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Abstract 
 

 Antibiotic resistant infections greatly increase infectious disease mortality by rendering 

common drug therapies ineffective. Beta-lactamases mediate resistance to beta-lactam antibiotics, 

the most commonly prescribed class of antibiotics. Elucidating the mechanisms responsible for 

drug resistance in beta-lactamases aids in developing future antibiotics. Residues allosteric to the 

binding site are functionally important in conferring drug resistance and, therefore, predicting 

change in activity from mutations requires the study of all residues instead of just those in the 

binding-pocket.  

To identify functionally important residues beyond the drug-binding site, we developed a 

pairwise measure of residue association in a beta-lactamase, CTX-M9, using molecular dynamics 

simulations. This method ranked residues across the beta-lactamase based on the association of 

their movement with drug binding-pocket movement. Experimental testing of mutations revealed 

that high ranking allosteric residues were functionally important to CTX-M9. 

Large-scale molecular dynamics simulations provide a computationally intensive but 

powerful approach to predict mutations that specifically enhance activity. Using these, we 

identified mutations that increase CTX-M9’s resistance by simulating point mutations and ranking 

the mutation based on a measure of drug hydrolysis favorability in the binding site. A subset of 

the top-ranking mutations demonstrated increased drug resistance and kinetic activity. Subsequent 

machine learning analysis revealed that these allosteric mutations resulted in specific changes to 

side chains in the binding-pocket. 

Simulations also enable detailed physical chemistry and statistical learning-based 

approaches to probe the conformational changes controlling beta-lactamase catalysis and drug 

resistance. Through these simulations, we characterized a conformational transition responsible 

for controlling catalytic activity in another beta-lactamase, KPC-2, and identified residues that 

were responsible for this transition. Mutations to these residues alter this simulated transition in a 

manner that highly correlates with experimentally measured kcat kinetic values, thus providing 

another tool to prospectively study the effect of allosteric mutations on drug resistance. 
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Chapter 1. Introduction: Antibiotic Resistance and Beta-lactamases 

1.1 Foreword: Preparing for Future Bacterial Resistance 

A majority of important advances in medicine from transplantation to cancer treatments 

rely on the ability to control infection [1–3]. Increasing resistance to current antibiotic therapies 

challenges the future utility of these advances [4–6]. Smarter drug design that specifically 

considers possible subsequent resistance can potentially avoid a future with incurable infections. 

In this dissertation, I identify and predict how future resistance may arise in a chief mediator of 

antibiotic resistance, beta-lactamases, and offer methods that could complement future drug 

design. This introduction is an overview of beta-lactamase-meditated resistance and a review of 

the challenges and opportunities in understanding causes of resistance in these enzymes. 

1.2 Beta-lactam Antibiotics: A Foundation of Medicine 

The discovery of penicillin in 1928 by Alexander Fleming and the first mass production of 

the antibiotic in 1943 marked a new era for medicine [7–9]. For the first time, clinicians had a safe 

and consistent means to treat bacterial infections, which served as the foundation for numerous 

future medical discoveries. Penicillin was the first of a class known as beta-lactam antibiotics. The 

name for “beta-lactam” antibiotics is a result of a core beta-lactam ring in their chemical structure 

(Figure 1.1). The beta-lactam ring is critical to the function of the drug [10]. Since penicillin, over 

31 beta-lactam antibiotics have been developed with coverage of both gram positive and gram 

negative infections [11–13]. These drugs are the primary treatment in a wide range of infections 

such as meningitis, pneumonia, and strep throat [13,14]. As a result, beta-lactams are the most 



 10 

frequently prescribed antibiotics and rank as one of the most commonly prescribed of all drugs 

[15]. In 2016, over 54 million prescriptions for amoxicillin, a penicillin, were written in the United 

States making this antibiotic alone the 12th most prescribed drug [16]. Therefore, the total number 

of prescriptions for this entire group is likely much higher.  

The effectiveness of beta-lactam antibiotics is due to their core beta-lactam ring. 

Specifically, the beta-lactam is sterically similar to D-ala-D-ala peptidoglycan building blocks and 

acylates the active site of penicillin binding proteins (PBPs) [17,18]. PBPs aid bacteria in several 

functions related to cell wall synthesis and maintenance [19]. Once acylated by a beta-lactam these 

enzymes deacylate very slowly (8 × 10−6 s-1 for PBP2x) [20] and are therefore functionally 

inhibited [20]. PBP inhibition halts the synthesis and maintenance of peptidoglycan while 

breakdown continues. This results in the bacteria succumbing to osmotic stress and lysis, which 

allows the immune system to clear the infection [17,18].  

1.3 Beta-lactamases Resist Beta-lactam Antibiotics 

The arrival of beta-lactam clinical resistance soon followed the widespread clinical use of 

beta-lactams. By 1949 (six years after its first widespread use), half of all Staphylococcus pyogenes 

isolates were no longer susceptible to penicillin in U.K. hospitals [21]. By the 1950s, resistance 

was common and basic penicillin was no longer effective in broad clinical use [8]. The rise in beta-

lactam resistance was a result of extreme selective pressure exerted by the use of these agents. 

Since then, resistance has continued to rise. Currently, deaths from antibiotic resistance exceed 

23,000 in the United States with an overall incidence of over 2 million cases annually [22]. 70,000 

global deaths occur annually, and it is predicted that by 2050 this number could increase to 10 

million exceeding the 8.2 million that currently die annually from cancer [23].  
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There are several mechanisms of bacterial resistance to antibiotics. The focus of this work 

is on beta-lactamases which confer resistance by hydrolyzing beta-lactam antibiotics and render 

them ineffective. The success of beta-lactamases is a result of their simplicity and low evolutionary 

fitness penalty. First, resistance can be conferred with a single domain protein and thus, a single 

gene on a plasmid [24]. This allows for these enzymes to spread rapidly between bacterial species 

through the horizontal transfer of genetic material. Furthermore, beta-lactamases have a small 

fitness penalty as compared to other forms of beta-lactam resistance which involve: (i) modifying 

or replacing essential bacterial proteins, (ii) requiring ATP or (iii) modifying membrane 

permeability [25–27]. As a result, resistance through beta-lactamases can be acquired rapidly, but 

is rarely lost in the absence of antibiotics [28,29].  

Since their arrival, the number of identified clinical beta-lactamases has quickly grown. In 

2010, there were over 860 types of beta-lactamases [30]. Functionally, each beta-lactamase carries 

resistance to a subset of all beta-lactam antibiotics, known as its antibiotic spectrum. Currently, all 

beta-lactams are susceptible to at least one beta-lactamase, making no one drug effective against 

all resistance, which increases the urgency of understanding these enzymes [31].  

1.4 Overview of Beta-lactam Groups Used in this Work 

To combat increasing resistance to beta-lactamases, new types of beta-lactam antibiotics 

were developed resulting in several groups of beta-lactams. Currently, there are 6 classes of beta-

lactams [32]. Each group is targeted to different types of bacteria and is susceptible to different 

families of beta-lactamases. Typically, these groups differ by the type of ring that is fused to the 

beta-lactam and by modifications of chemical R groups to those rings (Figure 1.1).  

The three types of beta-lactams studied in this work are penicillins, cephalosporins, and 

carbapenems. Penicillins were the first generation of beta-lactam antibiotics (Figure 1.1A). 
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Generally, there is a high level of resistance to these beta-lactam antibiotics [12]. The second group 

cephalosporins, were first developed in the 1950’s and 1960’s (Figure 1.1B). This subgroup of 

antibiotics is further classified into generations based on their effectiveness against gram positive 

versus gram-negative bacteria. Later generations of cephalosporins, such as fourth generation, tend 

to be very effective against most beta-lactamases [13,33]. The third group carbapenems represent 

“last-resort” beta-lactams (Figure 1.1C). These antibiotics are used in hospitals for infections that 

carry resistance to all other beta-lactams antibiotics including penicillins and cephalosporins [11].  
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Figure 1.1 Chemical structures of common beta-lactam antibiotics  

Example of beta-lactam antibiotics belonging to the classes penicillin (CID: 54607813, 6249 

) (A), cephalosporin (CID: 5742673, 65536) (B), and carbapenem (CID: 104838, 441130) (C). 

The core beta-lactam is shown in red. Most beta-lactams within each class have matching fused 

rings. Members are differentiated by the type of R group added to these fused rings [34].  

  

Imipenem

Meropenem

Cefotaxime

Cepahlosporin C

Penicillin

Ampicillin

A. B. C.

Penicillin Cephalosporin Carbapenem
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1.5 Class A: Serine-mediated Beta-lactamases 

Beta-lactamases are classified by their structural similarity and mechanism. These enzymes 

exist in four classes named alphabetically from A to D. Three of the classes, A, C, and D, are serine 

mediated and thought to have descended from PBP’s [35]. The remainder of this dissertation 

focuses on class A beta-lactamases. 

Class A beta-lactamases undergo a three-step reaction in their breakdown of beta-lactams. 

Schematically, the process would begin with the binding of the enzyme and substrate, which 

involves the entrance and positioning of the drug in the binding-pocket in conformations favorable 

to the acylation of the drug by the enzyme at the catalytic serine. This acylation then produces an 

acyl-enzyme. Finally, the hydrolysis of the serine-drug bond causes release of the hydrolyzed drug 

and return of the enzyme to the apo form (Figure 1.2) [27,36,37].  

The deacylation of the acyl-enzyme (E-S) defines the resistance profile of a majority of 

Class A beta-lactamases and is an important process to understand. Most beta-lactamases form an 

acyl-enzyme with any beta-lactam drug. Therefore, beta-lactamase spectrum is marked by the 

drugs that the enzyme can deacylate at a rate that confers resistance. The process of deacylation 

occurs by the attack of water on the carbonyl moiety of the beta-lactam ring. This results in a high-

energy tetrahedral deacylation intermediate, which leads to the hydrolysis of the bond between the 

drug and serine resulting in the release of the hydrolyzed beta-lactam and return of the enzyme to 

the apo form [27,37,38] (Figure 1.2).  
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Figure 1.2 Reaction for class A beta-lactamases  

Class A Beta-lactamases progress through a three-state reaction. Initially, the beta-lactam drug 

enters in the binding-pocket (A). This is followed by an attack by the catalytic serine resulting in 

the acyl-enzyme (B). Most beta-lactam and class A beta-lactamase combinations arrive at this 

state. The energetic favorability of the short-lived deacylation intermediate (C) determines 

antibiotic spectrum. This activation energy is lowered by the formation of an oxyanion hole (red) 

and results in a hydrolyzed product and release (D). Residues are labeled by position with 

conserved residues shown with their amino acid. Ser70 is broken into two sections of the chemical 

diagram for clarity on the reaction.  

  

Enzyme + Drug Acylenzyme
Deacylation 

Intermediate
Enzyme + Product
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Because of the high energy of the deacylation transition state, the acyl-enzyme intermediate 

requires specific interactions to support deacylation. One critical interaction is the formation of the 

oxyanion hole. This hole is formed when backbone amides in the binding-pocket (residue 70 and 

237) hydrogen bond with the beta-lactam carbonyl oxygen moiety. The result is a structure that 

supports an increasingly negative charge on the carbonyl oxygen and thus permits a nucleophilic 

attack on the beta-lactam carbonyl carbon [38–41]. In the tetrahedral intermediate, the oxyanion 

is subsequently supported by these bonds making this higher energy transition more favorable 

(Figure 1.2).  

Along with the residues that support the oxyanion hole, it is theorized that additional side 

chains also coordinate the deacylation step (Figure 1.3). Specifically, Glu166 serves to coordinate 

with the hydrolytic water. This is supported by structural and kinetic studies that indicate that the 

Glu166Ala mutation prevents deacylation [42–44]. Additionally, it is thought that Ser130 plays a 

critical role in drug positioning by interacting with the carboxyl group on the adjoining ring to the 

beta-lactam ring or the amide on the beta-lactam ring [44,45]. These interactions permit 

deacylation and therefore determine the spectrum of the beta-lactamase [27,35,44,46]. This results 

in the energetic favorability of these conformations defining drug spectrum. 

Within the class A family, enzymes can be sub-classified by drug spectrum. Members of 

this class have been organized into groups 2be, 2br, 2ber, and 2f through an antibiotic-spectrum-

based classification scheme [30,47]. In general, the “2b” groups confer resistance to penicillins 

and some early generations of cephalosporins. Group “2be” consists of extended spectrum beta-

lactamases (ESBL) [30,47]. ESBL’s arose in the 1980s. They confer resistance to all oral beta-

lactams resulting in inpatient treatment with intravenous antibiotics and poorer outcomes. More 
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recently discovered is group “2f”, which consists of serine-based enzymes and confer resistance 

to penicillins, cephalosporins, and carbapenems [30,47]. Members of this class of beta-lactamases 

are commonly detected in gram-negative bacteria such as Klebsiella pneumoniae, Escherichia coli, 

and Pseudomonas aeruginosa, which makes these infections extremely difficult to treat [48].  
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Figure 1.3 Binding-pocket residues that support deacylation  

Rendering of binding-pocket residues that support deacylation. Ser70 and residue 237 hydrogen 

bond to carbonyl oxygen on the drug and support oxyanion hole formation. Glu166 coordinates 

with the deacylating water. Ser130 interacts with the amide on the ring adjacent to the beta-lactam 

ring (open in this state) and the carbonyl or carboxyl group on the drug. This rendering is of KPC-

2, a member of the KPC family (Section 1.6), with meropenem; some atoms on meropenem are 

hidden for clarity. Conserved residues are noted by their amino acids while non-conserved residues 

show the KPC-2 amino acid in parentheses.  
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1.6 CTX-M and KPC-2 Beta-lactamase Families 

CTX-M and KPC are two of the most concerning Class A beta-lactamase families. As a 

result, we chose to focus on these specific families. Currently, the CTX-M family is the most 

prevalent ESBL in both healthcare and nosocomial settings worldwide; making its presence nearly 

ubiquitous [49,50]. Furthermore, they have been found in numerous members of the family 

Enterobacteriaceae and confer resistance to several types of clinical infections. The only beta-

lactams effective against these enzymes are carbapenems or beta-lactam inhibitor combinations 

[51]. Furthermore, these treatments are restricted by their limited pharmacokinetic effectiveness 

at certain infection sites and their susceptibility to mediators of resistance often carried along with 

CTX-M [51]. This makes treatment of infections with these enzymes extremely challenging. 

[49,52]. 

   Until the early 1990’s, ESBLs were generally regarded as the most concerning threat to 

healthcare. This has changed with the widespread arrival of carbapenem beta-lactamases and, for 

the United States, the KPC carbapenemases. KPC (specifically KPC-1) was first reported in a 

health-care setting in 1996 in a patient in North Carolina who had demonstrated resistance to all 

beta-lactams [53]. By the early 2000’s, it had spread beyond isolated cases to outbreaks in New 

York City hospitals [54]. According to Centers for Disease Control and Prevention Data, this 

family has spread to all 50 states and is regularly observed in health care settings [55]. As a result, 

the KPC family poses a serious healthcare challenge in hospitals. Often bloodstream infections 

carrying KPC leave clinicians with very few treatment choices resulting in mortality rates as high 

as 50% [56,57]. 
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1.7 Approaches to Understanding Beta-Lactamase Resistance 

Antibiotics specifically designed to avoid beta-lactamase resistance could prolong drug 

efficacy and potentially evade future resistance. However, predicting mutations that change 

function and subsequently resistance is challenging in beta-lactamases [58]. Often, mutations 

beyond the binding-pocket can alter the resistance and kinetics of beta-lactamases [59–63]. As a 

result, allosteric mutations need to be considered when predicting mutations that alter resistance 

(Figure 1.4). Typical approaches, especially structural, informatics, and directed evolution, have 

some success but have faced challenges in predicting mutations that might affect function. 

Approaches that model physical changes from allosteric mutations to the binding-pocket could 

augment existing methods. 

 A common approach to understand allosteric mutations in enzymes involves experimental 

structural characterization of mutants. This method is successful with binding-pocket mutations 

and has characterized the effect of some beta-lactamase mutations [64–66] but can be difficult to 

apply to beta-lactamases due to subtle changes from allosteric mutations. Typically, through these 

analyses, such as crystallography, changes from allosteric mutations to the pocket are visualized 

by comparing wild-type and mutant structures. This allows for development of a potential 

mechanism to explain the effect of mutations. This mechanism can further serve as a model to 

predict other important mutations [67–69]. However, these methods work best with mutations that 

grossly affect structure or demonstrate a clear pattern in the location of mutations. In beta-

lactamases, the mutations that affect function come from small changes that do not grossly alter 

the structure [24,70] and are diffusely located throughout the enzyme (Figure 1.4). This makes 

such gross structural approaches in beta-lactamase mutation prediction less useful for 

understanding subtler allosteric mutations.  
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 Informatics based analytical approaches can often predict these subtle mutations, but the 

evolutionary history of beta-lactamases complicates such approaches. Most beta-lactamase 

families entered healthcare from pre-existing environmental enzymes that were suited to 

breakdown clinical antibiotics. Unlike other enzymes which co-evolved with their current 

substrates [71–73], clinical beta-lactamases gradually evolved to hydrolyze antibiotics in their 

environmental niche and then were recently and suddenly selected to hydrolyze a novel clinical 

beta-lactam [74,75]. This means that the development of a family’s current beta-lactam class 

spectrum may be coincidental since there was little co-evolution with synthetic clinical beta-

lactams [76–78]. Furthermore, it means that beta-lactam families demonstrate close intrafamily 

similarity but large interfamily differences in spectrum and sequence. Specifically between 

families of class A beta-lactamases, there are often sequence dissimilarities close to 50% [78]. For 

instance, a genetic study of CTX-M suggests that they transferred into healthcare pathogens from 

the gastrointestinal saprophyte Kluyvera and are phylogenetically different (diverging well over 

200-300 million years ago) from previously identified beta-lactamases including ESBLs such as 

TEM-1 [76,79] .  

 The resulting sequence pattern and diverse evolutionary history of beta-lactamases 

complicates informatics-based methods. These approaches leverage the inherent patterns in the 

evolution of an enzyme by analyzing changes across sequences at residues sites based on residue-

to-residue contacts, enzyme function, or structural mapping [80–82]. Beta-lactamase families 

demonstrate wide differences in many informatics based measures and characterization of these 

features in past studies found that patterns related to evolutionary history more than spectrum 

[24,70]. While challenging, these analyses have suggested mutations that might affect spectrum 

and function. These findings are typically mutations near the more conserved binding-pocket, an 
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area where variability might be more closely linked to spectrum. The evolutionary diversity makes 

identifying allosteric mutations that contribute to changes in spectrum as compared to other 

evolutionary noise much more challenging.  

 Due to the difficulty of developing sequence based models to predict resistance, some 

researchers have employed directed evolution-based approaches to identify adaptive allosteric 

mutations that alter spectrum but these studies require extensive prior knowledge of the 

evolutionary landscape and mutagenic potential of an enzyme. This form of protein engineering 

involves an iterative process of random mutagenesis followed by an increasingly stringent 

selection step. For beta-lactamases, this selection step would involve selecting mutants which 

increase resistance to an antibiotic. This approach is a Darwinian incremental random exploration 

of mutations and has the benefit of functionally validating any predicted mutation. Past work 

demonstrates successful directed evolutionary approaches applied to class A and class D (another 

serine mediated class) beta-lactamases that resulted in an altered antibiotic spectrum, but this 

method does face challenges in predicting and characterizing the effect of allosteric mutations on 

function [83,84]. Often directed evolution targets particular regions in the enzyme being studied. 

This makes a general purpose “off the shelf” method using directed evolution for mutation 

prediction more difficult [83,84]. Furthermore, class A beta-lactamase mutations demonstrate sign 

epistasis where, alone, a mutation lowers resistance but increases resistance when paired with 

another. As a result, this causes uneven sampling of the mutational space in incremental directed 

evolution as mutational sets which do not demonstrate sign epistasis have a much higher 

probability of forming in later iterations than those that do demonstrate it [85].  

 Modeling the direct effect of a mutation on the chemistry of the binding-pocket can 

augment existing approaches to understand functions and mechanisms that support beta-lactamase 
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function. First, studies have noted that beta-lactamases share overall structural and functional 

similarities of the binding-pocket environment even if they globally differ in sequence [70]. 

Therefore, studying differences in the physical chemistry of the bonding pockets between beta-

lactamases with very different sequences and spectrum could identify interactions responsible for 

spectrum. Second, such a method inherently provides detailed information as to how a mutation 

affects the pocket. If sequence-based and evolutionary approaches identify a mutation that might 

affect spectrum, follow up biochemical studies would be needed to understand how that mutation 

alters chemical function. With a modeling approach, the same approach that discovered the 

mutation would include this information. One specific modeling approach to accomplish this 

involves the use of molecular dynamics simulations.  
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Figure 1.4 Identified allosteric mutations in the CTX family that affect function  

Illustration of allosteric mutations that alter enzyme activity mapped onto CTX-M9’s crystal 

structure (PDB 2P74), a CTX-M enzyme  [37,59–63]. The binding-pocket is identified by the drug 

in sticks (red). Allosteric mutations demonstrate no clear structurally related pattern to aid 

prediction.  



 25 

1.8 Molecular Dynamics Approaches to Beta-Lactamases 

Molecular dynamics offers a means to relate changes in conformations in the binding-

pocket to changes in spectrum and function. This approach models aspects of binding-pocket 

chemistry allowing for the characterization of interactions in the binding-pocket across beta-

lactamase families and the screening of mutations that potentially affect spectrum and function. 

Molecular dynamics offer insight into the motion of atoms and therefore, molecules and proteins, 

as a function of time. They permit the study of the movement of enzymes beyond often non-

biologically relevant conformations provided by crystal structures [86]. Molecular dynamic 

simulations model the forces exerted across atoms. These forces are obtained from defined force 

field equations deduced from atom type and molecular structure. Bonded interactions are modeled 

using spring potentials tuned for length and bond strength. Coulomb’s law is often used for non-

contact interactions [87]. These forces are then converted into acceleration and velocity using 

Newton’s laws, which ultimately allows for the structure-based animation of protein 

conformations [87]. As a result, molecular dynamics simulations provide a unique spatial and 

temporal resolution that allows for the study of interactions that were previously impossible to 

observe [87]. These simulations have been very useful in studying enzymes. Specific to serine-

based enzymes, past works have used these simulations to understand aspects of enzyme  binding-

pockets and the effect of allosteric mutations [88–91].  

To date, this approach has been underutilized in studying the beta-lactam spectrum of beta-

lactamases. Past work applying molecular dynamics simulations to beta-lactamases has focused 

on docking and binding, which often occur irrespective of antibiotic spectrum in these enzymes. 

These studies have attempted to describe conformational changes in the binding-pocket in relation 

to the ligand [64,89]. The work that has been performed on identifying potential allosteric effects 
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identified cryptic allosteric binding sites that could be potential drug targets. This demonstrates 

that molecular dynamics can identify allosteric effects in these enzymes [89,92,93]. Here, I aim to 

use molecular dynamics to study the binding-pocket conformations related to the acyl-enzyme 

state. These simulations provide a conduit to study the drug-enzyme interaction in the binding-

pocket prior to the critical deacylation step. Additionally, they offer a method to measure potential 

effects of allosteric mutations on this chemistry. I specifically am interested in findings that are 

general enough to be applied across families.  

1.9 Goals of this Dissertation 

Class A beta-lactamases have large sequence diversity, but chemical and structural 

similarity in the binding-pocket. This has made traditional mutational approaches to understand 

the beta-lactam spectrum of these enzymes very challenging. The goals of this dissertation are to 

characterize residues and interactions that alter beta-lactam spectrum in two clinically important 

beta-lactamases and, in the process, develop approaches which can be further applied to other beta-

lactamase systems. These approaches leverage the chemical similarity of the binding-pocket 

between beta-lactamases with different spectrums and dissimilar sequences to identify mutations 

and interactions that drive differences in function and drug spectrum. I present three works that 

apply molecular dynamics-based predictive study of mutations that potentially affect function, 

which are then experimentally verified. One challenge of molecular dynamic simulations is that 

identifying these interactions often involves finding patterns in noisy high dimensional data [94]. 

Therefore, much of this work offers new methods to find relationships in these simulations, which 

can translate to other beta-lactamase and potentially enzyme systems.  

