
The Mistrust of Formal Proofs in Pure Mathematics

A Research Paper submitted to the Department of Engineering and Society

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jamie Fulford

Spring 2025

On my honor as a University student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Advisor

Caitlin D. Wylie, Department of Engineering and Society

1 Introduction

Software failures in critical systems have resulted in catastrophic consequences. The Therac-25

radiation therapy machine fatally overdosed patients due to concurrency bugs in its control soft-

ware (Baase, 2012), while the Ariane 5 rocket’s self-destruction, triggered by an integer overflow,

resulted in a $370 million loss (Dowson, 1997). As software systems increasingly control critical

infrastructure–from medical devices to financial systems to autonomous vehicles–preventing such

devastating failures has never been more crucial. However, there is a potential solution to this

challenge: proof assistants, specialized software tools that help develop and verify formal mathe-

matical proofs of program correctness. As Harrison et al. explain in their comprehensive history

of the field, these tools evolved from early automated theorem provers into interactive systems

that combine human insight with machine-verified mathematical rigor (Harrison et al., 2014). A

formal proof, in this context, is a complete mathematical demonstration of correctness that can

be mechanically verified by a computer, providing a level of certainty far beyond traditional test-

ing methods. These powerful tools face a fundamental challenge: while they could revolutionize

how we verify both mathematical theorems and software systems, there exists a wide gap between

their theoretical potential and practical adoption. Such a gap manifests in both technical barriers

to entry and deep social resistance, creating what Kiiskinen describes as a ”curiously empty inter-

section” between proof engineering and computational sciences (Kiiskinen, 2023). This raises a

critical question: Why do mathematicians resist adopting proof assistants despite their potential to

enhance both mathematical certainty and software reliability?

This paper examines the mistrust of proof assistants within the mathematical community and

its implications for software verification and mathematical practice. First, I examine historical case

studies and firsthand accounts that demonstrate this mistrust in action, revealing how mathemati-

cians struggle with the translation between intuitive mathematical reasoning and formal verifica-

tion. Next, I analyze personal experiences with proof formalization that highlight the cognitive

and procedural barriers these tools present. Finally, I apply the Social Construction of Technology

(SCOT) framework to systematically map the relevant social groups and technological frames that

1

shape proof assistant development and adoption (Pinch and Bijker, 2012). I argue that this mistrust

is not merely resistance to new technology, but reflects fundamental questions about mathematical

practice, knowledge validation, and epistemology. By understanding all the social dimensions, we

can better address the barriers preventing these powerful verification tools from reaching their full

potential in protecting critical infrastructure, ensuring software correctness, and advancing mathe-

matical knowledge.

2 Historical Evidence of Resistance

The mistrust of proof assistants within the mathematical community manifests through direct ac-

counts of mathematicians’ experiences with these tools. Koutsoukou-Argyraki documents her jour-

ney as an established mathematician learning to use the Isabelle/HOL proof assistant, capturing

both technical and psychological barriers mathematicians face when adopting formal verification

tools (Koutsoukou-Argyraki, 2021). She compares writing a mathematical proof to creating an

elaborate carpet: while the end result appears impressive, the process consists of simple arguments

like small stitches. However, when formalizing mathematics with a proof assistant, every such

”stitch” must be made explicit—even steps that are trivial to humans must be broken down into

elementary sub-steps. Despite her extensive background in mathematical proof theory, she en-

countered persistent difficulties with Isabelle’s rigid syntax and proof construction methods. This

disconnect between mathematical intuition and machine formalization represents a fundamental

misalignment between how mathematicians conceptualize proofs and how proof assistants require

them to be expressed. Her experience was particularly notable given her background in proof min-

ing, which already trained her in deconstructing proofs into elementary sub-steps. Yet even with

this relevant experience, the transition to formal verification presented significant challenges, high-

lighting how deeply these tools conflict with traditional mathematical practice. Her peer-reviewed

account provides concrete evidence of the barriers that create resistance to proof assistant adoption

within the mathematical community. In particular, while mathematicians might be motivated to

2

use proof assistants for increased certainty in complex proofs, these fundamental misalignments in

how mathematical thinking is expressed create significant barriers to adoption.

