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Abstract 

The emergence of Connected Automated Vehicle (CAV) has enabled a variety of 

Cooperative Automated Driving applications. Cooperative Adaptive Cruise Control 

(CACC), as the prevailing longitudinal control method for CAV allowing automated 

vehicle platooning, is claimed to bring enormous improvements in transportation 

efficiency and safety. However, such benefits of CACC cannot be easily unleashed in 

mixed traffic where CAVs are interacting with human-driven non-CAVs. 

The existing CACC cannot work effectively in mixed traffic environment due to two 

limitations. Firstly, when CACC vehicles follow a human-driven and/or unconnected 

vehicle, they fall back to Adaptive Cruise Control (ACC), which requires much longer 

headway and deteriorates the traffic stability. Secondly, CACC is unable to benefit 

connected human-driven vehicles (CHVs) which will also largely appear in the near 

future. The goal of this research is to address these critical limitations of CACC, by 

developing quasi-CACC applications that can fully utilize the benefits of vehicular 

connectivity and take effects in the near future. These applications are referred as “quasi--

CACC” because they aim at achieving the CACC-like behaviors while the equipped 

vehicles do not fully meet the operating requirements, especially in mixed traffic 

environment.  

To address the issue of unconnected vehicle in the traffic, a CACC algorithm with 

unconnected vehicle in the loop (CACCu) is proposed. Unlike the traditional CACC that 

requires a connected preceding vehicle, CACCu aims to closely follow an unconnected 

preceding vehicle utilizing the information from the further (connected) preceding 

vehicle. CACCu is designed to maintain string stability given various behaviors of 
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unconnected vehicles, without requiring identification process or extra information on the 

unconnected vehicles. A linear time-invariant CACCu on top of feedback-feedforward 

control structure of typical CACC is first designed. It is analytically proven that by 

attaching a filter of “virtual preceding vehicle” to the original CACC feedforward filter, 

the CACCu vehicle can stay string-stable at a gap significantly shorter than that required 

by ACC. The proposed CACCu along with ACC and Connected Cruise Control (CCC) 

were evaluated in high-fidelity simulations using real vehicle trajectory data from Next 

Generation Simulation (NGSIM) program and a physics-based vehicle dynamics model 

from PreScan. Results showed that CACCu avoided most of speed overshootings 

happening to ACC and CCC, indicating improved string stability. CACCu also led to 

overall 6~9% acceleration reduction, 35~49% spacing error reduction and 3~7% fuel 

saving from ACC. Compared with CCC, CACCu achieved 5~8% acceleration reduction, 

26~38% spacing error reduction and 2~3% fuel saving. These numbers indicated benefits 

of CACCu in safety, ride comfort and energy efficiency. Then, an Adaptive Model 

Predictive Control (A-MPC) approach is proposed to optimize the performance of 

CACCu. This method make use of both a priori knowledge on the human driver’s 

behaviors, and the real-time observation of the actual traffic situation. The simulation 

results indicated that this A-MPC CACCu can facilitate a more robust implementation.  

Moreover, the favorable behaviors of CACCu was validated in the field with real 

vehicles. CACCu reduced 10.82% acceleration RMS, 60.79% spacing error RMS and 

6.24% fuel consumption from ACC’s. Compared with human driving, CACCu reduced 

17.64% acceleration and 13.43% fuel consumption. The speed profiles showed that 

CACCu greatly attenuated the traffic disturbances while ACC and human driving tended 
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to amplify them. It was confirmed that CACCu can greatly attenuate the traffic 

disturbance and improve safety, comfort, and fuel efficiency. 

On the other hand, a human-in-the-loop CACC algorithm (hCACC) is developed 

for human-driven connected vehicle. In hCACC, the human driver remains engaged in 

the longitudinal control of the vehicle, while hCACC controller applies additional 

acceleration/deceleration on top of human actions according to the received status of 

preceding vehicle. By allowing coexistence of the automatic control and driver’s actions 

in a beneficial way, hCACC helps the human driver stabilize the vehicle more efficiently 

and safely. The proposed hCACC inherits the feedback-feedforward control structure and 

velocity-dependent spacing policy from typical CACC. String stability analysis shows 

that hCACC can offer broader string-stable ranges of human parameters than human 

driving alone or the existing human-in-the loop Connected Cruise Control (CCC), 

indicating a better capability to mitigate traffic disturbance with the uncertain human 

behaviors. The desirable properties of hCACC were validated in driving simulator 

experiments, which showed that hCACC could reduce 36.8% acceleration, 31.2% time-

gap fluctuation, 81.2% exposure time to unsafe driving situations, and 15.8% fuel 

consumption from those of human driving alone.  
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Chapter 1. Introduction 

1.1 Background 

Improving safety and efficiency are the two major goals for the future 

transportation systems. In 2018, over 1.35 million people worldwide died from traffic 

crashes, which have become now the leading cause of deaths of people aged 5-29 years 

[1], and congestion makes the average American commuter yearly waste nearly 7 full 

working days, which translated to over $1,000 in personal costs [2]. 

As most of roadway crashes are associated with drivers’ improper behaviors [3], 

Automated Vehicle (AV), featured by sensor technologies, has been considered the most 

effective way to prevent crashes. Society for Automotive Engineers (SAE) defined five 

different levels of vehicular automation [4], from single-function driver assistance (level 

1) to fully automated driving (level 5). The mainstream manufacturers tended to develop 

their automated vehicle progressively. In the past decades, a variety of Advanced Driver 

Assistance Systems (ADAS) have been commercialized and successfully implemented in 

the fleet [5], [6]. These ADASs consist of Adaptive Cruise Control (ACC), Lane Keeping 

Assist (LKA), automatic lane change, automatic parking, etc. By enabling single or 

integrating multiple ADAS applications, Leve-1 to Level-3 vehicular automations have 

been be achieved. On the other hand, technology companies (e.g., Waymo) defied the 

progressive roadmap and focus on fully automated (Level-5) vehicle. These self-driving 

vehicles have been extensively tested in certain areas of America and show lower crash 

rates per million miles than human drivers do (2.19 vs 6.06) [7]. However, the massive 

implementation of them in near future is unlikely due to the high cost of the required 

computing capability and sensors, especially the long-range Lidar [8].  
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Another cost-effective approach to enhancing safety and efficiency of 

transportation is vehicular connectivity. Equipped with wireless communication device, 

an AV become a Connected and Automated Vehicle (CAV). The major advantage of 

CAV is that the Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 

communications enable the equipped vehicles to drive not only automatically but also 

cooperatively, bringing additional benefits than traditional Automated Vehicles (AV) can 

do. To promote vehicles’ connectivity, the governments in U.S., European Union, Asian 

countries and Australia have respectively depicted the short/long-term plans for vehicular 

connectivity [9]. The international organizations have been seeking standardization of 

vehicular communication. In 2010, Institute of Electrical and Electronics Engineers 

(IEEE) formally approved the IEEE 802.11p standard, which resembles European ITS-

G5 and the U.S. DSRC [10], to enable wireless access in vehicular environments 

(WAVE). Recently, the 3rd Generation Partnership Project (3GPP) has released standards 

of Cellular-V2X (C-V2X) [11] and the Fifth-generation wireless technology (5G) [12], 

which have been two strong candidates for vehicular communication worldwide.     

CAV is drawing increasing research attention and thus a plenty of CAV 

applications have been developed. Aided by V2I communication, speed harmonization 

algorithm for CAV [13] was proposed to optimize speed of CAVs before they enter a 

speed reduction zone. This helps prevent traffic break-downs and keeping bottlenecks 

operating at constant traffic feeds. As a result, remarkable reductions in fuel consumption 

and travel time can be reduced. CAV can also play an important role in intersections. 

Cooperative Vehicle Intersection Control (CVIC) [14], which aims to cancel the need for 

signal in intersections, can coordinate maneuvers of CAVs from all the approaches so that 
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they can safely cross the intersection without colliding with other vehicles. Compared 

with conventional actuated intersection control, CVIC can reduce 99% stop delay, 33% of 

total travel time and 44% fuel consumption. The same ideal can be applied to ramp 

merging problem. Coordinated Ramp Control (CRC) [15] was proposed to avoid 

conflicting trajectories of vehicles on ramp and mainstream while minimizing these 

vehicles’ speed fluctuations. It is noted that CRC can be operated either in centralized 

form with V2I communication or decentralized form with V2V communication [15].  

The most frequent use of V2V communication is in Cooperative Adaptive Cruise 

Control (CACC) or platooning [16]. The instant situation awareness supported by V2V 

communication allows the CAVs to preview the traffic situation, and thus precisely 

maintain a safe inter-vehicle time gap or distance gap. In addition to the longitudinal 

motion control, cooperative lane change/merging have been developed [17]. By jointly 

controlling both longitudinal and lateral motions of vehicles in adjacent lanes, the lane 

change or merge-in can be accomplished safely and smoothly. These vehicle-level CAV 

applications have been extensively tested and validated in the field [18], [19]. 

Nevertheless, the promised benefits of CAV may not be easily unleashed in the 

near future when CAVs are mixed with large numbers of non-CAVs in the traffic. 

Although governments and manufacturers worldwide are making effort to promote 

vehicular connectivity [9], CAVs are not likely to gain a dominant Market Penetration 

Rate (MPR) in the next two decades [20]. It was also predicted that the future growth of 

AV would be slower than that of Connected Vehicle (CV) due to the relatively low cost 

and possible mandate of connectivity [20]. NHTSA has been pursuing a mandate of 

connectivity on light vehicles since 2016 [21], and major manufacturers (such as Toyota 
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and Ford) are planning broad deployments of V2V communication anyway starting 

around 2022. An optimistic prediction [20] is that the MPR of Connected Vehicles (CV) 

in the U.S. would grow up to 98% in 2030. However, this does not necessarily mean that 

CAVs would dominate the market. It is likely that only 25%~60% vehicles would be 

automated vehicles with ACC in 2030 [20]. This leads to a more complicated situation 

where a large portion of CVs would be still driven by human. Unlocking the potential of 

vehicular connectivity on both CAVs and Connected Human-driven Vehicles (CHV) in 

the mixed traffic is a fascinating but challenging task. 

1.2 Motivations 

Among all the CAV applications, Cooperative Adaptive Cruise Control (CACC), 

developed from Adaptive Cruise Control (ACC), has become one of the most promising 

and ready-to-go longitudinal control strategies. CACC utilizes the acceleration/ intended 

acceleration sent from preceding vehicle(s) to quickly respond to the speed perturbation 

from downstream. This feature allows the CACC vehicle to stably travel in short time 

headways (e.g., 0.6s [22]) that could not be achieved easily by ACC or human drivers.  

CACC only requires level-1 vehicular automation but previous studies have revealed its 

great potentials, including doubling the roadway throughput [23], [24] and considerable 

reduction in fuel consumption and greenhouse gas emissions of vehicles [25]–[27]. 

Unfortunately, like many CAV applications, CACC’s usability is inevitably restrained by 

the low adoption rate of CAVs in the early stage of implementation [23]–[27]. While 

there have been a variety of CACC systems [28]–[32] developed and tested, they share 

the same limitations in the mixed traffic:  
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1) First, CACC vehicle requires the nearest preceding vehicle to be a CAV or at 

least CHV that can transmit its status, otherwise CACC falls back to ACC 

with a much longer headway; 

2) Second, the CACC vehicle must be both connected and automated. Although 

CHVs can facilitate CACC operations by spreading information to CAV 

followers, CHVs gain no benefit from it. As pointed out by [33], CHVs would 

have neither a shorter gap to deter cut-ins nor a fuel saving as the CAV 

followers do. 

Although a few previous works have attempted to address CACC from its first 

dilemma, but they tend to introduce new problems that limit their implementations. For 

example, graceful degradation of CACC (dCACC) [34] proposed to estimate preceding 

vehicle’s acceleration with radar sensor when the communication is available, but it 

turned out that the ride comfort would be sacrificed due to the remarkable estimation 

noise. Connected Cruise Control (CCC) explored the benefits of communication with 

out-line-of-sight preceding vehicles when the closest one is unconnected, but it required 

additional information on behavior pattern of the unconnected vehicle, which is not easy 

to obtain in real traffic. 

Therefore, CACC, as well as the existing complementary methods of CACC, are 

subject to their limited usability or feasibility in the mixed traffic environment. To 

sufficiently take full advantage of vehicular connectivity for the vehicle’s longitudinal 

control, more advanced CAV/CHV applications dedicated for mixed traffic are in need. 

1.3 Research goal and contributions 

The goal of this research is to adequately address the existing CACC’s limitations 

and fully harvest the benefits of vehicular connectivity, by developing two quasi-CACC 

applications, namely, CACC with unconnected vehicle (CACCu) and human-in-the-loop 
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CACC (hCACC). Fig. 1.1 illustrates how CACCu and hCACC would improve the traffic 

situation and throughput by extending the use of connectivity. CACCu is designed for 

CAV to closely follow an unconnected preceding vehicle, while hCACC is designed to 

assist human driver in CHV for safer and smoother response, using the received 

information of preceding. These applications are referred as “quasi-CACC” because they 

aim at partly achieving the favorable properties of CACC when the equipped vehicle 

does not meet the operational requirements of CACC i.e., having connected nearest 

preceding vehicle and being automatically driven.  

 

 

Fig. 1.1 Mixed traffic with and without quasi-CACC 
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There are three main contributions of this study:  

• The control design and analytical validation of CACCu, which aims to enable 

CAV to stably follow an unconnected vehicle in short spacing instead of falling 

back to ACC;  

• The control design and analytical validation of hCACC, which can improve the 

performance of CHV by copiloting with the human driver in beneficial ways; 

• Validations of the favorable performance (i.e., in string stability, safety, fuel 

efficiency, etc.) of quasi-CACC applications through high-fidelity simulations 

and field tests with real vehicles /human drivers. 
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Chapter 2. Literature Review 

This chapter reviews the existing research efforts in the cooperative automated 

car-following control of vehicles. Especially, the recent progresses of complementing 

CACC under the imperfect market penetration are covered in detail.  

2.1 ACC/CACC and string stability 

As one of the basic automated driving applications, Adaptive Cruise Control 

(ACC) has been commercialized and equipped in a portion of new cars [5]. Using 

onboard sensors (e.g., radar or lidar), ACC can automatically regulate the vehicle’s 

longitudinal motion to maintain a safe spacing from the preceding vehicle, thus the labor 

intensity of drivers can be greatly reduced.  

The most common ACC controller [35] adopts constant feedback gains in terms 

of inter-vehicle spacing error (the difference between actual spacing and desired spacing), 

and relative speed to the preceding vehicle. Some studies also utilize Proportional-

Derivative (PD) controller [30], [36], which regulates the spacing error and spacing error 

rate, for a better internal stability and damping effect on traffic disturbance. There were 

two popular spacing policy in car-following control: Constant-Distance-Gap (CDG) 

policy and Constant-Time-Gap (CTG) policy but most of the state-of-art ACC/CACC 

systems have turned to CTG. This is because not only it better complies with human’s 

expectation (i.e., the higher vehicle speed, the larger spacing), but also it makes “string 

stability” possible [35]. String stability refers to the property to attenuate the traffic 

disturbance from downstream [30], [37]. For a linear time-invariant system, string 

stability can be conveniently checked based on the system’s transfer function in 
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frequency domain [30], as the energies of a disturbance in time domain and in frequency 

are the same [38]. It was proven that ACC with CTG policy can guarantee string stability 

as either the feedback gains or desired time gap are sufficiently large [39].  

In real life, however, the feedback gains are constrained by the sensor noise and 

ride comfort requirement, thus ACC may need a time gap significantly longer than usual 

(e.g., >2.5s [30]) for the guaranteed string stability. Considering that production ACC 

systems are typically operated with desired time gap < 2s, string stability can hardly be 

fulfilled [40]. As ACC vehicles tend to be string-unstable, the speed/spacing fluctuations 

from the preceding vehicle would be amplified, causing shockwaves along the upstream. 

This could in turn lead to unnecessary fuel consumption, traffic congestion or even crash. 

An example of sting instability was demonstrated in [40], where seven commercial ACC 

vehicles were tested to travel as a platoon in headway of 1.5s. It was shown that an initial 

speed disturbance of 6 mph to the platoon was amplified to a 25 mph disturbance, and the 

last vehicle in the platoon was even observed to disengage ACC. Open-road test in [41] 

also indicated that there shall not be more than three or four ACC vehicles travelling 

successively due to string instability. 

On the bright side, ACC can be upgraded to CACC with better string stability by 

enabling V2V communications. Using these communications, a CACC vehicle can 

almost immediately obtain the preceding vehicle’s acceleration or intended acceleration, 

and then utilized it as a feedforward signal to help quickly respond to the speed 

perturbation from downstream. [22], [28]–[32]. As a result, CACC vehicles are able to 

safely travel in a headway as short as 0.6s with guaranteed string stability, which is 

difficult to achieve for human driver or ACC. Such short headway can directly increase 
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the roadway throughput, and the smooth behaviors of CACC vehicle can further improve 

the safety and quality of traffic flow [42]. Due to the favorable performances brought by 

string stability, it has become a primary design goal of CAV’s longitudinal control [32].  

In the past decade, CACC systems with different architectures and control 

methods have been proposed [43]. Based on communication topology, CACC can be 

briefly divided into three categories: predecessor-following (PF) CACC [30] which only 

communicates with the nearest preceding vehicle, predecessor-leader-following (PLF) 

CACC [22] which communicates with both the nearest preceding vehicle and platoon 

leader, and all-predecessor-following (APF) CACC [44] which requires communications 

with all the preceding vehicles.  

In terms of control method, the rule-based linear control has been frequently 

adopted in CACC demonstrations. A widely-accepted design of PF CACC was presented 

in [22], featured by feedback-feedforward control structure. PD controller was adopted as 

the feedback controller to regulate the states regarding to the immediately preceding 

vehicle. In addition, the acceleration of preceding vehicle (obtained via communication) 

served as feedforward signal. The purpose of feedforward control was to eliminate the 

spacing error, i.e., to apply zero-spacing-error policy. To this end, the acceleration of 

preceding vehicle was not directly used as the feedforward command, because applying 

the same acceleration with preceding vehicle only leads to zero relative speed. Instead, a 

feedforward filter was design based on the spacing policy and the identified vehicle 

dynamics model. It was shown that the filtered feedforward signal enables the CACC to 

drive at any desired time gap with guaranteed string stability, when communication delay 

and actuator delay of the vehicle are insignificant. Even in the realistic conditions, the 
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CACC can shorten the desired time gap to one third that required by ACC. Such CACC 

design is especially suitable for ad-hoc platooning with heterogeneous vehicles, as it does 

not depend on any information of other vehicles’ dynamics or control methods. Another 

influential form of CACC is the one developed by California PATH program [45]. This 

CACC adopted PLF communication topology and assume homogeneous vehicle 

dynamics in the platoon. PD feedback controller was used to regulate the spacing and 

speed relative to both preceding vehicle and the platoon leader (which shared its GPS 

location). The control command of preceding vehicle was taken as feedforward 

command. As there was no feedforward filter, zero-spacing-error could not be achieved, 

but the string stability could still be easily maintained given the swift response to 

downstream disturbance.  

In recent years, there are increasing number of CACC designs based on 

optimization-based control methods. The performance of such methods usually relies on 

an accurate system model. Linear Quadratic Regulator (LQR)  is a widely-used optimal 

controller in longitudinal vehicle control [43], [46]. LQR determines the optimal control 

law by solving an unconstrained optimization problem offline. The infinite-horizon 

objective function can include multiple system states and/or control inputs in quadratic 

form. For example, the APF CACC [46] considered the spacing error regarding to the 

nearest preceding vehicle, relative speed regarding to all the preceding vehicle, and the 

control command of ego vehicle. Then, by solving the Riccati equation, the optimal 

control law can be explicitly derived as constant feedback/feedforward gains. This means 

LQR require almost no computational effort in the real-time implementation. Another 

prevailing optimization-based control method is Model Predictive Control (MPC)[47]. 
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Similar to LQR, the objective function in MPC usually considers the system states and 

control command [38], [48], but a difference is that the time horizon of cost function is 

finite. Moreover, MPC is indeed solving the actual optimization problems in real time. 

