correlated quantum systems to ever higher degrees of

detail and precision. This is especially apparent in cold atom systems, where in addi-

tion to refined correlation measurements, we also have fine control of the Hamiltonian

parameters themselves. One of the most useful ways of studying detailed correlations

in the intermediate regime between the macroscopic, thermodynamic properties, and

the microscopic, atom by atom level, is through the full counting statistics functions.

These describe the full probability distribution of suitable observables, such as the

magnetization of a block of spins in a spin chain or the total excess charge flowing

through a quantum point contact.

The full counting statistics function (FCS) contains detailed information about

the properties of the state. It has been a useful tool to analyze quantum states,

from it’s original appearance in quantum optics, in the theory of photon detectors

[30, 56] in quantum optics to counting statistics of electrons in mesoscopic systems

introduced by Levitov and Lesovik [54]. The full counting statistics has studied in

numerous electronic systems theoretically [58, 7, 63, 47, 53] as well as in experiments

[13, 25]. The utility of full counting statistics for cold atoms was pointed out in

[17]. It has also been demonstrated that in certain cases counting statistics may be

used to characterize block entanglement entropy in fermions states and spin states

[43, 42, 66]. Recently, the analyticity properties of the ”bulk” component of the full

counting statistics of classical Ising and quantum XY spin chains has been used as

an alternative characterization of phases [38].
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2.1.2 FCS for MPS

Here, we explore the quantum noise in MPS [55]. MPS has convenient properties

that allow a thorough study of correlations and fluctuations in them, for example,

an analog of the Wick’s theorem has been demonstrated for generic translationally

invariant MPS in [35]. Finally, we remark that our results also hold for certain

other states as long as the probability distribution of certain measurements may be

described in terms analogous to MPS, a prominent example for which is the exact

solution of the 1D asymmetric exclusion process [21], in a recent paper, the full

counting statistics for the asymmetric exclusion model was considered in [31].

Here, we concentrate on the corrections to the central limit theorem (CLT). The

central limit theorem is a description of the statistics of averages of independent

random variables, stating that properly weighted average tend to a Gaussian distri-

bution when the number of random variables is large. Since the correlation length in

an MPS, say, is finite, one may expect gaussian-like behavior for the magnetization

of large blocks of spins. We find that the simple structure of the MPS allows us to

not only do this but much more: we can controllably identify how the central limit

of magnetization is reached, what are the main corrections (a consequence of entan-

glement in the system) and show how CLT may sometimes completely fail in cases of

topological states.

The distribution of magnetization approach to Gaussian behavior at large spin

blocks is substantially more intricate for the MPS as opposed to independent ran-

dom variables. To address this behavior we concentrate on deriving the asymptotic

probability distribution and corrections to it. While in many cases, even when the

distribution seems Gaussian in the infinite block size limit, the corrections due to

finite block size are modified. Such corrections are described, for independent, identi-

cally distributed variables using various asymptotic series such as the Gram-Charlier

A series and the Edgeworth series [46, 11]. The Edgeworth series has been extensively
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studied in the mathematical literature, with the focus on ensuring it’s applicability

when dealing with random identically distributed variables, which may have diver-

gent moments, see e. g. [24, 61, 12]. Here, we derive an expression for the asymptotic

corrections to the central limit error function of MPS in analogy to the asymptotic

Edgeworth series. We start by deriving formulas for the full counting statistics gen-

erating function.

2.1.3 General formula

Let us consider an MPS with periodic boundary conditions on N spins, defined

as follows:

ψ = Σ{σ}Tr (Aσ1Aσ2 ..AσN ) |σ1σ2...σN
〉

(2.3)

where Aσ ∈ {A1, ..AS} , S is the spin index, and σ1 ∈ {1, ..S}. The matrices A are

of size D ×D, where D is called the bond dimension.

To express the full counting statistics of the spin variable σ, we define:

E(λ) = Σσe
iλσĀσ ⊗ Aσ. (2.4)

The full counting statistics generating function of the magnetization of a block of l

sites is then given by

χ(λ; l;N) ≡
∑

n prob(total spin of block = n)eiλn = =
〈
eiλŜl

〉
=

TrE(λ)lE(0)N−l

TrE(0)N
.

Here Ŝl = Σl
i=1σ̂i where σ̂i is a spin operator at site i. When considering the thermo-

dynamic limit, we add, as is usual, the demand that:

ΣS
σ=1AσA

+
σ = I (2.5)
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This ensures that the largest eigenvalue of E(0) is λ = 1. In addition, when dealing

with problems in the thermodynamic limit we assume this largest eigenvalue is non

degenerate. In the thermodynamic limit, we define:

χ(λ; l) ≡ lim
N→∞

χ(λ; l;N) (2.6)

The existence of the limit is assured by the conditions above. To compute χ(λ; l)

we define P (λ) to be the matrix which brings E(λ) to it’s Jordan form, with Jordan

blocks Jk arranged such that the block with the largest eigenvalue is J1. Note that

the number of blocks as well as eigenvalues depend on λ. We have:

E(λ)l = P (λ)(⊕k=1J
l
k)P

−1(λ). (2.7)

We assume 〈i| and |i〉 are the left and right eigenvectors of E(λ), and i = 1 corresponds

to the largest eigenvalue, and note that if there is no degeneracy,

E(0)N → P (0)|1〉〈1|P−1(0). (2.8)

Therefore, the full counting statistics function is given by:

χ(λ; l) = 〈1|P−1(0)P (λ)(⊕k=1J
l
k)P

−1(λ)P (0)|1〉 (2.9)

Let αk(λ) be the diagonal value of Jk. We can compute explicitly the power of a

Jordan block, obtaining after some algerba the formula:

χ(λ, l) =
∑
k=1

dk∑
i=1

min(l,dk)−i∑
ν=0

C l
νQk,i,να

l−ν
k (2.10)
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where C l
ν are the binomial coefficients, dk the dimension of Jordan block k and

Qk,i,ν(λ) = 〈i+ ν +
∑k−1

n=0 dn|P−1(λ)P (0)|1〉× 〈1|P−1(0)P (λ)|i+ ν +
k−1∑
n=0

dn〉.

Note that in (2.10), Q,αk as well as the limits in the sum depend on λ implicitly.

Since the largest eigenvalue 1 of E(0) is non-degenerate, we have that Q1,1,0(0) = 1

and Qk,i,ν(0) = 0 for all other value of k, i, ν. It is also important to note that since,

generically, eigenvalues do not cross, we expect that we may set dk = 1, ν = 0 in (2.10)

for almost all values of λ ∈ [−π, π], unless some special symmetry or constraint is

present.

Let us now consider the limit of large block size l. As with any thermodynamic

quantity, computed in a system with finite correlation length, we expect a gaussian

distribution of observables according to the CLT. For a matrix product state, of

course, the spins are not independent, and so the central limit distribution receives

contributions from two types of corrections: due to correlations and due to finite size.

Bellow we establish this behavior and derive the appropriate asymptotic description

of the probability distribution for large but finite blocks.

In the limit of large l, if the largest eigenvalue of the matrix E(λ) is non degenerate,

E(λ)l is dominated by the largest eigenvalue α1(λ) and we may write that:

χ(λ; l) ∼ χ0(λ)χ1(λ)l as l →∞ (2.11)

where:

χ1(λ) = α1(λ) ; χ0(λ) = Q1,1,0(λ)

It is possible to take into account the corrections due to the smaller eigenvalues

of E(λ) as well, giving additional exponentially small corrections.
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We are now in position to describe the probability distribution of block magneti-

zation. Let us define:

M̂l =
1√
l

Ŝl − lµ(l)

var(σ, l)
(2.12)

where µ(l) is the average magnetization per site, and var(σ, l) is the variance per site.

We note that since the spin variables on different sites are not independent, both µ(l)

and var(σ, l) depend explicitly on the size of the block. Let

Fl(M) = Prob(Ml ≤M) (2.13)

be the probability distribution of measuring M̂l. To find Fl(M), we now focus on the

FCS for M̂l, defined as:

χM(λ; l) = 〈eiλM̂l〉. (2.14)

Since we assume that the largest eigenvalue of E(λ) is non degenerate at λ = 0,

this eigenvalue is analytic in a neighborhood of λ = 0. Indeed both χ0(λ), χ1(λ) are

analytic in the domain λ ≤ |λ∗| where λ∗ is the smallest λ (in the complex plain)

for which the largest eigenvalue of E(λ) becomes degenerate (see, e.g. [49]). We can

therefore expand log(χ1(λ)), log(χ0(λ)) near λ = 0. Noting that χ0(λ) = χ1(λ) = 1

we have the ”cumulants” κr and ξr in:

log(χ0(λ)) =
∞∑
r=1

ξr(iλ)r

n!

log(χ1(λ)) =
∞∑
r=1

κr(iλ)r

n!
. (2.15)

We see that for a block of l spins, µ(l) = 〈σ〉 = κ1+ξ1/l, and var(σ, l) =
√
〈σ2〉 − 〈σ〉2 =√

κ2 + ξ2/l. We also recognize χ0 as boundary (or “Edge”) term that characterize
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the effect of the rest of the chain on the chosen l spins, and χ1 as the bulk term that

is not effected by other spins.

Here χ1 plays, formally, the role of the local independent random variable in the

usual derivation of the central limit theorem. However, it is important to note that in

a generic MPS, χ1 is not the full counting statistics of a valid probability distribution.

Indeed, for that, the associated distribution, given by the Fourier transform of χ1 must

be a positive real function.

Let us briefly explore how close χ1 is to a valid probability distribution. To do so

we write the counting statistics of a block of size 1 as:

χ(λ, 1) = χ1(λ) + χδ(λ), (2.16)

and define the pseudo-probabilities:

p̃n,i =
1

2π

π∫
−π

dλ χi (λ) e−iλn ; i = 1, δ. (2.17)

Associated with the various eigenvalues of the χ1(λ), χδ(λ). Thus p̃n,1 is the effec-

tive probability distribution which would have generated the asymptotic behavior

described by the central limit behavior. We can establish the following properties:

1) From the definition of χ1, we can immediately infer that the associated distri-

bution is discrete.

Indeed, observe that since E(λ) is periodic, we can choose χ1(λ) to be periodic:

χ1(λ) = χ1(λ+ 2π), which is associated with discrete, integer, spins.

2) The distribution is real (however it is in general not necessarily positive).

The second property is established by noting that:

E(−λ) = τE(λ)τ (2.18)
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where τ swaps v1 ⊗ v2 → v2 ⊗ v1. Therefore

specE(−λ) = specE(λ) (2.19)

and, in particular χ1(−λ) = χ∗1(λ), ensuring the Fourier transform is real. It is,

however, in general not associated with a probability distribution, since the Fourier

transform is, in general, not strictly positive.

3)
∑

n p̃n,1 = 1 and
∑

n p̃n,δ = 0. To prove this note that χδ(0) = 0 since χ(0, 1) =

χ1(0) = 1. Now use that
∑

n p̃n,δ = χδ(0).

2.1.4 Edgeworth series

We now proceed to derive the Edgeworth series for our MPS. Using the definition

(2.12) and Eq (2.11), we can find the cumulants for the distribution of M̂l:

logχM(λ; l) =
(iλ)2

2
+

(iλ)3(lκ3 + ξ3)

6(lκ2 + ξ2)3/2

+
(iλ)4(lκ4 + ξ4)

24(lκ2 + ξ2)2
+

(iλ)5(lκ5 + ξ5)

120(lκ2 + ξ2)5/2
+ ... (2.20)

We note that for the normal distribution, we have:

log(φ(λ)) =
(iλ)2

2
(2.21)

Combine the two equations, and collect terms according to the power of l, we have

log
χM(λ)

φ(λ)
=

1

l1/2
(iλ)3κ3

6κ
3/2
2

+
1

l

(iλ)4κ4

24κ2

+
1

l3/2
[
(iλ)5κ5

120κ
5/2
2

+
(iλ)3

6
(ξ2 −

3ξ3

2κ2

)] + ... (2.22)
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Exponentiate the above equation, we have

χM(λ; l) = (1 +
∞∑
j=1

qj(iλ)

lj/2
)e−λ

2/2 (2.23)

where qj is a polynomial of degree 3j.

Finally, to obtain Fl in (2.13), we do the inverse Fourier transformation to get

the probability density, and integrate it over x to get the probability distribution.

Defining

Φ(x) ≡
x∫

−∞

dq√
2π
e−

1
2
q2

(2.24)

to be the error function. We obtain:

Fl(x) = Φ(x) +
∞∑
j=1

qj(−∂x)
lj/2

Φ(x). (2.25)

In general qj is a complicated polynomial, which can be compute to all orders. Here

we write explicitly the first few terms:

q1 = −κ3(∂x)
3

6κ
3/2
2

q2 =
κ4(∂x)

4

24κ2
2

+
κ2

3(∂x)
6

72κ3
2

q3 = − κ3
3(∂x)

9

1296κ
9/2
2

− κ3κ4(∂x)
7

144κ
7/2
2

− κ5(∂x)
5

120κ
5/2
2

− (∂x)
3

6
(ξ2 −

3ξ2

2κ2

)

(2.26)

Comparing the above result with the usual Edgeworth series [46, 11], we find the

first two terms are the same as those appearing in the Edgeworth expansion for l

independent measures with cumulants κi, the correction from the boundary term χ0

only effects the third and higher order terms.
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It is important to note that the parameters κi, ξi are, in principle, measurable.

For example, κ2, ξ2 can be obtained from the total noise in the measurement of l

and l + 1 spins as κ2 = 〈∆S2
l+1〉 − 〈∆S2

l 〉 and ξ2 = (l + 1)〈∆S2
l 〉 − l〈∆S2

l+1〉, where

∆Sl ≡ Sl − 〈Sl〉.

Alternatively, by considering χ0(λ) as a differential operator acting on the Fourier

transform of χ1, and combining the Taylor series for χ0(λ) =
∑∞

k=0
fk
k!
λk with the

Edgeworth series for χl1, we may write explicitly

F̃l=Prob

(
Sl − lκ1√

κ2l
≤ x

)
=
∞∑
L=0

1

lL/2

L∑
m=0

imfmGL−m,m
κ2

m/2m!
(2.27)

where Gk,m(x) is given by G0,m = (−∂x)mΦ(x):

Gk,m = Σ
{p1, ..pk} ∈ Zk

+

Σlpl = k; Σpl = j

(−∂x)k+m+2jΦ(x)

p1!..pk!

(κ3

3!

)p1

..

(
κk+2

(k + 2)!

)pk
.

We can now compute Fl by using the expression (2.27), combined with:

Fl(x) = Prob
(

Sl−lµ(l)

(var(Sl)/l)
√
l
≤ x

)
=

Prob

(
Sl−lκ1√
κ2l
≤ 1√

1+
ξ2
lκ2

x− ξ1√
lκ2

)
= F̃l

(
1√

1+
ξ2
lκ2

x− ξ1√
lκ2

)

To illustrate these ideas, let us consider the following spin 1 MPS, given by the

properly normalized matrices:

A+=

√
1

3

1 1

0 0

 ;A0=

√
1

6

−1 1

1 1

 ;A−=

√
1

3

 0 0

−1 −1



Plugging these matrices in the definition (2.4) we find that:
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E(λ) =
1

6



2eiλ + 1 2eiλ − 1 2eiλ − 1 2eiλ + 1

−1 −1 1 1

−1 1 −1 1

2e−iλ + 1 2e−iλ + 1 2e−iλ + 1 2e−iλ + 1


At λ = 0 we find that the largest eigenvalue is 1, and that it is separated by a gap

from the next eigenvalue 1/3 .

