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Chapter 1

Physical Origins

1.1 Infinite speed of propagation

Solutions to the familiar heat equation exhibit a property known as infinite speed

of propagation. Informally, information from the initial data has an effect on the

entire spatial domain instantaneously. This property can be seen through a variety

of phenomena.

1.1.1 Maximum principle

Suppose that u0 ∈ L2(Ω), positive and nonzero but with compact support inside

Ω. Then variants of the maximum principle will give that u(x, t) > 0 for all t > 0,

everywhere in Ω!. See for example sources cited in Brezis [2]. (p345)
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1.1.2 Fundamental solutions

Suppose that the domain Ω = Rn. Then it is known that if u0 is sufficiently well

behaved, say compactly supported, we can write the solution to the heat equation as

a convolution:

u(x, t) =
1

(4πt)n/2

∫
Rn
e
−|x−y|2

4t u0(y) dy

for t > 0. See for example Kesavan [11] and sources within.

This is more specialized than the example of the maximum principle, but it shows

explicitly the dependance of u on u0. One can see that even a point disturbance in

the initial data u0 has instant effects for all t > 0 at all points x.

1.1.3 Analyticity

Although not strictly the same as infinite speed of propagation, the property of analyt-

icity of the semigroup corresponding to the heat equation shows another phenomenon

occuring with “infinite speed”. Abstractly, if a semigroup T (t) is analytic on a space

X, then for all x ∈ X, T (t)x ∈ D(A) for all t > 0, A the generator of the semigroup.

For a simple heat equation X = L2(Ω), A = −∆ with 0 Dirichlet boundary con-

ditions so that D(A) = H2(Ω) ∩H1
0 (Ω). Therefore the analyticity of the semigroup

means that the solution is instantly globally smoother than the initial data, which is

only required to be in L2(Ω).
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In fact the smoothing effect is even stronger for analytic semigroups. For any

t > 0 fix a time ε, 0 < ε < t and then

AT (t)x = AT (ε)T (t− ε)x = T (ε)AT (t− ε)x

where the first equality is the semigroup property and the second is the fact that

the generator commutes with the semigroup against elements in D(A). But then we

see that T (t − ε)x ∈ D(A) so that T (ε)A(t − ε)x ∈ D(A), and so T (t)x ∈ D(A2).

Inductively we find that T (t)x ∈ D(Ak) for all k ≥ 0. So the smoothing effect is very

strong as well as global in the domain.

1.2 Maxwell-Cattaneo law

The source of the infinite speed of propgation is Fourier’s law for heat flux

~q = −K∇θ

Where θ is the temperature and ~q is the heat flux. Informally examining this equa-

tion suggests that heat conduction begins immediately in the presence of a nonzero

temperature gradient. A proposed alternative law that does not lead to infinite speed

of propagation is the Maxwell-Cattaneo law

τ ~̇q + ~q = −K∇θ
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Where the dot indicates a material derivative that has been taken to simply indicate

a time derivative [9]. The constant τ is called the relaxation time, a material-specific

quantity representing the lag time before heat conduction takes place across neigh-

boring thermal elements. This quantity has been experimentally determined for a

variety of materials [5]. See Christov and Jordan [5] for a discussion of this law.

Fourier’s law is used in the field of nonlinear acoustics in the derivation of the

classical Kuznetsov and Westervelt equation. Substitution of the Maxwell Cattaneo

law in for Fourier’s law leads to a new equation.

1.3 Physical derivation of the Moore-Gibson-Thompson

equation

First we briefly recap the derivation of the Kuznetsov and Westervelt equation, as

presented in Kaltenbacher and Lasiecka [1] and [9]. The physical quantities involved

in thermo-viscous flow in a compressible fluid are

• The acoustic particle velocity ~v with potential ψ

• The acoustic pressure u

• The mass density ρ

• The temperature θ
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• The heat flux q

• And the entropy η.

The relations used are conservation of mass, momentum, and energy:

ρt +∇(ρ~v) = 0

ρ(~vt + (~v · ∇)~v = −∇p+ (
4µV

3
+ ζV )∆~v

ρθ(ηt + ~v · ∇η) = −∇ · ~q + T : D

Where D = 1
2
(∇~v + (∇~v)T ), T = −pI + 2µVD + λ(∇ · ~v)I, : denotes the Frobenius

product, or elementwise multiplication. The variable µV is the shear viscosity and

ζV = λ + 2
3
µV is the bulk viscosity. Also we make use of the state equation: Write

the pressure as p = p0 + p∼ where ∇p0 = 0, and the density by ρ = ρ0 + ρ∼ with

(ρ0)t = 0 and then the relation is

p∼ = ρ0c
2

(
ρ∼
ρ0

+
B

2A

(
ρ∼
ρ0

)2

+
γ − 1

χc2
(η − η0)

)

The new parameters are c for the speed of sound, B/A the parameter of nonlinearity,

χ the coefficient of volume expansion. See [9] for more on the derivation. At this

point the application of Fourier’s law and neglecting third order and higher terms

in the varying quantities of the pressure, velocity, and density would place you at

Kuznetsov’s equation

ψtt − c2∆ψ − δ∆ψt =

(
B

2c2A
(ψt)

2 + |∇ψ|2
)
t
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The reduction of the Kuznetsov equation to the Westervelt is to neglect the local

nonlinear effects of the gradient term, to obtain

ψtt − c2∆ψ − δ∆ψt =

(
1

c2

(
1 +

b

2A

)
(ψt)

2

)

Where in either equation ψ is the acoustic velocity potential.

Note that the linear Kuznetsov or Westervelt equation has the algebraic structure

of a strongly damped wave equation, which is known to correspond to an analytic

semigroup on the appropriate space [9]. If we instead use the Maxwell-Cattaneo law

and make the analogous reduction from the Kuznetsov to Westervelt equation, we

arrive at the equation

τuttt + (1− 2ku)utt − c2∆u− b∆ut = 2k(ut)
2

Where u is the vairable denoting the acoustic pressure, k = (1 + B
2A

)c−2ρ−1. We can

link the pressure and velocity potential via u = ρψt. This equation will be called the

Jordan-Moore-Gibson-Thompson-(Westervelt) equation, while its linearization will be

refered to as the Moore-Gibson-Thompson equation. As will be seen, this equation

does not correspond to an analytic semigroup.

1.3.1 Interpretation of constants

The Jordan-Moore-Gibson-Thompson equation has the constants τ, c, b, k as part of

the equation. These constants will have theoretical importance for the well posedness

and stability of the PDE. Viewing the equation as a physical model rather than an
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abstract problem gives additonal meaning to these quantities. As mentioned above, τ

represents the thermal relaxation time of the medium. The parameter c is the speed

of sound. The constants corresponding to the nonlinearity are all encoded together as

k, while b = δ+ τc2 where δ is the diffusivity of the sound. In fact we can place these

constants in relation to each other by use of the Mach number M via the relation

M2c2 = δ
τ
. See [8] for more details.
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Chapter 2

The abstract
Moore-Gibson-Thompson PDE

2.1 Abstract model

Investigation of the full nonlinear problem will rest on having solid well posedness and

stability results for the linearized model. As the linear model will be handled by func-

tional analytic methods we can state the results in greater generality by translating

the concrete linear MGT PDE to an abstract operator equation on real Hilbert space.

To that end let A be an operator on a real Hilbert space H satisfying

Assumption 2.1.1. • A is unbounded, selfadjoint, and positive.

• A is closed and densely defined.

• A is elliptic, which implies a Poincaré-type inequality, ‖u‖ ≤ C
∥∥A1/2u

∥∥ for

u ∈ D(A1/2).

• 0 ∈ ρ(A).
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• A has compact resolvent.

Then the abstract linear problem is to find a function u(t), u(t) ∈ H satisfying

τuttt + αutt + c2Au+ bAut = 0 (2.1.1)

With initial conditions u(0) = u0, ut(0) = u1, utt(0) = u2, and the constants τ, α, k, b, c >

0.

The question of wellposedness of this problem depends critically on which spaces

your initial data lie in. In [9, 8] two spaces are considered for wellposedness, while in

[13] there are several more. We will make use of these spaces directly when posing

our own results, as well as drawing on the wellposedness and stability of the PDE on

these spaces. We refer to [13] for a full discussion, but catalog several useful spaces

here and then follow with a discussion of wellposedness on them.

2.2 Possible state spaces

With respect to the variables (u, ut, utt), [9] establishes the wellposedness of the MGT

equation on the spaces H = D(A1/2)×D(A1/2)×H and H1 = D(A)×D(A1/2)×H.

To avoid ambiguity, I will refer to spaces from [13] with a hat, as both papers adopt

the convention of using H with various subscripts to denote the state spaces.

Model 2 in [13] stems from a selection of variables (z, zt, u), where z = c2

b
u + ut.

In these variables, the space Ĥ1 = D(A1/2) × H × D(A1/2) is considered. However
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(z, zt, u) ∈ Ĥ1 is equivalent to (u, ut, utt) ∈ D(A1/2)×D(A1/2)×H: c2

b
u+ut ∈ D(A1/2)

and u ∈ D(A1/2) implies that ut ∈ D(A1/2), c2

b
ut + utt ∈ H and ut ∈ D(A1/2) implies

that utt ∈ H, and vice versa.

There is a weaker space considered in [13], again with respect to (z, zt, u), Ĥ0 =

D(A1/2) × H × H. This space is not as natural when translated into the (u, ut, utt)

variables. We are given that u ∈ H, but then this only allows us to infer from

z ∈ D(A1/2) that ut ∈ H and therefore as zt ∈ H we also have utt ∈ H. But this

process does not reverse; clearly u and ut in H will not yield z ∈ D(A1/2).

The space H1 used in [9] has a partner in [13], which is the space Ĥ3 = D(A1/2)×

H × D(A). We are given here u ∈ D(A) and thus ut ∈ D(A1/2) from the first co-

ordinate, and then utt ∈ H from the second. This argument does reverse and these

spaces are equivalent.

In addition there is a useful stronger space considered in [13], the space Ĥ2 =

D(A)×D(A1/2)×D(A) (again with respect to the variables z, zt, u). This is equiva-

lent to the original variables (u, ut, utt) ∈ D(A)×D(A)×D(A1/2). We will see that

this is just the domain of the semigroup generator on the space H1 = Ĥ3.

For reasons of spatial smoothness and time differentiability it is useful to know
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the domains of the semigroup generator on these spaces. However although these

operators have smoothing effects on the z and zt components, unfortunately they

do not smooth the u component and therefore quickly saturate with respect to the

smoothness of the original variables.

On the space H = Ĥ1, modulo bounded or compact perturbations, the generator

A has the structure 
0 I 0

− b
τ
A −γI 0

0 0 c2

b
I


For γ = α− τc2

b
.

The domains of the generator on these spaces will be briefly computed in the

sections to follow, and then the results summarized afterwards.

2.2.1 Domain on H = Ĥ1

Thus on the space Ĥ1 we have domain determined by the conditions

• (z1, z2, u) ∈ Ĥ1 = D(A1/2)×H ×D(A1/2).

• z2 ∈ D(A1/2).

• −Az1 − γz2 ∈ H hence since z2 ∈ H, z1 ∈ D(A).
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• u ∈ D(A1/2).

Thus we see that the domain of the generator A on Ĥ1 is exactly D(A)×D(A1/2)×

D(A1/2). The domain of A2 is similarly determined.

• (z1, z2, u) ∈ D(A) = D(A)×D(A1/2)×D(A1/2).

• z2 ∈ D(A).

• −Az1 − γz2 ∈ D(A1/2) hence since z2 ∈ D(A1/2) this is equivalent to z1 ∈

D(A3/2).

• u ∈ D(A1/2).

And so on, so that D(Ak) = D(A
1+k

2 ) × D(Ak/2) × D(A1/2). Note that this gives

limited smoothness in the original u variables. As u never goes beyond D(A1/2) we

find that no other component does either, although we will get u, ut, utt all in D(A1/2)

for k ≥ 1.

2.2.2 Domain on H1 = Ĥ3

In this case we will do computations directly in the original variables. Recall the space

Ĥ3 is equivalent to the original variable space H2. The generator here, unperturbed,
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is given by

A =


0 I 0

0 0 I

− c2

τ
A − b

τ
A α

τ
I


With domain

• (u1, u2, u3) ∈ H3 = D(A)×D(A1/2)×H.

• u2 ∈ D(A).

• u3 ∈ D(A1/2).

• −c2Au1 − bAu2 − αu3 ∈ H. But we already have u3 ∈ H, and u2 ∈ D(A), and

u1 ∈ D(A), so this condition does not provide or require any new membership.

Thus D(A) = D(A)×D(A)×D(A1/2). Consider now the domain of the square.

• (u1, u2, u3) ∈ D(A) = D(A)×D(A)×D(A1/2).

• u2 ∈ D(A).

• u3 ∈ D(A).

• −c2Au1 − bAu2 − αu3 ∈ D(A1/2) but this time we know only u3 ∈ D(A1/2) so

we can only draw out that −A(c2u1 + bu2) ∈ D(A1/2), so z ∈ D(A3/2).

This gives D(A2) = {(u1, u2, u3) ∈ D(A)×D(A)×D(A) | (c2u1+bu2) ∈ D(A3/2)}. At

this point we see that taking a second power has improved our situation by smoothing
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utt but taking further powers will provide no further smoothing in the u variables.

Taking one more power for illustration,

• (u1, u2, u3) ∈ D(A2) = D(A)×D(A)×D(A) such that z1 = c2

b
u1+u2 ∈ D(A3/2).

• u2 ∈ D(A)

• u3 ∈ D(A)

• − c2

τ
Au1 − b

τ
Au2 − α

τ
u3 ∈ D(A). This last condition is thus z1 ∈ D(A2).

• c2
τ
u2 + u3 = z2 ∈ D(A3/2).

So we see the condition on z1 is elevated to a condition on z2, which lags 1/2 power

behind. In summary,

D(Ak) = {(u1, u2, u3) ∈ D(A)×D(A)×D(A) | z1 ∈ D(A
k+1

2 ), z2 ∈ D(A
k
2 )}

Observe that Ĥ3 = D(A).