I begin by identifying residues that are essential for the function of CTX-M9, a member of 

the CTX-M family (Chapter 2). Next, I identify residues that modulate activity based on predicted 
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changes to binding-pocket interactions in CTX-M9 (Chapter 3) and translate these chemical 

findings to a different beta-lactamase family, KPC, with KPC-2 (Chapter 4). Finally, in the 

discussion and future directions, I close with the proposal of new techniques that would refine 

these approaches in the field.  
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Chapter 2. Excess Positional Mutual Information Predicts both Local 

and Allosteric Mutations Affecting Beta-lactamase Drug Resistance 

2.1 Chapter Foreword 

Enzymes function as catalysts by assuming active site conformations that reduce the free 

energy barrier for a chemical reaction either by enforcing specific substrate geometry or by 

creating a specialized local environment [95,96]. Allostery affects enzyme activity through the 

communication of positional fluctuations at a site distant from the active site to alter the 

conformations of the active site [97–99]. In this chapter, we have predicted and verified, using 

molecular dynamics simulations, allosteric residues that alter CTX-M9’s function. Often allosteric 

effects do not occur through a simple series of interactions from that site to the pocket but more 

through a diffuse set of interactions [98]. Therefore, we employ a mutual information based 

method which focuses on the existence and strength of association regardless of how that 

communication is conveyed. The result helps identify allosteric residues on CTX-M9 and serves 

as a potential tool for the study of other beta-lactamases. Our work was published in Bioinformatics 

in July 2016 with me as first-author [62]. The text and figures have been adapted for this chapter 

with permission by and in accordance to the author rights stated by Oxford Journals. It is for non-

commercial use.  

2.2 Introduction  

Although the key catalytic residues in CTX-M enzymes are well known, we wish to 

understand the basis for modulation of activity and ligand specificity in these enzymes. Even 

though comprehensive mutagenesis of CTX-M has not yet been experimentally feasible, reports 

of individual mutations show that single point mutations can alter drug spectrum and catalytic 
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activity [100–104]. Such point mutants have been identified in clinical isolates of bacteria 

[60,61,105,106] as well as laboratory mutagenesis experiments [100–104].  

A comprehensive experimental understanding of how mutations affect beta-lactamase  

drug resistance has been hindered by the combinatorial magnitude of the problem. Even for point 

mutations on CTX-M enzymes alone, rigorous quantitation of how mutants affect activity against 

a large panel of drugs is extremely resource-intensive, entailing the screening of ~5000 mutants 

(260 residues x 19 amino acid changes) against multiple antibiotics. Therefore, we wish to identify 

residues that may contribute to activity and specificity but are not absolutely essential to function. 

Prediction of such residues can guide a more targeted set of mutagenesis experiments. In designing 

such an approach, we wish to consider all residues in the protein, not simply those in direct contact 

with the drug or previously identified via serendipitous mutations.  

We have chosen to predict residues modulating antibiotic resistance in CTX-M enzymes 

based on analysis of molecular dynamics (MD) simulations. We hypothesize that the 

conformational dynamics of the enzyme and its substrate will yield insight into catalytic activity 

even though we do not consider catalysis explicitly in classical molecular dynamics simulations, 

unlike reactive methods [107–109]. Classical MD simulations have been previously used to predict 

or explain mutations in a number of enzyme systems [110–112].  

To predict individual residues to mutate, we seek to identify the influence of individual 

atoms on catalytic activity rather than overall conformational substates of the enzyme. Molecular 

dynamics simulations provide a means to quantify this “influence” by measuring positional 

relatedness between protein atoms and a bound drug, based on the hypothesis that the conformation 

and orientation of the drug and its environment are related to catalytic activity. We sample 
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conformations from molecular dynamics simulations, which estimate a Boltzmann-weighted 

ensemble.  

Positional mutual information provides a robust nonlinear metric to quantify relatedness of 

positional displacement in molecular dynamics simulations [113,114]. Normalized covariance 

matrices have also been used for such measurements [115,116], but such approaches are restricted 

by a linear correlation approximation [117,118], which is less desirable for detecting subtle yet 

important motions. Mutual information quantifies how much knowledge of the probability 

distribution of positional displacement for one atom i affects the distribution for another atom j 

and thus provides a much more general means of detecting relatedness. 

Although positional mutual information has been used to analyze large-scale movements 

in a manner analogous to principal components analysis [118,119], here we desire a more focused 

approach. To predict residues important to catalytic activity, we score by mutual information to 

drug conformation. This is corrected for bulk protein movement, yielding excess mutual 

information 

𝐼(𝑖, 𝑑𝑟𝑢𝑔) − 𝐼(𝑖, 𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑), (1) 

where I(i,j) denotes the mutual information between residues i and j [114]. Such a metric 

encapsulates the precise question “how related is movement of atom i to the drug conformation”. 

This metric is designed to identify functionally important residues that meet this criterion; it is of 

course not designed to detect residues that might not be motionally correlated with the drug but 

still important to catalysis. 

Simulations and analysis were performed on the CTX-M9 beta-lactamase  in complex with 

one of two antibiotics: cefotaxime and meropenem (Figure 2.1). CTX-M enzymes hydrolyze 

antibiotics by way of an acyl-enzyme intermediate where the antibiotic is covalently bound to the 
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enzyme [120]. CTX-M9 is able to efficiently hydrolyze cefotaxime, whereas it only forms the acyl 

intermediate for meropenem without completing hydrolysis [120]. The conformational dynamics 

of this intermediate may thus yield insight into the residues important  
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Figure 2.1 Structures of CTX-M9:drug complexes.  

The overlaid structures of CTX-M9 acylated to meropenem (brown) and cefotaxime (violet) are 

rendered in panel (a) with a close-up of the drug-binding-pocket in panel (b). Protein is rendered 

in cartoon form and drug in sticks. These structures were used for molecular dynamics simulations 

that served as the basis for positional mutual information calculations. 
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for hydrolytic specificity in these enzymes. The positional mutual information matrices for both 

CTX-M9:meropenem and CTX-M9:cefotaxime complexes yield important insight regarding the 

organization of these enzymes. We then score residues that may affect catalytic activity of CTX-

M9 using excess mutual information. These predictions yield a set of residues that have previously 

been identified as affecting catalytic activity and a set of novel, previously untested predictions. 

To validate our predictions, we tested the top-scoring residues for CTX-M9:meropenem and CTX-

M9:cefotaxime via alanine mutagenesis, a common means to assess the effect of ablating a residue 

side chain. Six of these eight mutants had a >2-fold decrease in cefotaxime resistance while only 

one of the four lowest scoring residues for CTX-M9:meropenem and CTX-M9:cefotaxime 

similarly decreased resistance. 

2.3 Methods 

2.3.1 Molecular dynamics simulations  

We obtained the apo crystal structure of CTX-M9 from the Protein Data Bank (PDB Code 

2P74) [37]. The acylated meropenem structure was generated by least-squares RMSD fitting of 

the acyl-meropenem intermediate of SHV-1 (PDB Code 2ZD8) [121] with missing atoms added 

via rigid-body fitting. The acylated CTX-M9:cefotaxime structure was generated via least squares 

rigid-body alignment of all common atoms on the beta lactam ring of meropenem and cefotaxime 

on a Thr71Ser CTX-M9 mutant. Meropenem and cefotaxime were parameterized using the Amber 

Antechamber program with AM1-BCC partial charges [122]. All simulations were run using 

Gromacs 4.5 with the AMBER99SB-ILDN force field and TIP3P explicit water [123–125]  in a 

periodic octahedral box with a minimum periodic image separation of 2 nm. The solvent consisted 

of approximately 24,000 water molecules and 150 mM NaCl. Simulations were run with a 2 fs 
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time step and hydrogen bonds were constrained using LINCS [126]. The temperature was 

maintained at 37 C using a velocity-rescaling thermostat [127] and the pressure was maintained at 

1 bar with a coupling constant of 10 ps. Short-range nonbonded and electrostatic interactions were 

truncated at 1.2 nm, and long-range electrostatics were treated with Particle Mesh Ewald [128].  

CTX-M9:meropenem simulations were then run using the Folding@Home platform, and CTX-

M9:cefotaxime simulations were run on a Cray XC30 or on NVidia GPGPUs. 200 independent 

simulations were run of CTX-M9:meropenem complexes; 22 of these were randomly selected for 

subsampled analysis, totaling 2460 ns with a median simulation length of 106 ns. The first 46 ns 

of each simulation were discarded and the remaining aggregate 2150 ns used for analysis. Three 

longer independent simulations CTX-M9:cefotaxime complexes were analyzed; two simulations 

had lengths of 954 ns and one of 289 ns, after truncation, totaling 2197 ns. Snapshots were recorded 

every 50 ps. 

2.3.2 Mutual information analysis of CTX-M9 dynamics  

We calculated displacements for all atoms of the CTX-M9:drug complex after rigid-body 

alignment of the binding-pocket to the starting structure of each respective simulation. For this 

purpose, the binding-pocket was defined as residues having at least one non-hydrogen atom within 

1 nm of the acylated drug carbonyl in >90% of simulation snapshots and where the root-mean-

squared positional fluctuation of the backbone atoms was < 7 Å. Alignment using the binding-

pocket as a reference was chosen to minimize artifactual drug motion from alignment error; a 

comparison where alignment was performed on the whole protein and yields similar results. These 

displacements di(t) where 𝑖 is the index of each atom and t is the time from the initial alignment 

structure were then used to calculate mutual information and symmetric uncertainty in a fashion 
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similar to that which we have reported previously [114]. Mutual information 𝐼(𝑖, 𝑗) was calculated 

between two atoms 𝑖, 𝑗 using 

𝐼(𝑖, 𝑗) =  𝐻(𝑖) − 𝐻(𝑖|𝑗) = (2) 

−∑ 𝑃𝑖,𝑗(𝑥, 𝑦)𝑖,𝑗 𝑙𝑜𝑔
𝑃𝑖,𝑗(𝑥,𝑦)

𝑃𝑖(𝑥)𝑃𝑗(𝑦)
 (3) 

The probability density function 𝑃𝑖(𝑥) and 𝑃𝑗(𝑥) were estimated using 2-D histograms of 

𝑑𝑖(𝑡) and 𝑑𝑗(𝑡) with 32 bins at even intervals min(𝑑𝑖(𝑡),∀𝑡) to max(𝑑𝑖(𝑡),∀𝑡) and min(𝑑𝑗(𝑡),∀𝑡) 

to max(𝑑𝑗(𝑡),∀𝑡). 

Mutual information values were then normalized using symmetric uncertainty, which 

represents the relatedness of a pair of atoms independent of the motion undergone by each atom 

𝑆(𝑖, 𝑗) =
𝐼(𝑖,𝑗)

𝐼(𝑖,𝑖)+𝐼(𝑗,𝑗)
 (4) 

Excess mutual information was calculated for each atom using 

𝐸(𝑖) = 𝑆(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ −  𝑆(𝑖, 𝑙)̅̅ ̅̅ ̅̅ ̅ (5) 

where k are atoms in the beta-lactam ring of the drug (C6, C7, C8, N10, and O9 for cefotaxime 

and C5, C6, C7, N4, and O71 for meropenem) and l are all atoms not in the binding-pocket defined 

as above.  

2.3.3 Sequence retrieval and processing 

CTX-M family nucleotide sequences were retrieved using published accession numbers 

[49]. These sequences were then translated and individually aligned to a protein sequence of CTX-

M9 (ACR66304.1) using TBLASTN [74,129]. Resulting sequences were aligned using MUSCLE 

[130]. From this alignment, a consensus sequence was generated for all residues identical across 

the CTX-M9 family to identify conserved residues.  



 36 

2.3.4 Creation and resistance measurements of mutants 

We performed site-directed alanine mutagenesis on selected residues in CTX-M9 [131]. 

Mutants were tested for cefotaxime resistance using a Kirby-Bauer antibiotic disc assay [132]. 

Bacteria were grown to an optical density of 0.1 and then evenly spread on Mueller Hinton agar 

plates with a cefotaxime antibiotic disc placed in the center. The diameter of clearance was 

measured after 12-16 hours of incubation. Resistance was measured as fold-change in apparent 

inhibitory concentration, calculated as the squared diameter of clearance for CTX wild-type 

divided by the square of the diameter of the mutant. 

2.4 Results 

We used positional mutual information to analyze the conformational dynamics of CTX-

M9 with a bound antibiotic, either cefotaxime or meropenem, based on molecular dynamics 

simulations. Multiple microsecond-length simulations were used to obtain good statistical 

sampling of positional motions of the enzyme-drug complex. Mutual information provides a 

nonlinear analogue to measuring correlated motions. This approach identifies pairs and networks 

of atoms that are dynamically related and thus statistically interact either directly or indirectly. 

When applied to the active site of an enzyme, it thus enables a unified analysis of short-range and 

long-range interactions that may influence catalysis and in this case drug resistance. Furthermore, 

by measuring the excess mutual information of protein atoms to the drug compared to the rest of 

the protein, we identified residues that may influence the dynamics of the bound beta lactam ring 

and potentially subsequent drug hydrolysis.  
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2.4.1 Pairwise symmetric uncertainty to analyze positional relationships in CTX-M9 

To quantify pairwise relationships between all pairs of atoms in the CTX-M9:drug 

complex, we calculated a positional symmetric uncertainty matrix based on molecular dynamics 

simulation trajectories. Symmetric uncertainty was used as a normalized information-theoretic 

metric of positional relatedness (calculated by dividing mutual information by the sum of 

entropies, see Methods for details). For cefotaxime, this yields a 3977x3977 matrix. Because the 

size of this matrix is N2 in the number of atoms, we selected the top 0.25% of interactions (5% 

squared) for analysis or the top 19,771 pairs. Similarly, symmetric uncertainty analysis of CTX-

M9:meropenem yielded a 3992x3992 matrix where the top 19,920 pairs comprise the top 0.25% 

of interactions.  

At a coarse level, the resulting symmetric uncertainty matrices show, as expected, strong 

relationships between directly interacting atoms as well as stabilization of secondary structure 

elements. Thresholded matrices for CTX-M9:cefotaxime and CTX-M9:meropenem complexes are 

plotted in Figure 2.2 and Figure 2.3, and the top-scoring interactions are rendered as dotted lines 

on the protein structure in Figure 2.2A and Figure 2.3A. This analysis yields statistically coupled 

yet spatially distant atom pairs as well as a number of strong interactions from directly contacting 

atoms, as discussed below. The strong near-diagonal band reflects the expected high symmetric 

uncertainty for atoms that are directly connected by bonded interactions; in addition, salt bridges 

and Van der Waals contacts between sequence-distant but spatially proximate atoms also resulted 

in pairs with high symmetric uncertainty. Secondary structural elements are typically strongly 

connected, except when such structures are so strongly stabilized that they are immobile over the 

multi-microsecond timescales sampled and thus have near-zero positional entropy. Also present 

in the high-scoring pairs are interactions between nearby secondary structural elements. For 
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example, in the CTX-M9:cefotaxime simulations, a number of high-scoring pairs were measured 

between the alpha helix containing residues Ala28-Ser40 (Fig. 2A, atom indices 45-243) and the 

helix containing residues Arg276-Ala287 (atom indices 3752-3953).  

One striking finding is the lack of strong relationships between the bound drug and the 

major catalytic residues and similarly between the drug-binding-pocket and the rest of the enzyme 

in both sets of simulations. The highest-scoring drug-protein symmetric uncertainty value occurs 

below our 99.75% statistical cutoff, and such linkages remain sparse even at much lower cutoffs 

(Figure 2.2D and Figure 2.3D). This suggests that the drug and catalytic geometry are relatively 

isolated from conformational fluctuations of the rest of the protein. Such a finding makes sense in 

light of theories of catalytic preorganization in enzymes, which can be interpreted to state that 

optimal catalytic efficiency results from minimal fluctuations of the catalytic residues [133,134]. 

This is well supported by crystallographic studies of CTX-M9 alone and in complex with different 

transition-state analogues; in one such series of structures, key catalytic residues such as Ser130, 

Lys73, Glu166, and Ser237 shift only an average of 0.1 Å over a set of substrate analogues 

spanning the catalytic cycle [120]. Despite this relative isolation, symmetric uncertainty analysis 

of CTX-M9:cefotaxime yielded one potentially important network involving Asn104, Arg276, and 

Asn170. This network is connected by linkages at the 99.5th percentile, below our statistical cutoff, 

but stronger than any other networks of spatially distant residues. Although none of these residues 

is directly involved in catalysis, previous work has suggested they have a strong role in function. 

Asn170 is believed to be involved in establishing the hydrogen bond network [135] with the 

catalytic water molecule while Asn104 directly interacts with acylamide side chain of cefotaxime 

[136]. None of these interactions met the pre-defined threshold for significance in our analysis, 

but they constitute intriguing candidates for further testing.  
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Figure 2.2 Pairwise positional symmetric uncertainty in CTX-M9:cefotaxime complexes. 

Symmetric uncertainty (normalized mutual information) is used to quantify the degree to which 

atom motions are associated. Rendered in panel (a) are the top 0.25% of symmetric uncertainty 

pairs shown as brown lines on the CTX-M9:cefotaxime structure. Panel (b) shows a contour plot 

of the atom-atom symmetric uncertainty matrix contoured at 0.1% intervals from the 99.5th to 

100th percentiles. While numerous connections are identified between secondary structural 

elements, the drug has few high-ranking interactions with protein atoms, indicating a relative 

isolation of drug motion from protein motion. This is illustrated in the inset rendering in panel (c) 

and the portion of the symmetric uncertainty matrix corresponding to drug interactions in panel 

(d) that shows only self-interactions scoring above 99.5%. 
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Figure 2.3 Pairwise positional symmetric uncertainty in CTX-M9:meropenem complexes. 

The top 0.25% of symmetric uncertainty pairs are rendered as brown lines on the protein structure 

in panel (a), with the matrix contoured at 0.1% intervals at 99.5% and above in panel (b) and insets 

showing drug interactions in panels (c) and (d). Similar to CTX-M9:cefotaxime, CTX-

M9:meropenem simulations showed few interactions between the drug and enzyme or the drug-

binding-pocket and the rest of the enzyme. 
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2.4.2 Excess mutual information identifies residues linked to drug motion 

While symmetric uncertainty enables a global analysis of statistical interaction networks 

in the protein-drug complex, a more targeted statistical metric is desired to identify residues 

associated with particular motions of the bound drug. Excess mutual information quantifies drug-

protein positional coupling in a fashion corrected for protein motions and capable of robustly 

identifying even weak but physically significant coupling. Excess mutual information measures 

the symmetric uncertainty between a protein atom and the beta-lactam ring but corrects for bulk 

protein motion by subtracting the average symmetric uncertainty to the rest of the protein (see 

Methods for details). The top 5% of protein atoms as scored via excess mutual information to the 

beta-lactam ring were then selected for both CTX-M9:cefotaxime and CTX-M9:meropenem 

(Table 2.1 and Figure 2.4). 
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Table 2.1 Top-scoring residues via positional excess mutual information 

Rank CTX-

M9:cefotaxime 

CTX-

M9:meropenem 

  1 T235*C T235*C 

  2 N132* G236C† 

  3 T71*C† T216 

  4 Y264C T71*C† 

  5 N245*C R276*† 

  6 D246*C S130C† 

  7 N104*C† A219*C† 

  8 Y234* D246*C 

  9 I221C Y234* 

  10 N106† Y73*C† 

  11 R222 M68C 

  12 Y73*C† N132* 

  13 D233C A218* 

  14 Y105*C C69C 

  15 V103*† S237*† 

  16 S220† N214* 

  17 A219*C† L119 

  18 Y60 N245*C 

  19 A218* A125 

  20 A263 N104*C† 

  21 Q128*C E166† 

  22 D131*C T133 

  23 V262C V103*† 

  24 L225 Y105*C 

  25 N214* G217 

  26 V46C T215C 

  27 L33C L127C 

  28 S237*† Q128*C 

  29 A231 L102C 

  30 R276*† D131*C 

  31 S72C P167 

  32  E110C 

*-Shared between CTX-M9:cefotaxime and CTX-M9:meropenem  

C- Conserved residue 

†-residue mutated experimentally; altered drug resistance observed 
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Figure 2.4 Residues linked to drug motion identified by excess positional mutual information. 

Residues corresponding to the top 5% of protein atoms scored by excess mutual information to the 

beta-lactam ring are rendered as sticks on the CTX-M9:cefotaxime structure in panel (a) and the 

CTX-M9:meropenem structure in panel (b). These residues constitute our predictions for sites 

where mutation will affect catalytic activity and drug resistance. The drug is shown in red, residues 

identified in both enzyme:drug complexes in orange, and residues identified in only one 

enzyme:drug complex in yellow. 
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These top-scoring atoms yield a prediction of functionally important residues for beta-lactam 

hydrolysis for CTX-M9. The top 5% of atoms scored by excess mutual information in CTX-

M9:cefotaxime simulations covered 35 residues, 31 after removing “singleton” residues with only 

one atom selected (of 265 residues total).  

Of these, 9 have previously been tested via mutagenesis experiments, and in all 9 mutations 

were confirmed to reduce catalytic activity, as assessed by a decrease in both kcat and minimum 

inhibitory concentration of drug to impede bacterial growth [74,100,101,103,130,136]. In addition, 

17 of the 31 residues are sequence-identical across the CTX-M family using the family definition 

provided in [49]. Of the 10 top-scoring residues, 7 are sequence-identical across CTX-M9, and 3 

have been previously tested and confirmed via experimental mutagenesis. This degree of sequence 

conservation further, although indirectly, supports a functional role for the residues thus identified. 

Residues predicted by excess mutual information include amino acids both in the drug-binding-

pocket and distant from it (allosteric mutations). This second category (including Leu33, Val45, 

Ala245, Ala263, and Tyr264) is particularly interesting, as they are more difficult to identify via 

conventional methods. Previous experimental mutagenesis has shown that allosteric mutations can 

affect hydrolysis of cephalosporins via beta-lactamase  enzymes [101], and the prediction of novel 

allosteric mutations is a major goal of this work. Recent work based on evolutionary conservation 

has proposed distance to the active site as a means to score functional importance of enzymes 

[137]. In our data, excess mutual information scores showed correlation values of (0.27 and 0.56) 

with distance to the catalytic residues, explaining 7.6% and 31% of the variance in MI respectively, 

demonstrating that for this system excess mutual information contains information other than 

purely distance. In addition, high-scoring residues ranked moderately in positional mobility (top-
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scoring residues in CTX-M9:cefotaxime simulations have root-mean-squared fluctuation of 1.4 to 

1.9 Å compared to an overall range of 0.53 to 7.72 Å and median 1.6 Å. 

Corresponding analysis of the CTX-M9:meropenem complex yielded a number of residues 

in common with CTX-M9:cefotaxime (Figure 2.4). The top 5% of atoms scored via excess mutual 

information mapped to 37 residues, 32 after singleton removal. Of these 32 residues, 17 were in 

common with CTX-M9:cefotaxime, and the remaining 15 diverged. Although it is tempting to 

analyze differential scoring between the CTX-M9:meropenem simulations and the CTX-

M9:cefotaxime simulations as relating to the capacity of CTX-M9 to hydrolyze cefotaxime but not 

meropenem, we wish to remain conservative in this respect as the simulation sampling scheme 

differed slightly between CTX-M9:cefotaxime (fewer, longer simulations) and CTX-

M9:meropenem (more simulations of 100-200ns in length), and we cannot exclude a sampling 

bias in accounting for the different residues identified. Common residues included several involved 

in catalysis either directly or indirectly such as Ser237, Arg276 [102,120]. Top-scoring residues 

from CTX-M9:meropenem (but not CTX-M9:cefotaxime) included Ser130 and Glu166, two 

residues closely tied to catalytic function (Glu166 is believed by many to be the general base for 

cephalosporin hydrolysis in CTX-M enzymes) [120,135,138]. The identification of these residues 

suggests that although CTX-M9 cannot fully hydrolyze meropenem, catalytic residues still interact 

with the drug in a coordinated manner.  

2.4.3 Mutation at top-scoring sites decreases drug resistance 

As an experimental test of our scoring method, we mutated each of the 5 top-scoring 

residues via excess mutual information singly to alanine. We used antibiotic resistance of 

transformed bacteria expressing each enzyme as a metric of enzymatic function. As a control, we 

also mutated the four lowest-scoring residues and four residues that scored closest to zero excess 
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mutual information (relationship to drug motion equal to the average across the protein). Of the 

top-scoring residues, 6/8 had a greater than two-fold reduction in cefotaxime antibiotic resistance 

(Figure 2.5), with all mutants showing some reduction in resistance. Four of the most affected top-

scoring residues were located near the drug-binding-pocket while two were more distant from it, 

suggesting that excess mutual information can indeed identify both nearby and allosteric residues 

affecting function. Only one of the four lowest-scoring residues displayed a >2-fold reduction in 

cefotaxime antibiotic resistance (Figure 2.6C). Similarly, of the four mutants scoring near zero 

(background correlation only), none showed a >2-fold decrease in drug resistance (Figure 2.6C). 

