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Abstract—The NBA, MLB, NFL and other professional 
leagues utilize sports analytics, but the potential of professional 
golf analytics is largely untapped. Instead of using data-driven 
methods connecting practice to tournament performance, training 
regimens are often based on conventional wisdom. How can data 
be used to recommend training regimens for golfers to improve 
performance? We partnered with golf analytics company, 
GameForge, to develop tools and methods for golf analytics to 
capture these markets, including the development of a state-based 
training recommendation system. We used Gameforge, PGA, and 
LPGA data to build markov models using k-means clustering, and 
linear models. These two model types form the basis of our 
recommendation system. In the future, these methods can be used 
to inform training decisions, particularly as more data is collected. 
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I. INTRODUCTION 
The analytics industry has completely changed the sports 

landscape in the past decade as the NBA, NFL, MLB and other 
professional leagues leverage analytics to increase revenue, 
improve player performance, enhance team quality, or prevent 
injury [1][2][3]. However, the potential of professional golf 
analytics has yet to be tapped. According to the National Golf 
Foundation, there are as many as 24.2 million golfers in the 
United States at both the recreational and professional levels [4]. 
While the PGA collects data, it is not analyzed and the statistics 
of elite amateurs and recreational golfers remain largely 
uncollected. These large sources of data present an opporrtunity 
to bring analytics to the forefront of the golf community, with a 
range of applications related to player performance available [5]. 

Alongside GameForge Golf, a golf analytics company, 
researchers created methods for golf analytics, including the 
development of a data-driven training recommendation system 
[6]. GameForge collects separate data from the PGA TOUR 
describing clients’ tournament performance and performance on 
GameForge drills. By integrating analysis performed on 
GameForge and professional data, models suggesting specific 
drills allowing golfers to transition over a season to improved 
performance states given their current level of play can be built. 
The goal of this research is to provide GameForge with a 
methodology for improving their drill recommendation system. 

Our first hypothesis, Phase 1, is that drill performance will 
correlate with on-course performance. The second, Phase 2, is 
that we can assess which skills cause changes in performance.  

A. Phase 1 
In order to build an effective training system, there must be 

a deeper understanding of the drills’ influence on scoring and 
how players transition into stronger or weaker golfers. We 

expected drills would improve a player’s score in a related skill 
category – for example, putting drills would improve a player’s 
putting during a round of play. The longevity of a drill’s effect 
on a skill was analyzed to understand the frequency and duration 
a drill should be performed to achieve performance goals. We 
expected players to be clustered based off of their performance 
and show clear transitions from one cluster to another. We 
expected skill improvements to be a common catalyst in the 
transition from one cluster of player type to another. 
Considering different types of players at different skill levels, it 
is expected that certain drills will prove more helpful for each 
circumstance. The next step was to integrate the findings 
between both data sets to recommend a drill that would improve 
a specific characteristic of a player’s game, which would then 
transition them to a better state of player type. 

B. Phase 2 
Phase 2 involved understanding how golfers transition into 

better players and identifying which skills are most indicative of 
each transition. PGA and LPGA TOUR round data were used to 
analyze how players go from a lower-level player to an elite 
player. Describing the states of each player type, transitions 
from state to state, and the catalysts for these transitions provides 
GameForge the models and informative statistics to properly 
train their users. Using a larger amount of data from professional 
golfers allows us to dive deeper into analysis and find more 
concrete results. This phase answers questions like what kind of 
players can transition from the bottom tier of the TOUR into a 
tier of top-ten players, which skills are most important for that 
transition, and how likely that transition is for a particular golfer. 

Moving forward, the methodology and findings provided by 
Phases 1 and 2 will give GameForge a robust framework as 
GameForge users input more data. More data will bridge the 
connection between GameForge drills and rounds played grows, 
increasing the accuracy and specificity of findings. 

II. DATA AND ASSOCIATED ISSUES 
Two unique data sources define Phases 1 and 2 of analysis. 

A. Phase 1 
The first source of data was user input into the GameForge 

site. Data values are proprietary metrics created by GameForge 
to capture performance on drills and rounds, stored in two 
separate datasets dating from 2017 to the present. The drill 
dataset includes classification of each drill by skill and game 
category. All 2,000+ drills can be placed in one of 73 skill 
categories which then map into one of 11 game categories. 