This individual experience reflects broader patterns visible in large-scale mathematical formal-

ization projects. Kaliszyk and Urban’s analysis of collaborative formalization efforts reveals how

these projects become sites of tension between different mathematical practices (Kaliszyk and Ur-

ban, 2016). When mathematical communities attempt to formalize established results, they must

confront fundamental questions about proof representation and validity that challenge traditional

mathematical workflows. The history of the four-color theorem’s proof offers a particularly illu-

minating example of this tension. After more than a century of failed attempts at traditional proof,

the theorem was finally proved in 1976 using computer assistance—a breakthrough that was met

with significant controversy in the mathematical community (Wilson, 2014). The proof required

examining thousands of cases, a task impossible to verify by hand, forcing mathematicians to con-

front questions about the nature of mathematical understanding and verification. This controversy

presaged many of the current debates around proof assistants, as it raised fundamental questions

about whether computer-aided proofs provide the same level of mathematical insight as traditional

methods. Similar tensions emerged in more recent efforts like the Flyspeck project, which for-

malized the proof of the Kepler conjecture (Hales et al., 2017). While successfully verifying the

proof, the project also highlighted significant cultural resistance from mathematicians who ques-

tioned whether machine verification added meaningful mathematical understanding. This resis-

tance stems not from doubts about the logical foundations of proof assistants, but from concerns

about losing the intuitive insights that mathematicians value in traditional proof methods. The

potential benefits of exhaustive verification must be weighed against what many mathematicians

see as a significant cost: the loss of the conceptual clarity and elegance that drives mathematical

advancement.

These tensions in how mathematicians view computer-assisted proofs reflect deeper genera-

tional and philosophical divides within the mathematical community. Bayer et al.’s analysis of

mathematical proof practices across generations reveals how established mathematicians construct

3

proof validity around concepts of insight and intuition (Bayer et al., 2022). Their work, published

as a notice from the American Mathematical Society, demonstrates how traditional mathematical

practice values proofs not just as verification tools, but as vehicles for understanding mathematical

structures and relationships. This perspective stands in marked contrast to the formal verifica-

tion approach embodied by proof assistants, which prioritize complete logical rigor over intuitive

understanding. Shulman presents a contrasting vision, arguing that proof assistants are actively

reshaping what kinds of mathematical questions can be asked and answered, potentially opening

new territories for mathematical exploration (Shulman, 2024). However, this optimistic view of

proof assistants as tools for mathematical discovery has struggled to gain traction among math-

ematicians who view computer verification as divorced from genuine mathematical insight. The

gap between these perspectives—proof as insight versus proof as verification—represents a funda-

mental challenge to the adoption of proof assistants in mathematical practice. For mathematicians

to embrace proof assistants more widely, these tools would need to demonstrate clear advantages

beyond mere verification, such as enabling new discoveries or providing insights that traditional

methods cannot, while maintaining the intuitive understanding that mathematicians value.

These historical examples, personal accounts, and generational analyses collectively demon-

strate how the mistrust of proof assistants emerges from deep-seated practices and values within

mathematical culture. This mistrust manifests across multiple dimensions: from individual mathe-

maticians struggling with formal verification tools, to community-wide controversies over computer-

assisted proofs, to fundamental disagreements about the nature of mathematical understanding.

While proof assistants have demonstrated their capability for verifying complex mathematical re-

sults, the mathematical community’s resistance goes beyond simple skepticism of new technology.

It reflects a more fundamental concern about preserving the aspects of mathematical practice that

have historically driven mathematical discovery. This cultural divide between mathematicians and

computer scientists creates a significant challenge for the broader adoption of proof technologies.

As critical systems increasingly rely on formal verification for safety, bridging this gap becomes

not just an academic concern but a practical necessity for advancing both mathematical practice

4

and software reliability.

