
 Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment

of the requirements for the degree

by

Machine Approaches to Epistemic Learning with
Application to Decision Strategy Recognition

Doctor of Philosophy

Qifeng Qiao

2012

May

A Dissertation

abstract

In sequential decision problems, the forward planning problem is one in which an

agent seeks to find a decision strategy that yields a sequence of actions that achieve

a given goal. The inverse process, which is sometimes called plan or goal recognition,

is to infer the goals of an agent on the basis of observations of its actions. One of the

more general goal recognition problems may be framed in the context of reinforcement

learning. The inverse reinforcement learning problem (IRL) is to determine the reward

structure perceived by an agent on the basis of observations of its actions. A number

of approaches have been proposed for IRL, but many rely on the assumption that the

reward function can be linearly approximated, which may not be reasonable for many

problems of practical interest. The ill-posed nature of the inverse learning problem

also presents difficulties. Multiple reward functions may yield the same optimal policy,

and there may be multiple observations at a state given the true reward function.

The focus of this dissertation is the design and analysis of algorithms for IRL to

address several of the principal limitations of existing methods and to extend the do-

mains of application for IRL. Specific areas of contribution include: (1) development

of a non-parametric probabilistic model in a Bayesian framework that quantifies in-

ference uncertainty and provides a prediction model in closed form, (2) introduction

of the idea of using reward functions recovered through IRL as a signature for decision

1

2

agents in supervised or unsupervised learning of agent identity and decision strategy,

(3) development of algorithms that can learn from supervised information from ob-

served states and unsupervised information from unobserved states. IRL algorithms

can present many computational difficulties. We prove that the principal computa-

tional procedures in IRL under a Gaussian process model can be formulated as convex

optimization problems, and thus solved using efficient algorithms. We also develop a

minorization-majorization approach to the computation of likelihood functions. For

a variety of standard test problems, we present empirical results for experiments

comparing our proposed methods with algorithms from the recent literature.

The study of behavior recognition, based on inverse reinforcement leaning, has

considerable significance in many potential application areas that involve human or

machine behavior in an interactive environment.

Acknowledgments

I owe a lot of gratitude to many people for their support of my research. First and

foremost I would like to express the deepest gratitude to my advisor, Prof. Peter

Beling, for not only guiding me in scientific research but also supplying me with help

and knowledge to succeed in life. Prof. Bling directs my research towards interest-

ing problems and innovative solutions, encourages the challenging discussions, always

keeps patient, and gives me enough freedom to feel empowered by the journey. Par-

ticularly, I would like to thank him for spending a lot of time on patiently revising my

writing, and being always available for me to discuss the problems even on weekends.

He never said anything negative about my research and always encouraged me to

explore the new ideas, which lets me stay in a fresh and healthy atmosphere.

I also thank Prof. Barry Horowitz, Prof. Steven Patek, Prof. Randy Cogill and

Prof. Gang Tao for serving on my dissertation committee and providing their valuable

insights and suggestions on my research. I am grateful that every time when I come

to meet them, they spend time to discuss with me about the research and provide

many valuable suggestions.

Many thanks to the people at Wireless Internet Center for Advanced Technology,

which is directed by Prof. Barry Horowitz, for providing good facility and research

environment for varieties of projects. I not only spend a lot of time doing research

3

4

there but also meet good people to explore the unknown together. I thank the mem-

orable time working with Jianping Wang, who is always at your hand when you need

help, Jorge Alviar, Mingyi Hong, Chenyang Li, Roy Hayes and Jonathan Bao who

lets me know an interesting research topic.

It was great fun to discuss academic questions with my officemates Zhou Zhou,

Steve Yang and Kanshukan Rajaratnam. I am also grateful to Katherine Holcomb

who works for cluster computing at UVA and is always willing to help me use clusters.

I owe gratitude to the people working in our department. Thank Jennifer Mauller

for always helping me promptly and explaining the policies and questions patiently

and clearly.

I would like to thank my wife, Ruizi Liu, and our parents, who are always sup-

porting me and let me be able to completely focus on the research. My son, James,

who was born during my doctorate study, encourages me to face more challenges. My

wife and our parents have taken all the responsibility for the housework and care of

baby. Without their help, I will not have so much time to work on my research.

5

”If we knew what it was we were doing, it would not be called research, would it?”

