

1

Abstract

 This paper introduces the work of the data and handbook team for the Advising Assistant

project. Notable technologies developed include: a standardized format for degree requirements,

a program to parse students' transcripts, a program to generate a schedule based on constraints,

and programs to convert degree requirements into formats usable in the CS handbook, the UVA

undergraduate record, and the CS website. These programs are intended to benefit the Advising

Assistant project as a whole: an application that students can use to schedule their classes based

on their unique preferences and situation.

Introduction

 At UVA, the number of CS students has grown rapidly and there has not yet been a

comparable increase in the number of CS Advising Faculty. Additionally, the majority of

advising time is taken by scheduling concerns. If the scheduling classes task could be automated,

advisors would have more time to have conversations with their advisees covering more general

topics. Advising Assistant was a project that sought to build a tool to help students schedule their

classes. There were two major parts of this project, a data side, and a front-end side. I worked

with Bugi Abdulkarim, Rahul Batra, Christine Cheng, and Abdullah Mahmood on the data team.

Our goals covered a variety of backend tasks to aid in the creation of the scheduling task: Create

some method of understanding and processing a student's current status; Given a student's

current goals and classes, generate a schedule that fulfills those requirements as best as possible;

Automate the dissimilation of CS course requirements to the CS website, the undergraduate

record, and the CS handbook. This last goal was an attempt to ease the burden on professors

when changing degree requirements for the major.

2

To accomplish our goals, we first set out to encode the CS curricula into something

readable by both humans and machines. We decided to use the YAML1 data serialization

language as it is more human readable than other formats like JSON. We also created a way to

parse students' transcripts to get a record of their courses taken. This is not an easy problem as

transcripts are usually a pdf, which does not encode raw text data. The problem of getting the

text off the pdf is not perfect, and many different tools exist (Yong, 2018). Additionally, the text

needs to be parsed once it's read off the PDF. Using this data, we considered different methods to

create schedules satisfying a number of different constraints. This was done via a constraint

satisfaction algorithm in python (Kopec, 2019). We also explored automation techniques to

facilitate the synchronization of the CS curriculum over three domains: The UVA CS

undergraduate student handbook, the UVA undergraduate record, and the UVA CS website.

Essentially this entailed programmatically converting the standard YAML format of the

curriculum into the relevant output format. For the CS student handbook, there are a variety of

output formats that need to be generated. The handbook itself is built in LaTex2, and the graphs

showing requirements are made using DOT. There are a few options to generate LaTex

programmatically: using a built-in constructor like LuaTeX (Pégourié-Gonnard, 2012) or using a

separate program to write the LaTex directly to the file. For the DOT3 files, there is no

Architecture

 There are three main modules created by the data and handbook team. There is a pdf

reader, written in python, that takes a pdf as input and outputs a YAML file containing the class

info of a student. This program takes into account classes the student has taken in the past and

1 https://yaml.org/
2 https://www.latex-project.org/
3 https://graphviz.org/doc/info/lang.html

3

classes the student is taking currently. There is a course recommendation module that generates a

schedule based on a given set of requirements and goals. Written in python and using a

constraint satisfaction library, the course recommendation module accepts types of constraints

like: credit max/min per semester, enemy courses, pinned courses, don't take certain classes at

the same time, etc. Some constraints are manually encoded representing prior knowledge and

some are only situationally applied based on user input. The last module includes methods to

convert the CS curricula from its YAML format into formats for the UVA CS Handbook and the

UVA undergraduate record. For the undergraduate record, there is a python script which will

convert the Major requirements YAML file into a HTML file. This file is in the format of the

undergraduate record's page for the BS in CS.

The second part of the YAML conversion module is code that generates a variety of

components in the CS undergraduate handbook. This part of the module is written in Java. There

are a variety of classes that are used with the SnakeYAML4 library to parse the yaml file inputs.

The project is then divided into three different functional sections. After parsing the input

YAML files, the program has methods to: create a prerequisite graph, a master course list, a

requirement checklist, or a list of elective information. These sections correspond to sections in

the CS undergraduate handbook. The prerequisite graph is output in a dot format, it has options

to include full class titles as well as only include information about CS courses. The graph

handles multiple prerequisites by creating "OR" boxes that many classes can point at. The master

course list is a list of all courses it can find in the CS courses YAML in the standard LaTeX

format. The requirement checklist is a LaTeX figure that contains boxes to keep track of all

classes needed for the BS in CS degree. The data needed for the list of elective info is taken from

4 https://bitbucket.org/asomov/snakeyaml/wiki/Documentation

4

the elective info YAML, this is a LaTeX generation of the text with formatting consistent with

the handbook. There is a command line utility that uses some of this functionality. In particular,

given some YAML files and the location of the CS handbook github repo, the utility will

automatically generate and input the requirement checklist and prerequisite graphs into the

handbook .tex file. All that is left to do is compile the handbook repo with LaTeX.

My contributions

 I created a standard format to store degree information. I also created a procedure to

automatically generate artifacts that express info about the CS degree and various CS

classes. The information format we used was the YAML file type. This file type allowed the

information to be human and machine readable. We created three different YAML files

containing information about: requirements for the BS CS degree, info about CS classes, and CS

electives. These data sources were designed to maximize the amount of information while also

reducing the amount of parsing required. Using these three data sources, I created a command

line utility that would automatically update the CS undergraduate handbook. The program takes

as input the yaml files and the location cs-ugrad handbook github repository. Specifically, the

utility generates requirement checklists and pre-requisite graphs and inserts them into the

undergraduate handbook automatically based on user inputs. The program was built in Java

using the SnakeYAML library. Samples of the generated graphs and checklists are shown below.

The generated graphs and checklists (As seen in Figure 1 and 2) are not necessarily as compact

or informative as the manually generated graphs, but they do still contain all the relevant

information.

Future work

5

 In this project, I show it is possible to automatically generate informative graphs with

information about the CS degree and automatically add it to the handbook. For future work, this

functionality could be expanded to other sections of the handbook. In particular, I believe the

format lends itself well to the course description section and sections that are basically just lists

without a lot of text. For the BS CS degree, the elective information section could also be

automated, though the large amount of text may make that process more cumbersome than

helpful. Additionally, the same methods can potentially be expanded for use with requirements

for the BA and MS CS degrees.

Figure 1: Current CS degree requirement checklist (left), and generated

checklist (right)

Figure 2: Current CS course requirement flowchart (left) and generated flowchart (right)

6

References

Yong, Tien & Azad, Saiful & Rahman, Mohammed & Zamli, Kamal & Rabby, Gollam. (2018).

A Highly Accurate PDF-To-Text Conversion System for Academic Papers Using Natural

Language Processing Approach. Advanced Science Letters. 24. 7844-7849.

10.1166/asl.2018.13029.

Kopec, D. (2019). Classic computer science problems in python. Shelter Island, NY: Manning.

Pégourié-Gonnard, M. (2012). The luacode package. Retrieved from

http://mirrors.ibiblio.org/CTAN/macros/luatex/latex/luacode/luacode.pdf