Based on a system model and currently measured system states, the MPC makes 

predictions of system states in a finite rolling horizon given different planned control 

efforts, and find the optimal control effort which minimizes the quadratic objective 

function. However, only the first move of the control efforts will be executed at the 

present time step. Compared with LQR, constraints on the system states or control efforts 

can be applied to the optimization problem. Besides, MPC can better handle the 

modelling error of the system due to the feedback nature of the rolling horizon process 

[48]. The major downside of MPC is that the online optimization requires much higher 

computing capability for the real-time implementation.    

A variety of CACC systems, including PF/APF CACC and rule-

based/optimization-based CACC, were tested together in Grand Cooperative Driving 

Challenge (GCDC) 2011 [32] and 2016 [49], which positively indicated that 

heterogeneous CACC vehicles can be compatible and implemented cooperatively in the 

traffic. To prepare CACC for the final large-scale deployment, the latest research efforts 

have paid more attention to the issues of communication unreliability [50], [51], cyber-

attacks [52], [53], and forming/splitting of CACC platoon [54]–[56].  

Except the two technical limitation of CACC as mentioned in Chapter 1, the 

studies above also share a drawback in evaluating their methods. These CACC designs 

were evaluated either by numerical simulation or field test, but they uniformly used 

fabricated trajectories of preceding/leading vehicle to construct the car-following 
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scenarios. For example, trapezoid speed profile was used in [45], triangle speed profile 

was used in [22], and [48] assumed impulse disturbance in speed of leading vehicle. With 

these fabricated test scenarios, the benefits of the different methods in real life are hard to 

be quantified and compared. More realistic test scenarios, especially those based on real-

world data, should be utilized for more meaningful evaluations of performances. 

2.2 CAV: platooning with unconnected vehicles 

There have been a few insightful previous research that tried to enhance the 

performance of CAV when encountering an unconnected preceding vehicle. This section 

goes into detail of these existing methods and points out their limitations. 

To partially maintain the favorable properties of CACC when the communication 

from preceding vehicle becomes unavailable or unstable, graceful degradation of CACC 

(dCACC) was proposed in [34]. Since the feedforward signal from the preceding vehicle 

cannot be obtained, dCACC turned to estimated preceding vehicle’s acceleration using 

onboard radar. Singer acceleration model [57] was adopted to roughly predict how the 

acceleration of preceding vehicle evolves from the current value and random disturbances 

from downstream. Based on Singer model, a Kalman filter was used as a state observer. 

This observer fused the roughly predicted acceleration of preceding vehicle, and the 

actual measurements on inter-vehicle spacing and relative speed (which were linked to 

preceding vehicle’s acceleration but flawed with noises). Lastly, the acceleration 

estimated by this state observer was given to the CACC controller as the feedforward 

signal. It was proven that by assuming a proper disturbance variance in the Singer model, 

dCACC can fulfill string stability at a short time gap which is less than a half of that 

needed for ACC. Nevertheless, the quality of radar measurement was shown as a main 
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drawback of dCACC.  According to the nature of the state observer, the estimated 

acceleration is either smooth but lagged (slow estimation mode with more trust in 

prediction) or jerky but fast (with more trust in radar measurements). In pursuit of such 

improvement in string stability, the estimation must be sufficiently fast. Therefore, the 

control command of dCACC vehicle tended to be jerkier than usual. The smoothness of 

the vehicle trajectory, i.e., the ride comfort had to be sacrificed for string stability.  

On the other hand, Connected cruise control (CCC) [58] was proposed to explore 

the benefits of communication with out-line-of-sight preceding vehicles when the closest 

one or more preceding vehicles are unconnected. By incorporating the accelerations or 

relative speed of remote vehicles in the state feedback with intended delay, CCC was able 

to stabilize initially unstable vehicle strings when the car-following behaviors of 

unconnected vehicles are within certain ranges. In [59], the dynamics of CCC systems 

under effects of complex connectivity structure and communication delay were further 

investigated, and motif-based approach was proposed to facilitate CCC design in large 

networks. However, the tuning of such CCC designs require the dynamics of 

unconnected vehicle to be known. Thus, the car-following behavior identification of 

unconnected vehicle [60] needs to be conducted before the CCC can work properly. This 

process could take tens of seconds [60], and even after the identification being done, car-

following behavior of the unconnected vehicle is unlikely to remain time-invariant if it is 

driven by human.  

An optimal-control-based CCC [61] was proposed to represent the time-variant 

behaviors of the preceding vehicle with mean values and distributions of human 

parameters, but it costed even longer time to identify such distributions. Actually, this can 
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be problematic for control design because the human parameters were not perfectly 

stochastic, i.e., they can continuously deviate from their past mean values for tens of 

seconds [61], which is long enough to cause unexpected consequences (such as loss of 

string stability). On the other hand, while the design of existing CACC systems is based 

on zero-spacing-error rule and the strong string stability of individual vehicle [32], the 

emphasis of CCC often lays on head-to-tail string stability of platoon, which could 

greatly suppresses the traffic turbulence but not necessarily help maintain the desired 

spacing for the individual vehicle [62]. 

A centralized CACC which considers unconnected human-driven vehicle in the 

platoon was proposed in [63]. The platooned vehicles are required to report their status to 

the lead vehicle, and the status of unconnected human-driven vehicles are assumed to be 

estimated by adjacent CAVs. It is also assumed that the car-following model parameters 

of the human-driven vehicles have been reasonably identified. The lead vehicle then 

decides the best acceleration for each vehicle based on min-max model predictive control 

(MM-MPC) and identified parameters of human-driven vehicles. This method is still 

restricted by the car-following behavior identification beforehand. Although the 

uncertainty in vehicle dynamics and communication delay were handled by the MM-

MPC in its simulation validation, only a small identification error in human parameters 

was assumed, and the acceptable boundary of the error was not examined. 

In summary, the problem of CAV platooning in mixed traffic has attracted 

increasing research efforts but has not been adequately addressed. The extra process of 

human parameters identification is one of the main restrictions on the existing approaches 

when faced with large uncertainty of human behaviors. 
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2.3 CHV: more than driver advisory systems  

A commonly expectation in the previous research efforts [23], [33], [61], [62], 

[64], [65] of CAV and mixed traffic is that there would be a large number of human-

driven vehicles with connectivity (including after-market installation), referred as 

connected human-driven vehicle (CHV). On one hand, many connected vehicles would 

not be automated due to the relatively high cost of onboard sensors [20]. On the other 

hand, CAVs might be degraded to manual mode sometimes when the CACC system does 

not satisfy the driver, who thus prefers to be in control of the vehicle. Such “intended 

disengagement” has been frequently occurring to the ACC in low/median-speed traffic 

[66].  

It was proposed in [23] that CAVs should take advantages of these human-driven 

CVs, which are supposed to broadcast “here I am” messages, to facilitate the use of 

CACC. However, there would still be no direct benefit for CHV themselves. Being 

always leading vehicles of other CACC vehicles, human-driven CVs have neither a 

crisper response to preceding vehicle’s maneuvers nor a fuel saving as the CAV followers 

do [33]. To fully take advantage of vehicular connectivity, human-driven CVs should be 

able to receive assistance via the connectivity, instead of being just “information 

providers.”  

Although there exist a few of previous work in the applications of CHV, they 

turned out to be mostly focused on driver advisory systems for very limited situations. A 

representative application is CV-based eco-driving system [67] that aims for improving 

fuel economy when the CV approaches a signalized intersection. It utilizes vehicle-to-

infrastructure (V2I) communication to obtain signal phase and timing information, and 
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accordingly recommends the optimal speed to drivers. Other CV-based applications 

include lane changing advisory system [68] which attempts to reduce merging conflicts 

around on-ramp by encouraging early mainline freeway lane changes, and cooperative 

collision warning system [69] which alerts the driver when a highly potential collision is 

projected using V2V communication. Obviously, the benefits of these advisory systems 

are subject to human driver’s compliance level. The received information in these 

systems is only used to generate suggestions to the driver, instead of actuating the vehicle 

directly.  

A possible step forward from advisory systems is to allow the coexistence of 

automatic control and driver’s actions in a beneficial way. Typical CACC systems [22], 

[30] make the control decision based on three components: spacing feedback, speed 

feedback, and acceleration feedforward. For a CHV, the accurate distance to the 

preceding CV is unavailable due to absence of range sensor, but the reliable speed and 

acceleration information of the preceding vehicle can still be obtained via V2V 

communication, and could be used to co-actuate the vehicle, together with a human 

driver.  

This collaboration between machine and human has become technically and 

economically feasible with the adoption of electronic actuators in modern vehicles. 

Electronic throttle [70] has been applied to almost every car. The recent generation of 

Electronic Stability Program/Control (ESP/ESC) [71], which enables programmed brake 

control, has also been massively adopted in new cars. Furthermore, there are increasing 

number of hybrid/electric vehicles equipped with drive-by-wire [72], [73] technology. 

These electronic actuators can sense human’s will through pedals, monitor vehicle’s 



25 

 

status, and apply corresponding actions on throttle/brake. They not only help drivers 

achieve their intention faster and more precisely, but also provide the vehicle’s software 

with the convenience to modify or override human’s initial action when necessary. This 

means the additional investment in automatic actuators is no longer needed for many 

vehicles.  

A preliminary design of this type of system is acceleration-based Connected 

Cruise Control (CCC) [58] which allows human driver in the loop of vehicle control. It 

proposed to give the human-driven vehicle an extra acceleration which was half that of 

the preceding vehicle. Theoretical analysis indicated that the extra acceleration can help 

stabilize initially string-unstable vehicle platoons. However, this CCC has never been 

evaluated with real human drivers, while it was designed and analyzed with a strong 

assumption that human’s behavior pattern can be perfectly obtained and unaffected by the 

extra acceleration. This makes its effectiveness questionable in the field. In addition, the 

speed information of preceding vehicle was omitted and not fully made use of in the 

CCC. This is unreasonable as the speed difference between ego vehicle and preceding 

vehicle makes a big difference in the acceleration of the following vehicle in order to 

maintain a stable following gap. 

2.4 Summary of literature review  

In summary, there have been extensive research efforts made in the area of 

cooperative longitudinal control of vehicles. CACC with all kinds of communication 

topology and control methods were developed. String stability has been widely 

considered as an important design goal. Except the two technical limitation of CACC 
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pointed out in Chapter 1, another drawback shared by the existing CACC studies is that 

the performance evaluations were not conducted in realistic car-following scenarios.  

The problem of CAV platooning with unconnected vehicles has attracted 

increasing research efforts (e.g.., dCACC and CCC) but has not been adequately 

addressed. The dCACC is limited by the sacrifice of ride comfort, while CCC requires 

extra process of human parameters identification are the main restrictions on the existing 

approaches when faced with large uncertainty of human driving behaviors. 

The connectivity in CHV has not been fully made use of either. Most of existing 

works focused on connected-vehicle-based driver advisory systems for very limited 

situations. A possible step forward from advisory systems is to allow the coexistence of 

automatic control and driver’s actions in a beneficial way. The only one previous study 

that considered actuating the vehicle together with human driver is acceleration-based 

CCC. However, it was apparently flawed by its assumption of consistent human 

behaviors and the lack of validation with real driver.  
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Chapter 3. CACC with Unconnected Vehicle (CACCu) 

This chapter proposes a new CACC algorithm, dubbed as CACCu, which allows 

CAVs to closely follow an unconnected preceding vehicle, instead of falling back to 

ACC. Different from the existing CCC, CACCu aims to robustly handle various 

unconnected vehicle’s car-following behaviors, without requiring identification process 

or extra information on the unconnected vehicles. While CACCu can be extended and 

evaluated in more general scenarios, this chapter starts with the detailed control design 

and analysis of CACCu in three-vehicle sandwich scenario (i.e., an unconnected vehicle 

is in between of two connected vehicles), which is simple but with the high probability to 

occur among the mixed platooning scenarios. The string stability, safety, comfort, and 

fuel efficiency performances of CACCu are evaluated in high-fidelity simulations using 

real vehicle trajectory data from Next Generation Simulation (NGSIM) program and a 

physics-based vehicle dynamics model from PreScan. The typical ACC [30] and 

acceleration-based CCC [58] serves as performance baselines in the evaluation. 

3.1 Framework 

Typical CACC systems obtain the acceleration or desired acceleration of nearest 

preceding vehicle as a feedforward signal [74]. This feedforward signal can efficiently 

help eliminate spacing error (i.e., the difference between actual spacing and desired 

spacing), and thus enables safe driving at short gaps [9]. However, as shown in Fig. 3.1, 

when the ego vehicle encounters an unconnected preceding vehicle or vehicles, such 

feedforward signal is not available. Instead of degrading to ACC, the proposed CACCu 

turns to utilize the closest connected vehicle ahead (i.e., the (𝑛 + 1)𝑡ℎ preceding vehicle 

in Fig. 3.1) as the source of feedforward signal. An additional filter of “virtual preceding 
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vehicle(s)” is inserted before the original feedforward filter of CACC, to compensate for 

the effects of 𝑛 unconnected preceding vehicle(s) in between. Assuming random 

clustering of vehicles [33], the probability (𝑃𝑛) of having different 𝑛 (i.e., the number of 

unconnected preceding vehicles) for a CAV is directly linked to Market Penetration Rate 

(MPR) of vehicular connectivity. Fig. 3. 2 shows how 𝑃𝑛 varies with 𝑛 and MPR, where 

𝑃𝑛 is calculated as 𝑀𝑃𝑅 ∙ (1 − 𝑀𝑃𝑅)𝑛−1. It can be seen that enabling CACCu for 𝑛 =1 

(i.e., three-vehicle sandwich scenario) could make the most considerable complement to 

CACC (𝑛 = 0). Hence, a special emphasis is laid on such three-vehicle sandwich 

scenario. 

 

Fig. 3.1 Control scheme of CACCu 
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Fig. 3.2 Market Penetration Rata (MPR) of connectivity and the probability that the 

closest connected preceding vehicle is 𝑛 vehicle(s) away 

 

In addition, a bi-level control structure is needed due to the nonlinearity of vehicle 

dynamics. The high-level control decides the desired acceleration (u), while the low-level 

control determines how to actuate the throttle and brake to achieve this desired 

acceleration. For high-level control, a linear time-invariant control law is pursued in this 

study for easy parameterization and implementation. As shown in Fig. 3.1, the proposed 

CACCu can be directly extended from an existing CACC system with minimum re-

design (i.e., only inserting a “virtual preceding vehicle”). Such design of CACCu would 

also facilitate the straightforward performance comparisons with ACC using exactly the 

same feedback configuration.  

3.2 Control design 

In this section, the three key components of CACCu are described respectively, 

including the consideration in human car-following behaviors and the designs of 

high/low-level controls. 
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Stochastic car-following behaviors of unconnected vehicle 

The linearized optimal velocity model (OVM) [75] is adopted to describe car-

following behaviors of the unconnected human-driven vehicle around a traffic 

equilibrium (i.e., steady state with constant velocity):                                                           

ℎ1(𝑡) = 𝑥2(𝑡) − 𝑥1(𝑡) − 𝑙2                                                                        

�̈�1(𝑡) = 𝛼1 (
1

𝑡1,ℎ
ℎ(𝑡 − 𝜑1) − �̇�1(𝑡 − 𝜑1)) + 𝛽1ℎ̇(𝑡 − 𝜑1) + 𝑒𝑚(𝑡)

          (3.1)                                               

Where 𝑡 is time, ∗̇ denotes the variable’s derivative in respect to time, 𝑥1(𝑡) and 

𝑥2(𝑡) are locations of the human-driven vehicle and its preceding vehicle, ℎ1 is the inter-

vehicle spacing, with 𝑙2 being the length of preceding vehicle, 𝛼1 and 𝛽1 are human 

control gains, 𝜑1 is the human reaction time, 
1

𝑡1,ℎ
 is spacing policy slope with 𝑡1,ℎ being 

the desired time gap of the human driver, and 𝑒𝑚(𝑡) is a noise term representing the 

unmodeled behaviors of the human driver. Model (3.1) indicates that the human driver 

desires a velocity-dependent spacing, and regulates the spacing error and speed difference 

from the preceding vehicle simultaneously. In fact, other frequently used car-following 

models (e.g., intelligent driver model) can also be linearized into the same form of (3.1) 

[75].  

It should be noted that the human parameters in (3.1) vary from person to person, 

and even for one single driver, they may change stochastically over time. To incorporate 

the variation of human parameters yet avoid the time-consuming identification [60], [61], 

a realistic and convenient assumption is adopted in this study. 
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Assumption 1: the driver’s car-following behavior should be represented by 

different 𝜑1, 𝛼1, 𝛽1 and 𝑡1,ℎ in every short period of regulation (i.e., the time from the 

traffic equilibrium being disturbed until a new equilibrium is reached).  

In other words, the human driver responds to each speed perturbation in different 

ways, but the driver’s behavior during one regulation period is relatively stable. This 

assumption requires that any control design involving human driver should be able to 

handle a range of human parameters instead of a specific combination. Meanwhile, the 

stochastic behavior of human driver is approximated by a sequence of linear time-

invariant systems (thus transfer functions exist), which will bring great convenience in 

the control design and analysis. 

Taking the Laplace transform of (3.1) with zero initial conditions, the transfer 

function of the human-driven vehicle in each regulation period can be obtained: 

𝑇1(𝑠) =
𝐿(𝑥1(𝑡))

𝐿(𝑥2(𝑡))
=

𝐾1(𝑠)

𝑠2𝑒𝜑1𝑠+𝐾1(𝑠)+𝛼1𝑠
                                                              (3.2) 

Where 𝐿(∙) denotes Laplace transform and 

𝐾1(𝑠) =
𝛼1

𝑡1,ℎ
+ 𝛽1𝑠   

To incorporate all kinds of human drivers, the possible ranges of human 

parameters reported in existing studies are summarized below: 

• The preferred time gap 𝑡1,ℎ of highway drivers is found to be 1~2s [76].  

• The human delay 𝜑1 was reported to be 0.5~1.5s in [77], while [78] found the 

brake delay in normal case to be 0.92~1.93s, and acceleration delay to be 0.4~1.5s.  
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• For the human control gains 𝛼1 and 𝛽1, previous literature [58], [79] used the 

average value of 0.6 and 0.9, which are derived from macroscopic data. However, 

field test [61] determined the average values of 𝛼1 and 𝛽1 to be 0.2 and 0.4. 

Considering the large difference between these two sets of value, the average 

values of 0.4 and 0.65 can be assumed for 𝛼1 and 𝛽1, respectively, as compromise. 

It is worth noting that different human parameters are not likely to appear with the 

equal probability. In control design, the recurrent combinations of human parameters 

should be given more considerations. Thus, a probability model is needed to capture the 

uneven distribution of human parameters. Although with limited number of participating 

drivers, [61] has identified bell-shaped distributions of human parameters and treated 

them as independent. In this paper, the human parameters are assumed to follow 

independent normal distributions, whose means and variances are determined based on 

the aforementioned ranges of human parameters. 

Assumption 2: for the population of all drivers, the 𝜑1, 𝛼1, 𝛽1 and 𝑡1,ℎ follow 

independent normal distribution as below:  

• Desired time gap 𝑡1,ℎ~𝑁(1.5,0.252) , which means it has 95% probability to be 

1~2;  

• Human delay 𝜑1~𝑁(1,0.252), which means it has 95% probability to be 0.5~1.5;  

• Human gain 𝛼1~𝑁(0.4, (
0.4

2.6
)2), which means it has 98% probability to be 0~0.8 

and only 1% probability to be negative;  
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• Human gain 𝛽1~𝑁(0.65, (
0.65

2.6
)2), which means it has 98% probability to be 0~1.3 

and only 1% probability to be negative. 

Nevertheless, the design of CACCu does not rely on a specific type of probability 

model, as shown in the rest of paper. Assumption 2 is free to be modified or replaced 

when there are new findings from more sophisticated investigations on human 

parameters. 

High-level control 

CACCu follows the basic structure of predecessor-following CACC which is 

featured by the feedforward-feedback control and velocity-dependent spacing policy [30]. 