- Albert Einstein

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Intelligent Agents and Theory of Mind 5

1.3 Inverse Reinforcement Learning . 9

1.4 Our Contribution . 11

1.5 Thesis Organization . 13

2 Background and Related Work 15

2.1 Quantifying Uncertainty and Inference 15

2.1.1 Action under uncertainty . 16

2.1.2 Inference and evaluation . 17

2.2 Decision-Theoretic Model . 20

2.2.1 Utility theory . 20

2.2.2 Markov decision process . 22

2.2.3 Inverse Markov decision model 27

2.3 Related Work . 29

2.3.1 Inverse optimal control . 29

2.3.2 Linear approximation . 30

2.3.3 IRL from sampled trajectories 31

6

Contents 7

2.3.4 Game-theoretic model . 35

3 Bayesian IRL within Small Finite Space 37

3.1 Bayesian Framework with Gaussian Prior 38

3.2 Learning with Deterministic Policy Model 40

3.3 Learning with Stochastic Policy Model 41

4 Inverse Reinforcement Learning with Gaussian Process 48

4.1 Introduction . 48

4.2 Gaussian Process Learning . 50

4.2.1 Regression and classification 50

4.2.2 Preference learning . 51

4.3 IRL with Gaussian Process . 52

4.3.1 Action preference graph . 53

4.3.2 Bayesian inference . 59

4.3.3 Model selection . 64

4.3.4 Learning in large state space 66

4.3.5 Model checking and improvement 68

4.4 Approximate Gaussian Process IRL 69

4.5 Experiments . 71

4.5.1 GridWorld problem . 71

4.5.2 Pendulum control problem . 77

4.6 Conclusions . 78

5 Semi-supervised Inverse Reinforcement Learning using MM 82

5.1 Introduction . 83

Contents 8

5.2 Preliminaries . 86

5.2.1 Forward planning with MDP 86

5.2.2 Review of IRL as a supervised learning problem 87

5.2.3 Review of MM conception . 88

5.3 Semi-supervised IRL using MM . 89

5.3.1 A Maximum likelihood estimation model 89

5.3.2 MM optimization . 92

5.3.3 Convergence analysis . 95

5.4 Experiments . 102

5.4.1 GridWorld problem . 103

5.4.2 Mountain car problem . 112

5.4.3 Secretary problem . 114

5.5 Conclusion . 120

6 Decision Strategy Recognition in Reward Space 122

6.1 Introduction . 123

6.1.1 The decision strategy recognition problem 123

6.1.2 The secretary problem . 126

6.1.3 Bayes inverse learning . 128

6.2 Action Space and Goal Space . 128

6.3 Computational Framework . 130

6.3.1 On-line inference . 130

6.3.2 Existing IRL for rational behavior 132

6.3.3 Bounded rationality . 135

6.4 Case Study and Experiments . 140

Contents 9

6.4.1 Grid world problem . 144

6.4.2 Secretary problem . 154

6.5 Conclusions . 167

7 Conclusion 169

8 Appendix 172

8.1 Proof of Proposition 12 . 172

8.2 Computation of lower bound function L(r|rt) 174

8.3 Proof of Proposition 15 . 174

8.4 Proof of Theory 16 . 178

8.5 Proof for the inequality in Theorem 16 180

8.6 Proof of Lemma 18 . 181

8.7 Global Convergence Theory . 182

8.8 Proof of Proposition 22 . 183

List of Figures

1.1 Goal-oriented agents interact with environment 5

2.1 Goal-oriented agents interact with environment 23

2.2 Goal-oriented MDP agent interacts with environment 24

2.3 IMD model infers the goal of an agent who interacts with the environ-

ment and makes sequential decisions. 28

3.1 An example showing the Bayesian IRL given full observation of the

decision maker’s policy. The left is the prior and the right is the posterior. 40

