

ETL System: Bulk Updating Tickets by Creating a Loader Extension

A Capstone Report
presented to the faculty of the

School of Engineering and Applied Science
University of Virginia

by

Brittany Sandoval-Rivera

May 9, 2023

On my honor as a University student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Brittany Sandoval-Rivera

Capstone advisor: Rosanne Vrugtman. Advisor, Department of Computer Science

ABSTRACT
An experience management company that
allows its customers to create tickets from
issues or incident reports found that its
current method of updating thousands of
tickets was extremely inefficient and time-
consuming. The solution was to create a new
loader extension into in existing ETL system,
which would be able to handle thousands of
API calls to the Tickets database in a single
workflow. I first created a design document,
outlining what I would implement in the
frontend and backend. I also included
flowcharts that visualized what would occur
at runtime and during task configuration.
When I began coding the task, I used Golang
for the backend module and Typescript for
the frontend extension. I tested the task end-
to-end and was able to successfully update
60,000 tickets in under 24 hours. Now
customers can modify or update multiple
field names on thousands of tickets by
creating one workflow; they no longer have
to make thousands of workflows per ticket or
excessively call the public API. As of now,
after the workflow completes, the run history
tab only shows the number of tickets that
failed and the number of tickets that were
updated. In the future, it would be helpful to
add a downloadable CSV file that indicates
which tickets updated and which tickets
failed, along with an error message.

1. INTRODUCTION
Since the creation of the ticketing system,
many customers were left unsatisfied due to
the complexity involved in a simple ticket
update. An update may include changing the
status of a ticket to closed, adding a score, a
comment, changing the priority to high, re-
assign the ticket to a new owner, and so on.
Many customers asked if there was a way to
update thousands of tickets at once. The
response was that they had to send thousands
of individual requests to the public ticket API

themselves, or have someone from the
company with authorized access set up
several workflows for them to trigger
repeatedly.

Both of these methods were unsuitable and
involved lengthy processes. This is why the
loader extension, called Load into Tickets,
was necessary to alleviate the operational
headaches. This extension would be a part of
the existing ETL (Extract, Transform, Load)
system, which is useful for moving large
amounts of data. The user would only need
to set up a workflow once and let it run.
Behind the scenes, the loader task would
process these tickets and update them
through the internal API at a controlled rate
that would not overload the system.

2. RELATED WORKS
Several ETL systems have been built and
utilized in different ways. The general idea is
that heterogeneous data is extracted,
transformed, and loaded into a target
destination. ETL became a popular concept
in the 1970s when it was introduced as a
process for loading data for computation and
analysis. However, Wickramasinghe (2021)
reports that it has now evolved into a primary
method for processing large amounts of data
for data warehousing and data lake projects
[1]. It first collects data from multiple sources,
processes and cleanses that data to its proper
format, and then loads it into a data
warehouse. As Sun and Lan (2012) note,
these processes must be executed in that
order because they are all related to each
other [2].

Harrison, et. al. (2022) identified Amazon
Glue as a system that allowed users to
connect over 70 data sources and load data
into their data lakes [3]. Another recent work,
Galici, et. al. (2020) is applying ETL to
blockchain data. They extract the data,

transform, and load it into a relational
database to further analyze transactions and
addresses [4]. Contrary to these ETL systems,
Load into Tickets will only need to have its
data extracted from one source. The data in
this one location specifies what ticket fields
need to be updated. Furthermore, the data
will only load into one database, the Tickets
database, as opposed to an entire data
warehouse.

3. PROJECT DESIGN
This section will describe the Load into
Tickets task’s key components and system
architecture. Key components describe what
will be included in the frontend and backend,
as well as the main features of the plugin. The
system architecture consists of illustrations of
the task’s different flows. The first diagram is
the task configuration flowchart, what users
must do to set up a workflow. The second
flowchart shows the task at runtime, which is
what will happen to the task in the backend
once the workflow is executed.

3.1 Key Components
Load into Tickets task consists of creating a
frontend extension and backend module. The
extension is written in Typescript and is the
only part that the user will interact with. The
UI (Figure 1) of the extension includes a
dropdown to select the data source and a
section that automatically maps the fields
from the extracted source to the names found
in the Tickets database. For example, from
the source data, the field name that the user
wishes to update could be called,
“TicketStatus,” which will then be mapped
“status,” since that is the key name in the
database. However, the only names that will
be automatically mapped are the ones that are
found on every ticket, such as ticket key,
status, priority, owner, score, team, group,
and comment. Upon creating tickets, users
were allowed to add custom attributes. The
Load to Tickets extension allows them to

update these custom fields by selecting “Add
Field” at the bottom of the modal. The
number of fields to update is optional,
though the ticket key field is required. The
user will be unable to save the extension until
the ticket key is mapped.

The backend component is called a module,
which is essentially an interface written in
Golang. The data that contains all the tickets’
information, such as the field names and new
values, are processed in this module.
Extracting this data from the cloud and
converting it to a CSV file is a different
module that was created prior to this project.
However, once this data is obtained, the Load
to Tickets module will convert each line in
the file into an API request. Tickets will be
updated consecutively; requests will be sent
one at a time to the Tickets API. If a request
fails, then it will be retried with exponential
backoff before the ticket is marked as a
failure. The module keeps track of the
number of tickets that were successfully
updated and those that were not. If all the
tickets fail, then the module will output
“Failed”; otherwise it will say “Success.”