The main difference is that the feedforward signal is from the further preceding vehicle 

instead of the 1st one. Thus, the CACC feedforward filter needs to be modified. When the 

2nd preceding vehicle is a connected vehicle, the car-following behavior of CACCu 

vehicle is as below: 

ℎ0(𝑡) = 𝑥1(𝑡) − 𝑥0(𝑡) − 𝑙1  

ℎ0,𝑑(𝑡) = 𝑡0,ℎ𝑥0̇(𝑡) + ℎ0,𝑠𝑡  

𝑒0(𝑡) = ℎ0(𝑡) − ℎ0,𝑑(𝑡)                                                                                 (3.3) 

𝑢0(𝑡) = 𝑘0,𝑝𝑒0(𝑡) + 𝑘0,𝑑𝑒0̇(𝑡) + 𝑓0(�̈�2(𝑡 − 𝜃0))  

�̈�0(𝑡) = 𝑔0(𝑢0(𝑡))                                                                              

Where 𝑥0(𝑡) is the location of the ego vehicle, ℎ0 is the spacing from the 

preceding vehicle, with 𝑙1 being the length of the 1st preceding vehicle, ℎ0,𝑑(𝑡) is the 

desired spacing, ℎ0,𝑠𝑡 is the standstill spacing, 𝑡0,𝑑 is the desired time gap, 𝑒0(𝑡) is the 
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spacing error, 𝑘0,𝑝 and 𝑘0,𝑑 are the gains of the proportional-derivative (PD) feedback 

controller, 𝑓0(∙) is the new feedforward filter, �̈�2 is the acceleration of the second 

preceding vehicle, and 𝜃0 is the communication delay, 𝑔0(∙) is the vehicle dynamics of 

the CACCu vehicle.  

A first-order lag system with constant delay is adopted to describe the 

longitudinal vehicle dynamics 𝑔0(∙) in time domain: 

𝑔0(𝑢0(𝑡 + ∅0)) + 𝜏0�̇�0(𝑢0(𝑡 + ∅0)) = 𝑢0(𝑡)                                               (3.4) 

The corresponding transfer function in Laplace domain is: 

𝐺0(𝑠) =
𝐿(𝑥0(𝑡))

𝐿(𝑢0(𝑡))
=

1

𝑠2(1+𝜏0𝑠)
𝑒−∅0𝑠                                                                    (3.5)    

Where 𝜏0 is the system lag and ∅0is the actuator delay. 

The 𝑓0(∙) should be designed so that the spacing error can be eliminated. 

According to (3.3) with zero initial conditions, the Laplace transform of spacing error can 

be obtained: 

𝐿(𝑒0(𝑡)) =
1

1+𝐺0(𝑠)𝐾0(𝑆)𝐻0(𝑠)
𝐿(𝑥1(𝑡)) −

𝐷0(𝑠)𝐺0(𝑠)𝐹0(𝑆)𝐻0(𝑠)𝑠2

1+𝐺0(𝑠)𝐾0(𝑆)𝐻0(𝑠)
𝐿(𝑥2(𝑡))            (3.6) 

Where  

𝐹0(𝑠) = 𝐿(𝑓0(𝑡))  

𝐾0(𝑠) = 𝑘0,𝑝 + 𝑘0,𝑑𝑠  

𝐻0(𝑠) = 1 + 𝑡0,ℎ𝑠  

𝐷0(𝑠) = 𝑒−𝜃0𝑠  
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Let 𝐿(𝑒0(𝑡)) = 0, then: 

𝐿(𝑥1(𝑡)) − 𝐷0(𝑠)𝐺0(𝑠)𝐹0(𝑆)𝐻0(𝑠)𝑠
2𝐿(𝑥2(𝑡)) = 0  

And thus 

𝐹0(𝑠) =
1

𝐷0(𝑠)𝐺0(𝑠) 𝐻0(𝑠)𝑠2

𝐿(𝑥1(𝑡))

𝐿(𝑥2(𝑡))
  =

1

𝐷0(𝑠)𝐺0(𝑠) 𝐻0(𝑠)𝑠2 𝑇1(𝑠)  

However, the exact value of communication delay and human parameters are 

unpredictable in real world, so a feasible feedforward filter is: 

𝐹0(𝑆) =
1

𝐺0(𝑠) 𝐻0(𝑠)𝑠2 𝑇1
′(𝑠)                                                                                (3.7) 

Where 
1

𝐺0(𝑠) 𝐻0(𝑠)𝑠2 is the original feedforward filter used in CACC [30], and 𝑇1
′(𝑠) 

is the additional filter of a “virtual preceding vehicle” that has the same form of  𝑇1(𝑠): 

𝑇1
′(𝑠) = 𝑇1

′(𝛼1
′ , 𝛽1

′ , 𝜑1
′ , 𝑡1,ℎ

′ , 𝑠)                                                                            (3.8) 

Where 𝛼1
′ , 𝛽1

′ , 𝜑1
′ , 𝑡1,ℎ

′  are the parameters of the “virtual preceding vehicle.”  

Since there is little chance to make 𝑇1
′(𝑠) exactly equal to 𝑇(𝑠)(thus to perfectly 

predict the acceleration of the first preceding vehicle), parameters (𝛼1
′ , 𝛽1

′ , 𝜑1
′ , 𝑡1,ℎ

′ ) are left 

to be tuned so that CACCu vehicle can stay string-stable for a vast range of unconnected 

vehicle behaviors described by (𝛼1, 𝛽1, 𝜑1, 𝑡1,ℎ). Obviously, when the feedforward signal 

comes from more distant vehicle (i.e., when there are multiple unconnected vehicles in 

between), 𝑇1(𝑠) and 𝑇1
′(𝑠) should be replaced by the combined transfer function of 

multiple human-driven vehicles, and tuning of this transfer function will require more 

effort, as shown later in Section 4. 



36 

 

Finally, the transfer function of the CACCu vehicle can be derived combining 

(3.3) and (3.7): 

𝑇0(𝑠) =
𝐿(𝑥0(𝑡))

𝐿(𝑥1(𝑡))
=

𝐻0(𝑠)𝐺0(𝑠)𝐾0(𝑠)+𝐷0(𝑠)𝑇1
′(𝑠)/𝑇1(𝑠)

𝐻0(𝑠)(1+𝐻0(𝑠)𝐺0(𝑠)𝐾0(𝑆))
                  (3.9) 

As comparison, the existing CACC systems let 𝑓0(�̈�2(𝑡 − 𝜃0)) = 0 when 

following an unconnected vehicle. This setting degrades the CACC to ACC and leads to 

a transfer function of: 

𝑇0(𝑠) =
𝐿(𝑥0(𝑡))

𝐿(𝑥1(𝑡))
=

𝐺0(𝑠)𝐾0(𝑠)

1+𝐺0(𝑠)𝐾0(𝑆)𝐻0(𝑠)
                                                          (3.10)  

Low-level control 

According to (3.6), the high-level controller outputs the desired acceleration to the 

vehicle dynamics. However, the longitudinal motion of vehicle is directly controlled by 

the throttle and brake. Thus, a low-level controller is needed to convert the desired 

acceleration to proper throttle and brake action so that the command from high-level 

controller can be accurately achieved. A typical low-level controller [80] utilizes the 

inverse engine torque map and a set of feedforward signals (i.e., vehicle speed, engine 

speed, and transmission ratio) to pre-compensate the nonlinear behaviors of the engine, 

transmission system, air drag and rolling resistance, leading to a first-order linear 

relationship between desired acceleration and actual acceleration as described by (3.4), 

and a third-order linear relationship between desired acceleration and vehicle position as 

described by (3.5). 
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3.3 String Stability Analysis  

String stability is one of the most important design goal of longitudinal vehicle 

control. In this study, CACCu is required to guarantee string stability not only for a single 

combination of α, 𝛽, 𝑡ℎ, 𝜑 but for a broad range of α, 𝛽, 𝑡ℎ, 𝜑. A widely-accepted version 

of string stability is defined in [30], that is, given any disturbance in the longitudinal 

movement of preceding vehicle, the following vehicle should not amplify this 

disturbance. While string stability can also be defined in terms of spacing error or control 

input, they are less practical when human driver is involved. According to [30], the string 

stability of ego vehicle is fulfilled when the magnitude of its frequency response is 

always no greater than 1: 

 𝑆𝑆 = ‖𝑇0(𝑗𝜔)‖∞ = ‖
𝐻0(𝑗𝜔)𝐺0(𝑗𝜔)𝐾0(𝑗𝜔)+𝐷0(𝑗𝜔)𝑇1

′(𝑗𝜔)/𝑇1(𝑗𝜔)

𝐻0(𝑗𝜔)(1+𝐻0(𝑗𝜔)𝐺0(𝑗𝜔)𝐾0(𝑗𝜔))
‖

∞
≤ 1       (3.11) 

Where  ‖ ∙ ‖∞ denotes the maximum magnitude over all frequency 𝜔, and 𝑗 is the 

imaginary unit. Because 𝑇0(𝑗𝜔) =
𝐿(𝑥0(𝑡))

𝐿(𝑥1(𝑡))
=

𝐿(�̇�0(𝑡))

𝐿(�̇�1(𝑡))
=

𝐿(�̈�0(𝑡))

𝐿(�̈�1(𝑡))
, condition (3.11) can be 

approximately interpreted as that given any perturbation from the downstream, the speed 

or acceleration peak of ego vehicle caused by the perturbation should not exceed that of 

the preceding vehicle.  

To measure CACCu’s robustness against the uncertain car-following behaviors of 

preceding vehicle, String Stability Ratio (SSR) is defined as the probability that ego 

vehicle stays string-stable given all different kinds of (𝛼1, 𝛽1, 𝜑1, 𝑡1,ℎ). By definition, 

SSR can be computed as an integral of the probability density over all the string-stable 

combinations of (𝛼1, 𝛽1, 𝜑1, 𝑡1,ℎ): 
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𝑆𝑆𝑅 = ∫∫∫∫𝑝(𝛼1, 𝛽1, 𝜑1, 𝑡1,ℎ)𝜉(𝑆𝑆)𝑑𝛼1𝑑𝛽1𝑑𝜑1𝑑𝑡1,ℎ                            (3.12) 

Where  

𝜉(𝑆𝑆) = {
1           𝑖𝑓 𝑆𝑆 ≤ 1
0           𝑖𝑓 𝑆𝑆 > 1

  

𝑓(𝛼1, 𝛽1, 𝜑1, 𝑡1,ℎ) is the joint probability density function (PDF) of human 

parameters, and 𝑆𝑆 is the string stability determinant defined by (3.11). According to 

Assumption 2, 𝑓(𝛼1, 𝛽1, 𝜑1, 𝑡1,ℎ) can be calculated as the product of PDFs of all the 

human parameters:  

𝑝(𝛼1, 𝛽1, 𝜑1, 𝑡1,ℎ) =
1

0.25∙√2𝜋
exp (−

(𝑡1,ℎ−1.5)
2

2∙0.252 ) ∙
1

0.25∙√2𝜋
exp (−

(𝜑1−1)2

2∙0.252 ) ∙

1

(
0.4

2.6
)∙√2𝜋

exp (−
(𝛼1−0.4)2

2∙(
0.4

2.6
)2

) ∙
1

(
0.65

2.6
)∙√2𝜋

exp (−
(𝛽1−0.65)2

2∙(
0.65

2.6
)2

)                                           (3.13) 

To obtain an ideal SSR, the CACCu vehicle should not only use optimal virtual 

vehicle 𝑇1
′ but also choose proper feedback controller 𝐾0 and spacing policy 𝐻0 based on 

the operating condition, i.e., the vehicle dynamics 𝐺0 and average communication 

delay 𝐷0. 

Higher control gains in 𝐾0 typically improve string stability, but meanwhile they 

lead to more aggressive behaviors and higher sensitivity to sensor noise, thus may impair 

the ride comfort. Two pairs of (𝑘0,𝑝, 𝑘0,𝑑) adopted in field tests are considered here: 

• Low gains used in field test [30]: 𝑘0,𝑝 = 0.25,  𝑘0,𝑑 = 0.5; 

• High gains used in field test [81]: 𝑘0,𝑝 = 0.3,  𝑘0,𝑑 = 0.7; 
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 First, the effects of desired time gap and control gains on the string stability are 

explored, assuming perfect vehicle dynamics 𝜏0 = 0 and ∅0 = 0 and perfect 

communication 𝜃0 = 0. Due to the complexity of (3.11), the numerical results of the 

string-stable space of (𝛼1, 𝛽1, 𝜑1, 𝑡1,ℎ) are shown in Fig. 3.3. Using MATLAB 

optimization toolbox, (𝛼1
′ , 𝛽1

′ , 𝜑1
′ , 𝑡1,ℎ

′ ) have been optimized to (0.99, 0.62, 0, 0.72) for 

CACCu with low gains and (0.76, 0.51, 0, 0.57) for CACCu with high gains.   

Fixing 𝜏0 = ∅0 = 𝜃0 = 0, Fig. 3.3 (a)~(d) show the string-stable ranges of the 

human parameters (𝛼1, 𝛽1, 𝜑1, and 𝑡1,ℎ) under low/high control gains. Blank area denotes 

the string-stable range when desired time gap of ego vehicle is set 0.8s; lighter/darker 

shaded area denotes the increased string-stable range when desired time gap of ego 

vehicle increases to 1.0s/1.2s; the darkest shaded area denotes the string-unstable range 

when desired time gap of ego vehicle is 1.2s. Fig. 3.3 (a), (c) show string-stable ranges of 

𝛼1and 𝛽1 (when 𝜑1 = 1, 𝑡1,ℎ = 1.5) for low and high gains, respectively. Fig. 3.3 (b), 

(d) show string-stable ranges of 𝜑1 and 𝑡1,ℎ (when 𝛼1 = 0.4, 𝛽1 = 0.65) for low and 

high gains, respectively. Fig. 3.3 (e) shows SSR for low/ high control gains when the 

desired time gap of ego vehicle is set 0.6s~1.4s. 

  
                             (a)                                                                     (b) 
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                                      (c)                                                                      (d) 

         
                                                                     (e) 

Fig. 3.3 The string-stable range of human parameters and SSR under different control gains 

and desired time gaps 

 

It can be seen from Fig. 3.3(a)~(d) that CACCu can provide broad string-stable 

ranges of human parameters. Given certain 𝑡1,ℎ and 𝜑1, CACCu tends to lose its string 

stability when 𝛽1 and 𝛼1 are both low or both high. Given certain 𝛼1 and 𝛽1, CACCu 

tends to lose its string stability when 𝑡1,ℎis much larger than  𝜑1(i.e., the preceding 

vehicle has fast response but maintains a long gap) or the inverse case. On the other hand, 

the string-unstable area shrinks when longer desired gap and higher control gains are 

used. Fig. 3.3(e) shows that the SSR climbs to 99.7% when the high gains (e.g., 0.3, 0.7) 

and a desired time gap of 1.2s are used, which means CACCu vehicle can keep string-
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stable given almost all kinds of unconnected preceding vehicle. As comparison, by using 

(3.10) it can be found that an ACC vehicle with the same control gains needs a time gap 

≥2.6s to maintain its string stability. This gap is more than twice the gap required by 

CACCu. From another perspective, when driving at the same desired gap, a CACCu 

vehicle can better attenuate the speed oscillation from downstream than an ACC vehicle 

can do.  

Considering that string stability is not a safety-critical requirement, it will be too 

trivial to prepare the CACCu for any combination of 𝛼1, 𝛽1, 𝜑1, and 𝑡1,ℎ, especially after 

knowing that the string-unstable areas are at the edge of the parameter space that has low 

probability to occur. For this reason, a “critical gap” is defined as the desired time gap 

which can guarantee string stability at 97.5% probability (i.e., SSR ≥ 97.5%). Driving at 

the critical gap, CACCu can offer a dominant capability to accommodate human 

uncertainty over previous research efforts. It cancels the necessity of human parameters 

identification in advance, while string stability can be fulfilled in most cases. It can be 

seen in Fig. 3.3(e) that the critical gaps for CACCu with low/high control gains are 

0.9s/1.05s, respectively, when assuming perfect vehicle dynamics and communication. 

More conservative critical gap can also be defined and found in Fig. 3.3(e).   

Then, the effects of communication delay and imperfect vehicle dynamics on 

string stability are investigated. The possible values of communication delay 𝜃0 and 

vehicle lag 𝜏0, and actuator delay ∅0 according to previous field tests have been 

summarized in [74]: 

0.02 ≤ 𝜃0 ≤ 0.2,  0.1 ≤ 𝜏0 ≤ 0.8, 0.02 ≤ ∅0 ≤ 0.25   
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Fig. 3.4 shows the different critical gaps under communication delay of 0~0.2s 

when fixing 𝜏0 = ∅0 = 0. It can be found the communication delay has mild impact on 

the string stability. The critical gaps of CACCu with low and high both increase by 0.15s 

when the largest communication delay of 0.2s is present. If the V2V communication is 

conducted every 100ms and the zero-order hold (ZOH) is applied to the received 

message, an average communication delay of 50ms can be expected. In this case, the 

critical gap only increases by 0.05s in high-gain case. 

 
Fig. 3.4 Critical gaps under communication delay 𝜃0=0~0.2s (𝜏0 = ∅0 = 0) 

 

Fixing ∅0 = 50ms, Fig. 3.5 shows the critical gaps under the effects of different 

vehicle lag 𝜏0 and actuator delay 𝜃0. The effect of vehicle dynamics imperfection is 

simple: higher 𝜏0 and 𝜃0 results in longer critical gap for both low-gain and high-gain 

CACCu, and high gains always offer shorter critical gap. It is also found that the optimal 

parameters of 𝑇1
′ can greatly vary with the vehicle dynamics. For example, when vehicle 

dynamics of 𝜏0 = 0.8 and ∅0 = 0.25, instead of 𝜏0 = ∅0 = 0, are considered, the 

optimal (𝛼1
′ , 𝛽1

′ , 𝜑1
′ , 𝑡1,ℎ

′ ) in high-gain case shifts from (0.76, 0.51, 0, 0.57) to (0.91, 0.33, 
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0, 0.93). In practice, not only the proper combination of control gains and desired gap 

should be chosen from Fig. 3.5, but also the optimal parameters (𝛼1
′ , 𝛽1

′ , 𝜑1
′ , 𝑡1,ℎ

′ ) should 

be specified according to the vehicle dynamics.  

        
                   (a) Low gains                                                          (b) High gains 

Fig. 3.5 The critical gaps under different vehicle dynamics for CACCu with low/ high 

control gains  

 

In summary, the CACCu controller can be tuned by maximizing the string stable 

ratio (SSR). The analysis shows that the proposed CACCu is able to stay string-stable at a 

desired time gap significantly shorter than that required by ACC, when facing almost all 

kinds of unconnected preceding vehicles. This desirable property of CACCu holds true 

under the effects of imperfect communication and vehicle dynamics.  

3.4 Evaluation  

Simulation Approach 

Based on the proposed control structure in Section 3.2 and tuning method in 

Section 3.3, CACCu are designed and evaluated in three scenarios, where the preceding 

connected vehicle is one, two, or three vehicles away from the ego vehicle. The human-

driven vehicle trajectory data from Next Generation Simulation (NGSIM) [82] are 

adopted to construct the car-following scenarios for the evaluation. The NGSIM was 
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launched by FHWA's Traffic Analysis Tools Program. It used high-resolution cameras to 

record trajectories of the vehicles on the real roads. The US Highway 101 (US 101) 

dataset was one dataset that reflected highway traffic condition. It contains the 

trajectories of vehicles within the 640-meter long study area during 45 minutes. 

Trajectories of consecutive vehicles which entered the study area at 0 min, 10 min, 20 

min, 30 min, and 35 min were extracted to simulate the car-following scenarios under 

various congestion levels. The ego vehicle is then assumed to follow these vehicles.  