In Fig 2.1. we compare the probability distribution for magnetization computed

numerically from the ground state wave function, with the probability distribution

obtained from our Edgeworth series (2.25). Here, the exact probability distribution

Fl(M) was found numerically by doing an inverse Fourier transformation of Eq (2.5).

In the example depicted in Fig 2.1, for a block of 20 spins, it is evident that the

Edgworth series works extremely well, capturing the essence of the correction already

at first order. We also exhibit the pseudo-probabilities in Fig 2.2, computed according

to Eq (2.17).

Next, we consider an example where the full counting statistics is not described

by a Gaussian of finite width, although the system is gapped. In this example, the

variance per site actually vanishes as 1/l. Consider the AKLT state in Eq (1.2), the

properly normalized form has:

A+ =

√
2

3

0 1

0 0

 ;A0 =

√
1

3

−1 0

0 1

 ;A−=

√
2

3

 0 0

−1 0


which gives:

E(λ) =
1

3



1 0 0 2eiλ

0 −1 0 0

0 0 −1 0

2eiλ 0 0 1


.
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Figure 2.1: Correction to the central limit distribution (i.e,Fl(M) − Φ(M)). Solid
line represent the exact result by calculating the probability distribution, dashed
line shows the first order correction using Edgeworth series.
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Figure 2.2: First few Fourier components of χ1, showing small but finite negative
pseudo-probabilities.

Computing the eigenvalues of E(λ), we see that they are 1,−1
3
,−1

3
,−1

3
, independent

on λ. In the limit of N, l → ∞, eS(λ, l, N) → 1+cosλ
2

, we find that the counting

statistics does not depend on l.

This result reflects the topological nature of the AKLT state, the total spin of the

block depends only on the ”edge modes” which are the only ones which are allowed

to fluctuate.

In general, the absence of scaling of fluctuations, appears whenever we have a

correspondence of the form

E(λ) = V (λ)E(0)V −1(λ) (2.28)

For some matrix V . In such a case, χ1(λ) ≡ 1, and the entire contribution comes

from the edge χ(λ; l) = χ0(λ). In this case logχ(λ) is clearly not extensive in the
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block size l.

To summarize, Matrix product states supply a very natural class of probabil-

ity distribution which are not IID, but are still quite amenable to treatment and

computation. In this section we have studied the full counting statistics of spin in

matrix product states. We explored the finite size correction to the Gaussian count-

ing statistics expected on large scales. We showed how an Edgeworth type series

may be used describe these asymptotic corrections and checked it numerically on an

explicit example. Finally, we showed that in special cases, such as the AKLT model,

the fluctuations in the system do not scale linearly with system size, and the Edge-

worth description is not valid whenever it is based on variance and mean which were

measured on any finite size block.

2.2 Time evolution of Matrix Product States

In the last section, we were able to exactly calculate the FCS of a matrix product

state in a variety of cases. While it is rare for a physical problem to be exactly

solvable, exact solutions of physical problems, even fine tuned ones are often of high

value. These can teach us a lot about the corresponding phase, or serve as a starting

point for a perturbative expansion.

In particular, it is even harder to find solutions of explicit time-dependent prob-

lems. We now pose the following natrual question: given a time-dependent MPS, can

this MPS be the exact solution to some time-dependent Schrodinger equation with

a local Hamiltonian? Considering that numerical methods like time evolving block

decimation (TEBD)[76, 85] approximates the time evolution of interacting systems

with a time-dependent MPS.

On the other hand, this problem helps us to understand phase transitions in 1D.

It is argued that any two states are connected by a local unitary evolution [15], or

evolution generated by a local Hamiltonian for a finite time, they are always in the
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same phase. And 1 dimensional gapped phases can be classified using this definition

within the MPS formalism [16].

Here we show that, in contrast to, say the Hartree-Fock variational states, which

can be evolved using non-interacting time-dependent Hamiltonians, MPS are more

restrictive, and require the entanglement entropy of blocks to remain constant.

2.2.1 Nonlinear equation for the Hamiltonian

We will assume a translationally invariant (TI) MPS, with a bond dimension D,

a spin dimension S and representative matrices Aσi , i ∈ {1, S}, S is the physical

dimension on site. The state is a special case of Eq (1.3):

ψ = Σ{σ}Tr (Aσ1Aσ2 ..AσN ) |σ1σ2...σN
〉

(2.29)

where the set of matrices on different sites are the same. We further assume that the

MPS is injective, which means that the transfer matrix in Eq (1.15): E =
∑

i Āσi⊗Aσi

has a non-degenerate largest eigenvalue which is 1. Remember that E is related to

the normalization: 〈ψ|ψ〉 = Tr(EN). The canonical form Eq (1.12), also implies that

the left and right eigenvectors corresponding to the largest eigenvalue are:

(L| =
∑
α

λα〈α|〈α| (2.30)

|R) =
∑
β

|β〉|β〉 (2.31)

λα = Λαα. Here parenthesis are used to indicate that (L| and |R) are not normalized.

|α〉 is the basis vector that only αth element is 1 and all others are 0. λα is the αth

diagonal element of the Λ matrix in Eq (1.12).
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To see this, consider that Emm′,nn′ =
∑

i Ā
σi
mnA

σi
m′n′ , so Eq (1.12) means that:

(
∑
i

AsiAsi†)mn =
∑
k

Enm,kk = δmn

(
∑
i

Asi†ΛAsi)mn =
∑
k

λkEkk,mn = λmδmn (2.32)

so that:

E|R) =
∑
αβγ

Eαγ,ββ|α〉|γ〉 = |R) (2.33)

(L|E =
∑
αβγ

λαEαα,βγ〈β|〈γ| = (L| (2.34)

So indeed, |R) and (L| are the right and left eigenvectors of E, corresponding to the

eigenvalue 1. We assume the state is in a canonical form at t = 0, but not necessarily

canonical at t > 0.

Now assume the state evolves under a translational invariant, time-dependent two-

site interaction Hamiltonian, H =
∑

iH
[i,i+1](t), H [i,i+1](t) acts on sites i and i + 1.

If we assume that the state remains a MPS with a fixed bond dimension, so that now

the As are all time-dependent. Then we have:

〈{σi}|
∂

∂t
|ψ〉 =

∑
i

Tr(
d

dt
(Aσi)Aσi+1

Aσi+2
...AσNAσ1 ...Aσi−1

) (2.35)

〈{σi}|Ĥ|ψ〉 =
∑
i

Tr((
∑
σ
′
i ,σ
′
i+1

H
[i,i+1]

σiσi+1,σ
′
iσ
′
i+1

AσiAσi+1
)×

Aσi+2
...AσNAσ1 ...Aσi−1

) (2.36)

Here 〈{σi}| is the basis state with spin configuration {σi}, we also used the cyclic

property of trace. For the rest of the section, we write Ai instead of Aσi , and Hij,i′j′
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instead of H
[i,j]

σiσj ,σ
′
iσ
′
j

(since H does not depend on the sites i and j) for short. Now

we see that from Eq (2.35) and (2.36), the Schrodinger equation can be satisfied by

requiring:

d

dt
(AiAj) = −2i

∑
kl

Hij,klAkAl (2.37)

or equivalently, in an integral form:

Ai(t)Aj(t) =
∑
kl

Uij,klAk(0)Al(0) (2.38)

where U = e−2i
∫ t
0 H(t)dt.

Eq (2.37) is sufficient, but not necessary, to satisfy the Schodinger equation. However,

we use that that the product:
∏

k!=i,i+1 Aσk is “dense”, so that

Tr[Hii+1,i′ i′+1Ai′Ai′+1 + 2i
d

dt
(AiAi+1)]X = 0

for any matrix X (except for a gauge transformation), which is another way of saying

the state is injective, then Eq (2.37) must be satisfied, as explained below. So our

question becomes that: can we find a set of matrices that satisfy Eq (2.37)?

Before trying to answer it, we first notice that in the injective case, it is shown

[60] that for a certain length l > l0, the product Ai1Ai2 ...Ail for all Sl different

configurations of i1i2..il form a complete basis of all D × D matrices. Here we take

l0 = 2 for convenience, since if l > 2, we can always group up As to make l smaller,

that does not change the physics picture. Thus for any Ȧi one chooses for Eq (2.37),

there is always a H, although may not be Hermitian, that satisfies the equation.

Next we require this Hamiltonian to be Hermitian, or U to be unitary. In this case,
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we find:

∑
i,j Ai(t)Aj(t)(Ai(t)Aj(t))

†

=
∑

i,j

∑
k,l,k′ ,l′ Uij,klU

∗
ij,k′ l′

Ak(0)Al(0)(Ak′ (0)Al′ (0))†

=
∑

klAk(0)Al(0)(Ak(0)Al(0))† = I (2.39)

The last line we used the canonical condition. We only assume at t = 0 the state is

in canonical form, but at t 6= 0 it is not.

And the same goes the other way:

∑
i,j

(Ai(t)Aj(t))
†Ai(t)Aj(t)

=
∑
i,j

(Ai(0)Aj(0))†Ai(0)Aj(0) = const. (2.40)

Now we can relate equation (2.39) and (2.40) to the matrix E, it is straightforward

to check that:

[
∑
i,j

Ai(t)Aj(t)(Ai(t)Aj(t))
†]αβ =

∑
γ

(E(t)× E(t))αβ,γγ (2.41)

[
∑
i,j

(Ai(t)Aj(t))
†Ai(t)Aj(t)]αβ =

∑
γ

(E(t)× E(t))γγ,βα (2.42)

Eq (2.39) and Eq (2.40), combined with Eq (2.30), gives:

E2(t)|R) = |R) (2.43)

(L|E2(t) = (L| (2.44)

So |R) and (L| are also the eigenvectors of E2(t) corresponding to eigenvalue 1, which

is still the largest eigenvalue because of normalization. Although we assumed the

Hamiltonian to be a 2-site interaction Hamiltonian, and thus in Eq (2.39) and (2.40)
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we have product of two As, we can easily take the interaction to act on more sites,

and the same argument still applies, so that |R) and (L| are eigenvectors of En(t),

where n can be an arbitrary integer. So, they must be eigenvectors of E(t) itself.

Since the largest eigenvalue and eigenvectors play the most important role for a MPS

in the thermodynamic limit, we can already imagine that the state is not really

evolving in an interesting way. To make this clear, consider the two-body reduced

density matrix for a chain of N sites:

ρij,kl(t) = Tr((Ai(t)⊗ Āk(t))(Aj(t)⊗ Āl(t))EN−2(t)) (2.45)

At the limit where N → ∞, only the largest eigenvalue matters in the trace, and

because it is 1, we can write the above equation as:

ρij,kl(t) = (L|(Ai(t)⊗ Āk(t))(Aj(t)⊗ Āl(t))|R)

= Tr[ΛAi(t)Aj(t)(Ak(t)Al(t))
†] (2.46)

for the second line we plugged in the explicit form for (L| and |R). Now we can have

an equation of motion for the reduced density matrix, using equation (2.37):

d

dt
ρij,kl(t) = iTr[Λ

∑
ij

Hij,i′j′(t)Ai′(t)Aj′(t)(Ak(t)Al(t))
†]

− iTr[ΛAi(t)Aj(t)
∑
k′l′

Hkl,k′l′(t)(Ak′(t)Al′(t))
†]

= i[H(t), ρ(t)]ij,kl (2.47)

We see that, the two-body reduced density matrix is evolving under a unitary matrix:

ρ2(t) = U2(t)ρ2(0)U2(t)†. As a consequence, all the eigenvalues of ρ(t) remain con-

stant, which means the entanglement spectra are constant. Remember, we assumed

the Hamiltonian to be a two-site interaction, but we can always assume it acts on
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more sites, and the same is true for 3 or more site reduced density matrices. So

the state is not actually evolving in an interesting way: no correlation are generated

beyond the range of interaction.

That also means, if we start from an MPS with certain bound dimension, as soon as

one turns on the interaction, the state (in thermodynamic limit) can not be written

exactly as any finite dimension MPS.

2.2.2 Exact time evolution in non-injective case

In the last section, we see that there can not be non-trivial exact time-evolution

under the conditions: the state is translational invariant and injective. Without these

conditions, of course MPS can represent an exact time-evolution. And here we show

a simple example. We now consider the spin-1/2 XXZ model:

H =
∑
<ij>

sxi s
x
j + syi s

y
j + ∆szi s

z
j (2.48)

=
∑
<ij>

1

2
(s−i s

+
j + s+

i s
−
j ) + ∆szi s

z
j (2.49)

the state:

Ψp =
1√
N

N∑
n=1

eipn|n〉 (2.50)

where N is the number of sites and |n〉 denotes the state that all spins are up except

the nth spin, and p = 2πk/N , k = 0, 1, 2, ... N. Those states are all eigenstates of the

model, with energy Ep = 2cos(k) + ∆(N − 2). Consider the state Ψ = Ψp1 + Ψp2 , it

evolves under the Hamiltonian as Ψ(t) = Ψp1e
−iE1t + Ψp2e

−iE2 , assume E1 < E2 and

δ = (E2− E1)/N , upto an overall factor eiE1t, the state can be written as a MPS:

Ψ(t) = Tr(X
∏

Aσ)|σi〉 (2.51)
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where

A↑ =



eip1 0 0 0

0 1 0 0

0 0 eip2+δ 0

0 0 0 eiδ


A↓ =



0 1 0 0

0 0 0 0

0 0 0 eiδ

0 0 0 0



and X =



0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0


One can check that although the matrices are site independent, the state is not trans-

lational invariance because of the boundary we put. Notice that this time evolution

does not obey (2.37), since the matrices here do not satisfy the injective condition.

We can also learn from this example that, if a time evolution of non-translational

invariant MPS, that involves 2 eigenstates of a Hamiltonian:

ΨM(t) = φ0 + φ1e
−iEt (2.52)

where φ0 and φ1 are eigenstates of the Hamiltonian, and assuming φ0 has eigenvalue

0 and φ1 with E > 0, then at time t = 0 and t = τ the states φ0 +φ1 and φ0 +φ1e
−iτE

are both MPSs. So the difference of them, φ1(1− e−iEτ ), or φ1, is also a MPS.1 Then

φ0 and φ1 are both MPSs. Then same reasoning goes on with an exact time evolution

that evolves any finite number of eigenstates. However, these MPSs are in general

NOT injective, and do not fit into our definition of “interesting” time evolution.

To summarize, in this section, we write a nonlinear equation for the time evo-

lution of translational invariant injective MPS. This equation allows nontrivial time

evolution under non-Hermitian local Hamiltonians, but not for Hermitian local Hamil-

1This is because for 2 MPSs with matrix sets Ai and Bi, their superposition can always be
expressed as another MPS: φC = φA + φB , where C = A⊕B. But φC is not injective since it has 2
blocks now.
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tonians.
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CHAPTER III

X-ray scattering and absorption in condensed

matter systems

To experimentally understand a condensed matter system, we need to look the

response of the system to external perturbations. There are many ways to add pertur-

bations, like adding a magnetic field, electric field, changing pressure. One commonly

used way is to probe the system with particle scattering and look at the spectrum,

which is the cross section as a function of energy. There are many different particles

that people use to study the scattering, X-ray(photon), electron, neutron... In the

rest of the thesis we focus on the X-ray absorption and scattering, in the former case

the photon is absorpt by the system, and in the latter case the photon transfers en-

ergy into the system and then is scattered. We are particularly interested in resonant

inelastic X-ray scattering. In Chap III basic knowledge about X-ray absorption and

scattering spectroscopy are introduced, and in Chap V and Chap IV we look at some

specific examples.
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3.1 X-ray absorpsion in 1D, edge singularity

3.1.1 Theoretical formalism

In an X-ray absorption experiment, a photon is scattered into material, exciting a

core electron into an empty valence band, and then another electron from an occupied

valence band decay back into the core state. In X-ray terminology, “edge” is used

to indicate the state of the core electron. For K-edge, the core electron is in the 1s

state, while at L-edge the core electron is in 2s or 2p state. When the core-hole is

present, it produces a screened Coulomb potential.