These results demonstrate that excess mutual information can robustly identify (p < 0.05 via 

Fisher’s exact test or p < 0.01 via two-tailed Kolmogorv-Smirnov test) residues likely to be 

involved in enzyme function and consequent drug resistance.  
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Figure 2.5 Mutation of top-ranking residues via positional mutual information greatly 

decreases cefotaxime drug resistance.  

The five highest-scoring residues for cefotaxime (orange) and meropenem (yellow with residues 

in both sets as red) were selected for alanine mutagenesis. These were located both inside and 

distant from the drug pocket (a). Six of the eight mutants displayed a >2-fold drop in resistance. 
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Figure 2.6 Mutation of lowest-scoring residues leaves cefotaxime drug resistance largely 

unaffected.  

As rendered in panel (a), the lowest-scoring residues and (b) the residues with closest to 

background mutual information in cefotaxime simulations (orange) and meropenem simulations 

(yellow) were located outside the drug-binding-pocket. As plotted in panel (c), none of near-

background mutants (yellow) and one of the lowest scoring mutants (orange) showed a >2-fold 

decrease in drug resistance. 
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2.5 Chapter Discussion 

We have developed an excess mutual information metric to predict residues important for 

drug hydrolysis in the CTX-M9 beta-lactamase  enzyme based on molecular dynamics simulations. 

We initially developed excess positional mutual information to score protein residues on the 

influenza hemagglutinin glycoprotein that influence low-affinity binding of sialoglycans [114]. 

Here, we show how excess mutual information can be used in a much more sensitive and targeted 

fashion, detecting motions of an enzyme that are weakly but significantly coupled to dynamics of 

a bound substrate, and prospectively predicting and testing mutants that affect enzyme function. 

This marks a substantial expansion on the scope of problems for which excess mutual information 

can predict mutational effects: from initial work on relatively “floppy” low-affinity ligand binding, 

it was not obvious that mutual information would successfully predict sites of mutation in a 

relatively rigid beta-lactamase enzyme. Although positional mutual information has been used 

very productively to identify conformational substates of a protein, use of excess mutual 

information allows a much more targeted measurement of how individual residues are related to 

ligand motion in a manner that is robust even in the presence of weak coupling. As we have shown, 

excess mutual information identifies residues where mutation alters kcat even though these residues 

are not strongly related to ligand or binding-pocket motions in the full N2 symmetric uncertainty 

matrix. 

Our primary goal in developing excess mutual information is to obtain a metric that can 

predict both binding-pocket mutations and allosteric ones in a single integrated analysis. Since 

many structure-based approaches concentrate on the ligand-binding-pocket, our prediction of both 

proximate and distant residues demonstrates the power of such an approach. Another motivation 

for the use of positional excess mutual information is that it provides an empirical measurement 
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of positional relatedness that can be complementary to mutational analysis [114] yet leverages 

state-of-the-art classical molecular dynamics force fields for both force calculation and sampling 

of statistical ensembles of conformations. In contrast to methods that compute energy-based 

coupling of protein residues, analyses of molecular dynamics trajectories naturally incorporate 

entropic terms and yield a free-energy-based coupling of protein residue motions.  

Our analysis identified several previously untested mutations predicted to alter the catalytic 

activity and drug resistance conferred by CTX-M9. We tested a set of these prospective predictions 

utilizing bacterial drug resistance as a measure of enzyme function, comparing to low-scoring 

mutations. The predicted high-scoring mutations had a much greater effect on enzyme function 

than mid-scoring or low-scoring controls (6/8 showing a >2-fold drop in resistance vs. 1/8 in the 

aggregate control groups; p < 0.01 via KS test). Furthermore, these mutations that alter drug 

resistance are located both within and outside the drug-binding-pocket, with high-scoring 

mutations as far as 24 Å away, meeting our design criteria of a single global analysis to identify 

both local and allosteric mutants. The ability to anticipate altered drug-resistance of new variants 

is of great utility for clinical surveillance of CTX-M beta-lactamase s as well as drug development 

efforts.
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Chapter 3. Predicting allosteric mutants that increase activity of a 

major antibiotic resistance enzyme 

3.1 Chapter Foreword 

As discussed in Chapter 2, allosteric residues affect beta-lactamase function. These sites 

are hard to predict using traditional structural techniques as they can affect important 

conformations not well sampled with crystallography. We have used molecular dynamics 

simulations to predict allosteric mutants increasing CTX-M9 drug resistance and experimentally 

tested top mutants using multiple antibiotics. Purified enzymes show an increase in catalytic rate 

and efficiency, while mutant crystal structures show no detectable changes from wild-type CTX-

M9. We hypothesize that increased drug resistance results from changes in the conformational 

ensemble of an acyl-intermediate in hydrolysis. Machine-learning analyses on the three top 

mutants identify changes to the binding-pocket conformational ensemble by which these allosteric 

mutations transmit their effect. These findings show how molecular simulation can predict how 

allosteric mutations alter active-site conformational equilibria to increase catalytic rates and thus 

resistance against common clinically used antibiotics. Furthermore, this offers a screening 

approach that could be transferred to understand other beta-lactamases. 

The work described here was published in Chemical Science with the co-first authors 

Malgorzata Latałło, M.Sc., and George Cortina [63]. Ms. Latałło performed much of the wet lab 

work and analysis especially kinetics and crystallization. I performed some experiments and the 

simulation work and conformational analysis. The text has been modified for non-commercial use 

in accordance to the author re-use permissions.  
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3.2 Chapter Introduction 

Here we are concerned with new point mutations that increase the drug resistance of CTX-

M beta-lactamases. Such point mutations have been observed clinically, and a number have been 

characterized mechanistically [100,139–143]. However, the landscape of mutations affecting drug 

resistance remains incompletely characterized due to the large combinatorial space involved, and 

the mechanism for increased resistance by allosteric CTX-M mutants remains largely unknown. 

CTX-M is also an attractive system to study allosteric mutations because of the strong structural 

similarity across many class A beta-lactamases despite large differences in sequence, substrate 

profiles, and catalytic rates.  

Antibiotic resistance by class A beta-lactamases proceeds via a two-step kinetic mechanism 

involving an acyl intermediate: 

𝐸 +  𝑆 ↔  𝐸𝑆 
𝑘𝑎𝑐
→  𝐸𝐼 

𝑘𝑑𝑎𝑐
→   𝐸𝑃 ↔  𝐸 + 𝑃 

where E denotes enzyme, S the drug substrate, EI the acyl intermediate, and P the hydrolyzed drug 

product. Previous studies have shown that either the acylation rate (kac) or the deacylation rate 

(kdac) can be rate limiting depending on the enzyme variant or the drug substrate [144,145]. Due 

to this variation and the low 38% sequence identity between CTX-M9 and the better-studied TEM 

proteins, including a number of residues of functional significance [146], mechanistic studies of 

CTX-M proteins in particular are of clinical importance. Because CTX-M enzymes have been 

shown to arrest at the acyl intermediate (EI) in the hydrolysis of meropenem, we hypothesized that 

the conformational dynamics of the acyl-enzyme complex would be predictive of the hydrolysis 

of cephalosporin and carbapenem antibiotics.  

Many approaches have been taken towards computational understanding of beta-lactamase 

function. Here, we desire to understand mutational changes that affect a chemically narrow but 
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clinically important substrate spectrum. We therefore undertook classical molecular dynamics 

simulation of the acyl-enzyme:drug covalent complex to predict how mutations, including those 

distant from the active site, would affect conformational dynamics of the drug and subsequent 

catalytic activity in the deacylation step of hydrolysis. Our focus on the acyl intermediate thus 

differs from other approaches to beta-lactamase function that have treated the apo and ligand-

bound states [92,147]. We simulated 125 different point mutants of the CTX-M9 beta-lactamase, 

running >1000 simulations per mutant in order to improve estimation of these conformational 

changes. Measuring kcat changes experimentally for this many randomly selected mutants is a 

substantial but feasible task; the main reasons to perform molecular simulation are to enable 

screening for an arbitrary specified set of mutants (not just point mutants) and to facilitate detailed 

explanation of how allosteric mutations might affect function. 

Although it would be unexpected for a single point mutation to confer substantial 

meropenem hydrolytic capability onto a CTX-M enzyme, we simulated CTX-M9 in complex with 

meropenem as a demanding test of mutations increasing drug resistance. Mutants were scored by 

the probability of forming hydrogen bonds believed to stabilize the deacylation transition state 

(Figure 3.1), and 5 high-scoring mutants as well as 4 lower-scoring ones were expressed in bacteria 

and tested for cefotaxime and meropenem resistance. We selected three such mutants with 

substantially increased resistance for further mechanistic and structural testing. All three of these 

mutations were at allosteric sites: T165W on a loop near the active site and S281A and L48A > 20 

Å away on the other side of the enzyme.  
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3.3 Methods 

3.3.1 Constructs  

A pET-9a plasmid containing blaCTX-M9 was the kind gift of Robert Bonomo (Bethel et 

al., 2011). The following point mutants were constructed, were sequence-confirmed and 

transformed into bacterial strains as specified below: L48A; A140K; T165W; T158E; A219H; 

S220R; and N271D, and S281A.  

3.3.2 Molecular dynamics simulations  

CTX-M9 and mutant enzymes were simulated in acyl-enzyme complexes with 

meropenem; wild-type enzyme and 3 top-scoring mutants were also simulated in complex with 

cefotaxime. Starting structures were constructed by least-squares fitting of a meropenem-SHV-1 

acyl-enzyme structure [121] onto the CTX-M9 apo crystal structure of CTX-M9 (PDB codes 

2P74) [37] . Each protein was placed in an octahedral box with 2 nm minimum periodic separation 

and solvated with TIP3P water and 150 mM NaCl. Simulations were run using Gromacs 4.5 [123] 

with the AMBER99SB-ILDN force field [125]. Parameters for meropenem and cefotaxime were 

determined using the AMBER Antechamber program using AM1-BCC partial charges [122,148]. 

Partial charges were obtained using Ser70 covalently bound to meropenem or cefotaxime 

respectively. Bonded and vdW parameters were used from AMBER99SB-ILDN where available 

and from GAFF [149] where not. Hydrogen bonds were constrained using LINCS, and short-range 

interactions were truncated at 1.2 nm. Long-range electrostatics were treated with Particle Mesh 

Ewald [128]. Simulations were run at 310K and 1 bar pressure using a velocity-rescaling 

thermostat [127] and the Berendsen barostat [150]. 
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Simulations were run on two architectures: 200 simulations of CTX-M9:meropenem and 

50 simulations of each of the 125 mutants tested were run on the Folding@Home platform. 

Additionally, 1000 simulations for each of the 125 point mutants of CTX-M9:meropenem were 

run using the Google Exacycle platform. Aggregate simulation averaged 5.75 microseconds per 

mutant for the Folding@Home simulations and 5.24 microseconds per mutant for the Exacycle 

simulations. Oxyanion hole scoring of mutants on these two datasets was not significantly different 

and is compared in Figure S2. Convergence analysis is provided in Figure S3; approximately 25 

simulations averaging 57 ns each were required for a converged ranking of mutants. Three 

simulations of wild-type CTX-M9 in complex with cefotaxime were also run, totalling 2.5 

microseconds, as well as 20 simulations of each of the CTX-M9 wild-type and the L48A, T165W, 

and S281A mutants of >80 ns each. Simulation snapshots were saved every 50 ps for analysis. 

Simulations were scored by the probability of forming hydrogen bonds that would stabilize 

an oxyanion in the deacylation transition state (the “oxyanion hole”). Distances between the 

carbonyl oxygen on the acylated beta-lactam antibiotic and each of two hydrogen bond donors 

(backbone amide hydrogens on residues 237 and 70) were measured using 3 Å as a distance cutoff 

for hydrogen bond formation. All point mutant simulations were scored by the fraction of 

simulation snapshots satisfying both these hydrogen bonding criteria. Simulations were performed 

to create two independent data sets; scoring of these data sets was highly concordant, particularly 

for top mutants. Furthermore, simulations of cefotaxime acyl-enzymes ranked the three top 

experimental mutations in the same order as the meropenem acyl-enzyme simulations. CTX-M9 

wild-type simulation snapshots never satisfied both hydrogen bonding criteria simultaneously in 

complex with meropenem, whereas separate simulations with cefotaxime satisfied the criteria in 

>90% of snapshots. Separate simulations of the carbapenemase KPC-2 in complex with 
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meropenem also frequently satisfied the hydrogen bonding criteria, leading us to conclude that 

these criteria may be a good predictor of deacylation activity. 

Positional mutual information was calculated for simulations of CTX-M9 and the L48A, 

T165W, and S281A mutants in complex with meropenem and with cefotaxime in a manner similar 

to that described previously [62] except that here each simulation snapshot was rigid-body aligned 

to the CTX-M9 crystal structure using binding-pocket atoms, where the binding-pocket was 

defined as all residues having at least one non-hydrogen atom within 1 nm of the drug in >90% of 

wild-type simulation snapshots. The aligned distance of each binding-pocket atom to its reference 

position in the crystal structure was measured, and the probability density function was estimated 

by binning distances across all snapshots of a given mutant using a 1.5 Å bin width (top-10 

rankings were identical for bin widths from 1.1 to 3.5 Å). Mutual information was calculated 

between the position of each binding-pocket atom and the corresponding protein sequence being 

simulated. The top 10 atoms were selected using this criterion and used to train a decision tree 

classifier using a Gini impurity criterion and “best split” strategy. Classification accuracy was 

tested using 10-fold cross-validation on the training set and separately on a randomly selected test 

set consisting of 20% of the original data set. 

3.3.3 Drug resistance assays 

Phenotypic testing was performed using MG1655 Omp C-/F- E. coli (gift of Linus 

Sandegren) transformed with each blaCTX-M9 mutant plasmid as indicated. Antibiotic 

susceptibility was tested using the Kirby-Bauer disc diffusion method [132,151,152]. Discs 

containing the following amounts of antibiotics were purchased from BD Medical (Franklin Lakes, 

New Jersey): meropenem (10 μg), cefotaxime (30 μg), ceftriaxome (30 μg), cefepime (30 μg), 

cefuroxime (30 μg), ceftazidime (30 μg), and fold-change measurements were calculated using 
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wild-type CTX-M9 tested with each batch as an internal control. Bacteria were grown to an 

OD600 of 0.1 in liquid broth and then evenly spread on Miller-Huntington agar plates, and the size 

of the inhibition zone was measured after 14-16 h of incubation at 37°C. Resistance was assessed 

as fold change of inhibitory concentration, calculated as the square diameter of clearance of wild-

type CTX-M9 over square of the diameter of the mutant. Four samples were tested for each mutant-

drug combination. Bacterial growth rates were determined by optical density (OD600) 

measurements every 30 minutes at 37°C with continuous shaking at 220 rpm in LB liquid broth.  

3.3.4 Additional methods  

Details of enzyme purification, measurement of hydrolysis kinetics, thermostability assays, 

simulation preparation, and crystallization, X-ray diffraction, and refinement are given in 

Appendix A.  

3.4 Results 

We simulated 125 point mutants of the CTX-M9 beta-lactamase in complex with 

meropenem, using residues from the structurally similar but highly drug-resistant enzyme KPC-2 

as a source of mutational diversity. Mutants were scored by probability of forming two key 

hydrogen bonds that stabilize the deacylation transition state. Nine of ten top-scoring mutants were 

identical whether hydrogen-bond length or both length and angle were used as scoring criteria. 

Five high-scoring mutants and several comparators were expressed in E. coli and tested for 

increased resistance to cefotaxime and meropenem compared to wild-type CTX-M9. The three 

top-scoring mutants identified by this procedure were then purified and characterized via 

crystallography, thermal stability, and steady-state kinetics to understand the mechanism of 

allosteric modulation of drug resistance by these mutants. 
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3.4.1 Prediction and testing of mutants  

Point mutants of CTX-M9 at every site differing from KPC-2 were generated 

computationally and simulated in an acyl-enzyme complex with meropenem using classical 

molecular dynamics. The probability of forming hydrogen bonds that stabilize the nascent 

oxyanion in the deacylation transition state was calculated over these simulations, averaging 5.75 

microseconds in total for each of the 125 mutants (minimum of 5.3 µs per mutant), and used to 

score the mutants. A set of 5 high-scoring mutants and an arbitrary selection of mid-scoring 

mutants were expressed in E. coli and tested for cefotaxime and meropenem resistance using disc 

diffusion assays. Results of these tests are shown in Figure 3.1 and Table 3.1. As discussed below, 

strongly increased hydrogen bond probability is hypothesized to be a predictor of increased 

resistance but not necessarily in a linear fashion. Three allosteric mutants, L48A, T165W, and 

S281A, scored particularly well in these tests and were selected for further characterization. Since 

two of these were alanine mutants, we compared fold-increase in cefotaxime resistance to a set of 

13 allosteric CTX-M9 alanine mutants that we tested under identical conditions and reported 

previously [62]; this comparator group showed a 0.38- to 1.05-fold gain in cefotaxime resistance, 

so the 1.5- to 3.3-fold gain seen in our three mutants is substantially greater than expected due to 

chance. 
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Mutation  Oxyanion 

hole 

score 

Fold increase 

cefotaxime 

resistance 

Fold increase 

meropenem 

resistance 

T165W 0.58 2.62 ± 0.19 1.09 ± 0.12 

A140K 0.55 0.96 ± 0.04 1.03 ± 0.03 

S266A 0.51 0.62 ± 0.04 1.07 ± 0.01 

S281A 0.48 1.57 ± 0.19 1.37 ± 0.02 

L48A 0.48 3.34 ± 0.03 1.12 ± 0.02 

N271D 0.46 1.00 ± 0.04 1.02 ± 0.02 

S220R 0.45 1.16 ± 0.08 0.95 ± 0.02 

P167L 0.44   

H112Y 0.42   

N106S 0.40   

Q254T 0.33   

T71S 0.31   

T202P 0.30   

A219H 0.30 0.78 ± 0.04 0.97 ± 0.01 

K137L 0.26   

T168E 0.24   

D277A 0.21   

G158T 0.20 1.16 ± 0.04 1.09 ± 0.12 

Table 3.1 Top CTX-M9 mutants from simulations with drug resistance measured using disc-

diffusion assays. 

Oxyanion hole scores were computed from simulations of meropenem acyl-enzymes, and the top 

five predictions are emphasized with gray highlighting. The fold-increase in cefotaxime and 

meropenem resistance compared to wild-type was calculated from antibiotic disc assays. Values 

are reported as median fold increase in inhibitory concentration +/- inter-quartile range. The three 

highest-resistance mutants showed no impairment in growth . 
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Figure 3.1 CTX-M9 mutants increasing beta-lactam hydrolysis.  

The seven top-scoring point mutants from molecular dynamics simulations and two moderate-

scoring mutants were transformed into E. coli, and drug resistance was assayed using disc diffusion 

tests at 37 C. These top mutations, rendered in magenta on the CTX-M9 structure [120], are 

located primarily outside the drug-binding-pocket (catalytic serine in orange). Of the five top-

scoring mutants from simulation, three (in spheres) showed a substantial increase in cefotaxime 

resistance and a moderate increase in meropenem resistance.  
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3.4.2 Broad drug-resistance and bacterial growth rates of high-scoring mutants.  

The three top-scoring mutants via experimental gain in cefotaxime resistance were tested 

against a range of cephalosporin drugs via disc-diffusion assays and showed increased resistance 

against all of them compared to wild-type CTX-M9 (Figure 3.2). None of these enzymes retarded 

growth of transformed bacteria compared to wild-type CTX-M9, thus arguing against a fitness 

penalty for these mutations in the absence of drug. Thermostability assays on purified enzymes 

showed a 1.5 °C melting temperature stabilization in both the apo and meropenem-acyl forms of 

CTX-M9 T165W and a mild destabilization (0.5 – 1.5 °C) of the CTX-M9 L48A and S281A 

mutants (Table 2). Although these shifts were relatively small in magnitude, they were precisely 

reproducible across three independent experiments per enzyme and are thus considered notable. 

Based on these data, T165W in particular does not display the stability-function tradeoff that has 

been previously found in some beta-lactamase mutants [120,153,154]. 
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Figure 3.2 Top-scoring mutants increase drug resistance broadly against cephalosporin 

antibiotics.  

Drug resistance to five cephalosporins was measured via Kirby-Bauer disc assays for three top-

scoring mutants from initial testing and compared to CTX-M9 wild type. As described in the 

methods, the fold-increase in inhibitory drug concentration was calculated from disc diffusion 

assays; values plotted are the median of four independent assays. Wild-type CTX-M9 does not 

confer resistance to ceftazidime in culture according to clinical lab criteria, although the clinical 

efficacy of this drug for such infections has been debated [155]. Error bars show inter-quartile 

ranges. Chemical structures for the drugs used are given in Figure S5. 
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 CTX-M9 L48A T165W S281A 

Apo 

enzyme 

48.0 ± 

0.5 C 

47.5 ± 

0.5 C 

49.5 ± 

0.5 C 

47.0 ± 

0.5 C 

Acylenzy

me 

45.0 ± 

0.5 C 

43.5 ± 

0.5 C 

46.5 ± 

0.5 C 

43.5 ± 

0.5 C 

Table 3.2 Melting temperatures of apo- and acyl-enzyme conjugates of CTX-M9 and top 

mutants. 

Melting temperatures were determined in increments of 0.5 C. All enzymes showed a 3-4 C 

destabilization in the acyl-enzyme state (measured by pre-incubating enzyme with meropenem); 

T165W shows a reproducible 1.5-2 C stabilization compared to the other enzymes, while L48A 

and S281A show a very mild but consistent destabilization of 1-1.5 C. Thermal melting curves 

are given in Figure S6. Uncertainties were limited to 0.5 C by the precision of the instrument 

used; agreement between multiple experimental replicas was exact to within this limit. 
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3.4.3 Steady-state enzyme kinetics  

Catalytic parameters of all three top-scoring mutants were determined by measuring the 

hydrolysis of the cephalosporin antibiotic nitrocefin by purified enzymes and fitting initial 

velocities according to Michaelis-Menten kinetics. At 28 °C, the S281A mutant displayed the 

highest nitrocefin kcat, followed by T165W and L48A, with all showing a >two-fold increased kcat 

over the wild-type enzyme and a >33% increase in catalytic efficiency (Figure 3.3, Table 3.3). 

Nitrocefin undergoes a shift in visible absorbance upon hydrolysis; these measurements under 

steady-state conditions yield an aggregate kcat for hydrolysis. These results confirm the phenotypic 

drug-resistance assays and show that the increased resistance derives from either an increase in kac 

or kdac but are insufficient alone to specify which rate constants are altered. Pre-steady-state 

kinetics of nitrocefin hydrolysis by CTX-M9 suggest that acylation is not rate-limiting. This is 

consistent with the finding that beta-lactam drugs such as carbapenems that CTX-M9 is unable to 

hydrolyze are nonetheless readily acylated, although testing nitrocefin was necessary because 

other beta-lactamases have demonstrated different rate-limiting steps on different classes of 

substrates. Additionally, E. coli expression levels show that the increase in drug resistance cannot 

be explained by increased expression of high-scoring CTX-M9 mutants, while preserved or 

increased KM argue against increased binding of ligand, suggesting that kcat changes are primarily 

responsible for the increased resistance. 
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Figure 3.3 Steady-state reaction kinetics show an increased hydrolysis rate of top mutants. 

