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Abstract 

Automated closed-loop drug delivery systems, in which continuous adjustments of treatment parameters 

are based on frequent sampling of physiological processes, have been studied for years and are largely 

envisioned for use in clinical settings where the system can be under constant supervision by a clinician. 

Recently, there have been efforts in using these systems as advanced treatment for chronic illnesses, 

which is timely since chronic illness rate is on the rise, but also raises the possibility that the system user 

may now be the patient (not a clinician). Indeed, miniaturization and smarter algorithms promise that one 

day these technologies can be taken out of the hospital and brought to patient’s home. For example, recent 

clinical studies of artificial pancreas (AP) systems have demonstrated the feasibility of closed-loop 

treatment of Type 1 diabetes. While efforts to commercialize AP systems are underway, it is not yet clear 

that closed-loop treatment will appeal to a large segments of the patient population. 

This work started with a desire to understand the factors that contribute to the success or failure of 

systems that (i) involve continuous measurement (as in the AP) but (ii) do not involve automated 

adjustment of all treatment parameters but rather present some treatment options to patients on demand 

where such options are model-based optimal recommendations. This approach accounts for human factors 

considerations and serves as a reasonable precursor to a fully closed-loop AP, but can be more readily 

adopted by the patients. The approach employs a model that addresses the risk asymmetry of the patient 

state space and takes advantage of a previously developed safety feature to create a semi-automated 

system. 

One outcome of this work is a proposition of a controller design where individualization of the action of 

the system is achieved through the development of a mathematical model that is adapted to patient’s 

individual physiology. Previous model-based advisory systems have generally relied upon a “population 

average” model and achieved individualization through careful construction of optimization objective 



 
 

function. Such approach of defining state deviation penalties proved to be fragile because, for example, 

the patient’s pump therapy parameters that the objective function becomes sensitive to are often 

misestimated. The in silico preclinical trials using the new controller design suggested dramatic 

improvement over conventional therapy by better keeping the blood glucose in range and reducing the 

risk of implications such as hypoglycemia, without requiring ad hoc tuning of objective function 

parameters. 

In vivo validation of the bolus advisory system confirmed safe and effective operation at meal times, but, 

due to model uncertainty, demonstrated that a different approach should be employed to retain the 

efficacy in the timeframe immediately after meals. Consequently, the work continued with the advice 

request limited to meal times and correction boluses decoupled from meal boluses. In addition, the 

system’s application was extended for multiple daily injection (MDI) therapy to serve a larger population. 

To address issues encountered earlier, the robustness of the system to uncertainty about the model’s 

pharmacokinetic parameters was tested. In addition, the system’s robustness to irregularities in the timing 

of long-acting insulin dose administration was tested, accounting for the reality of MDI therapy in 

practice. It was shown that the system can handle completely skipped long-acting insulin injections used 

in MDI therapy. 

While the engineering design of automated systems for the management of chronic disease like Type 1 

diabetes is a complex problem, it still does not encompass the larger challenge of designing human-

machine systems of this sort. A formal framework is therefore proposed for holistic pre-design AP system 

analysis. In addition, a framework for risk identification is proposed that allows to locate and address the 

causes of suboptimal system performance. 
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Chapter 1 

Introduction and Motivation 

 

Closed loop control has been the staple of many control systems since its advantages were recognized in 

the early 20
th
 century [1]. In the realm of governing mechanical processes, closed loop control was 

patented in the US as early as the 1860s, [2], [3]. And before that, self-governing devices like the 

centrifugal governor by Watts [4] and the pendulum clock by Huygens [5] trace the history of automatic 

control through centuries all the way back to antiquity when water clocks were first used in Greece. 

While the complexity of such control systems has been growing at an ever increasing rate, the application 

of the engineering methods initially designed for mechanical inanimate systems also migrated into other 

fields, particularly biomedical applications of systems engineering. In fact, the field of control and 

systems has been applied to biological systems for many years: at least as early as the work of Walter 

Cannon on homeostasis in 1929 [6]. However, as Drs. Doyle III and Bequette note in the report The 

Impact of Control Technology [7], the impact of control and systems on devices and applications in the 

field of biology has only emerged in recent years. 

This sort of application (biomedical applications of systems engineering) poses inherent risks due to 

several reasons: 

 It is much less mature 

 It has wide impact on human life as the actuation is directed at humans immediately 

 It is more behavior dependent as the application is more individualized 

There are specific challenges that have to be overcome in translating closed-loop techniques to practice. 

For instance, handling of both inter-patient and intra-patient variability. This problem is quite different 



2 
 

from engineering systems where uncertainty may be present, but it is typically of fixed (for example, 

stationary) structure [7]. In biology, the variability is profound, and the same subject can differ 

significantly from one day to the next, depending on such factors as stress, food quantity and quality, 

environment, and so on. In some specific situations, such as diabetes, the intra-subject variation in critical 

subject parameters (such as insulin sensitivity) far exceeds the inter-patient variability. 

Besides technological and algorithmic challenges these biomedical applications of systems engineering 

also face the barriers of another kind – regulatory ones. To provide an example, for over 40 years there 

have been research and development progress in the area of what is called Artificial Pancreas – a type of 

therapy for type 1 diabetics where the insulin is infused automatically into the body of the patient by a 

system that makes the injection decisions based on the information available, such as glucose level 

continuously measured in subcutaneous (SC) tissues, insulin injection history, etc. (see [8] for a 

comprehensive review). However, there is no commercially available product on the market yet and such 

a product still remains a long-term prospect. One reason is that the Food and Drug Administration (FDA) 

in the US and similar agencies in other countries are very careful in considering applications for approval 

of systems with the features of closed loop. While these regulatory institutions have allowed prototype 

devices to be tested in clinical settings, the avenue to closed loops testing in a home environment remains 

unclear [9]. 

In this light, the primary hypothesis of this work is that it is possible to adapt model-predictive methods 

used in closed loop to create “advisory” systems that make the most out of available sensors, models, and 

actuators, but allow the patient and caregiver to maintain ultimate control authority. We deem these 

advisory systems – where the patient is ultimately in charge of the potent drug delivery –an alternative to 

automated drug-delivery systems and a natural stepping stone to marketable and viable closed loop 

solutions. 
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Chapter 2 

Biomedical Background 

It is impossible to consider biomedical engineering systems without delving at least to some degree in the 

contextual knowledge. This section provides all the background necessary to understand the rest of the 

research presented. 

2.1 Type 1 Diabetes as a Control Problem 

Type 1 diabetes mellitus (T1DM) is an autoimmune disease that is characterized by destruction of the 

insulin-producing beta-cells in the pancreas. This leaves the body without means of utilizing the glucose 

and leads to its increase in blood – hyperglycemia. As body cannot consume the glucose from the blood, 

it tries to obtain energy from breaking down fats. A byproduct of this process – ketones – cannot be 

completely gotten rid of by the body and so the ketones concentration builds up leading to ketoacidosis 

(diabetic coma). Chronic hyperglycemia injures the heart and incurs poor blood circulation. This might 

lead, among other things, to foot ulcers that, when untreated, lead to the amputation of the toes, foot, or 

even part of the leg. Besides foot damage, hyperglycemia leads to neuropathy (nerve damage), 

nephropathy (kidney damage), and retinopathy (eye damage). According to the American Diabetes 

Association (ADA), blood glucose levels above 130 mg/dl before a meal and above 180 mg/dl 2 hours 

after a meal should be considered hyperglycemic [10]. 

To prevent hyperglycemia in type 1 patients, exogenous insulin is used. The insulin facilitates the uptake 

of glucose by tissues and thus decreases its concentration in blood. The overall insulin-glucose interaction 

system is depicted in Figure 1 (the graphic is adopted from [8]). However, the amount of insulin 

necessary in any given case is hard to calculate precisely. Overdosing insulin leads to another clinical 

complication – hypoglycemia, or low blood glucose. If the hypoglycemia is not treated, it leads to a 
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seizure, unconsciousness, and eventually to death. According to the American Diabetes Association, 

blood glucose levels below 70 mg/dl should be considered hypoglycemia [11]. 

 

Figure 1. Insulin-glucose metabolic interaction. 
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2.2 Types of Insulin 

There are different types of insulin, different methods of its administration, and different therapies 

available to treat hyperglycemia. The most used types of insulin are presented in Table 1 along with their 

main characteristics. 

Table 1. Common types of insulin and their characteristics. 

Type of Insulin Onset Time Peak Time Action Time 

Rapid-acting insulin (e.g. lispro) 5 min 1 h 2 – 4 h 

Short-acting insulin (e.g. regular insulin) 30 min 2 – 3 h 3 – 6 h 

Intermediate-acting insulin (e.g. NPH) 1 - 2 h 4 – 12 h 12 – 18 h 

Long-acting insulin (e.g. glargine) 1 – 2 h - 20 – 24 h 

Ultralong-acting insulin (e.g. degludec) 1 – 2 h - Up to 40 h 

 

2.3 Insulin Delivery Methods 

There are three main ways of delivering insulin into the body: 

 Subcutaneous (SC) injection 

 Intradermal (ID) injection 

 Intravenous (IV) injection 

There are also other ways of administration that are being investigated: 

 Transbuccal (through the cheek) administration [12], [13]. 

 Oral administration to digestive tract [14]. 
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 Inhalation [15]. While after the failure of the Pfizer’s product, giants like Novo Nordisk and Eli 

Lilly scrapped their inhalable insulin research, there is a newer product Afrezza by MannKind 

that was recently approved by FDA. 

 Intranasal administration [16]. 

 Transdermal administration [17], [18]. 

 Transconjunctival (through eyes) delivery [19]. 

2.4 Current off-the-Shelf Devices for Diabetes Management 

 Self Monitoring of Blood Glucose (SMBG) device, or capillary BG monitoring (CBGM) device.  

Comes with strips on which the patient squeezes a blood drop after pricking their finger with a 

lancet (fingerstick). The strip is then plugged into the device and the BG level is shown on the 

screen.  

 Continuous Glucose Monitoring (CGM) device. Consists of the sensor with a needle that is 

inserted under the skin and the receiver that wirelessly receives glucose data from the sensor 

every 5 minutes. Receiver shows the trend and current level on the screen. One drawback of this 

system, as compared to SMBG, is that the glucose level is measured in subcutaneous tissue, not 

in the blood, and therefore there is a delay and lower accuracy. FDA does not recommend making 

decisions solely based on CGM readings – SMBG test should be in place to assess BG more 

precisely before any insulin is injected. 

 Insulin pen (replacing relatively more archaic syringes). Provides a way to carry out an 

intradermal injection of insulin. Uses either replaceable cartridges or comes as a disposable 

device with prefilled insulin of certain type and brand. The injections are either basal insulin 

(long-acting insulin) or boluses (rapid-acting insulin). 

 Insulin pump. Most of the pumps consist of a tube that goes from the pump (carried on the belt in 

a cradle) to the insertion site on the body where a needle permanently stays in the body, 

subcutaneously. The insulin is injected every 5 minutes in small amounts to emulate the body’s 
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natural production (basal insulin) and big amounts are injected at certain times by the command 

of the user, e.g. at meal times (boluses). There are also pumps in which the insulin cartridge is 

part of the insertion site (the so called pod), and the interface is located on a wireless devices that 

is not connected to the site with a tube. 
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Chapter 3 

Literature Review 

The sections provides overview of the models and control systems in the realm of Artificial Pancreas 

systems and of the insulin administration peculiarities in the corresponding context. 

3.1 State of the Art 

Model Predictive Control (MPC) was developed mainly for the chemical industry in the US and France in 

the 1960s and 1970s [20]. Since then, it has been used extensively in the applications of controlling 

various dynamical systems, and attempts have been made in the field of type 1 diabetes control as well.  

The pursuit of the elusive goal of closed-loop control for Type 1 Diabetes Mellitus (T1DM) continued 

with renewed vigor after the seminal 1993 Diabetes Control and Complications Trial (DCCT), [21] (for 

similarly impactful United Kingdom Prospective Diabetes Study (UKPDS) for type 2 diabetes see [22]), 

that showed that intensive glycemic control reduces the complications of the disease, such as retinopathy 

and stroke. Another boost was given by the JDRF initiating the artificial pancreas project and providing 

corresponding funding to numerous research centers in 2006 [23]. 

Reactive algorithms like Proportional-Integral-Derivative (PID) control (e.g. [24]) underperformed in the 

Artificial Pancreas settings in the past due to the lags of the input and actuation signals which results from 

the subcutaneous nature of the glucose sensors and insulin pumps. The subcutaneous medium of the 

glucose measure and insulin injection is not the medium where the interaction of the manipulated variable 

(glucose) and actuation tool (insulin) occurs, and a reactive controller may result in unstable system 

behavior and system oscillation [25]. Indeed, this kind of systems worked well in AP applications where 

the IV route was used, and therefore the delays were eliminated [26], [27]. But IV route is too invasive 

and cumbersome to be a part of a commercial AP system. 
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That is why lately researchers have been concentrating on other, model-based solutions. Among well-

known earlier model-based approaches is the Model-Based Algorithm by Parker and Doyle III, [28], and 

their follow-on work studying an Advanced Model Predictive Control, [29]. Later Magni et al. published 

the design of Model Predictive Control, [30] and followed up with its Run-to-Run tuning, [31]. Another 

advanced MPC strategy was investigated by Hovorka et al. in [32]. Other encouraging MPC systems 

results are described in [33], [34], and [35]. In addition, a modular structure for AP systems has been 

developed by Patek et al., [36]. This approach enabled design flexibility, and should allow for incremental 

testing, regulatory approval, and deployment of AP control systems 

Boston researches have been investigating bihormonal control, where the action of insulin, if needed, can 

be counter-regulated by the hormone glucagon which raises the concentration of glucose in the blood, 

[37]. This system, called by the authors Bionic Pancreas (glucagon, along with insulin, is naturally 

produced in the pancreas by alpha-cells, while insulin is produced by beta-cells), requires not one, but two 

insulin pumps one of which is used for insulin delivery and another one for glucagon delivery. While the 

study results were encouraging, a bihormonal system allows for more aggressive control (since any action 

can be always counter-regulated) and therefore might be potentially more dangerous. 

Finally, the state-of-the-art simulation system was developed at U.Va. with the help of collaborators from 

California and Italy, [38]. The Simulator – Simulink-implemented simulation environment – contains a 

cohort of 300 in silico patients, is approved by the FDA as a substitution for animal trials, and allows 

researchers to develop. test, tune, and validate AP algorithms, [39]. 
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3.2 Call for Advisory Systems 

With all the development on the side of fully automatic control described above, there is hardly any 

research published about advice-on-demand types of systems. There might be an additional source of 

confusion in the fact that there is a method called Advisory Mode Control used for testing and validation 

of closed-loop control algorithms. Under this name, the test is common in the petrochemical industry for 

prototyping and has been used with type 1 diabetes control algorithms as well, for instance in [40] and 

[41]. It consists of testing an MPC controller on historical clinical data and presents value per se, but does 

not have any relation to the advisory mode being proposed in this work. In contrast to the proposed 

advisory system, the Advisory Mode Control still administers insulin on a frequent basis (e.g. every 5 

minutes) and is an instantiation of an MPC control. 

There have been early attempts to introduce so called decision support systems, such as Computer 

Assisted Insulin Dosage Adjustment by Schiffrin et al. in 1985 [42], Computer-Assisted Diabetic 

Management by Deutsch et al. in 1990 [43], or DIAS – the Diabetes Advisory System by Hejlesen et al. 

in 1997 – see [44] and the system’s further evaluation in [45] (not to be confused with DiAs – Diabetes 

Assistant software platform developed at U.Va. and described in [46]). However, these systems were 

developed at the times of lower computational power, bulkier devices, their algorithms were based on 

limited previous experience, and they would usually run on desktop computers of physicians to assists 

them in assigning therapy to type 1 diabetics. 

There is another work that used the word ‘advisory’ in it, [47] by Zarkogianni et al. The discussed system 

is called Insulin Infusion Advisory System for Type 1 Diabetes Patients. However, the word ‘advisory’ 

(or any other mention of any ‘advice’) is used in the paper only twice – in the title and in the abstract 

where the title is repeated. Other than that, the system presented is a pump-based MPC system, where, 

natural to MPC, a calculation based on an optimization function is performed at each step until the end of 

prediction horizon and only the first element of the suggested control sequence is applied to the system. 
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Interestingly, in most of the works that describe closed-loop insulin infusion systems, the subjects’ 

opinion of the system operation is not studied, or at least not reported, and in the case of computer 

simulation studies, is not considered at all. There seems to be a gap therefore since the systems under 

consideration should be designed to ultimately serve the patients and their input would be invaluable for 

every stage of the design. While an argument can be made that all diabetes patients would support the 

arrival of AP, as with many a design in real life, users (patients) might have a mental model of the system 

that is different from the mental model of the designers (engineers and physicians). Discrepancy between 

these mental models is studied in the field of human factors and is proved to sometimes be dangerous to 

the user of the system [48]. 

3.3 Models 

Since model-based control is considered, it is important to have a full picture of the models that are used 

in the control systems for type 1 diabetes. A great summary on the models developed to measure, control 

and simulate type 1 diabetes centered systems is given in the review [49] by Cobelli et al. Arguably the 

two most cited models are the meal model by Dalla Man, [50], and the Minimal Model by Bergman, [51], 

the latter also having useful extensions accounting for subcutaneous oral glucose sensing and insulin 

transport as described in [52]. Another useful transformation of the Bergman’s model uses the logarithmic 

space to reflect the difference of the risk weight attached to the deviations of the same magnitude from the 

target that are directed towards hypo- or hyperglycemia – see [53] for a detailed description and compare 

to the symmetrization by Kovatchev et al. in [54]. 

3.4 Independent Insulin Profiles Evaluations 

In addition to considering the literature of model-based control in type 1 diabetes, another relevant topic 

is the types of insulin, with its characteristics like onset time, peak time, and action time, and other 

peculiarities of the drug’s pharmacokinetics and pharmacodynamics. Besides drug descriptions published 
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by manufacturers, there have been numerous studies published that independently examine the 

characteristics of the drug, e.g. [55] by Gillies et al. for insulin glargine or [56] by Birkeland et al. 

investigating new ultralong-acting insulin degludec. There are also insightful studies comparing different 

insulins, e.g. [57] by Porcellati et al. comparing long-acting insulins glargine and detemir, or [58] by 

Heinemann et al. comparing long-acting insulin glargine to intermediate-acting insulin neutral protamine 

Hagedorrn (NPH). Finally, there are review papers, like [59] by Porcellati, Bolli, and Fanelli covering just 

basal insulins, or [60] by Hirsch covering all insulin analogues. Many such independent study results 

were used in this work when deriving models. 

3.5 Literature Review Conclusion 

This literature review shows that there is a gap in the research of control in type 1 diabetes. Namely, little 

has been done to consider a model-based advisory system (where the advice is supplied on-demand) as a 

substitute for a closed-loop fully-automated system. On the other hand, as we explained in the 

Introduction, advisory system may be the necessary ramp for the technology-based solutions that would 

lead to the acceptance of type 1 diabetes closed-loop controls – accepted by both regulators and patients. 

In addition, there is no formal framework proposed to facilitate the design of such systems. 
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Chapter 4 

Semi-Autonomous Advisory System in Risk 

Space 

For the reasons described in Chapter 1, it has been a struggle to find models for control that could 

completely trusted and thus we ask ourselves whether the models we do have can be used at all. While 

from the engineering point of view Artificial Pancreas systems might be attainable in the very near future, 

practically it might be a long time before they are widely available and accepted. Medical establishment, 

patients, and regulatory institutions are wary of fully automatic systems that inject potentially lethal drug 

and thus are reluctant to easily accept AP systems. 

However, we believe that there is still a way to benefit from these models without engaging with a fully 

automatic AP, but instead building a system where control action would be initiated not at every step like 

in an MPC, but on demand – that is when the patients decides it is time to administer a bolus. This 

approach addresses the issues that any fully-automatic system has – that automatic control removes the 

intellect of the user, which can be an additional safeguard when the data and device function are subject 

to error.  

We call this on-demand concept an advisory mode or advisory system – the system in which the 

correction insulin is not immediately injected upon the calculation, but instead presented to the user for 

their approval, cancellation, or modification – that is, advised. In other words, we do not make the patient 

fully give up control, but we do take the computational burden off the patient. 

In this work, a two-module hierarchical system is considered; (i) there is a lower level automation of the 

basal rate modification that continuously provides minor changes that have little (in terms of BG change 
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and not in terms of clinical importance) influence on the system; (ii) there is another level of correction or 

meal bolus that provides a much bigger impact on the metabolical balance. 

4.1 Methods 

Our hypothesis is that it is possible to adapt model-predictive methods to create an advisory system that 

supplies the patient with numerically optimized value upon which the patient makes a decision. The 

resulting advisory system should perform better than conventional therapy. 

In this chapter, we employ the logarithmic risk function developed by Kovatchev et al [57] to transform 

the metabolical model developed by Bergman et al [51]. This transformation allows us to: (i) adequately 

weigh hypo- and hyperglycemia risks in the objective function; and (ii) linearize [61] the metabolical 

model in log space. 

We then discretize [62] the model, identify its parameters and convert it to state-space representation. 

Kalman Filter estimation is used to provide the best estimate of the current metabolic state. Using the 

model, a model-based prediction is built and an objective function about it is formulated. This results in a 

linear-quadratic optimization in which a closed-form solution can be derived.  

We then conduct computer simulations using in silico population to validate the optimal controller that 

we designed. Various scenarios are constructed including conditions of erroneous therapy parameter 

values and misestimations by virtual patients. The results are evaluated using time in range, time under 

70mg/dl, time over 180 mg/dl, risk parameters like Low Blood Glucose Index and High Blood Glucose 

Index [54], and variability parameter of Average Daily Risk Range [63]. 
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4.2 Human-Automation Integration 

As automation becomes more and more ubiquitous, the problems associated with human-machine 

interaction attract more attention from scholars. As far as back as in 2004, Lee and See highlighted that 

automation is often problematic because people fail to rely upon it appropriately [64]. In fact, this 

problem consists of two reciprocal issues: 

 People trust automation when it’s not appropriate – they over-rely on it. 

 People are not always willing to put sufficient trust in automation – they under-rely on it.  

Lee and See call these two ways of not appropriate use of automation misuse and disuse, respectively [64]. 