Early entries in the round data set included fewer variables 
as GameForge began tracking new variables over time. To keep 
data consistent, researchers narrowed the round dataset from 
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140,000 rows to 850 rows, only including entries with all 
variables. This was one of the primary limitations of the dataset; 
cleansing reduced the data to a fraction of its original size. A 
second limitation of this data was the lack of overlap between 
the drill and round datasets. In many cases, drill and round data 
would be recorded by players in alternating rather than 
concurrent intervals. This became problematic for the linear 
models developed in Phase 1 of analysis; there were few cases 
in which a group of drill entries were followed immediately by 
a round entry made by the same player [7]. This made it hard to 
use the drill data as predictors for round performance. The sparse 
nature of the round data also impacted analysis for the Markov 
models [8]. To create a more robust model, rather than creating 
a new state for each core score (a GameForge metric similar to 
Relative to Par Score (RTP Score)), core scores were binned so 
that the model had fewer states with more data in each state [9]. 
Data issues were a primary driver in model iteration during 
Phase 1 and necessitated the need for analysis during Phase 2.  

B. Phase 2 
The second source of data was ShotLink data collected and 

made publicly available by the PGA and LPGA TOUR’s[10].  

Analysis of PGA TOUR data used the event level dataset. 
The dataset spans from 1983 to 2019 and includes 201 total 
variables. After an initial cleaning, a new dataset was created 
containing 133 common variables and spanning from 1999 to 
2019. The data was then pared to 16 relevant variables identified 
by GameForge. Before analysis, the data was aggregated so that 
each entry contains average values for a single player in a single 
year. To supplement this data the PGA TOUR website was 
scraped to find world ranking for each player each year, a 
variable not included originally. To maintain consistency, the 
dataset was shortened to the most recent 20 years. Another issue 
was the type of data stored. The GameForge site collects 
different metrics than the historical PGA TOUR data. These 
metrics are chosen based on analysis by the GameForge team. 
Lastly, historical PGA TOUR data only includes professional 
golfers, while GameForge data includes both professionals and 
amateurs. In order to apply conclusions formed from this part of 
the analysis to the GameForge users, researchers assumed 
professionals and amateurs are from the same population.  

The LPGA dataset used in analysis spans from 1992 to 2019 
and contains 19 distinct variables, including a money rank 
variable. The data contains entries for each player every year. 
The money rank category was binned to create more data in each 
category. The primary issues with this dataset are again the type 
of data stored and the assumption that the LPGA players are 
from the same population as GameForge’s amateur players. 

For both the PGA TOUR and LPGA data, a Markov model 
was used to represent player transitions across years. The data 
only had enough transitions to make a 2nd order model [11]. 

III. MODELS  

A. Phase 1: Markov Models 
Four iterations of Markov models were used to describe how 

players either worsen or improve between rounds. State 
definition is critical for the success of these models [12]. These 
models used a subset of the GameForge round data, only 

including rounds with either RTP Scores or Core Scores of -5 to 
+5. RTP Score is a common metric in golf describing a player’s 
score in relation to the expected score (or “par”) on a course [13]. 
Core Score is calculated by subtracting a player’s birdies from 
their bogeys during a round, reducing the noise from double 
bogeys or eagles. The first model categorized transitions 
between RTP Scores (used as states), analyzing the frequency 
with which players shoot specific scores following a given prior 
round. The second model was nearly identical, but used Core 
Score as the defined states instead of RTP Scores. Sparseness of 
data necessitated a third model where the 11 separate Core Score 
states were grouped into 5 Core Score bins, decreasing the 
number of possible transitions from 121 to 25, and increasing 
the observed instances of each possible transition. Finally, 
continuing to use Core Score bins as states, separate Markov 
models were created for instances of players who performed 
specific drills between two rounds and those who did not 
perform the specified drill, potentially revealing different 
frequencies of transition depending on drill performance. 

B. Phase 1: Linear Models 
Phase 1 also included five candidate linear models, 

summarized in Table I [14]. Linear models would ideally use 
specific drills as independent variables, but sparse data 
necessitated the use of skill or game categories instead. In 
candidate model 1, no lookback period was defined for 
independent variables, violating the independence property. To 
maintain this property, candidate model 2 used only  a player’s 
most recent round – each player's performance on drills was only 
associated with one data entry. Candidate model 3 used putting 
game stats as the dependent variable.  RTP score and core score 
were used as independent variables. Candidate model 4, named 
the delta model, aimed to capture the decaying impact of a drill 
on a golfer’s performance in a round by observing the change in 
players performance. Candidate model 5 was a delta model 
aggregating average drill score and frequency variables over a 
game category rather than a skill category. 