Initial velocities for nitrocefin hydrolysis at 28 C are plotted as a function of substrate 

concentration with Michaelis-Menten fits overlaid. Experiments were performed at 0.2 nM 

enzyme, and at least two biological replicas per enzyme were used for fitting. Fit parameters are 

listed in Table 3 and show a substantial increase in kcat as well as kcat/KM for all three mutants.  
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Enzyme KM kcat kcat/KM 

CTX-

M9 

8.9µM  (8.8-10.6 µM) 70 s-1  

(69-78 s-1) 

7.8 µM-1
 s-1 

(7.4-7.8 µM-1
 s

-1) 

L48A 12µM 
(11.5-13.9 µM) 

156 s-1 

(151-165 s-1) 

12 µM-1
 s-1 

(11.7-13.3 µM-1
 s

-1) 

T165W 5.7 µM 
(5.4-6.0 µM) 

136 s-1 

(134-140 s-1) 

23 µM-1
 s-1 

(22.8-24.9 µM-1
 s

-1) 

S281A 14 µM 
(12.2-15.8 µM) 

243 s-1 

(236-253 s-1) 

17 µM-1
 s-1 

(15.7-19.4 µM-1
 s

-1) 

Table 3.3. Steady-state reaction parameters for CTX-M9 and top mutants.  

KM and kcat were determined via nonlinear Michaelis-Menten fits to steady-state initial velocity 

data. As predicted from simulations, kcat increased substantially in these mutants. This gain did not 

come at a cost in catalytic efficiency, as kcat/KM also increased. 95% confidence intervals were 

calculated via jackknife methods. 
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3.4.4 Structures of CTX-M9 mutants 

To rule out a structural change in the low-free-energy conformations of these mutants, we 

crystallized all three mutants and performed X-ray diffraction studies. The S281A mutant only 

diffracted to 6 Å and was not refined, but the structures of CTX-M9 L48A and T165W were solved 

to 1.73 and 1.8 Å resolution and were indistinguishable from the wild-type enzyme with RMSD 

of 0.3 Å (Figure 3.4). Structures have been deposited as PDB codes 5KMT and 5KMU. Ligand 

soaks of these crystals with cefoxitin as previously reported [120] yielded low occupancy, but 

based on the close similarity of catalytic side chain structure in the apo and acyl-enzyme forms of 

CTX-M9, we expect the low-free-energy conformation to be similar in any trapped acyl-enzyme 

state. We expect this because a structural difference associated with a more catalytically active 

mutant would manifest as an acyl-enzyme intermediate more closely resembling the deacylation 

transition state. Since these two structures are already quite similar for wild-type CTX-M9, we 

conclude such differences would be quite small, and indeed our simulations of the acyl-enzyme 

complexes also do not show large structural differences. 
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Figure 3.4 Crystal structures of L48A and T165W mutants show no substantial changes from 

wild-type apo enzyme.  

Wild-type CTX-M9 (blue) is rendered overlaid with the L48A (purple) and T165W (green) 

mutants. Crystal structures of these two mutants show no substantial change in the apo form in the 

active site region (panel a) or globally (panel b). All-atom RMSD values are 0.3 Å respectively 

between each of the mutants and wild-type CTX-M9.  
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3.4.5 Simulations yield a hypothesis for allosteric effects 

Based on our experimental data, we predict that the three mutant enzymes display 

differences in the population distribution of the acyl-enzyme conformational ensemble rather than 

large shifts in the lowest-free-energy structure. To localize potential differences and predict how 

distant mutations may affect enzyme-drug interactions, we calculated root-mean-square 

fluctuation (RMSF) for all non-hydrogen atoms in simulations of each mutant acyl-enzyme with 

meropenem and compared them to the wild-type acyl-enzyme simulations. Residues showing the 

highest percent magnitude difference from wild-type are shown and visualized on the enzyme 

structure in Figure 3.5. For CTX-M9 L48A and T165W, we observed a substantial increase in 

conformational flexibility of the loop in the region 103-105 that has been shown important in 

substrate binding and hydrolysis for a number of class A beta-lactamases [65,156–158]. No such 

increase was observed in S281A. All three mutants showed an increase in flexibility of N170, an 

active-site residue thought to be involved in positioning the catalytic water for hydrolysis [135]. 

In addition, R276, a residue at the edge of the binding-pocket that can interact with the free 

carboxylate of meropenem or cefotaxime [102,146], increased in flexibility, as did the 221-225 

helix in the S281A simulations, although the significance of this last region for enzyme-drug 

interactions is unclear. There was also an increase in the flexibility of other omega loop residues 

in the T165W and L48A simulations with meropenem. These findings from simulation lead us to 

speculate that some combination of V103-Y105 loop interactions and N170 interactions with the 

drug might be related to the increased drug resistance of the mutant enzymes. 
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Figure 3.5 Residues of mutant enzymes showing increased flexibility compared to wild-type 

in simulations with meropenem.  

Each CTX-M9 mutant is rendered with residues colored from blue to red in order of increasing 

percent difference RMSF compared to the corresponding residue in simulations of wild-type CTX-

M9. This yields a visual interpretation of which residues show increased conformational 

flexibility, which is quantitated as a set of per-residue RMSF plots in panels d-f. 
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We also used simulations to directly predict how our top-scoring allosteric mutations 

S281A, L48A, and T165W alter the conformational ensemble of the substrate-binding-pocket to 

effect a change in drug resistance. We employed a machine-learning technique called max-mutual 

information feature selection [159] on each of the meropenem and cefotaxime acyl-enzyme 

datasets as follows. In each snapshot from molecular dynamics simulations of wild-type and top-

scoring mutant acyl-enzymes, we calculated the mutual information, a nonlinear statistical metric 

of relatedness, between the position of each binding-pocket atom and sequence of the enzyme. 

Averaged over the entire mutant dataset, this yields an information-theoretic score for which atoms 

in the binding-pocket are most positionally responsive to the mutations under study. For the 

meropenem acyl-enzyme dataset, top-scoring atoms by this criterion are from residues 234, 166, 

and 104 (Figure 3.6). As a further validation, we trained a decision tree machine-learning classifier 

(Figure 3.7). Using only the top 10 binding-pocket atoms, we predict the mutation that corresponds 

to a given binding-pocket conformation with 95.8% accuracy via 10-fold cross-validation (and 

99.4% accuracy using the full binding-pocket). Simulations of these mutations in acyl-enzyme 

complex with cefotaxime identify these residues as well as residue 105 as top-scoring. We thus 

predict that the S281A, L48A, and T165W mutant enzymes alter the acyl-enzyme conformational 

ensemble and thus the catalytic rate by changing the positions of residues 104, 166, and 234 in this 

ensemble, although not in the apoenzyme crystal structures. Of these residues, glutamate 166 is 

involved in coordinating catalytic water molecules in hydrolysis [120], asparagine 104 has been 

implicated in substrate positioning in the acyl-intermediate form of other beta-lactamases 

[136,141], and lysine 234 is highly conserved and thought to interact with the cephalosporin C3 

carboxylate moiety [135].  
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Although all these active-site residues and the allosteric sites 48 and 165 are ≥ 99% 

conserved within the CTX-M family, approximately 25% of CTX-M sequences contain the S281A 

mutation. Using a multiple sequence alignment of 500 beta-lactamases most closely related to 

CTX-M9, residues 281 and 105 showed a strong sequence co-variation, quantified as 

phylogenetically corrected sequence mutual information [160]. We also analyzed residue-residue 

dynamic relationships via positional mutual information (as opposed to residue-mutant 

relationships). Four simulation datasets were examined per mutation site: wild-type meropenem 

acyl-enzyme, wild-type cefotaxime acyl-enzyme, mutant meropenem acyl-enzyme, and mutant 

cefotaxime acyl-enzyme. Residue K234 ranked in the top 5 binding-pocket residues linked to 

residue 48 in 3 of 4 datasets. E166 was most closely linked to residue 165 in all simulation datasets 

(although this can be explained by proximity), and 104 scored in the top 5 once. K234 again scored 

in the top 5 binding-pocket residues linked to residue 281 for 3 of 4 datasets. No other binding-

pocket residue was similarly enriched in linkage from more than one allosteric site. 
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Figure 3.6 Top binding-pocket residues predicted to transmit allosteric mutations.  

The top three binding-pocket residues that change position with allosteric mutations affecting 

cephalosporin resistance are rendered in cyan sticks, visualized using the crystal structure of CTX-

M9 in the acyl intermediate form with cefoxitin [120] (rendered in tan). Dotted lines show key 

interactions between the ligand and N104 and K234; E166 is believed to interact via a catalytic 

water molecule.  
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Figure 3.7 Binding-pocket atoms that shift position with allosteric mutations.  

Rendered is a decision tree trained on top-scoring binding-pocket atoms that uses the aligned 

distance in each simulation snapshot of each atom from a reference CTX-M9 wild-type crystal 

structure in complex with cefoxitin (PDB ID 1YMX) [120] to classify the mutant being simulated. 

Since this procedure is performed on binding-pocket atoms only, it identifies the binding-pocket 

atoms most reflective of allosterically induced conformational changes. Binary decision trees were 

trained on acylenzyme simulations in complex with meropenem using the 10 top-scoring atoms 

and (1) unrestricted tree size, (2) tree size restricted to 7 leaf nodes (panel a), and (3) tree size 

restricted to 4 leaf nodes (panel b). These trees achieve a 10-fold cross-validation accuracy of 86.8 

and test set classification accuracy of 86.9% for the 4-node tree, 89.3% cross-validation and 89.2% 

test set accuracy for the 7-node tree, and a cross-validation accuracy of 95.6% and a test set 

classification accuracy of 91% for the unrestricted tree. An unrestricted tree trained on all binding-

pocket atoms (not just the top 10) achieved a cross-validation accuracy of 98.9% and a test-set 

accuracy of 97.9%. An additional decision tree trained on acylenzyme simulations in complex with 

cefotaxime is rendered in panel c. This had a cross-validation accuracy of 85.7% and test-set 

accuracy 85.5% when restricted to a maximum of 7 leaf nodes and 93.0% and 86% respectively 

when unrestricted in size but limited only to the top 10 binding-pocket atoms.  
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3.5 Chapter Discussion 

Allosteric mutants that increase the activity of an already competent beta-lactamase 

represent a challenging prediction target, and successful prediction often yields moderate rate 

enhancement in these cases, in contrast to the larger gains when successfully engineering new 

substrate activity. Our results demonstrate that simulations of acyl-enzyme conformational 

dynamics can prospectively identify new allosteric mutations and that the mechanism of such 

mutations is consistent with a change to the acyl-enzyme intermediate or the deacylation transition 

state. Clearly, simulations of these conformational dynamics—the classical dynamics in the acyl-

enzyme state—neglect much of the hydrolysis process and thus cannot by themselves be expected 

to capture mutations that affect ligand binding, the acylation transition state, or the reactive 

chemistry directly. Those steps have been the subject of other simulation studies [38,155,161–

167], and it is hoped that a combined multimodal approach may yield a more comprehensive 

understanding of mutations affecting CTX beta-lactamase function. Our results are striking in that 

they show how acyl-enzyme conformational dynamics can identify allosteric mutations that do not 

substantially alter minimum-free-energy structures (of the apo enzyme and, we speculate, other 

intermediates) yet increase catalytic rates and resistance to clinically used antibiotics several-fold. 

As might be expected, the allosteric mutations thus identified do not lie in the thermostable or rigid 

core of the molecule—in our tests, mutations there are more likely decrease rather than enhance 

function. The oxyanion hole stabilization metric used to score mutants is believed necessary but 

not sufficient for hydrolysis and is likely noisy due to simulation sampling. It thus is not expected 

to be a linear predictor of kcat but nonetheless demonstrates good predictive ability in identifying 

mutants with increased resistance (3/5 top-scoring mutants have increased resistance). 
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If we classify the conformation ensemble of the acyl-enzyme state as an equilibrium between 

microstates that would stabilize an oxyanion (OXY) and microstates that would not (NON), our 

simulation dataset samples the OXY->NON conversion rate much better than the NON->OXY 

conversion rate. We ascribe the predictiveness of oxyanion hole scores computed using 

meropenem acyl-enzyme simulations for cephalosporin resistance to a correlation between OXY-

>NON conversion rates across mutants for these drugs. Additionally, since meropenem acyl-

enzyme simulations display somewhat faster OXY->NON rates, these simulations provide 

statistically better-converged estimators of the oxyanion hole scores. We also believe that 

undersampling of the slow NON->OXY conversion rate also likely explains why our simulation 

dataset is not predictive of meropenem resistance. 

This modulation of activity without substantially changing dominant conformation raises 

the question of whether our high-scoring mutations alter the free energy of the deacylation 

transition state and thus control the rate-limiting step for beta-lactam hydrolysis by CTX-M9. 

Classical molecular dynamics calculations that do not explicitly treat reactivity will not capture 

this directly. However, the scoring method we use here to assess hydrogen bonds that would 

stabilize an oxyanion in the deacylation transition state does succeed in predicting (either 

mechanistically or serendipitously) a set of mutants that increase catalytic activity. We therefore 

hypothesize that the predicted mutations either decrease the free energy of the deacylation 

transition state ensemble, likely via oxyanion stabilization, or alter the free energy of the acyl 

intermediate conformational ensemble with an overall effect of reducing the G‡ for deacylation. 

The kinetic data support an increase in kcat and, although they do not specifically prove an increase 

in kdac, are consistent with this hypothesis. 
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Point mutations that increases resistance to clinically used drugs at no apparent fitness 

cost—identical growth rates and for at least one mutant improved thermal stability—raise the 

question of why these mutants have not fixed in the bacterial population. We hypothesize that 

these indicate that the primary selection factor for CTX-M9 beta-lactamase fitness in the wild must 

not be cephalosporin hydrolysis (or likely any clinically used beta-lactam) but some non-

pharmacological toxin. This would not be surprising given that beta-lactamases likely arose as 

defences against microbial toxins. However, even circumstantial evidence that these and not 

pharmacological therapy dominate selection raises interesting implications for the further 

evolution of drug resistance. Such evidence implies that selection results from the interplay of 

microbial chemo-ecology and human intervention rather than a scenario where diversity was 

generated by microbial interactions and current selection is primarily driven by human factors 

[168–170].  

3.6  Chapter Conclusion 

Allosteric mutations that enhance kcat raise an important mechanistic question of how the 

allosteric change is manifested in the binding-pocket. General theories of allostery include 

analyses of spatial transmission paths or modulation of protein conformational ensembles [171]. 

Here, we show allosteric mutations that enhance kcat without substantially altering the active-site 

conformation in apoenzyme crystal structures. Machine-learning analyses can query how the 

conformational ensemble of the binding-pocket is altered by these mutations in simulations and 

thus predict how distant changes may manifest in the binding-pocket. Our results suggest a 

particular subset of residues involved in substrate positioning or coordinating catalytic water 

change in their conformational distribution with allosteric mutations that increase kcat. These 

findings will help guide future analyses of CTX-M9 substrate specificity and provide a 
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generalizable method for identifying specific binding-pocket residues with altered conformational 

ensembles in allosteric mutants. 
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Chapter 4. A Conformational Intermediate that Controls KPC-2 

Catalysis and Beta-lactam Drug Resistance 

4.1 Foreword  

 In Chapter 3, the success of the prediction of mutations which enhance the function of 

CTX-M9 is likely the result of measuring alterations to an off-pathway conformational transition. 

In this Chapter, we characterize a similar conformational transition that controls KPC-2's ability 

to hydrolyze carbapenem antibiotics. Because the conformational dynamics of KPC-2 are complex 

and sensitive to allosteric changes, we develop an information-theoretic approach to identify key 

determinants of this change. We measure unbiased estimators of the reaction coordinate between 

catalytically permissive and non-permissive states, perform information-theoretic feature selection 

and, using restrained molecular dynamics simulations, validate the protein conformational changes 

predicted to control catalytically permissive geometry. We identify two binding-pocket residues 

that control the conformational transitions between catalytically active and inactive forms of KPC-

2. Mutations to one of these residues, Trp105, lower the stability of the catalytically permissive 

state in simulations and have reduced experimental kcat values that show a strong linear correlation 

with the simulated catalytically permissive state lifetimes. 

4.2 Chapter Introduction  

Here, we seek to understand the conformational determinants of catalytic permissivity in 

the KPC-2 acyl-enzyme intermediate. This involves integrating two pieces of data: structural and 

chemical studies suggest that an oxyanion hole is required for efficient deacylation 

[27,35,41,46,172] while kinetic studies show the existence of an equilibrium between on-pathway 

and off-pathway structural forms of the acyl-enzyme intermediate [38,46,173–178] (Figure 4.1a, 

Figure 4.1b). Our prior work and that of others [27,38,63] suggests that these two may be linked: 
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in studying the related enzyme CTX-M9, we found kinetic evidence of an off-pathway 

intermediate, while molecular dynamics simulations also showed an equilibrium between 

conformations forming an oxyanion hole and those that did not. We showed that allosteric 

mutations that stabilized the oxyanion hole demonstrated increased catalytic activity in CTX-M9. 

We therefore hypothesize that these conformational transitions relate to the kinetic relationship 

between catalytically permissive acyl-enzyme states and catalytically nonpermissive ones for both 

CTX-M9 and, critically, KPC-2. We therefore seek to understand the conformational transitions 

between oxyanion-hole states of KPC-2 and non-oxyanion-hole states, identify what features of 

the protein potentiate such changes, and to use this information to understand mutations that 

increase or decrease drug-resistance of this clinically important enzyme. 
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Figure 4.1 Hydrolysis of beta-lactam drugs by KPC-2 involves an off-pathway intermediate 

that correlates with conformational changes in the acyl intermediate state.  

(A) Reaction diagram for beta-lactam hydrolysis by KPC-2 with off-pathway intermediate 

demonstrated for CTX-M9 and hypothesized for KPC-2. (B) Rendering of hydrogen bonds 

stabilizing an oxyanion hole in the KPC-2 acyl-enzyme (left) and alternate conformational state 

that does not stabilize an oxyanion hole (right). (C) Kinetic clustering of KPC-2 simulations shows 

a subnetwork of oxyanion-hole conformations, a subnetwork of non-oxyanion-hole 

conformations, and a flux pathway between these that retains an oxyanion-hole hydrogen bonding 

pattern until relatively late. (D) One-dimensional free-energy schema showing that the transition 

state for conversion between oxyanion-hole and non-oxyanion-hole conformations occurs before 

hydrogen bonds are actually lost, as confirmed by subsequent committor analysis.  
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Understanding transitions in and out of the oxyanion hole and identifying related protein 

conformational features requires a robust set of order parameters for the free-energy landscape 

involved. Our initial results indicated that formation of the oxyanion hole state itself, while 

catalytically required, was not a sufficient determinant of kinetic stability. We therefore employed 

committor analysis as a means to identify members of the transition state ensemble between 

catalytically permissive and nonpermissive conformations and to yield an unbiased estimate of the 

order parameter [179–181]. Using this analysis, we identify critical changes in the drug-binding-

pocket that precede and control transitions out of the catalytically permissive state. We 

demonstrate in molecular dynamics simulations that reversing these transitions drives formation 

or dissolution of the oxyanion hole. Finally, we validate our predictions by showing that the 

simulated oxyanion hole lifetimes of mutants at these sites correlates with experimentally 

measured kcat values for these mutants.  

4.3 Methods  

4.3.1 Molecular dynamics simulations 

Simulations of the KPC-2:meropenem acyl-enzyme were performed using structures and 

parameters we have previously reported [63]. Briefly, an initial structure with the beta-lactam 

carbonyl in an oxyanion hole was constructed by least-squares fitting of a SFC-1:meropenem acyl-

enzyme structure (PDB code 4EV4) onto the KPC-2 apo crystal of KPC-2 (PDB code 2OV5) with 

the carbonyl beta-lactam hydrogen-bonded to backbone amide protons of Ser70 and Thr237 

[38,41]. The protein was placed in an octahedral box with 2 nm minimum periodic separation and 

solvated with TIP3P water and 150 mM NaCl. This starting state was energy-minimized and 

equilibrated as previously described prior to production simulations [63]. Simulations were run 
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using Gromacs 5.1 [123] and AMBER99SB-ILDN protein parameters [125,182]. Meropenem 

parameters were determined as previously reported [63]. Hydrogen bonds were constrained using 

LINCS and short-range interactions were truncated at 1.2nm. Long-range electrostatics were 

treated using Particle Mesh Ewald [128]. Simulations were run with temperature maintained at 

310K using a velocity-rescaling thermostat [127] and pressure at 1 bar using a Berendsen barostat. 

An initial set of 20 simulations each at least 480 ns in length were run from this starting 

conformation with starting velocities randomly assigned from a Maxwell distribution. Further 

simulation datasets used in committor analysis and prediction of mutants are described below. 

4.3.2 Kinetic map construction 

Conformational states of KPC-2:meropenem were determined via an initial fine structure-

based clustering of simulation snapshots taken at 50-ps intervals followed by kinetically driven 

secondary clustering. A single round of k-centers clustering on RMSD of the drug-binding-pocket 

(see Supplementary Information in Appendix B) to a cutoff of 1 Å RMSD was followed by 10 

rounds of k-medoids optimization to yield 2402 fine clusters with RMSD of 0.6 Å from each 

cluster medoid averaged over the dataset. Kinetically driven clustering was then performed using 

Robust Peron Cluster-Cluster analysis [183] on the connectivity graph obtained by mapping the 

original simulation trajectories onto the fine clustering to yield 50 conformational states. The 

resulting map was visualized as a directed graph with edge weights between nodes i and j 

proportional to the probability of an i-j transition in the simulation trajectories. This map was then 

analyzed for transitions from oxyanion-hole conformational states to non-oxyanion-hole 

conformational states using a 3.3-Å cutoff definition of a hydrogen bond. Additional details are 

given in Appendix B. 
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4.3.3 Committor analysis  

Because two metastable free-energy basins were observed in the original set of simulation 

trajectories, commitment probability [181] between the two was calculated to yield a robust 

reaction coordinate. The catalytically permissive (EI) basin was defined as hydrogen-bonds 

according to the Wernet Nilsson criteria [184] between: the backbone amides of Thr237 and Ser70 

and the beta-lactam carbonyl oxygen, the side chain of Asn132 and meropenem 6α-1R-

hydroxyethyl, and the side chains of Glu166 and Asn170. The catalytically nonpermissive (EI*) 

basin was defined as a loss of the oxyanion hole hydrogen bonds and a distance greater than 1 nm 

between Glu166 ɣO and Asn170 αC or Asn170 ɣC and Glu166 αC. We compute a number of 

unbiased molecular dynamics trajectories starting from some point X in conformation space and 

calculate the number of simulations nEI that reach basin EI before basin EI* and the number of 

simulations nEI* that reach basin EI* before basin EI. The commitment probability PX = nEI / (nEI 

+ nEI*) is thus a robust reaction coordinate that depends only on the structural definition of the 

metastable basins and does not require prior knowledge of any collective variables or order 

parameters. We performed this analysis on 20 conformational snapshots resampled from an 

unbiased molecular dynamics simulation trajectory that started in EI and ended in EI* to classify 

the conformational transition and obtain a member of the transition state ensemble similar to an 

approach used previously for other complex biomolecular reactions [179]. Between 20 and 80 

unbiased simulations were used per starting point with a minimum length of 50 ns per simulation. 

Committor value uncertainties were estimated via bootstrap resampling. 
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4.3.4 Identification of protein conformational transitions that control catalytic permissivity  

Since beta-lactam drug reorientation occurred relatively late in the transition between 

catalytically permissive and nonpermissive states, we performed information-theoretic feature 

selection to determine which protein conformational transitions control catalytic permissivity. In 

addition to the 20 conformations for which committor values were calculated directly, we imputed 

committor values for related snapshots via agglomerative clustering, yielding 35,651 

conformational snapshots fully committed to EI and 4,448 snapshots fully committed to EI*. These 

two datasets were reweighted to yield a balanced dataset, and minimum-redundancy, maximum-

relevance feature selection [159] was then applied to identify the 10 protein-protein interatomic 

distances that best differentiated EI and EI* states (see Appendix B for details on clustering and 

feature selection).  

To test the effect of these top 10 distances on determining rather than just reporting on 

catalytic permissivity, we selected KPC-2:meropenem conformations that were strongly 

committed to either EI or EI* and asked whether biasing the EI-starting conformations to the top-

10 distances found in EI* conformations would change overall commitment and vice versa. To 

test this, we ran an additional set of 20 committor-analysis trajectories with a Hamiltonian bias on 

the top 10 distances using a minimal-biasing potential formulation [185]. These simulations were 

run until commitment to either EI or EI* to estimate committor values under biasing and compare 

with unbiased committor values. 