3.1.1.1 Dipole interaction

Here we start to look at the Hamiltonian of the system, which includes the elec-

trons and photons. The photons can be represented by a vector potential A(r), it is

quantized as:

A(r) =
∑
k,ε

√
1

2ωk
(εakεe

ikr + ε∗a†kεe
−ikr) (3.1)

The free photon Hamiltonian is a collection of harmonic oscillators:

Hph =
∑
kε

~ωk(a†kεakε + 1/2) (3.2)

The Hamiltonian of the full system is:

Htot =
∑
i

(pi + eA(ri))
2

2m
+ U(ri) +Hph (3.3)

where the first term is the electron kinetic energy in the presence of the electro-

magnetic field, and U(r) is the potential energy. We can write the interaction between

the photon and electron as a perturbation: Htotal = H0 + H
′
, where the interaction
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term is

H
′
=
∑
i

e

2m
(pi ·Ai + Ai · pi) +

e2

2m
A(ri)

2 =
e

m
pi ·A(ri) +

e2

2m
A(ri)

2 (3.4)

Coulomb gauge ∇ ·A = 0 is used so A · p = p ·A. Assume the incident X-ray have

uniform momentum k, the initial state would have a single photon and final state has

none. The term proportional to A2 has no contribution since it change the photon

number of the inital state by 2, 0, or -2. Furthermore, the term proportional to a†kε

in A · P also vanishes since it creates a photon to the initial state. So only the akε

term in A contributes, by destroying a photon from the initial state. We can treat akε

just as a number if it is only sandwiched between states with one and zero photons,

so the photon potential A is reduced to A(ri) = 1√
2ωk

εeikri . In the dipole limit, one

makes the approximation that: eikri ∼ eikRi , where Ri is the position of the ion the

electron is bond to, so it is a number instead of an operator. We get for the dipole

interaction, the transition operator is:

D =
1

imωk

∑
i

eik·riε · pi (3.5)

we can further write D = ε ·D, where D =
∑

i
1

imωk
eik·ripi. Notice that:

〈f | 1

imωk
p|i〉 = 〈f | 1

~ωk
[
p2

2m
, r]|i〉

= 〈f | 1

~ωk
(Ef − Ei)r|i〉 ∼ 〈f |r|i〉

the last step is due to energy conservation, so that finally, we can replace D by:

D =
∑
i

eikRiε · ri (3.6)
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3.1.1.2 Scattering intensity

The transition coeffecient from initial state |i〉 to final state |f〉 can be calculated

as:

W (n) = 〈n|D|i〉 (3.7)

The scattering intensity, according to Fermi’s golden rule, is then:

I(ω) ∝
∑
f

|〈f |D|i〉|2δ(ω − Ef + Ei)

=
∑
f

|〈f |ε ·D|i〉|2δ(ω − Ef + Ei). (3.8)

Here |i〉 is the initial state, |f〉 is a possible final state of the system, usually taken

as a complete set of eigenstates of the final Hamiltonian. The delta function imposes

energy conservation.

We see from Eq (3.8) that the intensity depends both on the physics of the system

and the geometry of the experiment. If the transition is Copper L edge 2p → 3d,

then we need to calculate ε · 〈3d|r|2p〉. In this section we are mostly interested in the

physics of the system that does not depend on geometry. Detailed calculation on the

geometric dependence is worked out in Sec 3.2.

Assume the electron system is described by a simple band model, with the initial

Hamiltonian:

Hi = −t
∑
i

c†ici+1 + h.c + µ
∑
i

c†ici, (3.9)

here we neglect electron spin in this section just to show the basic idea. The effect

of the dipole transition operator is to create a core-hole and a band electron, when

only considering the band electrons, we take it just as the electron creation operator

c†, and because of translational invariance, we can just assume the core-hole is at site
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r = 0, so that then intensity is:

I(ω) ∝
∑
f

〈i|c0|f〉〈f |c†0|i〉δ(ω − Ef + Ei) (3.10)

After a core hole is created, the core hole has some effective potential V at site

i = 0, and the Hamiltonian becomes,

Hf = −t
∑
i

c†ici+1 + h.c + µ
∑
i

c†ici + V c†0c0 (3.11)

Using δ(z) = 1
2π

∫∞
−∞ e

iztdt, one can write the intensity as:

I(ω) ∝
∞∫

−∞

ei(ω−Ef+Ei)t〈i|c0|f〉〈f |c†0|i〉δ(ω − Ef + Ei)

=

∞∫
−∞

eiωt〈c0e
−iHf tc†0e

iHit〉dt =

∞∫
−∞

G(t)eiωtdt (3.12)

Here we used
∑

f e
−iEf t|f〉〈f | = e−iHf t, and |i〉eiEit = eiHit, since Ei and Ef are

the energy eigenvalues of Hf and Hi. Here Ei(f) are numbers but Hi(f) are operators.

The integrand G(t) = 〈c0e
−iHf tc†0e

iHit〉 is similar to the electron propagator. c†0 creates

a valence band electron at site i = 0. Since the Hamiltonians Hi(f) all have quadratic

form, this can be calculated exactly. For a certain temperature 1
β

the intensity is:

I(ω) =

∞∫
−∞

eiωtdtTr(c0e
−iHf tc†0e

iHite−βHi)/Tr(e−βHi). (3.13)

3.1.1.3 Determinant method

To calculate the trace, we use the formula:

Tr(eAeB) = det(1 + eaeb) (3.14)
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Here the variable in capital letters represent any quadratic operator, and lower case

letters represent the matrix containing the coefficient of the quadratic terms:

A =
∑
ij

aijc
†
icj (3.15)

Notice that the dimension of A is the Hilbert space dimension of the Hamiltonian, 2N ,

but the dimension of a is just N . To calculate Eq (3.13), we use the commutational

relationship:

e−iHf tc†0 =
∑
m

(e−iHf t)m0c
†
me
−iHf t (3.16)

to move c†0 to the left of the numerator of Eq (3.13), and put c0 and c†0 together, and

the numerator in Eq (3.13) is now:

∑
m

(e−iHf t)m0Tr(c0c
†
me
−iHf teiHite−βHi) (3.17)

Using

c0c
†
m =

∂

∂α
eαM |α=0 (3.18)

where M = |0〉〈m|, we can use Eq (3.14) again to get:

Tr(c†0cme
−iHf teiHite−βHi) = det(1 + eω)(

1

1 + eω
)0m (3.19)

where eω = e−iHf teiHite−βHi . Next we define N = (1 + eβhi)−1, so that:

Tr(c†0e
−iHf tc†0e

iHite−βHi) = det(1 + e−ihf teihit
N

1−N
)(

1

1 + e−ω
e−iHf t)00 (3.20)
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Figure 3.1: X-ray absorption edge. Left: absolute value of G(t) for different set of
parameters. Blue curve, t = −1, µ = 0.4, V = 0.2, red curve, t = −1, µ = 0.4,
V = −0.2, yellow curve, t = −1, µ = 0.2, V = 0.2. Right: the intensity calculated
from the Fourier transform of G(t).

The denominator in Eq (3.13) is det( 1
1−N ), finally we have,

I(ω) =

∞∫
−∞

eiωtdet(1−N + e−ihf teihitN)((1 + e−ω)−1e−iHf t)00dt (3.21)

The determinant and trace can be calculated numerically on finite size systems.

A famous result in X-ray absorption is the Fermi edge singularity [59, 28], it

means that, the propagator G(t) in Eq (3.12) behaves as a power-law in large t limit,

G(t)→ t−γ, so that the Fourier transform of G(t), the absorption intensity, has a

power law singularity at the absorption threshold. Here it is important to assume

that V is much smaller than the bandwidth.

Assuming the energy spectrum is linear in k, and using Bosonization, the intensity

can be calculated theoretically [64], the propagator is:

G(t) = exp{(1 + V ρ)2 1

N

∑
k

1

k
(e−i(k/ρ)t − 1)} (3.22)

ρ is the density of states around Fermi sea. According to [64], G(t) behaves as:

G(t)→ (t)−γ when t→∞, where γ = (1 + V ρ)2.
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Here we reproduce the Fermi edge singularity using our determinant method, by

look at the tight-binding Hamiltonian (3.9) on a chain with N sites. Fig.3.1 shows

the numerical calculation on a chain of N = 100 sites, at zero temperature. We

see that the edge singularity is around ω ∼ 2, when µ is changed, the position of

the edge is also changed, which is reasonable since it controls the threshold energy.

When V is decreased, the peak is less sharp, which is consistent with the prediction

in Eq (3.22), and it also affects the position of the peak since it creates an effective

chemical potential term.

3.1.2 X-ray absorption with a superconducting pairing

A particularly interesting family of systems for X-ray experiments are supercon-

ductors, especially High Tc superconductors, where a gap exists because of the su-

perconducting pairing. Next, we consider adding a pairing term in the Hamiltonian

to represent superconducting phase. The new Hamiltonian is:

Hi = −t
∑
i

c†ici+1 + ∆
∑
i

c†ic
†
i+1 + h.c−

∑
i

µc†ici (3.23)

To deal with this kind of Hamiltonian with the preferred determinant method, we

introduce Majorana fermions, related to the usual fermion creation and annihilation

operators by:

ai = ci + c†i i=0,2,...N-1

ai = i(c†i − ci) i=N,...2N-1 (3.24)

Where ai stands for Majorana fermions and ci for ordinary fermions. Majorana

fermions, or real fermions, have the property that they are Hermitian. They are

named after Italian physicist Ettore Majorana[80]. Although not famous during his
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time, he did groundbreaking works in different areas of physics. Besides the suggestion

of Majorana fermions, in 1932 he wrote a paper in the field of atomic spectroscopy

concerning the behaviour of aligned atoms in time-varying magnetic fields. Rabi and

others studied the same problem and developed an important sub-branch of atomic

physics. In 1933 nuclear physics experiments suggested the existence of an unknown

particle, which was considered to be gamma ray by some. Majorana first proposed

that the particle should be a chargeless counterpart of proton, the neutron. Fermi

once told him to write a paper, but he didn’t bother. Later that year James Chad-

wick proved the existence of the neutron and was eventually awarded the Nobel prize

for that. In 1959, Majorana disappeared suddenly under mysterious circumstances

while going by ship from Palermo to Naples. His work on Majorana fermion was

not appreciated at that time, like many of his other works. However, recently the

search of Majorana fermions became a really hot topic in condensed matter physics,

especially in topological systems [26].

In this thesis we will only use Majorana fermions as a mathematical tool to deal

with gapped systems. Using Eq (3.24), Hi can be written in form of ai and still be

quadratic, only now there are 2N Majorana fermions.

Hi = − i
4

(t+∆)(aiai+N+1−ai+N+1ai)−
i

4
(∆−t)(ai+Nai+1−ai+1ai+N)−iµ

4
(ai+Nai−aiai+N)

(3.25)

We still use Hf = Hi + V c†0c0. The trace formula for Majorana fermions now

reads:

TreAijaiaj =
√
det(1 + e4A) (3.26)

Now A is an antisymmetric matrix of size 2N × 2N. And we can carry out similar
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calculations for the propagator:

G(t) = 〈c0e
−iHf tc†0e

iHit〉 (3.27)

We first commute ai with eiHi by:

aie
ihmnaman = eihmnamanaj(e

4ih)ij

Then we calculate the trace: Tr(eAijaiajaman), this can be done by noticing that

aman = aman−anam
2

+ δmn, so we write

Tr(eAijaiajaman) = Tr(eAijaiaj(
1

2

d

dα
eαMijaiaj |α=0 + δnm))

Where M = |m〉〈n| − |n〉〈m|, is an antisymmetric matrix. We can again use

Eq (3.26) to write

Tr(eAijaiaj
d

dα
eαMijaiaj |α=0) =

d

dα
Tr(eAijaiajeαMijaiaj)|α=0

=
d

dα
e

1
2

Trlog(e4Ae4αM ) =
1

2

√
det(1 + e4Ae4αM)

Tr(4e4AM)

1 + e4Ae4αM
|α=0

= 2
√
det(1 + e4Ae4αM){(1 + e−4A)−1

nm − (1 + e−4A)−1
mn}

And finally, we have:

Tr(eAijaiajaman) =
√

det(1 + e4A){(1 + e−4A)−1
nm − (1 + e−4A)−1

mn + δmn} (3.28)

Define N = (1 + e4βhi)−1, S = e−4ihf te4ihit, eω = Se−4βhi , X = e4ihit−4βhi{((1 +

e−ω)−1)T − (1 + e−ω)−1 + 1}, the propagator is now:
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G(t) =
√

(det(1−N + e−4ihf te4ihitN)(X00 +XNN − iX0N + iXN0)/4 (3.29)

Next we consider how to take the limit of Eq (3.29) at zero temperature. At

β →∞, N →projection onto negetive eigenvectors of hi. And for the limit of X, we

write:

X = e4ihite−4βhi(
1

1 + (e4βhiS−1)T
+

e4βhiS−1

1 + e4βhiS−1
) = e4ihit(

e−4βhi

1 + (e4βhiS−1)T
+

S−1

1 + e4βhiS−1
)

Now notice that h is antisymmtric, so e−4βh = (e4βh)T , and we have:

X = (
1−N

S−1(1−N) +N
)T +

N

SN + (1−N)
(3.30)

Fig 3.2 shows a numerical calculation of the intensity for several ∆ values. The

edge singularity is at ω ∼ 3. This is the same for all curves. At ω around 0 there

is also a jump depending on the value of ∆, when there is no pairing term the jump

happens at ω = 0 as in Fig 3.1 because there is no gap in the system, so that any

positive energy input can excite the system. When a pairing term is present and

opens a gap, the input energy has to be large enough to overcome the gap, which is

∼ 2∆, so the jump starts at the value of the gap, this is consistent with the plot.

3.2 Introduction to RIXS

3.2.1 Experimental setup

In this section we look at a more complicated, and more powerful experimental

technique, Resonant inelastic X-ray scattering(RIXS), which has recently attracted a

large amount of research interest and proven to be useful in studying the excitations
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Figure 3.2: G(t)(left figure) and the intensity(right figure) for different ∆ values.
The other parameters are t = −1, µ = −1, V = 0.3, N = 150.

in superconducting systems [50, 18, 23]. RIXS is a second order optical process, where

a high energy X-ray knocks out a core election, temporarily creating a core-hole, and

an electron in the valence band decays back into the core-hole and emits another

photon [70]. Fig 3.3 shows an experimental setup of RIXS. RIXS is mostly performed

at L and K-edges. There are 2 cases in RIXS, called direct and indirect RIXS. In

the former, the core electron is excited into some valence band, and another electron

from the valence band decays to fill the core-hole. In indirect RIXS, the transition

from the core state to the conduction band is weak, the photon excites the electron

into an empty state above the Fermi sea, and the same electron hops back. Naively it

seems nothing interesting happens here, but the strong core-hole in the system would

cause the system to deviate from the ground state, thus a shake-up of the system

due to an abrupt appearance of a core hole potential. In the most studied example,

transition metal K edge (1s → 4p), the core-hole would create excitations in the 3d

band. Fig 3.4 shows a brief description of the procedure.
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Figure 3.3: RIXS setup, from [4].