TABLE I.  SUMMARY OF LINEAR MODELS 

 

C. Phase 1: Feature Selection Model 
Third, researchers used a feature selection model called the 

Extra Trees Classifier, a subset of the Random Forest Classifier 
[15]. The Extra Trees Classifier is an algorithm aggregating the 
results of multiple de-correlated decision trees in a random 
forest to output its classification result [16]. Using this ensemble 



method helped determine which features for each RTP Score 
cluster of players were most significant. Knowing how 
important each feature was in our model is vital to understanding 
how the model predicts, allowing easier explanation of the 
model. Researchers ranked features of most importance for each 
cluster and identified how features changed between clusters. 

D. Phase 2: LPGA Models 
Two Markov models were made to describe how individual 

LPGA professionals transition between money ranks from year 
to year. Money ranks were binned into 5 categories: Positions 1-
10, 11-30, 31-50, 51-80, and Outside the Top 80. Using these 
bins as states, both a 1st order and 2nd order Markov model were 
created. The 1st order model only considered a player’s previous 
season as a prior state, while the 2nd order model considered a 
player’s previous two seasons as a prior state – increasing the 
number of prior states from 5 to 25 and creating thinner data in 
the 2nd order model. For example, the 1st order model would 
consider a player who went from 31-50, to 11-30, and into 1-10 
the same as a player who transitioned from 51-80, to 11-30, and 
into 1-10, while the 2nd order model would have considered 
these two players to have been in different prior states. 

E. Phase 2: PGA Models 
A 1st order Markov model was used to describe player 

transitions from year to year. Using K-means clustering, initially 
with the Hartigan-Wong algorithm and Euclidean distance 
method, players were clustered into four unique groups based on 
their year-long performance [17]. The 1st order model was made 
up of 4 states, one for each cluster, but did not hold the 
Markovian property for most transitions, necessitating a 2nd 
order model. This model, like the 2nd order LPGA model, took 
into account a player’s previous two seasons as a prior state. To 
create the 2nd order Markov model, both the Lloyd-Forgy and 
Hartigan-Wong algorithms, as well as both the Euclidean and 
Manhattan distance methods, were used. Three overall 
combinations were tested, each of which produced a model with 
roughly two-thirds of transitions maintaining the Markovian 
property [18]. Further analysis of the 2nd order model 
exclusively used results from the Hartigan-Wong algorithm and 
Euclidean distance method. Because the states were based on 
clusters rather than rankings, researchers analyzed players’ 
performance in each cluster. Comparisons of cluster were made 
along both world-ranking and performance in input variables. 

IV. RESULTS 

A. Phase 1: Markov Models 

TABLE II.  RTP SCORE MARKOV TRANSITION MATRIX 

 

Table II shows the Markov Transition Matrix using 11 RTP 
Scores as states. The matrix shows the likelihood of shooting a 
particular score in the “After” round given a specific score in the 
“Before” round. For example, if a player shot -1 “Before”, he or 
she would have a 14.12% chance of repeating that score in the 
next round, but only an 11.33% chance of improving to -2.  

TABLE III.  CORE SCORE BINS MARKOV TRANSITION MATRIX 

 
Table III uses the 5 Core Score bins as states, which resulted 

in more robust findings because of the reduced dimensionality.  
The states in Table II are defined differently than in Table I, but 
the matrix reads the same. For example, a player who achieved 
a Core Score of -3 or -2 in the before round would have a 27.54% 
chance of repeating a Core Score of -3 or -2 in the after round. 

TABLE IV.  CORE SCORE BIN MARKOV TRANSITION MATRIX: DRILL IN 
GAME CATEGORY 5 PERFORMED 

 

TABLE V.  CORE SCORE BIN MARKOV TRANSITION MATRIX: DRILL IN 
GAME CATEGORY 5 NOT PERFORMED 

 

TABLE VI.  CORE SCORE BIN MARKOV TRANSITION MATRIX: SUMMARY 
TABLE OF TABLES III & IV 

 
The models in Tables II and III were largely descriptive, 

while the models in Tables IV, V, and VI are more analytical. 
Separate transition matrices were created depending on if a drill 
from a specific game category was performed. Of the 6 game 
categories tested (as the 5 other categories did not have enough 
data), only drills in Game Category 5 showed statistical 
significance. Performing a drill in Game Category 5 between 



two consecutive rounds made players both more likely to stay in 
the same Core Score bin and less likely to move to a worse bin. 