2.2.3 Summary

Here we briefly collect the information above on the definition of three possible state

spaces for the problem, the domain of the generator in each space in the appropriate

variables, and the consequences for the original variables (u, ut, utt).
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Space Definition Domain of generator Ak

H1

(z, zt, u) ∈ D(A1/2)×H ×D(A1/2) (z, zt, u) ∈ D(A
1+k

2 )×D(Ak/2)×D(A1/2)

(u, ut, utt) ∈ D(A1/2)×D(A1/2)×H =⇒ (u, ut, utt) ∈ D(A1/2)×D(A1/2)×D(A1/2)

H1
2 (u, ut, utt) ∈ D(A)×D(A1/2)×H

k = 1 : (u, ut, utt) ∈ D(A)×D(A)×D(A1/2)

k ≥ 2 : D(A)3 : z1 ∈ D(A
1+k

2 ), z2 ∈ D(A
k
2 )

We also will frequently have occasion to refer to a lower and higher energy corre-

sponding to solutions of (2.1.1), which are topologically equivalent to the norms on

the state spaces H and H1:

Eu(T ) =
τ

2

∥∥∥∥utt(T ) +
c2

b
ut(T )

∥∥∥∥2

+
c4

2b

∥∥∥∥A1/2u(T ) +
b

c2
A1/2ut(T )

∥∥∥∥2

+

(
c2α

2b
− c4τ

2b2

)
‖ut(T )‖2 +

∥∥A1/2u(T )
∥∥2

E1,u(T ) = Eu(T ) + ‖Au(T )‖2

2.3 Wellposedness and stability

Although we phrased the abstract problem (2.1.1) with all parameters stricly posi-

tive we will discuss for a moment the implications each parameter’s existence has on

wellposedness. As briefly mentioned before, if τ = 0 then we are in the case of an

1This is H1 in [13]
2This is H3 in [13]
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abstract strongly damped wave equation, however τ > 0 is exactly what corresponds

to making use of the Maxwell-Cattaneo law rather than Fourier’s. If c = 0 then by

change of variable to w = ut we are led to consider τwtt + αwt + bAw, or simply a

damped wave equation. The constant α is not critical for wellposedness and could

potentially take on any value. However b 6= 0 is critical for the wellposedness of the

abstract problem [9]. This makes a contrast with the τ = 0 case, where b is respon-

sible for exponential stablilty. Here b > 0 will grant wellposedness and stability will

come from a balancing of the parameters of the equation, as will be seen.

We now state a collection of results on the linear model.

Theorem 2.3.1. Suppose that b, τ, c > 0 and α ∈ R. Then the abstract MGT

equation (2.1.1) generates a strongly continuous semigroup (in fact a group) on any

of the spaces Hi, i = 1, 2.

This is proved for i = 1, 2 in [9] and extended to other spaces as well, for reference,

in [13]. By energy methods in [9] and by spectral computations in [13] this result is

extended to exponential stability.

Theorem 2.3.2. Suppose that b, τ, c > 0 and also that γ = α − τc2

b
> 0. Then

the semigroup Ti(t), i = 1, 3 on the respective spaces is exponentially stable, in other

words there exists C > 0, ω > 0 such that ‖Ti(t)‖2
L(Ĥi) ≤ Ce−ωt.

We should comment specifically on the nature of the stability analysis in [9] and
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[8] as it will be critical at several steps in this work. When we say vaguely that these

results follow from energy methods what we specifically mean is that they follow from

multiplying the PDE by suitable multipliers (u, ut, etc) and performing calculus to

extract information on the behavior of the norm of the solution in certain spaces.

This process can be vindicated from the get-go by semigroup well-posedness, giving

existence of the multipliers in an appropriate space to form inner products in, or by

stipulating a weak solution - which then will later be evidently a nontrivial definition

by virtue of semigroup solutions. However in either case the calculus is done with a

function u that has three time derivatives. A mild solution (homogeneous or nonho-

mogeneous) coming from semigroup theory will not be that regular. This problem is

easily overcome by performing the calculations on classical solutions, and then using

a density argument. The details of this process are laid out for completeness in the

next lemma.

Lemma 2.3.3. Suppose that for a semigroup T (t) on a space H with generator A

and (necessarily) dense domain D(A), we have the bounds,

‖T (t)x‖ ≤ C ‖x‖ for x ∈ D(A)

Then in fact,

‖T (t)x‖ ≤ C ‖x‖ for x ∈ H

Proof. Pick x ∈ H and fix ε > 0. Since D(A) is dense in H pick a subsequence

xn ∈ D(A) converging to x. The standard semigroup growth bound says that T (t)x ≤
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Meωt ‖x‖, for some M > 1, ω > 0. Therefore at the initial time we find ‖xn‖ ≤

‖x‖+ ‖xn − x‖, while at the later time we find

‖T (t)x‖ ≤ ‖T (t)xn‖+ ‖T (t)(xn − x)‖

≤ C ‖xn‖+Meωt ‖xn − x‖

≤ C (‖x‖+ ‖xn − x‖) +Meωt ‖xn − x‖

Therefore if we pick n such that ‖xn − x‖ ≤ ε
2 max{Meωt,C} we will find that ‖T (t)x‖ ≤

C ‖x‖+ ε.

2.3.1 Comparison to other results

We comment briefly on the treatment of this problem given in [4]. In Theorem

3.10 there, well-posedness of mild solutions to the nonhomogeneous problem is given

by the following mapping: Initial data in D(A) × D(A1/2) × H and forcing term

f ∈ L1([0,∞);H) yield a mild solution u ∈ C1([0,∞), D(A1/2))∩C2([0,∞), H), with

energy boundedness measured

‖utt(t)‖+
∥∥A1/2ut(t)

∥∥+
∥∥A1/2u(t)

∥∥ ≤ C(‖f‖1 + ‖Au0‖+
∥∥A1/2u1

∥∥+ ‖u2‖)

The semigroup approach in [13], [9], and [8] yields better well-posedness, with the

same stability results - there will be no loss of regularity from u0 ∈ D(A) to u(t) only

in D(A1/2). Under the assumptions given above we have the initial data on the space

H1. The forcing term acts on the third component of the space, so to that end let
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F (t) = (0, 0, f(t)) ∈ L1([0,∞),H1). Denoting U for the vector (u, ut, utt) and T (t)

for the semigroup generated by A, the mild solution given by

U(t) = T (t)U0 +

∫ ∞
0

T (t− s)F (s) ds

has regularity U(T ) ∈ H1 (see e.g, Def. 4.2.3 in [12]), and thus u(t) ∈ C([0,∞);D(A))∩

C1([0,∞);D(A1/2)) ∩ C2([0,∞), H). The stability result follows immediately the in

the same topology simply by boundedness of the energy, ‖T (t)x‖ ≤ C ‖x‖.

In the case of Theorem 3.11 from [4], the results from [13], [9], and [8] obtain

the same regularity but with fewer assumptions. To summarize: [4] requires initial

data in D(A3/2) × D(A) × D(A1/2), and f ∈ L1([0,∞);D(A1/2)) ∩ C([0,∞);H),

and gives a solution u ∈ C3([0,∞), H) ∩ C2([0,∞), D(A1/2)) ∩ C1([0,∞)D(A)). To

contrast, assume in the formulation above only that the initial data are in D(A) on

H1, D(A)×D(A)×D(A1/2), and use the same assumption on f acting in the third

coordinate so that F (t) = (0, 0, f(t)) ∈ D(A). We check the hypotheses of Cor. 4.2.6

from [12]: For any T > 0,

• F ∈ L1([0, T );H1) and is C([0, T );H).

• F (t) ∈ D(A) for each 0 < t < T .

• AF (t) = (0, f(t), −α
τ
f(t)) ∈ L1([0, T );H1).

Therefore for U0 ∈ D(A) we have (in the language of [12]) a classical solution with
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regularity U ∈ C1((0, T );H1) and U(t) ∈ D(A) for 0 < t < T . This means u ∈

C3([0, T );H) ∩ C2([0, T );D(A1/2)) ∩ C1([0, T );D(A)).

2.3.2 Influence of b

In the results above it was explicit that b > 0. Consider the equation when b = 0.

τuttt + αutt + c2Au = 0

This equation is not well-posed. For an informal argument, consider the would-be

semigroup generator, 
0 I 0

0 0 I

− c2

τ
A 0 −α

τ
I


And note that the −αI entry in the (3, 3) coordinate is bounded regardless of what

state space is selected. Therefore modulo a bounded perturbation we would also have

that 
0 I 0

0 0 I

−c2
τ
A 0 0


is a semigroup generator. However the assocated differential equation would then be

τuttt + c2Au = 0

It is a result of Fattorini [7] that this third-order equation is not well-posed unless

the operator A is bounded. Thus the perturbed matrix is not a generator, and so the
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original cannot be either. This argument is only an informal one because one would

have to be more specific about the admissable state spaces that we assume generation

on - of course with respect to absurd spaces the operator IS bounded! We mention a

result from [9] on this issue.

Theorem 2.3.4. Let b = 0. Then the equation is not well-posed on H.

Proof. Let A have eigenvectors φn and eigenvalues νn > 0 such that νn → ∞. This

is a consequence of our assumptions on A, namely that it is positive and unbounded.

Consider the perturbed generator again,

B =


0 I 0

0 0 I

−c2
τ
A 0 0


Consider the eigenvalue equation for B,

0 I 0

0 0 I

−c2
τ
A 0 0




v1

v2

v3

 =


λv1

λv2

λv3


So that

v2 = λv1

v3 = λv2

−c2

τ
Av1 = λv3



22

Hence Av1 = λ3−τ
c2
v1 indicates that λ3−τ

c2
is an eigenvalue of A, so λ3 = −c2

τ
νn. Since

νn is real and c2, τ are positive, this is a cube root of a negative collection of values.

This means the roots will contain one branch on the negative real axis, and two

conjugate branches with positive real part. As νn are unbounded, the real part of

the cube roots will be unbounded as well. This violates a necessary conditon for

generation of a semigroup [12].

2.4 Discussion of assumptions on A

The abstract assumptions we have made on the operator A are suitable generaliza-

tions of the physical model under consideration. The action of A under consideration

originally was Au = −∆u with the function u defined on a bounded domain Ω which

we assume to have C2-smooth boundary. If we impose 0-Dirichlet boundary condi-

tions then such A would be self-adjoint and strictly positive, whereas with a Neumann

boundary condition it would only be non-negative.

The assumption of compact resolvent is a reasonable assumption on a elliptic

operator, essentially as a consequence of the Sobolev embedding theorem. To sketch

the argument, let A to be a Dirichlet Laplacian as above. Consider a bounded set



23

SM so that f ∈ SM =⇒ ‖f‖2
L2(Ω) ≤M . For such an f we have

A−1f = u⇔ f = Au

=⇒ ‖u‖2
H2(Ω) ≤ ‖f‖

2
L2(Ω)

=⇒ ‖u‖2
H2(Ω) ≤M

There in the second line we have used a regularity theorem for the Dirichlet Laplacian.

Then this computation shows that the image A−1SM is a bounded set in H2(Ω). But

then H2(Ω) includes boundedly into H1(Ω) and H1(Ω) is compact in L2(Ω) (regard-

less of the dimension of Ω) by the Rellich-Kondrachov theorem. Thus the set A−1SM

is compact in L2(Ω), and so A−1 is a compact operator.

Further note that the language “compact resolvent” is not ambiguous with respect

to which particular resolvent we choose. By the resolvent identity, if λ, ω ∈ ρ(A)

R(ω,A) = (λ− ω)R(λ,A)R(ω,A) +R(λ,A)

and so we see that if R(λ,A) is compact then so is R(ω,A) for any ω ∈ ρ(A).

2.5 Nonlinear well posedness

We now summarize the results from [8] on the nonlinear concrete full nonlinear JMGT

equation. The discussion to follow will depend on a suitable definition of a mild solu-

tion, as well as evolution operators. The essential method of argument is to consider
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the factor (1 − 2ku) as an operator applied to utt, α(t)utt. One can see that this

leads to a slightly different creature from a semigroup, as time is not autonomous -

the mapping α(t) cares specifically on what time it is, rather than simply how long

the process has been in motion. A thorough study of mild solutions to the problem

τuttt + α(t)utt + b∆ut + c2∆u = f will lead to construction of solutions to (2.5.1) by

a fixed point procedure. Full detail on this method is contained in [8].

We are interested in the equation,

τuttt + (1− 2ku)utt − c2∆u− b∆ut = 2k(ut)
2 in Ω× (0, T ) (2.5.1)

with Ω a C2-smooth bounded domain in Rd, 1 ≤ d ≤ 3, homogeneous boundary

conditions u = 0 on ∂Ω, and initial conditions u(0) = u0, ut(0) = u1, utt(0) = u2.

We can link this to the operator A considered in the abstract modelling of the linear

problem by A = −∆ with 0 Dirichlet boundary conditions on L2(Ω), so that

• D(A) = H2(Ω) ∩H1
0 (Ω).

• D(A1/2) = H1
0 (Ω).

• H1 = D(A)×D(A1/2)×H = (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω)× L2(Ω)

• Make use of an energy function E1,u(t)
2 ≈ ‖u‖2

H2(Ω) + ‖ut‖2
H1

0 (Ω) + ‖utt‖2
L2(Ω).

A mild solution to this equation is a function U(t) = [u(t), ut(t), utt(t)] satisfying

• U ∈ C ([0, T ];H1)
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• U satisfies the integral form of (2.5.1),

U(t) = U
α(u)
1 (t, 0)U(0) +

∫ t

0

U
α(u)
1 DU(s) ds

Where DU(s) = [0, 0, 2k(ut(s))
2] and U

α(u)
1 is the evolution operator correspond-

ing to the linear homogenous evolution problem

τuttt + αutt + b∆ut + c2∆u = 0

where α is a operator (possibly, importantly, a multiplier) rather than a con-

stant.

Theorem 2.5.1. Let δ > 0 and γ∗ = 1− τc2

b
.

Regardless of γ∗, for any T > 0 there exist a ball such that if the initial data is inside

this ball in the H1 norm then there is a unique mild solution on [0, T ], depending

continuously on the initial data. Alternately, for any initial data in H1 there exists a

particular time interval on which the solution exists.

If in addition γ∗ > 0 then the solutions exist globally in time: for any C > 0 there

is a ρC > 0 such that if E1,u(0) ≤ ρC then a mild solution U exists for all t and

E1,u(t) ≤ C ∀t > 0.

Further global solutions are exponentially stable: If E1,u(0) ≤ ρC then there exists

ω > 0, C1 > 0 such that E1,u(t) ≤ C1e
−ωt for all t > 0.
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If one further assumes that U(0) ∈ D = D(A) × D(A) × D(A1/2) then the mild

solutions are in fact classical - i.e. are C1((0, T );H1)∩C([0, T ];D) satisfying (2.5.1)

for each t.

We note that the condition δ > 0 is automatically satisfied if b, τ > 0 and therefore

is analogous to the requirement that b > 0 for the linear problem.

2.6 Finite element results

In chapter 4 we provide a finite element formulation for the linear homogeneous

Moore-Gibson-Thompson equation. We summarize briefly some results on time-

stability and convergence of this method, see the chapter for full details and proofs.

Theorem 2.6.1. Let Ω be a bounded domain with smooth boundary, and consider

the operator −∆ with 0-Dirichlet boundary conditions. Let Sh be a chosen collection

of finite element subspaces of H1
0 (Ω), h the discretization parameter going to 0. Let

un be the finite element solution corresponding to n = n(h) number of elements at

this discretization step. Let vh,i, i = 0, 1, 2 be the chosen representations of the initial

data in Sh, and let U0 = (u0, u1, u2). Suppose the physical constants α, τ, b, c2 are all

positive. Then,

1. The solution (un(t), un,t(t), un,tt(t)) is bounded by the projections of the initial
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data,

‖(un(t), un,t(t), un,tt(t))‖H ≤ C ‖(vh,0, vh,1, vh,2)‖H

2. If γ = α− τc2

b
> 0 they in fact exponentially decay, for some C > 0 ω > 0,

‖(un(t), un,t(t), un,tt(t))‖H ≤ Ce−ωt ‖(vh,0, vh,1, vh,2)‖H

3. If the order of accuracy r of the finite element spaces Sh obeys r ≥ 2, and if the

initial data are approximated to order 2 by vh,i as well, and if the initial data

for the continuous problem obeys U0 ∈ D(A2), then for each T > 0 there exists

a CT > 0 such that for 0 ≤ s ≤ T

∥∥A1/2(un(s)− u(s))
∥∥+

∥∥A1/2(un,t(s)− ut(s))
∥∥+ ‖un,tt(s)− utt(s)‖ ≤ CTh

Where CT includes the measurement of U0 in D(A2).