Figure 3.4: Direct(left) and indirect(right) RIXS. The figure is taken from[4].
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A RIXS experiment is a lot more complicated, and expensive, than just X-ray

absorption, why do we want to study it? it is main advantage is the wide range

of energy scales to which it is sensitive. The different excitations that RIXS can

measure are: photons ∼ 50meV, magnons ∼ 500meV, orbital excitations, ∼ 1.5eV,

charge transfer excitations, ∼ 2eV. It is a bulk measurement, for X-ray of 1keV , the

penetration depth is around 0.1µm. Since the photon-matter interaction is relatively

strong compared to other techniques like neutron-matter interaction, a small sample

size can already produce large enough cross section. It also utilizes the polarization

of the photon.

3.2.2 Krammers-Heisenberg formula

The non-equilibrium processn involved in RIXS may be rather complicated, and

thus the interpretation of experimental measurements may not be straightforward,

as it may involve contributions which are not well described by effective low energy

theories. In this section, we’ll introduce the most standard formalism, the Kramers-

Heisenberg cross section, although there is still a debate about what Hamiltonian

should be used in this formalism. We are only interested in the “Magnon” region,

where the energy transfer is ∼ 500meV, since it tells us about the electric and mag-

netic properties, and this is also the region most experiments focus on. To study the

RIXS intensity, we want to put emphasis on two features of RIXS: “second order”

and “resonant”, which differ from the first order process in Sec 3.1. The system is

excited by a photon and then emits one. Similar to the discussion in Sec 3.1, we want

to treat the photon-electron interaction as a perturbation, the total Hamiltonian is:

Htot =
∑
i

(pi + eA(ri))
2

2m
+ U(ri) +Hph (3.31)
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Hph is the same as in Eq3.2. The transition coeffecient to a final |f〉 state, up to

second order, is:

W (N) = 〈N |H ′ |I〉+
∑
N

〈N |H ′ |N〉〈N |H ′|I〉
EN − EI

(3.32)

Here the states denoted by capital letters |I〉 |N〉 and |F 〉 are states of the total

system, with electrons (which can involve different bands) and the photon. So |I〉

and |F 〉 would have a photon, but the intermediate state |N〉 would have no photon,

and an extra band electron, since the photon is absorpt to excite a core-electron.

Later we will use lower case letters |i〉, |n〉 and |f〉 to denote the electron state. we

use perturbation theory to second order: because of the “resonant” feature of RIXS,

for the second order term, if EN ∼ EI , there is a resonance and the intensity would

have a significant boost, so this is really the term we want. Furthermore, the final

state |F 〉 would also have a photon coming out, and excitations in the electron system,

this is different from the first order procedure in Sec 3.1. In RIXS the intensity would

not only depend on the energy transferred into the system, but also the momentum

transfer. Using Fermi’s golden rule, we only keep the resonant part. The intensity is:

I =
2π

~
∑
F

|
∑
N

〈F |H ′|N〉〈N |H ′ |I〉
EN − EI

|2 × δ(EF − EI) (3.33)

Using the dipole approximation in Eq (3.5) and (3.6), we can write:

H
′ ∼ D = ε ·D =

∑
i

eik·riε · ri (3.34)

Or we can write Eq (3.33)

I(ω, k, k′) =
∑
F

2π

~
|FFI(k, k′, ω,Γ)|2 × δ(EF − EI) (3.35)
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where

FF =
∑
N

〈F |D†|N〉〈N |D|I〉
EN − EI + iΓ

=
∑
N

〈F |D†GD|I〉 (3.36)

k and k
′

are the momentum of the incident and outgoing photon, G =
∑

N
|N〉〈N |

EN−EI+iΓ
.

We added an inverse core-hole lifetime Γ, it takes account of all the complicated

process that are not included in the Hamiltonian that makes the intermediate state

short lived. If we only consider the electron system, the initial, final, intermediate

electron states are |i〉, |f〉, |n〉, and EN = En, EI = Ei + ω, EF = Ef + ω
′
. With

this we can usually safely remove the photon, but we do have to remember that

there can be multiple bands involved in indirect RIXS. Eq (3.35) is also called the

Kramers-Heisenberg cross section.

3.3 A perturbative study of RIXS intensity

In this section we start to analyze the RIXS intensity using Eq (3.35), which

is the basic formula in the theoretical study of RIXS spectrum. Different types of

Hamiltonians have been used in the equation, in most cases in the context of high Tc

superconductors, people use the t-J model [69, 70], and RIXS spectrum is understood

as the dispersion of magnon excitations [70]. Here we instead use a simple band

hopping Hamiltonian:

H0 =
∑
k,σ

εkd
†
k,σdk,σ (3.37)

and demonstrate that one can use this simple model to quantitatively understand the

spectrum. When the core-hole is present, it creates a screened Coulomb potential

at site r: Hr = H0 + Uc
∑

σ d
†
r,σdr,σ, where Uc is the core-hole potential. A natural
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thought is to take Uc to be small and do a perturbative expansion. In this section we

study the RIXS intensity, both for direct and indirect RIXS, by doing that. But first

we want to treat the dipole interaction in Eq (3.6) more carefully.

3.3.1 Dipole interaction in RIXS

The F function in Eq (3.36) can be written in terms of the dipole interaction:

FF =
∑
F,R

〈F |eiQRiε
′ ·D′† ·G · ε ·D|I〉 (3.38)

ε and ε
′

are the polarization of incident and outgoing photons, Q = k − k
′

is the

momentum transfer. It will depend on the geometry of the experiment. Here we

specifically consider copper L3 edge 2p→ 3d, and calculate the geometry dependence

explicitly.

For the 2p orbital, there are 3 states with m = 1, 0,−1, for the 3d orbital the state

is |3dx2−y2〉. The dipole matrix elements ηm = 〈3dx2−y2|r|2pm〉 can be calculated as:

ηm = 〈3dx2−y2 |r|2pm〉 =


0 (m = 0)

1√
2
(x̂∓ iŷ) (m = ±1)

(3.39)

However because of the spin-orbit interaction, m is not a good quantum number of

the ground state, but the total spin of the electron J = s+L is approximately a good

quantum number. The total spin should be 3/2, the 1/2 state is off resonance from

the edge. So we write the transformation from the uncoupled |1m; 1
2
sz〉 space (also
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denoted as |m, s〉) to the total spin |j,mz〉 state:

|1, ↑〉 = |3
2
,
3

2
〉

|1, ↓〉 =

√
1

3
|3
2
,
1

2
〉+

√
2

3
|1
2
,
1

2
〉

| − 1, ↑〉 =

√
1

3
|3
2
,−1

2
〉+

√
2

3
|1
2
,−1

2
〉

| − 1, ↓〉 = |3
2
,−3

2
〉

m = 0 states are not considered since the dipole matrix element is 0. Also since

j = 1/2 state is off resonance at the edge, we should drop them. So that:

|1, ↑〉 = |3
2
,
3

2
〉

|1, ↓〉 =

√
1

3
|3
2
,
1

2
〉〉

| − 1, ↑〉 =

√
1

3
|3
2
,−1

2
〉〉

| − 1, ↓〉 = |3
2
,−3

2
〉

The dipole operator D, in the uncoupled basis, is written as:

ε ·D =
∑
R,m,σ

e−ikRε̂ · η̂md†RσpR,σ,m (3.40)

d† is the creation operator for band electron and p destroys a core-electron. We can

then write it in the total spin basis:

η̂m · d†RσpR,σ,m = η̂1(d†R,↑pR,3/2 +
√

1/3d†R,↓pR,1/2)

+ η̂−1(d†R,↓pR,−3/2 +
√

1/3d†R,↑pR,−1/2) (3.41)

and the same for the final state dipole operator D′ . We plug in Eq (3.41), and notice
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that each term in D must match up with the same term in D′ , we can also drop p

and only consider the band electrons, to get:

Ff =
∑
R

eiQRχαβ〈f |dR,αGd†Rβ|i〉

=
∑
R,n

eiQRχαβ〈f |dR,α
|n〉〈n|

En − ω − Ei + iΓ
d†Rβ|i〉 (3.42)

where

χ↑↑ = χ∗↓↓ = (ε̂f · η̂1)∗(ε̂i · η̂1) + (1/3)(ε̂f · η̂−1)∗(ε̂i · η̂−1)

χ↑↓ = χ↓↑ = 0 (3.43)

At this stage we only consider the electron system. We can also write the total

intensity as a mix of spin-flip (SF) and none-spin-flip (NSF) intensity, with:

FNSF ∼ d↑Gd↑ + d↓Gd↓

FSF ∼ d↑Gd↑ − d↓Gd↓ (3.44)

In experiments, the X-ray shines onto the sample with an angle. The standard ter-

minology uses σ channel to represent X-ray polarized parallel to the surface of the

sample, and π channel to represent the polarization that is perpendicular to σ chan-

nel (not perpendicular to the surface of the sample). A prime is used to indicate

the outgoing photon. So σπ′ channel means the incoming photon is parallel to the

surface of the sample but outgoing photon is not. We see that the SF channel would

correspond to σπ′ and πσ′ signal since the spin is flipped after scattering, and NSF

channel corresponds to σσ′ and ππ′ channel. In some cases, the outgoing photon is

not polarized and we take the everage of the outgoing σ′ and π′ channel.
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3.3.2 Zeroth order expansion

We consider an incident photon with energy ω, momentum k, and outgoing photon

with energy ω + ∆ω, momentum k + Q. From Sec 3.2.2, the intensity is:

I ∝
∑
F

|Ff |2δ(EF − EI) (3.45)

where

Ff =
∑
R

eiQRmχρσ〈f |dmρ(Hm − Ei − ω + iΓ)−1d†mσ|i〉 (3.46)

Here Hm is the Hamiltonian after creating a core hole at site m, Hm = H0 +

Uc
∑

σ d
†
mσdmσ, Γ is the inverse of life span of the core hole. Remember that the

states |i〉 and others are the total electron states that may involve multipy bands. χ

depends on experimental geometry as in Eq (3.43).

In this section, we want to write the intensity as an expansion in Uc:

I = I0 + I1 + ... (3.47)

by expanding the propagator G:

G = G0 +G1 + ... (3.48)

For the zeroth order approximation, we take Hm = H0, the unperturbed Hamiltonian,

which is just a simple band. And we write explicitly:

G0 = (H0 − EI + iΓ)−1 =
∑
N

|N〉〈N |
EN − EI + iΓ

=
∑
n

|n〉〈n|
En − Ei − ω + iΓ

(3.49)
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Again, |N〉 is the state of the complete system with electrons and photons. |n〉 is the

electron state. In the case of indirect RIXS, an electron is excited from 1s state to

4p state, the core-hole causes excitations in 3d band. So the dm and d†m act on the

4p band while G0 act on 3d band, so those parts are separated, and we don’t need to

worry about the spin dependence, only considering the 3d band, we have:

Ff =
∑
m

eiQRm〈f |
∑
n

|n〉〈n|
En − Ei − ω + iΓ

|i〉 (3.50)

Here |f〉 must be the same as |i〉 for Ff to be nonzero. That means only elastic

scattering. So the zeroth order intensity for inelastic scattering is 0. This is not

surprising, since we mentioned in the introduction that for indirect RIXS, the only

reason for the excitation to appear in the 3d band is the core-hole potential.

In the case of direct RIXS at Cu L-edge, we can forget about the 4p band and

all the operators act on the 3d band. For the Hamiltonian in Eq (3.37), the single

electron eigenstates are also momentum eigenstates, and it only couples electrons

with same spins. Then

Ff =
∑
m

eiQRmχρσ〈f |dmρ
∑
n

|n〉〈n|
En − Ei − ω + iΓ

d†mσ|i〉 (3.51)

Assume the ground state of 3d band is |i〉 =
∏

ασ(d†ασ)nασ |Ω〉 , where Ω is the

vacuum, d†ασ create an electron with single electron of state |kα〉 and spin σ, and

nασ is the occupation number, which is decided by the chemical potential and the

temperature. Here we limit our discussion to zero temperature so nασ = 0, 1. We

write

d†mσ =
1√
N

∑
k

e−ikRmd†kσ

In order that F is nonzero, that means 〈n|d†kσ|i〉 is nonzero for some k1, so |n〉
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must be a state that creates an electron with momentum and spin k1, σ, from the

ground state |i〉, i.e. |n〉 = d†k1σ
|i〉, and similarly |f〉 destroys an electron with k2 from

|n〉 : |f〉 = dk2ρ|n〉 = dk2ρd
†
k1σ
|i〉. So we have:

Ff =
∑
m

eiQRmeik1Rme−ik2Rm
1

εk1 − ω + iΓ
(1− nk1σ)nk2ρ

=
1

εk1 − ω + iΓ
(1− nk1σ)nk1+Q,ρ

We dropped the spin part χ since it does not depend on σ and ρ. Summing over

all possible final states:

I0 ∝
∑
k

(1− nk)nk+Q
1

|εk − ω + iΓ|2
δ(εk − εk+Q −∆ω) (3.52)

We used the fact that n2 = n for fermions. The Feynman diagram is shown as:

1s

1s

3d

3d

k, σ k+Q, ρ

Here wavy lines are the photon propagators and solid lines are the electron propaga-

tors.
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3.3.3 Leading order correction.

3.3.3.1 Indirect RIXS

We first consider the correction to indirect RIXS. Since for the first order correction

I1 = F0
f (F1

f )∗ + (F0
f )∗F1

f , and F0 = 0 in the indirect case, the first order correction

is 0, and the leading order is the second order.

We write:

G = (Hm − EI + iΓ)−1 = ((G0)−1 + Uc(d
†
m↑dm↑ + d†m↓dm↓)

−1

∼ G0 − UcG0(d†m↑dm↑ + d†m↓dm↓)G0

= G0 +G1

The first order correction of Ff is now:

F1
f = Uc

∑
m

eiQRm〈F |G0(d†m↑dm↑ + d†m↓dm↓)G0|I〉

= Uc
∑
m,n,l

eiQRm〈F | |N〉〈N |
EN − EI − ω + iΓ

(d†m↑dm↑ + d†m↓dm↓)
|L〉〈L|

EL − EI − ω + iΓ
|I〉

χ is dropped since the result does not depend on σ and ρ. Next we want to

consider the effect of 3d and 4p bands. We use |i〉, |f〉 and |n〉 to denote 3d states.

En = En,3d +En,4p, the overlap, 〈L|I〉, should be the product of 3d state overlap and

4p state overlap. Only interested in 4p band states, we can trace over 3d states.
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F1
f = Uc

∑
m

eiQRm〈F |G0(d†m↑dm↑ + d†m↓dm↓)G0|I〉

= Uc
∑
m,n,l

eiQRm〈f |
∫
dεg(ε)

|n〉〈n|
En − Ei − ε− ω + iΓ

(d†m↑dm↑ + d†m↓dm↓)
|l〉〈l|

El − Ei − ε− ω + iΓ
|i〉

= Uc
∑
m

eiQRm

∫
dεg(ε)

(Ef − Ei − ε− ω + iΓ)(−ε+ ω + iΓ)
〈f |(d†m↑dm↑ + d†m↓dm↓)|i〉

Where g(ε) is the density of state as function of energy for the 3d band.