As any closed-loop system, AP closed-loop systems require relinquishing some or all control to an 

automated system, which takes patients time to adapt to [65]. The adaptation period can in fact be 

stressful and instead of taking the burden of managing the disease away, the system can create an 

additional mental burden of coping with it. There are anecdotal evidence that fully automated systems that 

take diabetes management out of the patient’s hands can be anxiety-inducing for some patients [65] 

Supporting such evidence is this comment from the recent ATTD 2015 conference by a patient: “Even if 

we can get to a fully automated system, it may not work for everyone. There should be different levels of 

automation. Perhaps these systems should be designed for specific age groups. What works for an adult 

may not work for a teenager… I would like to see the gradual introduction of these types of systems. If 

you gave me a fully self-driving car today, I wouldn’t use it. It would take me many months before I 

could build the confidence. We can’t just give patients the artificial pancreas and tell them to go out and 

start using it right away.” [65] 

In a 2012 study by Shepard and Gonder-Frederick, one of the notable findings was the difficulty the 

patients had with trusting the technology and relinquishing personal control of daily diabetes management 

to an automated system, [66]. Nearly all participants (n = 56), emphasized the importance of being able to 
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override the system’s advice, if desired. This feedback from the patients strengthens our thesis of the 

necessity of the advisory mode in every closed-loop system and warrants the development of an advisory 

system as a precursor to full automation. In fact, a discussion we conducted in a limited focus group [67] 

showed that while patients would welcome a fully automatic system, they would still prefer to retain the 

chance to take over by disabling the automation, e.g. on the days when they feel particularly sensitive 

about their control. 

Therefore, there is a very fine line between the patient’s desire to get rid of the burden of constant dose 

contemplation and desire to fully relinquish control of the key everyday decisions that are critical for their 

health and life. Thus keeping the human in the loop to some degree is important not only in an objective 

way – because the final check by the user increases safety (and, in another context, lifts alleviates the 

responsibility of the designers to facilitate the regulatory approval) – but also subjectively, in the sense 

that it provides the comfort and sense of security experienced by the patient. 

To avoid both misuse and disuse of automation, the user (the patient) should be allowed to choose 

whether to rely on it or not. In the very specific case of Artificial Pancreas systems, such freedom of 

choice lies in advisory systems like the one we propose. 

4.3 Two –Module System 

While, as explained above, the optimal advisory correction mode should be an optional feature of an AP 

system, preliminary simulations showed that to achieve optimal efficiency of the advisory mode, one part 

of the system should remain fully automatic. 

Particularly, overly aggressive advice (stemming from high penalty on the deviation of blood glucose 

from the target) can lead to hypoglycemia incidents. However, reducing the advice’s hyperglycemia 

mitigation capacity decreases the time in range and other control quality statistics and therefore makes the 

benefits of the system less pronounced.   
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A hybrid control is therefore designed: consisting of (i) open-loop decision support – the advisory part; 

and (ii) closed-loop monitoring – the safety part. Specifically, to alleviate the aggressiveness of the advice 

and at the same time keep the injection amounts within optimal values relative to hyperglycemia 

treatment, a safety system developed by Hughes et al. [52] was put in place.  

Originally, this safety system employs two algorithms for attenuating insulin pump injections, which are 

referred to as Brakes and Power Brakes: the former is a pump attenuation function computed using CGM 

information only, and the latter is an attenuation function in which a metabolic state observer with insulin 

and meal inputs is used in addition to CGM information to inform the level of pump attenuation [36]. 

We use the latter one and this way the safety system compensates through basal attenuation the advices 

that otherwise would be overly aggressive. Simulations showed that the safety system’s action is enough 

to eliminate all significant lows of this nature. Thus the advisory system consists of two main modules: 

the bolus advisor and meal-informed power brakes (Figure 2), both of which continuously process insulin 

history, CGM data, and meal information. The bolus advisor is invoked episodically by the patient and 

provides correction bolus advice using a model-predictive approach (using the risk space control model, 

described below). At the same time, meal-informed power brakes function by continuously constraining 

basal insulin delivery based on the predicted risk of hypoglycemia. 

 

Figure 2. System algorithm schematic design. 
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4.4 Advantage of Risk Space and the Log Model 

One of the challenges that are peculiar to designing control algorithms for blood glucose in Type 1 

diabetics is the asymmetry of the risk associated with deviations from the euglycemia target or 

euglycemic target range. For instance, being 50 mg/dl above the target of 115 mg/dl (that is at 165 mg/dl) 

is not of concern for the most of type 1 patients and lies well within the range recommended by the 

American Diabetes Association [68]. On the other hand, being 50 mg/dl below that target – that is at 65 

mg/dl – is hypoglycemic and constitutes significant health risk. 

To correct for this discrepancy, various control methods have been proposed that reflected the 

asymmetrical nature of BG risk and acted accordingly ([69], [70], and [71]). However, these systems have 

the significant drawback of requiring on-line numerical solvers for computing insulin doses at each stage, 

even when the underlying model is linear, [53].  Kovatchev et al. in [54] designed a symmetrization 

function that reflects the asymmetry of risk by equating the risks of severe hypoglycemia (20 mg/dl) and 

severe hyperglycemia (600 mg/dl) and equating the risks associated with endpoints of the clinically 

recommended [70, 180] mg/dl target range. Efficiency measures from [72] reported later in this work 

(LBGI and HBGI – Low and High Blood Glucose Indices) are also based on this BG symmetrization 

function. However, the prospective use of the existing risk symmetrization function as a criterion for 

model-based control presents a challenge since online numerical methods are generally required to 

compute optimal actions, [30]. 

Here we use another “risk space” based approach that uses a model that describes the relationship 

between the logarithm of plasma glucose and the logarithm of remote compartment insulin. This 

representation of the model has two major benefits: it expresses the multiplicative dependence on remote-

compartment insulin in glucose clearance in a linear fashion; and it enables a close approximation of the 

risk symmetrization as a quadratic function of the state vector in the new coordinate system (Figure 3). 
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Figure 3. Comparison of Logarithmic “Risk Space” to Risk Symmetrization Function. 

 

As a foundation, the meal model by Bergman et al [51] is used: 

 
𝐺(𝑡)̇ = −(𝑆𝐺 + 𝑋(𝑡))𝐺(𝑡) + 𝑆𝐺𝐺𝑏 +

𝑄2(𝑡)𝑘𝑎𝑏𝑠𝑓

𝑉𝐺𝐵𝑊
 (1) 

 
𝑋(𝑡)̇ = −𝑝2𝑋(𝑡) + 𝑝2𝑆𝐼 (

𝐼𝑃(𝑡)

𝑉𝐼𝐵𝑊
− 𝐼𝑏) (2) 

It is extended with a compartmental insulin transport model to account for insulin kinetics: 

 𝐼�̇�𝐶1(𝑡) = 𝐽(𝑡) − 𝑘𝑑𝐼𝑆𝐶1(𝑡) (3) 

 𝐼�̇�𝐶2(𝑡) = 𝑘𝑑𝐼𝑆𝐶1(𝑡) − 𝑘𝑑𝐼𝑆𝐶2(𝑡) (4) 

 𝐼�̇�(𝑡) = 𝑘𝑑𝐼𝑆𝐶2(𝑡) − 𝑘𝑐𝑙𝐼𝑃(𝑡) (5) 

where 𝐽(𝑡) is the subcutaneous insulin injection actuated by the pump. The compartmental structure of the 

model is depicted in Figure 4. 
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Figure 4. Insulin Transport Compartmental Model. 

 

The model is further extended with a compartmental gut model: 

 �̇�1(𝑡) = −(𝑎𝑑 + 𝑎1)𝑄1(𝑡) + 𝑚(𝑡) (6) 

 �̇�2(𝑡) = −𝑎2𝑄2(𝑡) + 𝑎𝑑𝑄1(𝑡) (7) 

 �̇�(𝑡) = 𝑎1𝑄1(𝑡) + 𝑎2𝑄2(𝑡) (8) 

where 𝑚(𝑡)  is ingested carbohydrates and 𝑑(𝑡)  is the rate of appearance of glucose in blood. The 

compartmental structure of the model is depicted in Figure 5. 

 

Figure 5. Carbohydrate Absorption Compartmental Model. 

 

In logarithmic coordinates, we employ the model based on Eq. (1) - (2) and developed by Jiang et. al [73]: 
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𝑙�̇� (

𝐺(𝑡)

𝐺𝑏
) = −𝑝1𝑙𝑛 (

𝐺(𝑡)

𝐺𝑏
) − 𝑝2𝑙𝑛 (

𝑋(𝑡)

𝑋𝑏
) + 𝑝6𝑑(𝑡) (9) 

 
𝑙�̇� (

𝑋(𝑡)

𝑋𝑏
) = −𝑝4ln(

𝑋(𝑡)

𝑋𝑏
) + 𝑝4 (

𝐼𝑃(𝑡)

𝑉𝐼𝐵𝑊
− 𝐼𝑏) (10) 

The parameters 𝑝1, 𝑝2, 𝑝6, 𝑝4, and 𝐵𝑊 (body weight), are patient-specific, have interpretations similar to 

those in the standard Bergman’s minimal model of glucose kinetics [51]. The 𝑝 parameters’ values are 

obtained through a regression equation given available physiological information. The process is 

described in detail in [73]. The gut and insulin transport parameters 𝑉𝐼 , 𝑘𝑑 , 𝑘𝑐𝑙 , 𝑎𝑑 , 𝑎1 , and 𝑎2  are 

population average and are obtained as described in [52]. Basal glucose concentration 𝐺𝑏 is set to 112.5 

mg/dl as a fixed reference. 𝐼𝑏 is calculated as equal to 
𝐼𝑃(𝑡)

𝑉𝐼𝐵𝑊
 at steady state. To calculate the value of the 

latter, 𝐽(𝑡) from (3) is fixed at the patient's average basal rate and then the equations (3) - (5) are used to 

obtain the value of 𝐼𝑃(𝑡). The value of 𝑋𝑏 is never used on its own and only the value of ln (
𝑋(𝑡)

𝑋𝑏
) is ever 

used, so 𝑋𝑏 is not estimated. 

State-space form of equations (3) - (5) can be written as 

 

[

𝐼�̇�𝐶1(𝑡)

𝐼�̇�𝐶2(𝑡)

𝐼�̇�(𝑡)

] = [

−𝜅𝑑 0 0
𝜅𝑑 −𝜅𝑑 0
0 𝜅𝑑 −𝜅𝑐𝑙

] [

𝐼𝑆𝐶1(𝑡)
𝐼𝑆𝐶2(𝑡)
𝐼𝑃(𝑡)

] + [
1
0
0
] 𝐽(𝑘) (11) 

State-space form of equations (6) - (7) can be written as 

 
[
�̇�1(𝑡)

�̇�2(𝑡)
] = [

−(𝑎𝑑 + 𝑎1) 0
𝑎𝑑 −𝑎2

] [
𝑄1(𝑡)

𝑄2(𝑡)
] + [

1
0
]𝑚(𝑡) (12) 

Finally, state-space form of equations (9) - (10) can be written as  

 

[
 
 
 
 
 𝑙�̇� (

𝐺(𝑡)

𝐺𝑏
)

𝑙�̇� (
𝑋(𝑡)

𝑋𝑏
)

Δ̇(𝑡) ]
 
 
 
 
 

= [

−𝑝1 −𝑝2 0
0 −𝑝4 0

0 0 −
1

720

]

[
 
 
 
 
 𝑙𝑛 (

𝐺(𝑡)

𝐺𝑏
)

𝑙𝑛 (
𝑋(𝑡)

𝑋𝑏
)

Δ(t) ]
 
 
 
 
 

+ [
𝑝6

0
0

] 𝑑(𝑡) + [

0
𝑝4

𝑉𝐼𝐵𝑊
0

] 𝐼𝑃(𝑡)

+ [
0

−𝑝4𝐼𝑏
0

] 

(13) 
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The new Δ  term included in the state vector is introduced to account for model discrepancy and is 

calculated as 

 Δ(t) = 𝑙�̂� (
𝑋(𝑡)

𝑋𝑏
)-𝑙𝑛 (

𝑋(𝑡)

𝑋𝑏
) (14) 

More details about the Δ term can be found in [73]. 

It will be helpful later to be able to feed the whole insulin state [𝐼𝑆𝐶1(𝑡), 𝐼𝑆𝐶2(𝑡), 𝐼𝑃(𝑡)] into the 

equation (13) and not just 𝐼𝑃(𝑡). For that purpose, the equation (13) can be rewritten as 

 

[
 
 
 
 
 𝑙�̇� (

𝐺(𝑡)

𝐺𝑏
)

𝑙�̇� (
𝑋(𝑡)

𝑋𝑏
)

Δ̇(𝑡) ]
 
 
 
 
 

= [

−𝑝1 −𝑝2 0
0 −𝑝4 0

0 0 −
1

720

]

[
 
 
 
 
 𝑙𝑛 (

𝐺(𝑡)

𝐺𝑏
)

𝑙𝑛 (
𝑋(𝑡)

𝑋𝑏
)

Δ(t) ]
 
 
 
 
 

+ [
𝑝6

0
0

] 𝑑(𝑡)

+ [

0 0 0

0 0
𝑝4

𝑉𝐼𝐵𝑊
0 0 0

] [

𝐼𝑆𝐶1(𝑡)
𝐼𝑆𝐶2(𝑡)
𝐼𝑃(𝑡)

] + [
0

−𝑝4𝐼𝑏
0

] 

(15) 

(11), (12), and (14) and then discretized to the following (details in Appendix A): 

 𝑖(𝑘 + 1) = 𝐴𝐼𝑖(𝑘) + 𝐵𝐼𝐽𝑏𝑎𝑠𝑎𝑙(𝑘) + 𝐵𝐼𝑢𝑏𝑜𝑙𝑢𝑠 (16) 

 𝑞(𝑘 + 1) = 𝐴𝑄𝑖(𝑘) + 𝐵𝑄𝑚(𝑘) (17) 

 𝑥(𝑘 + 1) = 𝐴𝐶𝑥(𝑘) + 𝐵𝐶𝑑(𝑘) + 𝐵𝐶𝐼1𝑖(𝑘) + 𝐵𝐶𝐼2 (18) 

 

where 𝐽𝑏𝑎𝑠𝑎𝑙(𝑘), 𝑢𝑏𝑜𝑙𝑢𝑠, 𝑚(𝑘), and 𝑑(𝑘) are scalars. 

Notice that in (16), the input 𝐽(𝑡) from (3) is broken down into its basal and bolus components - 𝐽𝑏𝑎𝑠𝑎𝑙(𝑘) 

and 𝑢𝑏𝑜𝑙𝑢𝑠 respectively. The reason that the latter does not have a step index, is that we assume the 

advised bolus is the only bolus within the considered time horizon and happens at step (𝑘), while the 

basal is constant and administered at every step throughout whole time horizon.  
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4.5 State Estimation 

State estimation within the adviser is accomplished through a combination of feedforward estimation and 

Kalman filtering (Figure 6). Another example of this technique can be found in [74]. 

 

Figure 6. State Estimation and Feed-Forward Models. 

 

In Figure 6, the module ‘OL Insulin Transport Model’ uses equation (16) to “estimate” (in an open loop 

fashion) insulin transport states, and the module ‘OL Gut Model’ uses equation (17) to “estimate” 

gastrointestinal transport states. The results are then fed into the Kalman filter, which uses CGM data to 

estimate the “core” states of the risk space control model, expressed by equation (18). 

The buffer modules in Figure 6 “protect” the state estimation from taking into account the meal and 

insulin that is taken at the advice calculation step. Insulin buffer also serves the purpose of delay the 

insulin absorption. More about these two modules can be learned in [73]. 

The module ‘OL Remote Compartment Model’ uses the discretized version of equation (2) to “estimate” 

the insulin action core state which is then used for Δ calculation. The module d calculates the rate of 

appearance of glucose. Finally, the module �̃� propagates the state of the rate of appearance through the 

whole time horizon according to the equation presented later in the chapter. 
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4.6 Optimization Model 

Matrix composition and manipulation can be found in Appendix B. 

The evolution equation of the insulin transport state all the way to the end of the horizon can be written as: 

 𝑖�̃�,𝑁 = 𝒜𝐼𝑖(𝑘) + Γ𝐼1ℬ𝐼𝐽𝑏𝑎𝑠𝑎𝑙 + Γ𝐼1𝑢𝑏𝑜𝑙𝑢𝑠(𝑘) (19) 

Thus equation (19) provides the evolution of the insulin transport system from the start of the horizon 𝑘 to 

its end at 𝑘 + 𝑁 − 1 given only insulin state at step 𝑘, bolus amount at step 𝑘, and the basal value that is 

constant for all steps. 

The same can be done with the evolution equation of the carbohydrate transport as was done with the 

insulin transport equation – the state evolution all the way to the end of the horizon can be written out as: 

 �̃�𝑘,𝑁 = 𝒞𝑄(𝒜𝑄𝑞(𝑘) + ℬ𝑄𝑚(𝑘)) (20) 

Thus equation (20) provides the evolution of the gut transport system from the start of the horizon 𝑘 to its 

end at 𝑘 + 𝑁 − 1 given only gut state at step 𝑘 and meal input at step 𝑘. 

Finally, the same can be done for the core model – the state evolution all the way to the end of the horizon 

can be written out as: 

 �̃�𝑘,𝑁 = 𝒜𝐶𝑥(𝑘) + Γ𝐶1�̃�𝑘,𝑁 + Γ𝐶2𝒜𝐼𝑖(𝑘) + Γ𝐶2Γ𝐼1ℬ𝐼𝐽𝑏𝑎𝑠𝑎𝑙 + Γ𝐶2Γ𝐼2𝑢𝑏𝑜𝑙𝑢𝑠(𝑘) + Γ𝐶3ℬ𝐶𝐼2 (21) 

The matrices 𝒜𝐼, Γ𝐼1, ℬ𝐼, 𝒜𝑄, ℬ𝑄, 𝒞𝑄, 𝒜𝐶, Γ𝐶1, Γ𝐶2, Γ𝐼2, Γ𝐶3, and ℬ𝐶𝐼2 are defined in Appendix B. 

Since the core states are logarithms of fractions that at perfect control should be equal to 1 – in particular, 

𝐺(𝑘) should be equal 𝐺𝑏 and 𝑋(𝑘) should be equal 𝑋𝑏 at every step 𝑘 (and Δ should be equal zero) – a 

cost function can readily use 𝑥(𝑘) value for calculating the penalty for deviation.  

 

𝐹(𝑢) = ∑ 𝑥(𝑖)′𝑞(𝑖)𝑥(𝑖)

𝑘+𝑁

𝑖=𝑘+1

 (22) 

where N is a planning time horizon, and q(i) is a penalty coefficient. 
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Using the matrix manipulation work done above, equation (22) can be written in a form that does not use 

the summation: 

 𝐹(𝑢) = �̃�𝑘,𝑁′𝒬�̃�𝑘,𝑁 (23) 

where 𝒬  is a 3Nx3N matrix with 3x3 𝑞(𝑖)  matrices on its diagonal. In other words, the following 

minimization problem must be solved by choosing the right bolus value at time step 𝑘: 

 min
𝑢𝑏𝑜𝑙𝑢𝑠

�̃�𝑘,𝑁′𝒬�̃�𝑘,𝑁 (24) 

To put this in perspective, equation (24) is “located” inside the orange ‘Minimization Problem Solution’ 

module in Figure 7. 

 

Figure 7. Optimization Step In the System's Context. 

 

This optimization problem is to be solved every time the patient requests an advice – between the meals – 

and also at meal time when the algorithm is run automatically. A possible scenario for one day is 

presented in Figure 8. 
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Figure 8. A One-Day Scenario. 

 

The 𝒬 penalty matrix from (23) and (24) is constructed in such a way that only the glucose state, 𝑙𝑛 (
𝐺(𝑘)

𝐺𝑏
), 

deviation is penalized. Particularly, going along the main diagonal of 𝒬, every second and third element is 

equal to zero in order not to penalize the two other states in the core triple. 

In addition, the main diagonal elements that penalize the glucose state take values from 0 to 1 in 

proportion to how much time elapsed since the last meal (taken at time step 𝑘). The implementation is 

such because the glucose data should be “trusted” less in post-prandial proximity as the model might 

struggle with producing an accurate prediction at that time, while far in the future after the meal the 

model performs better.  

The details of the penalty matrix construction are presented in Appendix C. 

The value of the optimal bolus to administer at time step 𝑘 is obtained by equating the derivative of (23) 

to zero and solving for 𝑢𝑏𝑜𝑙𝑢𝑠. 
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 𝑢𝑏𝑜𝑙𝑢𝑠
∗ = −Φ−1(Θ1�̂�(𝑘) + Θ2�̃�(𝜅) + Θ3𝑖(𝑘) + Θ4𝐽𝑏𝑎𝑠𝑎𝑙 + Θ5) 

(25) 

where  

 Φ = Γ𝐼2′Γ𝐶2′𝒬Γ𝐶2Γ𝐼2 
(26) 

 Θ1 = Γ𝐼2′Γ𝐶2′𝒬𝒜𝐶 
(27) 

 Θ1 = Γ𝐼2′Γ𝐶2′𝒬Γ𝐶1 
(28) 

 Θ1 = Γ𝐼2′Γ𝐶2′𝒬Γ𝐶2𝒜𝐼 (29) 

 Θ1 = Γ𝐼2′Γ𝐶2′𝒬Γ𝐶2Γ𝐼1ℬ𝐼 (30) 

 Θ1 = Γ𝐼2
′Γ𝐶2′

𝒬Γ𝐶3ℬ𝐶𝐼2 
(31) 

where all the matrices are defined earlier and the values for 𝒬 are determined as described above. 

4.7 Pre-Clinical In Silico Validation 

The results of pre-clinical In Silico validation can be found in [53]. To evaluate the developed semi-

automated insulin advisor relative to conventional CSII therapy, (mealtime boluses only without low-

glucose insulin attenuation), In Silico pre-clinical trials were conducted using the 100 adult subjects that 

accompany the U.Va./ U. Padova FDA-accepted type 1 Simulator. For each experimental setting, results 

are presented in terms of (i) percentage time in the range of [70 mg/dl 180 mg/dl], and (ii) percentage 

time under 70 mg/dl (hypoglycemia).  

In the first experiment, the case where the patient's simulated carbohydrate ratio is miscalibrated (within a 

range of values) was studied. In this scenario, the meal is underinsulinized to varying degrees, and the 

bolus advisor is triggered one hour after the meal to compensate for the inadequate bolus. Each of the in 

silico subjects is challenged with three meals in a 24 hour period, with a breakfast of 0.7 g/kg at 08:00, 

lunch of 1 g/kg at 13:00, and a dinner of 1 g/kg at 20:00. Mealtime corrections are also computed by the 

bolus advisor, but this is done without knowledge of the meal amount. The meal-informed power brakes 

are enabled for the duration of the experiment. As can be seen in Figure 9, the risk-space correction 

advice serves to reduce the time in the hyperglycemia, especially in the case of heavily underinsulinized 
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meals. The incidence of hypoglycemia in either case is negligible: 0.01 percent time on average below 70 

for the entire in silico population, with and without the optimal correction. 