2.7 Spectral method results

In chapter 5 a method of computing approximate solutions by use of the eigenvectors

of the differential operator A - for example a Laplacian - is put forward. The analysis

there proves the stability of the finite-dimensional solutions presented, as well as then

proving convergence to the continuous solution given sufficiently smooth initial data.

The results are summarized coarsely here, see chapter 5 for full details and proofs.

Theorem 2.7.1. Suppose A is an operator satisfying assumptions 2.1.1. Let un be

the approximate solution to the abstract linear homogeneous Moore-Gibson-Thompson
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equation arising from the spectral method. Let U0 = (u0, u1, u2) be the inital data for

the continuous problem. Let Pn : H → H be the projection of an element in H down

to the subspace spanned by the first n eigenvectors of A. Given the parameters b 6= 0,

τ, α, c2 > 0, then

1. The solution (un(t), un,t(t), un,tt(t)) is bounded by the projection of the initial

data

‖(un(t), un,t(t), un,tt(t))‖H ≤ C ‖(Pnu0, Pnu1, Pnu2)‖H

‖(un(t), un,t(t), un,tt(t))‖H1
≤ C ‖(Pnu0, Pnu1, Pnu2)‖H1

2. If γ = α− τc2

b
> 0, (un, un,t, un,tt) is exponentially stable on H or H1, provided

the initial data U0 is in H or H1 respectively.

3. If U0 ∈ D(A) on H1 then the approximate solution converges to the continuous

solution in the sense that

∥∥A1/2(u(t)− un(t))
∥∥2

+
∥∥A1/2(ut(t)− un,t(t))

∥∥2
+ ‖utt(t)− un,tt(t)‖2

≤ C
1

λn+1

(
‖Au0‖2 + ‖Au1‖2 +

∥∥A1/2u2

∥∥2
)

These results are illustrated in chapter 6.
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Chapter 3

Stability of weak solutions to the
abstract PDE

3.1 Abstract stability inequalities

The computational methods, both finite element and spectral, considered in this

work are based on a weak formulation of the concrete or abstract PDE in question.

Although they differ substantially in details the basic methodology is to obtain a

solution that satisfies the weak formulation when pulling test functions only from

a finite dimensional subspace of D(A1/2). Stability as computed in [13] is based

on direct spectral and operator-theoretic calculations, whereas in [9] and [8] energy

methods are employed. Energy methods are particuarly well-suited for application to

weak solutions, and therefore we can apply similar calculations, posed abstractly in

terms of the operator A, in the context of a finite dimensional solution. This exact

inequality will be used several times to come.

Theorem 3.1.1. Let V ⊆ D(A1/2), and let u(t) be such that (u, ut, utt) ∈ V ×V ×H

for all t ∈ [0, T ], and suppose also that u solves the weak form of the abstract Moore-
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Gibson-Thompson equation on V : For all φ ∈ V , for all t ∈ [0, T ],

τ(uttt, φ) + α(utt, φ) + b(A1/2ut, A
1/2φ) + c2(A1/2u,A1/2φ) = 0

Let

Ê(T ) =
τ

2

∥∥∥∥utt(T ) +
c2

b
ut(T )

∥∥∥∥2

+
b

2

∥∥∥∥c2

b
A1/2u(T ) + A1/2ut(T )

∥∥∥∥2

+

(
c2α

2b
− c4τ

2b2

)
‖ut(T )‖2

And let

Ê0(T ) =
∥∥A1/2u(T )

∥∥2

For E(T ) = Ê(T ) + Ê0(T ) we have that

E(T ) ≤ CE(0)

And in fact,

E(T ) + C

∫ T

0

E(s) ds ≤ C1E(0)

Remark 3.1.1. The quantities in the expression for the energy are somewhat obfus-

cated topologically but are algebraically convenient. Examination reveals that
√
E is

norm equivalent to

√
‖A1/2u‖2

+ ‖A1/2ut‖2
+ ‖utt‖2. The additon of Ê0 is necessary

for the equivalance, otherwise there is a lack of control of u in D(A1/2).

Proof. We will begin with the boundedness of the energy. Multiplying by utt and

integrating by parts we have

τ(uttt, utt) + α(utt, utt) + c2(A1/2u,A1/2utt) + b(A1/2ut, A
1/2utt) = 0
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Rewrite the first and last terms as a derivative to get

d

dt

[
τ

2
‖utt‖2 +

b

2

∥∥A1/2ut
∥∥2

+ c2(A1/2u,A1/2ut)

]
+α ‖utt‖2−c2

∥∥A1/2ut
∥∥2

= 0 (3.1.1)

Multiply by ut to obtain

d

dt

[
τ(utt, ut) +

c2

2

∥∥A1/2u
∥∥2

+
α

2
‖ut‖2

]
+ b
∥∥A1/2ut

∥∥2 − τ ‖utt‖2 = 0 (3.1.2)

where we have made use of the fact that d
dt

(utt, ut) = (uttt, ut) + ‖utt‖2.

Scale (3.1.2) by c2

b
and add to (3.1.1) to obtain

d

dt

[
c2τ

b
(utt, ut) +

c4

2b

∥∥A1/2u
∥∥2

+
c2α

2b
‖ut‖2 +

τ

2
‖utt‖2 +

b

2

∥∥A1/2ut
∥∥2

+ c2(A1/2u,A1/2ut)

]
+

(
α− τc2

b

)
‖utt‖2 = 0

(3.1.3)

We have required that α− τc2

b
is positive, but there are two troublesome inner products

inside the time derivative. With an eye towards doing away with them, note that

b

2

∥∥∥∥c2

b
A1/2u+ A1/2ut

∥∥∥∥2

=
c4

2b

∥∥A1/2u
∥∥2

+
b

2

∥∥A1/2ut
∥∥2

+ c2(A1/2u,A1/2ut)

and

τ

2

∥∥∥∥utt +
c2

b
ut

∥∥∥∥2

=
τ

2
‖utt‖2 +

c2τ

b
(utt, ut) +

c4τ

2b2
‖ut‖2

Making substitutions we arrive at

d

dt

[
τ

2

∥∥∥∥utt +
c2

b
ut

∥∥∥∥2

+
b

2

∥∥∥∥c2

b
A1/2A1/2u+ ut

∥∥∥∥2

+

(
c2α

2b
− c4τ

2b2

)
‖ut‖2

]
+ γ ‖utt‖2 = 0

(3.1.4)
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Therefore, integrating on [0, t] we have[
τ

2

∥∥∥∥utt(t) +
c2

b
ut(t)

∥∥∥∥2

+
b

2

∥∥∥∥c2

b
A1/2u(t) + A1/2ut(t)

∥∥∥∥2

+
c2

2b
γ ‖ut(t)‖2

]

+γ

∫ t

0

‖utt(s)‖2 ds =

[
τ

2

∥∥∥∥utt(0) +
c2

b
ut(0)

∥∥∥∥2

+
b

2

∥∥∥∥A1/2u(0) +
c2

b
A1/2ut(0)

∥∥∥∥2

+
c2

2b
γ ‖ut(0)‖2

]

Thus since all quantities are positive we have from the third term that ‖ut‖2 ≤

C1Ê(0), where C depends only on {α, τ, b, c}. Then from the first term we have

‖utt‖2 ≤ C2Ê(0), and also
∫ t

0
‖utt‖2 ds ≤ C3Ê(0) again with the constants only

depending on parameters of the equation.

Now consider (3.1.2). Rearrange and integrate to get

c2

2

∥∥A1/2u(s)
∥∥2
∣∣∣∣t
0

+b

∫ t

0

∥∥A1/2ut(s)
∥∥2

ds = τ

∫ t

0

‖utt(s)‖2 ds−τ(utt(s), ut(s))

∣∣∣∣t
0

−α
2
‖ut(s)‖2

∣∣∣∣t
0

Thus in terms of magnitude

c2

2

∥∥A1/2u(s)
∥∥2
∣∣∣∣t
0

+ b

∫ t

0

∥∥A1/2ut(s)
∥∥2

ds ≤ τ

∫ T

0

‖utt(s)‖2 ds+ τ ‖utt(t)‖ ‖ut(t)‖

+
α

2
‖ut(t)‖2 + τ ‖utt(0)‖ ‖ut(0)‖+

α

2
‖ut(0)‖2

Therefore
∥∥A1/2u(t)

∥∥2 ≤
∥∥A1/2u(0)

∥∥2
+ C4Ê(0) ≤ C5

[
Ê0(0) + Ê(0)

]
, and since

from before
∥∥∥A1/2u(t) + c2

b
A1/2ut(t)

∥∥∥2

≤ C6Ê(0) we can extract
∥∥A1/2ut(t)

∥∥2 ≤

C7

[
Ê0(0) + Ê(0)

]
.

Now we have that each of
∥∥A1/2u

∥∥2
,
∥∥A1/2ut

∥∥2
, ‖utt‖2 are bounded by Ci

[
Ê0(0) + Ê(0)

]
,

where all Ci are functions only of the parameters of the equation. Using equivalence
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of norm squared and energy and Poincare’s inequality we have our result.

As for the integrability, reinspection of the previous calculations extracts
∫ t

0
‖utt(s)‖2 ds

and
∫ t

0

∥∥A1/2ut(s)
∥∥2

ds are both bounded by C
[
Ê0(0) + Ê(0)

]
for arbitrary t. All

that is left is to have an appropriate bound on
∫∞

0

∥∥A1/2u
∥∥2
dt. This is done by the

following calculation:

Multiply by u and integrate by parts to obtain

τ(uttt, u) + α(utt, u) + c2(A1/2u,A1/2u) + b(A1/2ut, A
1/2u) = 0

Then use the following identities:

(uttt, u) =
d

dt
(utt, u)− (utt, ut) =

d

dt
(utt, u)− 1

2

d

dt
‖ut‖2 (3.1.5)

(utt, u) =
d

dt
(ut, u)− ‖ut‖2 (3.1.6)

(A1/2ut, A
1/2u) =

1

2

d

dt

∥∥A1/2u
∥∥2

(3.1.7)

Combining these we obtain

d

dt

[
τ(utt, u) + α(ut, u) + b

∥∥A1/2u
∥∥2
]

+
∥∥A1/2u

∥∥2
=

d

dt
τ ‖ut‖2 + α ‖ut‖2 (3.1.8)

Thus integrating

∫ t

0

∥∥A1/2u(s)
∥∥2

ds = τ ‖ut(s)‖2

∣∣∣∣t
0

+ α

∫ t

0

‖ut(s)‖2 ds+ τ(utt(s), u(s))

∣∣∣∣0
t

+α(ut(s), u(s))

∣∣∣∣0
t

+ b
∥∥A1/2u(s)

∥∥2
∣∣∣∣0
t
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Any individual of ‖u‖ , ‖ut‖ , ‖utt‖ ,
∥∥A1/2u

∥∥ is bounded by C

√
Ê0(0) + Ê(0), and we

also have
∫ t

0
‖ut(s)‖2 ds ≤ C

[
Ê0(0) + Ê(0)

]
. Therefore for any t > 0,

∫ t

0

∥∥A1/2uh(s)
∥∥2

ds ≤ C
[
Ê0(0) + Ê(0)

]

Exponential stability in the E norm follows from Pazy-Datko’s theorem, since the

norm is integrable.

Corollary 3.1.2. There exist positive constants C, ω, such that

E(T ) ≤ Ce−ωTE(0)

We can also make use of these computations to derive stability results for a non-

homogeneous equation.

Theorem 3.1.3. Let V ⊆ D(A1/2), and let u(t) be such that (u, ut, utt) ∈ V ×V ×H

for all t ∈ [0, T ], and suppose also that u solves: For all φ ∈ V , for all t ∈ [0, T ],

τ(uttt, φ) + α(utt, φ) + b(A1/2ut, A
1/2φ) + c2(A1/2u,A1/2φ) = (f, φ)

for some function f(t) ∈ L2((0, T );H). Then there exists a positive constant C

depending on the parameters of the equation and the Poincare-type constant for A

such that

E(T ) +

∫ T

0

E(s) ds ≤ C

(
E(0) +

∫ T

0

‖f(s)‖2 ds

)
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Proof. Throughout this proof C will stand for a generic constant depending on al-

gebraic inequalities and the constants α, τ, c, b. Constants with dependence on other

factors will be noted specifically. Apply the same multipliers utt and ut, and form the

same linear combination. This will arrive at

d

dt
Ê(t) + γ ‖utt(t)‖2 = (f(t), utt(t) +

c2

b
ut(t))

Integrate,

Ê(t) + γ

∫ t

0

‖utt(s)‖2 ds = Ê(0) +

∫ t

0

(f(s), utt(s) +
c2

b
ut(s)) ds

Since
∥∥∥utt(s) + c2

b
ut(s)

∥∥∥ is part of

√
Ê(s),

Ê(t) + γ

∫ t

0

‖utt(s)‖2 ds = Ê(0) + C

∫ t

0

‖f(s)‖
√
Ê(s) ds

Use ab ≤ a2

2ε
+ εb2

2
,

ˆE(t) + γ

∫ t

0

‖utt(s)‖2 ds = Ê(0) + C

∫ t

0

ε

2
‖f(s)‖2 +

1

2ε
Ê(s) ds (3.1.9)

Although E(t) does not determine a norm for the variables u, ut, utt without the

addition of Ê0, it does give some information. Specifically, since it includes ‖ut‖2

alone, if Ê(t) ≤M then ‖ut‖2 ≤ CM and also
∥∥∥utt + c2

b
ut

∥∥∥2

≤ CM therefore ‖utt‖2 ≤

CM .

Now go back to multiplication by ut:

d

dt

[
τ(utt, ut) +

c2

2

∥∥A1/2u
∥∥2

+
α

2
‖ut‖2

]
+ b
∥∥A1/2ut

∥∥2 − τ ‖utt‖2 = (f, ut)
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After integration and bounding this gives

c2

2

∥∥A1/2u(t)
∥∥2

+ b

∫ t

0

∥∥A1/2ut(s)
∥∥2

ds ≤ c2

2

∥∥A1/2u(0)
∥∥2

+ τ

∫ t

0

‖utt(s)‖2 ds+

τ ‖utt(s)‖ ‖ut(s)‖|t0 +
α

2
‖ut(s)‖2

∣∣∣t
0

+ τ

∫ t

0

‖f(s)‖ ‖ut(s)‖ ds

For the term τ
∫ t

0
‖f(s)‖ ‖ut(s)‖ ds, we wish to transfer the ut quantity to the left side,

absorbing into the
∥∥A1/2ut

∥∥2
integral there. To do so we will use our Poincaré-type

inequality, introducing a constant dependent on the domain Ω, ‖v‖2 ≤ KΩ

∥∥A1/2v
∥∥2

.