B. Phase 1: Linear Models 
Candidate model 1 was a step-model predicting RTP Score 

from an interaction model with all variables. This model had an 
adjusted R-squared of 0.089, but violated the independence 
assumption of linear models. If a player had multiple rounds, 
the same drills were used as predictors for multiple rounds. 

Candidate model 2 improved on model 1 by using each 
player in the data only once. The version of candidate model 2 
predicting Core Score had an adjusted R-squared value of 
0.059; the version predicting RTP Score had a value of 0.053. 

To improve predictive value, candidate model 3 used game 
statistics as the independent variable. The version of candidate 
model 3 predicting total putts had an adjusted R-squared value 
of 0.036; the version predicting greens-in-regulation (GIR) had 
a value of 0.08. These values, and a lack of normality in 
candidate model 3, led to the creation of candidate model 4. 

Candidate model 4, used the algorithm shown in Figure 1: 

 
Fig. 1. Algorithm used to construct Candidate Model 4. 

This process was performed manually and produced too few 
data points for a model, so we abstracted further by applying the 
same method at the game category level for candidate model 5. 
This model had a higher adjusted r-squared value  and a 
distribution that was closer to normal. 

Candidate model 5 was our best linear model, as it produced 
both the highest adjusted R-squared value and met the 
assumptions for linear modeling best, despite having just 50 data 
points. This version of candidate model 5 was a step model 
predicting delta core score. The statistically significant 
predictors were time span, frequency, delta one putts, dbombs, 
and drills per day. Delta relative to par score was not included 
as a predictor. The adjusted R-squared value was 0.295, 
meaning almost 30 percent of variability in the change in core 
score of players was explained by our model. 

When more data is available at the skill and drill level, this 
method could be applied to create a more specific delta model. 
At the drill level, this model would help determine which drills 
improve core scores, and better training regimens could be 
determined to better improve a specific area of a player’s game. 

C. Phase 1: Feature Selection Model 
In three unique clusters – rounds with RTP Scores of -5, even 

par, and +5 –features of importance were identified. In the +5 
cluster (denoting worst performance), the five features most 
important were Par-5 Scoring, Up & Downs, 1-putts, 3-putts and 

P6 percentage. In the even par cluster, the five features were 1-
putts, GIR’s, In-Positions, P6 percentage, and Effective-Green 
Conversions. In the -5 cluster, the most important features were 
Par-5 Scoring, 1-putts, Bombs, In-Position conversions, and 
Fairways. Identifying features relevant to specific levels of play 
provides a potential pathway for players to improve RTP Scores.  

D. Phase 2: LPGA Models 
The model in Table VII characterizes the frequency of 

transitions on the LPGA TOUR – 78.83% of players Outside the 
Top 80 do not move into the Top 80, and the best chance to 
become a Top 10 player is to have already been a successful Top 
10 (55.85% chance), or 11-30 (29.81%), player. The nature of 
transition changes depending on which two states a player is 
transitioning between. Certain statistics, such as driving 
accuracy or putting average, significantly improve when moving 
from Outside the Top 80 into the 51-80 bracket, and 
significantly worsen when making the opposite transition. These 
same statistics do not significantly change when moving 
between more elite money brackets. Changes in GIR are 
significant regardless of which brackets players move between. 

TABLE VII.  1ST ORDER LPGA MARKOV TRANSITION MATRIX 

 
While data in Table VIII was sparse, conclusions can still be 

drawn. For example, the matrix says a golfer is more likely to 
remain in the Top 10 if they had spent the previous two years 
there than if they had spent one prior year in the Top 10. This 
also holds for golfers Outside the Top 80. Preliminary chi-
square results show this model could be a better fit to the 
GameForge data, but as more years of LPGA results accrue it 
will be easier to tell which model is optimal.  

TABLE VIII.  2ND ORDER LPGA MARKOV TRANSITION MATRIX 

 



E. Phase 2: PGA Models 
Aggregated data described in the data section was clustered 

into 4 groups based on 16 relevant variables. The average world-
ranking of each cluster is shown in Table X. Table IX describes 
the standardized performance of each cluster in each of the 16 
variables. On average, players in cluster 1 perform the best, 
while players in cluster 4 perform the worst. Players in clusters 
2 and 3 perform better than cluster 4 and worse than cluster 1. 