 

Figure 9. CR miscalibration. Average percentage time in range is shown with thick solid lines, accompanied by 50, 75, and 

90% envelopes. 

 

In the second experiment, a more challenging scenario was studied – the actual carbohydrate content of a 

meal ranged from -50% to +50% of the true value. (With the incorrect estimate of the size of the meal, the 

estimate of the patient's state will be thrown off for the timeframe after the meal.) Each in silico subject 

experienced a 0.8 g/kg meal, and the meal-related insulin dose was computed using the patient's 

carbohydrate ratio. The adviser is called one hour after each meal. Mealtime corrections are also 

computed by the bolus advisor, but this is done without knowledge of the meal amount. The meal-

informed power brakes are enabled for the duration of the experiment. As can be seen in Figure 10, the 

bolus advisor manages to improve upon conventional therapy with up to 50% under- and over-estimation 

of carbohydrates in meals. It is worth noting that the improvement in the case of 50% underestimation is 

relatively small, due probably to the fact that the Kalman Filter has to “catch up” to the truth that a large 

meal was taken. The improvement in the case of overestimation is due mostly to hypo-mitigating effect of 

the meal-informed power brakes, which indeed manage to prevent hypoglycemia. 
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Figure 10. Carb content is misestimated from -50% to +50%. 

 

In the third experiment, the ability of the system to provide correction bolus advice at different times after 

meals was explored. Returning to a 24-hour simulation scenario, each subject experiences three meals: 

breakfast of 0.7 g/kg at 8:00, lunch of 1 g/kg at 13:00, and dinner of 1 g/kg at 20:00. In each case the 

patient receives 50% of his/her meal bolus due to miscalibrated carbohydrate ratio. In separate runs we 

provide advice at different times after the underbolused meal, ranging from 15 to 240 minutes. Again, the 

advisor is also invoked at meal times, and the meal-informed power brakes are continuously enabled. 

From Figure 11 it can be seen that the advisory system manages to represent an improvement over the no-

advice condition, even when the advisor is invoked 15 minutes after the underbolused meal. Again, the 

incidence of hypoglycemia in either case is negligible: 0.04 percent time on average below 70 for the 

entire In Silico population, with and without the optimal correction. 
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Figure 11. Advice request at different times relative to the meal. 

 

4.8 Clinical Experience 

In-silico performance reported in 4.7 Pre-Clinical In Silico Validation suggested testing the systems 

in a human clinical trial. “Early feasibility study of adaptive advisory/automated (AAA) control of type 1 

diabetes” was conducted at the Center for Diabetes outpatient guesthouse as part of the University of 

Virginia Health System. 

In experimental session (Figure 12), subjects were admitted to guesthouse at 18:00 (6:00pm) and were 

discharged 40 hours later at 09:00 (09:00am) on day 3 of the admission. Breakfast, lunch and dinner were 

served around 07:00, 12:00 and 19:00 respectively. A 45-min physical exercise session was conducted 

starting at 14:00. After the initialization of AAA control, Safety Supervision Module (SSM) and Basal 

Rate Modifier (BRM) [75] were active throughout the whole admission period while Advisory Module 

was only active during day time (07:00 – 23:00). Blood glucose readings, CGM data (DexCom® Gen4), 

carbohydrate amount of meals served, and insulin administration data were collected during the study. 
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Figure 12. Study Design. 

 

For the pilot experimental session, two subjects were recruited. Correction bolus were advised to the 

subjects as part of the meal time boluses and as standalone correction boluses. At some times the advice 

would be accepted; at other times the advice would be modified (in effect, not accepted). 

When in clinical trial setting, the performance of the system did not match that of in silico validation. Due 

to inadequate amounts of insulin advice in some cases, the advisory module had to be suspended after the 

pilot and was not used in the study. However, even though the advisory system was not used with the 

subject following the experimental session, the advice was still calculated at each meal and correction 

bolus administration. This enables the analysis of the data from the third subject in the context of the 

advisory system as well  

When in the trial, before the system can be engaged, CGMS must be “warmed up” for two hours. Because 

of that, and as the trial started right before at dinner time, the time values in the following plots and table 

(where in minutes) start shortly after 120 minutes – the two hours that the CGMS was working before the 

system was engaged. 
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4.8.1 Subject 1 

Table 2 presents the sizes of the meals that the subject consumed as estimated by the subject along with 

the true amount. The true amount comes from the dietary data on the food packaging. The estimated 

amount is chosen from 3 present values corresponding to a small, medium, or large meal as perceived by 

the subject. 

Table 2. Subject 1 Meals Parameters. 

Meal 
Carbs amount as estimated by 

the subject 
Actual Carbs Amount 

Dinner 55 40 

Breakfast 30 90 

Lunch 30 62 

Snack 30 Unknown 

 

As can be seen in the Table 2, subject 1 often heavily underestimated the amount of food eaten – 

sometimes acknowledging only a third of the meal. The snack was of such kind that the actual carbs 

amount for it could not be known. 

Note that we use the terms ‘estimation’ or ‘misestimation’ in this context as if the patient always applies a 

conscious process trying to determine the carbohydrate content of meals to calculate the meal bolus based 

on their Carbohydrate Ratio. There are few comments to be made about this: 

1. Small degree of misestimation is inevitably universal in meal bolus calculations. Also. often the 

meal amount is actually grossly misestimated (see again Table 2). Therefore, in systems context, 

it might be more appropriate to treat this input as a stochastic process in the first place. 

2. Many patients (especially type 2 patients) never actually estimate the size of the meal that way 

and are not aware of their Carbohydrate Ratio. Instead, they just guess the amount of insulin for 

the meal based on their subjective perception of how much insulin this kind of meal would 

require. 
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3. Other patients (also particularly type 2 patients) actually engage in a therapy of fixed dose meal 

bolus when, for example, lunch bolus is the same across all days, and the patient tries to consume 

the type of meal that would be appropriate for this amount of insulin. In other words, the meal is 

adjusted to insulin, not the other way round.  

In Table 3, the most relevant data for subject 1 is presented: 

 Date and time correspond to the moment when the insulin was recorded by the advisory system. 

This times differs only slightly from the time when the insulin was actually delivered or from the 

time when the meal was acknowledged by the subject, but it is the most relevant as it identifies 

the time when the advice was calculated. 

 Meal Insulin was calculated based on the subjects carbohydrate ratio, which was 

o 8 g/U from midnight to 8:00am 

o 7 g/U from 8:00 am to noon 

o 8 g/U from noon to midnight 

 Advised Correction is the system’s advice that could be negative and then is subtracted from meal 

insulin. 

 Taken Correction is the insulin that was actually injected as the correction part of the bolus 

(whether the advised value or the advised value modified). 

 Injected Insulin is the sum of the Meal Insulin and Taken Correction. 

 Blood glucose was measure only at meal times (and was recorded as ‘-1’ by the system at times 

of standalone correction bolus). 
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Table 3. Subject 1 Trial Data. 

Ins Del 

Date 
Ins Del Time 

Meal, 

g 

Meal 

Insulin, U 

Advised Corr, 

U 

Taken Corr, 

U 

Injected 

Insulin, 

U 

SMBG, 

mg/dl 

12-Dec 7:19:50 PM 55 6.875 -1.516501502 -1.516501502 5.4 79 

12-Dec 10:51:34 PM 0 0 0.652767971 0.652767971 0.7 -1 

13-Dec 7:43:57 AM 30 3.75 0.206295608 0.206295608 4 89 

13-Dec 10:07:12 AM 0 0 -0.397666921 3 3 -1 

13-Dec 12:06:58 PM 30 3.75 -2.825166911 -2.825166911 0.9 142 

13-Dec 2:05:29 PM 0 0 0.202807103 0.202807103 0.2 -1 

13-Dec 3:09:06 PM 30 0 0 
 

0 110 

13-Dec 4:02:05 PM 0 0 0 
 

0.5 -1 

 

Blue entries in Table 3 identify the case when the subject did not follow the advice and manually adjusted 

the final value. Red entries in Table 3 identify a snack that was not recorded through the meal screen and 

was not bolused for. The last row identifies a manual bolus overriding the system that was later 

administered by the subject when BG went high due to the snack taken an hour earlier.  

The two plots in Figure 13 shows CGM traces along with other information, notably the tags for insulin 

administered. Note that the times in the x axis are 1 hour ahead of real time due to a bug in the online 

monitoring system. 
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Figure 13. Record of Remote Monitoring for Subject 1. 

 

Green insulin tags correspond to meal total boluses, red tags correspond to standalone corrections. The 

first red tag of 2.25 U corresponds to the insulin injected within 4 hours before the trial and acknowledged 

as IOB at the start of the trial. The snack is missing completely from the second plot between the two last 
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red tags as it was not acknowledged. Notice also, that while the lunch insulin tag is present (0.9 U shortly 

after 13:00), there is no gram amount indicated under the trace as in previous meals. This was another 

glitch in the remote monitoring system that did not affect the operation of the advisory system in any way. 

4.8.2 Subject 2 

Table 4 presents the sizes of the meals that the subject consumed as estimated by the subject along with 

the true amount. The true amount comes from the dietary data on the food packaging.  

Table 4. Subject 2 Meals Parameters. 

Meal 
Carbs amount as estimated by 

the subject 
Actual Carbs Amount 

Dinner 69 86 (out of 130) 

Breakfast 44 47 

Lunch 44 35 

Snack 20 Unknown 

 

The snack was of such kind that the actual carbs amount for it could not be known. 

In Table 5, the most relevant data for subject 2 is presented.  

Table 5. Subject 2 Trial Data. 

Ins Del 

Date 
Ins Del Time 

Meal, 

g 

Meal 

Insulin, U 

Advised Corr, 

U 

Taken Corr, 

U 

Injected 

Insulin, 

U 

SMBG, 

mg/dl 

12-Dec 7:45:53 PM 69 4.6 -1.523850433 -1.523850433 3.1 76 

12-Dec 9:28:19 PM 0 0 0 1.8 1.8 -1 

13-Dec 7:51:08 AM 44 2.933333 0.786566958 0.9 3.8 143 

13-Dec 10:13:39 AM 0 0 1.897781336 1.897781336 1.9 -1 

13-Dec 12:08:27 PM 44 2.933333 -3.580077935 -3.580077935 0 121 

13-Dec 3:54:15 PM 20 1.333333 -0.094281241 -0.094281241 1.2 178 

 

As in Table 3, in Table 5, blue entries identify the cases when the subject did not follow the advice and 

manually adjusted the final value. However, this subject adjusted the values only marginally, within 15% 

change. 
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The two plots in Figure 14 shows CGM traces along with other information, notably the tags for insulin 

administered. 

 

 

Figure 14. Record of Remote Monitoring for Subject 2. 
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Note that 1.8U tag in the beginning of the trial is green-coded while it was not a meal. This is just another 

glitch of the remote monitoring system. Also, the lunch at 12:05pm is missing from the visualization due 

to another glitch. 

4.8.3 Subject 3 

As was explained before, while subject 3 did not use the advisory system functionality, the system still 

produced and saved advice values based on system inputs and thus enables some analysis of the algorithm 

performance. 

Table 6 presents the sizes of the meals that the subject consumed as estimated by the subject along with 

the true amount. The true amount comes from the dietary data on the food packaging. As this was not the 

pilot part anymore, but the actual study, the timeline was a little longer and more meals were consumed. 

Table 6. Subject 3 Meals Parameters. 

Meal 
Carbs amount as estimated by 

the subject 
Actual Carbs Amount 

Dinner 39 41 

Snack 19 Unknown 

Breakfast 59 69 

Lunch 59 44 

Snack 19 Unknown 

Dinner 39 37 

 

The snacks were of such kind that the actual carbs amount for it could not be known. 

In Table 7, the most relevant data for subject 2 is presented.  
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Table 7. Subject 3 Trial Data. 

Ins Del 

Date 
Ins Del Time 

Meal, 

g 

Meal 

Insulin, U 

Advised Corr, 

U 

Taken Corr, 

U 

Injected 

Insulin, 

U 

SMBG, 

mg/dl 

6-Jan 7:43:56 PM 39 3 0.66450351 0 3 171 

6-Jan 10:01:48 PM 19 1.5 0.352606671 0 1.5 164 

7-Jan 7:52:20 AM 59 2.4 -0.552580421 0 2.4 88 

7-Jan 10:48:41 AM 0 0 2.042974697 1.4 1.4 -1 

7-Jan 11:32:42 AM 0 0 0 0.5 0.5 -1 

7-Jan 1:01:01 PM 59 2.5 -1.03387802 0 2.5 148 

7-Jan 6:48:12 PM 0 0 0 1.5 1.5 -1 

7-Jan 8:17:05 PM 39 2.1 -1.561021423 0 2.1 158 

7-Jan 10:24:10 PM 0 0 1.991751405 0.8 0.8 -1 

 

Since no advice was followed by design, nothing is highlighted blue in Table 7. Also, for some correction 

boluses, particularly at 11:30am and 6:48pm, the adviser did not produce any internal advice as the bolus 

was implemented manually through the insulin pump leaving the advisor unaware. 

Three plots in Figure 15 shows CGM traces along with other information, notably the tags for insulin 

administered. Again, due to a remote monitoring system software bug, all the times in the plots are 1 hour 

ahead: for example, the 1.5U snack at first night that appears to be at 11:00pm, actually occurred at 

10:00pm. 
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Figure 15. Record of Remote Monitoring for Subject 3. 

 

4.9 Post-Trial Analysis. 

Now as the data from the trial is introduced and described, several cases of bolus miscalculation will be 

closely analyzed.  

Generally speaking, the advice can be miscalculated in two ways: 

 Too little insulin – underbolusing  

 Too much insulin – overbolusing  

In the following, several examples from the trial are presented along with the analyses of the reasons 

leading to miscalculations. 
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4.9.1 Trial Reconstruction in the Simulator 

To analyze the reasons behind inadequate advices during the pilot trial, the three subjects described above 

were “reconstructed” in the Simulator [39]. To accomplish this, for each subject, the following was 

implemented: 

• CGM data exported from the trial’s remote monitoring system was converted into Simulator-

loadable vector. 

• 2 hours of the sensor “warm-up” were retrospectively added as equal to the first known 

CGM value in the trial  

• The same was done with the insulin data from the trial. 

• Patient therapy parameters values were used 

• Body weight was taken as is 

• Carbohydrate Ratio was calculated for the simulation purposes as an average of the 

subject’s CR profile weighted according to the time of day. 

• Correction Factor was incorporated similar to CR. 

• Basal rate was incorporated similar to CR. 

• A scenario was constructed with 

• The same simulation time as the length of the trial 

• Meals of the same size as the ones administered and at the same time as in the trial 

In the examples below, the prediction curves demonstrated are results on the simulations run based on the 

above. 
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4.9.2 Underbolusing Case 1 

An example of underbolusing in subject 1 is presented in Figure 16. While the system advised 0.7U of 

insulin at 10:50pm (remember that online monitoring system has the time shifted one hour), BRM [75] 

had to increase the basal rate starting approximately at the same time and for the next two hours. 

As presented in Table 2, a 40-gram of carbohydrates meal was served at 7:20pm (entered in the system as 

55 grams). However, there was no blood glucose increase until almost three hours later, approximate at 

10:00pm (Figure 16).  

 

Figure 16. Underbolusing. 

 

Using the Simulator-based trial reconstruction, the predictions for this time of the trial were observed 

(Figure 17). X axis units are 5-minute steps and each red curve corresponds to a 4-hour prediction 

calculated at a given time. As can be seen, during the BG climb present, the predicted glucose is rapidly 

decreasing. The advice calculated based on such prediction is therefore very conservative not to lead to 

hypoglycemia.  
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Figure 17. Real-Data Simulated Predictions. 

 

A possible reason for the inaccuracy of BG prediction is the inability of the model to characterize delayed 

meal absorption. Mixed meals that contain fat have a substantial impact on the post-prandial glucose 

response and the meal content in this case could have contributed to this delayed absorption since in the 

cases of the other two meals for this subject BG started climbing within an hour (Figure 13). The tuning 

of the model [73] could not account for this effect and therefore the prediction was inaccurate leading to 

underbolusing by the adviser. 

4.9.3 Underbolusing Case 2. Reconstruction Using Net Effect. 

In addition to reconstructing the trial in the way described above, we have an opportunity of also learning 

what would have happened in the cases when the patient “disagreed” with the adviser if the patient 

actually followed the advice. For example, the second bolus from Table 5 can be analyzed. This is done 

using the Net Effect simulator by Patek et al [76] 
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Net Effect, in one sense, is a method of using continuous glucose monitoring and insulin pump data to 

extract a BG variability signature represented by oral carbohydrate net effect, which can be “fed” back 

into the mathematical model to (i) reproduce the original BG time series from the original record of 

insulin delivery and (ii) be used to approximate the effect of a modified schedule of insulin delivery [76]. 

Thus Net Effect, in its other meaning, is the signal that the Net Effect simulator produces and which is 

further used alongside modified insulin delivery to obtain a modified “what-if” glucose trace. 

To obtain the Net Effect signal for subject 2, we used the insulin and CGM data from the clinical trial and 

parameter of the subject collected at admission. The result of recovered CGM produced by the Net Effect 

simulator is presented in Figure 18 (blue curve). 

 

Figure 18. Net Effect replay with the advised zero bolus that would have led to hyperglycemia. 

 

The 9:28 pm bolus request is considered which corresponds to the step 25 in Figure 18. During the trial, 

the adviser advised the patient to take the bolus of 0 Units or, in other word, not to take the bolus. 

However, the patient overrode the suggested value and instead administered 1.8 Units of rapid-acting 
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insulin. This led to a timely descent of the patient’s BG (blue curve). The red curve in Figure 18 shows 

what would have happened if the patient had accepted the advised value of 0 Units. In that case, the BG 

would have continued to rise into a significant hyperglycemia that would peak out at about 11:30pm (step 

50 in Figure 18). 

4.9.4 Overbolusing Case 1. Reconstruction Using Net Effect 

An example of overbolusing in subject 2 is presented in Figure 19. At 10:13am (11:13 am in the plot) the 

subject requested an advice and 1.9U was suggested by the system. In about 2 hours an alarm went off 

alerting the team that the BG was below 90 mg/dl. The advice was therefore inadequate as it led to a hypo 

alarm. It is worth noting that for the meal administered at 12:08pm (missing from the plot due to the 

remote monitoring system glitches), the advisory system suggested a negative correction bolus that 

resulted in a zero total bolus.  

 

Figure 19. Overbolusing 1. 
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After reconstruction in the Simulator, the cause of the problem was identified as another poor prediction 

but in this case one that had predicted glucose level higher than it turned out to be (Figure 20). Given the 

prediction that the system used, one can see that the system indeed made an optimal decision as with the 

1.9U advised the predicted glucose was converging to the target 112.5 mg/dl as shown in the figure.  

 

 

Figure 20. Real-Data Simulated Prediction. 

 

We further explore this case of overbolusing by again employing the Net Effect simulator. To obtain the 

Net Effect signal for subject 2, we used the insulin and CGM data from the clinical trial and parameter of 

the subject collected at admission. The result of recovered CGM produced by the Net Effect simulator is 

presented in Figure 21 (red curve). 
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Figure 21. Net Effect replay with bolus smaller than one that led to hypoglycemia. 

 

In Figure 21, red curve (most of the time hidden by the blue curve) repeats exactly what happened in 

subject 2 during the trial. CGM recovered by Net Effect is smoother than the original CGM (Figure 20), 

but it preserves all the main feature of the BG pattern in the trial. The 1.9U bolus of 10:13am is 

“administered” at step 177 in Figure 21. The original 1.9U bolus led to hypoglycemia observed in the plot 

around step 205. 

Net Effect simulator allows us to see what would have happened in subject 2 had an alternative therapy 

been used. For example if the conventional CF calculation was used and IOB was taken into account: at 

201 mg/dl, the target of 112.5 mg/dl, CF of 50 and IOB of 0.525579 (IOB is constantly kept track of by 

the system) the bolus would been 1.24 U. The blue curve in Figure 21 reflects the case when only 1.24 U 

of rapid-acting insulin is administered at 10:13am instead of 1.9 U. In this case, the hypo is avoided and 

the patient stays above 100 mg/dl.  
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4.9.5 Overbolusing Case 2 

For another overbolusing case subject 3 can be considered. Although the system was suspended during 

the admission of subject 3, the would-be scenario of the system operation can still be reconstructed in the 

Simulator having all the data from the subject 3 session. 

As a would-be overbolusing, the real bolus of 0.8U at 10:24pm (11:24 pm in the plot) can be used – 

Figure 22. To learn what the advisory system would suggest as a bolus in this case, we run the simulation 

for all the subject 3 parameter and real data until 10:24pm and then “ request” the advice.  

 

 

Figure 22. Overbolusing 2. 

 

This results in the adviser suggesting 2 Units of insulin. Importantly, we do not know that an actual 

correct value of this bolus would be, but given that 0.8U resulted in hypoglycemia, it is clear that 2U 

would have resulted in even more sever hypoglycemia. 
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Let us look at the prediction that the advisory system would have used – Figure 23. In addition to the 

trace of real CGM data from the trial, the figure contains the trace of the Δ state. 

 

Figure 23. CGM and Delta; Prediction at 0.8U. 

 

Remember, that Δ is calculated as the difference (see equation (14)) between the estimated insulin action 

and the insulin action fed-forwarded by the model described in equation (2). When Δ is negative, the 

system “thinks” that Kalman Filter underestimates the insulin action in the system. This would generally 

result in larger advice to compensate for that underestimation. 

Figure 24 shows the same scenario with the prediction by the system had the injected insulin been the 

advised 2.0 Units. While the prediction is still inaccurate, the end of glucose trace “lands” precisely on the 

target 112.5 mg/dl (remember that the end of the trace is what counts for the optimization model - Figure 

74). In reality, 2.0 U would have resulted in severe hypo.  
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Figure 24. CGM and Delta; Prediction at "optimal" 2.0U. 

 

Note that in Figure 24, the 2.0 Units are advised at the time when Δ is negative and well below 0. To 

further demonstrate the interconnection between the Δ state and the advice value, Figure 25 demonstrates 

the would-be advice value for any moment of advice request. Compare to Figure 24 to see the close 

relation between the values of Δ and advice. Not always, but most of the time the advice value is negative 

when Δ is positive and positive while Δ negative. The absolute magnitude of the advice also corresponds 

to the value of Δ. 
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Figure 25. CGM and Advice; Prediction at "optimal" 2.0U. 

 

Therefore, the advice value does not only depend on the prediction incorporated into the objective 

function, but also on the performance of the Kalman Filter underlying model, feed-forward insulin action 

log model and resulting Δ. 