3 Ethnographical and Experiential Evidence

My personal experience with Rocq, a widely-used proof assistant, provides a useful starting point

for understanding the dynamics of attitudes toward proof assistants. Despite having both mathe-

matical and programming training, I encountered significant challenges when attempting to for-

malize basic properties of metric spaces, mathematical structures that define the concept of dis-

tance in abstract spaces, a particular mathematical structure I wanted to formalize for a project.

The difficulty was not in understanding the mathematics—I could easily prove these properties

with pen and paper—but in translating mathematical concepts into a formal language. Defining a

metric space in Rocq required numerous attempts as the formal representation repeatedly failed to

capture the intuitive mathematical structure I was trying to express. Even expressing a property

as fundamental as the triangle inequality became an exercise in formal manipulation rather than

mathematical reasoning. The most frustrating aspect was realizing that established mathematical

notation, which elegantly captures core ideas, had to be abandoned for verbose machine-readable

definitions that obscured the underlying mathematical intuition. After finally establishing the basic

definitions, I discovered my formalization was incompatible with existing libraries that used differ-

ent representation choices. This experience revealed how proof assistants force mathematicians to

make formal commitments to representation choices that mathematical practice deliberately leaves

flexible, creating what Koutsoukou-Argyraki identifies as a fundamental ”translation barrier” be-

tween mathematical thinking and formal verification systems (Koutsoukou-Argyraki, 2021).

The tactical approach of proof assistants presents another significant barrier to mathematical

thinking. After establishing basic definitions in Rocq, I faced the challenge of constructing formal

proofs using its tactic language. Tactics are commands that manipulate proof states—essentially

small programs that automate proof steps that would be considered ”obvious” in mathematical

practice. While tactics ostensibly simplify proof construction, they introduce a separate mental

5

model that bears little resemblance to intuitive mathematical reasoning. For example, when prov-

ing a certain property about metric spaces, I found myself spending hours learning tactical patterns

rather than focusing on the mathematical content. The proof script ultimately resembled a pro-

gramming solution rather than a mathematical argument, with nested tactical combinations that

obscured the elegant mathematical insight the proof was meant to convey. As I gained more expe-

rience with tactics like ”destruct,” ”rewrite,” and ”apply,” I realized I was developing proficiency

in Rocq itself rather than deepening my understanding of the mathematics. This tactical layer cre-

ates what I would call a ”procedural barrier” that compounds the translation difficulties identified

earlier. The resulting disconnect between tactical manipulation and mathematical insight helps

explain why formal verification often feels like an exercise in programming rather than mathemat-

ical reasoning, lacking the conceptual clarity that makes traditional proofs valuable as tools for

understanding.

These personal experiences illuminate a deeper pattern that connects to broader scholarly dis-

cussions about the accessibility of proof assistants. My struggles with formal representation echo

what Volker identified as a fundamental design problem in proof assistant interfaces. As he ob-

served, proof assistants have been primarily developed by ”academics or students” with limited

incentives to prioritize usability (Völker, 2004, p. 140). This observation provides critical context

for understanding why the experience of working with proof assistants feels so disconnected from

traditional mathematical practice. The tactical approach to proof construction presents particularly

revealing challenges that go beyond mere interface design. Blanchette et al.’s analysis of ”hammer”

systems—tools designed to automate parts of the proof process—attempts to address this tactical

complexity (Blanchette et al., 2016). Their work on automating proof tactics demonstrates recog-

nition within the proof assistant community that tactical complexity represents a significant barrier.

However, their focus remains primarily on technical solutions to automation rather than addressing

the cognitive mismatch between tactical thinking and mathematical reasoning. This gap between

technical capability and mathematical practice reveals that even as proof assistants advance tech-

nically, they continue to diverge from the cognitive processes that make mathematics valuable as

6

a form of reasoning. This analysis points to a more substantial conclusion: the resistance to proof

assistants within mathematics may represent not just conservative reluctance to adopt new tech-

nology, but a legitimate defense of valuable cognitive practices that formal verification currently

disrupts. Shulman’s optimistic vision of proof assistants opening ”strange new universes” of math-

ematical possibility (Shulman, 2024) may eventually prove correct, but my experience suggests

that realizing this potential will require fundamental rethinking of how proof assistants engage

with mathematical cognition, not just incremental improvements in their technical capabilities. As

infrastructure increasingly relies on software systems that could benefit from formal verification,

the barriers preventing mathematicians from engaging with proof assistants contribute to persistent

verification gaps. These gaps leave critical systems vulnerable to the same kinds of failures that

caused the Therac-25 radiation overdoses and Ariane 5 explosion referenced earlier.

