
Approachable Code: Developing with Abstraction in Mind

CS4991 Capstone Report, 2023

Ian Harvey

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

imh9wz@virginia.edu

ABSTRACT

The Student Game Developers club at UVA,

being largely focused on group-based work

and comprised of students with a variety of

skills, required game scripts that were both

functional and easily approachable by less

experienced developers. To simplify the use of

these scripts, I utilized code abstraction and

produced scripts that required no knowledge

of underlying code. I exposed public methods

and serialized private instance variable fields

within the Unity game engine editor that could

be accessed and edited by a developer before

runtime. I then altered the name for each item

displayed within the Unity editor to clarify the

purpose and effect that each method and

variable would have on the values in the script.

Due to this abstraction, both non-programmers

and programmers unfamiliar with my code

were able to more easily grab the scripts I had

developed and apply them to other areas of the

game without my direct oversight. This

increased the productivity of my team and

helped reduce the effect unfamiliarity had on

their confidence in their skills. In the future, I

will need to write comments and keep better

documentation within the scripts themselves

so that, in the case of a malfunction, I will not

be the only one capable of fixing the code.

1. INTRODUCTION

Technology has become the Atlas that holds

the world upon its shoulders. Many of the

proceedings of one’s daily work-life

environment revolve entirely around code

written by individuals whose face most will

never know. This code is expected to be

functional, adaptable, and, most importantly,

applicable by these external users without ever

looking at a single word from it. Therefore, a

layer of abstraction hiding the inner workings

of the code must exist between the user and the

developer in order for others to be able to

adopt said code.

This problem exists for both non-programmers

and individual developers. The average person

is not expected to understand the underlying

code of their applications. However, for other

developers, the use of libraries in modern day

programming serves as a kind of black box for

them to send their input and receive the correct

output without understanding what is

happening within. This, again, demonstrates

the need for the original developer to add a

layer of abstraction when writing their code. If

they wish for others to use their code, they

must produce code others do not need to

understand to use.

2. RELATED WORKS

According to Gross and Kelleher (2009), one

of the main reasons people without much

programming experience tend to struggle to

understand code is that unfamiliar methods are

difficult to interpret at first glance. In their

study, they evaluated the course which such

individuals took when trying to understand the

code of a program. When it came to method

interpretation, participants would not correctly

map value to methods and variables which had

been improperly named or presented. This

poses the danger of an individual completely

misinterpreting the purpose of said methods

and variables causing them to be unable to

understand their use cases. My approach to my

problem utilized this fact and applied it to the

development process. Inside of the Unity

engine, important variables can be serialized

and seen by non-programmers as they apply

the scripts to objects within the engine. In the

frequent case that names are poorly chosen, it

is likely that an individual will not understand

how to set said variables within the editor,

creating a hard stop in approachability.

Sadowski, et. al. (2015) discussed the

developer aspect of unfamiliar code, outlining

the process a developer takes to explore and

understand it. They found that of the ways

developers come to understand code, sample

segments of similar code are the most

prevalent. This information can then be

applied to the team-based development

environment of the club as those who are

experienced with Unity can produce such

code. So long as their code is reasonably

readable, it can be used as an example for

others to base their code off, making the code

more approachable. This, however, relies on

the assumption that the sample code written

follows standards for readable code, which can

be achieved by conducting periodic refactors

of the codebase.

3. PROJECT DESIGN

The following sub-sections outline issues

present with the club’s structure and my

proposed solutions to said issues.

3.1 Past Issues

The following sub-sections outline issues

present with the club’s structure.

3.1.1 Club Composition

The Student Game Developers club at UVA is

primarily comprised of individuals of varying

skillsets brought together for the common

purpose of developing a video game. Many

new members do not have any previous game

development experience. New members can

be split up into two sub-groups: Those who

know how to program; and those who joined

the club for more artistic reasons such as

providing art or sound design. These new

members contrast with older members that are

highly experienced in working with and

coding in the Unity game engine, the club’s

game engine of choice. Learning how to use

Unity itself takes significant amounts of time

and dedication. Thus, it is somewhat

implausible that individuals with lesser skills

will be able to contribute as much as they may

desire in the semester-long lifespan within

which each game has to be completed.

3.1.2 Code Quality

The code being written by those with more

experience in the engine is often presented as

hyper niche and completely closed off from

the rest of the functional elements within each

game scene. This is due to either poor naming

practices of the fields exposed or the writing of

unnecessarily private methods inaccessible

beyond the code of the script. Because of this,

newer users will see these scripts and believe

that they are not allowed to be used beyond

their declared purposes. They treat brand new

code as if it were legacy code and refuse to

approach it which results in some

programmers writing near identical scripts and

non-programmers fearing their ability to apply

what they have developed to the game. Code

bloat is quickly introduced, time is wasted on

an already tight schedule, and many

individuals simply leave the club because of

their fears of inadequacy. All these factors

significantly reduce the likelihood that the

final product at the end of the semester is

anything like what had been initially outlined.