4.9.6 Prediction Quality 

To see prediction quality for the whole trial admission, the following plots were created: Figure 26 – 

Figure 29. In the plots, red strokes show 3-step prediction segments for certain time in the future. For 

example, the plot titled “steps 7 to 9” shows, for each step, three steps of prediction calculated at the 

given step that are 7, 8, and 9 steps in the future. Magenta vertical lines designate meals. Note that the 

advisory system would withhold advice for certain time after meals (30 to 90 minutes depending on the 

meal’s fat content), therefore there are no predictions plotted right after meals, and the more so with farer 

prediction. 
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Figure 26. Steps 1 to 3 Three-Step Prediction Segments. 

 

 
Figure 27. Steps 4 to 6 Three-Step Prediction Segments. 
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Figure 28. Steps 6 to 9 Three-Step Prediction Segments. 

 

 
Figure 29. Steps 46 to 48 Three-Step Prediction Segments. 

 

The plots demonstrate that while it is possible to have accurate prediction within short time horizon (up to 

6-9 steps or 30-45 minutes), long-term predictions like 4-hour predictions, almost always result in 

inaccuracy.  

However, in many prediction cases in these plots, the inaccuracy should be attributed to the fact that 

prediction “does not know” about the upcoming meals – for example, in Figure 29, steps 46 to 48 of the 
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prediction calculated at step 170 do not have a chance to be correct as the system is not aware of the meal 

coming at the step 179. 

In some cases though, the prediction is correct despite the meal in the future because the meal absorption 

was delayed – Figure 30. 

 
Figure 30. Example of Accurate Prediction. 

 

After the pilot trial and the post-trial analysis presented above. there are several directions in which such 

advisory systems can be improved. As will be explained in Chapter 6, risks of one nature can be mitigated 

by actions in a different category of risks causes. 

In particular: 

 To partially counter overbolusing, a safety measure should be included to ensure that overly large 

amounts of insulin are not injected. 

o For example, a constraint based on Insulin On Board can be applied to the final 

recommendation of the advisory system. 

 Provide proper training to patient before the system is used to mitigate things like carbs 

misestimation. 
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 Better models should be built or current models should be tuned differently to be able to better 

account for real-life patient metabolical dynamics. 
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Chapter 5 

MDI Therapy Based On the Advisory System 

As the previous work shows, advisory system based on a long-term prediction has the weakness of being 

inadequate when the prediction is not right. In its turn, the prediction, might be working well in 

simulations but, as clinical trial demonstrated, it might underperform in human subjects due to a very high 

inter- and intra-patient variability. Particularly, there is a big discrepancy between meal absorption rates 

even within the same subject. This post-prandial PD uncertainty suggests limiting advice to meal times 

only. 

At the same time only 20% of Type I diabetics in the US use insulin pumps in the first place which is a 

prerequisite to the usage of an AP of any kind or an advisory system as in Chapter 4 (this number is even 

lower in other countries) [77]. The rest of the patients are still on Multiple Daily Injections (MDI) therapy. 

In MDI, there is no insulin pump that would deliver basal insulin every 5 minutes, but insulin syringes or 

pens are used instead for delivering long-acting insulin. 

A particular feature of MDI therapy is that it involves types of insulins different in their pharmacokinetics 

(PK) and pharmacodynamics (PD) when in the body. Therefore an auxiliary aim of this chapter is to 

augment the simulation platform existing in Artificial Pancreas and used in our advisory system work to 

reconcile metabolism of different insulins and create a framework for design and testing of control 

systems to be incorporated into MDI therapy. 

To that end, we devise a system that accommodates MDI therapy patients and has features that allow it to 

circumvent the drawbacks that the system of Chapter 4 has at its current stage: 

1. Decoupling meal bolusing from correction bolusing. The meal bolus is thus taken care of through 

conventional CR-based therapy or other rule of thumb. 
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2. Restricting the correction bolusing through the advice to meal times only. 

Additional rationale for the second point comes from the clinicians stating that MDI patients tend not to 

inject any correction insulin between meals, in order to decrease the total number of injections per day. 

Therefore confining the times of corrections to only meal times does not significantly limit the application 

of the system. 

Conceptually, the system is designed for operation in the framework presented in Figure 31. 

 

Figure 31. MDI Daily Scenario. 

 

Applying the system to this scenario modifies the therapy leading to another scenario, presented in Figure 

32.  
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Figure 32. Smart Advisor Applied to MDI Scenario. 

 

5.1 Methods 

We use pharmacokinetic and pharmacodynamics data analysis to design a model structure that would 

allow for modeling of long-acting insulin. We further identify the model using the data set provided.  

The resulted model is then discretized and converted to state space representation. Kalman Filter 

estimation is used to provide the best estimate of the current metabolic state. Using the model, a model-

based prediction is built and an objective function is formulated about it. Linear regression is performed 

to derive the dependency between the patient’s parameter and the aggressiveness factor. This results in a 

linear-quadratic optimization in which a closed-form solution can be derived. 
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We then conduct computer simulations using in silico population to validate the optimization controller 

that we designed. Various scenarios are constructed including conditions of erroneous therapy parameter 

values and misestimations by virtual patients. The results are evaluated using time in range, Time under 

70mg/dl, Time over 180 mg/dl, risk parameters like Low Blood Glucose Index and High Blood Glucose 

Index [54], and the variability parameter of  Average Daily Risk Range [63]. 

Further, we conduct robustness analysis by varying pharmacokinetic parameters and complacency degree 

of the patient. 

5.2 New Insulin Transport Model 

To adapt the framework to MDI therapy, we needed to develop a new model, or augment the existing one, 

since in the AP framework only rapid-acting insulin is used, while in MDI therapy, rapid-acting insulin is 

used for boluses and long-acting insulin is used for basal injections. There are other, less common, types 

of MDI therapy where, for example, intermediate-acting insulin is used, or insulins are mixed together, 

but we are going to consider the most common MDI therapy type of rapid-long combination. The long-

acting insulin was providing the basal rate while the rapid-acting insulin was providing meal and 

correction boluses. 

To enable the development of the advisory system, one particular long-acting insulin was chosen – insulin 

glargin. Insulin glargine pharmacodynamics is often conceptualized as having rapid time (two or three 

hours) to peak concentration and staying perfectly flat over the remaining hours of the day. However, a 

more detailed analysis shows that there is: 

 significant variation in insulin concentration throughout the day (unlike in idealized curves found 

in [78]) 

 significant inter-patient variability in PK characteristics. 
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Based on PK/PD clamp data from 19 Type 2 subjects of [79], we have observed that, depending on the 

patient, glargine concentration can taper off in less than 24 hours, or sometimes remains in the system 

longer. All 19 subjects’ PKs are illustrated in Figure 33 where x axis represents minutes and y axis 

represents plasms insulin concentration in pmol/l. 

 

Figure 33. Inter-Subject PK Variability. 

 

Assumption was made that it would be possible to develop a simple model for subcutaneous insulin 

glargine PK by modifying an existing compartmental model for subcutaneous rapid-acting insulin 

through the addition of an extra compartment accounting for the breakdown of insulin hexamers. The 

insulin transport part of the existing meal model [50] used in the Simulator was augmented with an 

additional compartment that allowed to simulate the slow absorption of long-acting insulin (Figure 34). 
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Figure 34. New 3-Compartment Insulin Transport Model. 

 

To determine the population average value of the parameter 𝑘𝑑0, we fit the model to the data from the 

Hompesch’s study [79]. Even after cleaning the data and deleting obvious outliers, great variability can be 

seen (Figure 35). 

 

Figure 35. Average Insulin PK of the Data. 

 

Other insulin transport parameters are the in silico patient-specific parameters derived similar to those 

described in Chapter 4. 
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After adding the new compartment, the subcutaneous injection is “pushed back” one compartment, as 

compared to the model from [50], and the insulin transport injections of the meal model are modified as 

from 

 𝐼�̇�𝐶1(𝑡) = 𝐽(𝑡) − (𝑘𝑎1 + 𝑘𝑑)𝐼𝑆𝐶1(𝑡) 
(32) 

 𝐼�̇�𝐶2(𝑡) = 𝑘𝑑𝐼𝑆𝐶1(𝑡) − 𝑘𝑎2𝐼𝑆𝐶2(𝑡) 
(33) 

to 

 𝐼�̇�𝐶0(𝑡) = 𝐽1(𝑡) − 𝑘𝑑0𝐼𝑆𝐶0(𝑡) 
(34) 

 𝐼�̇�𝐶1(𝑡) = 𝑘𝑑0𝐼𝑆𝐶0(𝑡) + 𝐽2(𝑡) − (𝑘𝑎1 + 𝑘𝑑)𝐼𝑆𝐶1(𝑡) 
(35) 

 𝐼�̇�𝐶2(𝑡) = 𝑘𝑑𝐼𝑆𝐶1(𝑡) − 𝑘𝑎2𝐼𝑆𝐶2(𝑡) 
(36) 

where 𝐽(𝑡) is rapid-acting insulin injection in the pump-equipped system of Chapter 4, 𝐽1(𝑡) is long-

acting insulin injection of the new system, and 𝐽2(𝑡) is rapid-acting insulin injection of the new system. 

The averages of the data and the plasma concentration curves produced by the fitted model with 

population average long-acting insulin transport parameter is in Figure 36. 

 

Figure 36. Fitted average concentration and real data. 
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Judging from the fits (see Appendix H), it is possible that a more complex model, perhaps another 

compartmental model with more compartments and corresponding parameters 𝑘𝑑0, 𝑘𝑑1, 𝑘𝑑2 and so on, 

could do a better fit. 

However, under this kind of inter-patient variability, it is important to avoid overfitting so that the model 

is useful within simulations based on population average parameters of in silico subjects. That is this 

simple one-compartment model is kept and oriented around the average PK curves available in the 

literature [78], [80], [58]. 
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5.3 Meal Model Modularization and Modification of the Industry 

Standard Simulator 

After the new insulin transport model is designed, a simulation environment is needed to conduct pre-

clinical In Silico validation. The simulator used in Chapter 4 is not equipped for this purposed due to two 

reasons: 

 It is equipped with pump simulation, but not pen/syringe simulation that is required for MDI 

scenarios. 

 The metabolical model used in it is not modular and thus does not allow easy modification of its 

subsystems (meal transport, insulin transport, etc.). 

To solve the first problem, the pump module was removed from the Simulator and two separate pen 

modules were built: one pen for long-acting insulin for MDI basal injections and one pen for rapid-acting 

insulin for boluses. 

To solve the second problem, the one-block central model configuration in the Simulator was dismantled 

and reassembled with the insulin transport modules operating “outside” of the rest of the model. More 

details to both these solutions are presented in Appendix I. 

The latter transformation is useful outside of solving this particular problem of adapting the Simulator [39] 

to MDI systems. Generally, such modularization of the system into the subsystems of independent 

dynamics of various states provides the ability to: 

 easily modify a particular subsystem and quickly verify the effects of the modification to the 

system overall 

 separate concerns specific to a particular subsystem 

 minimize the dependency between the various subsystems to allow efficient maintenance of the 

program 
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Now a simulation platform is established. Such simulation framework is essential not only for validation 

of an already designed system, but for the design process itself, especially when of complex systems. The 

new Simulator allows for two types of insulin delivery: 

 daily insulin glargine injections  

 injections of rapid acting insulin at meal times (or between meals) according to a prescribed 

“meal/correction” scenario  

Thus, the simulator is uniquely equipped to support evaluation of both (i) conventional insulin pen 

therapy and (ii) enhanced “Smart Pen” insulin therapy. 

5.4 Virtual Basal Rate and 𝒖𝑳𝑨 

Long-acting insulin injection results in a relatively quick increase of the insulin concentration with 

gradual decay until the next injection is administered (or until the insulin clears off completely from the 

system).  

When starting an MDI therapy with long-acting insulin as the source of basal concentration, the initial 

few days are considered a “burn-in” period during which, given proper titration, the insulin is “stacked” 

until the desired fasting BG is attained [81]. After the stacking period is over, a hypothetical plasma 

insulin concentration oscillates about some average value. In Silico, any number of fasting days can be 

simulated to observed such effects – Figure 37. 
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Figure 37. Simulator output for population average patient using the average PK model. 

 

The figure shows the output of the Simulator for the population average In Silico patient in a scenario in 

which the patient only takes the daily insulin glargine injection and experiences no other metabolic 

disturbances. Specifically, the In Silico patient does not eat and consequently does not require 

supplementary rapid-acting insulin at meal times. For the patient in Figure 37, the daily glargine dose 

(35.23 U) was manually titrated to achieve an average BG of 115 mg/dl. The fluctuations in both BG and 

plasma insulin concentration are due to the non-ideal PK characteristics of insulin glargine. Note that, like 

in real patients it takes several days of simulated time for the patient to settle into a regular 24-hour 

pattern of BG and plasma insulin fluctuations. This period is not showed in Figure 37. 

In contrast to plasma insulin concentrations observed in Figure 37, insulin pumps that are used in the 

traditional Artificial Pancreas framework provide flat basal insulin concentration profile. Since an AP-like 

system has already been developed in Chapter 4, it would be beneficial to represent the mathematics of 
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the MDI therapy system in such a way so that the algorithmic machinery from the pump-equipped system 

could be utilized. 

This is achieved by introducing the concept of the Virtual Basal Rate (VBR). VBR is the equivalent basal 

rate that would be set on an insulin pump (a value per each time step) to achieve exactly the same BG 

profile as achieved with a long-acting insulin injection. Technically, VBR is the output of the “0” 

compartment of the new insulin-transport model of Figure 34 which in the Simulator is implemented in 

the units of pmol/kg/min, but for the ease of understanding can be converted into U/hr (the units in which 

the basal rate is usually set on insulin pumps). For example, the In Silico population average adult who 

achieves, on average, the BG of 115 mg/dl using long-acting insulin injections, would have their VBR as 

in Figure 38 (note the stacking period shown for the first several days) 

 

 

 

Figure 38. Virtual Basal Rate of a population average In Silico adult across 20 days. 
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The average of this curve (red horizontal line in Figure 38) is what the ideal basal rate would have been 

for a subject had they used an insulin pump instead of being on MDI therapy. The discrepancy between 

the actual “0” compartment of a subject and this ideal rate is what conventional MDI therapy does not 

have knowledge about but the proposed system does and what is taken advantage of. Within the 

framework of this work, this discrepancy is called 𝑢𝐿𝐴 – Figure 39. 

 

 

Figure 39. 𝒖𝑳𝑨, deviation from the perfect basal rate. 

 

The concept of VBR enables to embed the slower PK and PD rates, resulting from the injection of the 

long-acting insulin, along with the faster-PK-PD part of the Simulator, under one analytical roof. This 

allows to accommodate the previously developed simulation framework for the optimization of the MDI 

therapy. 
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5.5 State Estimation 

In summary, the structure of the subcutaneous glargine PK model makes it possible to interpret the 24-

hour pattern of plasma insulin fluctuations as resulting from an equivalent insulin pump (continuously 

varying) basal rate profile. For example, the 24-hour pattern in plasma insulin concentration for the 

population average In Silico patient in Figure 37 can be implemented via the equivalent insulin pump 

basal rate profile of Figure 38: 1.493 + 𝑢𝐿𝐴(𝑡), with 𝑢𝐿𝐴(𝑡) being an appropriate, patient-specific basal 

rate deviation signal, as shown in Figure 39. In fact, a simulation can be run in the original Simulator to 

validate this. The average population subject is run under the basal pump rate modified continuously as 

described above. This results in the insulin concentration and corresponding BG levels presented in 

Figure 40. 

 

Figure 40. VBR applied to pump-equipped Simulator. 

 

Observe that the traces in Figure 40 are equivalent to the traces in Figure 37 bar the jagged shape of the 

plasma insulin concentration. The latter is the result of the pump hardware limitations (inability to dose 

with more precision than 0.05 U/hr) that is encoded in the Simulator. 
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The notion of a “virtual basal rate profile” makes it possible to account for the time-variability of glargine 

PK within the LQG framework. Specifically, the 𝑢𝐿𝐴 signal becomes an input into the Kalman filter state 

observer in exactly the same way that continuously adjustable basal insulin enters in a closed-loop 

artificial pancreas application. Ultimately, the 𝑢𝐿𝐴 signal allows for the implicit assessment of a glargine 

IOB, creating the opportunity for improved correction bolus computations throughout the day. 

A schematic diagram of 𝑢𝐿𝐴 feeding the KF is shown in Figure 41. To interpret the figure, suppose that 

the patient is interested in advice about an optimal correction bolus at discrete time k. (Note: We use a 

discrete-time implementation of LQG, where, corresponding to the frequency of CGM samples (mg/dl), 

each discrete stage corresponds to a five-minute sampling interval.) The patient may be requesting this 

advice as a supplement to a meal-time bolus or as a standalone correction bolus; if the former, then the 

patient will take responsibility for computing the meal-component of the bolus based on his/her estimate 

of meal carbohydrates. 

 

Figure 41. Schematic diagram of 𝒖𝑳𝑨 informing KF. 
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5.6 Optimization Model 

To make further use of 𝑢𝐿𝐴, we adopt a linear discrete-time model derived from the “minimal model” [51] 

extended to account for subcutaneous sensing, subcutaneous injection of rapid acting insulin, and oral 

consumption of carbohydrates: 

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐵𝑢𝐿𝐴(𝑘) (37) 

where k is a discrete time index, x is a vector of metabolic state variables, and u is a rapid-acting insulin 

injection.  A and B are discrete state-space system representation matrices of the EMMGK model [51].  

As you can notice we do not include the meal component into (37) since the meals are taken care of 

separately.  Then we design a quadratic objective function: 

 

𝐹(𝑢) = 𝑢′𝑅𝑢 + ∑(𝐶𝑥(𝑘) − Δ)′𝑄(𝐶𝑥(𝑘) − Δ)

𝜅+𝑁

𝑘=𝜅

 (38) 

where N is a planning time horizon, Q and R are positive semidefinite and definite weighting matrices, 

respectively, C is such that 𝑦(𝑘) = 𝐶𝑥(𝑘) is the patient’s plasma BG at stage k relative to the operating 

point, 𝛥 is a desired BG offset of how much a patient would like to change their long-term average blood 

glucose level, and 𝑥(𝜅) is Kalman filter estimate of the patient’s metabolic state at the time of the meal 

bolus. 

After some matrix algebraic manipulations with (37) we obtain a vector �̃�(𝜅) of predicted states all the 

way until the end of the prediction horizon: 

 �̃�(𝜅) = 𝑨�̂�(𝜅) + 𝑩�̃�𝐿𝐴(𝜅) + 𝑩0𝑢 (39) 

where A, B, and 𝑩𝟎  are block matrices built of the matrices from (37) and �̃�𝐿𝐴 is the vector of predicted 

𝑢𝐿𝐴 values up to the time horizon. 

Now, through the use of (39), we can convert (38) into 
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 𝐹(𝑢) = (𝑪�̃�(𝜅) − Δ̃)′𝑸(𝑪�̃�(𝜅) − Δ̃) + 𝑢′𝑅𝑢 (40) 

where C is a block matrix constructed of C’s from (38), Q is a block matrix constructed of Q’s, and Δ̃ is a 

block matrix constructed of 𝛥’s. 

Now we can find u* that minimizes (40) as: 

 𝑢∗ = 𝐾1�̂�(𝑘) + 𝐾2𝛥 + 𝐾3�̃�𝐿𝐴(𝑘) (41) 

where 𝑥(𝑘) is the states estimates vector from the Kalman filter, and 

 𝐾1 = 𝛷−1𝛩1 (42) 

 𝐾2 = 𝛷−1𝛩2 (43) 

 𝐾3 = 𝛷−1𝛩3 (44) 

and, in turn,  

 𝛷 = 𝑩′0 𝑪′𝑸𝑪𝑩0 + 𝑅 (45) 

 𝛩1 = −𝑩′0 𝑪′𝑸𝑪𝑨 (46) 

 𝛩2 = 𝑩′0 𝑪′𝑸 (47) 

 𝛩3 = −𝑩′0 𝑪′𝑸𝑪𝑩 (48) 

5.7 Pre-Clinical In Silico Validation 

To test the effectiveness of the system. an in silico validation in the Simulator [39] is required. The 

Simulator consists of three sub-populations of in silico patients – 100 children, 100 adolescents, and 

100adults – totaling at 300 subjects. The evaluations are conducted using the 100 adults. However, the 

current population is unsuited to serve as a proper reference population for two reasons: 

1. The glargine dose and timing is absent in the original Simulator that is equipped with pump only. 

While the Simulator was modified in provide for pen use and glargine PK and PD, the In Silico 

population that the Simulator is based on lacks these parameters in their parameter sets.  
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2. The therapy parameters of carbohydrate ratio and correction factor are tuned for In Silico subjects 

perfectly – that is, under these parameters and the controlled environment of the Simulator, the 

handling of disturbances like meals is handled in a perfect fashion that does not require any 

additional control actions. However, that does not correspond to real life where patients are prone 

to misestimate and misuse these therapy parameters. 

5.7.1 LA Insulin Parameters for In Silico Cohort 

To address the first point, each In Silico subject’s glargine dosage must be titrated to first achieve the 

perfect BG that would be attainable only in the controlled conditions of the Simulator. Then this perfect 

therapy can be modified to achieve the realistic titration for every subject. 

As glargine is basal insulin, the titration can be done without the meals and other disturbances. Using the 

100 adults subjects, the following conditions for the titrations are formulated: 

1. The minimum long-term BG must be above 90 mg/dl. 

2. The average long-term BG must be above 112.5 mg/dl. 

6-day simulations are used. Essentially, the subject is titrated by pushing the average BG down to 112.5 

mg/dl but not allowing the minimum BG fall below 90 mg/dl (algorithmically, the titration is done in log 

space). The results of the titration are presented in Figure 42. 
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Figure 42. Titration results. 

 

The top graph presents the average BG achieved for every subject (in red) and the minimum BG for every 

subject. Minimum BGs do not go below 90 mg/dl while the average is close from above to 112.5 mg/dl 

bar few exceptions. The bottom graph presents the corresponding perfectly titrated doses of glargine 

corresponding for every subject. 

The titration described above resolves the second obstacle discussed earlier – that of not having the 

glargine parameters in the Simulator for each In Silico subject. Now the perfect dose is known, and the 

timing used during the titration (one injection a day) can be used as the perfect timing parameter. Since 

the titration was done under the idealistic conditions with no meal disturbance, the reference time can be 

chosen as any time of the day, for example 8:00am. 

5.7.2 Behavioral In Silico Populations 

To resolve the second obstacle – that of not having realistic parameter values for the reference therapy – 

we introduce the concept of reference populations. The concept is graphically described in Figure 43. 
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Figure 43. Reference populations concept. 

 

As shown in Figure 43, by slightly varying the values of CR, CF, and glargine dose and timing, various In 

Silico populations can be created that differ in their “behavior”. 