4.3.5 Testing of KPC-2 point mutants  

A series of Trp105 point mutants were generated, simulated, and the EI state lifetime 

compared to experimentally measured kcat values as follows: each point mutant structure was 
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generated via Modeller [186] using a KPC-2:meropenem conformational snapshot in the EI state 

as a template. Energy minimization and equilibration were performed identically to the KPC-

2:meropenem wild-type enzyme with the exception that position restraints were applied to each 

atom in the mutant residue 105 that had a matching atom in the wild-type structure, bringing the 

mutant residue 105 into alignment with the wild-type Trp105. 20 simulations were run per mutant, 

each until EI* state commitment or > 100 ns. EI state lifetime for each mutant was estimated by 

calculating the average probability of satisfying criteria for state EI across all simulations and 

fitting a double-exponential decay to these data after applying a Gaussian filter to correct for fast 

time-scale fluctuations. The aggregate decay constant, τ = A1τ1 + A2τ2, where A is amplitude and 

τ is the decay constant, was then compared to experimental kcat values previously reported[64]. 

4.4 Results and Discussion 

4.4.1 Kinetic map of KPC-2 conformational transitions  

We constructed an initial kinetic map of conformational transitions of KPC-2 by starting 

20 independent simulation trajectories of the KPC-2:meropenem acyl-enzyme from the 

catalytically permissive, oxyanion hole state. 11 of these assumed a non-permissive state with loss 

of the oxyanion hole within 500 ns of simulation. We then used these simulations to construct a 

kinetic map of the conformational transitions associated with loss of the oxyanion hole in KPC-2. 

This map (Figure 4.1c), generated by fine structural clustering and then analysis of the resulting 

kinetic network (see Methods), surprisingly showed that loss of the oxyanion hole occurred quite 

late in the transition from permissive to nonpermissive states. Both oxyanion-hole and non-

oxyanion-hole conformations formed kinetic subnetworks with substantial exchange among 

conformational clusters, but the pathway from oxyanion-to-non-oxyanion conformations included 
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a large number of oxyanion-hole conformations that demonstrated unidirectional flow towards the 

non-oxyanion-hole state within our initial sampling. This finding suggests that the hydrogen bonds 

supporting an oxyanion hole are alone insufficient to define a metastable free-energy basin for 

catalytically permissive conformations of KPC-2. We therefore developed a more robust set of 

criteria to capture this metastable basin as outlined below. 

4.4.2 An unbiased reaction coordinate for KPC-2 conformational transitions 

We employed committor analysis to develop a more robust reaction coordinate for 

conformational transitions of the KPC-2 acyl-enzyme between catalytically permissive and 

nonpermissive states. Briefly, committor analysis relies on running a large number of molecular 

dynamics trajectories starting from the same point in conformation space; given a set of metastable 

basins {A, B, …}, the committor value of that starting point in phase space is defined as (ai,bi,...), 

where ai is the fraction of trajectories that reach state A before any other defined basin. This 

provides a reaction coordinate for an arbitrarily complex free-energy landscape that depends only 

on the definitions of the metastable basins. Based on prior analysis of KPC-2 [38,41,187], we 

defined the catalytically permissive basin as conformations fulfilling the following criteria: 

hydrogen bonds between: (1) the backbone amides of Thr237 and Ser70 and the beta-lactam 

carbonyl oxygen that form the oxyanion hole, (2) the side chain of Asn132 and meropenem 6α-

1R-hydroxyethyl, and (3) the side chains of Glu166 and Asn170. We defined the nonpermissive 

basin as conformations showing 1) a loss of the oxyanion hole and (2) distance greater than 1 nm 

between Glu166 ɣO and Asn170 αC or Asn170 ɣC and Glu166 αC (Figure 4.2a, 4.2b). We then 

ran “shooting” trajectories from starting conformations resampled from an unbiased permissive-

to-nonpermissive molecular dynamics trajectory of the KPC-2 acyl-enzyme (Figure 4.2c) and 
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applied committor analysis in order to better understand the free-energy landscape of this 

transition. 
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Figure 4.2 Metastable basins of catalytically permissive and nonpermissive state in KPC-2 

Rendered in (A) and (B) are the intramolecular distances (dashed lines) used to classify metastable 

basins for catalytically permissive (EI) and catalytically nonpermissive (EI*) states. The EI basin 

was defined as hydrogen bonds between the displayed atom pairs (yellow dashes). The EI* basin 

was defined as a lack of oxyanion hole and a distance > 8Å between 166 CD and 170 CG (orange 

dashes). Rendered in (C) is a projection of relative free energy onto a 2D plane defined by PCA of 

all pairwise heavy-atom distances within the binding-pocket. A representative trajectory between 

EI and EI* is plotted in black. 
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4.4.3 Analysis of the transition state controlling catalytic permissivity  

Committor analysis showed two strongly-committed regions with a relatively broad region 

of moderate commitment between them (Figure 3a). This is consistent with the probability density 

projection from our initial simulations rendered in Figure 2c, which suggests a relative “plateau” 

of the free-energy surface between the two large metastable basins, although both the estimated 

free-energy surface and the committor values suggest that this intermediate region is far from 

uniform. As expected from the kinetic map analysis, the member of the transition state ensemble 

identified via committor analysis still showed the hydrogen bonding pattern that defines an 

oxyanion hole, confirming that loss of the oxyanion hole occurs after commitment to 

nonpermissivity in our simulations. Structural comparison of the catalytically permissive basin 

(EI) and the catalytically nonpermissive basin (EI*) showed movements in the SDN motif loop 

and the loop containing Trp105 away from the drug (Figure 3b). The member of the transition 

state ensemble was via gross analysis structurally intermediate between EI and EI*. Quantitative 

analysis and computational testing of the key protein conformational features controlling the EI to 

EI* transition of KPC-2 follows. 
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Figure 4.3 Committor values yield a reaction coordinate for catalytic permissivity and 

member of the transition-state ensemble  

(A) Rendering of committor values through the transition region between EI and EI*, identifying 

a member of the transition state ensemble at 50% commitment. Shaded areas indicate bootstrapped 

95% confidence intervals (B) Rendering of the transition state ensemble member and two 

structures that were EI-committed and EI*-committed (drug not shown). Protein conformational 

changes from EI to EI* include alterations in the loop containing W105 and the SDN loop. These 

residues then interact differently with the substrate, and the binding-pocket size increases (Figure 

4.4b). 
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4.4.4 Protein conformational changes controlling catalytic permissivity  

Because the KPC-2 transition between catalytically permissive and nonpermissive states is 

relatively complex, we used information-theoretic feature selection to identify a set of key protein 

conformational changes that control catalytic permissivity. We applied mRMR feature selection 

(see Methods) to rank independent interatomic distances that best differentiate conformations in 

the EI basin from those in the EI* basin (see Methods). We selected the top ten distances (Figure 

4a; Table 4.1) and set up the following test to evaluate their effect. If biasing these distances 

towards EI-committed values reverses commitment to the EI* state and biasing these distances 

towards EI*-committed values reverses commitment to the EI state, then they can be considered 

to control catalytically permissive versus nonpermissive conformations. As shown in Figures 4c 

and 4d, rerunning committor calculations with these biases applied indeed reversed commitment, 

and since none of the distances involved either the drug or residues used to assess commitment, 

we conclude that these interatomic distances indeed control oxyanion hole stability and catalytic 

permissivity.  

Since all of the key distances controlling catalytic permissivity increased between EI and 

EI* states, we hypothesized that some of the conformational changes involved in loss of catalytic 

permissivity might also affect the binding-pocket size. Indeed, the solvent-accessible surface area 

of the binding-pocket significantly increased from catalytically permissive states to nonpermissive 

states (Figure 4.4b), and the free-energy plateau region showed intermediate values. We thus 

conclude that loss of catalytic permissivity involves relaxation of the binding-pocket structure in 

ways that permits the beta-lactam substrate to lose proper orientation for hydrolysis. 
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Figure 4.4 Identification and validation of conformational changes between permissive and 

non-permissive states.  

(A) Molecular rendering of key distances that change between EI and EI* states identified by 

information-theoretic feature selection. (B) Solvent accessible surface area for the ligand-binding-

pocket plotted for conformations in the EI permissive state, the EI* nonpermissive state, and states 

on the free-energy plateau between. Pocket surface area increases significantly from EI to EI* 

conformations (p<.0001 via 2-sample Kolmogorov-Smirnov test). (C,D) Biases on key distances 

control commitment to EI vs. EI* states. Control of catalytic permissivity by these key distances 

was validated by selecting starting conformations on either side of the free-energy barrier between 

EI and EI* and then running MD simulations biased towards the opposite state via restraints on 

the identified distances. In each case, the applied bias significantly altered commitment compared 

to an unbiased set of trajectories. Error bars in all plots indicate 95% confidence intervals 

calculated via bootstrap. 
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Atom pair 
MI Score (relevance 

portion of mRMR) 

Mean EI-

committed 

distance (nm) 

Mean EI*-

committed 

distance (nm) 

TRP 105 CE2 - CYS 238 N .545 1.14 1.34 

SER 130 N - LYS 234 CE .090 .50 .53 

TRP 105 CG - CYS 238 SG .541 1.26 1.46 

SER 130 OG - GLY 236 C  .500 .712 .854 

TRP 105 CD2 - CYS 238 SG .539 1.33 1.54 

CYS 69 CA - SER 130 CA .527 1.012 1.17 

TRP 105 CD2 - CYS 238 N .536 1.12 1.32 

CYS 69 C - SER 130 CA .521 .88 1.03 

TRP 105 CG - CYS 238 N .540 1.07 1.26 

CYS 69 CA - SER 130 N  .520 1.14 1.30 

 

Table 4.1 Top 10 protein-protein atomic distances that distinguish catalytically permissive 

and nonpermissive states.  

Distances were chosen based on iterative mRMR, which balances the MI score against redundancy 

with previously selected distances. Average distance values are listed for all conformations with 

>80% imputed commitment to EI or EI* states respectively. 
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4.4.5 Testing mutants of key residues controlling permissivity 

More specifically, all ten distances controlling the KPC-2 acyl-enzyme conformational 

change involved either Ser130 or Trp105. Ser130 hydrogen-bonds with the meropenem 

thiazolidine ring, while Trp105 extensively contacts the ring in catalytically permissive 

conformations (Figure 4.5). To test the importance of these residues and their interactions with the 

rest of the binding-pocket in controlling carbapenem hydrolysis by KPC-2, we simulated wild-

type KPC-2 and four Trp105 mutants that had been characterized experimentally: W105F, 

W105N, W105V, and W105L [64]. Since occupancy of the catalytically permissive state should 

correlate with kcat, we measured the time-autocorrelation function of the catalytically permissive 

state in our simulations and compared it with the imipenem kcat values measured experimentally 

(Figure 4.6). We observe a Pearson correlation coefficient of 0.95 between calculated EI-state 

lifetimes and experimental kcat values, suggesting that the EI-to-EI* forward rates vary between 

mutants more than the reverse rates, and thus the EI-state lifetime controls the equilibrium constant 

between these two states. The strong linear correlation with kcat values further suggests that Trp105 

may indeed control transitions between catalytically permissive and nonpermissive states and 

thence kcat values and carbapenem drug resistance. 
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Figure 4.5 Trp105 and Ser130 interact with the meropenem thiazolidine ring in the 

catalytically permissive state but not the nonpermissive state  

(A) In catalytically permissive conformations, Trp105 (cyan) interacts with the thiazolidine ring 

(orange) through Van der Waals interactions while Ser130 (violet) hydrogen bonds with the amide 

(fuscia) on the ring and carboxylic group on the thiazolidine ring. These interactions are quantified 

for both sets of conformations in (B). In catalytically nonpermissive conformations (C,D) both 

hydrogen bonding between Ser130 and the drug and Van der Waals contacts between Trp105 and 

the drug are lost. 
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Figure 4.6 Trp105 mutants with reduced kcat values show corresponding reduced lifetime in 

the catalytically permissive acyl intermediate state.  

(A) Probability of remaining in catalytically permissive state calculated from simulations of 

Trp105 mutants. (B) Lifetime of catalytically permissive state (EI) in each set of mutant 

simulations is plotted against the corresponding imipenem kcat value. Dashed lines indicate fits 

(double-exponential for lifetimes, linear for lifetime-kcat relationships). The Pearson correlation 

coefficient is 0.95. 
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4.5 Chapter Conclusions 

The acyl-enzyme intermediate of KPC-2 is critically important in differentiating this 

carbapenemase from less-resistant beta-lactamases. Prior work has suggested that the 

conformational equilibria of this acyl-enzyme state may determine kcat, but a detailed molecular 

explanation for this has thus far been lacking. Here, we have used classical molecular dynamics 

simulations of the acyl-enzyme intermediate and committor analysis to analyze slow 

conformational changes between a catalytically poised substate of the acyl-enzyme intermediate 

and one that lacks key features for catalysis. The changes we identify to the ligand-binding-pocket, 

specifically interactions of Ser130 and Trp105, appear critical in positioning the carbapenem drug 

for hydrolysis. Knowledge of these key conformational changes will now permit better prediction 

of drug-resistance mutants of KPC-2 and potentially other highly resistant beta-lactamases. It also 

provides a starting point for the computational evaluation of new small-molecule inhibitors for this 

beta-lactamase that is the most common cause of carbapenem-resistant infections in the United 

States. 
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Chapter 5. Dissertation Discussion and Future Directions 

5.1 Dissertation Discussion 

In this work, I have presented three approaches to understanding residues and interactions 

that control beta-lactamase function and subsequently antibiotic resistance. In this section, I will 

discuss the impact and relevance of some of our observations and approaches.  

5.1.1 Significance of prediction of allosteric residues which affect function 

The most direct application from our work for predicting future antibiotic resistance 

involves the two developed approaches that identify functionally important residues or mutations. 

The first method (Chapter 2) measures the strength of the association of a residue to the pocket. 

The second (Chapter 3 and Chapter 4) predicts the effect of a specific mutation on beta-lactamase 

function. In the future, these two prediction techniques could guide wet lab experiments or aid 

drug design that attempts to avoid future resistance.  

Our first developed approach maps the strength of the association of every residue site back 

to the enzyme binding-pocket and lends itself to potential clinical applications that need rapid 

analysis of newly discovered mutations. We have shown that this approach applied to CTX-M9 

identifies residue sites that, when mutated, have large effects on function along with residue sites 

that have little or no effect on function (Chapter 2). One benefit of this approach is that the resulting 

data contains a pairwise measure of association between all residues. This is useful for applications 

that require pre-computed data such as those that might rapidly query the potential functional 

importance of several residues. With the rise of rapid bench top and bedside genetic sequencing, 

one could envision a scenario where this approach aids a clinical team that has identified a novel 

mutation in a beta-lactamase carried in an infection. With these infections, clinicians usually need 
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to act quickly and cultures and resistance testing takes at least 24 hours [188]. Therefore, this tool 

could provide a preliminary assessment during this time as to whether the resistance of this new 

beta-lactamase may be altered from wild-type in this infection. A mutation at a residue with a low 

association to the pocket could indicate that current treatment protocols could be effective. There 

are limitations to this application. First, a mutation to a highly associated residue could indicate 

either a potential decrease or increase of resistance and, therefore, is less useful. Second, such an 

approach, would not consider other mechanisms of resistance within an infection.  

Our second developed mutation prediction approach models the effects of a specific 

mutation which could improve drug development by identifying high-yield mutations to test for 

resistance which could aid drug development. This approach carries higher computational costs as 

molecular dynamic simulations are performed for each queried mutation instead of wild-type 

simulations as done in our first approach. The benefit of this increased cost is that this provides 

clearer information as to the effect of a mutation. Furthermore, computational power is rapidly 

increasing making this approach more feasible in the future [189]. The application of the prediction 

of specific mutations on beta-lactamase resistance and spectrum could greatly aid drug 

development. The likelihood of resistance to a new beta-lactam antibiotic affects its potential 

economic success and clinical usefulness. Therefore, a tool that can predict resistance 

computationally could integrate into a pre-synthesis drug development pipeline aiding in the 

decision to synthesize and further test a compound. This would speed this process and produce 

candidate compounds with a higher likelihood of commercial and clinical success.  

5.1.2 Insights from protein-wide mapping of allosteric networks 

In our pairwise characterization of the motional associations of residues in CTX-M9 

(Chapter 2), we developed an “allosteric network”, which simplifies complex multidimensional 
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simulation data in order to provide an overview of the dynamic relationships across an enzyme. In 

our work, this network provides a description of how different regions of a beta-lactamase may 

interact and insight into the machinery that supports its function. A key strength in the development 

of this network is the use of mutual information and its identification of associations regardless of 

the means of communication. In practice, analyzing molecular dynamics simulations for allosteric 

interactions is difficult because the signals are noisy and multidimensional [94]. Mutual 

information simplifies this through the measure of linear and non-linear associations. Comparisons 

since our analysis have found that mutual information on molecular dynamics simulations captures 

more biologically relevant interactions than linear based methods such as correlation [94]. 

Furthermore, mutual information identifies associations between two residues regardless of how 

the interaction transmits. Therefore, it captures interactions between residues communicated by 

direct and diffuse mechanisms.  

5.2 Future Directions 

In this dissertation, we have developed methods to characterize determinants of beta-

lactamase activity. These methods offer several possibilities for further work in understanding 

antibiotic resistance. Here, I propose three potential directions: 

(1) Refining predictions of mutant effects on function 

(2) Characterizing novel beta-lactamase inhibitor resistance in KPC 

(3) Characterizing closely linked residue sub-networks 

5.2.1 Refining predictions of mutant effects on function 

In this dissertation, we developed an approach for predicting the functional effects of 

mutations to beta-lactamases using two complementary methods. The first method (see Chapter 3) 
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involved large-scale prediction of allosteric point mutations on enzyme function in a non-

carbapenemase, CTX-M9, using an intra-pocket distance metric. The second method (see Chapter 

4) employed a more sophisticated conformational approach to predict the effect of mutations on 

kcat in a carbapenemase, KPC-2. However, this method focused on only one binding-pocket residue 

and allosteric residues have been shown to affect these enzymes (see Introduction). It would, 

therefore, be valuable to, first, expand the predictions of kcat from modulation of off-pathway 

exchange kinetics to include allosteric locations in KPC-2 and, second, to apply the improved 

kinetic prediction method from Chapter 4 to CTX-M9 to identify mutations that might grant 

carbapenemase activity. 

2.5.1a Predicting effects of allosteric mutations on KPC-2 function 

 Initial work predicting the effect of mutations on kcat in KPC-2 (Chapter 4) measured how 

binding-pocket mutations altered a conformational transition. While the methods successfully 

predicted the change in activity, there was a direct Van-der-Waals interaction between the mutated 

residue, Trp105, and meropenem (Figure 4.5). From studies of variants of KPC, it is clear that 

allosteric mutations can also affect KPC kcat values [59–63]. Therefore, I now wish to use this 

transition-based method to predict the effects of mutations to residues that have no direct 

interaction with the drug. A successful implementation of this expanded approach would allow me 

to characterize allosteric residues that support carbapenemase activity which would aid in 

understanding how KPC-2 provides resistance to carbapenems. 

A first step to achieving this goal would involve predicting the effects of second shell 

mutations on function. Second shell residues are defined as residues which have no direct 

interactions with the drug but do interact with binding-pocket residues [190]. Second shell residues 

offer an intermediate step in expanding this method to allosteric mutations as these residues are 
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one interaction removed from direct interaction with the ligand. Furthermore, the effect of 

mutations to many of these residues in KPC-2 has been studied and kinetically characterized, 

providing existing kcat values for comparison [66]. A more ambitious subsequent step would 

involve predicting the effects of allosteric mutations beyond the second shell. This approach would 

first utilize allosteric KPC mutations that have already been kinetically characterized [191]. 

Resulting alterations to this transition would then be compared to reported kcat kinetics.  

Next, I would perform novel mutation prediction in a manner similar to the mutant 

screening simulations employed in Chapter 3 but with the oxyanion hole metric replaced by 

measuring how mutations affect the lifetime of the catalytically competent state. While 

computationally expensive and requiring subsequent experimental construction and verification of 

novel mutations, screening for novel mutations that would affect carbapenemase activity in KPC-

2 would yield a better understanding of the mechanisms of this enzyme and how it might mutate 

in the future. I hypothesize that mutations which decrease catalytically favorable state stability 

would have similar reductions in kcat.   
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2.5.1b Granting carbapenemase function to CTX-M9 

 Another future direction would be understanding the determinants of spectrum in different 

classes of beta-lactams. This would provide a tool for predicting how a beta-lactamase may acquire 

full resistance to a previously effective class such as carbapenems. Specifically, identifying 

mutations that would confer carbapenemase activity to CTX-M9 offers the most useful first step 

since it could aid further drug development of carbapenems and other beta-lactam antibiotics. 

 An initial goal with the work in CTX-M9 (Chapter 3) was to identify allosteric residues 

which might grant carbapenemase activity to CTX-M9. However, the initial distance-based metric 

failed to do so in meropenem simulations, suggesting that other properties of the active site, beyond 

those considered, affected spectrum. Subsequent work with KPC-2 (Chapter 4) resulted in a better 

approach to predict mutations that alter resistance by observing a mutation’s effect on an off-

pathway conformational transition. Based on our work and characterization of CTX-M9 with 

meropenem, the acyl-enzyme of CTX-M9:meropenem may undergo a similar conformational 

transition like KPC-2 but with a highly favorable off-pathway intermediate and highly unfavorable 

on-pathway intermediate. Therefore, I propose that mutations which alter CTX-M9:meropenem’s 

conformational transition to make on-pathway conformations more favorable may grant 

carbapenemase function to this non-carbapenemase. 

Before screening this possible pathway, one must ensure that catalytically favorable 

conformations in KPC-2 according to existing criteria are rare in CTX-M9 simulations. CTX-M9’s 

and KPC-2’s binding-pocket residues closely match each other (Figure 5.1). This means that the 

definitions developed to identify catalytically favorable states for KPC-2 with meropenem could 

apply to CTX-M9. If these definitions are accurate, defined favorable conformations seen in KPC-

2:meropenem simulations should be rare in CTX-M9:meropenem simulations, as CTX-M9 is 

unable to hydrolyze and release meropenem [27]. To confirm this, CTX-M9:meropenem 
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simulations of wild-type and mutants with high oxyanion hole favorability would be started in a 

conformation meeting this favorable definition. If the catalytically favorable state’s lifetime 

matches that of KPC-2:meropenem, this would indicate that a different definition is needed to 

describe specific conformations favorable for carbapenemase activity.  

To narrow this definition, conformational co-clustering of CTX-M9 and KPC-2 pockets 

could identify conformations specific to KPC-2:meropenem and therefore, potentially ones 

responsible for carbapenemase activity. Specifically, clusters that contain conformations exclusive 

to KPC-2 that match prior definitions for catalytic favorability would designate conformations 

aiding carbapenemase activity (Figure 5.2A).  

Once the definition of catalytically favorable conformations for carbapenemase activity 

has been established, CTX-M9 can be screened for mutations that increase the favorability of this 

conformation. From Chapter 2, CTX-M9 mutant work suggests that major changes to 

carbapenemase activity likely require multiple mutations. Therefore, a multiple mutation screening 

approach would need to be developed. These approaches are very difficult because the 

combinatorial space of possible mutations is extremely large. Genetic algorithms offer a potential 

multiple mutation approach for CTX-M9. These algorithms have been successfully used in fields 

to design solutions where all possible solutions cannot be fully constructed and compared 

[192,193]. These algorithms employ a greedy approach where the algorithm evaluates a series of 

candidates and selects the best result (the definition of “best” varies by problem). This is an 

iterative process where the remaining candidates are evaluated with that selected change and the 

best result taken; each iteration adds one additional change.  

For CTX-M9, a genetic algorithm would build a multi-mutant. It would begin with an 

initial screen of all possible point mutants; likely using swap point mutants with KPC as before. 
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There are two potential measures to assess a “best performing mutation.” The first would evaluate 

simulations for conformations which meet the catalytically favorable definition or, if none meet it, 

have the closest root-mean squared distance to this conformation. The second would to start these 

simulations in this catalytically favorable state and measure the lifetime of the state (see Chapter 

4), then select the mutation with the highest persistence time in this state. In a subsequent round, 

double mutants would be evaluated where all mutants have the best performing mutant of the 

previous round and one additional point mutation (Figure 5.2B). This would continue until either 

of these two evaluations meet a certain tolerance to KPC-2 simulations (Figure 5.2B).  