4.1 Examples of observation structures for noisy reward scenarios: (a) ob-

servations come from a group of decision makers; (b) observations come

from a single decision maker; and (c) our proposed observation struc-

ture for MDP. 53

4.2 Examples of preference graph: (a) The first step to draw a preference

graph. (b) The second step to draw a preference graph. (c) An ex-

ample of observing two actions at a state. (d) An example of unique

observation at a state. 56

4.3 Comparisons of the recovered reward shape. 72

10

List of Figures 11

4.4 Noisy navigation: red decision trajectory for the expert and green de-

cision trajectory for the apprentice. The arrow direction denotes the

action taken by the agent. 75

4.5 Plot of average accuracy vs. number of sampled trajectories from the

expert. For each fixed number of sampled trajectory, we repeat 100

times of independent experiments and then take average over the accu-

racies. The value of x-axis times 5 is the number of sampled trajectories

used in IRL. 76

4.6 Comparison of average accuracy for testing problems. 77

4.7 Plot of pendulum experimental results, where the first row contains

the figures from [1] and the second row displays the results using the

estimated reward by our ALGPIRL algorithm. 79

4.8 Plot of Q-factors and reward values 80

5.1 An illustration of minorization function 93

5.2 Graphs of prior distribution . 95

5.3 Picture of (a) Grid World (b) Mountain Car problem 103

5.4 The arrows represent the optimal moving actions selected at each state

and the circle denotes the destination place. 107

5.5 The convergence plot: ‖rt+1 − rt‖ as a function of iteration step t. . . 108

5.6 The arrows represent the optimal moving actions selected at each state

and the circle denotes the destination place. 109

5.7 Plot of performance accuracy with respect to the number of sampled

decision trajectories. 110

List of Figures 12

5.8 Plot of performance accuracy with respect to the number of sampled

decision trajectories. 111

5.9 Plot of number of steps the car used to reach the goal vs. the obser-

vation rate. 114

5.10 Plot of number of steps the car used to reach the goal. 114

5.11 Plot of decision rules: cutoff rule and non-candidate rule 116

5.12 Plot of LIRL’s selection accuracy vs the cutoff parameter 118

5.13 Plot of MMIRL’s selection accuracy vs the cutoff parameter 119

5.14 Plot of LIRL’s selection accuracy for the non-candidate decision rule. 121

5.15 Plot of MMIRL’s selection accuracy for the non-candidate decision rule.121

6.1 (a) clustering (b) classification . 127

6.2 Stationary and Changing reward structure 131

6.3 All stimuli from Experiment 1. We vary the goal configuration by

changing the location of the goal candidate marked with C, obstacle

influence and path trajectory. 143

6.4 IRL prediction on the goal in Experiment 1. 145

6.5 A Gaussian prior distribution with three possible goals 147

6.6 learned reward functions in condition 2-1-C, given observation of the

goal marked with C (b) or not (a). 148

6.7 Clustering accuracy . 151

6.8 Clustering problem: the reward vectors are projected into the two

dimensional space by principal component analysis. 153

6.9 Classification accuracy using SVM and KNN. In these figures, the no-

tation T denotes the length of the observed decision trajectory. 155

List of Figures 13

6.10 Classification accuracy using LR and FDA. 156

6.11 A comparison between the predicted behavior and the true behavior . 160

6.12 Visualization of the reward feature vectors in 3 dimensions. In Fig-

ure (a) and (c) we assign the true group labels, while clustered group

labels are shown in Figure (b) and (d) . The clustering accuracy is

100%. The high dimensional reward vectors are projected into the

three dimensional space by principle component analysis. 160

6.13 The distribution of constructed feature points that are assigned with

ground truth group label. In Figure (a), the agent is represented by

the feature vector constructed in the action space, while in Figure (b),

the agent is denoted by its recovered reward function. 162

6.14 Visualization of a binary classification problem for subjects using cutoff

rule and non-candidate rule. The left is the classified feature points pro-

jected in 2D space; The right is the classified feature points projected

in 3d space. The classification accuracy is 100%. For the complete

observation, we use linear IRL in [2] and use PROJ for the incomplete

observation. 165

6.15 Visualization of a binary classification problem for subjects using cutoff

rule and random rules. We use linear IRL in [2] or the problem given

complete observation and use PROJ for the problem with incomplete

observation. 166

6.16 Visualization of a binary classification problem for subjects using the

cutoff rule with different cutoff parameter values. The observation is

incomplete and the reward is estimated by PROJ method. 168

List of Tables

4.1 Time(sec) to find the apprentice policy 73

5.1 Observation rate . 112

6.1 NMI scores for GridWorld problem 152

6.2 NMI score for clustering the agents using the same heuristic decision

rule but with different parameter values 164

14

Chapter 1

Introduction

Artificial intelligence(AI) aims to construct artifacts (automated decision systems)

that are capable of performing tasks with a degree of intelligence that approaches

that of human beings. Here we may define intelligence to be the ability to make deci-

sions that form a successful solution to a problem. In contrast to older AI programs

that mimic human behaviors using hard-coded rules, machine learning tools attempt

to learn from demonstrations. Demonstration-based learning offers the promise of de-

cision agents that, in effect, program themselves, adapting decisions and strategies to

new circumstances in much the same manner as humans do. Conventional rule-based

approaches are coded in action space. Machine learning approaches, by contrast,

may be termed principal-based as they are generally defined in goal space. There

is ever mounting empirical evidence in support of a hypothesis that principles may

be more important than programmed rules as a means for achieving artifacts that

might reasonably be called intelligent. Theoretically, too, the abstract nature of a

principle-based artifact should leave it less vulnerable to environmental disturbances

than a rule-based artifact, of necessity conceived and precisely specified for particu-

lar circumstances. Artifacts may never beat or even match human intelligence, but

1

Chapter 1. Introduction 2

in many situations they can provide satisfactory solutions that approximate optimal

behavior.