Besides CACCu, there are two baseline high-level systems to be evaluated, while 

the low-level system remains the same. First as aforementioned, the ACC controller can 

be obtained by removing the feedforward term in CACCu, i.e., making 𝑓0(�̈�2(𝑡 − 𝜃0)) =

0 in (3.3). Then, an acceleration-based CCC [58] can be developed by replacing the 

feedforward filter with a constant feedback gain: 

𝑓0(�̈�2(𝑡 − 𝜃0)) = 𝛾�̈�2(𝑡 − 𝜃0 − 𝜎2)                                                       (3.14)                                         

Where 𝛾 is the feedback gain for the acceleration signal from second preceding 

vehicle, and 𝜎0 is an intended delay for the acceleration feedback. The values of 𝛾 = 0.5 

and 𝜎0 = 0.6 are recommended in the original design [58]. However, as the original CCC 

assumed different feedback configuration, 𝛾2 and 𝜎0 need to be re-tuned in this study to 

ensure a fair comparison. Using our definition of SSR,  𝛾 and 𝜎0 are adjusted to 0.42 and 

0.65 respectively, for the highest probability to achieve head-to-tail string stability. 𝛾 and 

𝜎0 can be further adjusted for the scenarios where the other connected vehicle is two or 

three vehicles away. 
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Finally, to simulate the behavior of ego vehicle more realistically, the vehicle 

dynamics are represented by the physics-based Audi A8 model provided by PreScan [83], 

rather than the simplified models in (3.4) and (3.5). PreScan, developed by The 

Netherlands Organization for Applied Scientific Research (TNO), is a dedicated 

simulation platform for Advanced Driver Assistance System (ADAS). It should be noted 

that the simplified model is still needed for the design of high-level control.  

According to the trajectories of ego vehicle and its first preceding vehicle, the ego 

vehicle’s performance can be determined. There are multiple measures of effectiveness 

(MOE) adopted in this study: 

• String stability is measured by the count of speed overshoots (i.e., higher peak or 

lower valley values than the preceding vehicle’s) during the ride; 

• Safety/control accuracy is measured by spacing error of ego vehicle; 

• Ride comfort is measured by the acceleration of ego vehicle, considering that they 

were commonly linked in previous research [45], [48]; 

• The fuel consumed by the ego vehicle is estimated using Virginia-Tech fuel 

consumption model [84]. 

NGSIM data pre-processing 

NGSIM trajectory data including position, speed, and acceleration profile of 

vehicles, among which the positions of vehicles were directly collected every 0.1s, while 

the speed and acceleration profiles of vehicles were derived from the position profiles. In 

the derivation of the speed and acceleration, the measurement error in position could be 

greatly propagated, leading to considerable noise in speed and acceleration profiles. It has 
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been revealed that inconsistent speeds and unrealistic jerks (i.e., derivative of 

acceleration) can be frequently observed in the original NGSIM data, thus speed 

smoothing and recalculation of the acceleration is recommended before using the data 

[85].  

In this study, the locally weighted scatterplot smoothing (LOWESS) is applied to 

the speed profiles of vehicles. The size of sliding window is chosen as 2s. Fig. 3.6 shows 

the speed and jerk profiles of a pair of preceding vehicles before/after speed smoothing as 

an example. It can be seen that there are many sudden jumps of the speed in the original 

profiles. In addition, the jerk exceeded 15m/s3 for many times, which is mechanically 

unrealistic [85]. After smoothing, the speed profiles of vehicles are less noisy, and the 

jerks are always below 15m/s3. 

 
                                              (a) Before smoothing 
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                                               (b) After smoothing 

Fig. 3.6 Vehicle speed and jerk profiles before/after speed smoothing 

 

Vehicle dynamics model 

An Audi A8 sedan model from PreScan [83] plays as the ego vehicle in the 

evaluation. This physics-based vehicle model consists of engine, automatic gear box, 2-D 

chassis and other typical vehicle components. After the design of low-level control, the 

simplified vehicle dynamics model can be identified from the vehicle’s response given a 

step acceleration command. MATLAB system identification toolbox is adopted to 

accomplish this identification. The identification result is: 

𝐺0(𝑠) =
1

𝑠2(1+0.12𝑠)
𝑒−0.2𝑠                                                                            (3.15) 

Fig. 3.7 shows the acceleration/braking responses of the PreScan model and the 

identified simplified model given a series of step acceleration command with random 

magnitude, from the initial vehicle speed of and 10m/s and 20m/s respectively. It can be 

seen that the simplified model (3.15) approximates the PreScan model well in most of 

time, except when the Prescan model conducts gear shift which causes transient nonlinear 

response. 
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        (a) Initial vehicle speed 10m/s                     (b) Initial vehicle speed 20m/s               

Fig. 3.7. Comparison of the response of PreScan model and the simplified model 

 

One-unconnected-vehicle case 

1) Simulation setting  

In the evaluation, the high control gains [0.3, 0.7] were adopted in all of CACCu, 

CCC and ACC. According to the identified vehicle dynamics (3.15) and Fig. 3.5 (b), a 

desired time gap of 1.1s should be sufficient for CACCu but apparently not for ACC and 

probably not for CCC (it is uncertain because human parameters of 1st preceding vehicle 

are unknown). However, to compare the performances of CACCu, CCC and ACC in the 

same situations, the desired time gaps for all three cases are set 1.1s. The sensor errors 

are modelled by normal distributions. The radar is assumed to be with 0.1m standard 

error on distance measurement and 0.1m/s on relative speed measurement [86]. The 

accelerometer on the 2nd preceding vehicle is assumed to have a standard error of 

0.005m/s2. GPS positioning is not needed. The communication delay is assumed to be 

0.05s. 

2) Simulation results 
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The results of the 5 simulation runs are summarized in Table 3.1. It can be seen 

that CACCu caused no speed overshooting in all of the cases. This means the speed 

perturbation from downstream was always attenuated by the ego vehicle, thus string 

stability was fulfilled. By contrast, ACC encountered speed overshoots for 6 times in 

total, which means string stability cannot be guaranteed by ACC. CCC also failed to 

avoid the speed overshooting in all the cases, but it had better chance to stay string-stable 

than stand-alone ACC. Fig. 3.8 shows the vehicle speed profiles in the case 30 min under 

different control types. It can be found that CACCu mitigated the speed oscillation all the 

time while CCC overshot once at 90s and ACC overshot twice at 55s and 90s, as labeled 

in Fig. 3.8(b) and (c). 

TABLE 3.1 

SUMMARY OF SIMULATION RESULTS IN ONE-UNCONNECTED-VEHICLE SCENARIO 
Entering 
time 

Control 
type 

# of speed 
overshootings 

Acceleration 
peak (m/s2) 

Acceleration 
RMS (m/s2) 

Spacing error 
peak (m) 

Spacing error 
RMS (m) 

Fuel consumption 
(ml) 

0 min CACCu 0 0.86 0.42 1.37 0.76 47.70 

CCC 0 0.91 0.44 2.51 1.26 48.50 

ACC 1 0.94 0.47 3.33 1.71 50.00 

10min CACCu 0 0.79 0.43 1.72 0.81 31.30 

CCC 1 1.00 0.44 2.59 1.25 31.70 

ACC 1 0.99 0.45 3.33 1.58 32.70 

20min CACCu 0 0.87 0.37 1.92 0.80 30.50 

CCC 0 0.95 0.38 3.06 1.54 30.70 

ACC 0 0.95 0.38 3.80 1.60 31.30 

30min CACCu 0 1.13 0.53 3.16 1.54 39.20 

CCC 1 1.54 0.62 4.15 2.03 43.70 

ACC 2 1.47 0.67 4.96 2.47 46.50 

40min CACCu 0 1.32 0.48 2.16 0.77 23.80 

CCC 0 1.27 0.46 3.61 1.34 23.50 

ACC 2 1.40 0.50 4.38 1.67 26.10 

Average 
reduction 

From ACC 100% 13.2% 8.5% 48.7% 49.2% 7.2% 

From CCC 100% 11.5% 3.9% 36.1% 37.9% 2.5% 
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                    (a) CACCu                                                            (b) CCC 

                    
                                                          (c) ACC 

Fig. 3.8 The speed profiles of CACCu /CCC/ACC vehicle in the case of 30 min. 

 

For the acceleration and spacing errors, both the peak value and RMS value are 

reported in Table 3.1. In average, CACCu reduced acceleration peak value by 13.2% and 

RSM value by 8.5% from those of ACC, and 11.5% and 3.9% from those of CCC, 

showing a moderate improvement in ride comfort. On the other hand, the spacing error 

peak value and RSM were greatly reduced by 48.7% and 49.2% from ACC, and 36.1% 

and 37.7% from CCC. This indicates that CACCu has a significantly better capability to 

maintain a safe inter-vehicle distance than ACC and CCC do. In addition, because of 

smaller acceleration and speed variation, CACCu achieved 7.2% and 2.5% fuel saving 

from ACC and CCC respectively. 
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Multiple-unconnected-vehicle case 

1) Simulation setting 

As aforementioned, to apply CACCu in the scenario where multiple unconnected 

vehicles are in between, the feedforward filter should include a combined transfer 

function of the multiple vehicles instead of single vehicle, that is, replacing (3.7) with: 

𝐹0(𝑆) =
1

𝐺0(𝑠) 𝐻0(𝑠)𝑠2
𝑇1

′(𝑠)𝑇2
′(𝑠)…𝑇𝑛

′(𝑠)                                                        (3.16) 

Where n is the number of unconnected vehicles. 

And the string stability determinant becomes: 

𝑆𝑆 = ‖𝑇0(𝑗𝜔)‖∞ = ‖
𝐻0(𝑗𝜔)𝐺0(𝑗𝜔)𝐾0(𝑗𝜔)+𝐷0(𝑗𝜔)

𝑇1
′ (𝑗𝜔)…𝑇𝑛

′ (𝑗𝜔)

𝑇1(𝑗𝜔)…𝑇𝑛(𝑗𝜔)

𝐻0(𝑗𝜔)(1+𝐻0(𝑗𝜔)𝐺0(𝑗𝜔)𝐾0(𝑗𝜔))
‖

∞

                      (3.17) 

Accordingly, the calculation of SSR (12) should also be substituted by: 

𝑆𝑆𝑅 =

∫∫∫∫𝑝(𝛼1, 𝛽1, 𝜑1, 𝑡1,ℎ)…𝑝(𝛼𝑛, 𝛽𝑛, 𝜑𝑛, 𝑡𝑛,ℎ) 𝜉(𝑆𝑆)𝑑𝛼1𝑑𝛽1𝑑𝜑1𝑑𝑡1,ℎ …𝑑𝛼𝑛𝑑𝛽𝑛𝑑𝜑𝑛𝑑𝑡𝑛,ℎ     

                                                                                                                                      (3.18) 

It is noted that the complexities of the SSR increase exponentially with the 

addition of the unconnected vehicles. This could bring computational issue in optimizing 

the parameters of 𝑇1
′(𝑠)𝑇2

′(𝑠)…𝑇𝑛
′(𝑠) for the highest SSR. If a full design of CACCu is 

unavailable, a simplification is to assume homogeneous traffic, i.e., all the unconnected 

vehicles have the same human parameters, which leads to: 

𝐹0(𝑆) =
1

𝐺0(𝑠) 𝐻0(𝑠)𝑠2 𝑇1
′(𝑠)𝑛                                                                             (3.19) 
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With this simplification, an approximate SSR can be simply computed by (3.12). 

In the case of two unconnected vehicles, both the full design with (3.16)-(3.18) 

and a simplified design of CACCu were evaluated. In full design, the optimal virtual 

preceding vehicles were determined to be 𝑇1
′(𝑠) = 𝑇2

′(𝑠) = (1.22, 0.26, 0, 0.99). It 

corresponded to a critical gap of 1.3s and the maximum SSR of 97.8%. As comparison, 

the simplified design using (3.19) and (3.12) led to 𝑇1
′(𝑠) = (1.14, 0.4, 0, 0.95), 

corresponding to a maximum approximate SSR of 93.8% (computed by (3.12)). 

Meanwhile, the actual SSR was found to be 97.5% (computed by (3.18)). It is noted that 

although the simplified design has underestimated SSR, the obtained solution and its 

optimality (i.e., actual SSR) resembled the ones in full design.  

2) Simulation results 

As can be expected, these two designs of CACCu achieved very similar 

performances in the evaluation. For simplicity, the evaluation results with full design are 

reported in Table 3.1. The desired gap of 1.3s (critical gap) was used in all the runs. 

Overall, CACCu led to 83% speed overshooting avoidance, 8.2% acceleration reduction, 

38% spacing error reduction and 4.7% fuel saving from ACC. It also achieved 67% speed 

overshooting avoidance, 5.8% acceleration reduction, 24.8% spacing error reduction and 

2.3% fuel saving from CCC.  

TABLE 3.2 

SUMMARY OF SIMULATION RESULTS IN TWO-UNCONNECTED-VEHICLE SCENARIO 

Entering 
time 

Control 
type 

# of speed 
overshootings 

Acceleration 
peak (m/s2) 

Acceleration 
RMS (m/s2) 

Spacing error 
peak (m) 

Spacing error 
RMS (m) 

Fuel consumption 
(ml) 

0 min CACCu 0 0.72 0.32 1.89 0.96 36.10 

CCC 0 0.82 0.37 3.06 1.31 36.80 

ACC 0 0.87 0.38 3.04 1.39 37.00 

10min CACCu 0 0.57 0.34 1.74 0.76 30.30 

CCC 1 0.82 0.36 2.06 1.02 31.20 

ACC 1 0.76 0.35 2.50 1.36 31.20 
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In the case of three unconnected vehicles, the full design of CACCu is infeasible 

because the required computation time was too long. Thus, only the simplified design 

was conducted. Given desired gap of 1.5s, the approximate SSR was maximized to 

89.3%. Intuitively, the critical gap of CACCu in this scenario should be longer than 1.5s. 

However, a desired gap>1.5s means the loss of the throughput benefit over human 

driving which has an average desired gap of 1.5s [76]. Thus, 1.5s was assumed the 

maximum desired gap of ego vehicle and used in this scenario. The evaluation results for 

three-unconnected-vehicle scenario are summarized in Table 3.3. CACCu led to overall 

60% speed overshooting avoidance, 6% acceleration reduction, 34.9% spacing error 

reduction and 3.3% fuel saving from ACC, and 60% speed overshootings avoidance, 

4.8% acceleration reduction, 25.9% spacing error reduction and 1.5% fuel saving from 

CCC.  

20min CACCu 0 1.04 0.39 3.38 1.10 32.30 

CCC 0 1.10 0.39 4.06 1.36 32.40 

ACC 0 1.12 0.39 4.47 1.64 32.30 

30min CACCu 1 1.03 0.42 3.28 1.57 29.70 

CCC 2 1.20 0.50 3.77 1.80 33.50 

ACC 5 1.19 0.54 4.24 2.14 35.80 

40min CACCu 0 0.93 0.35 1.14 0.56 17.40 

CCC 0 0.98 0.33 2.37 0.93 17.00 

ACC 0 0.88 0.35 2.92 1.26 18.00 

Average 
reduction 

From ACC 83.3% 11.4% 8.2% 35.2% 38.0% 4.7% 

From CCC 66.7% 13.5% 5.8% 27.1% 24.8% 2.3% 
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TABLE 3.3 

SUMMARY OF SIMULATION RESULTS IN THREE-UNCONNECTED-VEHICLE SCENARIO 
Entering 
time 

Control 
type 

# of speed 
overshootings 

Acceleration 
peak (m/s2) 

Acceleration 
RMS (m/s2) 

Spacing error 
peak (m) 

Spacing error 
RMS (m) 

Fuel consumption 
(ml) 

0 min CACCu 0.00 0.66 0.34 1.71 0.87 37.90 

CCC 0.00 0.72 0.36 2.92 1.37 38.60 

ACC 0.00 0.85 0.37 3.33 1.62 38.00 

10min CACCu 0.00 1.03 0.36 1.89 0.89 26.90 

CCC 1.00 1.03 0.38 3.30 1.32 28.10 

ACC 1.00 1.05 0.37 4.00 1.60 27.90 

20min CACCu 0.00 1.01 0.43 3.37 1.52 39.00 

CCC 1.00 1.11 0.42 4.06 1.67 38.10 

ACC 1.00 1.10 0.42 4.00 1.91 38.60 

30min CACCu 0.00 0.98 0.40 3.52 1.76 26.60 

CCC 2.00 1.04 0.49 3.83 2.00 29.70 

ACC 2.00 1.05 0.51 4.39 2.17 30.80 

40min CACCu 2.00 1.08 0.34 1.81 0.79 17.70 

CCC 1.00 0.99 0.33 3.09 1.31 16.60 

ACC 1.00 0.97 0.34 3.17 1.42 17.70 

Average 
reduction 

From ACC 60.0% 5.6% 6.0% 36.0% 34.9% 3.3% 

From CCC 60.0% 2.8% 4.8% 30.1% 25.9% 1.5% 

 

The benefits of CACCu over ACC in all the three scenarios are compared in Fig. 3.9. It 

shows a trend that more unconnected vehicles in between would make CACCu’s benefits 

decline. This is expected because with more unmodelled noise in human behaviors being 

introduced, the information of the further preceding vehicle has weaker capability to predict the 

motion of 1st preceding vehicle. Nevertheless, CACCu still performed consistently better than 

ACC and CCC in every aspect. Generally speaking, the CACCu design described in Section II 

and III can be well extended to multi-unconnected-vehicle scenarios, although sometimes with 

approximation in determining the optimal parameters of “virtual preceding vehicles”. 
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Fig. 3.9 Comparing the benefits of CACCu over ACC in all the three scenarios. 

 

 

3.5 Key findings 

In this chapter, CACC with unconnected (CACCu) algorithm was proposed. When 

encountering an unconnected preceding vehicle, CACCu can utilize the communication with the 

further (connected) preceding vehicle to improve the response of ego vehicle. It was analytically 

proven that by attaching a filter of “virtual preceding vehicle” to the original CACC feedforward 

filter, the CACCu vehicle can stay string-stable at a gap significantly shorter than that required 

by ACC. The high-fidelity evaluation results showed that CACCu avoided most of speed 

overshootings happening to ACC and CCC. This means the string stability was greatly 

improved. CACCu also led to overall 6~9% acceleration reduction, 35~49% spacing error 

reduction and 3~7% fuel saving from ACC; 5~8% acceleration reduction, 26~38% spacing error 
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reduction and 2~3% fuel saving from CCC. These numbers indicated benefits of CACCu in 

safety, ride comfort and energy efficiency.  
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Chapter 4. Adaptive Model Predictive Control Approach for CACCu  

In this chapter, an optimization-based control design of CACCu is proposed, to further 

improve the performance and usability of CACCu. Considering the essentially nonlinear time-

variant and stochastic nature of CACCu system, Adaptive Model Predictive Control (A-MPC) 

approach was adopted. The performances of A-MPC CACCu, the previously developed CACCu 

(referred to as linear CACCu), ACC and human driving are compared via numerical simulations. 

4.1 Problem statement 

Although the preliminary control designs of CACCu indicated improvements over ACC, 

it will be faced with challenges commonly existing in rule-based linear control.  

1) It cannot efficiently handle constraints, such as vehicle’s capability of acceleration or 

jerk rate, speed limit, and other soft requirement for avoiding undesired situations 

such as harsh acceleration/brake or unsafe spacing; 

2) The controller parameters are fixed at the robust values to ensure acceptable 

performance given a variety of human car-following behaviors, but it also means they 

have sacrificed their optimality. When encountering a “strange” driver whose 

behaviors are far from the average, such a controller will certainly lead to a 

continuous sub-optimal performance; 

3) It still needs to estimate the number (i.e., 𝑛) of unconnected preceding vehicle 

vehicles for a proper choice of feedforward filter. In a loosely distributed traffic, such 

estimate can be difficult. For example, when the connected preceding vehicle 

((𝑛 + 1)𝑡ℎ vehicle) is far away, it would be tricky to determine whether there are 

multiple unconnected vehicles in between, or it is just a plenty of empty space 

between the 1st preceding and 𝑛𝑡ℎ preceding vehicle. An incorrect estimate could lead 

to undesirable outcome. 
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To address these challenges and optimize the performance of CACCu, we propose 

Adaptive Model Predictive Control (A-MPC) approach. Model Predictive Control (MPC) is a 

prevailing nonlinear control framework that has been successfully applied to ACC [87] and 

CACC [88]. While MPC requires more tuning effort and computational cost, it showed 

advantages in handling constraints and achieving multiple control objectives (e.g., safety, fuel 

consumption and comfort). It is noted that the effectiveness of MPC relies on an accurate 

prediction model of the system dynamics, which is easy to obtain for deterministic systems like 

ACC and CACC, yet very difficult for time-variant stochastic systems like CACCu involving 

human drivers. To avoid unexpected behaviors caused by large modeling errors, the system 

dynamics model for MPC-based CACCu needs to be estimated and updated online according to 

actual situation, which leads to an adaptive MPC (A-MPC) [89]. A-MPC has essentially the 

same mechanism with normal MPC which optimizes a cost function in rolling time horizon 

under given constraints, except that in every time step a new prediction model is fed to the 

controller, instead of a fixed one. Thus, A-MPC is more suitable for nonlinear time-variant 

stochastic system.  