Then we will use again ab ≤ a2

2ε1
+ ε1b2

2
with ε1 = b

KΩτ
. The other terms have bounds

coming from equation (3.1.9).

c2

2

∥∥A1/2u(t)
∥∥2

+ b

∫ t

0

∥∥A1/2ut(s)
∥∥2

ds ≤ c2

2

∥∥A1/2u(0)
∥∥2

+ Ê(0) +
Cε

2

∫ t

0

‖f(s)‖2 ds

+
1

2ε

∫ t

0

Ê(s) ds+
τ 2KΩ

2b

∫ t

0

‖f(s)‖2 ds+
b

2

∫ t

0

∥∥A1/2ut(s)
∥∥2

ds

So,

c2

2

∥∥A1/2u(t)
∥∥2

+
b

2

∫ t

0

∥∥A1/2ut(s)
∥∥2

ds ≤ c2

2

∥∥A1/2u(0)
∥∥2

+ Ê(0) + (
Cε

2
+ CΩ)

∫ t

0

‖f(s)‖2 ds

+
1

2ε

∫ t

0

Ê(s) ds

Combining this inequality with equation (3.1.9) gives us

Ê(t) +
c2

2

∥∥A1/2ut(t)
∥∥2

+ γ

∫ t

0

‖utt(s)‖2 ds+
b

2

∫ t

0

∥∥A1/2ut(s)
∥∥2

ds ≤ 2Ê(0) +
c2

2

∥∥A1/2ut(0)
∥∥2

+ (Cε+ CΩ)

∫ t

0

‖f(s)‖2 ds+
1

ε

∫ t

0

Ê(s) ds (3.1.10)
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Now multiply by u.

τ(uttt, u) + α(utt, u) + c2(A1/2u,A1/2u) + b(A1/2ut, A
1/2u) = (f, u)

Use the identities from before

(uttt, u) =
d

dt
(utt, u)− (utt, ut) =

d

dt
(utt, u)− 1

2

d

dt
‖ut‖2

(utt, u) =
d

dt
(ut, u)− ‖ut‖2

(A1/2ut, A
1/2u) =

1

2

d

dt

∥∥A1/2u
∥∥2

So that

τ
d

dt
(utt, u)− τ

2

d

dt
‖ut‖2 +α

(
d

dt
(ut, u)− ‖ut‖2

)
+c2

∥∥A1/2u
∥∥2

+
b

2

d

dt

∥∥A1/2u
∥∥2

= (f, u)

Integrate and rearrange

τ

2
‖ut(t)‖2 +

b

2

∥∥A1/2u(t)
∥∥2

+ c2

∫ t

0

∥∥A1/2u(s)
∥∥2

ds =
τ

2
‖ut(0)‖2 +

b

2

∥∥A1/2u(0)
∥∥2

+ α

∫ t

0

‖ut(s)‖2 ds+ τ (utt(s), u(s))|0t + α (ut(s), u(s))|0t +

∫ t

0

(f(s), u(s)) ds

Bound (f, u) by ‖f‖ ‖u‖, use our Poincaré-type inequality on u, then split the result

as usual with ε = c2

CΩ
to eliminate the u-term’s dependence on CΩ, and then combine

it with its partner on the left. Bound other terms by E(t) or E(0), as appropriate,
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again using a Poincare inequaltiy on the integral term for ‖ut‖2. This gives,

τ

2
‖ut(t)‖2 +

b

2

∥∥A1/2u(t)
∥∥2

+
c2

2

∫ t

0

∥∥A1/2u(s)
∥∥2

ds

≤ CΩ

(
E(0) + E(t) +

∫ t

0

∥∥A1/2ut(s)
∥∥2

ds+
1

2c2

∫ t

0

‖f(s)‖2 ds

)
≤ CΩ

(
E(0) + Cε,Ω

∫ t

0

‖f(s)‖2 ds+
1

ε

∫ t

0

Ê(s) ds

)

Add together this inequality and equation (3.1.10), factor out algebraic and physical

constants, and find that

E(t) +

∫ t

0

E(s) ds ≤ CΩ

(
E(0) + Cε,Ω

∫ t

0

‖f(s)‖2 ds+
1

ε

∫ t

0

E(s) ds

)

Select ε = 1
2CΩ

to find that

E(t) +

∫ t

0

E(s) ds ≤ CΩ

(
E(0) +

∫ t

0

‖f(s)‖2 ds

)

Corollary 3.1.4. With reference to the previous theorem, if f ∈ L2((0,∞);H) then

the solution is exponentially stable in the E norm.
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Chapter 4

Finite element solutions to the
PDE

One of the approximation schemes for computation of an approximate solution is the

finite element method. An advantage of finite elements is that you do not need any

particularly special geometry of Ω, provided that you do not mind a little fiddling

around near the boundary. A disadvantage of finite elements is that they do not play

well with higher norms. As we will see, a typical finite element solution might consist

of piecewise cubic function, and in such a case Au is no longer an element, and thus

not an admissible multiplier to the weak formulation. However this multiplier is criti-

cal for energy calculations in some of the spaces of interest. We present a formulation

of a finite element solution to the linear MGT equation, abstracting the boundary of

the domain and the specific elements used behind the order of accuracy of the space

of elements. Stablity and convergence results are included.

The method will be formulated in terms of the abstract model under abstract

assumptions on the approximating subspaces. An application will be given to a
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concrete example with typical elements at the end.

4.1 Preliminaries; Stationary problem

We will build our formulation and analysis of approximate solutions to the MGT equa-

tion by starting with an approximation scheme for the stationary problem Au = f .

Let A be an operator obeying assumptions (2.1.1). Let Sh be a family of sub-

spaces of D(A1/2) depending on a parameter h of discretization going to 0, with

basis {χi(x)}n(h)
i=0 . Further, assume the following:

Assumption 4.1.1. The operator A is a differential operator of order s1, so that

H = Hs0(Ω), D(A) ⊆ Hs0+s1(Ω), and D(A1/2) ⊆ Hs0+s1/2(Ω), where notationally

H0(Ω) = L2(Ω).

It obeys an elliptic regularity estimate,

‖u‖s1 ≤ C ‖Au‖

And the spaces Sh have a close-approximation property: there exists an integer r such

that

inf
χ∈Sh

(
‖v − χ‖+ hs/2

∥∥A1/2(v − χ)
∥∥) ≤ Chs ‖v‖s

For all 1 ≤ s ≤ r, v ∈ Hs(Ω) ∩D(A1/2). Call r the order of accuracy of the family

Sh.

Assumption 4.1.2. Suppose that u0, u1, u2 ∈ D(A1/2) and that u0 ∈ H i0(Ω), u1 ∈

H i1(Ω), u2 ∈ H i2(Ω) for some positive constants ij ≤ r. Suppose that (u(t), ut(t), utt(t))
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are in D(A1/2) and Hkj(Ω), k = 0, 1, 2 respectively. Suppose also that uttt ∈ D(A1/2)∩

Hk3(Ω). The indices kj are all less than r as well.

By way of explanation, the numbers ij, kj represent the highest index that we can

apply through the estimate in 4.1.1.

Since we have assumed that 0 ∈ ρ(A), we know that the problem Au = f has a

solution u ∈ D(A) for any f ∈ H. To arrive at a finite-dimensional solution, consider

the weak formulation: find a function u ∈ D(A1/2) satisfying

(A1/2u,A1/2φ) = (f, φ)∀φ ∈ D(A1/2)

Restrict this weak formulation to only include test functions on Sh, and seeking a

solution in Sh, By linearity we thus only need consider basis functions, yielding: find

a function uh ∈ Sh solving

(A1/2uh, A
1/2χj) = (uh, χj)∀χj, 1 ≤ j ≤ n(h)

Using the fact that uh =
∑
αiχi we can write this system as a matrix equation

[(A1/2χi, A
1/2χj)]

n(h)
i,j=1


α1

...

αn

 =


(f, χ1)

...

(f, χn)


We see that this matrix, called the stiffness matrix, is positive definite, for if (αi) is
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an n-vector,

([(A1/2χi, A
1/2χj)]

n(h)
i,j=1(αi), (αj)) =

∑
i,j=1

nαiαj(A
1/2χi, A

1/2χj)

= (
∑

αiA
1/2χi,

∑
αjA

1/2χj)

=
∥∥∥A1/2

∑
αiχi

∥∥∥2

≥ 0

And then if
∥∥A1/2

∑
αiχi

∥∥ = 0, by the coercivity of the bilinear form assoicated with

A we can apply a Poincare inequality to determine that ‖
∑
αiχi‖ ≤

∥∥A1/2
∑
αiχi

∥∥ =

0 and so
∑
αiχi = 0 as an element of H and thus αi = 0 for all i.

Therefore we can invert the stiffness matrix and determine the finite element

solution uh from the coefficients. We can prove a convergence result for this uh as

follows. This proof and the preceeding discussion is a generalization of material from

[14] and [10].

Theorem 4.1.3. For u and uh as above, we have

‖u− uh‖+ hs1/2
∥∥A1/2(u− uh)

∥∥ ≤ Chs ‖u‖s

Where 1 ≤ s ≤ min{r, s1}.

Proof. We make use of the fact that u − uh is orthogonal to Sh with respect to the
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inner product (A1/2u,A1/2v). Let χ be arbitrary in Sh. Then uh − χ is in Sh and so,

∥∥A1/2(u− uh)
∥∥2

= (A1/2(u− uh), A1/2(u− uh)) + (A1/2(u− uh), A1/2(uh − χ))

= (A1/2(u− uh), A1/2(u− χ))

≤
∥∥A1/2(u− uh)

∥∥∥∥A1/2(u− χ)
∥∥

And so for all χ ∈ Sh we have the inequality
∥∥A1/2(u− uh)

∥∥ ≤ ∥∥A1/2(u− χ)
∥∥, whence

by assumption 4.1.1

∥∥A1/2(u− uh)
∥∥ ≤ inf

χ∈Sh

∥∥A1/2(u− χ)
∥∥ ≤ Chs−s1/2 ‖u‖s

The other term in the estimate is a little more tricky. Consider φ ∈ H arbitrary,

ψ ∈ D(A) the solution to Aψ = φ. Pick χ ∈ Sh and then

(uh − u, φ) = (uh − u,Aψ)

= (A1/2(uh − u), A1/2ψ)

= (A1/2(uh − u), A1/2(ψ − χ))

≤
∥∥A1/2(uh − u)

∥∥∥∥A1/2(ψ − χ)
∥∥

So that for all χ ∈ Sh, (uh − u, φ)/
∥∥A1/2(uh − u)

∥∥ ≤ ∥∥A1/2(ψ − χ)
∥∥ which proves

(uh − u, φ) ≤
∥∥A1/2(uh − u)

∥∥ inf
χ∈Sh

∥∥A1/2(ψ − χ)
∥∥

But from our previous estimates we already know

∥∥A1/2(uh − u)
∥∥ ≤ Chs−s1/2 ‖u‖s
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And from assumption 4.1.1

inf
χ∈Sh

∥∥A1/2(ψ − χ)
∥∥ ≤ Chs1/2 ‖ψ‖s1

But because of the regularity estimate ‖ψ‖s1 ≤ C ‖φ‖. Then finally by picking

φ = u− uh we find that

‖u− uh‖ ≤ Chs ‖u‖s

4.2 Equation and semidiscrete problem

Consider the abstract MGT equation ,

τuttt + αutt − c2Au− bAut = 0

with initial conditions

u(t = 0) = u0, ut(t = 0) = u1, utt(t = 0) = u2

We wish to study stability and convergence of finite element solutions to this

problem. To give a finite element formulation we need a variational form and a

family of finite dimensional spaces in which we we seek our solutions.

Consider the variational form of the original equation.

τ (uttt, φ) + α (utt, φ) + c2
(
A1/2u,A1/2φ

)
+ b
(
A1/2ut, A

1/2φ
)

= 0 ∀φ ∈ D(A1/2)
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By restricting this equation to one on Sh rather than all of D(A1/2) we arrive at the

semidiscrete problem: find a function uh(x, t) ∈ Sh for each t such that

τ (uh,ttt, φ) + α (uh,tt, φ) + c2
(
A1/2uh, A

1/2φ
)

+ b
(
A1/2uh,t, A

1/2φ
)

= 0 ∀φ ∈ Sh

with associated initial conditions uh(0) = vh,0, uh,t = vh,1, uh,tt = vh,2, where vh,i is

some interoplant of the initial data ui in Sh.

4.3 Existence of finite element solutions

We seek a uh(x, t) =
n∑
i=1

γi(t)χi(x) solving the semidiscrete problem. That is, for

φ =
n∑
j=1

βjχj ∈ Sh we wish to have

τ
n∑
i=1

(
γ
′′′

i (t)χi(x), φ
)

+ α
n∑
i=1

(
γ
′′

i (t)χi(x), φ
)

+ c2

n∑
i=1

(
γi(t)A

1/2χi(x), A1/2φ
)

+b
n∑
i=1

(
γ
′

i(t)A
1/2χi(x), A1/2φ

)
= 0

In the case of φ = χj we rewrite

n∑
i=1

γ
′′′

i (χi, χj) = −α
τ

n∑
i=1

γ
′′

i (t) (χi, χj)−
c2

τ

n∑
i=1

γi
(
A1/2χi, A

1/2χj
)
− b
τ

n∑
i=1

γ
′

i

(
A1/2χi, A

1/2χj
)

Rewrite in terms of the following matrices. The matrix Mh has entries (χi, χj). The

matrix Ah has entries (A1/2χi, A
1/2χj). Then using the notation ~γ for the n-vector

with components γi we find it suffices if

~γ
′′′

= −α
τ
~γ
′′ − c2

τ
M−1

h Ah~γ −
b

τ
M−1

h Ah~γ
′

provided that Mh is invertible.
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Lemma 4.3.1. Given a collection {φi}ni=1 of linearly independent vectors in a Hilbert

space, the matrix M = {(φi, φj)} is invertible.

Proof. Consider a linear combination of the rows,

n∑
i=1

αi


(φ1, φi)

. . .

(φn, φi)

 =
n∑
i=1


(φ1, αiφi)

. . .

(φn, αiφi)



=


(φ1,

∑n
i=1 αiφi)

. . .

(φn,
∑n

i=1 αiφi)


This linear combination is ~0 only if

∑n
i=1 αiφi⊥φj ∀j, but this is only possible if the

linear combination is trivial since
∑n

i=1 αiφi is in the span of {φj}.

Thus we write the matrix ODE

d

dt


~γ

~γ
′

~γ
′′

 =


0 I 0

0 0 I

− c2

τ
M−1

h Ah − b
τ
M−1

h Ah −α
τ
I




~γ

~γ
′

~γ
′′


With initial conditions ~γ(0) = ~γ0, ~γ′(0) = ~γ1, ~γ′′(0) = ~γ2, where

~γi = M−1
h


(vh,i, φ1)

. . .