A mathematician and software developer who has contributed extensively to Lean’s mathlib

offers a compelling counterargument to the experiences described above (Conneen, 2025). They

contend that well-designed formal libraries like mathlib are deliberately constructed to be explana-

tory, not just functional. The code structure in mathlib mirrors the conceptual structure of the

mathematics being formalized, with definitions and lemmas (smaller supporting theorems) orga-

nized to reflect mathematical relationships. Bayer et al. support this perspective when they note

that younger mathematicians increasingly view computer-assisted proofs as ”natural extensions of

mathematical reasoning” (Bayer et al., 2022). This suggests that the disconnection experienced

by many mathematicians might result from insufficient training rather than inherent limitations of

the technology. However, this argument does not fully address the fundamental cognitive shift

required to translate between mathematical intuition and formal verification. Even if mathlib’s

structure is mathematically motivated, engaging with it requires mathematicians to adopt compu-

tational thinking patterns that may disrupt their mathematical creativity.

Terence Tao’s advocacy for proof assistants, particularly through his blog post on the Lean4

formalization of the PFR theorem (the Prime Formulation of the Riemann Hypothesis, a signif-

icant result in analytic number theory), highlights both the promise and the friction involved in

7

integrating formal verification into mathematical practice (Tao, 2023). Unlike those who present

proof assistants as a straightforward enhancement to mathematical rigor, Tao’s approach implicitly

acknowledges the fundamental cognitive shift they require. His detailed breakdown of the for-

malization process reveals how translating mathematical intuition into machine-verifiable syntax

introduces layers of complexity that many mathematicians find counterintuitive. While he demon-

strates enthusiasm for the Lean4 project, his documentation of struggles—such as reconciling for-

mal definitions with existing mathematical structures or managing the procedural constraints of

Lean’s tactics—offers an unfiltered look at the intellectual challenges of proof formalization. Tao’s

engagement with these difficulties suggests that the integration of proof assistants is not merely a

technical endeavor but a transformation of mathematical reasoning itself. By inviting open collabo-

ration through platforms like GitHub and Zulip, he encourages a shift toward a more collective and

iterative approach to theorem verification. However, his work also raises the question of whether

proof assistants can evolve in ways that accommodate, rather than disrupt, the intuitive modes of

mathematical thought that have long defined the discipline.

4 Theoretical Analysis

The Social Construction of Technology (SCOT) framework, which analyzes how social factors

influence technological development, provides a systematic way to analyze how different groups

have shaped and interpreted proof assistants. Developed by Pinch and Bijker, SCOT rejects techno-

logical determinism—the idea that technologies evolve according to an internal logic—and instead

focuses on how social processes shape technological development (Pinch and Bijker, 2012). While

it might be tempting to view the adoption of proof assistants as a simple division between math-

ematicians and computer scientists, Harrison et al.’s historical analysis reveals a more complex

landscape of social groups (Harrison et al., 2014). Traditional pure mathematicians, who value

proofs primarily for their insight and intuition, represent one interpretive framework. Computer

scientists working in formal methods form another distinct group, viewing proof assistants as natu-

8

ral extensions of computational logic. Software verification specialists constitute a third significant

group, focused on practical applications in critical systems. A fourth key group emerged more re-

cently: younger mathematicians who, as documented by Koutsoukou-Argyraki, approach these

tools with different expectations shaped by contemporary computational practices (Koutsoukou-

Argyraki, 2021). Each of these groups has constructed fundamentally different understandings

of what proof assistants are and what role they should play in mathematical practice, leading to

what SCOT terms ”interpretive flexibility” (Pinch and Bijker, 2012)—the way that different social

groups can develop radically different understandings of the same technology.