The control schemes of CACCu based on A-MPC is shown in Fig. 4.1. An initial 

prediction model still needs to be derived from a priori knowledge in the population of drivers as 

a starting point of the control, but afterwards an online estimator will be generating new model 

parameters based on the actual motion of the preceding connected vehicle and the human-driven 

vehicle, and this estimation will be used to correct the initial/previous prediction model (through, 

e.g., a Kalman filter [90]) over time. Note that the A-MPC does not necessarily use the 
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aforementioned linearized OVM (3.1) as prediction model, because OVM has been shown not a 

robust model to be estimated from a small piece of data [61]. 

 

Fig. 4.1 Scheme of A-MPC-based CACCu 

 

4.2 System modelling 

A discrete-time state-space model is required for MPC design. The CACCu system can 

be modelled in two parts: 

1) The dynamics between 1st preceding vehicle and ego vehicle (i.e., how the state of ego 

vehicle is affected by the 1st vehicle), which are relatively certain 

2) The dynamics between (𝑛 + 1)𝑡ℎ vehicle and the 1st vehicle (i.e., how the state of 

(𝑛 + 1)𝑡ℎ vehicle can help predict that of 1st vehicle), which are relatively uncertain and 

need to be estimated online 

Dynamics between 1st vehicle and ego vehicle 

As the control goals of CACCu are to maintain a constant time gap and a similar speed 

with preceding vehicle’s, we define the state vector of vehicle 0 as follow:  

𝑋0 = [𝑒𝑝,  𝑒𝑣, 𝑎0]
𝑇

             (4.1)               
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Where 𝑒𝑝 and 𝑒𝑣 are the spacing error and speed difference from the preceding vehicle, 

respectively; 𝑎0 is the acceleration of vehicle 0. Apparently, we have: 

𝑒𝑝 = ℎ − 𝑣0𝑡ℎ               (4.2) 

𝑒𝑣 = 𝑣1 − 𝑣0                           (4.3) 

Where ℎ is the current inter-vehicle spacing, 𝑡ℎ is the desired time gap, 𝑣1 and 𝑣0 are the 

speed of 1st vehicle and ego vehicle, respectively. In addition, the acceleration of ego is ruled by 

the acceleration command with first-order lag, when ignoring the small actuator delay [87]: 

�̇�0 = −
𝑎0

𝜏
+

𝑢

𝜏
               (4.4) 

Where 𝑢 is the acceleration command given by the controller, and 𝜏 is the response lag of 

the vehicle. 

Combining (4.1) ~ (4.4), we can formulate a continuous-time state-space model with the 

inputs from ego and 1st vehicle: 

�̇�0 = 𝐴0𝑋0 + 𝐵0𝑈0

𝑌0 = 𝐶0𝑋0 + 𝑦𝑒      
                (4.5) 

Where: 

𝑋0 = [

𝑒𝑝

𝑒𝑣

𝑎0

], 𝐴0 = [
0 1 −𝑡ℎ
0 0 −1
0 0 −1/𝜏

], 𝐵0 = [
0 0       0 
0 1       1

1/𝜏 0       0
 ], 𝑈0 = [

𝑢
𝑎1

∆𝑎1

] 

𝐶0 = [
1      0      0
0      1      0
0      0      1

], and 𝑁𝑦 = [

𝑁𝑒𝑝

𝑁𝑒𝑣

0

] 
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Note that 𝑎1 cannot be directly measured by the range sensor of vehicle 0. Instead, it 

should be predicted based on the acceleration of (𝑛 + 1)𝑡ℎ vehicle and then corrected by a state 

observer based on model (4.5). Therefore, ∆𝑎1, the estimation error in 𝑎1, is added as an 

unmeasured disturbance. 𝑁𝑦 is the sensor error vector, consisting of spacing measurement error 

𝑁𝑒𝑝
and speed measurement error 𝑁𝑒𝑣

. The ego vehicle’s acceleration error is assumed 

insignificant. 

This study assumes 𝜏 = 0.12 and 𝑡ℎ = 1.1𝑠 to keep the consistency with linear CACCu. 

The MPC controller is set to update its command every 0.1s. Then, the continuous-time model 

(4.5) is transformed to discrete-time model (4.6) using zero-order hold [38]: 

𝑋0(𝑡 + 0.1) = 𝐴0
𝑑𝑋0(𝑡) + 𝐵0

𝑑𝑈0(𝑡)
𝑌0(𝑡) = 𝐶0𝑋0(𝑡) + 𝑦𝑒(𝑡)                   

        (4.6) 

Where: 

𝐴0
𝑑 = [

1   0.1  − 0.0784 
0     1   − 0.0678 
0      0        0.4346 

]  and 𝐵0
𝑑 = [

−0.0365   0.05   0.05
−0.0321    0.1      0.1
   0.5654        0         0 

] 

Estimation of dynamics between (𝒏 + 𝟏)𝒕𝒉 vehicle and 1st vehicle 

Second-order linear models are the most commonly used in existing studies [40], [60], 

[91] for identifying car-following dynamics between a pair of vehicles (i.e., 1st and 2nd preceding 

vehicles). Although [60] further proposed that the order of the car-following model should 

increase by 2𝑛 when 𝑛 > 1. However, this would again require the estimation of 𝑛 and make the 

model estimation much more complicated. In fact, our preliminary work showed that a higher 

order of model does not necessarily improve the prediction accuracy of the model. Therefore, in 
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this study, second-order model with input delay is adopted to represent the dynamics between 

(n + 1)th vehicle and 1st vehicle, no matter what value of 𝑛. 

As this model is to be estimated and updated at every time step, we write the second-

order model in Autoregressive Exogenous (ARX) structure: 

𝑎1(𝑡) + 𝑐1𝑎1(𝑡 − 0.1) +  𝑐2𝑎1(𝑡 − 0.2) = 𝑐3𝑎𝑛+1(𝑡 − 0.1𝑘)  

Which can then be converted to a discrete-time state-space model in general form: 

[
𝑎1(𝑡)

𝑎1(𝑡 − 0.1)
] = 𝐴1 [

𝑎1(𝑡 − 0.1)
𝑎1(𝑡 − 0.2)

] + 𝐵1𝑎𝑛+1(𝑡 − 0.1𝑘)                                      (4.7) 

Where 𝑎1 and 𝑎𝑛+1 are the accelerations of the 1st vehicle and (𝑛 + 1)𝑡ℎ vehicle, 

respectively. 𝐴1, 𝐵1 are coefficient matrices and 𝑘 is the input time delay, all to be estimated. 

Specifically, we have: 

 𝐴1 = [
−𝑐1     − 𝑐2

1            0
] and 𝐵1 = [

𝑐3

0
] 

For a linear identified model, we can replace 𝑎1 and 𝑎𝑛+1 with 𝑣1 and 𝑣𝑛+1 as the 

input/output data, because 𝑎1 cannot be directly measured.  

The recursive polynomial model estimator provided by MATLAB system identification 

toolbox is used for real-time model estimation. Kalman filter [90] is chosen as the estimation 

method. To estimate the input delay, we adopt a sweeping method: 

1) Create multiple estimators; 

2) No delay is assumed inside each estimator (to keep a consistent model structure over all 

the estimator); 
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3) Impose incremental time delays to the input signals of different estimators, as shown in 

Fig. 4.2; 

4) At every time step, find the estimated model which indicates the least uncertainty in 𝑐3 

and also fulfill internal stability, i.e., find 𝑘 that 𝑚𝑖𝑛  (𝑉𝑎𝑟(𝑐3) /𝑐3
2), s.t. the eigen values 

of 𝐴1 have norms ≤ 1. 𝑐3 is used here because this coefficient directly links system state 

to input signal, while 𝑐1 and 𝑐2 are responsible for internal state transition. In practice, we 

can observe that 𝑐1 and 𝑐2 converge to certain values no matter what input delay is 

assumed; 

5) To prevent frequent switches between different estimators, a slack is added in 

determining 𝑘. We compared 𝑉𝑎𝑟(𝑐3(𝑡))/𝑐3
2(𝑡) of 𝑘(𝑡) with 𝑉𝑎𝑟(𝑐3(𝑡))/𝑐3

2(𝑡) of 𝑘(𝑡 −

0.1). If the difference is smaller than a slack (e.g., 10%), then keep 𝑘(𝑡) = 𝑘(𝑡 − 0.1); 

6) The time delay (i.e., 0.1𝑘) imposed to the input of selected estimator is considered the 

input delay for the estimated model. 
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Fig. 4.2 Input delay identification with multiple estimators 

 

In this study, the minimum input delay (i.e., minimum human reaction time) is assumed 

0.5s [77]; 10 estimator were employed with incremental time delay of 0.4s, to cover a range of 

0.5s ~ 4.5s input delay. For each estimator, the initial estimate of model parameters (𝑐1, 𝑐2, 𝑐3, 𝑘) 

are set at (-1.413, 0.437,0.03, 10), which represent typical dynamics between 1st and 2nd 

preceding vehicle shown in Fig. 3.7. 

Complete system model 

Combining (4.6) and (4.7), the model of the complete system can be obtained: 

𝑋(𝑡 + 0.1) = 𝐴𝑋0(𝑡) + 𝐵𝑈(𝑡)
𝑌(𝑡) = 𝐶𝑋(𝑡) + 𝑦𝑒(𝑡)               

        (4.8) 
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Where 𝑋(𝑡) =

[
 
 
 
 

𝑒𝑝(𝑡)

𝑒𝑣(𝑡)
𝑎0(𝑡)
𝑎1(𝑡)

𝑎1(𝑡 − 0.1)]
 
 
 
 

, 𝐴 =

[
 
 
 
 

1     0.1  − 0.0785   0.005  0
0       1   − 0.0679     0.1     0
0       0       0.4346        0       0

   0       0          0          − 𝑐1   − 𝑐2

0       0          0               1        0 ]
 
 
 
 

, 

𝐵 =

[
 
 
 
 
−0.0365   0.05   0.05
−0.0321    0.1      0.1
   0.5654        0         0 
       0               0         𝑐3

      0               0         0 ]
 
 
 
 

, 𝑈(𝑡) = [

𝑢(𝑡)

𝑎𝑛+1 (𝑡 − 0.1𝑘)

∆𝑎1(𝑡)
],  

𝑌(𝑡) = [

𝑒𝑝(𝑡)

𝑒𝑣(𝑡)

𝑎0(𝑡)

], and 𝐶 = [
1     0     0     0     0
0     1     0     0     0
0     0     1     0     0

]. 

𝑐1, 𝑐2 and 𝑐3 are updated every time step, while other parameters in matrices 𝐴 and 𝐵 are 

constant. Note that the second input signal in 𝑈(𝑡), i.e., 𝑎𝑛+1, should be delayed by 0.1𝑘 before 

given to MPC for state prediction.  

4.3 Model predictive control 

State estimation and prediction 

Because the system state vector 𝑋(𝑡) =  [𝑒𝑝(𝑡), 𝑒𝑣(𝑡), 𝑎0(𝑡), 𝑎1(𝑡), 𝑎1(𝑡 − 1)]
𝑇
contains 

unmeasured states (𝑎1(𝑡), 𝑎1(𝑡 − 0.1)), in every time step we need to estimate values of 

unmeasured states as the basis for predictions. A Kalman filter based on (4.6) is utilized as the 

state observer, combining both the prediction based on 𝑎𝑛+1, and the sensor measurements on 𝑒𝑝 

and 𝑒𝑣. This Kalman filter program is briefly described below: 

𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛:      𝐸(𝑡) = 𝑌(𝑡) − 𝐶0�̂�(𝑡|𝑡 − 0.1)                                                                                                

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒:        �̂�(𝑡|𝑡) =  �̂�(𝑡|𝑡 − 0.1) + 𝑀𝐸(𝑡)                                                                                     
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛:     �̂�(𝑡 + 0.1|𝑡) = 𝐴�̂�(𝑡|𝑡 − 0.1) + 𝐵𝑢𝑢(𝑡) + 𝐵𝑣𝑎𝑛+1 (𝑡 − 0.1𝑘) + 𝐿𝐸(𝑡)         

Where 𝐵𝑢 and 𝐵𝑣 are the first and second columns of matrix 𝐵, respectively; 𝐸(𝑡) is the 

innovation, i.e., the discrepancy between the prediction and measurement. 𝐿 and 𝑀 are Kalman 

gain matrices linked to the variances of unmeasured disturbance (∆𝑎1) and measurement noises 

(𝑁𝑒𝑝
 and 𝑁𝑒𝑣

) [92]. These noises are assumed to be unbiased white noises with constant 

variances.  

𝑉𝑎𝑟(𝑁𝑒𝑝
) and 𝑉𝑎𝑟(𝑁𝑒𝑣

) can be set compliant with the actual radar sensor. In this study, 

we assumed 𝑉𝑎𝑟 (𝑁𝑒𝑝
) = 0.029  and 𝑉𝑎𝑟(𝑁𝑒𝑣

) = 0.017 from field test [34]. These noises will 

also be applied to the later evaluation. However, higher measurement accuracy may be achieved 

with state-of-art radar sensor, such as 𝑉𝑎𝑟 (𝑁𝑒𝑝
) = 0.01 and 𝑉𝑎𝑟(𝑁𝑒𝑣

) = 0.01 of Bosch long-

range radar (LLR) [86].  

Different values of 𝑉𝑎𝑟(∆𝑎1) were tried in a state estimation test. Assuming a higher 

𝑉𝑎𝑟(∆𝑎1) tends to make the estimated 𝑎1 closer to the truth, but also more sensitive to 

measurement noise, leading to jerky estimation. Fig. 4.3 shows the estimation results of 𝑎0(𝑡) 

assuming different 𝑉𝑎𝑟(∆𝑎1), during a simulation run in the later section Performance 

Evaluation. It was found that 𝑉𝑎𝑟(∆𝑎1) = 1 achieved a good estimation accuracy without 

excessive noise. 
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                    (a) 𝑉𝑎𝑟(∆𝑎1) = 0                               (b) 𝑉𝑎𝑟(∆𝑎1) = 0.5 
 

  
                     (c) 𝑉𝑎𝑟(∆𝑎1) = 1                               (d) 𝑉𝑎𝑟(∆𝑎1) = 2 
Fig. 4.3 The estimated 𝑎0 when assuming different 𝑉𝑎𝑟(∆𝑎1) in a simulation run 

 

To predict the system state in the future time using (4.8), the MPC controller accepts 

preview of the measured disturbance (i.e., 𝑎𝑛+1). As (4.8) indicates that the current system state 

is affected by the acceleration of (𝑛 + 1)𝑡ℎ vehicle only up to 𝑘 steps ago, the MPC controller 

can preview it for the next 𝑘 time steps. If the prediction horizon 𝑁 is longer than 𝑘, then the 

𝑎𝑛+1 is assumed unchanged in the last (𝑁 − 𝑘) time steps. Therefore, the review signal reads: 

𝑎𝑛+1(𝑡 − 0.1𝑗 | 𝑡) = {
𝑎𝑛+1(𝑡 − 0.1𝑗),   0 ≤ 𝑗 ≤ 𝑘

𝑎𝑛+1(𝑡),    𝑘 < 𝑗 ≤ 𝑁          
                                                    (4.9) 
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Rolling-horizon optimization 

MPC solves a rolling-horizon optimization problem at every time step (0.1s). The 

objective function is defined as to reduce spacing error, speed difference form preceding vehicle, 

and acceleration of ego vehicle (which links to fuel consumption): 

𝑀𝑖𝑛 ∑  𝑞𝑝𝑒𝑝
2(𝑡 + 0.1𝑗|𝑡)𝑁

𝑗=1 + 𝑞𝑣𝑒𝑣
2(𝑡 + 0.1𝑗|𝑡) + 𝑞𝑎𝑎0

2(𝑡 + 0.1𝑗|𝑡) + 𝑞𝑢𝑢2(𝑡 + 0.1𝑗|𝑡) + 𝜌𝜀2    (4.10) 

Where 𝑁 is the prediction horizon; 𝑞𝑝, 𝑞𝑣, 𝑞𝑎 and 𝑞𝑢 are weights for 𝑒𝑝, 𝑒𝑣, 𝑎𝑜 and 𝑢; 𝜌𝜀2 

is the penalty term when there are constraints being violated; 𝜀 is the slack variable for the 

constraints, and 𝜌 is the penalty factor.  

Constraints are set as below: 

• To guarantee safety, 𝑒𝑝 should be constrained: 

𝑒𝑝𝑚𝑖𝑛 − 𝜀 ≤ 𝑒𝑝 ≤ 𝑒𝑝𝑚𝑎𝑥 + 𝜀  

• To consider physical limits on vehicle dynamics and ride comfort, the control signal 𝑢 

and its increment rate should be constrained: 

𝑢𝑚𝑖𝑛 − 𝜀 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 + 𝜀  

𝑢𝑚𝑖𝑛
′ − 𝜀 ≤ 𝑢′ ≤ 𝑢𝑚𝑎𝑥

′ + 𝜀  

• Other constraints (such as speed limit) can also be added when necessary. 

As the optimization adopts a linear system model, linear constraints and the objective 

function in quadratic form, the optimization can be solved in finite steps by a standard Quadratic 

Programming (QP) solver (e.g., KWIK algorithm [93]).  
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4.4 Performance evaluation  

Simulation settings 

To comprehensively compare the performances of the A-MPC-based CACCu and the 

previously proposed linear CACCu, the entire NGSIM data from the US101 innermost lane (with 

the fewest lane-changes) are used to simulate various car-following scenarios. For meaningful 

evaluations, the period of each used scenario is required to be longer than 60s.   

A fair comparison between A-MPC-based CACCu and the linear CACCu would require 

their parameters to be tuned for the similar trade-off between control accuracy and energy 

consumption. Although MPC is a nonlinear control method and the control law cannot be 

expressed as a state feedback, we approximate it as a Linear-Quadratic Regulator (LQR), whose 

feedback gains can be explicitly derived from Racatti equations [94]. As we have known the 

state feedback gains in linear CACCu are 𝐾 = [−0.3 − 0.7  0.77], the weights [𝑞𝑝 𝑞𝑣 𝑞𝑎 𝑞𝑢] in 

(4.10) were tuned to [1 3 3 9] so that the following LQR has the similar state feedback gains 

with linear CACCu: 

𝑀𝑖𝑛 ∑  𝑞𝑝𝑒𝑝
2(𝑡)∞

𝑡=0 + 𝑞𝑣𝑒𝑣
2(𝑡) + 𝑞𝑎𝑎0

2(𝑡) + 𝑞𝑢𝑢2(𝑡)                                                   (4.11) 

All the parameters used in the MPC controller are listed in Table 4.1. 

TABLE 4.1 

SUMMARY OF MPC CONTROLLER PARAMETERS 
Parameter Value Parameter Value 

𝒒𝒑  1 𝑒𝑝𝑚𝑖𝑛  -2m 

𝒒𝒗  3 𝑒𝑝𝑚𝑎𝑥  2m 

𝒒𝒂  3 𝑢𝑚𝑖𝑛  -2 

𝒒𝒖  9 𝑢𝑚𝑎𝑥  1 

N 30 𝑢𝑚𝑖𝑛
′   -3 
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𝝆  10000 𝑢𝑚𝑎𝑥
′   3 

 

Evaluation results 

Firstly, the evaluation was conducted in the scenarios of 𝑛 = 1, i.e., the three-vehicle-

sandwich scenarios. 380 such scenarios were extracted from the NGSIM dataset. The average 

performances of A-MPC CACCu, linear CACC over the 380 runs are listed in Table 4.2. The 

fuel consumption of ego vehicle is estimated using VT-micro model [84]. The performance of 

ACC and the actual human driver collected by NGSIM are also provided for reference. 