A genetic algorithm does carry potential complications with CTX-M9. Mutations in these 

enzymes often demonstrate sign epistasis [85]. Therefore, there could exist a mutational set that 

grants carbapenemase activity with n mutations but performs poorly with n-1 mutations. A 

canonical genetic algorithm would never arrive at this solution because the algorithm would never 

select the nth-1 set needed at the nth round. Therefore, this algorithm could be augmented with a 

Monte Carlo approach where the “best” mutation is selected with some probability related to its 

performance in the previous round. This introduces a degree of randomness that would avoid 

assuming that all mutations would be additive. Ultimately, this approach could be easily automated 

and permits sampling of a multi-mutational space to grant CTX-M9 carbapenemase activity. 

In addition to a genetic algorithm, chimeric approaches offer alternative experimental 

approaches to identifying multiple mutations which might change spectrum. These approaches 

replace sections of the target beta-lactamase, CTX-M9, with the corresponding section from the 

beta-lactamase of desired spectrum, such as KPC-2. For CTX-M9, I would replace key catalytic 

loops around the pocket such as the omega loop. These mutants would then be tested for activity 

and, if carbapenemase activity is identified, amino acids would be randomly reverted back and 
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these mutants tested or refined with directed evolution. This approach has been employed in other 

beta-lactamases to successfully aid directed evolution [84,194]. The downside of this approach is 

that such structural replacement in the protein could eliminate all drug activity through changes to 

pocket structure or stability producing an un-evolvable mutant. 
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Figure 5.1 Comparison of KPC-2 and CTX-M9 binding-pocket 

Crystal structure comparison of KPC-2 (PDB 2OV5) and CTX-M9 (PDB 2P74) demonstrates that 

major catalytic residues are conserved [37,41]. Structures suggest that catalytically favorable 

conformational definitions for KPC-2 could quickly translate to CTX-M9. It would be expected 

that such a conformation would be short lived in CTX-M9:meropenem.  
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Figure 5.2 Diagram of co-clustering and genetic algorithms  

(A) Simulations are performed of both KPC-2 and CTX-M9. Pocket conformations are then co-

clustered using a clustering algorithm (such as K-centers). Single clusters will consist of 

populations with similar structural conformations. Of these, there will be individual clusters that 

heavily weight one enzyme versus the other indicating unique conformations to that enzyme. New 

states unique to KPC-2 and satisfying, prior catalytic definitions likely represent potentially more 

specific conformations conducive to carbapenemase activity compared to CTX-M9 (4). 

(B) Simple example of a genetic algorithm for screening four possible mutations. The algorithm 

runs a series of simulations and then selects the top mutation. It then runs a series of double mutants 

simulations with this mutation and the remaining set. Each iteration reduces the possible mutations 

to test and develops a multi-mutant. In reality, this could employ cut-off criteria to stop iterations 

before all mutations are tested (not shown). Additionally, the criteria used would identify mutants 

that are showing favorable carbapenemase conformations, as discussed in the text.  
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5.2.2 Characterizing novel beta-lactamase inhibitor resistance in KPC 

New inhibitors offer a strategy in treating KPC-2 carrying infections but often lose efficacy 

due to novel mutations which grant KPC-2 resistance to these inhibitors [58]. It is not understood 

how these mutations grant resistance to these inhibitors. In Chapter 4, we characterized an off-

pathway conformational transition in the acyl enzyme state of KPC-2. One hypothesis is that beta-

lactamase inhibitors function by increasing the favorability of similar off-pathway conformations. 

Therefore, the methods developed to study off-pathway transitions with KPC:meropenem are well 

suited to characterized KPC-2’s interaction with an inhibitor and understand how novel mutations 

avoid inhibition. Understanding this interaction would aid in the design of future inhibitors.  

 Avibactam is the first beta-lactamase inhibitor effective against KPC [195,196]. It works 

by lowering the minimum inhibitory concentration of a co-delivered normally susceptible beta-

lactam [44]. Avibactam is thought to preserve beta-lactam periplasmic concentrations by 

preventing the hydrolysis of susceptible drugs through competitive competition for the beta-

lactamase’s binding-pocket [58]. Resistance to avibactam has arisen in KPC mutant enzymes. 

Currently, most mutations appear in the binding-pocket and second shell, but the combinations of 

mutations that confer resistance vary [58,197,198]. As a result, there is great interest in 

understanding how KPC-2 evades this new inhibitor. 

Current research suggests that resistant variants of KPC hydrolyze avibactam in ways that 

are similar to KPC-2 with meropenem (Figure 5.3) and that wild-type KPC with avibactam 

demonstrates conformations similar to off-pathway conformations with meropenem. Therefore, 

methods and findings from our study of KPC-2 and meropenem would likely translate to this 

system and could be used to understand how KPC-2 gains resistance to this inhibitor. Despite its 

interaction with KPC-2, avibactam is a non-beta-lactam beta-lactamase inhibitor with a bridged 
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diazabicyclooctane chemical structure (Figure 5.3) [58]. Chemically, avibactam and KPC-2 form 

stable acyl-enzymes, suggesting that acylation of KPC-2 occurs faster than deacylation [199]. The 

deacylation step has been measured with a koff of 1.4 x 10-4 s-1 with a deacylation half time of 82 

minutes [200]. This means that KPC-2:avibactam largely exists in the acyl-enzyme form (Figure 

5.3). KPC-2’s co-crystalized structure with avibactam matches binding-pocket off-pathway 

conformations of KPC-2:meropenem (RMSD .9Å) and demonstrates a large displacement of 

Trp105 as compared to the catalytically permissive states of KPC-2 and the KPC-2 crystal 

structure (Figure 5.4). Based on this information, I hypothesize that KPC-2 and avibactam likely 

undergo a conformational off-pathway transition in the acyl-enzyme state that is conformationally 

similar to that with meropenem. As a future direction, I would identify catalytically favorable 

states in the pocket with avibactam as compared to KPC wild-type and then predict the effect of 

these mutations and others on potential avibactam activity.  

Characterization of the conformational differences between KPC and avibactam-resistant 

KPC variants provides critical insight into how KPC increases its hydrolytic rate of avibactam to 

gain resistance. Molecular dynamics simulations offer a means to identify these differences. 

Specifically, simulations of both types of KPC with avibactam would undergo conformational 

clustering of the binding-pocket to identify conformations unique to the mutants. This approach is 

similar to the approach proposed for KPC-2 and CTX-M9 (Figure 5.2A). Clusters unique to 

avibactam resistant mutants likely represent conformations that promote catalytic activity. I can 

use our past understanding of catalytic conformations in KPC-2 to further refine these. The 

conformations unique to resistant mutants could provide useful information about the pocket 

interactions that support hydrolysis of avibactam and guide future drug development.  
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Next, these conformations could serve as the basis to predict other mutations which could 

grant similar avibactam resistance. As with the Trp105 mutants in Chapter 4, other KPC-

2:avibactam mutants could be started in these catalytically favorable conformations and the 

stability of these interactions measured as a surrogate for avibactam activity. Mutants that 

stabilized this conformation more than wild-type might confer resistance and are candidates for 

experimental testing. If multiple mutations are required, the previously discussed genetic algorithm 

approach could be employed. A successful prediction of mutations that cause avibactam resistance 

would aid in characterizing the avibactam resistance landscape and highlight potential future 

mutations that could confer resistance. 
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Figure 5.3 Postulated avibactam hydrolysis reaction  

Avibactam binds (A) and forms an acyl-enzyme (B) with KPC-2 similar to meropenem (Figure 

1.2). In mutants that confer resistance to avibactam, it is also thought to undergo a similar form of 

hydrolysis (C). At this time, the transition state following the acyl-enzyme has not been 

characterized (B/C).  
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Figure 5.4 KPC-2 off-pathway conformations demonstrate similar binding-pocket 

conformations to avibactam crystal structure 

KPC-2 off-pathway conformations from molecular dynamic simulations (yellow) (PDB 2P74) 

demonstrate similar binding-pocket conformations to the avibactam crystal structure (violet) 

(PDB 4ZBE) [41,199]. This conformation is most notable by the displacement of Trp105 as 

compared to catalytically favorable conformations (green). 
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5.2.3 Characterizing closely linked residue sub-networks 

I can extend approaches in Chapter 2 to identify functionally related groups of residues 

beyond the pocket in beta-lactamases which could aid in identifying multiple mutations that 

support enzyme stability or allow for comparison between diverse beta-lactamase families. In this 

chapter, we developed a method to measure the dynamic atom-to-atom associations across a beta-

lactamase. Atoms which have greater association have a higher score in this network. This 

structure is analogous to graphs. Therefore, algorithms developed from graph theory are highly 

applicable especially community or cluster identification algorithms [201,202]. Community or 

cluster algorithms identify highly connected components within a network. In beta-lactamases, 

each identified cluster, especially those associated with pocket mutations, could represent a group 

of residues which interact and function together [201–203]. An identified cluster provides 

information about a possible group of residues that support function or stability or insight about 

the residue-interaction patterns of the beta-lactamase which could serve as means to compare 

families of different spectrums.  

A common algorithm to identify clusters in biological networks uses hierarchical clustering 

[204,205]. In this approach, all associations are converted into a distance metric where high 

association is represented as a small distance and low association represented as a large distance. 

One can then perform a hierarchical clustering to group residues based on this distance matrix 

[206]. The resulting dendrogram encodes clusters at various strengths of association. From this 

dendrogram, one can then choose an association cut-off to select clusters. There are advanced 

approaches such as weighted correlation network analysis which employ a branch variable height 

cut-off that considers the underlying network and dendrogram structure [203]. Such approaches 
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have been used in imaging and gene-coexpression networks and may more accurately identify 

clusters [203,207,208]. 

 Identified clusters offer potential residues that may need to be co-mutated along with an 

initial targeted residue to maintain protein function. Our methods in simulation-based mutation 

prediction focus on the effect of an allosteric mutation on the pocket. These predictions do not take 

into account the effect of these mutations on stability or other aspects of the protein. As a result, 

created point mutations could result in a non-functional protein due to changes in the stability of 

the enzyme. In this case, co-mutating a targeted residue’s cluster could potentially rescue function 

by restoring a group of residue interactions necessary for stability.  

 Clusters also provide a measure of differences in dynamic interactions between beta-

lactamases of drug spectrums. Beta-lactamases from different families have diverse sequences and 

spectrums but demonstrate similar pocket structure and residues [24]. It is not understood whether 

these structurally similar but evolutionarily distinct enzymes have similar dynamic interactions 

across the protein and how these change with alterations to drug spectrum. Comparing clusters 

between families of different spectrums provides information on changes in residue interactions 

within the enzyme as it relates to function. Specifically, this would be done by performing 

simulations of different types of beta-lactamases from different families and calculating the 

clusters for each beta-lactamase. The difference in clusters could then be quantified by identifying 

the intersecting and different members of each homologous cluster. Clusters that are shared within 

members of a family but not between members of different families could identify spectrum related 

interactions. These interactions could further be studied by mapping the allosteric network to the 

enzyme structure or creating experimental mutants for resistance testing and structural study. 
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Identifying these unique clusters offers potential regions of the enzyme to further investigate in 

order to understand how dynamics corresponds to drug spectrum.  
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Chapter 6. Conclusion 

Understanding mutations and interactions in beta-lactamases which govern 

function and spectrum is important for the development of future drugs and other strategies 

to avoid resistance. However, this is challenging due to the influence of allosteric 

interactions on function. Through three studies, we have identified allosteric residues and 

biochemical interactions which alter the function of key clinical beta-lactamases. 

Specifically, in this work, we have mapped allosteric networks that support function, 

identified resistance enhancing allosteric mutations, and identified a key conformational 

transition that offers a novel potential target against beta-lactamase resistance. The 

approaches used have the potential to be adapted to other beta-lactamases to further 

characterize resistance. In the future, they could increase our understanding of novel 

mutations and speed response to new resistance in both clinical and pharmacological 

settings.  

 

 

 

 



 119 

Appendix A. Supplementary Methods for Chapter 3 

Enzyme kinetics.  

Chemicals used are as follows: kanamycin and chloramphenicol were purchased from 

Fisher Scientific. Nitrocefin was purchased from EMD Millipore (Billerica, MA) and Biovision 

(Milpitas, CA.) and dissolved in DMSO to form a 10 mM stock solution; any additional dilutions 

were performed in potassium phosphate saline buffer (pH 7.4). Meropenem sodium carbonate was 

purchased from LKT laboratories (St. Paul, MN) and used without further purification.  

For all kinetic and structural studies, bla-CTX-M9 mutants were transformed into the 

E.coli expression strain BL21-CodonPlus (DE3)-RIPL (gift of Zygmunt Derewenda). Single-

colony stocks were used to inoculate 50 mL LB medium containing 30 mg/mL kanamycin and 34 

mg/mL chloramphenicol for overnight growth at 37 °C. 4 ml of each resulting mixture was used 

to inoculate 2x 500ml TB (Terrific Broth) media containing 30 mg/mL kanamycin and 34 mg/mL 

chloramphenicol for growth at 37 °C, 220 rpm until OD600 measurements reached 1.4. Expression 

was induced with 0.1 mM isopropyl-b-D-thiogalactopyranoside, and cells were further grown 

overnight at 18 °C, 220 rpm.  

Bacterial cultures were pelleted by centrifugation at 4000 rcf for 20 minutes, the pellets 

were resuspended in 200 mL ice-cold Sucrose-Tris buffer (pH 9.0) and shaken for 20 minutes at 4 

°C. The mixture was centrifuged for 12 minutes at 10500 rcf, 4 °C. Periplasmic protein was then 

isolated as follows: cell pellets were resuspended in 200 mL 10 mM Tris/HCl pH 9.0, shaken for 

20 minutes at 4 °C, centrifuged for 12 minutes at 10500 rcf, 4 °C, and the supernatant containing 

periplasm was transferred to a fresh tube. Periplasmic protein was precipitated with ammonium 

sulfate and resuspended in TEAA buffer (pH 7.4). After overnight dialysis, protein purified via 

anion exchange chromatography (HiTrap Q FF, GE Healthcare, Sweden), followed by size 
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exclusion chromatography (Superdex 75 10/300 GL, GE Healthcare, Sweden). Eluted protein was 

dialyzed in 100mM PBS buffer pH 7.4 at 4 °C. The protein concentration was estimated using 

both 260/280 nm absorbance ratios and BCA assays. Enzymatic purity was assessed by SDS-

PAGE. 

Steady-state hydrolysis kinetics were measured as follows: nitrocefin was mixed with 

CTX-M9 enzyme or the indicated mutant in 10mM PBS, pH 7.4 to a final concentration of 0.2 nM 

enzyme and 2-200 µM nitrocefin as indicated. Nitrocefin hydrolysis was measured using 

absorbance at 486 nm at 15 s intervals using a Spectramax reader (Molecular Devices, Sunnyvale, 

CA). Initial velocities were determined by linear fits to the first portion of each reaction, and KM 

and kcat values were determined by nonlinear fits of initial velocities as a function of substrate 

concentration. A change in absorbance at 486-490 nm indicates formation of the acyl intermediate 

or any later stage in nitrocefin hydrolysis and thus reports on [EI] + [EP] + [P]. Fits of initial 

velocity data to estimate KM and kcat incorporated data from at least two biological replicas per 

mutant per concentration. 

Thermostability assays.  

Protein melting temperatures were measured using a SYPRO orange thermostability assay 

(Life Technologies, Carlsbad, CA). Dye fluorescence was monitored continuously in a real time 

PCR machine (Bio-Rad, Hercules, CA). All measurements were carried out in 10 mM phosphate 

buffer saline (pH 7.4) with 40 µM protein for apo enzyme. The meropenem adduct with CTX-M9 

was formed by mixing an enzyme to a final solution of 40 µM with 200 µM meropenem (aqueous 

stock solution). Enzyme-adduct mixture was incubated on ice for 10 minutes prior to measurement. 

All measurement runs were performed in 0.5°C increments from 20°C to 90°C. Melting 
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temperatures were determined as the greatest magnitude of the derivative of the observed 

fluorescence. 

Structural studies.  

Crystals of CTX-M enzymes mutants were grown by vapor diffusion using sitting drops at 

21 °C over buffer. CTX-M9-T165W was crystallized by mixing an equilibration mixture of 0.7 M 

potassium phosphate, 18% PEG 3350, pH of 8.2 1µl with 1µl of enzyme at 5 mg/mL in 10 mM 

sodium phosphate pH 7.5 Crystals were harvested after 7 days. CTX-M9 L48A was crystallized 

by mixing 1.2 M potassium phosphate pH 8.2 1µl with 1µl of enzyme at 20 mg/ml in 10 mM 

sodium phosphate pH 7.5. Crystals were harvested after 30 days. CTX-M9 S281A was crystallized 

by mixing 0.6 M sodium phosphate buffer, 20% PEG 3350, pH 8.4 with 1µl of enzyme (24 mg/mL 

in 10 mM sodium phosphate pH 7.5). Crystals were harvested after 90 days and diffracted to 6 Å. 

Crystals were flash frozen in liquid nitrogen prior to data collection.  

Data were collected at beamlines 22-ID (T165W) and 22-BM (L48A) at the Advanced 

Photon Source at 100 K. Reflections were indexed, integrated and scaled using X-ray Detector 

Software (XDS) for T165W and the HKL software package for L48A, followed by further 

processing with CCP4 [209]. Structures were solved by molecular replacement using Phaser [210] 

with chain A of the native CTX-M9 crystal as the starting model (PDB ID: 1YLJ). Rebuilding was 

performed in Coot [211] followed by refinement with isotropic B-factors using Refmac. Water, 

PEG, chloride and phosphate molecules were added manually by examination of the Fo-Fc and 

2Fo-Fc electron density maps.  

Simulation preparation and equilibration.  

The acylated meropenem and cefotaxime structures of CTX-M9 wild-type were generated 

using rigid-body fitting as previously described4 using the native CTX-M9 crystal structure 1YLJ 
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[120] as a starting model. Point mutations were modeled using MODELLER’s automodel [212] 

method. Histidine tautomer choices were determined automatically by the GROMACS [123] 

pdb2gmx utility; active-site protonation states were determined using PROPKA [213], with the 

remainder automatically determined by GROMACS pdb2gmx. The protein was placed in an 

octahedral box with a minimum of 2nm separation between periodic images and energy-minimized 

for 500 steps of steepest-descent minimization in vacuum. The protein was then solvated with 

TIP3P water and 150 mM NaCl; deacylating waters were not placed manually but spontaneously 

took the appropriate position during simulation. After solvation, another 500 steps of energy 

minimization were performed followed by 50,000 steps of NVT equilibration with 2 fs timesteps 

prior to production simulation with identical settings but in an NPT ensemble using the velocity-

rescaling thermostat [127] and Berendsen barostat. Velocities were randomly sampled at start from 

a Maxwell distribution. Pressure coupling was performed at 1 bar with a 10 ps relaxation constant 

and a compressibility of 10-4 bar-1. Temperature coupling was performed at 37 ºC with a time 

constant of 10 ps. A direct-space cutoff of 1.2 nm was used for both van der Waals and electrostatic 

interactions, and long-range electrostatics were treated using Particle Mesh Ewald [128] with a 

grid spacing of 0.15 nm. Hydrogen bonds were constrained using LINCS [126].  

Sequence analyses.   

CTX-M family enzyme sequences were retrieved using previously curated accession 

numbers12. A second, broader sequence alignment was generated using the 500 sequences most 

closely related to CTX-M9 using a PHMMER search13, discarding one that had a >50% length 

mismatch. Amino acid multiple sequence alignments were generated using MUSCLE14. 

Phylogenetically corrected sequence mutual information (MI_p) was computed using the APC 

correction detailed previously15. 
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Rigidity analyses.  

The KINARI software [214] was used to predict rigid clusters based on the crystal 

structures of wild-type CTX-M9 (2P74), L48A (5KMT), and T165W (5KMU) at 11 evenly-spaced 

cutoffs for hydrogen bonds and hydrophobic interactions, determined based on the highest and 

lowest interaction energies calculated by KINARI in the wild-type crystal structure. Each atom-

atom interaction was assigned a rigidity score consisting of the number of rigid clusters in which 

the pair co-existed across all 11 cut-off levels. Residue-residue scores were computed as the sum 

of all component atom-atom rigidity scores, and the per-row maximum of resulting matrix was 

calculated to yield residues most strongly participating in rigid-body interactions for each crystal 

structure. A complementary analysis was performed using MSU ProFlex [215] : 11 evenly spaced 

energy cutoffs were again used, and the most stringent cutoff before breakup of the large rigid core 

was selected. To test the effect of side-chain interactions on the stability of this core, each non-Ala 

residue in CTX-M9 was computationally mutated to alanine using MODELLER [212], rigid 

cluster analysis was performed on the resulting set of mutant structures, and each residue was 

scored based on similarity between the predicted rigid cluster for its alanine point mutant and the 

wild-type structure. 

Appendix B. Supplementary Methods for Chapter 4 

Atoms and distances used for structural clustering.  

Structural clustering was performed on the bound drug, binding-pocket residues, and other 

key substrate-interacting residues defined as follows:  binding-pocket residues were defined as 

those with a heavy atom within 5Å of the beta-lactam drug core for more than 10% of snapshots 

in the initial 20x500ns simulation dataset. The additional substrate-interacting residues used were 

His219, Arg220, His 274, Lys234, and Glu276 [41,58,65,66]. Structural clustering for kinetic map 
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construction was performed using rigid-body alignment in Cartesian space. Imputation of 

committor values and feature selection was performed using all heavy-atom:heavy-atom pair 

distances among these residues. 

Kinetic map analysis. 

A kinetic map of the oxyanion-hole to non-oxyanion conformational transition was 

constructed by structurally and kinetically clustering the eight initial molecular dynamics 

trajectories that visited both states. Each trajectory x can then be expressed as a sequence of 

clusters rather than a sequence of conformations. Using an interval of 50 ps, we constructed a 

directed graph between clusters where Wij, the edge weight between nodes i and j, is calculated as 

follows: 

𝑊𝑖𝑗 = 𝐶𝑜𝑢𝑛𝑡(𝑥(𝑛)  =  𝑖, 𝑥(𝑛 + 1)  =  𝑗) / 𝐶𝑜𝑢𝑛𝑡(𝑥(𝑛)), ∀𝑥, ∀𝑛  

for each trajectory x and time point n. This process of kinetic clustering and graph construction is 

similar to the construction of a Markov State Model, but because we simply analyze observed 

transitions rather than propagating the transition matrix in time, the sampling requirements are 

much less stringent. All 50 kinetic clusters (nodes in the graph) partitioned cleanly between 

oxyanion-hole and non-oxyanion-hole conformations (>95% non-oxyanion-hole or >90% 

oxyanion-hole). For visualization, all non-singleton oxyanion-hole nodes of the graph were plotted 

as well as all non-oxyanion-hole nodes connected to an oxyanion-hole node; the full graph is also 

given in Figure S2. One singleton node that contained oxyanion hole conformations but was 

connected only to a non-oxyanion-hole node; this node is shown only in Figure S2. 

Visualization of KPC-2 conformational space. 

The set of all pairwise distances defined above comprises 18,915 distances; singular value 

decomposition was employed to obtain an orthonormal basis set, and principal component analysis 
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was used to select a 148-dimensional projection that captured >99% of the variability between 

structural snapshots. Snapshots meeting the criteria for the EI or EI* states were completely 

separable by a hyperplane in the original 18,915-dimensional distance space determined via a 

support vector machine, suggesting that a reduced-dimension space should be able to capture 

differences between these states. A two-dimensional projection onto the largest principal 

components was used for visualization purposes only.  

Imputation of committor values. 

Because determining a committor value for a structural snapshot requires running 20-80 

unbiased molecular dynamics simulations for >50 ns each, we determined values in this manner 

for 20 structural snapshots. In order to select conformational features associated with the transition 

between catalytically permissive and nonpermissive states, a larger dataset was desired. We thus 

imputed committor values for related structural snapshots as follows. K-centers clustering was 

performed in the 148-dimensional space described above space to yield 30,000 clusters that were 

then refined with three iterations of k-medoids clustering [216]. These fine clusters were grouped 

using hierarchical agglomerative clustering using a complete linkage criterion; this was 

thresholded to the minimum number of clusters that maintained separation between all 20 

snapshots that had different “known” committor values. This yielded 27,486 clusters. ”Known” 

committor values were then assigned to all snapshots sharing the same cluster; all clusters not 

containing a “known” committor value remained undetermined. This yielded 35,651 snapshots 

committed to EI and 4,448 snapshots committed to EI*. The EI* snapshots were upsampled via 

data duplication to yield a balanced dataset for feature selection. 
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Feature selection. 