TABLE IX.  STANDARDIZED PERFORMANCE OF 4 PGA TOUR CLUSTER 
IN 16 INPUT VARIABLES 

 

TABLE X.  AVERAGE WORLD RANKING OF 4 PGA TOUR CLUSTER 

 
Consistent with the world-ranking averages, players in 

Cluster 1 perform best in most categories while players in 
Cluster 4 perform worst in most categories. Comparing Clusters 
2 and 3, players in Cluster 2 perform worse in recovery skills 
such as putting, short game, or sand play, while players in 
Cluster 3 excel in these skills but perform worse tee-to-green 
ball-striking metrics such as Total GIR or Fairways Hit.  

TABLE XI.  2ND ORDER PGA TOUR MARKOV MODEL 

 

Table XI uses the 4 Clusters as states in a 2nd order Markov 
model – only a third of transitions in a 1st order model met the 
Markovian property. The 2nd order model uses a player’s prior 
two seasons as a prior state – a player transitioning from row 
(2,4) to column 1 will have moved, in consecutive years, from 
Cluster 2 to Cluster 4 and into Cluster 1. Cluster 4 players 
looking to improve might move directly into Cluster 1 but are 
more likely to first move into Cluster 2 or 3. This suggests there 
are two paths for improvement. However, conclusions should be 
weighed tentatively; only 60% of transitions held the Markovian 
property. Different algorithms and distance methods could be 
tried. As data grows, a 3rd order model might also be appropriate. 

F. Phase 2: PGA Model Case Study 
Markov models could be useful in determining when and 

how a player’s game is changing by analyzing how a player 
moves through states. Once a specific part of a player’s game is 
highlighted for improvement, the linear delta model approach 
from phase I could inform the player of drills to perform. 

1) PGA TOUR player Jordan Spieth has been a cluster 1 
player since 2013, despite slumping over the past few years. His 
clusters and probability of being in each cluster are in Figure 2. 

 
Fig. 2. Jordan Spieth’s cluster classifications and probabilities (2010-2019) 

Probabilities in Figure 2 show the most likely cluster is 1 for 
years 2013-2019; however, there is a drift towards cluster 3 in 
2014 and 2019. To explore this question in depth, we graphed 
the standardized scores of Spieth’s 2016-2019 performance 
metrics beside the centroids of Cluster 1 (shown in Figure 3). 

 
Fig. 3. Spieth’s standardized performance metrics vs. Cluster 1 centroids 

Based on Figure 3, Spieth’s game still generally resembles 
the centroids of a cluster 1 player represented by the black bars. 
Two exceptions are Spieth’s Fairways and Pars, as he performed 
worse in these categories than expected, particularly in 2019. 



 
Fig. 4. Spieth’s standardized performance metrics vs. Cluster 2 centroids 

 
Fig. 5. Spieth’s standardized performance metrics vs. Cluster 4 centroids 

Figures 4 and 5 compare Spieth’s 2016-2019 performance to 
Clusters 2 and 3. His statistics do not fit either cluster well, but 
seem to align closer with cluster 3 in terms of Overall Putting 
Average, One-putts, Fairways and Pars. He is also playing closer 
to a Cluster 2 player than a Cluster 1 player in Pars. 

This information could be helpful in determining what types 
of drills might improve Spieth’s fairways and pars. Spieth might 
consider performing drills aimed at improving these metrics 
specifically for a Cluster 3 player. This could also be used in 
conjunction with the delta model to determine which drills might 
be helpful in improving this part of a player’s game. 

V. RECOMMENDATIONS AND FUTURE WORK 
This research provides GameForge with framework for 

implementing an analytics-based training recommendation 
system for its clients. As the amount of data in the GameForge 
databases increases, insights from analysis will increase as well. 
Once data reaches an appropriate level, a system might be 
created that takes into account the type of player a golfer is and 
recommend drills tailored to specific clusters of players.  

Future efforts might particularly concentrate on the 
possibility that 1st order, or even 2nd order Markov models, do 
not fit the data as well as higher-order models. Preliminary chi-
squared tests suggested higher-order models may fit better, but 
current data is too sparse to test such models. As more rounds 
are input to GameForge, such models will become feasible. 
Another potential next step is an analysis of the impetus behind 
the observed state changes on both the PGA and LPGA TOURs. 
The performance-based clustering done on PGA TOUR players 
could be performed on LPGA players. Analyses can be 

performed to determine exactly which variables – either 
GameForge metrics or round statistics – changed to cause 
improvement. This will benefit coaches designing specific 
training regimens to help pupil’s scoring. Specific drills could 
match to the metrics identified on the PGA and LPGA TOURs. 
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