TABLE 4.2 

EVALUATION RESULTS IN THE SCENARIOS OF 𝑛 = 1 
Control method Spacing error RMS (m) Acceleration RMS (m/s2) Fuel consumption (ml) 

A-MPC CACCu 0.90 0.63 38.15 

Linear CACCu 0.96 0.60 38.15 

ACC 1.79 0.67 41.38 

Human driver N/A 0.89 47.50 

 

It can be seen that A-MPC CACCu has slightly better control accuracy (spacing error) 

than linear CACCu, while the fuel consumptions are almost the same. Both CACCu methods 

outperformed ACC in all the aspects, especially in spacing error. The human driver is found to 

cause much higher acceleration and fuel consumption than any of the CACCu/ACC. 

The performance evaluations were further conducted in 322 scenarios of 𝑛 = 2 and 50 

scenarios 𝑛 = 3. The results are listed in Table 4.3 and 5.4, respectively. For CACCu methods, 

the values of 𝑛 were assumed to be unknown in each run. However, the performances of linear 

CACCu knowing the values of 𝑛 are also shown (referred as Linear CACCu-ideal). They can be 

seen as the ideal performances of linear CACCu.  
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TABLE 4.3 

EVALUATION RESULTS IN THE SCENARIOS OF 𝑛 = 2 
Control method Spacing error RMS (m) Acceleration RMS (m/s2) Fuel consumption (ml) 

A-MPC CACCu 1.07 0.65 36.67 

Linear CACCu 1.69 0.61 36.44 

Linear CACCu-ideal 1.20 0.61 36.17 

ACC 1.82 0.68 39.01 

Human driver N/A 0.90 44.63 

 

TABLE 4.4 

EVALUATION RESULTS IN THE SCENARIOS OF 𝑛 = 3 
Control method Spacing error RMS (m) Acceleration RMS (m/s2) Fuel consumption (ml) 

A-MPC CACCu 1.18 0.70 36.82 

Linear CACCu 2.26 0.69 37.65 

Linear CACCu-ideal 1.39 0.66 36.21 

ACC 1.95 0.72 38.81 

Human driver N/A 0.91 43.01 

 

It can be seen that A-MPC greatly outperformed linear CACCu when the value of 𝑛 is 

unknow to them. The spacing error of linear CACCu is 57% and 88% higher than A-MPC 

CACCu in the case of 𝑛 = 2 and 3, respectively. Even when the value of 𝑛 is accurately known 

to the linear CACCu, there was no apparent winner between the A-MPC CACCu and the linear 

CACCu in its ideal condition. A-MPC CACCu achieved slightly smaller spacing error but also 

costed slightly higher fuel. However, considering that A-MPC does not require the 𝑛 to be 

known while the performances of CACCu degrades greatly if 𝑛 is unknow, A-MPC CACCu is 

apparently a more robust method for the implementation in complicated traffic situations. 

4.5 Key findings 

This chapter presented the Adaptive Model Predictive Control (A-MPC) approach for 

CACCu. The simulation with NGSIM data showed that A-MPC CACCu slightly outperformed 

the linear CACCu when 𝑛 was accurately known, and largely outperformed linear CACCu when 
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𝑛 was unknown. Therefore, A-MPC CACCu was proven a more robust method for the 

implementation in complicated traffic situations 
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Chapter 5. Field Demonstration of CACCu 

The proposed CACCu needs to be validated in the field to ensure that it can be 

implemented to real world. This chapter presents the experiment design, algorithm realization 

and demonstration results of the linear CACCu. It was confirmed that CACCu can greatly 

attenuate the traffic disturbance and improve safety, comfort, and fuel efficiency compared to 

ACC. 

5.1 Experimental vehicles 

The experiment was conducted through the collaboration with Korea Advanced Institute 

of Science and Technology (KAIST). The two test vehicles, Hyundai i30 PD and Hyundai 

Veloster, used in the test are shown in Fig. 5.1. Hyundai i30 PD played as the ego vehicle and 

Hyundai played as preceding vehicle (s), as elaborated later in the Section Experiment design. 

Both vehicles have been automated with onboard sensors and electric pedal actuators. The V2V 

communications between them have been enabled by Wi-Fi modules, which are set to transmit 

the information every 0.1s. 

    

Fig. 5.1 Autonomous vehicle i30 PD(blue)/Veloster(yellow) and System Configure(right) 

 

The long-range radar sensor, which has been commonly adopted by commercial ACC, is 

not available in these vehicles. Instead, there are two other options for front-view sensing: Lidar 
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and Mobileye (camera). To facilitate the selection of the appropriate sensor that meets the needs, 

a sensing accuracies experiment was conducted. The distance/speed relative to preceding 

vehicle, measured by Lidar and Mobileye during an arbitrary run are shown in Fig. 5.2. The real-

time-kinetic (RTK) GPS, which is of centimeter accuracy, served as the ground truth. The result 

showed that the lidar sensor had a detection limit distance of 30m. The reason is that the density 

of the point-cloud cluster gets too low as the distance increases. It was seen that the Mobileye 

estimated the depth of the preceding vehicle very well. The root mean square (RMS) values of 

both sensing errors were found to be 1.10 m for Mobileye and 4.18 m for Lidar. Therefore, 

Mobileye was chosen to detect the preceding vehicle for CACCu and ACC. The RMS error of 

estimated velocity by Mobileye was found to be 3.46km/h, with the ground truth provided by 

CAN bus of preceding vehicle. This is however a notable sensing error compared to state-of-art 

radar sensors [86]. 
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Fig. 5.2 Sensing results (left top/bottom) and sensing error (right top/bottom) 

 

To properly parameterize the feedforward filter in CACCu controller, the longitudinal 

vehicle dynamics of ego vehicle should be identified. Different from the setting in Chapter 4, the 

experimental vehicles only accept speed command instead of acceleration command. Another 

major challenge in this study is that we have neither low-level information (e.g., engine torque 

map) of the vehicle nor the access to revise its low-level controller. Therefore, the original 

CACCu high-level controller must be adapted to give speed command, as described in next 

section. For the same reason, the “vehicle dynamics” now refers to the relationship between the 

commanded speed and the actual speed. A vehicle dynamics test was conducted for the vehicle 

dynamics identification. Like in [45], a small step signal (which caused no acceleration 

saturation) were given as the commanded speed in the test, and the actual speed response of the 

vehicle was recorded. Using MATLAB system identification toolbox, a second-order model 

𝐺0(𝑠) was identified from the collected data: 

𝐺0(𝑠) =
𝐿(�̇�0)

𝐿(𝑣𝑐)
=

1

0.8𝑠2+1.6𝑠+1
𝑒−0.7𝑠                                                                         (5.1) 

Where �̇�0 and 𝑣𝑐 are the speeds of ego vehicle and the commanded speed, respectively. 

𝐿(∗) denotes Laplace transform and 𝑠 is the Laplace variable. The model response and the actual 

response of the vehicle are compared in Fig. 5.3.  
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Fig. 5.3 The model response and actual vehicle response during the vehicle dynamics test 

 

5.2 Control algorithm adaptation 

To facilitate the speed control in CACCu vehicle, the high-level control law is revised to 

as below: 

ℎ0(𝑡) = 𝑥1(𝑡) − 𝑥0(𝑡) − 𝑙1           

ℎ0,𝑑(𝑡) = 𝑡0,ℎ𝑥0̇(𝑡) + ℎ0,𝑠𝑡            

𝑒0(𝑡) = ℎ0(𝑡) − ℎ0,𝑑(𝑡)                 

𝑣𝑐 = �̇�0 + 𝑘𝑝𝑒0 + 𝑘𝑑�̇�0 + 𝑓(�̈�2)   

                                                                               (5.2) 

Where 𝑥0(𝑡) and 𝑥1(𝑡) are the locations of the ego and 1st preceding vehicle, ℎ0 is the 

spacing between the ego and 1st preceding vehicle, with 𝑙1 being the length of the 1st preceding 

vehicle, ℎ0,𝑑(𝑡) is the desired spacing, ℎ0,𝑠𝑡 is the standstill spacing, 𝑡0,𝑑 is the desired time gap, 

𝑒0(𝑡) is the spacing error, 𝑘0,𝑝 and 𝑘0,𝑑 are the gains of the proportional-derivative (PD) 

feedback controller, and 𝑓(�̈�2) is the feedforward signal based on the acceleration of 2nd 

preceding vehicle’s acceleration. 

Taking Laplace transform of (5.2) and combining it with (5.1), we have: 

𝑠𝑋0

𝐺
= 𝐾(𝑋1 − 𝐻𝑋0) + 𝑠𝑋0 + 𝐹𝑠2𝑋2                                                                      (5.3) 
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Where  

𝐹(𝑠) = 𝐿(𝑓)  

𝐾(𝑠) = 𝑘𝑝 + 𝑘𝑑𝑠  

𝐻0(𝑠) = 1 + 𝑡0,ℎ𝑠  

Similar to Control Design in Chapter 4, an ideal feedforward filter 𝐹(𝑠) can be derived 

from (5.3) by making the spacing error 𝑋1 − 𝐻𝑋0 = 0: 

𝐹 =
1−𝐺

𝑠𝐻𝐺
𝑇1

′                                                                                                               (5.4) 

Where 𝑇1
′(𝑠) is the transfer function of “virtual preceding vehicle” in the form of OVM: 

𝑇1
′(𝑠) = 𝑇1

′(𝛼1
′ , 𝛽1

′ , 𝜑1
′ , 𝑡1,ℎ

′ , 𝑠)                                                                                   (5.5) 

This study adopts controller parameters 𝑘𝑝 = 0.5, 𝑘𝑑 = 1 and 𝑡0,ℎ = 1.5, which shows a 

balance between control accuracy and smoothness in simulations. Then, 𝑇1
′(𝑠) is determined to 

be 𝑇1
′(1.12, 0.21, 0, 1.62, 𝑠) by maximizing the string stable ratio (SSR), following the steps in 

String Stability Analysis, Chapter 4. 

5.3 Experiment Design 

This field test will be focused on the three-vehicle sandwich scenario (with one 

unconnected vehicle in between of two connected vehicles), due to the highest probability to 

occur among the mixed platooning scenarios. ACC and human driving served as performance 

baseline.  
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To ensure fair comparisons between CACCu, ACC and human driving, it is required that 

two preceding vehicles must drive identically each time when testing different control methods. 

However, a difficulty is that the 1st preceding vehicle is supposed to be a human-driven vehicle 

while it is almost impossible for the human driver to follow the test path the same way as before. 

Therefore, we proposed to use the existing NGSIM data to reconstruct the real-traffic scenario. 

In every test scenario, the NGSIM trajectories of two consecutive vehicles (i.e., 1st and 2nd 

preceding vehicles) are extracted. As shown in Fig. 5.4, the Hyundai Veloster is set in automated 

mode instead of manual model. The speed profile of 1st preceding vehicle from NGSIM is given 

to the Veloster as speed command over time, so that the movement of 1st preceding vehicle can 

be replicated consistently. In the meanwhile, the Veloster is also responsible for imitating the 

communications from the 2nd preceding vehicle to ego vehicle. As the ego vehicle does not need 

to sense the 2nd preceding vehicle and the trajectories of both preceding vehicles are fixed, there 

is no need to physically add a 2nd preceding vehicle to the test. An easier but equivalent way is 

making the Veloster send the information of 2nd preceding vehicle to the ego vehicle. Then the 

Hyundai i30 (ego vehicle) is driven in CACCu/ACC/manual mode following the Veloster. 

 

Fig. 5.4 Re-producing three-vehicle-sandwich scenario 
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Three test scenarios are created with NGSIM data. The speed profiles of the 1st and 2nd 

preceding vehicles in these scenarios are shown in Fig. 5.5. Note that a moderate acceleration 

period of 0.5𝑚/𝑠2 has been added to the beginning of each NGSIM vehicle speed profile so that 

the test vehicle can smoothly reach the starting-point speed from the rest. The performance of 

ego vehicle during this start-up period are not taken into the results. To disperse the random 

effects of vehicle dynamics nonlinearity, each control method was tested twice for every 

scenario. 

    
       (a) Scenario 1                               (b) Scenario 2                                (c) Scenario 3  

Fig. 5.5 The speed profiles of the preceding vehicles in test scenarios 

 

5.4 Results  

Performances of CACCu/ACC/human driving are summarized in Table 5.1. The 

acceleration and spacing error of ego vehicle were collected as measures of comfort and safety 

performances, respectively. Because the fuel consumption in each run was not obtainable, the 

VT-micro model was used to estimate the fuel consumption based on the vehicle trajectory. 

Based on the results, the CACCu consistently outperformed ACC and human driver. In average, 

CACCu reduced 10.82% acceleration RMS, 60.79% spacing error RMS and 6.24% fuel 

consumption from ACC’s. Compared with human driving, CACCu reduced 17.64% acceleration 
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and 13.43% fuel consumption. These benefits are even greater than the simulation results shown 

in Chapters 4 and 5.  

TABLE 5.1 

SUMMARY OF TEST RESULTS OF CACCU/ACC/HUMAN DRIVING 
Test number Control type Acceleration RMS(m/s) Spacing error RMS(m) Fuel consumption (ml) 

1.1 CACCu 0.72 1.86 41.80 

ACC 0.85 3.48 42.80 

Human 0.84 N/A 45.50 

1.2 CACCu 0.77 1.95 41.70 

ACC 0.87 5.44 41.60 

Human 0.95 N/A 48.90 

2.1 CACCu 0.70 2.03 43.10 

ACC 0.75 5.42 43.60 

Human 0.77 N/A 46.80 

2.2 CACCu 0.74 1.97 42.50 

ACC 0.74 5.24 44.20 

Human 0.90 N/A 48.40 

3.1 CACCu 0.61 2.33 37.30 

ACC 0.86 5.60 48.20 

Human 0.85 N/A 46.20 

3.2 CACCu 0.81 1.97 43.00 

ACC 0.80 5.70 45.60 

Human 0.97 N/A 52.30 

Average  CACCu 0.72 2.02 41.57 

ACC 0.81 5.15 44.33 

Human 0.88 N/A 48.02 

Reduction From ACC (%) 10.82% 60.79% 6.24% 

From Human (%) 17.64% N/A 13.43% 

 

The vehicle speed profiles of CACCu/ACC/human driving in test 1.1, 2.1 and 3.1 are 

displayed in Fig. 5.6. It can be seen that CACCu greatly attenuated the speed fluctuations, while 

ACC and human driving tended to amplify them. The speed overshootings happening to ACC 

and human driving were entirely avoided by CACCu. This indicates the improved string stability 

and explains the smaller acceleration and fuel consumption of CACCu.  

It is also noted that the speed profiles of 1st preceding vehicle were almost identical in the 

test of CACCu, ACC and human driving, and close to the original NGSIM data shown in Fig. 

5.5. Thus, the effectiveness of the experiment design is verified.    
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  (a) CACCu in test 1.1                   (b) ACC in test 1.1                   (c) Human driving in test 1.1 

 
  (d) CACCu in test 2.1                   (e) ACC in test 2.1                   (f) Human driving in test 2.1 

 
               (g) CACCu in test 3.1                   (h) ACC in test 3.1                   (i) Human driving in test 3.1 

Fig. 5.6 The vehicle speed profiles in the tests 

 

5.5 Key findings 

To test CACCu in the field, this chapter adapted the original CACCu algorithm, making 

it suitable to be implemented in our test vehicles which only accepts speed command. Then, the 

experiment was designed to replicate the car-following scenarios with NGSIM data, so that 

different control methods can be compared fairly. The field test verified the great benefits of 

CACCu in terms of string stability, safety, comfort and fuel saving.   
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Chapter 6. Human-in-the-loop CACC (hCACC) 

In this chapter, a human-in-the-loop CACC algorithm (hCACC) is proposed with the goal 

of helping human drivers stabilize vehicles efficiently and safely. Compared to the existing 

human-in the-loop CCC, the hCACC inherits from CACC the feedback-feedforward control 

structure and zero-spacing-error rule in control design, instead of simply offering a proportion of 

preceding vehicle’ acceleration. Besides, hCACC would bear the following features: 

• Utilizing both the speed and acceleration information of preceding vehicle in pursuit of the 

best performance  

• Taking into consideration of the potential effect of hCACC on the human’s behavior 

• Less driving load on human 

• Less fluctuation in both speed and headway 

The effectiveness of hCACC is to be shown by high-fidelity simulations using physics-

based vehicle model, real-world vehicle trajectory data, and driving simulator with real human.  

6.1 Control Design 

The scheme of hCACC system is shown in Fig. 6.1. The ego vehicle is assumed to be 

connected but not automated, or automated but driven in manual mode. When the ego vehicle is 

following another CV, the human driver can choose to turn on hCACC and co-pilot the vehicle. 

On the human side, the driver is still responsible of monitoring the preceding vehicle and giving 

input to throttle/brake pedals. On the hCACC side, extra acceleration (on top of human actions) 

would be imposed on the ego vehicle to assist the human driver. Due to the nonlinearity of 
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vehicle dynamics, bi-level control design is needed. The high-level controller decides the desired 

extra acceleration according to the received information of preceding vehicle, and the low-level 

controller determines how to adjust the throttle and brake to achieve this extra acceleration. The 

final inputs to the ego vehicle would be the summation of human’s on-pedal throttle/brake and 

the adjustment made by low-level controller.   

  

Fig. 6.1 Framework of hCACC system  

 

The human behavior is still modelled by OVM with stochastic parameters, as has been 

described in Chapter 4. The other two key components of hCACC design, i.e., designs of high-

level and low-level controls, are described respectively in the rest of this section. 

High-level control 

Since human driving has already included feedback control in terms of spacing and 

speed, a natural approach is giving an additional acceleration feedforward to the ego vehicle 

(which is similar to upgrading ACC to CACC). Besides, as human’s feedback control has long 

delay, it will be desirable to have an automatic speed feedback which can more timely capture 

the speed difference from the preceding vehicle. Therefore, the car-following behavior of 

hCACC vehicle is decided as: 
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ℎ(𝑡) = 𝑥2(𝑡) − 𝑥1(𝑡) − 𝑙                                                                   

�̈�1(𝑡) = 𝛼 (
1

𝑡ℎ
ℎ(𝑡 − 𝜑) − �̇�1(𝑡 − 𝜑)) + 𝛽ℎ̇(𝑡 − 𝜑) + 𝑔(𝑢)     

𝑢 = 𝛽′(𝑥2(𝑡 − 𝜃) − 𝑥1(𝑡)) + 𝑓(�̈�2)                                              

                               (6.1) 

Where 𝜑, 𝛼, 𝛽 and 𝑡ℎ are human parameters, 𝑢 is the acceleration command made by the 

high-level controller; 𝑔(𝑢) represents the actual acceleration achieved by the longitudinal 

vehicle dynamics; 𝛽′ is the control gain for the automatic speed feedback; 𝑓(�̈�2) denotes a linear 

feedforward filter that generates commands based on the received acceleration of preceding 

vehicle; 𝜃 is the communication delay.  

By taking Laplace transform of (6.1), a control diagram of hCACC can be depicted in 

Fig. 6.2, where: 

𝐾𝑎(𝑠) =
𝛼

𝑡ℎ
𝑒−𝜑𝑠  

𝐾𝑏(𝑠) = 𝛽𝑠𝑒−𝜑𝑠  

𝐻(𝑠) = 1 + 𝑡ℎ𝑠  

𝐷(𝑠) = 𝑒−𝜃𝑠 . 

And 𝐺(𝑠) and 𝐹(𝑠) are Laplace transforms of 𝑔(𝑢) and 𝑓(�̈�2); 𝑠 is the Laplace variable. 

Accompanied by a proper low-level controller as shown later, the longitudinal vehicle dynamics 

can be approximated by a first-order system: 

𝑔(𝑢(𝑡)) + 𝜏�̇�(𝑢(𝑡)) = 𝑢(𝑡 − ∅)                                                                                (6.2)                     

In time domain and a transfer function: 
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𝐺(𝑠) =
1

1+𝜏𝑠
𝑒−∅𝑠                                                                                                          (6.3)                                              

In Laplace domain. 

Where 𝜏 and ∅ are the response lag and actuator delay of the ego vehicle, respectively. 