Greedy minimum-redundancy, maximum-relevance feature selection [159] was performed 

to identify the independent protein-protein distances in the ligand-binding-pocket most associated 

with the transition from catalytically permissive to nonpermissive states as follows. Structural 

snapshots labeled with imputed committor values of >80% EI or >80% EI* were assigned to those 

two classes CEI and CEI*, and the set of features used was {d}, the set of all distance pairs between 

non-hydrogen atoms in the KPC-2 binding-pocket. The mRMR statistic was calculated as: 

𝑚𝑅𝑀𝑅𝑖  = 𝐼(𝑑𝑖; 𝐶)  −  ∑ 𝐼(𝑑𝑖; 𝑑𝑗)
𝑗

  

where I(di; C) is the distance-pair:class mutual information and I(di; dj) is the distance-

pair:distance-pair mutual information summed over all selected distances. Histograms for mutual 

information were calculated with a fixed bin width of 0.5 Å. A greedy algorithm first proposed by 

Peng[159] was used to select the top 10 distance pairs that maximize this statistic. 

Biased simulations. 

Biased simulations were performed using a modified version of Gromacs implementing the 

minimal-biasing potential formulation [185]. A coupling constant (α) and update step (τ) of 10 and 

20ps respectively were used.  

  



 127 

 

References 
1.  Ventola CL. The Antibiotic Resistance Crisis. Pharm. Ther. 2015 Apr;40(4):277–283. 

2.  Costantine MM, Rahman M, Ghulmiyah L, Byers BD, Longo M, Wen T, Hankins GDV, 

Saade GR. Timing of perioperative antibiotics for cesarean delivery: a metaanalysis. Am. J. 

Obstet. Gynecol. 2008 Sep;199(3):301.e1-301.e6. 

3.  Bullock R, van Dellen JR, Ketelbey W, Reinach SG. A double-blind placebo-controlled trial 

of perioperative prophylactic antibiotics for elective neurosurgery. J. Neurosurg. 1988 

Nov;69(5):687–691. 

4.  Piddock LJ. The crisis of no new antibiotics—what is the way forward? Lancet Infect. Dis. 

2012 Mar;12(3):249–253. 

5.  Infectious Diseases Society of America (IDSA), Spellberg B, Blaser M, Guidos RJ, Boucher 

HW, Bradley JS, Eisenstein BI, Gerding D, Lynfield R, Reller LB, Rex J, Schwartz D, 

Septimus E, Tenover FC, Gilbert DN. Combating antimicrobial resistance: policy 

recommendations to save lives. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2011 

May;52 Suppl 5:S397-428. 

6.  Carlet J, Collignon P, Goldmann D, Goossens H, Gyssens IC, Harbarth S, Jarlier V, Levy 

SB, N’Doye B, Pittet D, Richtmann R, Seto WH, van der Meer JW, Voss A. Society’s 

failure to protect a precious resource: antibiotics. The Lancet 2011 Jul;378(9788):369–371. 

7.  Aminov RI. A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the 

Future [Internet]. Front. Microbiol. 2010 Dec;1 

8.  Kong K-F, Schneper L, Mathee K. Beta-lactam Antibiotics: From Antibiosis to Resistance 

and Bacteriology. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2010 Jan;118(1):1–36. 

9.  Fleming A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference 

to their Use in the Isolation of B. influenzæ. Br. J. Exp. Pathol. 1929 Jun;10(3):226–236. 

10.  Page MI. The mechanisms of reactions of .beta.-lactam antibiotics. Acc. Chem. Res. 1984 

Apr;17(4):144–151. 

11.  Carbapenems - Infectious Diseases [Internet]. Merck Man. Prof. Ed. [date unknown]; 

12.  Penicillins - Infectious Diseases [Internet]. Merck Man. Prof. Ed. [date unknown]; 

13.  Cephalosporins - Infectious Diseases [Internet]. Merck Man. Prof. Ed. [date unknown]; 

14.  Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, 

File TM, Musher DM, Niederman MS, Torres A, Whitney CG, Infectious Diseases Society 

of America, American Thoracic Society. Infectious Diseases Society of America/American 

Thoracic Society consensus guidelines on the management of community-acquired 



 128 

pneumonia in adults. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2007 Mar;44 Suppl 

2:S27-72. 

15.  Pitout JD, Sanders CC, Sanders WE. Antimicrobial resistance with focus on beta-lactam 

resistance in gram-negative bacilli. Am. J. Med. 1997 Jul;103(1):51–59. 

16.  IQVIA Institute for Human Data Science. Medicines Use and Spending in the US: A Review 

of 2016 and Outlook to 2021. 2017. 

17.  Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature 2000 

Aug;406(6797):35021219. 

18.  LaPlante K, Cunha C, Morrill H, Rice L, Mylonakis E. Antimicrobial Stewardship: 

Principles and Practice. CABI; 2016. 

19.  Spratt BG, Cromie KD. Penicillin-binding proteins of gram-negative bacteria. Rev. Infect. 

Dis. 1988 Aug;10(4):699–711. 

20.  Lu WP, Kincaid E, Sun Y, Bauer MD. Kinetics of beta-lactam interactions with penicillin-

susceptible and -resistant penicillin-binding protein 2x proteins from Streptococcus 

pneumoniae. Involvement of acylation and deacylation in beta-lactam resistance. J. Biol. 

Chem. 2001 Aug;276(34):31494–31501. 

21.  Knowles JR. Penicillin resistance: the chemistry of .beta.-lactamase inhibition. Acc. Chem. 

Res. 1985 Apr;18(4):97–104. 

22.  ANTIBIOTIC RESISTANCE THREATS in the United States, 2013 [Internet]. Centers for 

Disease Control and Prevention; 2013. 

23.  O’Neill J. Tackling Drug-Resistant Infections Globally: Final Report and 

Recommendations. Review on Antimicrobial Resistance; 2016. 

24.  Lee D, Das S, Dawson NL, Dobrijevic D, Ward J, Orengo C. Novel Computational 

Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases. PLOS 

Comput. Biol. 2016 Jun;12(6):e1004926. 

25.  Moellering RCJ. NDM-1 — A Cause for Worldwide Concern. N. Engl. J. Med. 2010 

Dec;363(25):2377–2379. 

26.  Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of 

antibiotic resistance. Nat. Rev. Microbiol. 2015 Jan;13(1):42–51. 

27.  Bethel CR, Taracila M, Shyr T, Thomson JM, Distler AM, Hujer KM, Hujer AM, Endimiani 

A, Papp-Wallace K, Bonnet R, Bonomo RA. Exploring the Inhibition of CTX-M-9 by ?-

Lactamase Inhibitors and Carbapenems ▿. Antimicrob. Agents Chemother. 2011 

Jul;55(7):3465–3475. 



 129 

28.  Rankin DJ, Rocha EPC, Brown SP. What traits are carried on mobile genetic elements, and 

why? Heredity 2011 Jan;106(1):1–10. 

29.  Mc Ginty SÉ, Rankin DJ. The evolution of conflict resolution between plasmids and their 

bacterial hosts. Evol. Int. J. Org. Evol. 2012 May;66(5):1662–1670. 

30.  Bush K, Jacoby GA. Updated Functional Classification of β-Lactamases. Antimicrob. 

Agents Chemother. 2010 Mar;54(3):969–976. 

31.  Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS. Antibiotic treatment of 

infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the 

available evidence. Antimicrob. Agents Chemother. 2013 Sep;AAC.01222-13. 

32.  Beta-lactams [Internet]. Merck Man. Prof. Ed. [date unknown]; 

33.  Weinstein AJ. The Cephalosporins: Activity and Clinical Use. Drugs 1980 Aug;20(2):137–

154. 

34.  Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker 

BA, Wang J, Yu B, Zhang J, Bryant SH. PubChem Substance and Compound databases. 

Nucleic Acids Res. 2016 Jan;44(Database issue):D1202–D1213. 

35.  Maveyraud L, Mourey L, Kotra LP, Pedelacq J-D, Guillet V, Mobashery S, Samama J-P. 

Structural Basis for Clinical Longevity of Carbapenem Antibiotics in the Face of Challenge 

by the Common Class A β-Lactamases from the Antibiotic-Resistant Bacteria. J. Am. 

Chem. Soc. 1998 Sep;120(38):9748–9752. 

36.  Lamotte-Brasseur J, Dive G, Dideberg O, Charlier P, Frère JM, Ghuysen JM. Mechanism 

of acyl transfer by the class A serine beta-lactamase of Streptomyces albus G. Biochem. J. 

1991 Oct;279(Pt 1):213–221. 

37.  Chen Y, Bonnet R, Shoichet BK. The acylation mechanism of CTX-M beta-lactamase at 

0.88 a resolution. J. Am. Chem. Soc. 2007 May;129(17):5378–5380. 

38.  Fonseca F, Chudyk EI, van der Kamp MW, Correia A, Mulholland AJ, Spencer J. The basis 

for carbapenem hydrolysis by class A β-lactamases: a combined investigation using 

crystallography and simulations. J. Am. Chem. Soc. 2012 Nov;134(44):18275–18285. 

39.  Curley K, Pratt RF. The Oxyanion Hole in Serine beta-Lactamase Catalysis: Interactions of 

Thiono Substrates with the Active Site. Bioorganic Chem. 2000 Dec;28(6):338–356. 

40.  Murphy BP, Pratt RF. Evidence for an oxyanion hole in serine beta-lactamases and DD-

peptidases. Biochem. J. 1988 Dec;256(2):669–672. 

41.  Ke W, Bethel CR, Thomson JM, Bonomo RA, van den Akker F. Crystal structure of KPC-

2: insights into carbapenemase activity in class A beta-lactamases. Biochemistry (Mosc.) 

2007 May;46(19):5732–5740. 



 130 

42.  Strynadka NCJ, Adachi H, Jensen SE, Johns K, Sielecki A, Betzel C, Sutoh K, James MNG. 

Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å 

resolution. Nature 1992 Oct;359(6397):359700a0. 

43.  Herzberg O, Moult J. Bacterial resistance to beta-lactam antibiotics: crystal structure of 

beta-lactamase from Staphylococcus aureus PC1 at 2.5 A resolution. Science 1987 

May;236(4802):694–701. 

44.  Drawz SM, Bonomo RA. Three Decades of β-Lactamase Inhibitors. Clin. Microbiol. Rev. 

2010 Jan;23(1):160–201. 

45.  Jacob F, Joris B, Lepage S, Dusart J, Frère JM. Role of the conserved amino acids of the 

‘SDN’ loop (Ser130, Asp131 and Asn132) in a class A β-lactamase studied by site-directed 

mutagenesis. Biochem. J. 1990 Oct;271(2):399–406. 

46.  Pemberton OA, Zhang X, Chen Y. Molecular Basis of Substrate Recognition and Product 

Release by the Klebsiella pneumoniae Carbapenemase (KPC-2). J. Med. Chem. 2017 

Apr;60(8):3525–3530. 

47.  Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases 

and its correlation with molecular structure. Antimicrob. Agents Chemother. 1995 

Jun;39(6):1211–1233. 

48.  Bush K. Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-

negative infections. Crit. Care Lond. Engl. 2010;14(3):224. 

49.  Canton R, Gonzalez-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. 

Antimicrob. Resist. Chemother. 2012;3:110. 

50.  Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Ayala J, 

Coque TM, Kern-Zdanowicz I, Luzzaro F, Poirel L, Woodford N. CTX-M: changing the 

face of ESBLs in Europe. J. Antimicrob. Chemother. 2007 Feb;59(2):165–174. 

51.  Cantón R, Coque TM, Baquero F. Multi-resistant Gram-negative bacilli: from epidemics to 

endemics. Curr. Opin. Infect. Dis. 2003 Aug;16(4):315–325. 

52.  Paterson DL, Bonomo RA. Extended-Spectrum β-Lactamases: a Clinical Update. Clin. 

Microbiol. Rev. 2005 Oct;18(4):657–686. 

53.  Queenan AM, Bush K. Carbapenemases: the Versatile β-Lactamases. Clin. Microbiol. Rev. 

2007 Jul;20(3):440–458. 

54.  Bratu S, Tolaney P, Karumudi U, Quale J, Mooty M, Nichani S, Landman D. 

Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular 

epidemiology and in vitro activity of polymyxin B and other agents. J. Antimicrob. 

Chemother. 2005 Jul;56(1):128–132. 

55.  Tracking CRE | HAI | CDC [Internet]. 2017; 



 131 

56.  Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, Losito 

AR, Bartoletti M, Del Bono V, Corcione S, Maiuro G, Tedeschi S, Celani L, Cardellino CS, 

Spanu T, Marchese A, Ambretti S, Cauda R, Viscoli C, Viale P, ISGRI-SITA (Italian Study 

Group on Resistant Infections of the Società Italiana Terapia Antinfettiva). Infections 

caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a 

multicentre study. J. Antimicrob. Chemother. 2015 Jul;70(7):2133–2143. 

57.  Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, 

Stefanou I, Sypsa V, Miriagou V, Nepka M, Georgiadou S, Markogiannakis A, Goukos D, 

Skoutelis A. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: 

lowering mortality by antibiotic combination schemes and the role of carbapenems. 

Antimicrob. Agents Chemother. 2014;58(4):2322–2328. 

58.  Papp-Wallace KM, Winkler ML, Taracila MA, Bonomo RA. Variants of β-Lactamase KPC-

2 That Are Resistant to Inhibition by Avibactam. Antimicrob. Agents Chemother. 2015 

Jul;59(7):3710–3717. 

59.  Poirel L, Naas T, Thomas IL, Karim A, Bingen E, Nordmann P. CTX-M-Type Extended-

Spectrum β-Lactamase That Hydrolyzes Ceftazidime through a Single Amino Acid 

Substitution in the Omega Loop. Antimicrob. Agents Chemother. 2001 Dec;45(12):3355–

3361. 

60.  Bonnet R, Recule C, Baraduc R, Chanal C, Sirot D, Champs CD, Sirot J. Effect of D240G 

substitution in a novel ESBL CTX-M-27. J. Antimicrob. Chemother. 2003 Jul;52(1):29–35. 

61.  Bonnet R, Dutour C, Sampaio JL, Chanal C, Sirot D, Labia R, De Champs C, Sirot J. Novel 

cefotaximase (CTX-M-16) with increased catalytic efficiency due to substitution Asp-240-

->Gly. Antimicrob. Agents Chemother. 2001 Aug;45(8):2269–2275. 

62.  Cortina GA, Kasson PM. Excess positional mutual information predicts both local and 

allosteric mutations affecting beta lactamase drug resistance. Bioinformatics 2016 

Jul;btw492. 

63.  J. Latallo M, A. Cortina G, Faham S, K. Nakamoto R, M. Kasson P. Predicting allosteric 

mutants that increase activity of a major antibiotic resistance enzyme. Chem. Sci. 

2017;8(9):6484–6492. 

64.  Papp-Wallace KM, Taracila M, Wallace CJ, Hujer KM, Bethel CR, Hornick JM, Bonomo 

RA. Elucidating the role of Trp105 in the KPC-2 β-lactamase. Protein Sci. Publ. Protein 

Soc. 2010 Sep;19(9):1714–1727. 

65.  Papp-Wallace KM, Taracila M, Hornick JM, Hujer AM, Hujer KM, Distler AM, Endimiani 

A, Bonomo RA. Substrate Selectivity and a Novel Role in Inhibitor Discrimination by 

Residue 237 in the KPC-2 β-Lactamase. Antimicrob. Agents Chemother. 2010 

Jul;54(7):2867–2877. 

66.  Papp-Wallace KM, Taracila MA, Smith KM, Xu Y, Bonomo RA. Understanding the 

Molecular Determinants of Substrate and Inhibitor Specificities in the Carbapenemase 



 132 

KPC-2: Exploring the Roles of Arg220 and Glu276. Antimicrob. Agents Chemother. 2012 

Aug;56(8):4428–4438. 

67.  Joachimiak A, Katzenellenbogen BS, Greene GL, Gil G, Zhou H, Nowak J, 

Katzenellenbogen JA, Bruning JB, Hahm JB, Nettles KW, Kulp K, Hochberg RB, Sharma 

SK, Kim Y. NFκB selectivity of estrogen receptor ligands revealed by comparative 

crystallographic analyses. Nat. Chem. Biol. 2008 Apr;4(4):nchembio.76. 

68.  Valentini G, Chiarelli L, Fortin R, Speranza ML, Galizzi A, Mattevi A. The Allosteric 

Regulation of Pyruvate Kinase A SITE-DIRECTED MUTAGENESIS STUDY. J. Biol. 

Chem. 2000 Jun;275(24):18145–18152. 

69.  Gidh-Jain M, Zhang Y, Poelje PD van, Liang JY, Huang S, Kim J, Elliott JT, Erion MD, 

Pilkis SJ, el-Maghrabi MR. The allosteric site of human liver fructose-1,6-bisphosphatase. 

Analysis of six AMP site mutants based on the crystal structure. J. Biol. Chem. 1994 

Nov;269(44):27732–27738. 

70.  Verma D, Jacobs DJ, Livesay DR. Variations within Class-A β-Lactamase Physiochemical 

Properties Reflect Evolutionary and Environmental Patterns, but not Antibiotic Specificity. 

PLOS Comput. Biol. 2013 Jul;9(7):e1003155. 

71.  Juárez-Vázquez AL, Edirisinghe JN, Verduzco-Castro EA, Michalska K, Wu C, Noda-

García L, Babnigg G, Endres M, Medina-Ruíz S, Santoyo-Flores J, Carrillo-Tripp M, Ton-

That H, Joachimiak A, Henry CS, Barona-Gómez F. Evolution of substrate specificity in a 

retained enzyme driven by gene loss [Internet]. eLife [date unknown];6 

72.  Goh CS, Bogan AA, Joachimiak M, Walther D, Cohen FE. Co-evolution of proteins with 

their interaction partners. J. Mol. Biol. 2000 Jun;299(2):283–293. 

73.  Kawaguchi M, Inoue K, Iuchi I, Nishida M, Yasumasu S. Molecular co-evolution of a 

protease and its substrate elucidated by analysis of the activity of predicted ancestral 

hatching enzyme. BMC Evol. Biol. 2013 Oct;13:231. 

74.  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. 

J. Mol. Biol. 1990 Oct;215(3):403–410. 

75.  Walther-Rasmussen J, Høiby N. Class A carbapenemases. J. Antimicrob. Chemother. 2007 

Sep;60(3):470–482. 

76.  Hall BG, Barlow M. Evolution of the serine β-lactamases: past, present and future. Drug 

Resist. Updat. 2004 Apr;7(2):111–123. 

77.  Wright GD, Poinar H. Antibiotic resistance is ancient: implications for drug discovery. 

Trends Microbiol. 2012 Apr;20(4):157–159. 

78.  Massova I, Mobashery S. Kinship and Diversification of Bacterial Penicillin-Binding 

Proteins and β-Lactamases. Antimicrob. Agents Chemother. 1998 Jan;42(1):1–17. 



 133 

79.  Sarria JC, Vidal AM, Kimbrough RC. Infections Caused by Kluyvera Species in Humans. 

Clin. Infect. Dis. 2001 Oct;33(7):e69–e74. 

80.  Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating 

evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic 

Acids Res. 2010 Jul;38(suppl 2):W529–W533. 

81.  Guthrie VB, Allen J, Camps M, Karchin R. Network Models of TEM β-Lactamase 

Mutations Coevolving under Antibiotic Selection Show Modular Structure and Anticipate 

Evolutionary Trajectories. PLOS Comput. Biol. 2011 Sep;7(9):e1002184. 

82.  Yang J-S, Seo SW, Jang S, Jung GY, Kim S. Rational Engineering of Enzyme Allosteric 

Regulation through Sequence Evolution Analysis. PLOS Comput. Biol. 2012 

Jul;8(7):e1002612. 

83.  Salverda MLM, De Visser JAGM, Barlow M. Natural evolution of TEM-1 β-lactamase: 

experimental reconstruction and clinical relevance. FEMS Microbiol. Rev. 2010 

Nov;34(6):1015–1036. 

84.  De Luca F, Benvenuti M, Carboni F, Pozzi C, Rossolini GM, Mangani S, Docquier J-D. 

Evolution to carbapenem-hydrolyzing activity in noncarbapenemase class D β-lactamase 

OXA-10 by rational protein design. Proc. Natl. Acad. Sci. U. S. A. 2011 

Nov;108(45):18424–18429. 

85.  Weinreich DM, Delaney NF, DePristo MA, Hartl DL. Darwinian Evolution Can Follow 

Only Very Few Mutational Paths to Fitter Proteins. Science 2006 Apr;312(5770):111–114. 

86.  Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, Echols N, Alber T. 

Accessing protein conformational ensembles using room-temperature X-ray 

crystallography. Proc. Natl. Acad. Sci. U. S. A. 2011 Sep;108(39):16247–16252. 

87.  Hospital A, Goñi JR, Orozco M, Gelpí JL. Molecular dynamics simulations: advances and 

applications. Adv. Appl. Bioinforma. Chem. AABC 2015 Nov;8:37–47. 

88.  Lu C, Stock G, Knecht V. Mechanisms for allosteric activation of protease DegS by ligand 

binding and oligomerization as revealed from molecular dynamics simulations. Proteins 

Struct. Funct. Bioinforma. 2016 Nov;84(11):1690–1705. 

89.  Bowman GR, Bolin ER, Hart KM, Maguire BC, Marqusee S. Discovery of multiple hidden 

allosteric sites by combining Markov state models and experiments. Proc. Natl. Acad. Sci. 

2015 Mar;112(9):2734–2739. 

90.  Mouchlis VD, Bucher D, McCammon JA, Dennis EA. Membranes serve as allosteric 

activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid 

substrates. Proc. Natl. Acad. Sci. 2015 Feb;112(6):E516–E525. 



 134 

91.  Oliva M, Dideberg O, Field MJ. Understanding the acylation mechanisms of active-site 

serine penicillin-recognizing proteins: A molecular dynamics simulation study. Proteins 

Struct. Funct. Bioinforma. 2003 Oct;53(1):88–100. 

92.  Hart KM, Ho CMW, Dutta S, Gross ML, Bowman GR. Modelling proteins’ hidden 

conformations to predict antibiotic resistance. Nat. Commun. 2016 Oct;7:ncomms12965. 

93.  Hart KM, Moeder KE, Ho CMW, Zimmerman MI, Frederick TE, Bowman GR. Designing 

small molecules to target cryptic pockets yields both positive and negative allosteric 

modulators. PloS One 2017;12(6):e0178678. 

94.  Bowerman S, Wereszczynski J. Detecting Allosteric Networks Using Molecular Dynamics 

Simulation. Methods Enzymol. 2016;578:429–447. 

95.  Vallee BL, Riordan JF. Dynamics of local conformation and enzyme function. Ciba Found. 

Symp. 1977;(60):197–223. 

96.  Nussinov R, G. Wolynes P. A second molecular biology revolution? The energy landscapes 

of biomolecular function. Phys. Chem. Chem. Phys. 2014;16(14):6321–6322. 

97.  Monod J, Wyman J, Changeux J-P. On the nature of allosteric transitions: A plausible 

model. J. Mol. Biol. 1965 May;12(1):88–118. 

98.  Nussinov R. Introduction to Protein Ensembles and Allostery. Chem. Rev. 2016 

Jun;116(11):6263–6266. 

99.  Weinkam P, Chen YC, Pons J, Sali A. Impact of mutations on the allosteric conformational 

equilibrium. J. Mol. Biol. 2013 Feb;425(3):647–661. 

100.  Aumeran C, Chanal C, Labia R, Sirot D, Sirot J, Bonnet R. Effects of Ser130Gly and 

Asp240Lys Substitutions in Extended-Spectrum β-Lactamase CTX-M-9. Antimicrob. 

Agents Chemother. 2003 Sep;47(9):2958–2961. 

101.  Pérez-Llarena FJ, Kerff F, Abián O, Mallo S, Fernández MC, Galleni M, Sancho J, Bou G. 

Distant and New Mutations in CTX-M-1 β-Lactamase Affect Cefotaxime Hydrolysis. 

Antimicrob. Agents Chemother. 2011 Sep;55(9):4361–4368. 

102.  Pérez-Llarena FJ, Cartelle M, Mallo S, Beceiro A, Pérez A, Villanueva R, Romero A, 

Bonnet R, Bou G. Structure-function studies of arginine at position 276 in CTX-M beta-

lactamases. J. Antimicrob. Chemother. 2008 Apr;61(4):792–797. 