As a preliminary evaluation, we have created a reference MDI therapy population model in which daily 

long-acting insulin doses and rapid-acting mealtime correction factors and carb ratios have been titrated to 

achieve an average A1c of 7.98% (standard deviation = 0.52), an average percentage time above 180 

mg/dl of 46.6%, and an average percentage time below 70 mg/dl of 0% (Appendix J). This primary 

reference treatment model could be taken to represent a hypoglycemia-fearing group patients that tend to 

gravitate to higher levels of BG. In this case, the objective of the algorithm is to reduce A1c without 

significantly increasing the risk of hypoglycemia. 

It is important to keep in mind that HbA1c that is measured in clinical setting – glycated hemoglobin – 

has a different meaning when used in our in silico validation. It would be incorrect to equate HbA1c that 
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is a form of hemoglobin that is measured to identify the average plasma glucose concentration over 

prolonged periods of time to the A1c (‘Hb’ omitted intentionally) that results from a reversed formula of 

[82] based on the average BG over just two days of simulation. That is why the primary focus of the 

results should be the average BG values. Still, we report A1c to provide an approximate relation to what 

the therapy could result in if used in real patients long term.  

Another important disclaimer (addressed later in this chapter) is that in real population glargine injection 

time varies. Usual times are before breakfast and at bedtime. In addition, some people split their daily 

dose in two parts and administer them separately at these two times. For our purposes here we have 

chosen a scenario with just one glargine injection a day, which occurs in the morning at 6:00 AM with 

100% compliance.  

In the validation simulations, parameters are programmed the same way they were programmed in the 

simulations conducted to create this population (Appendix J). In particular: 

 The carbohydrate ratio for each in silico patient is based upon the subject’s ideal carbohydrate 

ratio. A random number between 1.0 and 1.1 was generated and then applied as a factor to that 

CR to emulate an overstatement.  

 The correction factor for each in silico patient was modified similarly. 

 The long-acting insulin part of the insulin transport in the simulation environment is characterized 

by the coefficient kd0 (as described in 5.2 New Insulin Transport Model). Its nominal value is 

0.00028. 

 The daily LA insulin dose is titrated for each subject to achieve, on average, the A1c of around 8 % 

across two days. 

 All subjects/profiles are run under 2-day scenarios with the meal plan of: 

o first day: 

 0.5 g CHO/kg for breakfast at 8:00 AM 
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 0.9 g CHO/kg for lunch at 2:00 PM  

 0.7 g CHO/kg for dinner at 8:00 PM 

o and second day:  

 0.5 g CHO/kg for breakfast 8:00 AM 

 0.9 g CHO/kg for the dinner 8:00 PM 

For all of the in silico results presented below a universal formula for choosing an appropriate q-

parameter for each patient is used: 

 𝑞 = 10𝛽ℎ𝑜0+𝛽ℎ𝑜1𝐵𝑊+𝛽ℎ𝑜2𝑇𝐷𝐼 
(49) 

where BW refers to the patient’s body weight in kilograms and TDI is the patient’s total daily insulin 

requirement in Units. In practice this formula would be taken as an initial starting point for patients 

encountering the algorithm for the first time. The other design parameter  Δ𝐵𝐺̅̅ ̅̅
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 was individually 

numerically tuned for each in silico patient. 

Another behavioral population that is highlighted in Figure 43 is “hyper-fearing” population. This in 

silico cohort consists of patients who tend to have lower BG values, perhaps reflective of “hyper-fearing” 

individuals, who are prone to understating their carbohydrate ratios and correction factors. These virtual 

patients are created by again randomly tweaking adults from the original in silico cohort but this time the 

other direction. Particularly, 

 The carbohydrate ratio for each in silico patient is based upon the subject’s ideal carbohydrate 

ratio. A random number between 0.9 and 1.0 was generated and then applied as a factor to that 

CR to emulate an understatement.  

 The correction factor for each in silico patient was modified similarly. 

 The daily LA insulin dose is titrated for each subject to achieve, on average, the A1c of around 

5.2 % across two days. 
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 The meal scenario and kd0 parameter for the in silico patients are the same as for “hypo-fearing” 

population. 

In running the in silico trial, a universal formula was used to calculate the patient-specific control 

parameter q, similarly to (49): 

 𝑞 = 10𝛽ℎ𝑟0+𝛽ℎ𝑟1𝐵𝑊+𝛽ℎ𝑟2𝑇𝐷𝐼 
(50) 

(50) differs from (49) only in its 𝛽 coefficients. 

5.7.3 Results 

Some representative in silico trial results are illustrated in Figure 44. Each plot shows a comparison 

between the reference MDI therapy model (black “std” trace) and the advisory system (red “opt” trace). 

Note that hour 0 corresponds to 6:00 AM (assumed to be the time of the daily injection of insulin-

glargine). Five meals are administed over the course of two days, as described above, and are easily 

identifiable on the plots by the corresponding BG spikes that follow them. From the plots one can see the 

difference in the pairs of traces leading to lower average glycemia under the advisory system. The LQG 

algorithm, informed by continuous monitoring (and with its patient-adapted q and Δ𝐵𝐺̅̅ ̅̅
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 values), 

makes different decisions about the amount of insulin to be injected as the correction part of the pre-meal 

bolus compared to the “decision” made by the reference therapy. 

  



80 
 

 

 

 

 
Figure 44. Examples of reducing A1c by the MDI advisory system in “hypo-fearing” subjects. 
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A summary of the key statistics of the nominal in silico evaluation appears in Table 8 below. As can be 

seen, the Smart Pen LQG Algorithm is capable of reducing HbA1c by over one percentage point (from 

7.98% to 6.79%) without significantly increasing the risk of hypoglycemia. Note that “LBGI” refers to 

the low blood glucose index, a measure of the patient’s risk of hypoglycemia, where in this setting any 

LBGI (introduced in [54]) below 1.5 can be regarded as essentially “no risk”. Similarly, “HGBI” is a 

measure of the risk of hyperglycemia [54]. 

Table 8. In silico evaluation. 

  

LBGI HBGI A1c 

Time above 

180 

mg/dl, % 

Average BG 
Time below 

70 mg/dl, % 

Reference Therapy 0.001 (0.008) 8.64 (2.72) 7.98 (0.52) 46.6 (18.78) 182 (14.6) 0 (0) 

Smart Pen LQG 

(nominal case) 0.594 (0.724)  5.44 (1.67)  6.79 (0.5)  19.9 (9.58)  148 (14.3)  0.047 (0.27) 

 

Few preliminary runs were also done for the “hyper-fearing” population. Figure 10 below shows sample 

in silico trial results for three subjects from this cohort. Note that in each case the Smart Pen LQG 

Algorithm has the effect of significantly decreasing the risk of hypoglycemia, while maintaining very low 

blood glucose concentrations. One caveat here is that the Type 1 simulator used in this study does not 

include a model of counter-regulation and is prone to underestimating low BG values as a result. More 

generally, it is impossible to draw general conclusions from three in silico trial results. Still, the results do 

illustrate that the Smart Pen LQG Algorithm has the potential to accommodate the needs of different 

kinds of patients.  
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Figure 45. Example of improving A1c by the MDI advisory system in "hyper-fearing" subjects. 
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5.8 Robustness and Real Life Application 

5.8.1 Pharmacokinetics Parameter Uncertainty 

To test the robustness of the algorithm against uncertainty about the patient’s glargine PK characteristic, 

we ran a sensitivity analysis in which each patient’s true kd0 was adjusted by +/-25% and +/-10%, 

respectively, relative to the population average value. The results are shown in Table 9 below. 

Table 9. Testing under four robustness scenarios. 

  LBGI HBGI A1c, % 

Time above 

180 

mg/dl, % 

Average BG 
Time below 

70 mg/dl, % 

Reference Therapy 0.001 (0.008) 8.64 (2.72) 7.98 (0.52) 46.6 (18.78) 182 (14.6) 0 (0) 

Smart Pen LQG, 

0.75*kd0 0.444 (0.623) 6.83 (2.36) 7.21 (0.56) 29.52 (12.3) 160 (15.9) 0.02 (0.2) 

Smart Pen LQG, 

0.9*kd0 0.497 (0.65) 5.86 (1.81) 6.94 (0.49) 23.01 (10.19) 152 (14.06) 0.011 (0.08) 

Smart Pen LQG, 

1.0*kd0 (nominal 

case) 
0.594 (0.724) 5.44 (1.67) 6.79 (0.5) 19.9 (9.58) 148 (14.3) 0.047 (0.27) 

Smart Pen LQG, 

1.1*kd0 0.738 (0.87) 5.21 (1.6) 6.65 (0.53) 17.52 (9.1) 144 (15.23) 0.27 (0.95) 

Smart Pen LQG, 

1.25*kd0 1.069 (1.33) 5.07 (1.79) 6.47 (0.59) 15.2 (8.74) 139 (17.02) 1.25 (3.43) 

 

Note that even when the Smart Pen LQG algorithm is tuned with the “wrong” kd0 value, it is still capable 

of significantly reducing A1c relative to the Reference Therapy model.  

Figure 46 below illustrates a tradeoff that has emerged in the sensitivity analysis. Namely, under the 

advisory system, A1c and LBGI are traded off as the “true” value of kd0 varies from 75% nominal to 125% 

nominal (smaller kd0 corresponds to a slower absorption of glargine.) For all cases, the Smart Pen LQG 
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Algorithm results in lower A1c values than the reference MDI model (shown as a red dot), yet this comes 

at the expense of slightly greater risk of hypoglycemia. 

 

 
Figure 46. A1c plotted against the risk measure LBGI. 

 

5.8.2 Behavior-Based Therapy Uncertainty 

In real patients, the time of long-acting insulin injections is not uniform across the days. For example, the 

patient injects their long-acting insulin at 7am one day, at 7:15am on the next day, at 6:55am on the day 

after that and so on. To address this, we design another set of simulations that put a “jitter” around the 

injection times. 

We Run a 30-day simulation for each in silico subject, with 3 meals a day, where the long-acting insulin 

injection times written in the scenario files are pregenerated and are uniformly distributed around the 

default time of the injection, Figure 47. 
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Figure 47. Varying long-acting insulin administration. 

 

The meal regimen is the same as in simulation described above. The results of such simulation without 

the advisor are in Table 10. 

Table 10. Varying glargine administration in hypo-fearing population without advisor. 

Without 

Advisor 

Mean 

BG 

mg/dl 

A1c % %<70 %>180 
% 70-

180 
LBGI HBGI ADRR 

Without 

Jitter 
173.5 7.94 0.03 37.6 62.4 0.03 7.27 7.3 

With 

Jitter 
176.9 7.95 0 40 59.95 0 7.7 7.7 

 

Predictably, the introduction of variability in long-insulin time administration decreases time in range and 

increases the hyperglycemia risk and variability indices. Then we run the simulation under the operation 

of the adviser. The results are in Table 11. 
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Table 11. Varying glargine administration in hypo-fearing population with advisor. 

With 

Advisor 

Mean 

BG 

mg/dl 

A1c % %<70 %>180 
% 70-

180 
LBGI HBGI ADRR 

Without 

Jitter 
131.6 6.35 0.68 10.4 88.9 0.46 2.31 2.77 

With 

Jitter 
132.6 6.35 0.52 10.3 89.2 0.4 2.34 2.74 

 

While the introduction of the varying glargine administration did marginally reduce the efficacy of the 

advisor, it did not have impact as significant as in the case of the simulations without the adviser. Thus in 

the case of the varying glargine administration, the advisory system not only retained, but improved the 

advantage over the conventional therapy, reducing A1c for over 1.5%. 

Finally, we test the scenario of a glargine injection being completely skipped. We run 10-day simulation 

skipping the 3
rd

 injection, both with and without the adviser. Results are in Table 12 

Table 12. Skipped glargine injection on the 3rd day out of 10. 

 

Mean 

BG 

mg/dl 

A1c % %<70 %>180 
% 70-

180 
LBGI HBGI ADRR 

Without 

Advisor 
165 7.95 0.1 34.2 65.7 0.08 6.75 6.83 

With 

Advisor 
128.7 6.36 0.92 8.87 90.2 0.53 2.1 2.6 

 

The advisory system again maintains significant advantage over the conventional therapy in all measures, 

even when a long-acting insulin injection was skipped.  

 



87 
 

5.8.3 Real-Life Tracking of the Virtual Basal Rate 

In silico, 𝑢𝐿𝐴 for every subject was obtained by running a simulation for 20 days with no meal 

disturbances, then saving the data and using a 2-day part of it for the validation runs. Clearly, this 

approach is not possible in real life. Importantly, not only it is impossible to “run” a patient for 

20 days with no meals, but the 100% compliance with 6:00 am injections is not realistic either. 

Whatever time for the daily injection the patient chooses, it might varying every day depending 

on their daily situation or an injection might be skipped altogether. Moreover, the patient can 

have not one but two long-acting insulin injections a day. 

To address these issues, we designed a “𝑢𝐿𝐴 generator” that can generate Virtual Basal Rate and 

consequently 𝑢𝐿𝐴 by using only accessible parameters of the patient’s therapy. 

The generator makes use of the discretized equation of the long-acting insulin SC compartment 

(34). Converted into state-space form, this SC compartment state is propagated until the next 

daily (or half-daily) injection in 5-minute steps. This process is repeated until the steady state is 

achieved. This steady state is understood as the time when the contents of the compartment at the 

time of each consecutive injection are equal for the first time. It is regarded as the end of long-

acting insulin stacking after which the VBR is oscillating around the average in a consistent 

fashion. 

From the steady state, the concentration of the long-acting insulin SC compartment is calculated 

as follows: 

 
𝐼𝑆𝐶0 =

𝑎𝑛−1𝑏𝐽𝐿𝐴

1 − 𝑎𝑛
 (51) 
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where 𝑎 and 𝑏 are known population average parameters resulted from the discretization of (34), 𝑛 is the 

number of steps between long-acting insulin injections, and 𝐽𝐿𝐴 is the patient’s prescribed long-acting 

insulin injection amount. Note that 𝑛 depends on the number of long-acting insulin injections a day and 

thus accommodates both once and twice daily injections (or more which is uncommon) 

This provides the foundation for the generator which then uses the (34) to produces the 𝑢𝐿𝐴 “on 

the fly” as required by the rest of the system. This approach, unlike the pregenerated Virtual 

Basal Rate curves allows to track the deviation from the average VBR whenever the long-acting 

insulin is injected or even skipped, as long as the system is timely informed about each new 

injection. 

5.8.4 MDI Advisory System Prototyping Experience 

As described above, to take the advantage of the Virtual Basal Rate including the time when it is 

especially useful like when a long-acting insulin injection is skipped, it is imperative to inform the system 

when the long-acting insulin injections take place and how much insulin is injected. 

In the course of this work, a working prototype of the MDI advisory system was created using Android 

smartphone development platform on which another diabetes technology system is built – DiAs [46]. A 

prominent part of the prototype was the user interface which provided for the interaction between the 

patient and the system. To accommodate the 𝑢𝐿𝐴 generator as described above, the following screen was 

included in the user interface (Figure 48). 
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Figure 48. Long-acting insulin information entry via user interface. 

 

Every time the patient injects long-acting insulin, they are required to access this Graphical User Interface 

(GUI) screen and enter the amount of insulin they just injected or are about to inject. The time of the 

injection is saved automatically when the user approves the entry.  

During the prototyping and especially during the user interface design, numerous iterations were done on 

what the interface should actually be, what kind of information it should present or require, what kind of 

visuals should be used for that and so on. Interestingly, these conversations usually took place between 

the researchers, a pharmaceutical/medical device company and physicians, but never involved actual 

patients. The designed process proved to be prolonged and “painful” which was a motivation for the top-

down approach described in Chapter 6 of this dissertation. Every consensus that was reached would be 

later overturned, but what we present here was the version approved at the time of writing.  

For example, it was determined that an additional screen must be following the screen in Figure 48 to 

double check whether the amount was entered correctly and require a final confirmation (Figure 49).  
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Figure 49. Long-acting insulin entry confirmation screen. 

 

Much thought was given to the behavioral aspect of using the system. For example, a patient might enter 

the long-acting insulin injection information before the injection and then after the injection intend to 

mistakenly do it again. This duplicate information in the database would result in a lot of “IOB” insulin 

which would negatively affect the system’s performance. To address such scenario, an additional screen 

was implemented that would remind the user about past injections if the long-acting insulin entry screen 

is entered too often (thus implying that the previous visit and entry were forgotten) – Figure 50. 
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Figure 50. Long-acting insulin injection screen if entered again shortly. 

 

This interface would provide information about the past three injections. Still, the patient is able to enter 

the long-acting insulin value, approve it, and proceed to the confirmation screen. This override capacity is 

implemented for the case when the first injection (supposedly few minutes ago) was too small by mistake 

and the patient intends to add the missing long-acting insulin. Note that all of these challenging cases will 

be successfully tacked by the 𝑢𝐿𝐴 generator and no insulin will be missing in the system.  

While all the interface screen can be found in Appendix K, we present here one more detail that pertains 

to what was discovered in Chapter 4 – that we cannot always rely on models and there must be a 

substitute therapy to revert to when the conditions are especially challenging. 

For example, the screen that presents the optimally calculated correction advice at the time of meals 

(Figure 51) also indicates how big or small this correction is relative to what the conventional therapy for 

this patient would produce (green font in the upper part of the screen). 
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Figure 51. Advice Screen. 

 

The button ‘View Your Usual Correction Calculation’ allows the user to see what their conventionally 

calculated correction is exactly to make a more informed decision about whether to accept the advice – 

Figure 52.  

 

Figure 52. Conventional correction calculation screen. 
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The screen contains a check-box that allows the patient to calculate the conventional correction in two 

different ways depending what their individual conventional therapy actually is: with or without IOB 

included. The IOB corresponds to the Insulin On Board calculated as in [83].  

Finally, note that the indicator message of the corrections ration from Figure 51 can take a different color 

– red – if a certain ratio threshold is exceeded. For example, if we believe that the advised correction 

should not exceed the conventionally calculated value by more than 25% and this threshold is passed, the 

red color of the message would indicate to the patient that it would be safer to revert to the conventionally 

calculated values (Figure 53). 

 

Figure 53. Advice screen with an alert. 

 

This section described how the experience of the work from Chapter 4 and Chapter 5 led us to closer 

consider the behavioral aspects of diabetes technology. The next chapter generalizes our experience with 

a comprehensive top-down approach that should facilitate design process of similar systems. 
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Chapter 6 

Diabetes Technology Systems Design 

Methodology 

6.1 What is success? 

The work presented so far was centered on developing algorithms that would successfully control blood 

glucose in type 1 diabetics. However, very little attention was devoted to type 1 diabetics themselves. 

While there was some discussion about human-automation relationship and human-machine interfacing, 

the fact that the system did not perform as well in real life as in silico indicates that not all real life factors 

were taking into account.  

It is only natural for an engineer to concentrate on the engineering system. However, when it comes to 

systems engineering, there is much more contextual investigation to be done to ensure that the system is 

deployable and that there will be no additional constraints on its operation once it’s deployed. In 

biomedical engineering systems like AP, a lot of context is found in patients. The result of engineering 

design in such a system is not just the algorithm or technology, but a therapy.  

Biomedical engineering support systems, which AP is, pose an interesting case of engineering systems in 

that the operator of the system is also the object of the system’s action. An important part of such 

system’s architecture is the information flow from the user to the system. The volume and quality, or in 

this context, the user’s compliance and commitment, defines how efficient if effective at all the system 

can be. In other words the patient benefits the more from the system the more they are willing to commit 

to its usage. Less obviously, more efficient system can anticipate more involvement from the patient 
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encouraged by the results. These psychological factors cannot be left out of consideration when designing 

such a system. 

 Will system accommodate any type of patient?  

 If not, which one or several audiences should the system be designed for? 

 What amount of commitment can the system anticipate? 

 Will the system be able to take the illness management burden away without incurring additional 

mental burden of using the system? 

These and other questions cannot be answered without obtaining the opinion of the very user of the 

system. [84] 

The methods below allow to “fill in” the pieces that are not obvious while working on the engineering 

part per se. However, these pieces are essential to the system if it is ever to become a product people 

would actually use. This larger scale framework requires methods that structure the problem of 

integrating the system into real life and that point out what requirements from any and every potential 

stakeholder have been missed so far. It is then necessary to work on satisfying these requirements. In fact, 

it is preferable to run this kind of qualitative analysis of the potential system first, not to fall victim of the 

Pareto principle. 

Since many approaches described in this section are used in consumer product industry, applying them to 

biomedical systems poses additional difficulties and additional value because of the very close tie 

between the user and the device/system. In the case of artificial pancreas systems, the user and the system 

are connected in literal sense and not only the user’s action drives the system, but also the system’s action 

drives the user in the most impactful way. Hence the importance of considering all the ramifications of 

such system’s deployment and operation. 
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6.2 Methods 

We use stakeholder mapping method – a simpler version of stakeholder influence mapping – to map out 

all the stakeholders of the Artificial Pancreas community. Particularly, we brainstorm all the potentially 

influenced and influential parties and then lump them into a tractable number of stakeholder groups.  

Consequently, we conduct a holistic requirement analysis (or holistic requirements model – HRM) 

informed by these stakeholders. In particular, we design a survey which questions directly correspond to 

the requirements groups of HRM. We ask respondents submit answers to these questions and use 

thematic analysis to convert their replies into actionable and relevant requirements.  

In addition, we adopt the use of Ishikawa diagram – a cause-effect tool that allows to identify groups of 

risks to structure and simplify risk mitigation. We design our own 7D Ishikawa diagram that pertains 

specifically to Artificial Pancreas systems.  

6.3 Stakeholder Influence Map 

A simplified version of a tool widely used in systems analysis – Stakeholder Influence Map [85] was used. 

Omitted are the influences between the stakeholders since the goal of the study is to poll them 

individually and not infer their relationships. 

We start by brainstorming all the stakeholders of the AP system universe, and then identify the groups 

that, according to the Stakeholder Influence Map tool [85], we must get requirements from (in parenthesis, 

is the corresponding number of respondents for each group that we ultimately polled): 

 Patients 

o Tech savvy patient (64) 

o Naive patient (3) 

o Patient with special needs (1) 

 Parents of patient (45) 
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Also, the groups that we should get requirements from: 

 Spouses/partners of patients (2) 

 Physicians (2) 

 Certified Diabetes Educators (12) 

 Diabetes technology researcher s (2) 

 Medical device companies (2) 

 Regulators (1) 

And finally, the groups that we will ignore for the time of this study: 

 Hospitals employees (other than physicians) 

 Insurance companies 

 Advocacy Groups 

 Governmental funding sources 

 Policy makers (legislative branch)  

 Private sponsors 

 General public 

We ignore some stakeholders for now as their impact on the AP systems design process is not as 

significant as that of the others’, but at the same time it is challenging to elicit responses from them.  