 

Fig. 6.2 Control diagram of hCACC 

The feedforward filter 𝐹(𝑠) is designed to pre-compensate spacing error introduced by 

the speed perturbation of the preceding vehicle. We denote spacing error:     

𝑒ℎ(𝑡) = ℎ(𝑡) − 𝑡ℎ�̇�1(𝑡)                                                                                            (6.4) 

Then the Laplace transform of spacing error can be derived by combining (6.1) and (6.4): 

𝐸ℎ(𝑠) = (1 −
𝐻(𝑠)(𝐾𝑏(𝑠)+𝐾𝑎+𝐺(𝑆)𝐷(𝑠)(𝑠2𝐹(𝑠)+𝐾𝑏

′(𝑠)))

𝑠2+𝐾𝑏(𝑠)+𝐺𝐾𝑏
′ (𝑠)+𝐻(𝑠)𝐾𝑎(𝑠)

)𝑋2(𝑠)                                         (6.5)                                                  

Where 𝐾𝑏
′ = 𝛽′𝑠; 𝐸ℎ(s) and 𝑋2(𝑠) are the Laplace transforms of spacing error and 

location of the preceding vehicle, respectively. To make 𝐸ℎ(𝑠) = 0 for any 𝑋2(𝑠), the ideal 

feedforward filter 𝐹(𝑠) is: 
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𝐹(𝑠) =
1−𝑡ℎ(𝛽𝑒−𝜑𝑠+𝛽′𝐺(𝑠))

𝐻(𝑠)𝐺(𝑠)𝐷(𝑠)
  

Considering that the exact values of human parameters 𝑡ℎ, 𝛽, 𝜑, and communication 

delay 𝜃 cannot be obtained, an approximated feedforward filter is given by: 

𝐹(𝑠) =
1−�̅�ℎ𝛽′𝐺(𝑠)

(1+�̅�ℎ𝑠)𝐺(𝑠)
                                                                       (6.6)  

Where 𝑡ℎ̅ is the mean value of 𝑡ℎ over the past time. It can be estimated using the method 

proposed in [61]. An important assumption applied to the derivation of (6.6) is that the human 

driver tends to deactivate his own speed feedback control when an automatic speed feedback 

control is present, i.e., 𝛽 → 0 if 𝛽′ > 0. This assumption is based on our observations in 

preliminary experiments of hCACC and to be further verified later.  

For comparison, the car-following behavior of existing human-in the-loop CCC [58] is 

given by: 

ℎ(𝑡) = 𝑥2(𝑡) − 𝑥1(𝑡) − 𝑙                                                                    

�̈�1(𝑡) = 𝛼 (
1

𝑡ℎ
ℎ(𝑡 − 𝜑) − �̇�1(𝑡 − 𝜑)) + 𝛽ℎ̇(𝑡 − 𝜑) + 𝑔(𝑢)      

𝑢 = 𝛾�̈�2(𝑡 − 𝜃)                                                                                      

          (6.7) 

Where 𝛾 is the constant gain for acceleration feedforward in CCC, and 𝛾 = 0.5 is usually 

chosen to obtain the best performance [58]. Accordingly, the control diagram of this CCC can be 

given by replacing 𝐹 with 𝛾, and letting 𝛽′ = 0 in Fig. 6.2. 

Low-level control 

The output of high-level controller is the extra desired acceleration of the vehicle. 

However, the longitudinal motion of vehicle is directly controlled by the throttle and brake. 
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Thus, a low-level controller is needed to convert the desired acceleration to proper throttle and 

brake action so that the command from high-level controller can be accurately achieved. A well-

accepted version of low-level controller [80] for ACC/CACC utilizes the inverse engine torque 

map and a set of feedforward signals (i.e., vehicle speed, engine speed, transmission ratio) to pre-

compensate the nonlinearity of the engine, transmission system, air drag and rolling resistance, 

leading to a first-order linear relationship between desired acceleration and actual acceleration. 

However, the case of hCACC is slightly different. The desired acceleration of the controller 

should be added onto human’s action, not actuating the vehicle alone. Therefore, the throttle and 

brake generated by the existing low-level controller cannot be directly used. Instead, the 

modification on human’s throttle/brake input should be further decided.  

The goal of low-level controller is to make the vehicle acceleration as close as possible to 

the summed demands of human driver and high-level controller: 

�̈�1 → 𝑢ℎ + 𝑢                                                                                  (6.8)                                                      

Where 𝑢ℎ is the intended acceleration by human driver, and 𝑢 is the desired extra 

acceleration by hCACC high-level control. To achieve (6.8), we need:  

𝑔𝑙(𝑡ℎℎ + ∆𝑡ℎ, 𝑏𝑟ℎ + ∆𝑏𝑟) = 𝑢ℎ + 𝑢              (6.9) 

Where 𝑔𝑙(∙) denotes the low-level vehicle dynamics model that maps throttle/brake input 

to the vehicle acceleration. 𝑡ℎℎ/𝑏𝑟ℎ is the throttle/brake input by the human; ∆𝑡ℎ/∆𝑏𝑟 is the 

modification on throttle/brake to be determined. While 𝑔𝑙(∙) is a nonlinear function, it can be 

known as the inverse of low-level controller in [80]. Since 𝑡ℎℎ and 𝑏𝑟ℎ can be sensed through 

throttle and brake pedal, human’s intention 𝑢ℎ can also be computed: 
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𝑢ℎ = 𝑔𝑙(𝑡ℎℎ, 𝑏𝑟ℎ)             (6.10) 

Then, the new low-level control law can be derived combining (6.9) and (6.10): 

(∆𝑡ℎ, ∆𝑏𝑟) = 𝑔𝑙−1(𝑔𝑙(𝑡ℎℎ, 𝑏𝑟ℎ) + 𝑢) − (𝑡ℎℎ , 𝑏𝑟ℎ)                     (6.11) 

Where 𝑔𝑙−1 is right the low-level controller in [80].   

In the following analysis and evaluations, the ego vehicle will be presented by an Audi 

A8 sedan model from PreScan [83]. This physics-based vehicle model consists of engine, 

automatic gear box, 2-D chassis and other typical vehicle components. With the low-level 

controller (6.11), the first-order vehicle dynamics can be identified from the vehicle’s response 

given step acceleration commands [95]. MATLAB system identification toolbox is adopted to 

accomplish this identification. The identification result is the same with (3.15): 

𝐺(𝑠) =
1

1+0.12𝑠
𝑒−0.2𝑠                                                                                                  (6.12) 

6.2 String Stability Analysis  

As aforementioned, the human parameters α, 𝛽, 𝑡ℎ, 𝜑 are likely to vary over time. For a 

better robustness, hCACC should be able to work properly when there is a discrepancy between 

the expected α, 𝛽, 𝑡ℎ, 𝜑 and the actual values.  

According to (3.1), the transfer function of human-driven vehicle without any automatic 

control is:  

𝑇(𝑠) =
𝐾𝑎+𝐾𝑏

𝑠2+𝐾𝑏+𝐻∗𝐾𝑎
                  (6.13) 

For CCC, the transfer function can be derived from (6.7): 
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𝑇(𝑠) =
𝐾𝑎+𝐾𝑏+0.5𝑠2𝐺𝐷

𝑠2+𝐾𝑏+𝐻∗𝐾𝑎
                                                                       (6.14)                                                       

For hCACC, the transfer function can be derived from (6.1) and (6.6): 

𝑇(𝑠) =
𝐻(𝐾𝑎+𝐾𝑏)+(𝑠2+𝐺𝐾𝑏

′)𝐷

𝐻(𝑠2+𝐾𝑏+𝐺𝐾𝑏
′+𝐻𝐾𝑎)

                                                                                          (6.15)           

Next, we demonstrate the theoretical performance of human driving alone, CCC and 

hCACC by showing the ranges of human parameters which fulfill string stability. Such ranges 

can be computed based on (6.13)~(6.15), in which the vehicle dynamics 𝐺(𝑠) follow (6.12) and 

an average communication delay of 100ms [74] is assumed. While other vehicle dynamics and 

communication delays can also be used for this analysis, they show the similar pattern with the 

presented results. Generally speaking, broader string-stable ranges of human parameters indicate 

better chance to make the vehicle stay string-stable under various human behaviors. 

By fixing desired time gap and human delay at their average values, i.e., (𝑡ℎ, 𝜑) =

(1.5, 1),  Fig. 6.3 (a), (c), (e) show string-stable ranges (blank area) of α, 𝛽 for human driving, 

CCC and hCACC, respectively. Then, fixing human gains at their average values, i.e., (α, 𝛽) =

(0.4, 0.65), Fig. 6.3 (b), (d) show string-stable ranges of 𝑡ℎ, 𝜑 for human driving and CCC. 

Lastly, Fig. 6.3 (f) shows string-stable ranges of 𝑡ℎ, 𝜑 for hCACC when fixing (α, 𝛽) = (0.4, 0).  

In human driving (Fig. 6.3(a), (b)), no positive α or 𝛽 can be found to fulfill string 

stability when (𝑡ℎ, 𝜑) = (1.5, 1). To make the vehicle string-stable with (α, 𝛽) = (0.4, 0.65), 

human delay should be no longer than 0.7s. 



Ph.D. Dissertation                                                                                                                        Zheng Chen 

 

72 

 

  
                         (a) Human driving                                       (b) Human driving 

 
                                 (c) CCC                                                      (d) CCC 

  
                            (e) hCACC                                                     (f) hCACC 

Fig. 6.3 String-stable ranges of human parameters under different controls 

 

According to Fig. 6.3 (c), (d), CCC offers broader string-stable ranges of α, 𝛽 than human 

driving does. Besides, shorter time gap (e.g. 0.6s) is allowed but only in case of very small 

human delay (e.g. 0.5s).  
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For hCACC (Fig. 6.3(e), (f)), 𝛽′ = 0.65 and 𝑡ℎ̅ = 1.5 are used in the high-level 

controller. Obviously, hCACC owns much broader string-stable ranges of human parameters 

than CCC does. Fig. 6.3 (e) shows that α can be almost any positive value when 𝛽 = 0. In fact, 

residual 𝛽 does not have to be exactly 0, because a broad “buffer area” around (α, 𝛽) = (0.4, 0) 

is provided. Fig. 6.3 (f) further shows that a vast range of time gaps can be used.  

In addition, although hCACC requires the estimated 𝑡ℎ̅ in (6.6), it actually has significant 

tolerance on the discrepancy between the estimated 𝑡ℎ̅ and the actual 𝑡ℎ. This makes the 

possibility to further loose the operating condition of hCACC. Since 𝑡ℎ̅ is the only human 

parameter needed in the configuration of hCACC, it is worth exploring whether hCACC can 

perform similarly well when replacing estimated 𝑡ℎ̅ with a pre-tuned constant 𝑡𝑐. If this works, 

hCACC can be a generic control design instead of being user-specific, and also become more 

suitable for large-scale implementation due to the cancellation of human parameters estimation 

which requires minutes to be done [61].  

A desirable 𝑡𝑐 should give hCACC vehicle a good chance to stay string-stable when co-

piloting under various human driving behaviors. To do so, String Stability Ratio (SSR) defined 

in Chapter 4 is utilized as a performance measure of the hCACC’s robustness against human 

parameters variation. For the reader’s convenience, we re-state the definition of SSR below: 

𝑆𝑆𝑅 = ∫∫∫∫𝑓(𝛼, 𝛽, 𝜑, 𝑡ℎ)𝜉(𝑆𝑆)𝑑𝛼𝑑𝛽𝑑𝜑𝑑𝑡ℎ                             (6.16)                                             

Where 

 𝜉(𝑆𝑆) = {
1           𝑖𝑓 𝑆𝑆 ≤ 1
0           𝑖𝑓 𝑆𝑆 > 1

                                                         (6.17)                                               
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𝑆𝑆 is the string stability determinant that can be calculated through (6.13) to (6.15). 

𝑓(𝛼, 𝛽, 𝜑, 𝑡ℎ) is the joint probability density function (PDF) of human parameters. Assuming 

independent distributions of human parameters [96], we have 

𝑓(𝛼, 𝛽, 𝜑, 𝑡ℎ) =  𝑓(𝛼)𝑓(𝛽)𝑓(𝜑)𝑓(𝑡ℎ)        (6.18) 

Where 𝑓(𝛼), 𝑓(𝛽), 𝑓(𝜑), 𝑓(𝑡ℎ) are the PDF of 𝛼, 𝛽, 𝜑, 𝑡ℎ, respectively. To obtain 

𝑓(𝛼), 𝑓(𝛽), 𝑓(𝜑), 𝑓(𝑡ℎ) and thus complete the configuration of pre-tuned hCACC, the 

distributions of human parameters under the effect of hCACC need to be collected. Note that the 

distributions of human parameters stated in Assumption 2, Chapter 3 are not directly usable, 

because the human’s behavior with hCACC may be different from that when driving alone.  

6.3 Evaluation  

The purpose of the evaluation is threefold:  

• Verify hCACC’s performance over human driver and CCC; 

• Confirm the validity of the assumption that human drivers would tend to deactivate their 

own speed feedback control during the onset of hCACC; 

• Explore the effectiveness of derivative designs of hCACC. 

There are two derivative designs of hCACC considered here: the aforementioned pre-

tuned hCACC and semi-hCACC which only adjusts throttle but not brake of the vehicle. This 

semi- hCACC is to incorporate the fact that there are still many old or low-cost vehicles 

equipped with only electronic throttle but no electronic brake or ESP/ESC that support 
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programmed brake for driver assistance system. Therefore, semi-hCACC is proposed to lower 

down the hardware threshold of hCACC for such vehicles. 

Two rounds of driving simulator tests need to be conducted based on the evaluation 

purposes. In the first round, the participants drive with hCACC, CCC, and no-automation, 

respectively, through which the performance of hCACC can be quantified. Meanwhile, the 

distributions of human parameters in the hCACC runs are estimated, in order to validate the 

assumption on human’s feedback, and to complete the configuration of pre-tuned hCACC. In the 

second round of tests, the pre-tuned hCACC and semi-hCACC are compared with the standard 

hCACC, to investigate how worse or better hCACC can do without human parameter estimation 

or automatic brake, respectively. 

The measures of effectiveness (MOEs) are defined in three aspects: 

• Safety. Time Exposed Time-to-collision (TET) [97] is adopted as a surrogate measure 

for safety performance. TET is calculated by accumulating the time periods when the 

vehicle is exposed to an unsafe Time-to-Collision (TTC): 

𝑇𝐸𝑇 = ∫𝛿𝑖(𝑡)𝑑𝑡                              

𝛿𝑖(𝑡) = {
1, 𝑖𝑓 𝑇𝑇𝐶 < 𝑇𝑇𝐶∗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
           

𝑇𝑇𝐶 = ℎ(𝑡)/ℎ̇(𝑡)                             

                                                       (6.19) 

Where 𝑇𝑇𝐶∗ is a threshold for unsafe TTC.  According to NHTSA, TTC < 2s is 

considered a situation dangerous enough to activate Forward Collision Warning (FCW) 

system [98]. Therefore, 𝑇𝑇𝐶∗is chosen be to 2s in this study. 
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• Energy efficiency. Fuel consumption of the vehicle in each run is estimated using 

VT-micro fuel consumption model [84]. 

• Traffic disturbance. The root mean square (RMS) of acceleration and standard 

deviation (STD) of time gap are collected to quantify the speed/spacing disturbances 

the ego vehicle undergoes; 

In addition to the numerical measures, string stability of the vehicle can be directly 

judged by comparing the speed/acceleration profile with preceding vehicle’s and checking for 

speed/acceleration overshootings. 

Experiment set-up 

As shown in Fig. 6.4, the experiment combines an off-the-shelf software PreScan, the 

real traffic data from Next Generation SIMulation (NGSIM) program, and a driving simulator 

with Logitech hardware. 

 

 Fig. 6.4. Overview of the experiment  

1) PreScan and control systems 
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PreScan is a simulation platform designed for evaluating Advanced Driver Assistance 

Systems (ADAS). In this study, it offers simulation environment and physics-based vehicle 

dynamics model. A straight-highway car-following scenario is developed and visualized in 

driver’s view via PreScan. This driver’s view is updated in 20Hz and projected to the screen 

(windshield) of the driving simulator so that the participant can perceive the situation and take 

actions on throttle/brake pedal and steering wheel. These actions are then fed back to PreScan. 

Using the vehicle dynamics model embedded, PreScan can calculate how the driver’s actions, 

along with hCACC/CCC, change the status of the ego vehicle and reflect the change in the 

driver’s view.   

Because PreScan’s vehicle models are built in a form of MATLAB Simulink, it is 

convenient to develop the control systems of these vehicles in Simulink. As noted, the control 

system for ego vehicle is divided into high-level and low-level controllers. There are two high-

level controllers (i.e., hCACC and CCC) to be evaluated, while the low-level system remains the 

same.  

2) Predecessor driving behavior 

To make the evaluation more realistic, the speed profile of preceding vehicle is derived 

from the real-world vehicle trajectory data of Next Generation Simulation (NGSIM) program 

[82], which was launched by the Federal Highway Administration (FHWA). NGSIM used high-

resolution cameras to record trajectories of the vehicles on real roads. The US Highway 101 (US 

101) dataset was one dataset that reflected highway traffic condition. It contains the location and 

speed profiles of vehicles in all 6 lanes within the 640-meter long study area during 45 minutes. 

Due to the limited length of the single vehicle’s speed profile in the NGSIM data, we link 4 short 
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speed profiles of different vehicles, by constant deceleration of 1𝑚/𝑠2, into a 4-minute speed 

profile as shown in Fig. 6.5. It should be emphasized that this speed profile is not directly given 

to the preceding vehicle in the evaluation; instead, it is “tracked” through a PID controller and 

vehicle dynamics model. This setting is designed to eliminate the inconsistent speeds and 

unrealistic jerks (i.e., derivative of acceleration) that frequently occur in the original NGSIM data 

[85]. The PID controller and the vehicle dynamics model together play as a filter that smooths 

the trajectory and makes sure the movements are mechanically realistic. To fairly compare the 

performances of different controls, the trajectory of the preceding vehicle is set to be identical in 

all the runs. 

 

 Fig. 6.5 Desired speed profile of the preceding vehicle 

 

3) Human drivers 

There are 8 participants in the first round of tests, and 4 in the second round of tests. All 

of them are college/graduate students. In the first round, each participant is required to drive the 

ego vehicle and track the preceding vehicle for 4 runs (each run lasts for 4 minutes): warm-up 
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run, hCACC, CCC, and human driving. The purpose of warm-up run is to familiarize the driver 

with driving simulator, and estimate the human parameters using the method from [61], after 

which hCACC can be configured. The warm-up run is always placed the first, while the other 3 

runs are randomly sequenced to disperse the driver’s learning and fatigue effects. In the second 

round, there are 4 runs besides warm-up for each participant: human driving, hCACC, pre-tuned 

hCACC, and semi-hCACC, in a randomized sequence. 

Results 

1) First round of tests 

The results of the first round of tests are listed in Table 6.1.  hCACC reduced 36.8% 

acceleration, 31.2% time-gap fluctuation, 81.2% exposure time to unsafe driving situations 

(TET), and 15.8% fuel consumption from those of human driving, respectively. Paired t-test 

indicates all these benefits are statistically significant. This means hCACC has great potential to 

mitigate traffic disturbances, avoid unsafe driving condition and save energy. It is noted that 

these benefits were achieved by hCACC at an even shorter gap than human driving did. It is also 

observed that under hCACC, human drivers took 31.2% and 64.3% less control effort on throttle 

and brake levels than in human driving alone, indicating a decrease in labor intensity of the 

drivers.  