The development trajectory of proof assistants has been significantly shaped by academic

power structures and incentives, influencing how different groups interact with these tools. Volker’s

analysis reveals how academic incentives have historically privileged certain interpretations of

proof assistants over others (Völker, 2004). The primary developers of these tools have been com-

puter scientists in academic settings, who face little external pressure to accommodate the needs

of other groups. As Volker notes, ”there is little external reward for building and maintaining

such user interfaces... most developers are academics or students” (Völker, 2004, p. 140). This

academic context has created what SCOT would term a ”technological frame” that prioritizes the-

oretical completeness over practical usability, fundamentally affecting how proof assistants have

evolved (Pinch and Bijker, 2012). The resulting tools naturally align with the computer science

perspective of formal verification, while potentially alienating other groups—particularly tradi-

tional mathematicians—who might conceptualize proofs differently. This disparity in influence

over tool development has reinforced existing power dynamics between different social groups,

contributing to the ongoing tensions around proof assistant adoption.

Blanchette et al.’s work on ”hammer” systems provides an illuminating case study of how tech-

nological solutions emerge within specific technological frames (Blanchette et al., 2016). Ham-

mers are tools designed to automate parts of the proof process by connecting interactive theorem

provers to automated provers. Within the SCOT framework, hammers represent an attempt to ad-

dress usability challenges, but they still emerge primarily from the formal methods technological

9

frame (Pinch and Bijker, 2012). While hammers aim to reduce the tactical complexity that many

users struggle with, they don’t address the fundamental disconnect between mathematical think-

ing and formal verification. The automation hammers provide doesn’t preserve the mathematical

intuition and insight that mathematicians value most in proofs. Instead, they accelerate the formal

verification process while still requiring users to translate mathematical concepts into formal spec-

ifications. This case illustrates how technological solutions often address symptoms rather than

root causes when they emerge from within a single technological frame without sufficient input

from other relevant social groups.

What SCOT reveals about proof assistants suggests a path forward that goes beyond techni-

cal improvements alone. Achieving what SCOT calls ”rhetorical closure”—where controversies

around a technology appear resolved—would require creating spaces of genuine dialogue between

the different social groups identified above. This means moving beyond interdisciplinary con-

ferences dominated by computer scientists to forums where mathematicians have equal voice in

defining what proof assistants should be. A form of ”redefinition of the problem” closure might be

necessary, where proof assistants are reconceptualized not as replacements for traditional mathe-

matical reasoning but as complementary tools that serve different purposes. This reframing would

acknowledge the value of both intuitive mathematical insight and formal verification rather than

positioning them as competing approaches. The ”inclusion/exclusion” aspect of SCOT suggests

that broadening participation in proof assistant development beyond academic computer scien-

tists could significantly reshape these tools. Involving mathematicians earlier in design processes

could help develop interfaces and interaction models that better reflect mathematical cognition.

These social interventions, rather than merely technical improvements, offer the most promising

path toward realizing the potential of formal verification for protecting critical infrastructure while

preserving the valuable aspects of mathematical thinking that drive discovery.

10

5 Conclusion

The mistrust of proof assistants in mathematics represents a sociotechnical challenge with sig-

nificant implications beyond academia. This analysis has demonstrated that this mistrust stems

not from simple resistance to technology, but from fundamental misalignments between mathe-

matical cognition and formal verification approaches. The gap between mathematical intuition

and machine-verifiable syntax creates cognitive barriers that many mathematicians find difficult to

justify. As critical infrastructure increasingly relies on software systems, these barriers to formal

verification contribute to persistent verification gaps that leave essential systems vulnerable to the

same kinds of catastrophic failures exemplified by the Therac-25 and Ariane 5 incidents.

The SCOT framework reveals that addressing this challenge requires both technical innovation

and social interventions. Proof assistant development has been shaped by technological frames

that prioritize formal methods perspectives over mathematical practice, creating tools that align

with computer science values rather than mathematical ones. Moving forward demands creating

genuine dialogue between stakeholder groups, reconceptualizing proof assistants as complemen-

tary to traditional mathematical reasoning, and involving mathematicians as co-creators rather than

merely end-users. As our dependence on software systems grows, reconciling mathematical intu-

ition with formal verification becomes increasingly urgent—not just for advancing mathematical

knowledge, but for ensuring the safety and reliability of the software systems that underpin con-

temporary society.

