
Cloud Computing: Centralizing an Enterprise DevOps Tool in

Amazon Web Services

CS4991 Capstone Report, 2023

Calvin Min

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

cjm9vr@virginia.edu

ABSTRACT

Capital One, a leading bank in America,

focuses on pioneering the industry by utilizing

information and technology, specifically the

cloud. However, when well-known banks try

to incorporate technology into their business

model, they become increasingly susceptible

to security breaches. As a Technology Intern,

I delivered an internal, enterprise-wide

product that streamlined updates on company-

owned virtual environments within Amazon

Web Services. My team (two other interns and

I) created a full-stack solution using Flask and

AWS services to develop a user interface that

incorporated a pre-existing DevOps tool called

Automated Vulnerability Remediation (AVR).

With the help of our full-stack application,

Capital One employees can save around

400,000 hours by automating their updates

within the cloud. In the future, the full-stack

application needs to incorporate Capital One’s

human resources data to ensure that only

authorized users can start updating jobs.

1. INTRODUCTION

During the 2020 COVID-19 pandemic,

Capital One decided to move most of its

infrastructure to AWS. The perk of this

decision was to ensure their company could

operate from anywhere in the world. However,

with the recency of cloud computing and the

unknowns about it, the public speculated that

Capital One would run into security issues

during its transition. Thus, AVR was one tool

that Capital One created to mitigate the

vulnerabilities found within the company’s

virtual machines.

AVR is a significant tool for the company

due to its efficiency when updating virtual

machines in parallel. The usual process to

update an Elastic Cloud Compute (EC2)

machine within a major corporation like

Capital One takes numerous hours and

multiple approvals. However, with the

capabilities of AVR, employees who possess

the right credentials can “spin up” updates on

the fly. This becomes particularly necessary

when vulnerabilities are found during off-

hours.

2. RELATED WORKS

According to Alqahtani and Gull (2018),

the premises of cloud computing present a lot

of security issues. Some factors mentioned in

their research were unidentified malware that

existed under the host company’s supervision,

leftover credentials, and unsolicited

connections. Even though cloud computing

presents efficiency, a potential drawback of its

use in a big corporation is the number of

security vulnerabilities. My project connects

with Alqahtani and Gull’s research as Capital

One recently migrated its infrastructure under

the supervision of another company. Without

direct control, Capital One is forced to rely on

AWS to ensure that some areas of its

infrastructure are secure.

Gorelik (2013) discussed the basic

principles of cloud computing, and how any

industry can apply its capabilities to its

infrastructure. Specifically, Gorelik analyzed

the cost structure found within cloud

computing companies, and how users can

effectively create a model to maximize their

cloud usage while minimizing their costs. In

addition to the security risks that result from

the cloud, a price tag is placed on every item

used. Therefore, customers of the cloud must

be aware of their usage, and best practices are

noted by Gorelik to decrease the amount of

money spent. Gorelik’s research directly

impacted my project as my team researched

best practices in terms of cost efficiency to

create the best cloud infrastructure for our

company. We prioritized scalability but kept in

mind the cost that resulted from it.

3. PROJECT DESIGN

AVR is a complex web application that has

multiple components working simultaneously.

In this section, this report will review AVR’s

architecture, analyze the requirements for the

project, and explain some of the challenges

developers faced when creating the

application.

3.1 Review of System Architecture

The web tool for AVR is a monolithic

application using Python Flask. The

application contained both its front-end and

back-end in the same repository. The idea of

this architecture was to make it easier for

developers to implement new features but

hindered its scalability in the future. As a

monolithic application, my team was able to

develop the application as a Docker image.

Since the web tool is a docker image, our team

could deploy the application within AWS as a

running service, making the web tool

accessible to computers within Capital One’s

domain.

AVR's deployment method was built

through AWS Elastic Container Service (ECS)

Fargate. Furthermore, the application’s back

end is integrated with AWS Simple Queue

Service (SQS) and AWS Dynamo Database.

The purpose of using SQS was to bottleneck

the number of incoming requests for the tool.

As a 24-hour service within Capital One, the

tool would see job tasks constantly throughout

the day. With AWS SQS, our team was able to

limit the number of requests while maintaining

order on a First-in First-out basis.

Additionally, the purpose of using DynamoDB

was to integrate with Capital One’s internal

API to ensure that the users logged in

possessed the right credentials to use our tool.

3.2 Requirements

A direct outcome of the COVID-19

pandemic was companies finding themselves

moving their work schedules to a hybrid or

entirely remote model. With these options,

employees were given free rein to work at their

leisure, which suggests some employees work

outside the basic 9-5. With these policies in

place for Capital One, issues within EC2

instances can be found outside of the

established work hours and waiting up to 18

hours for approval leaves the company in a

detrimental state for a cyber-security attack.