One may define a cognitive agent to be one that typically purposeful and adap-

tive to new information in the learning process. The cognitive decision processes of

humans include: observing the environment, reasoning other agents’ behavior and

goals, thinking in minds, the selection of actions or plans, and the execution of plans

[3]. We posit that to realize the intelligence that is “human like”, artifacts will need

to possess similar goal-directed, adaptive reasoning capabilities. These capabilities

are necessary for enabling the artifacts to infer and understand, by observation, the

underlying reasons why the agent takes the particular sequence of actions to solve a

problem. Therefore the intelligent agent becomes robust to environmental changes,

supporting the transfer of learned knowledge across similar domains.

A rational being would make decisions by computing the expected value or utility

and choosing the alternative with maximum value [4]. The actual decision processes of

humans, however, are not so simple. Human decision makers tend to choose the first

satisfactory alternative instead of optimizing for the best alternative [5]. Different

people often reach different decisions on the same problem, which may be attributed

to biases in the decision making process [6, 7]. Because biases are widespread, goal-

oriented decision-makers may be recognized, or discriminated from one another, on

the basis of their decision principles. In artifacts that mimic human intelligence, then,

one might look for the similar, recognizable distinctions in principles.

The past several decades have seen enormous volumes of research on the devel-

opment of computer systems capable of performing intelligent tasks. Related ar-

eas of artificial intelligence research include planning and problem solving, machine

Chapter 1. Introduction 3

learning, knowledge representation methodologies, and multi-agent systems. Unfortu-

nately, integration across these areas of artificial intelligence has been lacking. More-

over, many current machine learning methods have little connection to planning and

decision-making frameworks, though such frameworks have been the setting for many

problems and experiments involving sequential decision making and interaction with

human decision makers. In existing machine learning research in supervised learn-

ing, for example, it is common to consider behavior in the form of labels as a set

of random variables without explicit models of the context in which the decision is

made and how it relates to other alternative actions and the goals of the agent. Thus,

many existing approaches lack an orientation toward the goal-directed and adaptive

reasoning that is characteristic of high-level human intelligence.

There may be enormous potential benefit in research that integrates machine

learning and planning frameworks; many real-world problems, such as robotics, se-

mantic web searches, recommendation systems, and financial trading analysis, have

proven difficult under either paradigm individually but might admit more progress

under an integrated approach. We hypothesize that some of the most fruitful con-

nections between machine learning and decision making will involve consideration

of interactions between humans and machines and between machines and machines.

Important research areas include identification of the limits of manual control, knowl-

edge capture from human experts, and the development of new methods by which

machines can learn from machines.

In this dissertation, we develop probabilistic models that enable inference of agent

goals from observation of behavior. We model the problem faced by the decision

agents as a Markov decision process (MDP) and model the observed behavior of the

Chapter 1. Introduction 4

agents in terms of degrees of rationality with respect to optimal forward planning

for the MDP. Within the MDP framework, we infer goals from observations using

Bayesian models. The Bayesian framework for probabilistic inference provides a gen-

eral approach to understanding how problems of induction can be solved in principle.

This framework has been widely used to study the human mind in cognitive science,

including Bayesian models to address animal learning [8], human inductive learning

and generalization [9], and action understanding [10, 11]. The essential idea of our

method is that a Bayesian probabilistic model in the MDP setting creates an infer-

ence model of decision making that is goal-oriented and adaptive and with uncertainty,

providing effective approach to predict the behavior and recognize the decision rules

hidden in incomplete observations.

1.1 Motivation

The growth in computing power and in data collection seen in the last decade has

important implications for artificial intelligence. Embedded computers and ubiqui-

tous sensing provide the basis for detailed description of the environments in which

decisions are made. Personal portable devices connected to the Internet make it pos-

sible to record and retrieve vast amounts of behavior data. In our view, there is a

clear need for new analytic methods that would contribute to understanding behav-

ior through inference of the goals behind the observations. Possible objectives and

benefits of technologies for learning the goals in a decision-making process include:

• Apprenticeship learning, in which the objective is to learn the decision policy

of the agent. The decision policy could be used to predict future behavior un-

der environments not yet observed. Such capability would support automatic

Chapter 1. Introduction 5

creation of artifacts, e.g., robots that learn how to perform tasks through ob-

servation of demonstrations by experts.