103.  Gazouli M, Tzelepi E, Sidorenko SV, Tzouvelekis LS. Sequence of the gene encoding a 

plasmid-mediated cefotaxime-hydrolyzing class A beta-lactamase (CTX-M-4): 

involvement of serine 237 in cephalosporin hydrolysis. Antimicrob. Agents Chemother. 

1998 May;42(5):1259–1262. 



 135 

104.  Sougakoff W, Goussard S, Courvalin P. The TEM-3 β-lactamase, which hydrolyzes broad-

spectrum cephalosporins, is derived from the TEM-2 penicillinase by two amino acid 

substitutions. FEMS Microbiol. Lett. 1988 Dec;56(3):343–348. 

105.  Poirel L, Gniadkowski M, Nordmann P. Biochemical analysis of the ceftazidime-

hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related 

beta-lactamase CTX-M-3. J. Antimicrob. Chemother. 2002 Dec;50(6):1031–1034. 

106.  Delmas J, Robin F, Carvalho F, Mongaret C, Bonnet R. Prediction of the Evolution of 

Ceftazidime Resistance in Extended-Spectrum β-Lactamase CTX-M-9. Antimicrob. Agents 

Chemother. 2006 Feb;50(2):731–738. 

107.  Xu D, Guo H, Cui Q. Antibiotic deactivation by a dizinc beta-lactamase: mechanistic 

insights from QM/MM and DFT studies. J. Am. Chem. Soc. 2007 Sep;129(35):10814–

10822. 

108.  Hermann JC, Pradon J, Harvey JN, Mulholland AJ. High Level QM/MM Modeling of the 

Formation of the Tetrahedral Intermediate in the Acylation of Wild Type and K73A Mutant 

TEM-1 Class A β-Lactamase†. J. Phys. Chem. A 2009 Oct;113(43):11984–11994. 

109.  Nichols DA, Hargis JC, Sanishvili R, Jaishankar P, Defrees K, Smith EW, Wang KK, Prati 

F, Renslo AR, Woodcock HL, Chen Y. Ligand-Induced Proton Transfer and Low-Barrier 

Hydrogen Bond Revealed by X-ray Crystallography. J. Am. Chem. Soc. 2015 

Jul;137(25):8086–8095. 

110.  Rod TH, Radkiewicz JL, Brooks CL. Correlated motion and the effect of distal mutations 

in dihydrofolate reductase. Proc. Natl. Acad. Sci. 2003 Jun;100(12):6980–6985. 

111.  Watney JB, Agarwal PK, Hammes-Schiffer S. Effect of mutation on enzyme motion in 

dihydrofolate reductase. J. Am. Chem. Soc. 2003 Apr;125(13):3745–3750. 

112.  Karplus M, Kuriyan J. Molecular dynamics and protein function. Proc. Natl. Acad. Sci. U. 

S. A. 2005 May;102(19):6679–6685. 

113.  Cover TM, Thomas JA. Elements of Information Theory. New York, NY, USA: John Wiley 

& Sons; 2012. 

114.  Kasson PM, Ensign DL, Pande VS. Combining molecular dynamics with bayesian analysis 

to predict and evaluate ligand-binding mutations in influenza hemagglutinin. J. Am. Chem. 

Soc. 2009 Aug;131(32):11338–11340. 

115.  Kamberaj H, van der Vaart A. Extracting the causality of correlated motions from molecular 

dynamics simulations. Biophys. J. 2009 Sep;97(6):1747–1755. 

116.  Karplus M, Kushick JN. Method for estimating the configurational entropy of 

macromolecules. Macromolecules 1981 Mar;14(2):325–332. 



 136 

117.  Ichiye T, Karplus M. Collective motions in proteins: a covariance analysis of atomic 

fluctuations in molecular dynamics and normal mode simulations. Proteins 1991;11(3):205–

217. 

118.  Lange OF, Grubmüller H. Generalized correlation for biomolecular dynamics. Proteins 

Struct. Funct. Bioinforma. 2006 Mar;62(4):1053–1061. 

119.  Brandman R, Brandman Y, Pande VS. A-Site Residues Move Independently from P-Site 

Residues in all-Atom Molecular Dynamics Simulations of the 70S Bacterial Ribosome. 

PLoS ONE 2012 Jan;7(1):e29377. 

120.  Chen Y, Shoichet B, Bonnet R. Structure, function, and inhibition along the reaction 

coordinate of CTX-M beta-lactamases. J. Am. Chem. Soc. 2005 Apr;127(15):5423–5434. 

121.  Nukaga M, Bethel CR, Thomson JM, Hujer AM, Distler A, Anderson VE, Knox JR, 

Bonomo RA. Inhibition of class A beta-lactamases by carbapenems: crystallographic 

observation of two conformations of meropenem in SHV-1. J.Am.Chem.Soc. 2007 

Nov;130:12656–12662. 

122.  Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz 

KM, Pearlman DA, Crowley M. AMBER 9. Univ. Calif. San Franc. 2006;45 

123.  Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, 

Kasson PM, Spoel D van der, Hess B, Lindahl E. GROMACS 4.5: a high-throughput and 

highly parallel open source molecular simulation toolkit. Bioinformatics 2013 

Apr;29(7):845–854. 

124.  Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of 

multiple Amber force fields and development of improved protein backbone parameters. 

Proteins Struct. Funct. Bioinforma. 2006 Nov;65(3):712–725. 

125.  Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE. 

Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 

Struct. Funct. Bioinforma. 2010;NA-NA. 

126.  Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for 

molecular simulations. J. Comput. Chem. 1997;18(12):1463–1472. 

127.  Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J. Chem. 

Phys. 2007 Jan;126(1):014101. 

128.  Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums 

in large systems. J. Chem. Phys. 1993 Jun;98(12):10089–10092. 

129.  Leinberger DM, Grimm V, Rubtsova M, Weile J, Schröppel K, Wichelhaus TA, Knabbe C, 

Schmid RD, Bachmann TT. Integrated Detection of Extended-Spectrum-Beta-Lactam 

Resistance by DNA Microarray-Based Genotyping of TEM, SHV, and CTX-M Genes. J. 

Clin. Microbiol. 2010 Feb;48(2):460–471. 



 137 

130.  Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. 

Nucleic Acids Res. 2004 Mar;32(5):1792–1797. 

131.  Saladin M, Cao VTB, Lambert T, Donay J-L, Herrmann J-L, Ould-Hocine Z, Verdet C, 

Delisle F, Philippon A, Arlet G. Diversity of CTX-M beta-lactamases and their promoter 

regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol. Lett. 

2002 Apr;209(2):161–168. 

132.  Bauer AW, Perry DM, Kirby WM. Single-disk antibiotic-sensitivity testing of 

staphylococci: An analysis of technique and results. AMA Arch. Intern. Med. 1959 

Aug;104(2):208–216. 

133.  Warshel A. Electrostatic Origin of the Catalytic Power of Enzymes and the Role of 

Preorganized Active Sites. J. Biol. Chem. 1998 Oct;273(42):27035–27038. 

134.  Warshel A. Molecular dynamics simulations of biological reactions. Acc. Chem. Res. 2002 

Jun;35(6):385–395. 

135.  Delmas J, Chen Y, Prati F, Robin F, Shoichet BK, Bonnet R. Structure and Dynamics of 

CTX-M Enzymes Reveal Insights into Substrate Accommodation by Extended-spectrum β-

Lactamases. J. Mol. Biol. 2008 Jan;375(1):192–201. 

136.  Shimamura T, Ibuka A, Fushinobu S, Wakagi T, Ishiguro M, Ishii Y, Matsuzawa H. Acyl-

intermediate structures of the extended-spectrum class A beta-lactamase, Toho-1, in 

complex with cefotaxime, cephalothin, and benzylpenicillin. J. Biol. Chem. 2002 

Nov;277(48):46601–46608. 

137.  Jack BR, Meyer AG, Echave J, Wilke CO. Functional Sites Induce Long-Range 

Evolutionary Constraints in Enzymes [Internet]. PLoS Biol. 2016 May;14(5) 

138.  Tomanicek SJ, Wang KK, Weiss KL, Blakeley MP, Cooper J, Chen Y, Coates L. The active 

site protonation states of perdeuterated Toho-1 β-lactamase determined by neutron 

diffraction support a role for Glu166 as the general base in acylation. FEBS Lett. 2011 

Jan;585(2):364–368. 

139.  Cartelle M, Tomas M del M, Molina F, Moure R, Villanueva R, Bou G. High-Level 

Resistance to Ceftazidime Conferred by a Novel Enzyme, CTX-M-32, Derived from CTX-

M-1 through a Single Asp240-Gly Substitution. Antimicrob. Agents Chemother. 2004 

Jun;48(6):2308–2313. 

140.  Hujer AM, Hujer KM, Bonomo RA. Mutagenesis of amino acid residues in the SHV-1 β-

lactamase: the premier role of Gly238Ser in penicillin and cephalosporin resistance. 

Biochim. Biophys. Acta BBA - Protein Struct. Mol. Enzymol. 2001 May;1547(1):37–50. 

141.  Perez-Llarena FJ, Kerff F, Abian O, Mallo S, Fernandez MC, Galleni M, Sancho J, Bou G. 

Distant and new mutations in CTX-M-1 beta-lactamase affect cefotaxime hydrolysis. 

Antimicrob Agents Chemother 2011 Sep;55(9):4361–8. 



 138 

142.  Sun T, Bethel CR, Bonomo RA, Knox JR. Inhibitor-resistant class A beta-lactamases: 

consequences of the Ser130-to-Gly mutation seen in Apo and tazobactam structures of the 

SHV-1 variant. Biochemistry (Mosc.) 2004 Nov;43(44):14111–14117. 

143.  Totir MA, Padayatti PS, Helfand MS, Carey MP, Bonomo RA, Carey PR, van den Akker 

F. Effect of the inhibitor-resistant M69V substitution on the structures and populations of 

trans-enamine beta-lactamase intermediates. Biochemistry (Mosc.) 2006 

Oct;45(39):11895–11904. 

144.  Christensen H, Martin MT, Waley SG. Beta-lactamases as fully efficient enzymes. 

Determination of all the rate constants in the acyl-enzyme mechanism. Biochem. J. 1990 

Mar;266(3):853–861. 

145.  Saves I, Burlet-Schiltz O, Maveyraud L, Samama JP, Promé JC, Masson JM. Mass spectral 

kinetic study of acylation and deacylation during the hydrolysis of penicillins and 

cefotaxime by beta-lactamase TEM-1 and the G238S mutant. Biochemistry (Mosc.) 1995 

Sep;34(37):11660–11667. 

146.  Adamski CJ, Cardenas AM, Brown NG, Horton LB, Sankaran B, Prasad BVV, Gilbert HF, 

Palzkill T. Molecular basis for the catalytic specificity of the CTX-M extended-spectrum β-

lactamases. Biochemistry (Mosc.) 2015 Jan;54(2):447–457. 

147.  Zou T, Risso VA, Gavira JA, Sanchez-Ruiz JM, Ozkan SB. Evolution of conformational 

dynamics determines the conversion of a promiscuous generalist into a specialist enzyme. 

Mol. Biol. Evol. 2015 Jan;32(1):132–143. 

148.  Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. 

AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 2002 

Dec;23(16):1623–1641. 

149.  Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a 

general amber force field. J Comput Chem 2004 Jul;25(9):1157–74. 

150.  Berendsen HJC, Postma JPM, Gunsteren WF van, DiNola A, Haak JR. Molecular dynamics 

with coupling to an external bath. J. Chem. Phys. 1984 Oct;81(8):3684–3690. 

151.  Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a 

standardized single disk method. Am. J. Clin. Pathol. 1966 Apr;45(4):493–496. 

152.  Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. Am Soc Microbiol 2009; 

153.  Thomas VL, McReynolds AC, Shoichet BK. Structural bases for stability-function tradeoffs 

in antibiotic resistance. J Mol Biol 2010 Feb;396(1):47–59. 

154.  Wang X, Minasov G, Shoichet BK. Evolution of an antibiotic resistance enzyme constrained 

by stability and activity trade-offs. J Mol Biol 2002 Jun;320(1):85–95. 



 139 

155.  Bernstein NJ, Pratt RF. On the importance of a methyl group in beta-lactamase evolution: 

free energy profiles and molecular modeling. Biochemistry (Mosc.) 1999 

Aug;38(32):10499–510. 

156.  Doucet N, De Wals PY, Pelletier JN. Site-saturation mutagenesis of Tyr-105 reveals its 

importance in substrate stabilization and discrimination in TEM-1 beta-lactamase. J Biol 

Chem 2004 Oct;279(44):46295–303. 

157.  Escobar WA, Miller J, Fink AL. Effects of site-specific mutagenesis of tyrosine 105 in a 

class A beta-lactamase. Biochem J 1994 Oct;303 ( Pt 2):555–8. 

158.  Petit A, Maveyraud L, Lenfant F, Samama JP, Labia R, Masson JM. Multiple substitutions 

at position 104 of beta-lactamase TEM-1: assessing the role of this residue in substrate 

specificity. Biochem J 1995 Jan;305 ( Pt 1):33–40. 

159.  Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-

dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 

2005 Aug;27(8):1226–1238. 

160.  Dunn SD, Wahl LM, Gloor GB. Mutual information without the influence of phylogeny or 

entropy dramatically improves residue contact prediction. Bioinformatics 2008 

Feb;24(3):333–40. 

161.  Bisignano P, Doerr S, Harvey MJ, Favia AD, Cavalli A, De Fabritiis G. Kinetic 

characterization of fragment binding in AmpC beta-lactamase by high-throughput 

molecular simulations. J Chem Inf Model 2014 Feb;54(2):362–6. 

162.  Bos F, Pleiss J. Multiple molecular dynamics simulations of TEM beta-lactamase: dynamics 

and water binding of the omega-loop. Biophys J 2009 Nov;97(9):2550–8. 

163.  Chudyk EI, Limb MA, Jones C, Spencer J, van der Kamp MW, Mulholland AJ. QM/MM 

simulations as an assay for carbapenemase activity in class A beta-lactamases. Chem 

Commun Camb 2014 Dec;50(94):14736–9. 

164.  Hermann JC, Hensen C, Ridder L, Mulholland AJ, Holtje HD. Mechanisms of antibiotic 

resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with 

benzylpenicillin. J Am Chem Soc 2005 Mar;127(12):4454–65. 

165.  Lamotte-Brasseur J, Lounnas V, Raquet X, Wade RC. pKa calculations for class A beta-

lactamases: influence of substrate binding. Protein Sci 1999 Feb;8(2):404–9. 

166.  Suarez D, Diaz N, Merz KM. Molecular dynamics simulations of the dinuclear zinc-beta-

lactamase from Bacteroides fragilis complexed with imipenem. J Comput Chem 2002 

Dec;23(16):1587–600. 

167.  Wade RC, Gabdoulline RR, Ludemann SK, Lounnas V. Electrostatic steering and ionic 

tethering in enzyme-ligand binding: insights from simulations. Proc Natl Acad Sci U A 1998 

May;95(11):5942–9. 



 140 

168.  Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS 

Microbiol Lett 2007 Jun;271(2):147–61. 

169.  Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 

2010 Sep;74(3):417–33. 

170.  Martinez JL. Antibiotics and antibiotic resistance genes in natural environments. Science 

2008 Jul;321(5887):365–7. 

171.  Motlagh HN, Wrabl JO, Li J, Hilser VJ. The ensemble nature of allostery. Nature 2014 

Apr;508(7496):331–9. 

172.  Kalp M, Carey PR. Carbapenems and SHV-1 β-Lactamase Form Different Acyl-Enzyme 

Populations in Crystals and Solution. Biochemistry (Mosc.) 2008 Nov;47(45):11830–

11837. 

173.  Wilkinson AS, Ward S, Kania M, Page MG, Wharton CW. Multiple conformations of the 

acylenzyme formed in the hydrolysis of methicillin by Citrobacter freundii beta-lactamase: 

a time-resolved FTIR spectroscopic study. Biochemistry (Mosc.) 1999 Mar;38(13):3851–

3856. 

174.  Citri N, Samuni A, Zyk N. Acquisition of substrate-specific parameters during the catalytic 

reaction of penicillinase. Proc. Natl. Acad. Sci. U. S. A. 1976 Apr;73(4):1048–1052. 

175.  Page MGP. The kinetics of non-stoichiometric bursts of β-lactam hydrolysis catalysed by 

class C β-lactamases. Biochem. J. 1993 Oct;295(1):295–304. 

176.  Page MGP. Extended-spectrum β-lactamases: structure and kinetic mechanism. Clin. 

Microbiol. Infect. 2008 Jan;14:63–74. 

177.  Pratt RF. ß-Lactamase: inhibition [Internet]. In: The Chemistry of β-Lactams. Springer, 

Dordrecht; 1992 p. 229–271. 

178.  Waley SG. ß-Lactamase: mechanism of action [Internet]. In: The Chemistry of β-Lactams. 

Springer, Dordrecht; 1992 p. 198–228. 

179.  Kasson PM, Lindahl E, Pande VS. Atomic-Resolution Simulations Predict a Transition 

State for Vesicle Fusion Defined by Contact of a Few Lipid Tails. PLOS Comput. Biol. 

2010 Jun;6(6):e1000829. 

180.  Pande VS, Rokhsar DS. Folding pathway of a lattice model for proteins. Proc. Natl. Acad. 

Sci. 1999 Feb;96(4):1273–1278. 

181.  Du R, Pande VS, Grosberg AY, Tanaka T, Shakhnovich ES. On the transition coordinate 

for protein folding. J. Chem. Phys. 1998 Jan;108(1):334–350. 



 141 

182.  Yang L, Tan C, Hsieh M-J, Wang J, Duan Y, Cieplak P, Caldwell J, Kollman PA, Luo R. 

New-Generation Amber United-Atom Force Field. J. Phys. Chem. B 2006 

Jul;110(26):13166–13176. 

183.  Röblitz S, Weber M. Fuzzy Spectral Clustering by PCCA+: Application to Markov State 

Models and Data Classification. Adv Data Anal Classif 2013 Jun;7(2):147–179. 

184.  Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Näslund LÅ, 

Hirsch TK, Ojamäe L, Glatzel P, Pettersson LGM, Nilsson A. The Structure of the First 

Coordination Shell in Liquid Water [Internet]. Science 2004 Apr; 

185.  White AD, Voth GA. Efficient and Minimal Method to Bias Molecular Simulations with 

Experimental Data. J. Chem. Theory Comput. 2014 Aug;10(8):3023–3030. 

186.  Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J. 

Mol. Biol. 1993 Dec;234(3):779–815. 

187.  I. Chudyk E, L. Limb MA, Jones C, Spencer J, Kamp MW van der, J. Mulholland A. 

QM/MM simulations as an assay for carbapenemase activity in class A β-lactamases. Chem. 

Commun. 2014;50(94):14736–14739. 

188.  Goff DA, Jankowski C, Tenover FC. Using rapid diagnostic tests to optimize antimicrobial 

selection in antimicrobial stewardship programs. Pharmacotherapy 2012 Aug;32(8):677–

687. 

189.  Cavin RK, Lugli P, Zhirnov VV. Science and Engineering Beyond Moore’s Law. Proc. 

IEEE 2012 May;100(Special Centennial Issue):1720–1749. 

190.  Drawz SM, Bethel CR, Hujer KM, Hurless KN, Distler AM, Caselli E, Prati F, Bonomo 

RA. The role of a second-shell residue in modifying substrate and inhibitor interactions in 

the SHV beta-lactamase: a study of ambler position Asn276. Biochemistry (Mosc.) 2009 

Jun;48(21):4557–4566. 

191.  Wang D, Chen J, Yang L, Mou Y, Yang Y. Phenotypic and Enzymatic Comparative 

Analysis of the KPC Variants, KPC-2 and Its Recently Discovered Variant KPC-15. PLOS 

ONE 2014 Oct;9(10):e111491. 

192.  Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic 

algorithm for flexible docking1. J. Mol. Biol. 1997 Apr;267(3):727–748. 

193.  Dandekar T, Argos P. Potential of genetic algorithms in protein folding and protein 

engineering simulations. Protein Eng. 1992 Oct;5(7):637–645. 

194.  Morin S, Clouthier CM, Gobeil S, Pelletier JN, Gagné SM. Backbone resonance 

assignments of an artificially engineered TEM-1/PSE-4 Class A β-lactamase chimera. 

Biomol. NMR Assign. 2010 Oct;4(2):127–130. 



 142 

195.  Coleman K. Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase 

inhibitors. Curr. Opin. Microbiol. 2011 Oct;14(5):550–555. 

196.  Shlaes DM. New β-lactam–β-lactamase inhibitor combinations in clinical development. 

Ann. N. Y. Acad. Sci. 2013;1277(1):105–114. 

197.  Livermore DM, Warner M, Jamrozy D, Mushtaq S, Nichols WW, Mustafa N, Woodford N. 

In Vitro Selection of Ceftazidime-Avibactam Resistance in Enterobacteriaceae with KPC-

3 Carbapenemase. Antimicrob. Agents Chemother. 2015 Sep;59(9):5324–5330. 

198.  Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, Pandey R, Doi Y, 

Kreiswirth BN, Nguyen MH, Clancy CJ. Emergence of Ceftazidime-Avibactam Resistance 

Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant 

Klebsiella pneumoniae Infections. Antimicrob. Agents Chemother. 2017 

Mar;61(3):e02097-16. 

199.  Krishnan NP, Nguyen NQ, Papp-Wallace KM, Bonomo RA, van den Akker F. Inhibition 

of Klebsiella β-Lactamases (SHV-1 and KPC-2) by Avibactam: A Structural Study. PloS 

One 2015;10(9):e0136813. 

200.  Ehmann DE, Jahić H, Ross PL, Gu R-F, Hu J, Durand-Réville TF, Lahiri S, Thresher J, 

Livchak S, Gao N, Palmer T, Walkup GK, Fisher SL. Kinetics of Avibactam Inhibition 

against Class A, C, and D β-Lactamases [Internet]. [date unknown]; 

201.  Malliaros FD, Vazirgiannis M. Clustering and Community Detection in Directed Networks: 

A Survey. Phys. Rep. 2013 Dec;533(4):95–142. 

202.  Kuramochi M, Karypis G. Frequent subgraph discovery. In: Proceedings 2001 IEEE 

International Conference on Data Mining. 2001 p. 313–320. 

203.  Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. 

BMC Bioinformatics 2008 Dec;9:559. 

204.  Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. 

Natl. Acad. Sci. 2002 Jun;99(12):7821–7826. 

205.  Johnson SC. Hierarchical clustering schemes. Psychometrika 1967 Sep;32(3):241–254. 

206.  Kraskov A, Stögbauer H, Andrzejak RG, Grassberger P. Hierarchical Clustering Based on 

Mutual Information [Internet]. ArXivq-Bio0311039 2003 Nov; 

207.  Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi 

S, Chen Z, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, 

Cloughesy TF, Nelson SF, Mischel PS. Analysis of oncogenic signaling networks in 

glioblastoma identifies ASPM as a molecular target. Proc. Natl. Acad. Sci. 2006 

Nov;103(46):17402–17407. 



 143 

208.  Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-

expression modules. BMC Syst. Biol. 2007 Nov;1:54. 

209.  Collaborative Computational Project N. The CCP4 suite: programs for protein 

crystallography. Acta Crystallogr Biol Crystallogr 1994 Sep;50(Pt 5):760–3. 

210.  McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser 

crystallographic software. J Appl Crystallogr 2007 Aug;40(Pt 4):658–674. 

211.  Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta 

Crystallogr Biol Crystallogr 2010 Apr;66(Pt 4):486–501. 

212.  Fiser A, Sali A. Modeller: generation and refinement of homology-based protein structure 

models. Methods Enzym. 2003;374:461–91. 

213.  Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein 

pKa values. Proteins 2005 Dec;61(4):704–21. 

214.  Fox N, Jagodzinski F, Li Y, Streinu I. KINARI-Web: a server for protein rigidity analysis. 

Nucleic Acids Res 2011 Jul;39(Web Server issue):W177-83. 

215.  Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF. Protein flexibility predictions using graph 

theory. Proteins 2001 Aug;44(2):150–65. 

216.  Beauchamp KA, Bowman GR, Lane TJ, Maibaum L, Haque IS, Pande VS. MSMBuilder2: 

Modeling Conformational Dynamics at the Picosecond to Millisecond Scale. J. Chem. 

Theory Comput. 2011 Oct;7(10):3412–3419. 

 