(vh,i, φn)


This ODE yields the finite element solution uh(x, t).
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4.4 Stability of finite element solutions

We previously derived an abstract stability result that applies to our solutions, and

thus the result stated there about exponential stability in the H norm applies. In fact

we can do better than simply applying the Pazy-Datko theorem, which derives bounds

in terms of constants from the closed graph and uniform boundedness theorem, and

thus may vary based on h. By examination and modification of the proof given in

[12] we can avoid the reliance on these theorems for this particular problem. I will

essentially repeat and elaborate on the proof given there for completeness, with the

first two steps replaced by the estimates found before.

Theorem 4.4.1. (E+E0)(t) ≤Me−µt where M and µ can be selected to not depend

on h.

Proof. Write our solution (uh(t), uh,t(t), uh,tt(t)) as an element of the Banach space

X = Sh × Sh × Sh topologized by |||x|||2 = ‖x1‖2
H1

0
+ ‖x2‖2

H1
0

+ ‖x3‖2
L2 , with x the

inital data (uh(0), uh,t(0), uh,tt(0)). Then we can write the solution as a semigroup

applied to the initial data, T (t)x. Reading our previous inequalities in terms of this

notation we have ∫ ∞
0

|||T (s)x|||2 ds ≤ C1 |||x|||2

and

|||T (t)x||| ≤ C2 |||x|||
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For x ∈ X define the function

tx(ρ) = sup{t : |||T (s)x||| ≥ ρ |||x||| for 0 ≤ s ≤ t}

Then tx(ρ) <∞ for ρ > 0, since otherwise |||T (s)x|||2 would not be integrable. Also

for ρ < 1 we have that |||T (0)x||| = |||x||| ≥ ρ |||x||| and, since t → |||T (t)x||| is

continuous, tx(ρ) > 0. Thus we can select ρ < min{1, C−1
2 } and we find

tx(ρ)ρ2 |||x|||2 ≤
∫ tx(ρ)

0

|||T (s)x|||2 ds ≤
∫ ∞

0

|||T (s)x||| ds ≤ C1 |||x|||2

So therefore tx(ρ) ≤ C1

ρ2 = t0. In other words, by time t > t0 |||T (t)x||| has certainly

decreased below a factor of ρ. We can use this fact and semigroup algebra to infer

exponential decay.

More specifically, when t > t0 we have that

|||T (t)x||| ≤ ‖T (t− tx(ρ))‖ |||T (tx(ρ))x||| ≤ C2ρ |||x|||

Now choose any time step ε > 0, let t1 = t0 + ε, consider any time t = nt1 + s,

0 ≤ s < t1. We obtain from this

‖T (t)‖ ≤ ‖T (s)‖ ‖T (nt1)‖ ≤ C2(ρC2)n =
C2

ρC2

(ρC2)n+1

≤M(ρC2)
nt1+s
t1 ≤Me−(−(t/t1) ln(ρC2)) = Me−µt

Where M = C2

ρC2
, µ = − 1

t1
ln(ρC2). Note since ρC2 < 1 we have µ > 0 as desired.

The constants µ and M depend explicitly on C2 and ρ. In turn, ρ depends itself on

C2, and C2 is given to us independent of h, as desired. The constant t1 depends on ε
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which is arbitrary and t0, which depends on C1, which is given independent of h as

well.

4.5 Projections and Operators

We will make use of two projections and an operator:

Ph : D(A1/2)→ Sh defined by (Phf, φ) = (f, φ)∀φ ∈ Sh

Rh : D(A1/2)→ Sh defined by
(
A1/2Rhf, A

1/2φ
)

=
(
A1/2f, A1/2φ

)
∀φ ∈ Sh

Ah : Sh → Sh defined by (Ahφ, ψ) =
(
A1/2φ,A1/2ψ

)
∀φ, ψ ∈ Sh

4.6 Convergence

We wish to estimate the error uh − u in various spaces. We do so by use of an

intermediate projection, splitting uh − u into θ = uh − Rhu and ρ = Rhu − u. The

advantage of this approach is that ρ has good bounds because of theorem 4.1.3, while

θ will be seen to solve a weak form of the original PDE - but with nonzero forcing

term. Similar bounds as in the stability calculation will extract control over the norm

of θ(t) in terms of the initial error θ(0) and higher time derivatives ρtt(s), ρttt(s).
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These will in turn allow for extraction of powers of h, in line with our assumptions

above, provided that the continuous solution u is sufficiently smooth. Details follow.

4.6.1 Analysis of θ

By writing out terms we find that θ(t) solves the equation on Sh

τθttt + αθtt − b∆hθt − c2∆hθ = −Ph(τρttt + αρtt)

in a weak sense, provided that θ, θt, θtt, θttt all exist in Sh - which is ensured if

u, ut, utt, uttt all exist in D(A1/2).

This allows us to employ the same multipliers used in the stability calculations to

derive bounds on the error term θ(t).

Theorem 4.6.1. The follow bounds hold, where C and K denote generic constants

that do not depend on T or h.

‖θ(t)‖2 ≤ C

(
4∑

k=0

Eθ(0)
k
4

(∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)2− k

2

)
∥∥A1/2θ(t)

∥∥2 ≤ C

(
4∑

k=0

Eθ(0)
k
4

(∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)2− k

2

)
∥∥A1/2θt(t)

∥∥2 ≤ C

(
4∑

k=0

Eθ(0)
k
4

(∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)2− k

2

)

‖θtt(t)‖ ≤ C

(√
Eθ(0) +

(√
Eθ(0)

∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)1/2

+

∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)
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Remark 4.6.1. The significance of these inequalities is that the error term θ has

bounds in terms of the error of the initial data and the companion error term ρ. Both

of these terms will be shown to be small, provided the initial data is smooth enough

and the initial approximation scheme has a high enough degree of approximation.

Proof. By multiplying by θt and θtt we find the following energy relation:

Eθ(T ) + γ

∫ T

0

‖θtt‖2 ds = Eθ(0)−
∫ T

0

(Ph(τρttt + αρtt), θtt +
c2

b
θt) ds (4.6.1)

In addition we have

c2

2

∥∥A1/2θ
∥∥2
∣∣∣T
0

+ b

∫ T

0

∥∥A1/2θt
∥∥2

ds ≤τ
∫ T

0

‖θtt‖2 ds+ ‖θtt‖ ‖θt‖|T0 +
α

2
‖θt‖2

∣∣T
0

+

∫ T

0

(Ph(τρttt + αρtt), θt) ds

(4.6.2)

From (4.6.1) we have that

∥∥∥∥θtt(t) +
c2

b
θt(t)

∥∥∥∥2

≤ Eθ(0) +

∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖
∥∥∥∥θtt(s) +

c2

b
θt(s)

∥∥∥∥ ds
Using a variant of Gronwall’s inequality found in section 7.1 we obtain from this

∥∥∥∥θtt +
c2

b
θt

∥∥∥∥ ≤√Eθ(0) +
1

2

∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds

Thus likewise we find

‖θt(t)‖2 ≤ Eθ(0) +

∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖
∥∥∥∥θtt(s) +

c2

b
θt(s)

∥∥∥∥ ds
≤ Eθ(0) +

√
Eθ(0)

∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds+
1

2

(∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)2
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So since both ‖θt(t)‖ and
∥∥∥θtt(t) + c2

b
θt(t)

∥∥∥ are bounded by

√
Eθ(0)+

(√
Eθ(0)

∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
) 1

2

+

∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds

we have

‖θtt(t)‖ ≤C

(√
Eθ(0) +

(√
Eθ(0)

∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
) 1

2

+

∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)

Similarly we have∫ T

0

‖θtt‖2 ds ≤Eθ(0) +
√
Eθ(0)

∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds

+
1

2

(∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)2

Then putting this all together into (4.6.2) and applying the previous bounds we have

c2

2

∥∥A1/2θ(t)
∥∥2 ≤ K

(
4∑

k=0

Eθ(0)
k
4

(∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)2− k

2

)

Then thanks to Poincare’s inequality we have

‖θ(t)‖ ≤ C

(
4∑

k=0

Eθ(0)
k
4

(∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)2− k

2

) 1
2

Now applying the same analysis this time to the
∥∥∥A1/2θ + c2

b
A1/2θt

∥∥∥2

term yields

∥∥A1/2θt(t)
∥∥ ≤ C

(
4∑

k=0

Eθ(0)
k
4

(∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)2− k

2

) 1
2

This theorem transfers the analysis of θ(t) to that of θ(0) and ρtt(s), ρttt(s). We

will next address these quantities.
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4.6.2 Analysis of Eθ(0)

Reverse our initial separation and write θ(0) = (uh(0) − u(0)) + (u(0) − Rhu(0)) =

(vh,0 − u0) + ρ(0). Thus simplifying by equivalent norms,

Eθ(0) ≤ C
(∥∥A1/2(vh,0 − u0)

∥∥2
+
∥∥A1/2(vh,1 − u1)

∥∥2
+ ‖vh,2 − u2‖2

+
∥∥A1/2ρ(0)

∥∥2
+
∥∥A1/2ρt(0)

∥∥2
+ ‖ρtt(0)‖2

)
Because of assumption 4.1.2, the first three terms can extract some factor of h. Be-

cause of theorem 4.1.3, the latter three terms also have good bounds. The exact

degree that can be employed depends on the order of accuracy and the smoothness

of the original solution u. Exact calculations will follow.

4.6.3 Analysis of ρ

Theorem 4.6.2. For all 0 < t ≤ T , if k0, k1, k2 ≥ s1
2

(this implies r ≥ s1
2

) and

u, ut, utt are all in D(A1/2),

‖ρ(t)‖ ≤ Chk0 ‖u(t)‖k0∥∥A1/2ρ(t)
∥∥ ≤ Chk0− s12 ‖u(t)‖k0

‖ρt(t)‖ ≤ Chk1 ‖ut(t)‖k1∥∥A1/2ρt(t)
∥∥ ≤ Chk1− s12 ‖ut(t)‖k1

‖ρtt(t)‖ ≤ Chk2 ‖utt(t)‖k2
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and also, if i0, i1 ≥ s1
2

∥∥A1/2ρ(0)
∥∥ ≤ Chi0−

s1
2 ‖u0‖i0∥∥A1/2ρt(0)

∥∥ ≤ Chi1−
s1
2 ‖u1‖i1

‖ρtt(0)‖ ≤ Chi2 ‖u0‖i2

Proof. Supose that v ∈ D(A1/2). Then Av ∈ D(A1/2)′. On the one hand, Rh works

by the definition

(A1/2Rhv,A
1/2χ) = (A1/2v,A1/2χ)

for all χ ∈ Sh. On the other hand, in our study of the stationary problem at the start

of this chapter we solved the problem

(A1/2vh, A
1/2χ) = (f, χ)

for all χ ∈ Sh, and any f ∈ D(A1/2)′. By moving a half power across the inner

product on the right hand side of the definition of Rh we find that these two problems

coincide. Therefore we can apply theorem (4.1.3) to analyze quantities involving

Rhu−u, provided that the u in question is at least in D(A1/2). Bearing in mind that

ρ = Rhu− u we find exactly the result.

Corollary 4.6.3. Suppose that k2, k3 > 0 and utt, uttt are in D(A1/2). Then,∫ T

0

‖αρtt(s) + τρttt(s)‖ ds ≤ hk2α

∫ T

0

‖utt(s)‖k2
ds+ hk3τ

∫ T

0

‖uttt(s)‖k3
ds
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Proof. This follows just from the same considerations applied to utt and uttt. Notice

that we need both k2 and k3 to be positive - so that the factors of h are meaningful,

and also that they live in D(A1/2) - so that the estimates apply.

4.6.4 Application

The calculations above give the tools to infer an explicit convergence rate for approx-

imate solutions. To demonstrate we will specialize to a particular PDE. Suppose that

A = −∆ with 0-Dirichlet boundary conditions on the space H = L2(Ω). In this case,

D(A) = H2 ∩H1
0 (Ω), s1 = 2, and D(A1/2) = H1

0 (Ω). From examining the preceeding

theorems we find that we need

• We need for sure u, ut, utt ∈ D(A1/2) will mean that k0, k1, k2 ≥ 1. However this

will not suffice, since if k0, k1 = 1 then we will extract h0 from the estimates in

4.6.2.

• Therefore we need r > 1 and k0, k1 > 1,

• We likewise need i0, i1 > 1, i2 > 0.

• We will also need k3 > 0.

The space H is not suitable for this analysis, because there is no smoothing in the

(u, ut, utt) variables past D(A1/2) and therefore we cannot attain k0, k1 > 1.
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The space H1 will suffice. Suppose that (u0, u1, u2) ∈ D(A)2. Then by semi-

group wellposedness uttt(s) ∈ D(A1/2), so that k3 = 1. Then also we will have

(u(s), ut(s), utt(s)) ∈ D(A)2, which will mean k0 = k1 = k2 = i0 = i1 = i2 = 2,

k3 = 1. This means that

∫ T

0

‖αρtt(s) + τρttt(s)‖ ds ≤ αh2

∫ T

0

‖utt(s)‖2 ds+ τh

∫ T

0

‖uttt(s)‖1 ds

Or more succinctly, CT (h2 + h). We also then see that

Eθ(0) ≤ C
(
I(h) +

∥∥A1/2ρ(0)
∥∥2

+
∥∥A1/2ρt(0)

∥∥2
+ ‖ρtt(0)‖2

)
≤ C

(
I(h) + h2 ‖u0‖2

2 + h2 ‖u1‖2
2 + h4 ‖u2‖2

2

)
≤ C

(
I(h) + h2 + h2 + h4

)
Returning to 4.6.1 we see that the right hand bound for many of the quantities is

C

(
4∑

k=0

Eθ(0)
k
4

(∫ t

0

‖Ph(τρttt(s) + αρtt(s))‖ ds
)2− k

2

)

For the sake of legibility set T1 = Eθ(0) and T2 =
∫ t

0
‖Ph(τρttt(s) + αρtt(s))‖ ds. Then

this sum is

T 2
2 + T

3/4
2 T

1/4
1 + T2T

1/2
1 + T

1/2
2 T

3/4
1 + T1

Then from the above we find that T1 ≤ Ch2, supposing that the initial interpolation

error I(h) is at least as good as h2, and T2 ≤ CTh. Thus this quantitiy is bounded

by

CT
(
h2 + h3/2h1/2 + hh+ h1/2h3/2 + h2

)
= CTh

2
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Therefore all of ‖θ(s)‖ ,
∥∥A1/2θ(s)

∥∥ ,∥∥A1/2θt(s)
∥∥ are bounded by CTh (note the dif-

ference between ‖θ‖2 and ‖θ‖). The bounds are different for ‖θtt‖, which is bounded

by C
(
T

1/2
1 + T

1/4
1 T

1/2
2 + T2

)
. But again these terms match to a power of h and we

get ‖θtt(s)‖ ≤ CTh. We have derived,

Corollary 4.6.4. Suppose that A is the Laplacian described at the start of the section,

that the initial approximation scheme has error I(h) converging at least as fast as h2,

that the order of accuracy r is at least 2, that the initial data u0, u1, u2 are in the

domain of the generator A2 on the space H1 as described in section 2.1, and the time

interval [0, T ], 0 < s ≤ T . Then using the separation uh(s)− u(s) = θ(s) + ρ(s),

∥∥A1/2(uh(s)− u(s))
∥∥ ≤ ∥∥A1/2θ(s)

∥∥+
∥∥A1/2ρ(s)

∥∥
≤ CTh+ Ch ‖u(s)‖2

≤ CTh∥∥A1/2(uh,t(s)− ut(s))
∥∥ ≤ ∥∥A1/2θt(s)

∥∥+
∥∥A1/2ρt(s)

∥∥
≤ CTh+ Ch ‖ut(s)‖2

≤ CTh

‖(uh,tt(s)− utt(s))‖ ≤ ‖θtt(s)‖+ ‖ρtt(s)‖

≤ CTh+ Ch2 ‖utt(s)‖2

≤ CTh

And thus we get exactly rate of convergence h with the error measured on the space
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D(A1/2)×D(A1/2)×H.