TABLE 6.1  

SUMMARY OF EVALUATION RESULTS 
# of Participant 1 2 3 4 5 6 7 8 Mean 

hCACC RMS Acceleration/m/s2 0.7 0.67 0.73 0.78 0.648 0.57 0.65 0.645 0.67 

Time gap (mean±STD)/s 1.7±0.55 2.03±0.72 1.87±0.56 0.97±0.34 1.55±0.55 1.3±0.55 1.95±0.97 1.74±0.5 1.64±0.59 

TET/s 0 0 0 1.8 0 3.9 0 0 0.7125 

Fuel consumption/L 0.157 0.151 0.161 0.165 0.147 0.14 0.149 0.153 0.15 

RMS throttle/brake  10%/4% 10%/5% 11%/6% 13%/5% 9%/2% 9%/2% 13%/2% 11%/2% 11%/4% 

CCC RMS Acceleration/m/s2 1.02 0.8 1.24 0.91 1.31 0.83 1.04 1.25 1.05 

Time gap (mean±STD)/s 1.48±1.15 2.24±1.27 1.61±1.08 1.14±0.47 1.39±0.86 1.78±0.81 2.19±1.02 1.56±0.72 1.67±0.93 
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TET/s 2.2 6.6 5.3 6.2 8.7 4.6 2.8 5.9 5.3 

Fuel consumption/L 0.171 0.147 0.187 0.16 0.174 0.155 0.163 0.207 0.17 

RMS throttle/brake  15%/13% 13%/9% 16%/16% 15%/11% 16%/16% 14%/9% 16%/14% 17%/16% 15%/13% 

Human 

driving 

RMS Acceleration/m/s2 0.98 0.86 1.36 0.99 1.08 0.99 1.21 1.07 1.07 

Time gap (mean± STD)/s 1.86±1.04 2.74±1.31 2.31±0.85 0.92±0.45 1.93±0.69 1.69±0.73 1.59±1.12 1.39±0.65 1.80±0.86 

TET/s 2.1 3.9 2.6 4.5 1.1 0.6 8.3 7.3 3.8 

Fuel consumption/L 0.154 0.154 0.219 0.163 0.174 0.189 0.197 0.19 0.18 

RMS throttle/brake  14%/12% 13%/10% 16%/17% 17%/11% 15%/13% 17%/11% 17%/16% 16%/12% 16%/13% 

 

When compared with CCC, hCACC reduced 35.8% acceleration, 36.6% time-gap 

fluctuation, 86.5% exposure time to unsafe driving situations (TET), and 10.3% fuel 

consumption, showing consistently large improvements. 

In contrast, paired t-test indicates that all the resulted MOEs of CCC show no statistically 

significant difference from those of human driving alone. Thus, there was no performance 

improvement over human driving achieved by CCC. 

Fig. 6.6 shows the speed and acceleration profiles of the participant 1. Fig. 6.6 (a), (b) are 

for human driving; (c), (d) are for CCC; and (e), (f) are for hCACC. It is noticed that many speed 

overshootings occurring in human driving and CCC runs were avoided in hCACC, and the 

acceleration of hCACC vehicle was mostly smaller than that of the preceding vehicle, indicating 

an improved string stability. It is noted that string stability is not the only contributing factor to 

the good performance of hCACC. The results are also largely determined by “how poorly” the 

hCACC/CCC/human driving performed in string-unstable conditions. When comparing Fig. 

6.6(c) with (a) and (e), it is clear that hCACC not only had the better chance to avoid 

overshootings, but also greatly suppressed the magnitude of the overshooting when it happens. 

This finding highlights the importance of experiments with real drivers instead of only looking at 

theoretical analysis. 
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                    (a) Human driving                                        (b) Human driving 

  

                          (c) CCC                                                            (d) CCC 

  

                         (e) hCACC                                                           (f) hCACC 

 Fig. 6.6. Speed and acceleration profiles of the participant 1 
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2) Driving behavior under hCACC 

Another purpose of the first round of tests was to obtain human parameters under the 

effect of hCACC so that the assumption can be tested that human’s speed feedback can be 

checked and pre-tuned.  

The human parameters in all the runs are estimated using the method in [61] and their 

mean values (i.e., �̅�, �̅�, �̅� and 𝑡ℎ̅) are listed in Table 6.2. In average, �̅� under hCACC is only 

33% of what it used to be in the human driving. This proves our assumption reasonable and 

explains the favorable performance of hCACC, which needs the residual 𝛽 to be small. In 

addition, each driver showed different human parameters with or without CCC. It does challenge 

the fundamental assumption CCC adopted that human behaves the same even with the help of 

ADAS.  

TABLE 6.2 

SUMMARY OF ESTIMATED HUMAN PARAMETERS IN ALL RUNS 
# of participant 1 2 3 4 5 6 7 8 Mean 

hCACC �̅� 0.05 0.03 0.06 0.02 0.05 0.03 0.03 0.04 0.04 

�̅� 0.25 0.08 0.14 0.25 0.08 0.06 0.02 0.05 0.12 

�̅� 1.8 1.66 1.69 1.08 1.38 1.31 1.92 1.63 1.56 

𝑡ℎ̅ 1.08 1.46 1.29 0.51 1.16 0.65 1.11 1.08 1.04 

CCC �̅� 0.08 0.06 0.09 0.04 0.11 0.1 0.09 0.14 0.09 

�̅� 0.45 0.17 0.47 0.44 0.42 0.25 0.3 0.27 0.35 

�̅� 1.31 1.44 1.19 1.11 1.32 1.19 1.56 1.29 1.30 

𝑡ℎ̅ 0.76 1.52 0.85 0.69 0.69 1.2 1.48 0.93 1.02 

Human driving �̅� 0.1 0.06 0.2 0.06 0.1 0.1 0.09 0.13 0.11 

�̅� 0.3 0.2 0.34 0.62 0.31 0.38 0.37 0.3 0.35 

�̅� 1.24 1.68 1.37 1.04 1.29 1.25 1.18 1.25 1.29 

𝑡ℎ̅ 1.16 2.09 1.77 0.48 1.21 1.1 0.95 0.9 1.21 

 

As noted, the pre-tuning of hCACC requires the probability density function (PDF) of 

human parameters under the effect of hCACC. Fig. 6.7 shows the distributions of estimated 

α, 𝛽, 𝑡ℎ, 𝜑 in the human driving runs (in Fig. 6.7(a)~(d)), and those in the hCACC runs (in Fig. 
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6.7(e)~(h)), respectively. Generally speaking, the human behavior under hCACC was quite 

different from driving alone. It can be seen that hCACC shifts the distributions of human gains 

α, 𝛽 to the left, and α, 𝛽 have significantly high frequencies to be zero. In addition, the human 

delay under hCACC tends to be either extremely short or extremely long, while in human driving 

runs the human delay is concentrated between 0.5s and 1.5s.  

  
                                      (a)                                                           (b) 

 
                              (c)                                                      (d) 
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                                        (e)                                                                      (f) 

 
                                         (g)                                                                     (h) 

 Fig. 6.7. Distribution of estimated human parameters in human driving and hCACC  

 

While different distributions of human parameters and 𝑡𝑐 may be obtained when more 

data is available, the estimated α, 𝛽, 𝑡ℎ, 𝜑 in the 8 hCACC runs are fitted into PDFs of kernel 

distributions. With these PDFs, the optimal 𝑡𝑐 = 1𝑠 can be found to achieve the maximum 

SSR=28%, which is the probability to secure string stability. 

3) Second round of tests 

The evaluation of semi-hCACC and pre-tuned hCACC were conducted with another four 

participants, and the results are summarized in Table 6.3. The results of human driving and 
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standard hCACC (with human parameters estimation) were also reported to facilitate easier 

comparison. 

 

TABLE 6.3 

EVALUATION RESULTS OF PRE-TUNED HCACC AND SEMI-HCACC 
# of participant 1 2 3 4 Mean 

Standard hCACC RMS acceleration/m/m2 0.87 0.63 0.78 0.96 0.81 

Time gap STD/s 0.65 0.42 0.41 0.39 0.47 

TET/s 0 0 0 7.7 1.93 

Fuel consumption/L 0.155 0.119 0.129 0.146 0.14 

Pre-tuned hCACC RMS acceleration/m/s2 0.93 0.65 0.82 0.86 0.82 

Time gap STD/s 0.5 0.48 0.44 0.34 0.44 

TET/s 0 0 0.6 1.4 0.50 

Fuel consumption/L 0.157 0.121 0.127 0.147 0.14 

Semi-hCACC RMS acceleration/m/s2 1.11 0.74 0.97 1.08 0.98 

Time gap STD/s 0.67 0.48 0.39 0.26 0.45 

TET/s 0 1.7 0.2 4.7 1.65 

Fuel consumption/L 0.163 0.124 0.125 0.171 0.15 

Human driving  RMS acceleration/m/s2 1.76 0.87 2.04 0.98 1.41 

Time gap STD/s 0.95 0.51 0.8 0.31 0.64 

TET/s 0 1.2 9 4.9 3.78 

Fuel consumption/L 0.273 0.145 0.28 0.154 0.21 

 

It can be seen that there were no significant differences between the performances of 

hCACC and pre-tuned hCACC in all aspects, which means the time-consuming human 

parameters estimation can be omitted in the implementation of hCACC. This finding makes 

hCACC easier to be implemented. 

Meantime, semi-hCACC had similar performances in time gap STD, TET, and fuel 

consumption with hCACC. Although its RMS acceleration is 20% higher than standard hCACC, 

it is still 30% lower than the human driving baseline. Therefore, semi-hCACC is a good 

alternative for vehicles without electronically controllable brake.  

Finally, we conducted experiments to demonstrate the platoon-wise performance of 4 

human-driving-alone vehicles vs. 4 hCACC vehicles. In these tests, the leading vehicle followed 
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NGSIM data, while the following three vehicles were driven by volunteers through driving 

simulator (one by one), with or without the aid of hCACC. The speed profiles of human driving 

and hCACC platoons are shown in Fig. 6.8. It can be seen that the traffic disturbances were 

amplified by the human-driving-alone platoon but mitigated by hCACC platoon. When looking 

at the last vehicle in the platoons, hCACC reduced 50% fuel consumption and 100% TET from 

human driving. These improvements (especially in fuel saving) are much greater than that in the 

individual-vehicle tests, indicating that the cumulative effects of individual vehicles can lead to 

great difference in the traffic quality. 

 

                       (a) Human driving                                           (b) hCACC 

Fig. 6.8. Speed profiles of the 4-vehicle platoon under human driving and hCACC 

 

6.4 Key findings 

In this chapter, a human-in-the-loop CACC algorithm (hCACC) was developed for 

connected human-driven vehicle. By allowing coexistence of the automatic control and driver’s 

actions in a beneficial way, hCACC helps the human driver stabilize the vehicle more efficiently 

and safely. String stability analysis showed that hCACC can offer broader string-stable ranges of 
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human parameters than human driving alone or the existing human-in-the loop Connected Cruise 

Control (CCC), indicating a better capability to mitigate traffic disturbance with the uncertain 

human behaviors. The performance of hCACC was investigated in driving simulator 

experiments, with CCC and human driving being baselines. Compared with human driving 

alone, hCACC reduced 36.8% acceleration, 31.2% time-gap fluctuation, 81.2% exposure time to 

unsafe driving situations, and 15.8% fuel consumption, while CCC achieved no significant 

improvements. In addition, two derivative designs of hCACC, i.e., pre-tuned hCACC and semi-

hCACC are proposed and proven similarly effective, further lowering down the practice 

threshold of hCACC.  
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7. Conclusions and Future Research 

This chapter summarizes the research efforts made in the design and validation of quasi-

CACC systems. Based on the key findings through this dissertation, it is recommended to 

implement quasi-CACC in the near future so that CAVs and CHVs can generate the maximum 

benefits under the imperfect market penetration. The potential enhancements of the proposed 

approaches are discussed in the end. 

7.1 Conclusions 

To fully harvest the benefits of vehicular automation and connectivity in the mixed 

traffic, Quasi-CACC applications were proposed in this dissertation to extend the usability of 

cooperative longitudinal control of vehicles. These applications are expected to be important 

complement to the currently prevailing method, i.e., CACC, which is seriously limited by 

relatively high threshold for operations in mixed traffic of both CAVs, CVs, and unconnected 

vehicles.  

First, a new control algorithm for CAV, CACC with unconnected vehicle (CACCu), is 

developed to enable closely following an unconnected preceding vehicle. When the 1st (nearest) 

preceding vehicle is unconnected, CACCu utilizes the communication with the further 

(connected) preceding vehicle to improve the response of ego vehicle. A linear time-invariant 

controller of CACCu inheriting the feedback-feedforward control structure of typical CACC was 

designed. An additional filter of “virtual preceding vehicle(s)” is inserted before the original 

feedforward filter of CACC, to compensate for the effects of 𝑛 unconnected preceding vehicle(s) 

in between. String stability analysis in frequency domain was conducted to investigate the 

theoretical performance of CACCu. The controller parameters of CACCu were tuned to 
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maximize the probability of being string-stable. The performance of CACCu was evaluated and 

compared with ACC and acceleration-based CCC, using real vehicle trajectory data from 

NGSIM and physics-based vehicle model from PreScan.  

Furthermore, to address the remaining limitations in the CACCu (e.g., requiring the 

number of unconnected vehicles (𝑛) to be known for achieving the ideal performance) and 

optimize its performance, we proposed an adaptive model predictive control (A-MPC) approach. 

In A-MPC CACCu, the system states are estimated and predicted in rolling horizon by an 

adaptive system model, based on which a constrained multi-objective optimization is solved for 

determining the optimal control command. An initial system model is derived from a priori 

knowledge as a starting point of the control, and online model estimators are utilized to update 

the model parameters based on the actual motions of the unconnected preceding vehicle and the 

further connected vehicle. To comprehensively compare the performances of the A-MPC-based 

CACCu and the previously proposed linear CACCu, the entire NGSIM data from the US101 

innermost lane (with the fewest lane-changes) were used to simulate various car-following 

scenarios.  

The proposed CACCu was validated in the field to ensure that it can be implemented to 

real world. The experiment was conducted with two automated vehicles equipped with Mobileye 

sensors and WIFI modules. The original CACCu algorithm is adapted to comply with speed-

command-based control in these vehicles. By commanding the 1st preceding to follow a NGSIM 

real-traffic trajectory, and simultaneously spread the information of the 2nd preceding vehicle in 

NGSIM data, CACCu was able to be tested in the three-vehicle-sandwich with only two actual 

vehicles. ACC and human driving served as performance baseline. 
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The key findings in the design and validation of CACCu are: 

• The theoretical analysis indicated that a proper filter of “virtual preceding vehicle” 

inserted to the original CACC feedforward filter can make CACCu vehicle stay 

string-stable at a gap significantly shorter than that required by ACC. Such capability 

is robust against the uncertainty in unconnected vehicle’s car-following behaviors, 

thus no beforehand identification process or extra information on the unconnected 

vehicles’ behaviors is required; 

• The high-fidelity simulation results showed that CACCu avoided most of speed 

overshootings happening to ACC and CCC, indicating improved string stability. 

CACCu also led to overall 6~9% acceleration reduction, 35~49% spacing error 

reduction and 3~7% fuel saving from ACC. Compared with CCC, CACCu achieved 

5~8% acceleration reduction, 26~38% spacing error reduction and 2~3% fuel saving. 

These numbers indicated benefits of CACCu in safety, ride comfort and energy 

efficiency; 

• The comprehensive comparison between linear CACCu and A-MPC CACCu showed 

that A-MPC CACCu slightly outperformed the linear CACCu when 𝑛 (i.e., the 

number of unconnected preceding vehicles) was accurately known, and largely 

outperformed linear CACCu when 𝑛 was unknown. Therefore, A-MPC CACCu is 

proven a more robust method for the implementation in complicated traffic situations; 

• In the field experiment, it was found that CACCu reduced 10.82% acceleration RMS, 

60.79% spacing error RMS and 6.24% fuel consumption from ACC’s. Compared 

with human driving, CACCu reduced 17.64% acceleration and 13.43% fuel 
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consumption. The speed profiles showed that CACCu greatly attenuated the traffic 

disturbances while ACC and human driving tended to amplify them. It was confirmed 

that CACCu can greatly attenuate the traffic disturbance and improve safety, comfort, 

and fuel efficiency. 

To take a full advantage of vehicular connectivity, a human-in-the-loop CACC algorithm 

(hCACC) was further developed for human-driven connected vehicle. In hCACC, the human 

driver remains engaged in the longitudinal control of the vehicle, and hCACC controller applies 

additional acceleration/deceleration on top of human actions according to the received status of 

preceding vehicle. By allowing coexistence of the automatic control and driver’s actions in a 

beneficial way, hCACC helps the human driver stabilize the vehicle more efficiently and safely. 

The proposed hCACC inherited the feedback-feedforward control structure and velocity-

dependent spacing policy from typical CACC. The hCACC along with human driving and CCC 

were evaluated by driving simulator experiments, in which the NGSIM data and PreScan vehicle 

model were utilized for the high fidelity. In addition, two derivative designs of hCACC, i.e., pre-

tuned hCACC and semi-hCACC were proposed and tested.  

The key findings in the design and validation of hCACCu are: 

• String stability analysis showed that hCACC can offer broader string-stable ranges of 

human parameters than human driving alone or the existing human-in-the loop 

Connected Cruise Control (CCC), indicating a better capability to mitigate traffic 

disturbance under the uncertain human behaviors; 
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• Driving simulator experiments showed that hCACC reduced 36.8% acceleration, 

31.2% time-gap fluctuation, 81.2% exposure time to unsafe driving situations, and 

15.8% fuel consumption from those of human driving alone; 

• Humans drive differently under the influence of ADAS. When aided by hCACC, 

human drivers tended to partially deactivate their feedback control, and the resulted 

reductions in human gains were in favor of hCACC; 

• Pre-tuned hCACC, which does not require any information about the driver, showed 

almost the same performance with a standard hCACC in the experiments. Semi-

hCACC, for vehicle without automated brake ability, were proven to enjoy most of 

hCACC’s benefits. These findings further lowering down the practice threshold of 

hCACC. 

This dissertation introduced quasi-CACC as a transformative technology that resolves the 

limitation of current CACC (i.e., CACC does not work efficiently in mixed traffic). On the one 

hand, CACCu makes the CAV capable of performing feedforward control solely using the 

received information from a further preceding vehicle when the immediately preceding vehicle is 

unconnected. This new feature would allow CAV to closely follow an unconnected vehicle 

instead of falling back to Adaptive Cruise Control (ACC) which requires much longer headway 

to be stable. On the other hand, a human-in-the-loop CACC algorithm is designed to co-pilot the 

human driver based on received information from preceding connected vehicle and help stabilize 

the vehicle more smoothly and safely in the traffic turbulence. A notable technical merit is that 

the design of quasi-CACC adopted highly robust control strategies to handle uncertainties of 

human driver’s behaviors in both traditional vehicles and CHVs, canceling the need for behavior 
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pattern identification or extra information about the human drivers. The findings from high-

fidelity simulation and field test indicated that quasi-CACC systems have great potential in 

improving the string stability, safety, ride comfort and fuel efficiency performances of CAV or 

CHV.  

Since it would likely to be decades before the market penetration rate of connected 

automated vehicles reaches 100%, the proposed quasi-CACC systems are recommended to be 

implemented soon in CAVs and CHVs, by which the vehicular connectivity and automation 

could generate the maximum benefits to the mixed traffic.  

7.2 Future Research 

For CACCu, although the A-MPC approach addressed most of obstacles on the way to 

implementation, there is still room for enhancement in terms of the accuracy of prediction model. 

As a starting point, this study adopted a simple second-order linear model to represent the 

dynamics between any two preceding vehicles. However, a neural-network-based adaptive MPC 

[99] may lead to even better performance, considering that neural network has been more 

accurate in predicting human’s car-following behaviors than traditional car-following models 

[100].  

For hCACC, it is important to ensure that the drivers “feel” the hCACC helpful and 

expectable instead of disturbing, to build up human’s trust in hCACC. The future investigation 

should look into whether and when hCACC may be conflicting with human’s intentions, and 

driver’s subjective satisfaction on hCACC. Then the control logic/algorithm may need to be 

revised and an activation/deactivation mechanism of hCACC should be designed to resolve the 

conflict if the drivers report it as a notable problem. To this end, tests with real vehicles, or at 
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least motion-enabled driving simulator are necessary to given the users “real feeling”. In 

addition, the demographic factors in the performance of hCACC is also worth further 

investigation. 

Lastly, the presented simulations and field tests were focused on the individual vehicle’s 

behaviors in small-scale scenarios involving only limited number of vehicles. It is still unclear 

how quasi-CACC would affect the performance (e.g., mobility and sustainability) of 

transportation networks. Therefore, an important future research is to quantify the impacts of 

quasi-CACC on transportation efficiency and sustainability via network-wide microscopic 

simulations. The results could help identifying market penetration breaking points, if any, for 

supporting policy decision. 
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