Also, from a product development point of view, this is not a comprehensive list as more of the 

commercialization stakeholders would be taken into account (e.g. marketing, sales, etc). However, 

commercialization is out of the scope of this work and therefore corresponding stakeholders are left out 

for the purpose of this analysis. 
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6.4 Holistic Requirements Model 

Holistic Requirements Model (HRM) is a systems approach tool [86] that provides an analysis framework 

to help define the system’s requirements. It consists of five distinct groups of requirements and 

represented graphically in the Figure 54. 

 

 

Figure 54. Holistic Requirements Model 

Every system has two types of requirements:  

 Operational requirements 

 Functional requirements 

Operational requirements define what the purpose of the system is overall. Operational requirements are 

often omitted since they are deemed obvious to the user/developer of the system. However, operational 

requirements help ensure that the mental models of the engineers and end users match and that the 

development process is conducted accordingly. Also, specifying the operational requirements helps to 

make the set of functional requirements more comprehensive.  

Functional requirements define what the system needs to do in order to fulfill the operational 

requirements. The functional requirements, however, do not provide information about how something 
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must be done or how well – only what needs to be done. In addition, functional requirements should be 

implementation-independent.  

In addition, there are non-functional requirements to the system. These are usually constraints and (unlike 

the functional requirements) define how something should be done and how well it should be done. There 

are three categories of non-functional requirements: 

 Performance requirements – how well a function is to be performed. 

 System requirements – define large scale constraints like size of weight of the system, safety, cost, 

etc. 

 Implementation requirements – using what technology the system should be built and possibly in 

what legislative framework. 

6.4.1 Survey  

When designing the survey, we aimed to map each type of requirements into a question. One exception 

was the non-functional system requirements category which we generalized into a quantitative 

performance question related to the whole system. We did this as we anticipated many functional 

requirements that would be very hard to quantify the performance for. Thus, the five types of 

requirements produced five questions: 

 What would the purpose of the system be overall? 

 In particular, what functions would the system need to perform to fulfill its purpose? 

 Keeping in mind that no system can be perfect, what is the lowest percentage of the time that the 

system would need to work perfectly to be safe? [80%, 85%, 90%, 95%, 100%] 

 What would the very basic feature of the system be, without which it would be unusable? 

Alternatively, what characteristic would make it unusable? 

 How do you envision your system working? What parts of existing technology should it use or be 

built upon? 
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6.4.2 Thematic Analysis and Scores 

The total sample size summed up to 134 respondents. This qualitative study resulted in 536 free form 

text-based responses which required thematic analysis [87] to be performed to process the results into a 

meaningful HRM. In processing the results, we generally followed the six phases of thematic analysis that 

Braun and Clarke proposed [88].  

It was deemed useful to include certain weights or scores for each requirement to indicate its importance. 

Such weights could be inferred from the number of times this requirement was mentioned in the 

responses. However, calculating such scores was not straightforward and it is important to note that in 

thematic analysis, more instances do not necessarily mean the theme itself is more crucial [88]. Some 

generic mechanics of how responses would map into categories are presented in Appendix L. 

The answers varied significantly in their length and nature and did not always map directly in the 

category the corresponding question intended for. For example, one answer to question 1 was 16 

characters long, while another answer to the same question was 1,373 characters long. Such long answers 

usually “fed” more than one category (and several requirements in each). 

When processing the answers, we assisted the thematic analysis by the algorithm proposed by Burge [86] 

(Figure 55). 
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Figure 55. HRM Requirement Processing Algorithm. 

 

Therefore, the scores should not be considered proxies for the number of people mentioning a 

requirement. Nor should they be considered weights of importance because the answers varied widely in 

the language they used – sometimes being very strong statements and sometimes assuming optionality. 

Often, the requirement would not be mentioned because it is obvious (see A1C score in Table 13). The 

scores only provide a “soft” reference of how much a certain requirement is on the mind of the 

stakeholders. 
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6.4.3 Responses and Resulting HRM 

The resulting HRM had 4 groups of requirements: 

 Operational requirements 

 Functional requirements 

 Non-functional implementation requirements 

 Non-functional system requirements 

Plus the system-level performance requirement expressed in the desired percent of the time the system 

would need to be working perfectly. 

The operational requirements are presented in Table 13. This one and all the following tables also present 

the relatives score values. 

Table 13. Operational Requirements. 

 Score 

Increase time in range 52 

Control diabetes with little to no input from the patient 40 

Closed Loop 28 

Take the burden away 23 

Mimic healthy pancreas 17 

Prevent hypos to keep the patients safe 14 

Help analyze patterns and trends in BG and habits 9 

Reduce BG variability 7 

Lead to good A1c 2 
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Functional requirements were divided into several subcategories for easier interpretation. 

Table 14. Functional Requirements Related to Information Usage. 

 Score 

Monitor glucose 68 

Check blood glucose 11 

Account for food carbohydrate content 19 

Account for food protein content 2 

Account for food fiber content 2 

Account for physical activity 16 

Account for stress/adrenaline 8 

Account for illness 7 

Account for bolus 2 

Account for basal 2 

Account for menstrual cycle/hormonal change 4 

Account for age-related differences 1 

Monitor ketones/unexplained highs 2 

Track all other relevant data 3 

Use historical data, not just current data 5 

Account for IOB 2 

Monitor system components 1 

 

  



104 
 

Table 15. Functional Requirements Related to Injections. 

 Score 

Inject insulin 78 

Inject glucagon 55 

Provide insulin dosing recommendations 2 

Suspend insulin if needed 10 

Suspend glucagon if needed 1 

Provide temporary basal 1 

Automatically adjust basal 28 

Automatically administer boluses (insulin and/or glucagon) 18 

Prevent lethal dose injection 1 

Provide quick preset carb bolus (e.g. for 15 grams) 1 

Provide BG thresholds for automatic insulin/glucose delivery 1 

 

Table 16. Functional Requirements Related to Advanced/Other Functions. 

 Score 

Provide remote monitoring/control 33 

Correct for miscalculated carbs 1 

Predict changes in blood sugar 17 

Allow customizable parameters (be patient-specific) 14 

Provide data for export and analysis 10 

Provide food database/dairy 5 

Account for intra-patient variability 1 

Do not require calibrations / blood glucose testing 7 
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Illustrate glucose patterns specific to time of day 4 

Distinguish different highs 1 

Do not require carb counting 5 

Allow override/turnoff 6 

Detect exercise, fat in meals, fast/slow carbs without input 2 

Do safety self-checks 1 

 

Table 17. Functional Requirements Related to Alerts/Interface. 

 Score 

Alerts for taking meal insulin 1 

Alerts for other insulin if needed 1 

Alerts for missed meals 1 

Out of range BG alerts 3 

Reservoir refill alert 2 

Various alerts, predictive alerts, components issues alerts 21 

Alerts for long-term events like eye exam, dental cleaning, etc. 1 

Show BG trend as arrow 1 

Show snapshot of current BG 1 

Alerts with GPS data in case of emergency 1 

 

Note that there were almost no explicit interface requirements. However, many information functions 

implied interface functions. For example ‘Account for food carbohydrate content’ can imply ‘Allow for 

the input of carbohydrates’. This is done via Systemic Textual Analysis [89] and some results are present 

later in this work.  
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Implementation requirements are presented in Table 18. 

Table 18. Implementation Requirements. 

 Score 

Insulin pump 69 

Glucagon pump 21 

CGM 73 

One site / smaller sites / fewer sites 15 

Tubeless 13 

Remote monitoring system 8 

Dual chamber pump 8 

Touch screen 3 

Heart rate monitor 2 

Mac compatibility/iOS 1 

Signal interference protection 1 

Refillable insulin cartridge 1 

Large insulin reservoir 1 

One device 33 

Rugged 6 

Waterproof/water-resistant 7 

Shockproof 1 

Childproof 1 

Rechargeable 2 

Rechargeable wirelessly 1 

Smartphone 26 
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Multiplatform 14 

Wireless between devices (Bluetooth, WiFi, NFC) 16 

Open source 1 

BTLE pump 1 

BTLE CGM 1 

 

There were responses where certain available device or technology was mentioned. They are listed in 

Table 19. When a particular feature of the device/technology was explicitly mentioned, it was reflected in 

this table as well and it incremented the score for the corresponding functional, implementation, or system 

requirement. 

Table 19. Particular Devices/Technology Mentioned. 

 Score 

Dexcom (Dexcom, Inc., San Diego, California) - high accuracy CGMS 21 

Dexcom Share 1 

Abbott Libre (Abbott Laboratories, North Chicago, Illinois) 1 

Omnipod – tubeless; integrated BG meter 7 

Tandem t:slim (Tandem Diabetes Care, Inc., San Diego, California) – touch screen 4 

Animas Vibe - integrated Dexcom G4 CGMS 1 

Medtronic Minimed – insulin suspension 2 

Asante Snap (Asante Solutions, Sunnyvale, California) 1 

Calibra Finesse (Johnson & Johnson, New Brunswick, New Jersey) 1 

One-Touch BG meter (Johnson & Johnson, New Brunswick, New Jersey) – insurance 

coverage 

1 

Bayer Contour (Bayer AG, Leverkusen, Germany) 1 
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Abbot Freestyle Lite (Abbott Laboratories, North Chicago, Illinois) 1 

Nightscout (open source, DIY project)– remote glucose monitoring 8 

MyFitnessPal (myfitnesspal.com) – food diary 2 

Fitbit (Fitbit, Inc., San Francisco, California) – food diary 1 

Bionic Pancreas 2 

iPhone (Apple, Inc., Cupertino, California) 6 

iCloud (Apple, Inc., Cupertino, California) 1 

Contact lenses BG measuring 1 

Temporary tattoo BG measuring 1 

 

System requirements define the constraints that affect the whole or a significant proportion of the system 

[86] and are reported in Table 20. 

Some responses implied performance metrics, but were not quantitative. For example, “fast insulin” 

describes performance but does not define how fast exactly (e.g. via onset time in minutes) the insulin 

must be. Such requirement cannot be meaningfully used as a performance requirement which must be 

quantitative, but cannot be omitted either since it was important for the respondent. Such requirements 

were therefore also reported in Table 20. 

Table 20. System Requirements. 

 Score 

Small/portable 35 

Accurate glucose readings 27 

Easy to set-up, use, troubleshoot by children, teens, adults, seniors, caregivers, medical 

team, people with special needs 

23 

Minimal invasiveness (number of fingersticks a day and insertions) 19 
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Minimal number of devices 2 

Inexpensive and/or covered by primary and secondary insurances and Medicare  10 

Configurable automation 10 

Safe 8 

Adaptive to patient (by adjusting basal, CR, CF, etc.) 4 

Stable glucagon 4 

Insulin faster than currently existing 3 

Not hackable 1 

Cool look [sic] 1 

Discreet 1 

Long battery life 1 

Long-lasting infusion set 1 

Long-lasting sensor 1 

Sensor robust for all activities 1 

Less delay between BG and SCG 1 

No computer necessary to use 1 

 

The requirements category that was not included into the HRM presented the question: “Keeping in mind 

that no system can be perfect, what is the lowest percentage of the time that the system would need to 

work perfectly to be safe?”. The summary of responses is in Figure 56. 
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Figure 56. System Level Performance Requirement. 

 

6.4.4 Two Schools of Thought 

A significant feature of the survey results was that there were conflicting responses. The obtained 

mutually exclusive requirements suggested several possible technological solutions and therefore several 

HRMs – one for each solution. 

Overall, the study produced four distinct implied solutions, although their HRMs would overlap in many 

requirements. Here, the solutions are listed in the order of decreased attention, with the first two being 

approximately equally prevalent in the responses: 

1. External: one-device Artificial Pancreas 

2. External: mobile-device-based multiplatform Artificial Pancreas 

3. Internal: Implantable Artificial Pancreas 

4. Other: Smart Insulin 

For the purposes of this work HRMs will not be composed for the solutions 3 and 4 since attention to 

them among the respondents was very limited and, conceptually, they are out of the scope of the 

technological solutions implied in this study. The aggregate score of all the requirements unique to the 

implantable solution was 28. More about implantable artificial pancreas can be learned in [90].. The 

aggregate score for smart insulin was 1. More about smart insulin can be learned in [91]. 
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Considering the solutions 1 and 2, one can infer two “schools of thought” of AP systems. One school of 

thought can be roughly represented by the industry and proposes the one-device solution. The other 

school of thought can be roughly represented by researchers in academia and proposes the multi-platform 

solution.  

Figure 57 depicts a schematic representation of a composite HRM for solutions 1 and 2 and reflects the 

structure of a generic HRM from Figure 54. The graphics of Figure 57Error! Reference source not 

found. are conceptual idealized images of the two schools of thought. The composite HRM includes 

operational, functional, implementation, and system requirements that were common for both types of 

solutions; it also includes implementation requirements that were unique for each solution. In Table 18, 

the unique implementation requirements for solutions 1 and 2 were reported in the middle and the bottom 

of the table, respectively. 
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Figure 57. AP Systems Two Schools of Thought. 

 

Solution 1 implies an external, fully integrated one-device Artificial Pancreas system where an insulin 

pump, [an optional] glucagon pump, a CGMS, a blood glucose meter, and the AP “brain” itself are all 

housed in one device. Examples of the developments that are leading to this solution are found in the 

industry. Some of them are: 

 Medtronic MiniMed 530G (Medtronic plc, Northridge, California) 

 Animas Vibe (Johnson & Johnson, New Brunswick, New Jersey) 

 Omnipod (Insulet Corporation, Billerica, Massachusetts) 
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The advantage of solution 1 is its compact design and ability to integrate several devices in one. The 

assumption of this solution is that industry players have necessary resources to design and manufacture 

any device form factor. That is also the reason that requirements like ‘waterproof’ are only included into 

solution 1 specific implementation requirements. Thus, the extreme idealistic case for this solution would 

be a one device and one site with no tubes as depicted in Figure 57.  

However, there are currently several industry players in the field and the best relevant technologies are 

divided but not shared among them. Therefore it is hard to imagine one company that would possess, for 

example, the best pump and the best sensor and the rest of the technologies/features to integrate them into 

the perfect one-device solution that all patients would prefer. 

Solution 2 implies that the AP “brain” could be installed on any portable device (e.g. smartphone, tablet, 

or smartwatch), ideally being able to communicate with any kind of pump (insulin and glucagon), CGMS, 

and other devices, and controls them according to its decisions. Examples of the developments that are 

leading to this solution are found in the academic research community. Some of them are: 

 DiAs - Diabetes Assistant (Center for Diabetes Technology at the University of Virginia, 

Charlottesville, Virginia) 

 Bionic Pancreas (Boston University and Massachusetts General Hospital, Boston, Massachusetts) 

 Artificial Pancreas by Doyle III et al. (University of California, Santa Barbara, California) 

Since it is, in a sense, an open source platform, researchers and developers are free to use the peripheral 

devices – pumps, CGMS, etc. – that perform the best. However, they do not possess manufacturing 

capabilities and the least number of devices possible in the solution 2 is two – the smartphone and a one-

device solution from the industry if existing.  

There were many responses that carried more value than just the score. 
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Responses show that patients might have a wide range of BG values in mind that they consider “good”. 

For example, one person expressed desire to be in “tight control” of between 65 and 200 mg/dl, while 

another person wanted it “normal” between 70 and 140 mg/dl, and yet another between 80 and 120 mg/dl. 

This demonstrates the need for customizable parameters of the system. 

Only few times respondents referred to monitoring blood glucose more or less specifically. The most 

explicit comment called for monitoring ”blood glucose (not interstitial glucose)”.  

Large number of responders indicated that glucagon needs to be available in the system along with insulin, 

with some of them emphasizing that glucagon is as important as insulin. One provided reason was that it 

“is critical, because hypoglycemia can cause unawareness and inability to care for oneself.” 

Some answers implied the necessity of configurable automation. For example, “Give up control to the 

user if not sure – if user does not respond, go default basal (pump mode in DiAs), and send sms/email to 

doctor/support”. Another example: “Manual for meals, rest automated”.  
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6.5 Systemic Textual Analysis 

Systemic Textual Analysis (STA) is concerned with the analysis of expressed user requirements with the 

purpose of interpreting, expanding, and clarifying requirements and identifying missing one [89].   

The survey produced 107 requirements for the corresponding HRM. It makes sense that each function’s 

performance could be quantified and that each function is implemented in a certain way. This is 

fundamental logic behind STA. STA fills the missing components of a HRM – functions, performance, or 

implementation – based on the components that are present in the HRM. Graphically, the concept is 

depicted in Figure 58. 

 

Figure 58. Systemic Textual Analysis Graphical Representation. 

 

To put it in words: 
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1. An implementation requirement (e.g. insulin pump) is a solution to a functional requirement 

(inject insulin). Therefore, given the former it is possible to deduce the latter. 

2. A performance requirement (e.g. blood glucose must be measure with MARD of 9% accuracy) 

defines how well a particular system function has to perform. Therefore, given the latter it is 

possible to deduce the latter (measure blood glucose). 

3. To provide completeness, each functional requirement needs the associated performance 

requirement. 

4. System-functional requirements relationship is akin to (2) and (3) from above. 

Since we omitted performance requirements question from the original survey (for the reasons described 

in 6.4.1 Survey), Table 21 presents an example of filling in requirements between functional and non-

functional implementation requirements of an AP system.  

Table 21. STA Example for AP System. 

Functional Requirement Non-Functional Implementation Requirement 

Show snapshot of current BG Interface (allowing for BG output) 

Account for age-related differences Interface (allowing for age input) 

Out of range BG alerts Speaker, vibration, light 

 

Notice, that implementation requirements in the right column of the Table 21 were not in the original 

implementation requirements in Table 18. However, it is clear that these implementation requirements are 

necessary to fulfil what stakeholders put forward as their functional requirement. While in the 

stakeholders’ responses such requirements might be omitted because they are obvious, for the engineers 

designing the AP system it is essential that the requirements table is exhaustive and everything is taken 

into account. That is exactly what STA is for.  
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Another example of functional (or operational) requirements implying other groups of requirements is the 

inference of performance requirements. Below are few example of such inferred performance 

requirements with the corresponding functional or operational requirements that imply them. 

Table 22. Another example of STA. 

Operational/Functional Requirement Non-Functional Performance Requirement 

Increase time in range The range maintained must be from x to y mg/dl 

Lead to good A1C The A1c of x must be maintained 

Monitor glucose Provide glucose reading every x minutes 

Inject insulin Inject insulin with the hardware increment of x 

Provide temporary basal Provide temporary basal of x % of current basal 

Check blood glucose Require x number of fingersticks a day 

 

6.5.1 Performance requirements 

To learn what the values of the x’s and y’s in Table 22 are, another short study was conducted for this 

example. 30 people were surveyed, all of the patients or patients’ parents when the patients were young 

enough to coherently respond to the questions. The respondents were allowed to skip questions that they 

didn’t understand or found irrelevant. The following questions were asked: 

 What is your preferred lower range boundary for an AP system? 

 What is your preferred upper range boundary for an AP system? 

 What A1C target you want the system to help you achieve? 

 How often would you like the sensor to tell you your glucose? 

 Thinking about basal rates, what is the lowest titration of insulin bolus increments you would like 

the system to have? 



118 
 

 What is the finest modification of basal (temporary basal) the system should provide? (Currently 

you can titrate your basal up and down using a percentage or unit based calculation. Given a 

percentage based calculation, what is the increment of adjustment you’d prefer to have – example: 

increase by increments of 1%, 5%, 10%, etc.) 

 How many fingersticks per a day are you willing to perform to enable the Artificial Pancreas 

system to work. 

Multiple choice answers were suggested for the questions. The results are presented in the following 

figures. 

 

Figure 59. Minimum and maximum BG desired. 

 

Figure 59 suggests that most of the patients would like to stay above 70 mg/dl and most (not necessarily 

the same) patients would like to stay below 180 mg/dl. Note that the maximum BG (red bars) has a wider 

distribution which reasonably suggests that minimum BG values are more important for patients than 

maximum BG values. 
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Since the minimum BG and maximum BG responses are not connected to each other, it is also worth 

presenting the ranges calculated from the respective minimum and maximum BG values – Figure 60. 

 

Figure 60. Range desired. 

 

Figure 60 suggests that, on average, the acceptable width of the range is about 90 mg/dl. 

Figure 61 presents the HbA1c values that the respondents named as optimal for them. 
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Figure 61. Desired HbA1c. 

 

Figure 62 shows how often the respondents wanted to have access to a new CGM value. 

 
Figure 62. Desired CGM sampling frequency. 

 

Figure 63 show how fine the respondents wanted to have their pump’s increment. Majority of the patients 

preferred to have it as precise as 0.01 Unit. 
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Figure 63. Desired pump increment. 

 

Figure 64 shows how small the relative value of temporary basal must be in the view of the patients. 

 
Figure 64. Desired temporary basal precision. 

 



122 
 

Finally, Figure 65 shows how the patients feel about the number of fingersticks the system would require 

per day for optimal performance. The distribution is bimodal with many people being comfortable with 

just 4 fingersticks a day and other large group being comfortable with 6-7 fingersticks. 

 
Figure 65. Acceptable number of fingersticks. 

 

6.5.2 Subsystems 

As was mentioned before, the resulted AP HRM contains 107 requirements. That is before STA. After a 

proper STA the number can increase several-fold. This large number is not surprising as the associated 

system (Artificial Pancreas) is highly complex and involves many subsystems. In fact, systems of such 

order always produce several HRMs where there is one overarching HRM and others are HRM of the 

system’s subsystems. This is not surprising, as according to systems analysis [84], a system comprises 

subsystems, and a system is a sub-system of a bigger system.  

As this work pursues not a full product development documentation, but only a formalization of the 

process, all sub-systems’ HRM will not be presented, but a demonstrative example will be discussed. The 



123 
 

most common case is when a function that is complex necessitates delving into the function’s sub-system 

thus producing another HRM. In this case: 

1. The appropriate Functional Requirement of the system becomes the purpose element of the 

Operational Requirement of the sub-system. 

2. The Non-Functional Performance Requirements of the function of the system become Non-

Functional System Requirements of the sub-system. 

Using familiar graphics for HRM representation, an example of this case is presented in Figure 66.  

 

Figure 66. System and Sub-system HRMs. 
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There are many of the 107 HRM requirements that will require a sub-system HRM and possibly another 

level of HRM – sub-sub-systems. Particularly, many or all functional requirements of the Table 16 

(Advanced/Other Functional Requirements) will require a sub-system HRM. For example: 

 Provide remote monitoring/control  

 Account for intra-patient variability 

 Distinguish different highs 

 

Sequential application of Stakeholder Mapping, surveying the stakeholders, Holistic Requirements 

Analysis, and Systemic Textual Analysis not only provides a framework for a system design that fits the 

purpose, but also guarantees that the purpose is correct. 