We note that we could improve the smoothness on H1 by taking the initial data in

D(A3), which would place uttt(s) ∈ D(A) and so k3 = 2 as well. However this would

not produce a better convergence estimate. As we saw in the calculations above there

was an exact matching so that the combinations of T1 and T2 were uniformly h2. As

k3 improves T2 but not T1 we find that the overall rate is still h2 at that stage in the

calculation.

We remark that we could not have gotten by with less: on the spaceH1, (u0, u1, u2) ∈

D(A) is not good enough, because this yields only uttt ∈ H.
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Chapter 5

Spectral solutions to the abstract
PDE

In addition to the finite element method, we construct a scheme for computing an

approximate solution to the abstract equation consisting of a linear combination of

the eigenvectors of the operator A. This has the advantage that the test functions and

constructed solutions are very smooth and thus we can apply higher energy estimates

via multipliers involving full powers of A. When A is a particular operator and Ω has

good geometry these eigenfunctions are known explicitly, although their existence in

general will follow from our assumptions.

5.1 Discussion of spectral properties of A

We recall quickly our assumptions 2.1.1 on A. We can draw a lot of information

about A from the fact that it has compact resolvent. Since A is selfadjoint, so is

A−1 and so the spectrums of A and A−1 are both real. If φ is an eigenvector of A−1

with eigenvalue µ, then since A−1φ = µφ we can conclude that φ ∈ D(A) since A−1
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maps to the domain of A. Therefore we can apply A across that equation to find

that 1
µ
φ = Aφ and thus φ is also an eigenvector of A with eigenvalue λ = 1

µ
, and

conversely. Thus we can pass directly from information about the eigenvalues of A−1

to the eigenvalues of A.

Operating only on the assumption that A is closed with compact resolvent, we

can apply the spectral theorem for compact symmetric operators on a Hilbert space

to A−1. This will give us that A−1 has a possibly terminating orthonormal se-

quence φi of eigenvectors with associated eigenvalues µi, and that for any x ∈ H,

A−1x =
∑
µi(x, φi)φi. One can see at once that this sum cannot be finite. Each of

the φi are members of the domain of A and so a finite sum of them is as well. Then by

applying A to this finite sum we would find that x =
∑

(x, φi)φi, so that x ∈ D(A).

However x was arbitrary in H and then we would have D(A) = H. By closure of

A this would imply that A is bounded. Therefore there are infinitely many µi and

therefore they accumulate at 0. Thus the eigenvalues λi of A tend to ∞.

In fact one can conclude more. The operator A−1 certainly does not have 0 for

an eigenvalue: A−1x = 0 means x = 0 by application of A. The spectral theorem

further gives us that if 0 is not an eigenvalue then the collection of eigenvectors is

not only infinite but also a complete set in H. Furthermore, in this case the range of

A−1 is exactly those elements x ∈ H such that the sum
∑

1
µi

(x, φi)φi is convergent.
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But the range of A−1 is D(A)! Thus we have justified the correctness of the formally

appealing representations

A−1x =
∑

µi(x, φi)φi for x ∈ H

x =
∑

(x, φi)φi for x ∈ H

Ax =
∑ 1

µi
(x, φi)φi =

∑
λi(x, φi)φi for x ∈ D(A)

This also gives us a way to define the domain and action of fractional powers of A.

Let Sn denote the subspace of H spanned by the first n eigenvectors. For any

element u ∈ H there is associated its projection down to Sn. Write this projection as

Pnu =
∑n

i=1(u, φi)φi.

Lemma 5.1.1. For u ∈ D(A1/2), ‖u− Pnu‖2 ≤ 1
λn+1

∥∥A1/2u
∥∥2

.

Proof.

‖u− Pnu‖2 =

∥∥∥∥∥
∞∑

i=n+1

(u, φi)φi

∥∥∥∥∥
2

=
1

λn+1

∥∥∥∥∥
∞∑

i=n+1

λ
1/2
n+1(u, φi)φi

∥∥∥∥∥
2

≤ 1

λn+1

∥∥∥∥∥
∞∑

i=n+1

λ
1/2
i (u, φi)φi

∥∥∥∥∥
2

≤ 1

λn+1

∥∥A1/2u
∥∥2



62

Corollary 5.1.2. For u ∈ D(A),
∥∥A1/2(u− Pnu)

∥∥2 ≤ 1
λn+1
‖Au‖2.

Proof. First note that A1/2 commutes with Pn, and then if u ∈ D(A) we have that

A1/2u ∈ D(A1/2) and so the previous result applies to A1/2u.

5.2 Formulation of spectral method

We restate the abstract Moore-Gibson-Thompson PDE for visual reference,

τuttt + αutt − c2Au− bAut = 0

with initial conditions

u(t = 0) = u0, ut(t = 0) = u1, utt(t = 0) = u2

Consider a solution u on any of the spaces considered previously. By using the

structure of the PDE we can determine the otherwise unknown coefficients (u, φi).

Write (u, φi) = γi(t), so that u =
∑
γi(t)φi(x). Multiply the equation by any of the

eigenvectors φj. By orthogonality this reduces the equation to done only featuring

the jth coefficients,

τγj,ttt(t) + αγj,tt(t) + bλjγj,t(t) + c2λjγj(t) = 0

We can write this as a matrix ODE

d

dt


γj

γj,t

γj,tt

 =


0 I 0

0 0 I

−λjc
2

τ
−λjb

τ
−α
τ




γj

γj,t

γj,tt
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With γj(0) = (u0, φj) and likewise for the other initial conditions. Then this method

allows one to explicitly determine the the coefficients (u, φi), and therefore the pro-

jection Pnu can be computed for any n. Note that un = Pnu solves the weak form of

the PDE

τ(un,ttt, ψ) + α(un,tt, ψ) + b(A1/2un,t, A
1/2ψ) + c2(A1/2un, A

1/2ψ) = 0 ∀ψ ∈ Sn

un(0) = Pnu0, un,t(0) = Pnu1, un,tt(0) = Pnu2

This method also easily adapts to a nonhomogeneous equation, with nonzero

forcing term. Suppose that f ∈ H, so that it has an eigenvector decomposition.

Then the equation

τuttt + αutt − c2Au− bAut = f

after being hit with φj will once again reduce to one in only the jth coordinate,

τγj,ttt(t) + αγj,tt(t) + bλjγj,t(t) + c2λjγj(t) = fj = (f, φj)

This gives us the matrix equation for this component,

d

dt


γj

γj,t

γj,tt

 =


0 I 0

0 0 I

−λjc
2

τ
−λjb

τ
−α
τ




γj

γj,t

γj,tt

+


0

0

1
τ
fj


With initial conditions as before. This can be solved, for example by the variation of

parameters formula for matrix exponentials.

We now consider the stability of the finite dimensional solution un = Pnu.
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5.3 Stability of spectral solutions

Note that the multipliers un, un,t, and un,tt are all in Sn and therefore are admissible

multipliers in the weak formulation that un itself solves. The abstract stability re-

sults 3.1.1 apply to these solutions. However, unlike the finite element method, these

solutions are very smooth and therefore we can apply higher multipliers such as Aun.

This will lead to a stability result in terms of a higher norm.

Theorem 5.3.1. With reference to the spectral approximations un = Pnu to the

homogeneous MGT equation, there exists a constant C > 0 such that,

E1(t) +

∫ T

0

E1(s) ds ≤ CE1(0)

Recall that E1(t) is equivalent to ‖Au(t)‖2+
∥∥A1/2ut(t)

∥∥2
+‖utt(t)‖2 ∼ E(t)+‖Au(t)‖2.

Proof. To cut down on subscripts, for this proof u will stand for the approximation

Pnu. Multiply by Au:

b

2

d

dt
‖Au‖2 + c2 ‖Au‖2 = −τ(uttt, Au)− α(utt, Au)

On the right use the identities

d

dt
(ut, Au) = (utt, Au) +

∥∥A1/2ut
∥∥2

d

dt
(utt, Au) = (uttt, Au) +

1

2

d

dt

∥∥A1/2ut
∥∥2
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So that

b

2

d

dt
‖Au‖2 + c2 ‖Au‖2 =

τ

2

d

dt

∥∥A1/2ut
∥∥2 − τ d

dt
(utt, Au) + α

∥∥A1/2ut
∥∥2 − α d

dt
(ut, Au)

After integration this becomes

b

2
‖Au(t)‖2 + c2

∫ t

0

‖Au(s)‖2 ds =
b

2
‖Au(0)‖2 +

τ

2

∥∥A1/2ut
∥∥2
∣∣∣t
0

− τ (utt, Au)|t0 + α

∫ t

0

∥∥A1/2ut(s)
∥∥2

ds− α (ut, Au)|t0

We will now use the inequality ab ≤ a2

2ε
+ εb2

2
, first with ε = b

4τ
and then with ε = 4α

b
.

This will produce

≤ b

2
‖Au(0)‖2 +

τ

2

∥∥A1/2ut
∥∥2
∣∣∣t
0

+ τ

(
b

8τ
‖Au‖2 +

2τ

b
‖utt‖2

)∣∣∣∣t
0

+ α

∫ t

0

∥∥A1/2ut(s)
∥∥2

ds

+ α

(
2α

b
‖ut‖2 +

b

8α
‖Au‖2

)∣∣∣∣t
0

We now can collect terms involving ‖Au(t)‖2 and ‖Au(0)‖2 to the left and right side

respectively, arriving at

b

4
‖Au(t)‖2 + c2

∫ t

0

‖Au(s)‖2 ds ≤ b

4
‖Au(0)‖2 +

τ

2

∥∥A1/2ut
∥∥2
∣∣∣t
0

+
2τ 2

b
‖utt‖2

∣∣∣∣t
0

+ α

∫ t

0

∥∥A1/2ut(s)
∥∥2

ds+
2α2

b
‖ut‖2

∣∣∣∣t
0

All the right hand terms other than ‖Au(0)‖2 are bounded by the initial energy, by

the lower stability result. Therefore,

b

4
‖Au(t)‖2 + c2

∫ t

0

‖Au(s)‖2 ds ≤ b

4
‖Au(0)‖2 + CE(0)
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Since E1(t) = E(t) + ‖Au(t)‖2, we combine this with the lower stability inequality to

find

E1(t) +

∫ t

0

E1(s) ds ≤ CE1(0)

Exponential stability in E1 norm follows from Pazy-Datko’s theorem, and we

already had exponential stability in the E norm via the abstact inequalities.

Corollary 5.3.2. There exist positive constants C,C1, ω, ω1 such that, with respect

to the approximations un = Pnu,

E(T ) ≤ Ce−ωTE(0)

E1(T ) ≤ C1e
−ω1TE1(0)

We can also build upon these calculations to produce stability statements for the

nonhomogeneous equation.

Corollary 5.3.3. Suppose that un = Pnu is the approximation to a solution u to

the nongomogeneous MGT equation, with nonzero right hand side f ∈ L2((0, T );H).

Then,

E1(t) +

∫ t

0

E1(s) ds ≤ C

(
E1(0) +

∫ t

0

‖f(s)‖2 ds

)
Proof. The presence of a nonzero f term would contribute (f, Au) after multiplication

by Au. Following the calculations from before, this leads to

b

4
‖Au(t)‖2 + c2

∫ t

0

‖Au(s)‖2 ds ≤ b

4
‖Au(0)‖2 + CE(0) +

∫ t

0

(f(s), Au(s)) ds
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Use the inequality (f(s), Au(s)) ≤ ‖f(s)‖ ‖Au(s)‖ ≤ c2

2
‖Au(s)‖2 + 1

2c2
‖f(s)‖2, so

that

b

4
‖Au(t)‖2 +

c2

2

∫ t

0

‖Au(s)‖2 ds ≤ b

4
‖Au(0)‖2 + CE(0) +

∫ t

0

‖f(s)‖2 ds

Adding in the lower stability as before we have the result.

5.4 Convergence of spectral solutions

As indicated in lemma 5.1.1 and corollary 5.1.2, the convergence of the approxima-

tions un have good error bounds when compared to the solutions u provided that u

has good membership in the domain of A. This reduces the question of convergence

of the solutions to the spectral method scheme to one of a semigroup calculation, se-

lecting smooth enough initial data to ensure the desired memerships hold, paired with

use of stability inequalities to bound the right hand side of lemma 5.1.1 and cor. 5.1.2.

Theorem 5.4.1. Suppose that the initial data U0 are in H. Then there exist constants

ω0, ω1, C0, C1 > 0 such that

‖u(t)− Pnu(t)‖2 ≤ C0
1

λn+1

e−ω0t
(∥∥A1/2u0

∥∥2
+
∥∥A1/2u1

∥∥2
+ ‖u2‖2

)
And

‖ut(t)− Pnut(t)‖2 ≤ C1
1

λn+1

e−ω1t
(∥∥A1/2u0

∥∥2
+
∥∥A1/2u1

∥∥2
+ ‖u2‖2

)
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Suppose further that the intitial data are in D(A) on H. Then there exist constants

ω2, C2 > 0 such that

‖utt(t)− Pnutt(t)‖2 ≤ C2
1

λn+1

e−ω2t
(
‖Az0‖2 +

∥∥A1/2u1

∥∥2
+
∥∥A1/2u2

∥∥2
)

Finally, if in additon we have U0 ∈ D(A2) there exist constants ω3, C3 > 0 such that

‖uttt(t)− Pnuttt(t)‖2 ≤ C3
1

λn+1

e−ω3t
(∥∥A3/2z0

∥∥2
+ ‖Az1‖2 +

∥∥A1/2u2

∥∥2
)

Proof. For the first case, well-posedness on H will give that u(t) and ut(t) exist in

D(A1/2). Therefore we are justified in the estimates

‖u(t)− Pnu(t)‖2 ≤ 1

λn+1

∥∥A1/2u(t)
∥∥2

‖ut(t)− Pnut(t)‖2 ≤ 1

λn+1

∥∥A1/2ut(t)
∥∥2

The norms on the right hand side of these inequalities can be bounded via the (ex-

ponential) stability on the space Ĥ1, see theorem 2.3.2

∥∥A1/2u(t)
∥∥2 ≤ C0e

−ω0t
(∥∥A1/2u0

∥∥2
+
∥∥A1/2u1

∥∥2
+ ‖u2‖2

)
∥∥A1/2ut(t)

∥∥2 ≤ C1e
−ω1t

(∥∥A1/2u0

∥∥2
+
∥∥A1/2u1

∥∥2
+ ‖u2‖2

)
This covers the first case.