11

References
Baase, S. (2012, August). A gift of fire: Social, legal, and ethical issues for computing technology

(4th ed.). Pearson Prentice Hall.
Bayer, J., Benzmuller, C., Buzzard, K., David, M., Lamport, L., Matiyasevich, Y. V., Paulson,

L. C., Schleicher, D., Stock, B., & Zelmanov, E. I. (2022). Mathematical proof between
generations. ArXiv, abs/2207.04779. https://api.semanticscholar.org/CorpusID:250426455

Blanchette, J. C., Kaliszyk, C., Paulson, L. C., & Urban, J. (2016). Hammering towards qed. Jour-
nal of Formalized Reasoning, 9(1), 101–148. https://doi.org/10.6092/issn.1972-5787/4593

Conneen, C. (2025). Personal interview [Interview conducted in person]. https://topos.place
Dowson, M. (1997). The ariane 5 software failure. SIGSOFT Softw. Eng. Notes, 22(2), 84. https:

//doi.org/10.1145/251880.251992
Hales, T., ADAMS, M., BAUER, G., DANG, T. D., HARRISON, J., HOANG, L. T., KALISZYK,

C., MAGRON, V., MCLAUGHLIN, S., NGUYEN, T. T., & et al. (2017). A formal proof of
the kepler conjecture. Forum of Mathematics, Pi, 5, e2. https://doi.org/10.1017/fmp.2017.1

Harrison, J., Urban, J., & Wiedijk, F. (2014). History of interactive theorem proving. In J. H.
Siekmann (Ed.), Computational logic (pp. 135–214, Vol. 9). North-Holland. https: / /doi.
org/10.1016/B978-0-444-51624-4.50004-6

Kaliszyk, C., & Urban, J. (2016). Wikis and collaborative systems for large formal mathematics. In
P. Molli, J. G. Breslin, & M.-E. Vidal (Eds.), Semantic web collaborative spaces (pp. 35–
52). Springer International Publishing.

Kiiskinen, S. (2023). Curiously empty intersection of proof engineering and computational sci-
ences. In P. Neittaanmäki & M.-L. Rantalainen (Eds.), Impact of scientific computing on
science and society (pp. 45–73). Springer International Publishing. https://doi.org/10.1007/
978-3-031-29082-4 3

Koutsoukou-Argyraki, A. (2021). Formalising mathematics – in praxis; a mathematician’s first
experiences with isabelle/hol and the why and how of getting started. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 123(1), 3–26. https://doi.org/10.1365/s13291-020-
00221-1

Pinch, T., & Bijker, W. (2012). The social construction of technological systems: New directions
in the sociology and history of technology. The MIT Press. Retrieved November 9, 2024,
from http://www.jstor.org/stable/j.ctt5vjrsq

Shulman, M. (2024). Strange new universes: Proof assistants and synthetic foundations [Published
electronically: February 15, 2024]. Bulletin of the American Mathematical Society, 61,
257–270. https://doi.org/10.1090/bull/1830

Tao, T. (2023, November). Formalizing the proof of pfr in lean4 using blueprint: A short tour.
https://terrytao.wordpress.com/2023/11/18/formalizing-the-proof-of-pfr-in-lean4-using-
blueprint-a-short-tour/

Völker, N. (2004). Thoughts on requirements and design issues of user interfaces for proof as-
sistants [Proceedings of the User Interfaces for Theorem Provers Workshop, UITP 2003].
Electronic Notes in Theoretical Computer Science, 103, 139–159. https://doi.org/10.1016/
j.entcs.2004.05.001

Wilson, R. (2014). Four colors suffice: How the map problem was solved - revised color edition
(Vol. 128). Princeton University Press. Retrieved January 22, 2025, from http://www.jstor.
org/stable/j.ctv1vbd2gs

12