6.6 7D Diagram 

In the previous sections, a formalization of the engineering design process for Artificial Pancreas systems 

was presented. However, even with the more though-though design approach, complex systems like AP 

are exposed to a lot of risk during their operation. To address this aspect of AP systems, a risk assessment 

and management methodology is presented.  

Ishikawa diagram is routinely used in different industries. It also comes under different names – cause-

and-effect diagram and fishbone diagram and others. It shares its features with many other risk 

assessment and management tools in its hierarchical and modular structure in which various sources of 

risk and malfunction are grouped in categories. Many methodologies differ only in the structural 

geometry they chose to present the categories. Ishikawa diagram’s general structure example is depicted 

in Figure 67. 
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Figure 67. Ishikawa Diagram. 

 

When using Ishikawa diagram, historically, in each industry, the model has been described by an 

“acronym” that would consist of the same letter repeated. For example: 

 in manufacturing industry, 8 Ms: 

o Machine (technology) 

o Method (process) 

o Material (Includes Raw Material, Consumables and Information.) 

o Man Power (physical work)/Mind Power (brain work) 

o Measurement (Inspection) 

o Milieu/Mother Nature (Environment) 

o Management/Money Power 

o Maintenance 

 in marketing industry, 7 Ps: 

o Product/Service 

o Price 

o Place 

o Promotion 
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o People/personnel 

o Positioning 

o Packaging 

 in service industry, 5 Ss: 

o Surroundings 

o Suppliers 

o Systems 

o Skills 

o Safety 

For the field of AP systems, the “acronym” of 7 Ds is proposed: 

 Design (underlying algorithm) 

 Development (software implementation) 

 Device (hardware implementation) 

 Drug (medications used: insulin, glucagon, etc.) 

 Deployment (environment of use) 

 Diabetic (patient’s behavior) 

 Doctor (clinician’s/physician’s involvement) 

Updated diagram is presented in Figure 68. 
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Figure 68. 7D Ishikawa Diagram. 

 

As in any Ishikawa diagram, in our case each effect cause has several sub-causes. Some of them are 

shown in Figure 69. 

 

Figure 69. 7D Model with Sub-categories. 

 

The structure nature of multilevel decomposition shows the following advantages [92]: 

1. Decomposition methods can reflect the internal hierarchical nature of large-scale multiobjective 

systems. In AP system case, categories like Design, Development, Device, and Drug would be in 
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the center of the system and this center’s operation is defined by the Diabetic, Doctor, and 

Deployment. 

2. Trade-off analyses can be performed among sub-systems and the overall system. In AP system 

case, for example, CGM signal loss from the Device category can be addressed with proper 

software response (Development category) planned during the design of the algorithms (Design 

category). 

3. Through decomposition, the complexity of a large-scale multiobjective systems can be relaxed by 

solving several smaller sub-problems.  

Just like Hierarchical Holographic Modeling by Haimes [92], 7D model is a holistic methodology 

designed at capturing and representing the essence of the inherent diverse characteristics and attributes of 

a system – its multiple aspects, perspectives, facets, views, dimensions, and hierarchies which in AP 

systems are many. 

Together with HRM, 7D provides a formal framework for a genuine systems approach to designing and 

assessing Artificial Pancreas systems.  
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Chapter 7 

Conclusions and Contributions 

In this work, we posited that in complex biomedical control systems it is beneficial to support the 

operator’s ability to control the decision making. In particular, in the framework of diabetes technology, 

advice and decision support systems were considered as a reasonable precursor to fully closed-loop 

systems. Such advisory systems calculate numerically optimal advice when requested so by the user and 

then the user himself or herself decides whether to actuate the advised value. 

We designed such advisors for both (i) insulin pump-equipped systems which are currently the prevalent 

configuration for Artificial Pancreas systems, and (ii) Multiple Daily Injections setting which has not 

been studied before in terms of optimal dosing. In addition, as such systems are complex, and not only 

include human operator but also have human as the control object, we deemed it necessary to develop a 

structured framework for the design of such systems. In the course of this work we came to several 

conclusions: 

1. Model-based treatment is as robust as the models are themselves, and to the extent that the model 

fails to represent the reality of treatment, the configuration of the system and its control authority 

have to be carefully chosen. After developing a model that we deemed reliable for long-term 

prediction, we did observe promising results in silico when it was tested using the FDA accepted 

Simulator. However, when testing the system in vivo, it was found not suited for accurate long-

term predictions due to inter- and intra-subject variability. The model experienced particular 

problems when handling dynamics of insulin transport and meal absorption, especially in the 

cases when meals were grossly misestimated. In vivo experience modified our expectations of 

model based advisory approach. We found that these model-based prediction challenges can be 

addressed by introducing certain therapy and control features. In particular, the therapy can limit 
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the advice requests to meal times only to avoid the complications of the post-prandial metabolical 

dynamics. The control strategy can also be reverted to conventional correction bolus calculation 

based on correction factor and IOB when the model is not tracking the real-life insulin transport 

dynamics. 

2. In control systems where the operation is significantly influenced by human behavior, such as 

biomedical systems of diabetes algorithmic solutions, it is important to understand the context 

and requirements of the system’s use before the design stage. This allows not only to avoid 

unnecessary implementation iterations, but also improves the design features of the system 

overall through abiding by all behavioral constraints that can be applied to such system. 

Our contributions to algorithmic technology-based diabetes solutions are found in modeling, control, 

simulation, and systems design. More specifically: 

1. We built a risk-space model-based advisory system with a non-patient-specific objective function. 

Unlike previous model-based advisory systems that generally relied upon a “population average” 

model and achieved individualization through careful construction of optimization objective 

function, the system we proposed achieved individualization of the control action through the 

development of a mathematical model that was adapted to patient’s individual physiology. In 

particular, some parameters of the model for state estimation were individualized by applying 

optimal multiplier values. However, the objective function is adapted to timing of meals – we 

apply a gradient weighting on the cost matrix across the horizon putting less penalty during time 

right after the meal and more penalty closer to the end of the horizon. This protects the systems 

from overpenalizing during the most uncertainty and penalizing appropriately at the end of the 

horizon where it matters the most for returning the patient to the target blood glucose values. 

Importantly, we employed a risk space model that adequately reflects the difference in the sense 

of clinical importance between numerically equivalent deviations from the target.  
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2. We designed a long-acting insulin model to enable the design of advisory systems for MDI 

therapy patients and designed one such system. The new compartmental long-acting insulin 

model allows tracking of the dynamics of long-acting insulin glargine that is extensively used in 

MDI therapy for type 1 diabetes. In addition, it preserved the original compartmental structure of 

the traditional rapid-acting insulin transport model used in Artificial Pancreas system. Thus the 

new model reconciles the pharmacokinetics of insulins with different action profiles and 

accommodates design and simulation of real-life MDI therapies where two different insulins are 

used. 

3. We introduced the concept of Virtual Basal Rate that allows the designer to adopt the 

mathematics of pump-equipped Artificial Pancreas systems for MDI therapy systems. The Virtual 

Basal Rate is an equivalent basal rate that would be dialed in a pump throughout a day to achieve 

an insulin concentration profile equivalent to the one produced by injections of long-acting 

insulin glargine. The deviation of this oscillating concentration profile from the average basal 

concentration produced by long-acting insulin only can thus be used as a “IOB” specific to MDI 

therapies. Importantly, we further developed the Virtual Basal Rate calculation for real patients 

that do not inject the long-acting insulin at exactly same time of day or skip long-acting insulin 

injection completely. This specific representation of the Virtual Basal Rate has the most impact in 

these corner cases by providing a way of tracking the “excess” or “skipped” insulin concentration 

for any patient only knowing their long-acting insulin injection value and the number of such 

injection a day (usually one or two in MDI therapy). 

4. We developed a reference model for MDI therapy system testing and validation by introducing 

the concept of behavioral populations. In contrast to existing in silico population widely used in 

diabetes technology simulations, real-life patients on MDI therapy possess behavioral features 

that had not been represented in such simulators before. We translated possible behavioral 

profiles like “hypo-fearing” patients, “hyper-fearing” patients, or “common patients” into 

numerical in silico subjects that vary behaviorally in their therapy parameters. These behavioral 
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populations allow testing and validation of MDI therapy algorithms. We then used one of these 

populations – hypo-fearing – to validate our own MDI therapy advisory system that takes 

advantage of the knowledge about long-acting insulin dynamics through the Virtual Basal Rate.  

5. In addition to the specific diabetes technology contributions above, we introduced a general 

methodology for the design of diabetes technology solutions. We identified various groups of 

stakeholders that affect or are influenced by Artificial Pancreas and other technological diabetes 

solutions. We then transformed the categories of the Holistic Requirements Model approach into 

a survey that could be completed by individuals from these stakeholder groups. During the poll of 

over 130 respondents, we gleaned invaluable information about what is required from such 

diabetes management systems and what the constraints are. To process the survey results, we 

used the thematic analysis approach. Further, we demonstrated a way to refine such results with 

the application of Systemic Textual Analysis and subsystem formation.  

6. Finally, we employed the Ishikawa Diagram and developed our own diabetes technology specific 

cause-effect diagram with 7 categories corresponding to the grouped sources of risks and 

solutions to control and therapy problems that can arise in diabetes technology systems: Design, 

Development, Device, Drug, Deployment, Diabetic, and Doctor. The 7D diagram is thus 

equipped to encompass all aspects of creating and using a technological diabetes management 

solution. As a decomposition method, 7D provides a convenient way of reflecting the internal 

hierarchical nature of large-scale complex diabetes technology systems and facilitates trade-off 

analysis among the sub-systems. Importantly, it allows the designer to systematically search for a 

solution in various categories to address a problem that arose in any of the categories thus 

providing a road map to the analysis and debugging process of the design and operation of such 

systems. 
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Appendix A. Matrix Representation and Discretization 

All the parameters in the equations (11), (12), and (15) are either available (𝐵𝑊), population average (𝑉𝐼, 

𝑘𝑑, 𝑘𝑐𝑙, 𝑎𝑑 , 𝑎1, 𝑎2, and 𝐺𝑏) or are calculated through a regression equation (parameters 𝑝1, 𝑝2, 𝑝6, 𝑝4) 

when the algorithm is engaged during the system’s operation. Therefore, as soon as these parameters’ 

values are obtained, we can take the system matrices of (11), (12), and (15) and discretize these equations 

using MATLAB means [93]. The resulted matrices for discrete state space models are then as follows: 

 

[

−𝜅𝑑 0 0
𝜅𝑑 −𝜅𝑑 0
0 𝜅𝑑 −𝜅𝑐𝑙

] ⇒ 𝐴𝐼 = [

𝑘11
𝑑𝑖𝑠 𝑘12

𝑑𝑖𝑠 𝑘13
𝑑𝑖𝑠

𝑘21
𝑑𝑖𝑠 𝑘22

𝑑𝑖𝑠 𝑘23
𝑑𝑖𝑠

𝑘31
𝑑𝑖𝑠 𝑘32

𝑑𝑖𝑠 𝑘33
𝑑𝑖𝑠

],  (52) 

 

[
1
0
0
] ⇒ 𝐵𝐼 = [

𝑏𝑖1
𝑑𝑖𝑠

𝑏𝑖2
𝑑𝑖𝑠

𝑏𝑖3
𝑑𝑖𝑠

] (53) 

 
[
−(𝑎𝑑 + 𝑎1) 0

𝑎𝑑 −𝑎2
] ⇒ 𝐴𝑄 = [

𝑎11
𝑑𝑖𝑠 𝑎12

𝑑𝑖𝑠

𝑎21
𝑑𝑖𝑠 𝑎22

𝑑𝑖𝑠
] (54) 

 
[
1
0
] ⇒ 𝐵𝑄 = [

𝑏𝑞1
𝑑𝑖𝑠

𝑏𝑎2
𝑑𝑖𝑠

] (55) 

 

[

−𝑝1 −𝑝2 0
0 −𝑝4 0

0 0 −
1

720

] ⇒ 𝐴𝐶 = [

𝑝11
𝑑𝑖𝑠 𝑝12

𝑑𝑖𝑠 𝑝13
𝑑𝑖𝑠

𝑝21
𝑑𝑖𝑠 𝑝22

𝑑𝑖𝑠 𝑝23
𝑑𝑖𝑠

𝑝31
𝑑𝑖𝑠 𝑝32

𝑑𝑖𝑠 𝑝33
𝑑𝑖𝑠

] (56) 

 

[
𝑝6

0
0

] ⇒ 𝐵𝐶𝑄=[

𝑏𝑐𝑞1
𝑑𝑖𝑠

𝑏𝑐𝑞2
𝑑𝑖𝑠

𝑏𝑐𝑞3
𝑑𝑖𝑠

] (57) 

 

[

0 0 0

0 0
𝑝4

𝑉𝐼𝐵𝑊

0 0 0

] ⇒ 𝐵𝐶𝐼1=[

𝑏𝑐𝑖11
𝑑𝑖𝑠

𝑏𝑐𝑖12
𝑑𝑖𝑠

𝑏𝑐𝑖13
𝑑𝑖𝑠

] (58) 

 

[
0

−𝑝4𝐼𝑏
0

] ⇒ 𝐵𝐶𝐼2=[

𝑏𝑐𝑖21
𝑑𝑖𝑠

𝑏𝑐𝑖22
𝑑𝑖𝑠

𝑏𝑐𝑖23
𝑑𝑖𝑠

] (59) 
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Where the elements of the RHS matrices have values produced by MATLAB. In addition, the same 

approach is used to obtain the following matrix that was not included in the matrix notation of equation 

(12), but corresponds to equation (8) and will become useful later in the derivation: 

 [𝑎1 𝑎2] ⇒ 𝐶𝑄=[𝑐𝑞1 𝑐𝑞2] (60) 

Further, the following matrix notation for the states is adopted: 

 

𝑖(𝑘) = [

𝐼𝑆𝐶1(𝑘)
𝐼𝑆𝐶2(𝑘)
𝐼𝑃(𝑘)

] (61) 

 
𝑞(𝑘) = [

𝑄1(𝑘)

𝑄2(𝑘)
] (62) 

 

𝑥(𝑘) =

[
 
 
 
 
 𝑙𝑛 (

𝐺(𝑘)

𝐺𝑏
)

𝑙𝑛 (
𝑋(𝑘)

𝑋𝑏
)

Δ̇(𝑘) ]
 
 
 
 
 

 (63) 
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Appendix B. Optimization Model Matrix Composition and Manipulation 

The evolution equation of the insulin transport state all the way to the end of the horizon can be written 

out using matrix notation: 

 

[
 
 
 
 

𝑖(𝑘)

𝑖(𝑘 + 1)

𝑖(𝑘 + 2)
⋮

𝑖(𝑘 + 𝑁 − 1)]
 
 
 
 

=

[
 
 
 
 

𝐼
𝐴𝐼

𝐴𝐼
2

⋮
𝐴𝐼

𝑁−1]
 
 
 
 

𝑖(𝑘) +

[
 
 
 
 

𝟎 𝟎 𝟎
𝐼 𝟎 𝟎
𝐴𝐼

⋮
𝐴𝐼

𝑁−2

𝐼
⋮

𝐴𝐼
𝑁−3

𝟎
⋮

𝐴𝐼
𝑁−4



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮
𝟎]
 
 
 
 

[
 
 
 
 
𝐵𝐼

𝐵𝐼

𝐵𝐼

⋮
𝐵𝐼]

 
 
 
 

𝐽𝑏𝑎𝑠𝑎𝑙 

+

[
 
 
 
 

𝟎
𝐵𝐼

𝐴𝐼𝐵𝐼

⋮
𝐴𝐼

𝑁−2𝐵𝐼]
 
 
 
 

𝑢𝑏𝑜𝑙𝑢𝑠(𝑘) 

(64) 

where 𝐼 is an identity matrix of the size 3x3, and 𝟎 is a null matrix of the size 3x3 or a null column of the 

size 3x1, depending on the context. Notice that 𝐽𝑏𝑎𝑠𝑎𝑙 does not have the step index (𝑘) anymore – two 

matrices in front of it propagate 𝐽𝑏𝑎𝑠𝑎𝑙 through the horizon implicitly creating all the consecutive state 

values. This is possible as basal is assumed constant throughout the time horizon. 

We further define matrix notation as: 

 

𝑖�̃�,𝑁 =

[
 
 
 
 

𝑖(𝑘)

𝑖(𝑘 + 1)

𝑖(𝑘 + 2)
⋮

𝑖(𝑘 + 𝑁 − 1)]
 
 
 
 

, size 3Nx1 (65) 

 

𝒜𝐼 =

[
 
 
 
 

𝐼
𝐴𝐼

𝐴𝐼
2

⋮
𝐴𝐼

𝑁−1]
 
 
 
 

, size 3Nx3 (66) 

 

Γ𝐼1 =

[
 
 
 
 

𝟎 𝟎 𝟎
𝐼 𝟎 𝟎
𝐴𝐼

⋮
𝐴𝐼

𝑁−2

𝐼
⋮

𝐴𝐼
𝑁−3

𝟎
⋮

𝐴𝐼
𝑁−4



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮
𝟎]
 
 
 
 

, size 3Nx3N (67) 
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ℬ𝐼 =

[
 
 
 
 
𝐵𝐼

𝐵𝐼

𝐵𝐼

⋮
𝐵𝐼]

 
 
 
 

, size 3Nx1 (68) 

 

Γ𝐼2 =

[
 
 
 
 

𝟎
𝐵𝐼

𝐴𝐼𝐵𝐼

⋮
𝐴𝐼

𝑁−2𝐵𝐼]
 
 
 
 

, size 3Nx1 (69) 

The same can be done with the evolution equation of the carbohydrate transport as was done with the 

insulin transport equation – the state evolution all the way to the end of the horizon can be written out 

using matrix notation: 

 

[
 
 
 
 

𝑑(𝑘)

𝑑(𝑘 + 1)

𝑑(𝑘 + 2)
⋮

𝑑(𝑘 + 𝑁 − 1)]
 
 
 
 

=

[
 
 
 
 
𝐶𝑄 𝟎 𝟎

𝟎 𝐶𝑄 𝟎

𝟎
⋮
𝟎

𝟎
⋮
𝟎

𝐶𝑄

⋮
𝟎



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮

𝐶𝑄]
 
 
 
 

(

  
 

[
 
 
 
 
 

𝐼
𝐴𝑄

𝐴𝑄
2

⋮
𝐴𝑄

𝑁−1
]
 
 
 
 
 

𝑞(𝑘) +

[
 
 
 
 

𝟎
𝐵𝑄

𝐴𝑄𝐵𝑄

⋮
𝐴𝑄

𝑁−2𝐵𝑄]
 
 
 
 

𝑚(k)

)

  
 

 (70) 

where 𝐼 is an identity matrix of the size 2x2, and 𝟎 is a null vector of size 2x1 or a null vector of size 1x2, 

depending on the context. Note also, that 𝐶𝑄 of (60). 

We further define matrix notation as: 

 

�̃�𝑘,𝑁 =

[
 
 
 
 

𝑑(𝑘)

𝑑(𝑘 + 1)

𝑑(𝑘 + 2)
⋮

𝑑(𝑘 + 𝑁 − 1)]
 
 
 
 

, size Nx1 (71) 

 

𝒞𝑄 = 

[
 
 
 
 
𝐶𝑄 𝟎 𝟎

𝟎 𝐶𝑄 𝟎

𝟎
⋮
𝟎

𝟎
⋮
𝟎

𝐶𝑄

⋮
𝟎



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮

𝐶𝑄]
 
 
 
 

, size Nx2N (72) 
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𝒜𝑄 =

[
 
 
 
 
 

𝐼
𝐴𝑄

𝐴𝑄
2

⋮
𝐴𝑄

𝑁−1
]
 
 
 
 
 

, size 2Nx2 (73) 

 

ℬ𝑄 =

[
 
 
 
 

𝟎
𝐵𝑄

𝐴𝑄𝐵𝑄

⋮
𝐴𝑄

𝑁−2𝐵𝑄]
 
 
 
 

, size 2Nx1 (74) 

Finally, the same can be done for the core model – the state all the way to the end of the horizon can be 

written out using matrix notation: 

 

[
 
 
 
 
𝑥(𝑘 + 1)

𝑥(𝑘 + 2)

𝑥(𝑘 + 3)
⋮

𝑥(𝑘 + 𝑁)]
 
 
 
 

=

[
 
 
 
 
 
𝐴𝐶

𝐴𝐶
2

𝐴𝐶
3

⋮
𝐴𝐶

𝑁]
 
 
 
 
 

𝑥(𝑘) 

+

[
 
 
 
 
 

𝐵𝐶𝑄 𝟎 𝟎

𝐴𝐶𝐵𝐶𝑄 𝐵𝐶𝑄 𝟎

𝐴𝐶
2𝐵𝐶𝑄

⋮
𝐴𝐶

𝑁−1𝐵𝐶𝑄

𝐴𝐶𝐵𝐶𝑄

⋮
𝐴𝐶

𝑁−2𝐵𝐶𝑄

𝐵𝐶𝑄

⋮
𝐴𝐶

𝑁−3𝐵𝐶𝑄



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮

𝐵𝐶𝑄]
 
 
 
 
 

[
 
 
 
 

𝑑(𝑘)

𝑑(𝑘 + 1)

𝑑(𝑘 + 2)
⋮

𝑑(𝑘 + 𝑁 − 1)]
 
 
 
 

 

+

[
 
 
 
 

𝐵𝐶𝐼1 𝟎 𝟎
𝐴𝐶𝐵𝐶𝐼1 𝐵𝐶𝐼1 𝟎

𝐴𝐶
2𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−1𝐵𝐶𝐼1

𝐴𝐶𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−2𝐵𝐶𝐼1

𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−3𝐵𝐶𝐼1



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮

𝐵𝐶𝐼1]
 
 
 
 

𝑖�̃�,𝑁 

+

[
 
 
 
 

𝐼 𝟎 𝟎
𝐴𝑐 𝐼 𝟎

𝐴𝐶
2

⋮
𝐴𝐶

𝑁−1

𝐴𝑐

⋮
𝐴𝐶

𝑁−2

𝐼
⋮

𝐴𝐶
𝑁−3



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮
𝐼 ]
 
 
 
 

[
 
 
 
 
𝐵𝐶𝐼2

𝐵𝐶𝐼2

𝐵𝐶𝐼2

⋮
𝐵𝐶𝐼2]

 
 
 
 

 

(75) 

Since our aim is to derive a closed-form solution for 𝑢𝑏𝑜𝑙𝑢𝑠(𝑘), we have to expand 𝑖�̃�,𝑁 and write out the 

evolution of the insulin transport state explicitly: 
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[
 
 
 
 
𝑥(𝑘 + 1)

𝑥(𝑘 + 2)

𝑥(𝑘 + 3)
⋮

𝑥(𝑘 + 𝑁)]
 