Moving on to the next case, if the inital data are in D(A) then utt(t) ∈ D(A1/2)

and we are justified in applying

‖utt(t)− Pnutt(t)‖2 ≤ 1

λn+1

∥∥A1/2utt(t)
∥∥2
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However the stability estimates will not immediately provide us decay or even bound-

edness of utt ∈ D(A1/2). To overcome this problem we will morally differentiate the

MGT equation with respect to time and then make a change of variables w = ut, and

then apply stability estimates to w. More precisely however, we will give appropri-

ate initial data that will produce the w = ut sought, and also ensure well-posedness

and stability for this new variable. This strategy will be reused repeatedly for the

remainder of the convergence results.

Consider new initial conditions

w0 = u1

w1 = u2

w2 = −α
τ
u2 −

b

τ
Az0

Note the use of z0 in w2. Formally if we simply attempted to write W 0 = AU0 to

match up a time derivative we would have our third row read w2 = −α
τ
u2 − b

τ
Au1 −

c2

τ
Au0. However the smoothness of our u-variables saturates at D(A1/2) and we are

not permitted to apply A to u0 and u1 directly. Membership in the domain of A

instead gives that z0 ∈ D(A), and therefore we must take u0 and u1 in combination.

Under this formulation these initial states provide a solution w on H that corresponds

to ut. The stability estimate for this variable includes
∥∥A1/2wt(t)

∥∥2
=
∥∥A1/2utt(t)

∥∥2
,
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bounded in terms of the w initial states:

∥∥A1/2utt(t)
∥∥2 ≤ C2e

−ω2t
(∥∥A1/2u1

∥∥2
+
∥∥A1/2u2

∥∥2
+ ‖Az0‖2

)
Note that the lower ‖u2‖2 is absorbed into

∥∥A1/2u2

∥∥2
. This will provide the desired

estimate.

For the final case the situation is the same. The assumption that the initial data

is in D(A2) yields the infomation that uttt(t) ∈ D(A1/2) so that we can apply

‖uttt(t)− Pnuttt(t)‖2 ≤ 1

λn+1

∥∥A1/2uttt(t)
∥∥2

But as before the naive stablity estimate will not provide for uttt(t) at all, let alone

in D(A1/2). Therefore we turn to essentially w = utt with the initial data

w0 = u2

w1 = −α
τ
u2 −

b

τ
Az0

w2 =
α2

τ 2
u2 +

αb

τ 2
Az0 −

b

τ
Az1

The assumption that the initial data are in D(A2) give that z0 ∈ D(A3/2) and z1 ∈

D(A) so that the initial w variables live in H1, and then the energy estimates on the

wt = uttt level read

∥∥A1/2uttt(t)
∥∥2 ≤ C3e

−ω3t
(∥∥A1/2u2

∥∥2
+
∥∥A3/2z0

∥∥2
+ ‖Az1‖2

)
Where again the lower terms have been absorbed into the highest powers of A.
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Theorem 5.4.2. Suppose that U0 ∈ H1. Then there exist constants ω0, C0 > 0 such

that

∥∥A1/2(u(t)− Pnu(t))
∥∥2 ≤ C0

1

λn+1

e−ω0t
(
‖Au0‖2 +

∥∥A1/2u1

∥∥2
+ ‖u2‖2

)
Suppose next that U0 ∈ D(A) on H1. Then there exist ω1, C1 > 0 such that

∥∥A1/2(ut(t)− Pnu(t))
∥∥2 ≤ C1

1

λn+1

e−ω1t
(
‖Au0‖2 + ‖Au1‖2 +

∥∥A1/2u2

∥∥2
)

Suppose next that U0 ∈ D(A2) on H1. Then there exist ω2, C2 > 0 such that

∥∥A1/2(utt(t)− Pnutt(t))
∥∥2 ≤ C2

1

λn+1

e−ω2t
(∥∥A3/2z0

∥∥2
+ ‖Au1‖2 + ‖Au2‖2

)
Finally, suppose that U0 ∈ D(A3) on H1. Then there exist ω3, C3 > 0 such that

∥∥A1/2(uttt(t)− Pnuttt(t))
∥∥2 ≤ C3

1

λn+1

e−ω3t
(∥∥A2z0

∥∥2
+
∥∥A3/2z1

∥∥2
+ ‖Au2‖2

)
Proof. For the first case, observe that this will correspond to u(t) existing in D(A).

Therefore we can apply the estimate

∥∥A1/2(u(t)− Pnu(t))
∥∥2 ≤ 1

λn+1

‖Au(t)‖2

We refer to Theorem 2.3.2 for the stability of our continuous solution u in the E1 norm

- note that our assumption is compatable with the requirement of well-posedness on

the higher energy space in that paper. Therefore we can bound ‖Au(t)‖2 by the initial

data in this topology.



72

For the second case, on H1 our assumption will give us that ut(t) ∈ D(A). This

permits the application of

∥∥A1/2(ut(t)− Pnut(t))
∥∥2 ≤ 1

λn+1

‖Aut(t)‖2

Now we wish to use stability results to bound the right-hand side. We wish to consider

w = ut. We use the initial data w0 = u1, w1 = u2, w2 = −α
τ
u2 − b

τ
Au1 − c2

τ
Au0. Note

that we do have sufficient smoothness from u0 and u1 for A to be applied to them

directly, and likewise w0 ∈ D(A), w1 ∈ D(A1/2), and w2 ∈ H, which is sufficient for

the E1 well-posedness and stability. So then we obtain positive constants C, ω such

that

‖Aut(t)‖2 ≤ Ce−ωt

(
‖Au1‖2 +

∥∥A1/2u2

∥∥2
+

∥∥∥∥−ατ u2 −
b

τ
Au1 −

c2

τ
Au0

∥∥∥∥2
)

Bounding to keep only the dominant norms, we have our result.

Finally, with U0 ∈ D(A2) we have that utt ∈ D(A), thus

∥∥A1/2(utt(t)− Pnutt(t))
∥∥2 ≤ 1

λn+1

‖Autt(t)‖2

To appeal to stability we must consider the variable w = utt. The appropriate initial

data will be as before

w0 = u2

w1 = − b
τ
Az0 −

α

τ
u2

w2 = − b
τ
Az1 +

αb

τ 2
Az0 +

α2

τ 2
u2
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Which for stability we will require to be in H1. The use of z0 in w1 is critical, because

our assumptions on U0 do not provide that Au0 and Au1 are in D(A1/2). However

they do place z0 ∈ D(A3/2). Therefore the well-posedness and stability give us (after

bounding)

‖Autt(t)‖2 ≤ C2e
−ω2t

(
‖Au2‖2 +

∥∥A3/2z0

∥∥2
+ ‖Az1‖2

)
To remain in u variables to the greatest extent possible, note that Au2 and Az1 are

controlled by Au2 and Au1.

For our final case, since the initial data are in D(A3) we have ensured that uttt(t) ∈

D(A), allowing applicability of the estimate

∥∥A1/2(uttt(t)− Pnuttt(t))
∥∥2 ≤ 1

λn+1

‖Auttt(t)‖2

We are thus led to consider the variable w = uttt, which will have the following initial

conditions:

w0 = − b
τ
Az0 −

α

τ
u2

w1 = − b
τ
Az1 +

αb

τ 2
Az0 +

α2

τ 2
u2

w2 =
b2

τ 2
A2z0 −

α2b

τ 2
Az0 +

αb

τ 2
Az1 +

b

τ 2
γAu2 −

α3

τ 3
u2

Recall that γ = α− τc2

b
. Our assumption that the initial data is in D(A3) also gives

z0 ∈ D(A2) and z1 ∈ D(A
3
2 ), along with u0, u1, u2 ∈ D(A). Therefore the initial

data for w lie in the appropriate space for well-posedness and decay of the higher

energy.
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We wish now to repeat these calculations for the nonhomogeneous problem. The

time differentiability is more sensitive in this case so we will begin with an overview.

Lemma 5.4.3. Suppose that u0 ∈ H, F (s) ∈ L1(0, t;H). Then there exists an explicit

mild solution to the problem

ut = Au+ F

u(0) = u0

Given by the formula

u(t) = T (t)u0 +

∫ t

0

T (t− s)F (s) ds

If furthermore u0 ∈ D(A) and F (s) is either C1(0, t;H) or is integrable in the domain

of A on (0, t), then this is in fact a solution, i.e. u(s) ∈ D(A) and satisfies the

differential equation on H.

If we assume that u0 ∈ D(A) and that F (s) is in C1(0, t;H), then the solution to the

equation

wt = Aw + Ft

w(0) = Au(0) + F (0)

In fact satisfies w = ut.

Proof. The first two claims are simply theorems from Pazy [12], section 4.2. For the

final claim, which will be of use to us shortly, note that under our assumptions Ft is

in L1(0, t;H) and Au(0) + F (0) ∈ H, so therefore this problem has at least the mild
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solution. We wish to show that w = ut. Therefore, we will differentiate u. To make

the identity clear we will make a change of variable: We can rewrite
∫ t

0
T (t− s)F (s)

as
∫ t

0
T (s)F (t− s) ds. Therefore,

d

dt
u(t) = T (t)Au(0) +

∫ t

0

T (s)F ′(t− s) ds+ T (t)F (0)

Where we have used the fact that u0 ∈ D(A) in the first term, and the second two

terms come from differentiation of the integral. We can now undo the change of

variables in the integral, which would leave us with

ut(t) = T (t)Au0 + T (t)F (0) +

∫ t

0

T (t− s)F ′(s) ds

But the variation of parameters solution for w reads

w(t) = T (t)w(0) +

∫ t

0

T (t− s)F ′(s) ds

And as w(0) = Au(0) + F (0), this proves our claim.

Theorem 5.4.4. Suppose with respect to the nonhomogeneous problem the intial data

U0 ∈ H, and f ∈ L2(0, t;H). Then

‖Pnu(t)− u(t)‖2 ≤ C
1

λn+1

(∥∥A1/2u0

∥∥2
+
∥∥A1/2u1

∥∥2
+ ‖u2‖2 +

∫ t

0

‖f(s)‖2 ds

)
And

‖Pnut(t)− ut(t)‖2 ≤ C
1

λn+1

(∥∥A1/2u0

∥∥2
+
∥∥A1/2u1

∥∥2
+ ‖u2‖2 +

∫ t

0

‖f(s)‖2 ds

)
If U0 ∈ D(A) on H, f ∈ C1(0, t;H), then

‖Pnutt(t)− utt(t)‖2 ≤ C
1

λn+1

(
‖Az0‖2 +

∥∥A1/2u1

∥∥2
+
∥∥A1/2u2

∥∥2
+ ‖f(0)‖2 +

∫ t

0

‖f ′(s)‖2
ds

)
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If U0 ∈ D(A)2, f(0) ∈ D(A1/2), f ∈ C2(0, t;H),

‖Pnuttt(t)− uttt(t)‖2 ≤C 1

λn+1

(∥∥A3/2z0

∥∥2
+ ‖Az1‖2 +

∥∥A1/2u2

∥∥2
+
∥∥A1/2f(0)

∥∥2

+ ‖f ′(0)‖2
+

∫ t

0

‖f ′′(s)‖2
ds

)

Proof. The first two claims are proven identically to the first two claims in theorem

5.4.1, with the mofidication that we use the stability estimates for the nonhomoge-

neous problem, which contribute the integral of f term.

For the third inequality, since U0 ∈ D(A) and f ∈ C1(0, t;H), w = ut solving

W t = AW + Ft

F = (0, 0, f)ᵀ,W (0) = AU(0) + F (0)

exists, per lemma 5.4.3. Thus it will have structurally the same stability as u, and

the initial energy will be that of AU0 (as before in theorem 5.4.1), with the additon

of F (0).

For the final inequality, U0 ∈ D(A2), F (0) ∈ D(A), so A(AU0 +F (0)) ∈ H. Also

f is in C2(0, t;H), so Ft ∈ C1(0, t;H). Therefore v = wt = utt exists solving

V t = AV + Ftt

V (0) = A(AU0 + F (0)) + Ft(0)
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Since we have assumed that f(0) is in D(A1/2) we have that F (0) ∈ D(A) and we

assumed that U0 ∈ D(A2) so we can measure the initial energy for V in H as

∥∥A3/2z0

∥∥2
+ ‖Az1‖2 +

∥∥A1/2u2

∥∥2︸ ︷︷ ︸
initial homogeneous energy

+ ‖f(0)‖2 +
∥∥A1/2f(0)

∥∥2︸ ︷︷ ︸
contribution of AF (0)

+ ‖f ′(0)‖2

Theorem 5.4.5. Suppose U0 ∈ H1, f ∈ L2(0, t;H). Then,

∥∥A1/2(u(t)− Pnu(t))
∥∥2 ≤ C

1

λn+1

(
‖Au0‖2 +

∥∥A1/2u1

∥∥2
+ ‖u2‖2 +

∫ t

0

‖f(s)‖2 ds

)

Suppose that U0 ∈ D(A) on H1, f ∈ C1(0, t;H). Then,

∥∥A1/2(ut(t)− Pnut(t))
∥∥2 ≤ C

1

λn+1

(
‖Au0‖2 + ‖Au1‖2 +

∥∥A1/2u2

∥∥2
+ ‖f(0)‖2 +∫ t

0

‖f ′(s)‖2
ds

)

Suppose that U0 ∈ D(A2) on H1, f ∈ C2(0, t;H), f(0) ∈ D(A1/2). Then,

∥∥A1/2(utt(t)− Pnutt(t))
∥∥2 ≤ C

1

λn+1

(∥∥A3/2z0

∥∥2
+ ‖Au1‖2 + ‖Au2‖2 +

∥∥A1/2f(0)
∥∥2

+ ‖f ′(0)‖2
+

∫ t

0

‖f ′′(s)‖2
ds

)

Suppose finally that U0 ∈ D(A3) on H1, f ∈ C3(0, t;H), f(0) ∈ D(A), f ′(0) ∈

D(A1/2). Then,

∥∥A1/2(uttt(t)− Pnuttt(t))
∥∥2 ≤ C

1

λn+1

(∥∥A2z0

∥∥2
+
∥∥A3/2z1

∥∥2
+ ‖Au2‖2 + ‖Af(0)‖2

+
∥∥A1/2f ′(0)

∥∥2
+ ‖ftt(0)‖2 +

∫ t

0

‖f ′′′(s)‖2
ds

)
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Proof. The first claim follows just as in theorem 5.4.2, with the addition of the inte-

gral owing to the presence of f in the stability estimates for A1/2u.