In the above equation, |f〉 should be a state that takes one electron from |i〉 under

the Fermi sea then adds a hole into the system:

|f〉 = d†k2
dk1|i〉

So we have:

F1
f =

∑
m

eiQRmeik1Rm−ik2Rm
Uc

(εk1 − εk2 − ω + iΓ)(ω + iΓ)
(1− nk2)nk1

=
Uc

(εk − εk+Q − ω + iΓ)(ω + iΓ)
(1− nk+Q)nk (3.53)

Summing over all possible |f〉 gives:

I1 =
∑
f

|F1
f |2 =

∫
dk|

U2
c

∫
dεg(ε)

(εk − εk+Q + ε− ω + iΓ)(ω − ε+ iΓ)
|2(1− nk+Q)nk (3.54)

Graphically, this is represented as:
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4p

1s 1s

4p

1s 1s
3d

3d

where the black dots represent the core-hole columb potential.

3.3.3.2 Direct RIXS

We now consider direct RIXS. We write:

F1
f = Uc

∑
m

eiQRmχρσ〈f |dmρG0(d†m↑dm↑ + d†m↓dm↓)G0d
†
m|i〉

= Uc
∑
m

eiQRmχρσ〈f |dmρ
|n〉〈n|

En − Ei − ω + iΓ
(d†m↑dm↑ + d†m↓dm↓)

|l〉〈l|
El − Ei − ω + iΓ

d†mσ|i〉

Following the same reasoning, in order for this contribution to be nonzero: |l〉 =

d†k1σ
|i〉, |n〉 = d†k3µ

dk2µd
†
k1σ
|i〉 , and |f〉 = dk4ρd

†
k3µ
dk2µd

†
k1σ
|i〉. Here dk2µ and dk3µ must

have the same spin because of the form of the core-hole potential, they can only be

both up or both down.

If σ 6= ρ we have:

F1
f = 2

∑
m

U2
c e

iQRmeik1Rm−ik2Rm+ik3Rm−ik4Rm

(εk3 − εk2 + εk1 − ω + iΓ)(εk1 − ω + iΓ)
(1− nk1)(1− nk3)nk2nk4 (3.55)

A factor of 2 appears, since µ can be up or down.

Now we see that the effect of the spins σ and ρ in this case, if σ = ρ, we can

let σ = ρ = µ, there is another possible |n〉 that can also give the same final state

|f〉: |n〉 = d†k3σ
dk4σd

†
k1σ
|i〉, and |f〉 destroys an electron k2, σ from |n〉. It differs from
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Eq (3.56) by changing εk2 → εk4 in the denominator, and giving up the factor of 2:

F1′

f =
∑
m

U2
c e

iQRmeik1Rm−ik2Rm+ik3Rm−ik4Rm

(εk3 − εk4 + εk1 − ω + iΓ)(εk1 − ω + iΓ)
(1− nk1)(1− nk3)nk2nk4 (3.56)

The sum over m gives the momentum conservation condition. Graphically, the

two cases are represented as:

1s

1s

3d

3d

3d3d 3d

k1, σ k2, µ k3, µ k4, ρ

and 1s

1s

3d

3d 3d

3d

k1, σ

k2, σ

k4, σ

k3, σ

The second case only happens when σ = ρ.

For the first order correction, I1 = F0
f (F1

f )∗ + (F0
f )∗F1

f , since for F1
f , |f〉 has a

pair excitation from |i〉, but for F0
f , only one eletron excitaion is allowed, the product

(F0
f )∗F1

f is 0, and the leading order is also 2nd order. With:

I1 =
∑
f

|F1
f |2

=

∫
dk1dk2dk3dk4

U2
c δ(k1 − k2 + k3 − k4 +Q)δ(εk1 + εk3 − εk2 − εk4 −∆ω)

|(εk3 − εk2 + εk1 − ω + iΓ)(εk1 − ω + iΓ)|2

× (1− nk1)nk4(1− nk3)nk2

(3.57)

Which is a 3-d integral. For simplicity, we only write the term in Eq (3.56), but

keep in mind there could be another term in the case σ = ρ.
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Figure 3.5: Leading order intensity. Here we used the Lorentzian to approximate
the delta function in energy: δ(E) ∼ 1

π
t

t2+E2 . This is to mimic the effect of the en-
ergy resolution in the experiment, mostly around ∼ 100meV. The red lines are close
to the exact value. The black lines show the smearing effect of the delta function,
and the green line is calculated on a smaller lattice to show the convergence.

3.3.4 Numerics

Now let’s look at an example of CLBLCO ((CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy)

sample, we will look more closely into this material in Chap V, but for now we only

care about the band energy spectrum, which is:

εk = t0 − 2t1(cos(kx) + cos(ky))− 4t2cos(kx)cos(ky)− 2t3(cos(2kx) + cos(2ky)) (3.58)

and t0 = 0.134eV, t1 = 0.11eV, t2 = −0.032eV, t3 = 0.016eV.

Fig 3.5 shows the zeroth order calculation for direct RIXS. The red and black

curves are calculated on an 80 by 80 lattice and green curve on 20 by 20 lattice. Here

a “damping” factor t is used when doing the Fourier transform, so the delta function

in the energy conservation condition reads now: δ(E) ∼ 1
π

t
t2+E2 . This is because of

the energy resolution of the experiment, ∼ 100meV.

We notice that in the red line, for q = 0.34, there is a drop in the intensity, that
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Figure 3.6: Correction for the intensity. The black curve is the leading order for
q = 0.13, the red and blue curves are second order curves for q = 0.13 and q = 0.34
at Uc = 1eV . (Since the 3d integral is a lot harder, it is done on a 24×24 lattice).

comes from reaching the top of the energy band. Now we look at the corrections

coming from (3.57), in the case σ 6= ρ, in Fig 3.6.

We see that the second order correction does not depend on q a lot. That’s because

the second order process creates 2 pairs of electron-hole excitatons and can be at any

place in the Brillouin zone, as long as two of them are under the Fermi surface and

two above and the total momentum adds to q, the momentum difference between the

electrons can be big, even if q = 0. So that introducing a new momentum scale q

does not change the picture too much. Also the second order intensity has a special
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feature that it doesn’t vanish at q = 0, as the leading order correction does.

63



CHAPTER IV

Determinant method study of RIXS spectrum in

doped cuprate

In Chap III we introduced the basic experimental and theoretical knowledge about

X-ray absorption and RIXS. We also used the so called “determinant method” to

study the X-ray intensity. This method can also be used to study RIXS. In this

chapter, we will apply this method to RIXS, particularly for cuprate systems. We

will first introduce the method in Sec 4.1, and then we will apply the method to

some experimental systems. In Sec 4.2 we combine it with the so called “YRZ”

phenomenological Green’s function to study the Bi-2201 system. In Sec 4.3 we look

at the YBCO sample [41], and pay special attention to the detuning of incoming

photon energy.

4.1 Introduction of method

In this chapter, we focus on the RIXS intensity in cuprate systems. We first start

by introducing the determinant method used in reference [9]. If the incident photon

has energy ω, momentum k, and outcoming photon has ω−∆ω, k+Q, from Eq (3.42)
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and Eq (3.35), the intensity is:

I ∼
∑
f,m,n

eiQRmnχρσχµν〈i|dnρGnd
†
nσ|f〉〈f |dmµGmd

†
mν |i〉δ(Ef − Ei −∆ω) (4.1)

Here Gm = (Hm + ω − Ei − iΓ)−1. Using δ(z) = 1
2π

∫
eiszds, we can replace∑

f |f〉〈f |eiEf s → eiHs, where H now is an operator. Also we replace eiEi |i〉 →

e−iHs|i〉. Same thing can be done for the propagator, we use 1/z =
∫∞

0
e−ztdt, so

that:

Gm = i
∑
m

|m〉〈m|
iEm + iω − iEi − Γ

= i

∞∫
0

e(iEm+iω−iEi−Γ)t|m〉〈m| =
∞∫

0

e(iω−iEi−Γ)teiHmt (4.2)

The factor eiEit can again be absorpt into eiHt|i〉, finally the intensity is written in an

integral form:

I =

∞∫
−∞

ds

∞∫
−∞

dt

∞∫
−∞

dτeiω(t−τ)−is∆ω−Γ(t+τ)

×
∑
n,m

χρσχµνS
mn
ρσµν (4.3)

With:

Smnρσµν = 〈eiHτdnρe
−iHnτd†nσe

iHsdmµe
iHmtd†mνe

−iH(t+s)〉. (4.4)

From Eq (3.43) we see that for the Cu L-edge that is relevant in this chapter, in order

for χ to be nonzero, we need ρ = σ and µ = ν, so we only use 2 spin indices and

write (4.4) as Smnρµ . Although Eq (4.3) looks even more complicated than Eq (3.35),
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we can calculate (4.4) exactly, using Eq (3.14). The result is:

Smnρσ = det (F )[〈nρ|(1−N)−1F−1e−ihnτ |nρ〉 × 〈mσ|e−ihseihnτ (1−N)F−1Umn|mσ〉

+ 〈nρ|(1−N)F−1Umn|mσ〉 × 〈mσ|eihmtU0NF
−1e−ihnτ |nρ〉] (4.5)

Where N = (1 + eβh)−1, Umn = e−ihnτeihseihmt, and U0 = ei(τ−t−s)h, F = 1 − N +

UmnU0N . We will not show the detailed derivation here, but we do a similar calcu-

lation in Sec 5.1. In Eq (4.3) χ depend on the experiment. The signal is split into

spin-flip (SF) channel and none-spin-flip (NSF) channel. For the SF channel we want:

SSF = S↑↑ + S↓↓ − S↑↓ − S↓↑, for the NSF channel, SNSF = S↑↑ + S↓↓ + S↑↓ + S↓↑.

The total signal would be the mixture of the two channels and the relative weight

depends on the incident and outgoing angles of the X-ray.

4.2 Auxiliary fermion approach to the RIXS spectrum in

doped cuprate

4.2.1 Introduction to YRZ Green’s function

An important part of the study of doped cuprates is to understand the possible

structure and role of the Fermi surface. Angle-resolved Photo-Emission (ARPES)

experiments suggest that the Fermi surface is made of pockets [82, 6]. A phenomeno-

logical ansatz of a retarded Green’s function was proposed by Yang, Rice and Zhang

(YRZ) [48, 83] to explain the formation of a hole pocket. This form of Green’s func-

tion satisfies Luttinger sum rule, the complete Fermi surface is suggested to be the

combination of the zeros and poles of the Green’s function, and the hole doping is

directly related to the volume of the hole pocket. The dramatic development in RIXS

techniques has enabled a new test ground for high-temperature superconductivity
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theories. And the YRZ Green’s function can be helpful for understanding RIXS

experiments. In [39], it is shown that the ansatz can be obtained alternatively by

the slave boson mean field (SBMF) theory, and can be used to study the magnetic

response contribution to RIXS in the underdoped region. In particular, the “hour-

glass” behavior [27], a downwardly dispersing portion at low energy near (π, π), can

also be derived.

Despite the success of the YRZ theory, it is an ansatz for the Green’s function that

does not directly correspond to a microscopic model. Although some key figures of

the Fermi surface can be understood from the Green’s function, since the theory is not

free, it does not allow the calculation of some other quantities such as density-density

correlations, without making further assumptions, such as the random phase approx-

imation in [39]. In this section, we show that by introducing an auxiliary fermion,

we can write a simple Hamiltonian that gives the YRZ Green’s function, and allows

taking into account interactions with a core hole using the methods of [9].

The YRZ ansatz starts from a t-J model,

Ht−J = −
∑
ijσ

tijc
†
iσcjσ +

1

2

∑
ij

JHSi · Sj (4.6)

The first term is a hopping term and the second term a spin-spin interaction term.

The proposed ansatz for the coherent part of the Green’s function is:

Gσ(ω,k) =
gt(x)

ω − ξ0(k)− ξ′(k)− |∆(k)|2
ω+ξ0(k)

(4.7)

where x is the doping, or the net number of holes in a unit cell, ξ0(k) = −2t(x)(coskx+

cosky), ξ
′
(k) = −4t

′
coskxcosky−2t

′′
(cos2kx+cos2ky)−µp, ∆(k) = −∆0(coskx−cosky).

The renormalization of the hopping parameters are: t(x) = gt(x)t0 + 3
8
gs(x)JHχ,

t
′
(x) = gt(x)t

′
0, t

′′
(x) = gt(x)t

′′
0 , χij = 〈c†iσcjσ〉. gt, gs are referred to as the Gutzwiller

functions [33], and are given here by gt = 2x
1+x

, gs = 4
(1+x)2 . µp is a chemical potential
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Figure 4.1: The Fermi surface, incluing zeros and poles of YRZ Green’s function
in reference [82]. Only a quarter of the Brillouin zone(kx ∈ [0, π], ky ∈ [0, π])
is showed, the Fermi surface is symmetric under kx → −kx and ky → −ky. We
see that the Fermi pocket grows as the doping increase, and eventually becomes a
closed surface at x = 0.20. The parameters use here are: χ = 0.338t0, J = 1/3t0,
t
′
0 = −0.3t0, t

′′
0 = 0.2t0.

term that is determined by the doping through Luttinger sum rule (LSR) [67]:

ρ =
1

2π2

∫
G(k,0)>0

d2k , (4.8)

which states that the density of electrons is proportional to the area in momentum

space where the zero-frequency Green’s function G(k, 0) > 0, and the boundary is

determined by the lines of the zeros and poles of G(k, 0) . At hole doping x = 0, by

setting µp = 0, the Green’s function has only zeros, along the lines kx± ky = ±π. At

none zero doping, G(k, 0) begins to have poles, and as a result hole pockets begins

to appear. Fig 4.1 shows the Fermi surface structrure created by a YRZ Green’s

function, for different doping. Shaded is the region where G(k, 0) > 0. The line from

(π, 0) to (0, π) is the line that G(k, 0) is zero and the red line represents the poles.

This Green’s function is not a solution for any tight binding Hamiltonian, but by

introducing auxiliary fermions, the self-energy term Σ(k) = |∆(k)|2
ω+ξ0(k)

can be understood

as the interaction between electrons and auxiliary fermions.
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4.2.2 An auxilary fermion model

We can formally obtain a YRZ Green’s function as a result of an action in the

form:

S[ν] =

∫
dωνk(ω − ξ0 − ξ

′ − |∆|2

ω + ξ0

)ν̄k, (4.9)

where νk are Grassman variables to represent the fermionic field. We have neglected

the superconducting gap, which is much smaller than all other parameters we con-

sider. We will also concentrate below on the low temperature limit, T → 0. Written

explicitly in a temporal representation:

S[ν] =
1

2π

∫
dτ
∑
k

νk(τ)(i∂τ − ξ0 − ξ
′
)ν̄k(τ)

− 1

4π2

∫
dτ1dτ2

∑
k

νk(τ1)ν̄k(τ2)h(τ2 − τ1) (4.10)

we see that this action is not local in time, with a response kernel:

h(τ) =

∫
dω

∆k

ω + ξ0

eiωτ . (4.11)

In the RIXS procedure, when the X-ray knocks a core electron out and creates a

core-hole, it generates a core-hole potential that exists for a certain time (decided by

the core-hole life time), then the potential disappears, this quenching like process is

often modeled as turning on a point interaction potential at time 0 to τ0 [69], the

action including a core-hole would be Scorehole = S[ν] +
∫ τ0

0
Ucνrν̄r. At this stage, the

non-locality nature of the action in Eq (4.9) makes it awkward to analyze. To deal

with this problem, we consider adding an auxiliary fermion, and write an action in
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this form:

S[ν, ψ] =

∫
dτ
∑
k

[νk(τ)(i∂τ − ξ0 − ξ
′
)ν̄k(τ)

+ ψk(τ)(i∂τ + ξ0)ψ̄k(τ)

+ ∆νk(τ)ψ̄−k(τ) + ∆̄ψ−k(τ)ν̄k(τ)] (4.12)

where νk and ψk are Grassmann numbers, and ψ represents an auxiliary field. Notice

that ξ0(−k) = ξ0(k), integrating out the ψ field would yield the action in Eq (4.9).