Thus, a tool like AVR was established to

ensure procedures were conducted under

company policies while also improving their

efficiency within the cloud.

With the premise of AVR in mind, the tool

was initially created in purely a DevOps

environment. DevOps is a general set of

practices that many software engineers use to

automate their integration between software

development and deployment methods.

Although the use of AVR is intuitive, many of

the tool’s customers found themselves having

a hard time using it due to the complexity of

DevOps. My team was tasked with

centralizing the DevOps tool by creating a

User Interface that integrated with the existing

tool. For the three months, I worked as an

intern, my project was to develop a web

application that integrated with Capital One’s

internal Application Programming Interface

(API) to create an experience that was easy for

the tool’s customers to understand.

3.3 Challenges

My team faced many challenges while

developing the AVR web tool. The first

iteration of the web tool was created as a

monolithic application. However, our team

wanted to move away from this architecture,

and improve it by renovating the structure into

two stand-alone applications, separate

applications for the front-end and back-end.

By doing so, we would improve the scalability

of the project for future developers and

maintain better coding principles. However,

due to our limited time as interns, we decided

against this idea because we prioritized

functionality over longevity. When placed into

a pre-existing application, it takes time for

developers to understand what the code does.

This is especially an issue when the repository

contains thousands of lines of code. Since this

was one of my first experiences working with

industry-level code, I found it difficult to

interpret the code and developer with my style

at an industry level. This was especially true

when intreating with tools in AWS that I had

never worked with. Although there was an

initial learning curve to the application, it was

a valuable experience that I can leverage in the

future.

4. RESULTS

After my three months as an intern, our

team decided to transition the development of

the application to a full-time employee. As the

current iteration stood at the end of the

summer, our tool was capable of starting

update jobs through the web tool and

providing custom settings for the user to

integrate. With these capabilities, our web tool

directly grew the application’s usage within

the company to around 85% and saved

employees an estimated 400,000 working

hours per year.

Additionally, the web tool drastically

improved the customer experience and

provided an option for immediate updates.

However, one main concept we failed to

integrate was ensuring the credentials of the

user. In the future, my intern team made it

clear that element needed to be the priority for

an employee to work on. This was the last step

needed for the application to be released to the

entire company.

5. CONCLUSION

Automated Vulnerability Remediation is

an enterprise tool used to update operating

systems within the cloud on an ad hoc basis.

As an intern at Capital One, I was tasked to

create a user interface that interacts with the

preexisting tool. As a result, my team

developed a functioning web application that

saves countless hours. The web tool is

important to Capital One for the efficiency it

brings to an everyday scenario. Furthermore,

my team’s project mitigates the security risk

that Capital One faces by having its

infrastructure within the cloud. The web tool

presents functionality that differs from the

preexisting tool by bypassing credentials

through its integration with Capital One’s

internal API and introducing new

customizations to start updating jobs within

the cloud. In the future, Capital One plans to

develop the web application even further to

have AVR solely work off a user interface

instead of being simply a DevOps tool.

As for myself, I learned the importance of

working within a team to solve a bigger

problem. For software engineers, it is easy to

work independently from others. However,

cooperation and transparency are imperative

when developing a bigger application. In

addition, I learned a great deal about Amazon

Web Services and the general cloud space. I

hope that the knowledge I gained from the

summer will apply to my future software

engineering jobs.

6. FUTURE WORK

Since AVR is owned by Capital One, I can

only speculate what the company intends to do

with the web application after my internship.

However, after promising feedback at the end

of the summer, the web tool will solve other

security issues within the cloud besides

updating the operating system of EC2

instances. In addition, more internal features

will be implemented within the web

application to serve a greater variety of

customer customizations.

7. UVA EVALUATION

Students at UVA will benefit from the

following classes in terms of working in the

software industry: Algorithms, Cloud

Computing, Database, and Cyber Security.

When interviewing for software engineering

internships, it is imperative to understand the

foundational knowledge taught in Algorithms.

Furthermore, Cloud Computing and Database

introduce students to information that applies

to everyday life as a software engineer.

Finally, Cyber Security implants the

importance of security within code and forces

students to recognize consequences that stem

from unsafe code.

REFERENCES

Alqahtani, A., & Gull, H. (2018).

Cloud Computing and Security Issues-A

Review of Amazon Web Services. Int J Appl

Eng Res, 13(22), 16077-16084.

Gorelik, E. (2013). Cloud computing

models (Doctoral dissertation, Massachusetts

Institute of Technology).