For the second claim, if U0 ∈ D(A) and f ∈ C1(0, t;H) then w = ut exists with

stability estimates following from

W t = AW + F ′

F = (0, 0, f)ᵀ,W 0 = AU0 + F (0)

Then the stability of Aut will come from the w-energy, where as in 5.4.2 AU0 will

contribute ‖Au0‖2 , ‖Au1‖2, and
∥∥A1/2u2

∥∥ and F (0) contributes ‖f(0)‖2.

Under the assumptions of the third claim, v = utt exists with

V t = AV + F ′′

V 0 = AW 0 + F ′(0) = A2U0 +AF (0) + F ′(0)

F = (0, 0, f)ᵀ

and therefore v has stability estimates following the nonhomoegenous problem. As

before in theorems 5.4.1 and 5.4.2 at this point we no longer have enough individual

smoothness from u0, u1, u2 to make the transit from the z variables back to u and

therefore our final stability statement properly involves z.

‖Autt(t)‖2 ≤
∥∥A3/2z0

∥∥2
+ ‖Au1‖2 + ‖Au2‖2︸ ︷︷ ︸

homogeneous energy for A2U0

+
∥∥A1/2f(0)

∥∥2︸ ︷︷ ︸
AF (0)

+ ‖f ′(0)‖2︸ ︷︷ ︸
F ′(0)

+

∫ t

0

‖f ′′(s)‖2
ds
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Note as well that we absorbed lower powers of A to keep only the dominant norms.

For the final claim, y = uttt exists by our assumptions with

Y t = AY + F ′′′

Y 0 = AV 0 + F ′′(0) = A3U0 +A2F (0) +AF ′(0) + F ′′(0)

F = (0, 0, f)ᵀ

Then the stability calculation for Y in H1 says,

‖Auttt‖2 ≤
∥∥A2z0

∥∥2
+
∥∥A3/2z1

∥∥2
+ ‖Au2‖2︸ ︷︷ ︸

homogeneous energy of A3U0

+ ‖Af(0)‖2︸ ︷︷ ︸
A2F (0)

+
∥∥A1/2f ′(0)

∥∥2︸ ︷︷ ︸
AF ′(0)

+ ‖ftt(0)‖2︸ ︷︷ ︸
F ′′(0)

+

∫ t

0

‖f ′′′(s)‖2
ds
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Chapter 6

Numerical Illustrations

6.1 Stability analysis for the spectral method

Recall that the solutions obtained by the spectral method have the structure Pnu(x, t) =∑n
i=1 γi(t)φi(x), where the φi are eigenvectors of a differential operator A and the γi(t)

are determined by a matrix ODE

d

dt


γj

γj,t

γj,tt

 =


0 I 0

0 0 I

−λjc
2

τ
−λjb

τ
−α
τ




γj

γj,t

γj,tt


Let Mj denote the matrix on the right-hand side of this equation. Writing γ̄j =
γj

γj,t

γj,tt

, M for the 3n×3n matrix direct sum of the Mj, we can simultaneously write
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all n of the above matrix ODEs by

d

dt


γ̄1

...

γ̄n

 =


M1 · · · 0

0
. . . 0

0 · · · Mn




γ̄1

...

γ̄n


Or,

d

dt


γ̄1

...

γ̄n

 = M


γ̄1

...

γ̄n


The eigenvalues of M are just the collection of the eigenvalues of the individual Mj,

and the matrix exponential of M is just a direct sum of the matrix exponentials of

the Mj. As a finite-dimensional system, the stability of the solution - meaning here

the vectors γ̄j - is determined exactly by the placement of the spectrum. We will

demonstrate the effects of the constants of the problem α, b, τ, c2 on the location of

the spectrum, and show plots of the higher and lower energy for computed solutions.

6.1.1 Description of procedures

All the figures to follow were produced using Wolfram Mathematica 8.

For the illustrations of the spectrum our procedures are as follows. For figures 6.1

through 6.3 we treat the eigenvalues λj as a continuous parameter ν in the matrices

Mj and then plot the spectrum of the resulting matrices. The values for the physical
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parameters are given in each figure, and ν varies over a range with upper bound 1000

and lower bound as indicated in each figure.

For figures 6.4 through 6.8 we examine the sensitivity of low eigenvalues, repre-

sented by ν = 2, to the physical constants of the equation. In each figure one constant

varies over a given range and again the spectra of the matrices Mj are plotted over

the variation in each variable. The square circle and diamond are placed arbitrarily

to coarsely illustrate the rate of change.

Figure 6.9 is produced in the same manner, but this time comparing the α-

variation for ν = 2 with ν = 3. The spectrum has conjugate complex branches

and also values along the real axis. This figure is interested in studying only the

complex branch. The optimal values can be verified with an optimization method on

the real part of the spectrum in each case.

Moving on the the plots of the energy in figures 6.10 through 6.16, we compute the

solutions to the spectral method in the concrete case Ω = [0, 1], A = ∆ = d2

dx2 , with

0-Dirichlet boundary conditions, H = L2 (Ω), D(A1/2) = H1
0 (Ω), D(A) = H2 (Ω) ∩

H1
0 (Ω). Then the associated eigenvectors of A are φi =

√
2 sin (iπx) with eigenvalues

λi = i2π2. In these figures we take n = 50. The initial data used are u0 = 100x(x−1),

u1 = u2 = 0. Under those selections we then form the matrices Mj as discussed in the
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start of this chapter, and then solve the matrix ODE for M via matrix exponentials

for Mj. This allows us to construct the time components γ̄j. We then use this to

construct the solutions Pnu =
∑n

j=1 γjφj, Pnu =
∑n

j=1 γj,tφj, Pnu =
∑n

j=1 γj,ttφj. For

computational convenience the time derivatives are taken from the vectors γ̄j rather

than differentiating γ(t). Powers of A applied to these elements will be essential for

the energy plots, and they are constructed formally rather than via differentiation -

AθPnu =
∑n

j=1 λ
θγjφj, and likewise for ut and utt as needed. Finally, the norms are

computed formally using the eigenvector structure, rather than by direct integration,

so that e.g.
∥∥A1/2Pnu(t)

∥∥2
=
(
A1/2Pnu(t), A1/2Pnu(t)

)
=
∑n

j=1 |λj|γj(t)2.

6.1.2 Location of the spectrum

First, we treat the operator A simply as an abstract unbounded operator with an

unbounded collection of positive eigenvalues. We model this case by treating λj as a

continous parameter ν, 0 < ν →∞, and compute the eigenvalues of M as a function

of ν. A concrete operator A with particular eigenvalues will have a spectrum belong-

ing to this set. This will allow us to demonstrate the overall effect of the parameters

on the location of the spectrum.

As discussed in [8] and [13], there are two key values determining the spectral

behavior for the continuous problem. First the value p1 = γ
2τ

, which determines

a vertical asymptote at Reλ = −p1, second the value p2 = c2

b
which determines
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an interval [−γ
τ
− p2,−p2] containing real spectral values. The spectrum for the

continuous linear problem in fact has continuous spectrum in this interval.

In figure 6.1 we show a computation for α = 1.5, b = 2, c = 1, τ = 1, so that

γ = 1 > 0, p1 = 0.5, p2 = 0.5. The parameter ν representing the eigenvalues runs

from .005 to 1000 for this figure. Note the matching of p1 and p2 creates a matching

of the asymptote in the spectrum with the band along the real axis.

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

-3

-2

-1

1

2

3

Figure 6.1: α = 1.5, b = 2, c = 1, τ = 1, ν > .005

We see that the stability can be quite poor - although we have placed the asymp-

tote and the band at Reλ = −0.5, we have parts of the spectrum reaching out to

the imaginary axis. This instability is partly caused by the low range of eigenvalues
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- increasing the minimal value for ν to .5 and then 1 creates the spectra as shown in

figures 6.2 and 6.3.
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Figure 6.2: α = 1.5, b = 2, c = 1, τ = 1, ν > .5
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Figure 6.3: α = 1.5, b = 2, c = 1, τ = 1, ν > 1

This situation creates a paried question - although the asymptote and interval

control the large-mode behavior of the spectrum, the placement of the finitely many

low eigenvalues tending toward the axis is unpleasant. How do the parameters of

the problem impact the placement of the low eigenvalues? We chart in figure 6.4 the

impact on the ν = 2 eigenvalue as b varies. We repeat the procedure, holding b fixed

and varying α, in figure 6.5. The impact of c is in 6.6, and τ is tracked in 6.7.
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Figure 6.4: Variation of the ν = 2 eigenvalue with α = 1.5, c = τ = 1, b varying from

1 to 5. Square, circle, and diamond are b = 1, 2.5, 5 respectively.
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Figure 6.5: Variation of the ν = 2 eigenvalue with b = 2, c = τ = 1, α varying from 1

to 5. Square, circle, and diamond are α = 1, 2.5, 5 respectively.
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Figure 6.6: Variation of the ν = 2 eigenvalue with α = 3, b = 4, τ = 1, c varying from

1 to 2.4. Square, circle, and diamond are c = 1, 1.7, 2.4 respectively.
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Figure 6.7: Variation of the ν = 2 eigenvalue with α = 1.5, b = 2, c = 1, τ varying

from 1 to 2.9. Square, circle, and diamond are τ = 1, 1.95, 2.9 respectively.
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Observe in 6.5 that there appears to be an optimal selection of α with respect to

the location of the two complex sections. This optimal placement changes for differing

eigenvalues as we see below in figures 6.8 and 6.9.
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Figure 6.8: Comparison of ν = 2 and ν = 3 with variation in α. Solid and dashed

line respectively correspond to ν = 2, 3.
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Figure 6.9: Approximately optimal pairs are ν = 2, α = 3 and ν = 3, α = 4. Solid

and dashed lines indicate ν = 2, 3, circle indicates α = 3 and square marks α = 4.

Thus as we see the placement of the low modes is a sensitive issue.

6.1.3 Illustration of stability results

We include some energy plots for solutions obtained from the spectral method, in the

case Ω = [0, 1], A = ∆ = d2

dx2 , with 0-Dirichlet boundary conditions, H = L2 (Ω),

D(A1/2) = H1
0 (Ω), D(A) = H2 (Ω) ∩ H1

0 (Ω). Then the associated eigenvectors

of A are φi =
√

2 sin (iπx) with eigenvalues λi = i2π2. The initial data used are

u0 = 100x(x− 1), u1 = u2 = 0.
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First we show instability in the case γ < 0

2 4 6 8 10

500

1000

1500

2000

Figure 6.10: Instability in the D(A1/2) × D(A1/2) × H norm when γ = −1 < 0,

α = 1, b = .5, c = 1, τ = 1, n = 50. The x-axis plots time, y-axis plots energy in the

indicated norm.
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Figure 6.11: Instability in the D(A) × D(A1/2) × H norm when γ = −1 < 0, α =

1, b = .5, c = 1, τ = 1, n = 50. The x-axis plots time, y-axis plots energy in the

indicated norm.

Now we show exponential stability for γ > 0
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Figure 6.12: Stability in the D(A1/2)×D(A1/2)×H norm when γ = .5 > 0, α = 1, b =

2, c = 1, τ = 1, n = 50. The x-axis plots time, y-axis plots energy in the indicated

norm.
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Figure 6.13: Stability in the D(A)×D(A1/2)×H norm when γ = .5 > 0, α = 1, b =

2, c = 1, τ = 1, n = 50. The x-axis plots time, y-axis plots energy in the indicated

norm.
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Finally we see a sort of conservation in the case γ = 0,
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Figure 6.14: Boundedness in the D(A1/2)×D(A1/2)×H norm when γ = 0, α = 1, b =

1, c = 1, τ = 1, n = 50. The x-axis plots time, y-axis plots energy in the indicated

norm.
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Figure 6.15: Boundedness in the D(A)×D(A1/2)×H norm when γ = 0, α = 1, b =

1, c = 1, τ = 1, n = 50. The x-axis plots time, y-axis plots energy in the indicated

norm.
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We should comment on the oscillation in these graphs, especially in those demon-

strating the stability. One might expect that the result from the energy calculations

was that the derivative of the energy was strictly negative when γ > 0 - see for ex-

ample equation (3.1.4) - and therefore these graphs should not admit any increase

at any point. However closer inspection will show that the quantities in the energy

calculations which have negative derivative are not the full norm in either the higher

or lower energy. Rather it is only part of the norm, and also is partially in terms

of the other variables z and zt. We include here a graph of the term guarenteed to

strictly decay from the calculus:
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Figure 6.16: Monotone decrease of b
2

∥∥∥A1/2(ut + c2

b
u)
∥∥∥2

+ τ
2

∥∥∥utt + c2

b
ut

∥∥∥2

+ c2

2b
γ ‖ut‖2

when γ = .5, α = 1, b = 2, c = 1, τ = 1, n = 50. The x-axis plots time, y-axis plots

the indicated quantity.

A final figure is a brief attempt at a demonstration of the convergence properties
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of this method. Of course as the continuous solution is inaccessible we cannot directly

show the error. However, we can demonstrate the accumulation of the energy plots

with variation in n. It turns out to be very difficult to producde an interesting plot

of this phenomenon because the convergence is quite fast. Also as can be seen from

the convergence theory for the spectral method, there is an exponential time weight

in the error that strengthens convergence at larger times.
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Figure 6.17: Accumulation of the energy in the D(A1/2) × D(A1/2) × H norm for

γ = .5 > 0, α = 1, b = 2, c = 1, τ = 1, lines in increasing order are n = 1, 5, 10, 25.

The x-axis is time and the y-axis is the norm of the solution.
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Chapter 7

Appendices

7.1 A Gronwall Inequality

The following lemma appears in [3]:

Lemma 7.1.1. Let m(t) ∈ L1(0, T ; R) be a positive function, let a ≥ 0 be a constant.

Suppose φ(t) ∈ C[0, T ] is a real-valued function satisfying

1

2
φ2(t) ≤ 1

2
a2 +

∫ t

0

m(s)φ(s) ds

for each t ∈ [0, T ]. Then,

|φ(t)| ≤ a+

∫ t

0

m(s) ds

for all t in[0, T ].

It also appears with a slightly different proof in [6] The proof is repeated here for

convenience.

Proof. Fix an ε > 0 and define ψε(t) = 1
2
(a + ε)2 +

∫ t

0

m(s)φ(s) ds. Then note that



98

since φ is continuous and m is L1, dψε
dt

= m(t)φ(t), and 1
2
φ2(t) = ψ0(t) ≤ ψε(t). Thus,

dψε(t)

dt
≤ m(t)

√
2
√
ψε(t)

Now, φε(t) ≥ 1
2
ε2, so

√
ψε(t) is differentiable for each t and

d

dt

√
ψε(t) =

1

2
√
ψε(t)

dψε
dt
≤ 1√

2
m(t)

Thus √
ψε(t) ≤

√
ψε(0) +

1√
2

∫ t

0

m(s) ds

And so finally

|φ(t)| ≤
√

2
√
ψε(t) ≤ a+ ε+

∫ t

0

m(s) ds

Let ε go to zero and we have the claimed inequality.



Bibliography

[1] I. Lasiecka B. Kaltenbacher. “Global existence and exponential decay rates for

the Westervelt equation”. In: Discrete and Continuous Dynamical Systems 2.3

(2009), pp. 508–528.

[2] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equa-

tions. Springer, 2010.
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