 
 
 

=

[
 
 
 
 
 
𝐴𝐶

𝐴𝐶
2

𝐴𝐶
3

⋮
𝐴𝐶

𝑁]
 
 
 
 
 

𝑥(𝑘) 

+

[
 
 
 
 
 

𝐵𝐶𝑄 𝟎 𝟎

𝐴𝐶𝐵𝐶𝑄 𝐵𝐶𝑄 𝟎

𝐴𝐶
2𝐵𝐶𝑄

⋮
𝐴𝐶

𝑁−1𝐵𝐶𝑄

𝐴𝐶𝐵𝐶𝑄

⋮
𝐴𝐶

𝑁−2𝐵𝐶𝑄

𝐵𝐶𝑄

⋮
𝐴𝐶

𝑁−3𝐵𝐶𝑄



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮

𝐵𝐶𝑄]
 
 
 
 
 

[
 
 
 
 

𝑑(𝑘)

𝑑(𝑘 + 1)

𝑑(𝑘 + 2)
⋮

𝑑(𝑘 + 𝑁 − 1)]
 
 
 
 

 

+

[
 
 
 
 

𝐵𝐶𝐼1 𝟎 𝟎
𝐴𝐶𝐵𝐶𝐼1 𝐵𝐶𝐼1 𝟎

𝐴𝐶
2𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−1𝐵𝐶𝐼1

𝐴𝐶𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−2𝐵𝐶𝐼1

𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−3𝐵𝐶𝐼1



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮

𝐵𝐶𝐼1]
 
 
 
 

[
 
 
 
 

𝐼
𝐴𝐼

𝐴𝐼
2

⋮
𝐴𝐼

𝑁−1]
 
 
 
 

𝑖(𝑘)

+

[
 
 
 
 

𝐵𝐶𝐼1 𝟎 𝟎
𝐴𝐶𝐵𝐶𝐼1 𝐵𝐶𝐼1 𝟎

𝐴𝐶
2𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−1𝐵𝐶𝐼1

𝐴𝐶𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−2𝐵𝐶𝐼1

𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−3𝐵𝐶𝐼1



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮

𝐵𝐶𝐼1]
 
 
 
 

 

[
 
 
 
 

𝟎 𝟎 𝟎
𝐼 𝟎 𝟎
𝐴𝐼

⋮
𝐴𝐼

𝑁−2

𝐼
⋮

𝐴𝐼
𝑁−3

𝟎
⋮

𝐴𝐼
𝑁−4



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮
𝟎]
 
 
 
 

[
 
 
 
 
𝐵𝐼

𝐵𝐼

𝐵𝐼

⋮
𝐵𝐼]

 
 
 
 

𝐽𝑏𝑎𝑠𝑎𝑙 

+

[
 
 
 
 

𝐵𝐶𝐼1 𝟎 𝟎
𝐴𝐶𝐵𝐶𝐼1 𝐵𝐶𝐼1 𝟎

𝐴𝐶
2𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−1𝐵𝐶𝐼1

𝐴𝐶𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−2𝐵𝐶𝐼1

𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−3𝐵𝐶𝐼1



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮

𝐵𝐶𝐼1]
 
 
 
 

[
 
 
 
 

𝟎
𝐵𝐼

𝐴𝐼𝐵𝐼

⋮
𝐴𝐼

𝑁−2𝐵𝐼]
 
 
 
 

𝑢𝑏𝑜𝑙𝑢𝑠(𝑘) 

+

[
 
 
 
 

𝐼 𝟎 𝟎
𝐴𝐶 𝐼 𝟎

𝐴𝐶
2

⋮
𝐴𝐶

𝑁−1

𝐴𝑐

⋮
𝐴𝐶

𝑁−2

𝐼
⋮

𝐴𝐶
𝑁−3



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮
𝐼 ]
 
 
 
 

[
 
 
 
 
𝐵𝐶𝐼2

𝐵𝐶𝐼2

𝐵𝐶𝐼2

⋮
𝐵𝐶𝐼2]

 
 
 
 

 

(76) 

We further define matrix notation as: 
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�̃�𝑘,𝑁 =

[
 
 
 
 
𝑥(𝑘 + 1)

𝑥(𝑘 + 2)

𝑥(𝑘 + 3)
⋮

𝑥(𝑘 + 𝑁)]
 
 
 
 

, size 3Nx1 (77) 

 

𝒜𝐶 = 

[
 
 
 
 
 
𝐴𝐶

𝐴𝐶
2

𝐴𝐶
3

⋮
𝐴𝐶

𝑁]
 
 
 
 
 

, size 3Nx3 (78) 

 

Γ𝐶1 =

[
 
 
 
 
 

𝐵𝐶𝑄 𝟎 𝟎

𝐴𝐶𝐵𝐶𝑄 𝐵𝐶𝑄 𝟎

𝐴𝐶
2𝐵𝐶𝑄

⋮
𝐴𝐶

𝑁−1𝐵𝐶𝑄

𝐴𝐶𝐵𝐶𝑄

⋮
𝐴𝐶

𝑁−2𝐵𝐶𝑄

𝐵𝐶𝑄

⋮
𝐴𝐶

𝑁−3𝐵𝐶𝑄



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮

𝐵𝐶𝑄]
 
 
 
 
 

, size 3NxN (79) 

 

Γ𝐶2 =

[
 
 
 
 

𝐵𝐶𝐼1 𝟎 𝟎
𝐴𝐶𝐵𝐶𝐼1 𝐵𝐶𝐼1 𝟎

𝐴𝐶
2𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−1𝐵𝐶𝐼1

𝐴𝐶𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−2𝐵𝐶𝐼1

𝐵𝐶𝐼1

⋮
𝐴𝐶

𝑁−3𝐵𝐶𝐼1



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮

𝐵𝐶𝐼1]
 
 
 
 

, size 3NxN (80) 

 

Γ𝐶3 =

[
 
 
 
 

𝐼 𝟎 𝟎
𝐴𝐶 𝐼 𝟎

𝐴𝐶
2

⋮
𝐴𝐶

𝑁−1

𝐴𝑐

⋮
𝐴𝐶

𝑁−2

𝐼
⋮

𝐴𝐶
𝑁−3



… 𝟎
… 𝟎
…
⋱
…

𝟎
⋮
𝐼 ]
 
 
 
 

, size 3Nx3N (81) 

 

ℬ𝐶𝐼2 =

[
 
 
 
 
𝐵𝐶𝐼2

𝐵𝐶𝐼2

𝐵𝐶𝐼2

⋮
𝐵𝐶𝐼2]

 
 
 
 

, size 3Nx1 (82) 
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Appendix C. Q Matrix Composition and Use 

First, several “discrete” matrices were used that had more elements to the end of the diagonal filled with 

one instead of zeros as more time passed after the meal. These matrices are presented in Figure 70. 

  

  



147 
 

  

Figure 70. 𝓠 Matrix Variations. Blue dots show element positions with 1’s. 

 

Then, these 6 matrices were combined through interpolation of their “tails” that do not overlap between 

every consecutive pair of matrices to obtain the intended penalization along the horizon. Consider now a 

particular example. A meal was consumed at 1:00 pm and a corresponding meal bolus was taken at the 

time. At 1:50pm, the patient decides to administer a correction bolus as the glucose is at 170 mg/dl which 

for this particular patient is too high. An idealistic gradual penalization of glucose deviation that the 

algorithm would use in this scenario is illustrated in Figure 71. 

 

Figure 71. Penalty Increasing Later In the Horizon.. 

 



148 
 

To achieve this, the diagonals of all possible 𝒬 matrices were stacked next to each other as columns of a 

new 𝒬𝑝𝑜𝑜𝑙  matrix. For this particular implementation of the 4-hour prediction horizon, 5-minute 

discretization, and 3 core states, the 𝒬𝑝𝑜𝑜𝑙 is a matrix of size 144x264. The matrix is presented in Figure 

72.  

 

Figure 72. 𝓠
𝒑𝒐𝒐𝒍

 Matrix. 

 

As was mentioned above, the matrix is filled as a gradient, meaning that not all dots in Figure 72 

represent 1’s, the vertical vectors themselves consist of two subsets of different values: one set that 

depended on the “tails” interpolation, and the next set which is all 1’s.  
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Figure 73. 𝓠
𝒑𝒐𝒐𝒍

 Values Shown. 

 

The way the algorithm “reads” and applies 𝒬𝑝𝑜𝑜𝑙  is presented in Figure 74. In the figure, 𝒬𝐵𝐺  is the 

resulting matrix that is used by the algorithm in equations (23) and (24). 
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Figure 74. Example of 𝓠
𝒑𝒐𝒐𝒍

 Use. 

 

  



151 
 

Appendix D. Notes from the Clinical Trial, Subject 1. 

1 MEAL_CHO=MEDIUM + REGULAR 

2 HYPO_CHO=16 

3 Patient showered from 21:26 to 21:32; removed pump and did not receive any boluses during this time 

4 
ADVICE=subject requested advice- 0.65 units was suggested, subject accepted, actual injected insulin 

0.7 units 

5 CGM2=?????; Secondary CGM currently has no reading "?????" 

6 ketones 0.1; repeated SMBG 275=mg/dl 

7 repeated ketone=0.1 

8 calibrate the secondary CGM at 296mg/dl 

9 0.0 ketones 

10 For lunch, correction advised was -2.87, full bolus 0.9. 

11 Lunch low carb 

12 13:39 calibration 189 
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Appendix E. Notes from the Clinical Trial, Subject 2. 

1 
MEAL_CHO=SLOW+LARGE; (Ruby Tuesday's- French fries, cheeseburger + bun, salad, italian salad 

dressing 

2 

System recommended 2.5, subject chose to decrease to 1.8; Initial advice requested got 1.7 advice, 

subject cancelled, subject requested advice again for 1.9 advice but subject lowered this to 1.7 then hit 

inject. The safety message chame up and the injection was cancelled. Advice then was requested again 

and displayed 0 to subject, subject increased to 1.8 which was then actually injected 

3 KETONES = 0.2 

4 KETONES=0.1 

5 KETONES=0.1, at 00:02 

6 CGM reading low, not correctly reading, SMBG 131mg/dl. CGM came back in 20mins. 

7 patient got a headache and did a SMBG herself 

8 <90 alarm  

9 For lunch, correction advised was -3.58, full bolus 0.0. 

10 Lunch medium regular 
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Appendix F. Notes from the Clinical Trial, Subject 3. 

1 MEAL_CHO=41; ACTUAL VALUE= 41;MEAL GRID VALUE = 39 

2 MEAL_CHO= 17; ACTUAL VALUE =17; MEAL GRID VALUE = 20 

3 
OTHER_PUMP_OTHER; BASAL BOLUS 0.1 NOT GIVEN AT 23:10, LOG SHOWED "INVALID 

REQUEST"; POSSIBLY BLOCK OF COMMUNICATION BETWEEN DIAS PHONE AND PUMP 

4 SMBG=85; FOR RED LIGHT 

5 SMBG=82; FOR RED LIGHT 

6 SMBG=76; FOR RED LIGHT 

7 SMBG=75 

8 SMBG=81 

9 SMBG=153 

10 MEAL_CHO= 69; ACTUAL VALUE= 69; MEAL GRID VALUE= 60. 

11 PUMP; BATTERY LOW AND WAS REPLACED 

12 Advice suggested is 2.4, subject decided to manually decrease to 1.4 

13 KETONES= 0.0 

14 Subject requested advice, the value is 0 due to the blackout period, manually increased to 0.5 

15 
Subject started some exercise (walking around the hose) at about 11:40 and proceeded for about 10-15 

minutes to see if BG reacts.  Steep drop ensued as can be seen in the graph. 

16 

Meal of 44 actual grams estimated into the 'most carbs' group of 60 grams. At the time of the bolus 

request CGM was 146 mg/dl and the advice suggested -0.36 U (due to the previous long term steep 

downward trend).  The bolus wasn't injected.  Few minutes later bolus was requested again and the 

CGM was 129 mg/dl.  At this time it was -1.07 U and the total of 2.46 was accepted and injected with 

actual amount injected being 2.5 due to pump rounding.  

17 HYPO_CHO=16g 

18 Exercise (walking) from 14:29 to 15:14. 

19 

Subject tried to take a bolus for snack, did not like suggestion for bolus (way too high), tried a few 

times and was still high, decreased to 1.22 units and tried to give it, but it never went through. Subject 

decided not to have a snack. 

20 
Advise requested: Advise given was zero.  On display appeared to be 2.7 units.  Patient elected to take 

1.5 units.  

21 Subject re-calibrated both CGMs based upon SMBG of 158. 

22 
OTHER_RMS_OTHER; DIAS PHONE DISPLAYED INABILITY TO CONTACT DWM SERVER, 

AND LAST CGM WAS 7 MIN AGO, BUT BACKUP CGM GAVE ALARM OF CGM BELOW 90 

23 HYPO_CHO=16; FOR RED LIGHT 

24 Open Loop at 07:27 

25 test 2 

26 Subject went out of range for 10 minutes- may have missed bolus and got no CGM data 

27 IGNORE BG OF 200 

28 Aprox. 04:50 BG<90 Traffic Light is still yellow  

29 
RESET_CGM_RMS; CGM was out of range and reset, think it may be due to subject sleeping across 

the bed and on stomach, there was no antenna on CGM receiver which would suggest out of range issue 

30 CALIB_CGM=134 

31 Two CGM data points Listed (think this may be due to CGM calibration) 
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32 CGM; Issue resolved but a data point was lost 

33 CGM; Connections good, CGM missing data points on its own 

34 

RESTART; SUBJECT_ACCIDENT; slept on her side, stopped getting data; System taken out of 

Closed Loop for 10 minutes; connection issues with CGM- fixed by having subject get closer to DiAs 

and taking CGM in and out of dock 
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Appendix G. Visual Analysis of MDI Subjects. 

Notice that the scale of Y axis is 0 to 400 for all subjects besides three for whom it is set individually. 
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Appendix H. Individual Fits 
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Appendix I. Simulator Modularization Details. 

The pump module was removed from the Simulator and two separate pen modules were built: one pen for 

long-acting insulin for MDI basal injections and one pen for rapid-acting insulin for boluses (Figure 75). 

 
 

Figure 75. Pump to pens Simulator modification. 

 

Note that in Figure 75, there is a switch before the pump module which changes the input from pre-

determined scenario to the controller-initiated injections when needed (black arrow – scenario; orange 

arrow – controller; red arrow – switch signal). There is no such switch in the pens case because all the 

predetermined insulin goes through the long-acting insulin pen (top, black arrow), and the control is only 

applied to the rapid-acting insulin pen (bottom, orange arrow). 

The second problems consisted of the fact that the Simulink implementation of the meal model [50] in the 

Simulator [39] included all the states in a single s-function block (Figure 76). 
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Figure 76. One-Block Meal Model. 
 

The s-function block contained the differential equations of the meal model that took various inputs 

(meals, subcutaneous insulin injection, etc.) and produced the outputs (states of the model including blood 

glucose). 

In order to add the new subcutaneous “0” compartment characterized by (34) to the Simulator, this one- 

block configuration was dismantled and reassembled with the insulin transport modules operating 

“outside” of the rest of the model (Figure 77). 
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Figure 77. Insulin Transport Outside of the Meal Model. 

 

In Figure 77, the inputs SCINS LA and SCINS R stand for long-acting subcutaneous insulin and rapid 

subcutaneous insulin and come from the Simulink pen implementations that inject long-acting and rapid 

insulins, respectively. They enter the Insulin transport modules block where the aggregate rate of 

appearance in plasma is determined. The assumption is made that once in plasma, the monomers of 

insulin show the same bioavailability, whether they came to subcutaneous tissues as hexamers of glargine 

or monomers of rapid-acting insulin [94]. Thus the aggregate rate of appearance corresponds to rapid 

acting insulin and enters the Intact insulin module where it is processed to enter the Rest of Metabolism 

block.  

This kind of transformation is useful outside of solving this particular problem of adapting the Simulator 

[39] to MDI systems. Generally, such modularization of the system into the subsystems of independent 

dynamics of various states provides the ability to: 

 easily modify a particular subsystem and quickly verify the effects of the modification to the 

system overall 
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 separate concerns specific to a particular subsystem 

 minimize the dependency between the various subsystems to allow efficient maintenance of the 

program 

Since the insulin transport model was modified, for the In Silico validation, insulin states initial 

conditions of the simulation must be revised. In the regular minimal model [51] the initial conditions are 

calculated through: 

 
𝐼𝑆𝐶1

0 = 𝑚𝑎𝑥 (0,
(𝑚2 + 𝑚4)𝐼𝑃

0 − 𝑚1𝐼𝐿
0

(𝑘𝑎1 + 𝑘𝑑)
) 

(83) 

 
𝐼𝑆𝐶2

0 =
𝑘𝑑𝐼𝑆𝐶1

0

𝑘𝑎2
 

(84) 

In the modified Simulator, the initial conditions for insulin subsystem are then calculated as 

 
𝐼𝑆𝐶0

0 = 𝑚𝑎𝑥 (0,
(𝑚2 + 𝑚4)𝐼𝑃

0 − 𝑚1𝐼𝐿
0

(𝑘𝑎1 + 𝑘𝑑)
) 

(85) 

 
𝐼𝑆𝐶1

0 =
𝑘𝑑𝐼𝑆𝐶1

0

𝑘𝑎1 + 𝑘𝑑
 

(86) 

 
𝐼𝑆𝐶2

0 =
𝑘𝑑𝐼𝑆𝐶1

0

𝑘𝑎2
 

(87) 

Now a simulation platform is established. Such simulation framework is essential not only for validation 

of an already designed system, but for the design process itself, especially when of complex systems. The 

new Simulator allows for two types of insulin delivery: 

 daily insulin glargine injections  

 injections of rapid acting insulin at meal times (or between meals) according to a prescribed 

“meal/correction” scenario  

Thus, the simulator is uniquely equipped to support evaluation of both (i) conventional insulin pen 

therapy and (ii) enhanced “Smart Pen” insulin therapy.  
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Appendix J. Creating hypo-fearing population. 

First, random values between 1.1 and 1.3 are generated. These are CR multipliers and are obtained for all 

in silico subject. Similarly, a CF multiplier for every in silico subject is generated. Given these modified 

CRs and CFs, the subjects can be titrated for their LA insulin dosage to achieve the population average 

HbA1c of approximately 8%. 

To get a distribution around the 8% HbA1c, a random number is generated from N(8, 0.5). This results in 

95% of the subjects falling within [7, 9] % HbA1c interval. Given an HbA1c value for each subject, the 

corresponding average BG value is calculated using the formula from [82]: 

 𝑒𝐴𝐺 = 18(1.583𝐻𝑏𝐴1𝑐 − 2.52) 
(88) 

The value of 𝑒𝐴𝐺 is the average BG that a subject must have to achieve their given HbAc1. Examples of 

A1c’s and average BGs produced this way are presented in Figure 78. 

  

Figure 78. A1c and average BG of hypo-fearing in silico population. 

 

Then the titration is conducted for each subject to bring them to the desired average BG value. The 

titration is done over 2-day period with meal disturbances under a realistic scenario of: 

 first day 

o 0.5 g CHO/kg for breakfast at 8:00 AM 

o 0.9 g CHO/kg for lunch at 2:00 PM  

o 0.7 g CHO/kg for dinner at 8:00 PM 
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 second day 

o 0.5 g CHO/kg for breakfast 8:00 AM 

o 0.9 g CHO/kg for the dinner 8:00 PM 

The meals are bolused according to the newly calculated carbohydrate ratios for each in silico subject. 

Moreover, if during the titration the subject went too high they were corrected according to their 

correction factor. The second day is designed as described to test the system’s behavior in the case of a 

skipped meal. Thus the scenario closely emulated realistic live behavior. 

Titration showed that not every subject of the Simulator can achieve the assigned average BG value. 

Some subjects would not go higher enough even under no basal insulin injections due to their meal 

boluses administered according to the modified CR. In this case, the CR was randomly modified into a 

larger possible CR value (under the methodology described above) which overinsulinized the subject. 

Average BGs conditioned on TDDs of LA insulin from two examples of subjects who could achieve their 

target average BGs (195 mg/dl and 189 mg/dl respectively) are presented in Figure 79. 

  

Figure 79. Average BG vs TDD of long-acting insulin; BG targets achieved. 

The following two plots present examples of subjects who could not achieve their targets (192 mg/dl and 

186 mg/dl respectively) – Figure 80 
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Figure 80. Average BG vs TDD of long-acting insulin; BG targets not achieved. 

 

Third type of “behavior “ during the titration is subjects who are very sensitive to basal insulin. An 

example of such subject is in Figure 81. 

 

Figure 81. Subject overly sensitive to LA insulin in certain range of TDD. 

 

Finally, fourth type of “behavior” exhibited by in silico subjects during the titration was “broken” curve 

which happens due to the corrections that result from high BG values at low LA insulin injection values. 

Such “breaks” could happen more than once – see examples in Figure 82 
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Figure 82. Influence of CF corrections in titration. 

 

Importantly, the titration process showed that there are subjects whose daily BG fluctuation is more 

sensitive to LA insulin than other. This is summarized in Figure 83, where upward excursions correspond 

to subjects who are not too sensitive to the basal changes (the ones who could not achieve their targets by 

just LA insulin dose modification) and downward excursions correspond to subjects who are very 

sensitive to LA insulin dose modification. 

 

Figure 83. Difference between desired BG and the one that was achieved via titration. 
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Note that the word ‘sensitive’ is not used in the sense of being sensitive or not sensitive to insulin itself, 

but in the sense of the subjects’ therapy being overly dominated but incorrectly calibrated CR and CF  

that do not allow to choose an appropriate (in the context of hypo-fearing population) LA insulin dose. 
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Appendix K. Interface Screens. 
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Appendix L. Survey Thematic Analysis Examples. 

One response to a question increased the score of one requirement in the corresponding category: 

Response to question 1  Category 1, Requirement a +1 

  Total increment  +1 

 

One response to a question increased the score of more than one requirement in the corresponding 

category: 

Response to question 1  Category 1, Requirement a +1 

  Category 1, Requirement b +1 

  Total increment +2 

 

One response to a question increased the score of requirements in more than one category: 

Response to question 1  Category 1, Requirement a +1 

  Category 2, Requirement a +1 

  Total increment +2 

 

One response to a question did not increase any score in its corresponding category, but increased score in 

other categories: 

Response to question 1  Category 1 +0 

  Category 2, Requirement a +1 

  Category 2, Requirement b +1 

  Category 3, Requirement a +1 
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  Category 4, Requirement a +1 

  Total increment +4 

 

Responses to different questions increase score of the same requirement in the same category: 

Response to question 1  Category 1, Requirement a +1 

Response to question 2  Category 1, Requirement a +1 

  Total increment +2 
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