3.2 System Architecture
The task configuration is shown in Figure 1,
this is the Load into Tickets task that the user
will see and set up. To construct an ETL
process, the first extension that must be
added to the workflow is an extractor task. A
transformer task is typically next; however,
this does not need to be added since the
extractor outputs the data in the desired
format required for the loader. Thus,
configuring the new loader extension is the
final step in the ETL flow. Upon opening the
Tickets extension, the user will select the
extractor data source, which then
immediately auto-maps the fields.

Figure 1: Task Configuration Flowchart

At least one field needs to be updated to
enable the save button. Once all the mappings
are complete, the user hits save, which then
stores the payload containing all this
information in an Amazon DynamoDB. This
configuration of the workflow only needs to
happen once.

The workflow could be set up to run daily,
weekly, monthly, etc. The task at runtime is
shown in Figure 2.

When the workflow begins to run, it will
execute the tasks in the order that it was
configured through a messaging system. The
first module extracts the ticket data and then
pushes it into an Amazon S3 bucket. The red
outline displays all that is handled in the Load
into tickets task. When the loader task is
invoked, it will pull the ticket data from the
S3 bucket and then perform all the POST
requests to the database. This could take a
few seconds to a few hours, depending on
how many ticket updates are to be made.

Figure 2: Task at Runtime

4. RESULTS
After thorough testing, the Load into Tickets
task was added to each staging environment
and production. It updated 60,000 tickets in
16 hours and 50 tickets in five seconds.
However, the task is only visible for selected
customers before it will be available for all
brands. Customers who use the Tickets
feature often will be the first to use this
extension.

It used to take several days for a user to
manually update thousands of tickets or to
contact company support and ask them to
help set up an abundance of unnecessary
workflows. Now, the user can easily set up
one single workflow themselves and let the
loader task handle the rest in under 24 hours.
What was once a tedious process, became a
simple and effective automated job that
boosts customer satisfaction and saves a
significant amount of time and effort.

The loader task also implemented many
safety measures when sending thousands of
requests to the Tickets API, as opposed to
customers who could accidentally overload
the system during their manual updates. Not
only did the task reduce customer frustration,
but it also alleviated the stress placed on
developers who have to constantly attend to
problems when they arise.

5. CONCLUSION

The Load into Tickets task has simplified the
process for bulk updating tickets by
implementing an ETL system. Customers no
longer have to perform manual updates
themselves, such as sending thousands of
requests to the public API or asking
developers to create an excessive number of
workflows. Instead, users now only need to
set up a single workflow with the tickets task
plugin and let the automated job perform the
updates in under 24 hours. This will be
extremely beneficial to customers that need
to have tickets resolved quickly and simply.
Reducing the effort required to update
thousands of tickets will significantly
increase customer satisfaction and attract
more users to begin to use the company’s
ticket feature. Bulk updates will now be
performed efficiently and no longer be
considered a time-consuming, strenuous
process.

6. FUTURE WORK
Once the workflow with the Load into
Tickets task completes, the user will be
presented with a modal that shows only the
number of tickets that successfully updated
and the number that failed to update. While
this is helpful, it could be more beneficial to
show the ticket keys of all those that failed so
that they could be retried separately. The
proposed enhancement involves attaching a
downloadable CSV file to the modal screen.
This file would include a line per ticket that
indicates the update status. If the status is
failed, then it will provide the reason for
failure or an error code. This would give the
user a better indication of what they need to
reconfigure in the next workflow run.

The project could also be expanded if it were
to include bulk creating tickets, along with
bulk updating. Creating tickets in bulk has
also been a request from the customers. Since
the Load into Tickets task for updating tickets
has already been implemented, it would be

easier to add a similar feature. It would
simply require adding code to the backend
module that sends the create tickets requests
to a different API URL. Nonetheless, the
Load into Tickets task will remain extremely
valuable for customers.

7. ACKNOWLEDGMENTS
I would like to thank all the members of my
internship team, especially my mentor and
manager for their endless support and
feedback.

REFERENCES
[1] Wickramasinghe, S. (2021) What's ETL?
extract, transform & Load explained, BMC
Blogs. Available at:
https://www.bmc.com/blogs/what-is-etl-
extract-transform-load-etl-explained/
(Accessed: September 22, 2022).
[2] Sun, K. and Lan, Y. (2012) SETL: A
scalable and high performance ETL system,
IEEE Xplore. Available at:
https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=6340727 (Accessed: September
22, 2022).
[3] Harrison, P., Chapman, N. and Beaton, C.
(2022) Glue, Amazon. World International.
Available at:
https://docs.aws.amazon.com/glue/latest/dg/
what-is-glue.html (Accessed: September 22,
2022).
[4] Galici, R. et al. (2020) Applying the ETL
process to blockchain data. Prospect and
findings, MDPI. Multidisciplinary Digital
Publishing Institute. Available at:
https://www.mdpi.com/2078-
2489/11/4/204/htm (Accessed: September 22,
2022).