This significantly harms both the reputation of

the club and the morale of those who

participated throughout the semester, greatly

reducing the likelihood that people return to

the club in any subsequent semester.

3.2 Code Management

The following sub-sections outline my

proposed solution to these issues.

3.2.1 Standards Definitions

In order to fix these issues, the project I

directed was regulated under a system of code

management. A system of code standards was

established, requiring code in the main branch

to follow certain patterns. 1) All public and/or

serializable variables have a unique and

comprehensible name; 2) All methods and

method fields describe their exact purpose; 3)

Certain re-usable scripts have generic, less

specific names to indicate their use flexibility;

4) Interface classes and sample interface

templates are used for developers to copy as a

base; 5) Code syntax and whitespace are

similar between files; 6) Scripts interacting

with similar facets of the project are placed in

designated folders. These changes make the

code easier to find and read both inside and

outside of the scripts being written.

3.2.2 Standards Enforcement

The GitHub repository which we worked

under was set up to echo repositories of

industry standard. Protections were placed on

the main development branch of the

repository, forcing all members to produce

their changes on separate branches. These

branches could then be reviewed and edited to

force conformity to code standards before

reaching the main branch. In the case that the

code did not conform to standards but was

considered “close enough,” I would either edit

the code or message the author with

clarifications and/or suggest looking at similar

scripts.

3.2.3 Code Awareness

Each week, during our team-wide meeting, I

would present and explain the new scripts that

had been developed, including the purpose of

each script and when/where they could

potentially be used within the game. I would

then show examples of how they had already

been implemented within the codebase and

answer any questions team members had about

them.

4. RESULTS

I evaluated success on the observation of three

quantities. First, I evaluated the rate at which

non-directors were able to add code to the

main branch of the repository. Previous

projects within the club would have an average

of 5.333 merges from non-directors to their

development branch per month. Within one

month of my project, there were a total of

seven merges to the development branch from

non-directors. The increase of these values

served as a good indicator that individuals

were comfortable delving into the codebase

that had been constructed despite not

necessarily being familiar with it.

Second, I evaluated the retention rate of

individuals new to the club throughout the

project’s lifespan. On average, the club has

recorded 8.25 programmers per project in the

past who do not contribute anything before the

semester ends. For my project, a total of 11

members did this. This would seem to indicate

a failure in regard to retention rate, but at the

same time this project was conducted in the

fall semester when the club expects a higher

membership drop due to a higher initial

member count.

Finally, I evaluated the number of times I had

to step in and help a member complete their

assignment. Nearly every time a member was

asked to complete something for the project, I

would have to step in to help them out. Most,

if not all, of these issues seemed to stem from

an unfamiliarity with Unity rather than the

code that I was providing. When it came to the

code I was providing, most members were

capable of understanding each script they were

using after I pointed them in the right direction

and gave them a brief explanation of the

purpose of the script.

5. CONCLUSION

My project has explored methods of reducing

the barrier to entry in the particularly niche

field of game development. However, my

project’s discoveries overall have a greater

application to organizations with complex

barriers to entries in the programming field in

general. The methods I have applied increase

the likelihood of individuals attempting to

contribute to a project in a field they have no

experience in. While I do not achieve the

express goal of rapidly turning new members

into independently contributing programmers,

their exposure to any form of work on these

projects enhances their abilities. The

application of formal programming standards

and overall greater code awareness could

prove to be a beneficial practice to apply to any

programming club to increase member

interaction.

6. FUTURE WORK

While successful with the increase of

contribution, my project still fails at creating

an environment where code can be used and

understood without assistance. Further work

on this project would entail finding a solution

to this aspect. In order to fix this, new

members would have to be provided with a

way to understand existing code more easily

by solely looking at the scripts the code is

written in. Some potential solutions may

include a better method of maintaining

documentation of the code being written. This

mainly entails writing more comments which

are more descriptive of the exact purpose and

functionality of the code within each script.

Furthermore, it may entail the implementation

of Javadoc-like documentation to make code

descriptions more easily readable through a

browser view page.

REFERENCES

Gross, P., & Kelleher, C. (2009). (tech.). Non-

programmers identifying functionality in

unfamiliar code: strategies and barriers.

Retrieved September 27, 2023, from

https://openscholarship.wustl.edu/cse_res

earch/19.

Sadowski, C., Stolee, K. T., & Elbaum, S.

(2015). How developers search for code:

A case study. Proceedings of the 2015

10th Joint Meeting on Foundations of

Software Engineering, 191–201.

Retrieved September 27, 2023, from

https://doi.org/10.1145/2786805.278685

5

https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/2786805.2786855