The tight binding Hamiltonian for this action, including spin index is:

Hcd = −
∑

ij,σ=↑,↓

tcijc
†
iσcjσ −

∑
ij,σ=↑,↓

tdijd
†
iσdjσ

+
∑

ij,σ=↑,↓

∆ijc
†
iσdjσ + h.c. (4.13)

where the diσ particles are the auxiliary fermions. The hopping and pairing pa-

rameters are: tci,i±x̂ = tci,i±ŷ = t, tci,i±x̂±ŷ = t
′
, tci,i±2x̂ = tci,i±2ŷ = t

′′
, tci,i = −µp,

tdi,i±x̂ = tdi,i±ŷ = −t, ∆i,i+x̂ = −∆i,i+ŷ = ∆. tcij contains a nearest neighbor hopping,

next nearest neighbor hopping and a chemical potential term, and tdij only contains

a nearest neighbor hopping term, which differs from that in tcij by a sign.

With this Hamiltonian, we can now look at the RIXS spectrum with the deter-

minant method. For the RIXS intensity with photon energy and momentum transfer

ω → ω −∆ω, q→ q + Q, the essential task is to calculate:

Smnρσµν = 〈eiHτcnρe
−iHnτc†nσe

iHscmµe
iHmtc†mνe

−iH(t+s)〉 (4.14)

Hm(n) is the intermediate Hamiltonian with the presence of a core-hole at site m(n).

Usually it is assumed that core-hole gives an attractive point potential: Hm = Hcd +
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∑
σ Ucc

†
mσcmσ, but in our case there are also auxiliary fermions, we could also try

adding a core-hole potential for ds: Hm = Hcd +
∑

σ Ucc
†
mσcmσ +

∑
σ Udd

†
mσdmσ. We

found the latter gives a better agreement to the experiments. Γ is the inverse of core-

hole life time, it represents the effects that are not taken into account, like decaying

through phonon emission, here we take Γ ∼ 0.2eV .

4.2.3 Plots and discussion

Fig 4.2 shows the comparison between a theoretical calculation using this method

and experimental data for Bi-2201(Bi2Sr2CuO6+x) reported in [19], at doping p =

0.12. Quantitative agreement with the experiments was reported using the itinerant

quasiparticle approach in [9] and with YRZ in [20], here we show how the combined

approach improves on the YRZ result. With the experimental setup, there are 57%

SF and 43% NSF in the π channel. Although the RIXS signal is commonly inter-

preted as a magnetic response [50, 18, 23], we demonstrate that by using a simple

tight binding Hamiltonian, we can quantitatively understand the RIXS spectrum for

various momentum transfer.

In Fig 4.3, we show the intensity along some high symmetry lines. Similar to

the conclusions in [20, 32], we see that along the nodal (1, 1) direction the RIXS

spectrum becomes more diffused and less sensitive to momentum transfer, which is

hard to understand from a magnon point of view.

Furthermore, we point out that in the case where Uc = Ud = 0, i.e. no core-

hole, the result is similar to the dynamic susceptibility that is calculated in [39].

In Eq (3.35), if we assume Γ is larger than other energy scales of the system, the

denominator En − Ei − ω + iΓ can be approximated by a constant R(ω,Γ) for any

|n〉, and the intensity is written as the Fourier transform of the 4-point function:

Imn(t) = R(ω,Γ)χτσχµν〈ρnτσ(t)ρ†mµν(0)〉 (4.15)
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Figure 4.2: The theoretical calculation and experimental data for the Bi-2201 sam-
ple, for momentum transfer in (1, 0) direction. The green curves are theoretical
calculation with core-hole potential Uc = Ud = −3eV . Blue curves are anti-
symmetrized Lorentzian capturing the magnetic scattering from [19]. Red lines are
the elastic peak.
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Figure 4.3: RIXS intensity along (1, 1) and (1, 0) direction. Only along the antin-
odal (1, 0) direction there exists a clear peak. The intensity along (1,1) direction
can not be properly described by magnons.

73



where ρnτσ = c†nτcnσ, and we have used that δ(E) = 1
2π

∫∞
−∞ e

−iEtdt. In [39] the

irreduceble part of the magnetic susceptbility is defined as:

χirr(Rnm, t) = 〈(ρn↑↑(t)− ρn↓↓(t))(ρm↑↑(0)− ρm↓↓(0))〉 (4.16)

Eq (4.15) and (4.16) are both a density-density correlation functions of the system,

and have similar behavior.

We proceed to calculate the zero core-hole RIXS intensity for our tight binding model.

We first solve the Hamiltonian in Eq (4.13), using a linear transformation:

ckσ = cosθkbkσ + sinθkfkσ

dkσ = −sinθkbkσ + cosθkfkσ (4.17)

bkσ and fkσ are quasi-particles, tan 2θk = 2∆(k)

2ξ0+ξ′ (k)
, the effective Hamiltonian is then

just:

Hbf =
∑
k

ε1(k)b†kbk + ε2(k)f †kfk (4.18)

the energy eigenvalues are: ε1,2(k) = ξ
′

2
±
√

(2ξ0+ξ′

2
)2 + |∆(k)|2. With this, Eq (3.51)

can be written in terms of bkσ and fkσ, which are the true excitations of the model:

Ff =
∑
k

〈f |(cosθkbkρ + sinθkfkρ)
∑
n

|n〉〈n|
En − Ei − ω + iΓ

× (sinθk+Qb
†
k+Qσ + cosθk+Qf

†
k+Qσ)|i〉 (4.19)

The final state |f〉 would have a particle-hole excitation, with four possible exci-

tation patterns: bkb
†
k+Q, bkf

†
k+Q, fkb

†
k+Q, or fkf

†
k+Q, the total RIXS intensity would

be the summation of |Aν |2 over all possible final states |f〉.
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Figure 4.4: The dispersion of the energy of the paramagnon mode in Bi-2201 along
(ζ, 0). The red line shows the zero core-hole calculation that gives a similar result
as in [20]. The blue line shows the peak position using our calculation of spin-flip
contribution with a core-hole potential Uc = Ud = −3eV . Experimental data re-
ported in [20] are noted by black squares.

To argue the necessity of taking into account the core-hole interaction in the

system, we show In Fig 4.4 the effect of adding a core hole, by comparing the results

from Eq (4.4) and Eq (4.19), which gives results similar to the RPA calculation in [20].

We find that the core hole will push the peaks to higher energy transfer, this effect is

more significant at large momentum transfer. While the RPA calculation catches the

essential figure of the experiment, the inclusion of a core-hole significantly improves

the agreement with the experiment. This effect can be understood as we go to first

order contribution of a core-hole potential with the form Vr = Uc
∑

σ c
†
rσcrσ in (3.36),

this term would contribute as:

F1
f = UcR(ω,Γ)

∑
m

eiQRm

× χρσ〈f |dmρ(d†m↑dm↑ + d†m↓dm↓)d
†
m|i〉 (4.20)

This means the final state would have two pairs of quasi particle-hole excitations,

with total momentum added to Q and total energy ∆ω, while in the no core-hole
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case, the excitations are one pair of quasi particle-hole, with the same total energy

and momentum, the excitations are mostly close to Fermi surface. The core-hole

allows the individual excitations to explore a larger phase space, further away from

the Fermi surface, and thus the excitation energies are higher, and the peak moves to

the right. This effect is much harder to analyze quantitatively, but the determinant

method allows us to calculate it numerically.

In this section, we studied the non-equilibrium dynamics associated with the YRZ

ansatz in the presence of X-ray absorption by introducing a phenomenological tight-

binding Hamiltonian model involving auxiliary fermions. This approach allows us to

resolve the non-locality of the action in time and is particularly useful when deal-

ing with the core-hole introduced in RIXS experiments. We compare a theoretical

computation based on our model with experiments on Bi-2201, and show that the

core-hole moves dispersion peaks to higher energy in the (1, 0) direction, giving a bet-

ter agreement with the experimental data. In addition we observe that in the (1, 1)

direction the signal is more diffused and a well-defined magnon peak is absent.

4.3 RIXS intensity and detuning in YBCO samples

4.3.1 Introduction to YBCO

YBCO is a family of high-temperature superconductors that has been studied in-

tensively. Y Ba2Cu3O7 was the first discovered cuprate to have a Tc ∼ 93K, above

the boiling point of liquid nitrogen [81]. The discovery of YBCO led to the rapid

development of several other high Tc superconductors, and started a new era in ma-

terial science.

Despite the technological and scientific importance of YBCO, little is known about

their overall quasi-particle band structures. Although density functional theory pre-

dicts quasi-particle dispersion near the Fermi surface reasonably well, it cannot re-
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Figure 4.5: Structure of Y BCO7

liably capture the effect of electron-electron correlations, and thus largely overesti-

mates the excitation energies near the top of the band [84]. On the experimental

side, traditionally used band structure probes, such as angle-resolved photoemission

spectroscopy (ARPES) and quantum oscillation measurements [77] probe excitations

mostly in the vicinity of the Fermi surface, and provide little information on the

higher energy part of the band.

In contrast, RIXS study of transition metal oxides provides a momentum-resolved

access to various electronic, magnetic and phononic excitations in a large energy range

with an unprecedented sensitivity. This can help us with the understanding of YBCO

band structure.

4.3.2 Calculation of RIXS intensity

We use a tight-binding Hamiltonian same as in Eq (3.58), with parameters:

(t0, t1, t2, t3) = (−105, 29, −25, 4)meV. Here we compare our calculation with the

experimental measure of [57]. Fig 4.6 shows the intensity for different polariza-
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Figure 4.6: Polarization resolved RIXS spectra with incoming π (a) and σ (b) po-
larization on overdoped YBCO + Ca. Symbols (full lines) denote experimental (the-
oretical) data, whereas the dashed line in (b) corresponds to Gaussian fit to the
quasi-elastic part of the σσ′ channel. RIXS intensity is dominated by SF/NSF pro-
cesses in the scattering geometry of (a)/(b), respectively.

tions for overdoped YBCO+Ca. We used parameters: q‖ = 2π (0.37, 0), Uc = 1 eV,

Γ = 250 meV, energy resolution 95 meV HWHM, lattice size 22× 22.

Experiment has also studied the dependence of RIXS intensity on incoming photon

energy on YBCO6+x. RIXS study of several YBCO6+x samples from the underdoped

to the overdoped regime were performed, with π incoming and mixed outgoing po-

larization. We use ω to denote the energy shift of the photon from the maximum

intensity of X-ray absorption experiment. In order to investigate the effect of the in-

coming photon energy on the RIXS signal, ω was tuned to be (0, 125, 250, 375) meV, as

shown in Fig. 4.7 (a). We find a peak near 350 meV, as well as a tail of high-energy

dd transitions, see Fig. 4.7 (b). Up to an overall normalization factor, theoretical

spectra (full lines) fit the experimental data reliably, as shown in Figs. 4.7 (c-e).

Both the peak positions and the widths are reproduced for a large range of detun-

ings: underdoped YBCO6.55 (p ∼ 0.114) and YBCO6.79 (p ∼ 0.142), optimally doped

YBCO6.99 (p ∼ 0.189) and overdoped and YBCO + Ca (p ∼ 0.21). Our model fails
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in case of the almost undoped antiferromagnetic sample, YBCO6.10. This is consis-

tent with our expectations that quasi-particle theory should be only reliable on the

overdoped side, and should not be applicable in the antiferromagnetic phase, where

strong interactions lead to the absence of low-lying electronic excitations.
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Figure 4.7: RIXS spectra of YBCO measured with π incoming polarization. The
incoming photon energy is detuned δ = (0, 125, 250, 375) meV away from the
XAS maximum, shown in (a). (b) The experimental RIXS data shows pronounced
quasi-elastic peaks together with another peak near 300 meV, fit by our theoret-
ical model, as well as a high-energy tail of dd excitaitons. (c-e) RIXS spectra at
different dopings and detunings, with experimental (theoretical) data denoted by
symbols (full lines).
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CHAPTER V

Superconducting pairing in RIXS experiments

In Chap IV we used the determinant method to study cuprate systems. In stan-

dard BCS theory of superconductivity, the gap is present after introducing a super-

conducting pairing term. However, we did not consider any superconducting pairing

in our models, although they are superconducting systems, based on the belief that

the gap is in general small in such systems, and won’t make too much of a difference.

In this chapter, we will start to learn the effect of this kind of pairing, and see how

it can affect the result of RIXS intensity. In Sec 5.1 we look at the CLBLCO sample

and in Sec 5.2 we look at the p+ ip superconductor.

5.1 D-wave pairing in CLBLCO system

5.1.1 Background

The RIXS experiment in [23] is performed for (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy

sample, x controls the family and y controls the doping. In most of the studies on

high-Tc superconductors, there are many different parameters that change dramat-

ically simultaneously, which makes it hard to understand how the properties of the

material depend on a certain parameter. In CLBLCO, we can change x or y sepa-

rately, and see the effect. In particular, changing x only affects the super-exchange

between Cu and O atoms, so that we can learn about how some crucial properties,
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like the transition temperature, depend on the super-exchange. The structure, phase

diagram and the lattice constant of the material are shown it the figure.

Underdoped(UD), medium doped(MD) and optimally doped(OD) samples are

studied. Changing x from 0.1 to 0.4 would cause the Tc to increase ˜30%. TN Tgand

Tc are the Neel, spin-glass and superconducting transition temperature. The phase

diagram for different x can be scaled into one plot [5].

5.1.2 Experiment

X-ray absorption spectroscopy(XAS) data at Cu L edge is shown it Fig 5.2, for

x = 0.1 and x = 0.4 samples at different dopings. The electric field is polarized along

the c-axis (with a 10◦ misalignment from axis). There are three peaks: peak A is

almost at the same energy for all samples(only x = 0.4 UD is slightly off); peak B is

˜2eV higher than peak A and depends largely on doping; C peak is interpreted as the

charge transfer excitations to the upper Hubbard band. The total number of holes

in a unit cell including chains and planes, h, and y are estimated in this way: for the

two OD samples, y is estimated from the critical temperature, and then h calculated

from the relation h = y − 6.25; for other samples h is estimated from the relative

weight of peak A and B, B/(A+B) , and then y calculated using the same relation.

The RIXS experiment chose the A peak as the energy of incoming X-ray, which

is close to the commonly used energy for Cu L edge. The RIXS setup is shown in the

figure, incoming and outgoing photons are labeled as ki and kf , the angle between

the extension of ki and kf is called the two-theta angle, it is fixed to be 130◦, so the

momentum transfer Q, is fixed. In order to change the momentum transfer in the

parallel plane, one rotates the sample to change θi.
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Figure 5.1: The lattice structure of CLBLCO(upper left), and it’s phase diagram
for several x values as a function of y(upper right). The lattice constant is shown in
the lower figure [45], for different x and y values.
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Figure 5.2: XAS experiment of CLBLCO(upper), three peaks appear around Cu
L-edge. And the doping(lower) determined from the experiment

In the experiment the momentum transfer Q = 2π(q, 0) is measured, the q values

are (0.42, 0.36, 0.28, 0.2, 0.11), the corresponding θi are (117.4◦, 107.8◦, 96.9◦, 87.2◦, 77◦),

The lattice constant a is taken to be 3.9Å for all the samples(2% error).
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5.1.3 Theoretical Calculation

5.1.3.1 OD samples

Fig 5.3 show the experimental data and the theoretical calculation. The band

structure parameters for x = 0.1 and x = 0.4 are:

The experiment[23] used π polarized spectrum, the weight of the spin-flip signal for

the 5 different momentum transfer are (84%, 64%, 46%, 35%, 28%). For the theoretical

calculation, lattice size 16 by 16, Γ = 0.3eV , Uc = −1eV , doping is p = 0.24 for both

optimally doped samples.

5.1.3.2 Doping dependence

Here we compare the x = 0.1 p = 0.24(OD) and p = 0.16(MD) signal. Figure

shows q = 0.27(left) and q = 0.33(right), blue curves are MD sample, and red curves

are OD sample. The dependence on doping is small.

85



Figure 5.3: The fit to experimental curves. The black and red curves are experi-
mental data[23] for x = 0.1 and x = 0.4 samples. The blue curves in left(right) plot
shows the theoretical calculation for x = 0.1(0.4) samples.
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5.1.3.3 D-wave pairing

The Hamiltonian we used in the previous section is a simple band model, H =∑
kσ εkd

†
kσdkσ, now we consider what happens if we have a superconducting pairing

term: Hd =
∑

kσ εkd
†
kσdkσ + ∆kdk↑d−k↓ + h.c. , where ∆k = ∆(coskx − cosky). In

this particular case (up spin only couples to down spin in the pairing term), the

Hamiltonian can still fit into the general H =
∑

ij hijc
†
icj form, by definding: ck↑ =

dk↑, ck↓ = d†k↓. Then the Hamiltonian, with a core-hole at site m, becomes:

Hd
m =

∑
k

εkc
†
k↑ck↑+εk(1−c

†
k↓ck↓)+Ucc

†
m↑cm↑+Uc(1−c

†
m↓cm↓)−∆kc

†
k↓c−k↑+h.c. (5.1)

Then we still want to calculate:

Smnρσ = 〈eiHτdnρe
−iHnτd†nρe

iHsdmσe
iHmtd†mσe

−iH(t+s)〉 (5.2)

using Eq (4.5).

For the spin-flip channel, we want S↑↑ + S↓↓ − S↑↓ − S↓↑ , for the non-spin-flip

channel we want S↑↑ + S↓↓ + S↑↓ + S↓↑. But now we have to treat S↑↑, S↓↓ and S↑↓,

S↓↑ seperately. If ρ = σ, we have Smnρσ = 〈eiHτcnρe
−iHnτc†nρe

iHscmσe
iHmtc†mσe

−iH(t+s)〉,

we can use eq(4.5), and just change H correspondingly. For the down spin part, H

transfers to −H, and also there’s a numerical factor. The numerical factor mostly

cancels since when calculating S, but when there’s a core-hole potential, it contributes

a phase factor of ei(t−τ)UC .

If ρ 6= σ, then the situation is more complicated. we have to calculate:

S̃mnρσ = 〈eiHτcnρe
−iHnτc†nρe

iHsc†mσe
iHmtcmσe

−iH(t+s)〉 (5.3)

and here we derive the formula to calculate Eq (5.3). We denote X1 = i(τ − t− s)H0,
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X2 = iHmt, X3 = iH0s, X4 = −iHnτ , and use composite subscript α, β , γ, δ; eg.

α = n, ρ. First we move the c and c† to the left by using eXc†n = (eX)mnc
†
me

X and

eXcn = (e−X)nmcme
X , we get:

S̃mnρσ = (eX4)β′β(eX4eX3)γ′γ(e
−X2e−X3e−X4)δδ′tr[cαc

†
βc
†
γcδe

z]/tr[e−βH ] (5.4)

next we calculate tr[cαc
†
βc
†
γcδe

z] . First we notice c†mcn = ∂
∂ξ
eξM |ξ=0, where M =

|m〉〈n|, then:

tr(c†mcne
z) =

∂

∂ξ
tr(eξMez) =

∂

∂ξ
det(1 + eξMez)|ξ=0

= det(1 + eξMez)tr(
1

1 + eξMez
Mez)|ξ=0

= det(1 + ez)(
ez

1 + ez
)mn

and similar method gives:

tr(c†mcnc
†
pcqe

z) = det(1 + ez)[(
1

1 + ez
)mq(

ez

1 + ez
)pn + (

1

1 + ez
)mn(

1

1 + ez
)pq]

Combining the two results and using the fermion anti-commutational relation, we

get:

S̃mnρσ = det (F )ei(t−τ)Uc [〈nρ|(1−N)−1F−1e−ihnτ |nρ〉 × 〈mσ|e−ih(τ−t−s)NF−1e−ihnτeihs|mσ〉

− 〈nρ|(1−N)F−1e−ihnτeihs|mσ〉 × 〈mσ|e−ih(τ−t−s)NF−1e−ihnτ |nρ〉] (5.5)

Eq (4.5) and (5.5) only give S↑↑ and S↑↓. To find S↓↓ and S↓↑, notice that in the

Hamiltonian (5.1) if we swap up and down spins it takes ∆→ −∆, so we can do the
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(a) (b)

(c) (d)

Figure 5.4: The effect of D-dave pairing term on RIXS signal in (1,0) direction.
The plots are calculated for x = 0.4 OD sample, q = 0.14, 0.22, 0.27, 0.34 for (a)
(b) (c) and (d). Black, red and blue curves are for ∆ = 0, 0.02, 0.04eV. The pairing
term would shift the peak to higher energy and makes the peak sharper.

same calculation for −∆ and get the other two components.

We calculate for the x = 0.4 OD sample, with a pairing ∆ = 0.02 and ∆ = 0.04.

Typical gap in the compound is 2∆ ∼ 0.04eV [22]. The plots are shown in Fig 5.4.

The momentum transfer are: Q = 2πq(1, 0), with q = 0.14, 0.22, 0.27, 0.34. In Fig 5.5

we also show a similar calculation done in (1,1) direction, Q = 2πq(1, 1), with same

q values. We see that the peak is more diffused and have less dispersion.
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(a) (b)

(c) (d)

Figure 5.5: The calculation for the same sample in (1,1) direction, momentum
transfer Q = 2πq(1, 1), q = 0.14, 0.22, 0.27, 0.34 for (a), (b), (c) and (d). In this
direction the peak is more diffused, but the qualitative effect of the pairing is simi-
lar
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5.2 P+iP pairing and Majorana fermions

5.2.1 Model

In Sec 5.1 we considered a superconducting system with d-wave gap. However,

that requires the pairing term to have specific form ∆k(dk,↓d−k,↑ + dk,↑d−k,↓) + h.c.,

so we can perform a simple transformation to use the determinant method. But this

does not work in more general scenarios.

In this section, we will consider a general pairing term and demonstrate how

changes in the presence of a gap may have an impact on RIXS measurements. To

do so, we extend the method developed in [10] to describe RIXS response within

a quasiparticle picture to include arbitrary pairing effects within a mean-field BCS

formalism. Using the new method we show that superconducting pairing has an

observable effect on the RIXS signal although the RIXS intensity is a result of an

average over energy scales considerably larger than the superconducting gap. This

sensitivity to pairing effects may add an important addition to the growing usefulness

of the RIXS procedure in studying superconductivity related phenomena.

Recent studies of RIXS in the context of cuprates have largely considered cases

of insulating phases [68, 71, 14, 71, 40]. However, RIXS experiments have been

performed over a wide range of doping, including systems where itinerant electrons

are present, and a description using tools developed for insulators may be insufficient.

A different theoretical approach starts from the itinerant electrons, considering both

direct [10] and indirect RIXS processes [8]. There the system is treated essentially

as a single-band quasiparticle model. In addition, in refs [36, 32] the RIXS intensity

has been calculated using the random phase approximation. In [32], it is also shown

that contrary to the common interpretation, for Bi − 2212 the magnon picture fails

at a nodal direction and that a quasiparticle scenario may be an essential ingredient

to understanding the RIXS data there.
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In this section, we set out to examine the effect of superconducting pairing on the

RIXS mechanism within a simple mean-field picture. We derive a general formula

for the RIXS intensity for an arbitrary quadratic fermi Hamiltonian, with anomalous

pairing ∆, as expressed in Eq (4.3) together with (5.12). This result generalizes the

quasi-particle approach of [10], where the computation of RIXS spectra was performed

using a model of non-interacting quasiparticles but including an interaction with a

positively-charged core hole via exact determinant methods. This formalism allows

us to compute the characteristics of the signal by numerically evaluating (5.12). This

can be done for arbitrary band structures using relatively straightforward numerical

means.

Throughout the section we will concentrate on p wave superconducting states. In

particular, p+ ip superconductors are of great current interest. Such superconductors

can support unpaired Majorana fermions at cores of (half quantum) vortices [3, 34],

which obey non-Abelian statistics [37, 2]. Remarkably, we find that the RIXS signal

is sensitive to the presence of a superconducting gap, although the gap scale ∆ is

quite small (about 5%) compared to the value of band parameters. In particular,

going through the superconducting phase transition ∆ acquires a non-zero value and

we expect the RIXS spectra to experience a significant change.

To be concrete, we consider a minimal model for a p+ ip superconductor. We use

a two-dimensional, single band, spinless fermionic system, on a square lattice, with

superconducting gap ∆. The mean field Hamiltonian is:

H =
∑
i,j

hijd
†
idj + ∆ijdidj + h.c. (5.6)

Following [51], we choose hii = −µ, hi,i+x̂ = hi,i+ŷ = −t1, hi,i±x̂±ŷ = −t2, and for a

px + ipy superconducting state, we take ∆i,i+x̂ = ∆, ∆i,i+ŷ = i∆, with (µ, t1, t2,∆) =

(1.15, 0.8, 0.3, 0.05)t, where t ∼ 0.2eV.
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In RIXS, photons with energy ω and momentum q, are scattered, and the outgoing

photons have energy ω−∆ω, and momentum q + Q. For spinless fermions, we write

Eq (4.4) with no spin index:

Smn = 〈eiHτdne
−iHnτd†ne

iHsdme
iHmtd†me

−iH(t+s)〉. (5.7)

As long as the various stages in the time evolution are governed by quadratic fermi op-

erators, (5.7) can be calculated by exact diagonalization methods. Consider fermions

on a lattice with N = L × L sites. To handle arbitrary superconducting pairing, we

represent the fermion creation and annihilation operators in terms of 2N Majorana

fermions ck defined as:

ck =


dk + d†k k = 1, 2, ...N

i(d†k−N − dk−N) k = N + 1, N + 2, ...2N ,

(5.8)

and satisfying the relation {ci, cj} = 2δij. The Hamiltonian (5.6) can be re-expressed

in terms of the Majorana fermions as

H =
∑
ij

hijcicj, (5.9)

with h the antisymmetric matrix:

h =
1

4

iIm(h+ 2∆) iRe(2∆ + h)

iRe(2∆− h) iIm(h− 2∆)

 . (5.10)

Traces involving quadratic Hamiltonians of the form A = aijcicj where aij is an

anti-symmetric matrix, can be calculated by using the counting statistics formulas
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presented in [44]. As shown in Sec 5.3, the trace formula

Tr(eA1 ... eAn) =
√

det(1 + e4a1 ...e4an), (5.11)

tells us that in the direct RIXS case, the expression for Smn has 3 terms Smn =

Smn1 + Smn2 + Smn3 , the first and most important term reads:

Smn1 =
√

det(F )(Λn,m + Λn+N,m+N − iΛn+N,m − iΛn,m+N)

×(Γm,n + Γm+N,n+N − iΓm+N,n + iΓm,n+N). (5.12)

Here Λn,m,Γn,m are elements of the 2N × 2N matrices

Λ = eihseihmtei(τ−t−s)hG−1(1−Nβ)e−i(τ−t−s)he−ihmt

Γ = ei(τ−t−s)hNβF
−1, (5.13)

where Nβ = 1
1+e−4βh , K = e−4ihnτe4ihse4ihmte4i(τ−t−s)h, F = 1 − Nβ + KNβ, G =

1−Nβ +NβK. Here hm represent the Hamiltonian with core hole at position m (i.e.

Hm =
∑

ij(hm)ijcicj). The other terms have similar form, as discussed in detail in

Sec 5.3. Since the term S2 only gives an elastic scattering when there ’s no core-hole,

and does not depend to much on ∆, we only consider the terms S1 and S3.

To explore the role of the superconducting gap, we calculated the RIXS intensity

across the superconducting phase transition using Eq (5.12). As is shown in Fig.

5.6, for Q = 0.15(π, 0), the main effect seems to be the shift of spectral density to

higher energies: the intensity decreases for small energy transfer and increases for

large energy transfer, and the shift is not simply proportional to ∆. The intensity

change between the normal and superconducting state is depicted in Fig. 5.7 for

different values of momentum exchange Q and shows the same behavior. We observe
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Figure 5.6: RIXS intensity across the transition for a px + ipy superconductor. Q =
0.15(π, 0), Uc = t, Γ = 0.4t, ω = 0 for different values of ∆ (in unit of t). ∆ increase
the spectral weight for higher higher energy exchanges, shifts the peak position, and
also broadens the peak. Notice the shift of the peak position is not linear in ∆.

that adding a pairing term will suppress the intensity at small energy and at the same

time the intensity increases at higher energy. As we explain below, this behavior can

be understood by considering the problem in the absence of a core hole as follows. It

turns out that the main exchanges in RIXS intensity occur due to electron-hole pairs

where one of them is close to the fermi level. In the presence of pairing, electron states

close to the fermi level are unavailable - the incoming photon must first overcome the

energy gap, and weight is shifted to higher energies. However, as we will show below,

perhaps surprisingly, the increase in intensity at a direction Q is not directly related

to the pairing ∆Q at that wave vector.

Many interesting differences in the RIXS signal below and above the SC transition

can be observed already for small Uc. In this limit we can compute the RIXS more

efficiently using perturbation theory. We consider an expansion in terms of Uc for
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Figure 5.7: The change of intensity I∆=0.1t − I∆=0, for Q = π(q, 0) at several q
values.

Ffg in (3.35). For a simple on-site core hole potential V we write:

G = (Hm − Eg + iΓ + ω)−1

∼ G(0) − UcG(0)(d†mdm)G(0) + ...

where G(0) = (H − Eg + iΓ + ω)−1, is the propagator with no core-hole. We first

consider the lowest order contribution, where Uc = 0. The theory is then exactly

solvable in terms of the eigen-states of the static problem, and we can calculate the

intensity efficiently. We first solve the energy spectrum by switching to momentum

space and writing the Hamiltonian in the standard Bogoliubov-de Gennes form:

H =
1

2

∑
k

[
d†k d−k

] εk ∆k

∆∗k −εk


 dk
d†−k

 (5.14)

where εk = −µ − 2t1[cos(kx) + cos(ky)] − 4t2cos(kx)cos(ky), and ∆k = 2i∆[sin(kx) +
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Figure 5.8: RIXS intensity map on Q, ∆ω plane, in the (11) and (10) directions
(in units of π). Left is the normal phase(∆ = 0), right is the superconducting
phase(∆ = 0.05). The calculation is done using Eq (5.16).

i sin(ky)], the Hamiltonian is diagonized by a Bogoliubov transformation:

dk = u∗kbk + vkb
†
−k

d†−k = −v∗kbk + ukb
†
−k (5.15)

the energy of the excitation is now Ek =
√
ε2k + |∆k|2, |uk|2 + |vk|2 = 1, and uk

vk
=

∆k

Ek−εk
, the ground state is annihilated by all bks, and Ffg in Eq (3.46) is now given

explicitly by:

F0
fg=

∑
k1,k2,r

eir(k1−k2+Q) vk1uk2

Ek2 + ω + iΓ
〈f |b†−k1

b†k2
|g〉 (5.16)

As remarked before, Fig 5.7 shows the change in intensity below and above the

superconducting transition 1. From (5.16) we see in the quasiparticle picture, the

contribution to RIXS intensity comes from pairs of quasiparticles with momenta k

and k + Q, energies Ek and −Ek + ∆ω. When there is no pairing term, these are an

electron and a hole, and in the presence of a pairing term, these are the Bogoliubov

quasiparticles. Going to the superconducting phase, the energy spectrum becomes

1Calculations were carried out at zero temperature in the presence and without the gap. We
have found that thermal corrections beyond the presence of the gap do not play a significant role in
the RIXS signal.
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Figure 5.9: RIXS intensity map for a spinless px + py type of pairing function (∆k =
i2∆(sinkx + sinky)) with ∆ = 0.05t, in the anti-nodal (1, 1), and nodal directions
(1,−1) for Q. In the absence of pariting the two directions should have the same
intensity, thus the difference comes purely from the presence of the superconducting
gap. Surprisingly, the effect is more pronounced on the nodal direction where ∆ =
0.

Ek =
√
ε2k + |∆k|2, when |εk| is large, the spectrum does not change too much, since

|∆| is small compared to other band parameters. Thus the change in the RIXS in-

tensity comes mainly from pairs where at least one quasiparticle is close to the fermi

sea, there the energy spectrum and density of states change significantly. For a pair

of quasiparticles, one close to the fermi surface, where |εk1| < ∆k1 , with Ek1 ∼ |∆k1|,

and Ek2 ∼ εk2 , we have ∆ω ∼ |∆k1 | + εk2 . The same pair without the pairing term

will contribute to the intensity at ∆ω ∼ εk2 . In Fig. 5.8 we show the intensity as

a function of Q and ∆ω, as calculated from the lowest order contribution (5.16) for

the p + ip superconducting state in comparison with it’s normal state. The figure

shows that for small Q, the intensity is enhanced, which is consistent with having

an energy gap forcing larger energy transfers for two quasiparticles near the Fermi sea.

A yet more intriguing situation is that of a px + py superconducting order which,

as opposed to the px+ ipy order parameter allows for nodal lines. In Fig 5.9 the RIXS
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intensity in the nodal and anti-nodal directions, (1,−1) and (1, 1), respectively, are

depicted for such a superconductor. There is a striking breaking of the symmetry

between the two directions as a result of the pairing. In the absence of pairing, the

intensity in the two directions is the same. To see this, consider an electron-hole pair

with momenta (kx1 , ky1), (kx1 +q, ky1 +q), and energies ε1, ε2, which contributes to the

intensity at ∆ω in the (1, 1) direction. Another electron-hole pair with (kx1 ,−ky1),

(kx1 + q,−ky1− q), will have the same energies, since ε(kx, ky) = ε(±kx,±ky), but will

contribute intensity in the (1,−1) direction.

The effect of the pairing term can be understood by looking at F0
fg over the

Brillouin zone. In (5.16), the summation over r gives a delta function and we can

write:

F0
fg =

∑
k

vkuk+Q

Ek+Q + ω + iΓ
(5.17)

where we took |f〉 = b†−kb
†
k+Q|g〉. When the system is unpaired, |f〉 describes a

particle hole pair whose momenta differ by Q and energies differ by ∆ω.

We note that the RIXS intensity is the integral over the Brillouin zone of the

function:

F(k) =
vkuk+Q

Ek+Q + ω + iΓ
δ(Ek+Q + Ek −∆ω). (5.18)

To identify the main contributions to the signal in momentum space we now study the

behavior of F(k). In practice, we replace the delta function by: δ(E) ∼ e−(E/Eres)2/2

with Eres = 0.1t, to account for the experimental energy resolution. The result is

shown in Fig. 5.10. Because of the symmetry of the Hamiltonian, at ∆ = 0, Fk is

the same at Q = (0.25, 0.25)π and Q = (0.25,−0.25)π, up to 90◦ rotation. We can

now see why for Q = (0.25, 0.25)π, in the anti-nodal direction, the effect of pairing
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is weaker: Fk does not change a lot after turning on the pairing, since the significant

regions of Fk are far from the line kx = ky where the pairing, ∆k = 2i(sin(kx)+sin(ky))

is most significant. However, in the nodal direction, Q = (0.25,−0.25)π, a pairing

term becomes much more relevant: Fk has significant contributions across the line

kx = ky, and in those regions Fk is sensitive to the pairing term (noted by green

circles in the plot), resulting in a substantial change in the RIXS intensity. We thus

see that the effect of pairing on intensity is sensitive to the direction of the momentum

transfer, and seems to be enhanced in the nodal direction.

In summary, we developed a general formalism to treat the RIXS intensity for a

quadratic fermi theory with arbitrary pairing. With the introduction of Majorana

fermions, all quadratic Hamiltonians can be handled within the determinant method.

Focusing on p-wave superconducting states, we have shown within this approach sev-

eral intriguing effects on the RIXS signal. The most important findings are a nonlinear

shift of the RIXS absorption peak below the superconducting transition, and substan-

tial breaking of symmetry when comparing the nodal and anti-nodal directions, and

the effect is more pronounced in the nodal direction than the anti-nodal direction.

Other paired systems can readily be studied using the current approach. It would be

of interest to test the behavior described here by carrying out RIXS measurements

below and above a superconducting transition.

We have confined our discussion here to mean field BCS and made no speculation

about the validity of the results to strongly correlated systems and it’s relevance

for high-Tc superconductors. It is however of great interest to see how the present

approach may affect results pertaining to the quasiparticle interpretation of RIXS

results on cuprates.
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(a) (b)

(c) (d)

Figure 5.10: Fk over the Brillouin zone, for a px + py pairing. The black lines show
the original Fermi surface, red regions denote large values of Fk from electron like
regions and the blue regions are the associated hole like quasiparticles. (a) and (b):
Q = (0.25, 0.25)π, anti-nodal direction, energy transfer ∆ω = 0.35t. (a): ∆ =
0, and (b): ∆ = 0.05t. (c) and (d): Q = (0.25,−0.25)π, nodal direction, energy
transfer ∆ω = 0.35t. (a): ∆ = 0, and (b): ∆ = 0.05t. The region marked with
green in (d) is the most affected by the pairing.
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5.3 appendix

Here we detail the calculation of (5.12). Explicitly,

Sxy = 〈eiHτdye−iHyτd†yeiHsdxeiHxtd†xe−iH(t+s)〉

= tr[eiHτdye
−iHyτd†y...

... eiHsdxe
iHxtd†xe

−iH(t+s)−βH ]/tr[e−βH ]. (5.19)

Here, two core-holes are created at site x and y.

We first focus on the numerator. When replacing all the fermions with Majorana

operators, we get a combination of terms such as:

Num = Σqmnptr[e
iHτcqe

−iHyτcme
iHscne

iHxtcpe
−iH(t+s)−βH ]

= Σqmnptr[cqe
X4cme

X3cne
X2cpe

X1 ] (5.20)

Here the nonzero elements of Σ are

Σyyxx = Σy+N,y+N,x+N,x+N = Σy+N,y+N,x,x = Σy,y,x+N,x+N =
1

16

Σy,y+N,x,x+N = Σy+N,y,x+N,x+N = −Σy,y+N,x+N,x = −Σy+N,y,x,x+N = − 1

16

Σy,y,x,x+N = Σy,y+N,x,x = Σy+N,y+N,x+N,x = Σy+N,y,x+N,x+N =
i

16

Σy,y,x+N,x = Σy+N,y,x,x = Σy+N,y+N,x,x+N = Σy,y+N,x+N,x+N = − i

16
(5.21)

Using the relation: cme
Ai,jcicj = eAi,jcicjcm′(e

4A)m,m′ (same indices are summed

over), we can move all the Majorana fermions to the right, yielding:

Num = Σqmnp(e
X1)p,p′(e

X2eX1)n,n′(e
X3eX2eX1)m,m′

× tr[eZijcicjcm′cn′cp′cq] (5.22)
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where eZijcicj = eX4eX3eX2eX1 . Now the task is to calculate traces of the form:

Tmnpq = tr[eZijcicjcmcncpcq]

= tr[eZijcicj(δmn +
cmcn − cncm

2
)(δpq +

cpcq − cqcp
2

)]

= tr[eZijcicj(
1

4
MN +

1

2
Mδpq +

1

2
N δnm + δmnδpq)], (5.23)

where M = Mijcicj. M = |m〉〈n| − |n〉〈m|, N = |p〉〈q| − |q〉〈p|. Now that M and N

are anti-symmetric matrices and we can write M = ∂
∂α
eαM |α=0, and use the trace

formula (5.11) to calculate T . First we find:

tr(eZijcicj
d

dα
eαMijcicj |α=0) =

∂

∂α
tr(eZijcicjeαMijcicj)|α=0

=
1

2

√
det(1 + e4Ze4αM)tr[

4e4ZM

1 + e4Ze4αM
] |α=0

= 2
√

det(1 + e4Z){(1 + e−4Z)−1
nm − (1 + e−4Z)−1

mn} (5.24)

Next, we define B = 1
1+e−4Z and Det = det(1 + e4Z). Then,

∂

∂β

∂

∂α
tr(eZeαMeβN)

=
√

Det{4tr(BM)tr(BN)

− 8tr(BNBM) + 8tr(BMN)} (5.25)

The last step we take α = 0, and β = 0. Plug the result from the above two equations

into Eq (5.23), we find:

Tmnpq =
√

Det{(Bnm −Bmn + δmn)(Bqp −Bpq + δpq)

+2Bqm(δnp −Bnp) + 2Bpn(δmq −Bmq)

−2Bpm(δnq −Bnq)− 2Bqn(δmp −Bmp)} (5.26)
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Noticing that since Z is anti-symmetric, Bnm +Bmn = δmn, we get:

Tmnpq = 4
√

Det(BnmBqp +BqmBpn −BpmBqn) (5.27)

And

Sxy = Σqmnp(e
X1)p,p′(e

X2eX1)n,n′(e
X3eX2eX1)m,m′Tm′n′p′q (5.28)

So there are in total 3 terms. We first focus on the first term:

S1 = 4Σqmnp

√
DetBnmBqp(e

X1)p,p′(e
X2eX1)n,n′(e

X3eX2eX1)m,m′ (5.29)

We Plug it back into Eq (5.22), and define K = e−4ihnτe4ihse4ihmte4i(τ−t−s)h , Nβ =

1
1+e4βh

, then eZ = K
Nβ

1−Nβ
, B = (1 +

1−Nβ
Nβ

K−1)−1 . And:

S1 = Σqmnp(e
X3eX2eX1BT (eX2eX1)T )mn(eX1BT )pq, (5.30)

where T is the matrix transpose. In order to calculate the low temperature limit(β →

∞), we have to calculate eX1B(eX1)T , notice that for anti-symmetric matrix h, e−h =

(eh)T , so

e−4βhBT (e−4βh)T =
Nβ

1−Nβ

1−Nβ
Nβ

K−1

1 +
1−Nβ
Nβ

K−1

1−Nβ

Nβ

= K−1 1

Nβ + (1−Nβ)K−1
(1−Nβ)

=
1

1−Nβ +NβK
(1−Nβ)

and

e−4βhBT =
Nβ

1−Nβ

1

1 +K
Nβ

1−Nβ

= Nβ
1

1−Nβ +KNβ
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Next we define F = 1−Nβ +KNβ, G = 1−Nβ +NβK:

Λ = eihseihxtei(τ−t−s)hG−1(1−Nβ)e−i(τ−t−s)he−ihxt

Γ = ei(τ−t−s)hNβF
−1. (5.31)

Using the above results and summing over m,n, p, q , we have:

S1 =
√

det(F )(Λy,x + Λy+N,x+N − iΛy+N,x + iΛy,x+N)

× (Γy,x + Γy+N,x+N + iΓy+N,x − iΓy,x+N) (5.32)

In the similar, the second term is written as:

S2 = Σqmnp(e
X2eX1BT e−X1)pn(eX3eX2eX1BT )mq

= (Λ(2)
y,y + Λ

(2)
y+N,y+N + iΛ

(2)
y+N,y − iΛ

(2)
y,y+N)

× (Γ(2)
x,x + Γ

(2)
x+N,x+N + iΓ

(2)
x+N,x − iΓ

(2)
x,x+N) (5.33)

where Λ(2) = e−ihsΛeihxt and Γ(2) = eihseihxtΓ. For the third term S3,

S3 = Σqmnp(e
X2eX1BT )nq(e

X3eX2eX1BT e−X1)mp

= (Λ(3)
x,y − Λ

(3)
x+N,y+N − iΛ

(3)
x+N,y − iΛ

(3)
x,y+N)

× (Γ(3)
x,y − Γ

(3)
y+N,x+N + iΓ

(3)
x+N,y + iΓ

(3)
x,y+N) (5.34)

where Λ(3) = Λeihxt and Γ(3) = eihxtΓ.

Finally, we remark that S2 does not contribute when the core-hole potential Uc

is 0. In that case, K = I, and S2 does only depends on t and τ , so it gives a elastic

scattering. Also, S3 would be 0 when there is no pairing, in that case the matrices

Λ(3) and Γ(3) have special form that Λ(3)(x, y) = Λ(3)(x+N, y+N), Λ(3)(x, y+N) =

−Λ(3)(x+N, y), so that S3 vanishes.
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annini, M Fujita, J Pelliciari, YB Huang, et al. Itinerant effects and en-
hanced magnetic interactions in bi-based multilayer cuprates. Physical Review
B, 90(22):220506, 2014.

[21] B. Derrida, MR Evans, V. Hakim, and V. Pasquier. Exact solution of a 1d
asymmetric exclusion model using a matrix formulation. Journal of Physics A:
Mathematical and General, 26(7):1493, 1999.

108



[22] Gil Drachuck, Elia Razzoli, Rinat Ofer, Galina Bazalitsky, RS Dhaka, Amit
Kanigel, Ming Shi, and Amit Keren. Linking dynamic and thermodynamic prop-
erties of cuprates: An angle-resolved photoemission study of (ca x la 1- x)(ba
1.75- x la 0.25+ x) cu 3 o y (x= 0.1 and 0.4). Physical Review B, 89(12):121119,
2014.

[23] David Shai Ellis, Yao-Bo Huang, Paul Olalde-Velasco, Marcus Dantz, Jonathan
Pelliciari, Gil Drachuck, Rinat Ofer, Galina Bazalitsky, Jorge Berger, Thorsten
Schmitt, et al. Correlation of the superconducting critical temperature with spin
and orbital excitations in (ca x la 1- x)(ba 1.75- x la 0.25+ x) cu 3 o y as measured
by resonant inelastic x-ray scattering. Physical Review B, 92(10):104507, 2015.

[24] C.G. Esseen. Fourier analysis of distribution functions. a mathematical study of
the laplace-gaussian law. Acta Mathematica, 77(1):1–125, 1945.

[25] C. Flindt, C. Fricke, F. Hohls, T. Novotnỳ, K. Netočnỳ, T. Brandes, and
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