• Goal-based filtering, in which knowledge of the user’s interests is used to filter

databases. Such capability would support recommendation engines. More gen-

erally, knowledge of user goals could be the basis for automated systems that

interact with human beings to provide service according to individual prefer-

ence.

• Decision strategy recognition, in which the learned goals are used as the basis

for classifying or clustering users. Such capability would provide a robust way

of identifying decision makers on the basis of observed actions.

1.2 Intelligent Agents and Theory of Mind

Sensors
PerceptsAgent

Environment

What is the world

like now?

p

Environment

Action to

be done

Rules

or Goals

Actuators
Actions

Figure 1.1: Goal-oriented agents interact with environment

An agent can be a person, a computer or a robot, anything that is able to perceive

the environment through sensors and determine the actions that will act upon the

environment. The long term objective of artificial intelligence is to develop machine

agents that have “human like” perceptual, planning, reasoning and understanding

Chapter 1. Introduction 6

capabilities. An agent is intelligent, if it has some of these characteristics. A simple

idea for an intelligent agent is illustrated in Figure1.1, taken from [12].

Let us first review behavior in decision making. In [13], behavior is analyzed in

hierarchy types. The first level of behavior is divided into the active and the passive,

which are determined by whether the behavior outputs or inputs energy. Active

behavior is further classified into purposeful and random. Purposeful behavior means

that the agent is goal-oriented. For goal inference, the behavior we are interested in

is active and purposeful. For the purposes of learning, observed behavior is useful

only if it contains knowledge of goals and preferences.

Goals are simply states of affairs that the agent desires to achieve. The desir-

ability is captured by a performance measure that evaluates the given sequence of

environmental states. Note that we say environmental states, not agent states. Ob-

viously, there is not one fixed measurement method for the different tasks. But as a

general rule, the performance measure should be designed according to the environ-

mental states, making evaluations on goals, instead of how one thinks the agent should

act. In the cognitive architecture of a rational agent, the actions are determined for

achieving the goal in the long term, rather than receiving the current reward. The

preferences generally mean that humans can tell introspectively that they prefer one

type of situation to another.

Russell and Norvig [12] have considered that the goal-directed behavior as the

essence of intelligence and borrowed the conception of rationality from economics to

describe the good behavior. We use their definition of a rational agent.

Definition (Russell and Norvig [12])

For each possible percept sequence, a rational agent should select an action that

Chapter 1. Introduction 7

is expected to maximize its performance measure, given the evidence provided by the

percept sequence and whatever built-in knowledge the agent has.

This definition captures four things: the performance measure that defines the

criterion of success, the agent’s prior knowledge of the environment, actions the agent

can perform and the percept sequence to date. However the perfect rationality is often

not supported by the agents in practice. Herbert Simon [5] writes

The capacity of the human mind for formulating and solving complex

problems is very small compared with the size of the problems whose

solution is required for objectively rational behavior in the real world - or

even for a reasonable approximation to such objective rationality.

Simon suggests a notion of bounded rationality. The computer agents may display

perfect rationality due to design features and limitations on computational resources.

So a bounded rational agent behaves as well as possible, given its computational

and knowledge resources. Note that the performance measurement is to evaluate the

criterion for goals, not for the optimal solution. Thus we consider the agent in practice

as a satisficer, one seeking a satisfactory solution rather than the optimal one. The

satisfactory solution may often be near optimal, if the cost of decision-making process

has been considered. In our work, we propose bounded rationality as the theoretic

foundation to overcome the limitations of the rational-agent model in MDP that we

rely on for explaining the observed behavior.

The above discussions related to the intelligent agents are mainly focused in the

perspective of forward planning, which is how to make good decisions. However,

another property is also a key to highlight human intelligence. Reasoning is the

ability to infer intentions behind observations. How do humans understand and infer

Chapter 1. Introduction 8

other agents’ desires? The emerging Theory of Mind (ToM) is of interest for the

understanding of normal human psychology. ToM refers to a broad areas studied in

psychology and cognitive science. An informal definition given in [14] is:

Theory of mind refers to the ability to explain and predict one’s own

actions and those of other intelligent agents (that is, agents that, unlike

physical objects, are the causes of their own actions)

Understanding behaviors implies being able to infer that behaviors are induced by

mental states, which in turn implies having ToM. Humans with ToM make inferences

about and interpret others’ behavior in terms of their mental states, such as goals, and

beliefs. Inference of goals is a core area of ToM. Several authors have recently reported

models for how people infer the goals or preferences as a kind of inverse planning

[10, 15]. These models depend on the principle of rational behavior and formalize this

principle at the heart of classical ToM. The key idea is that the purposeful agents are

expected to choose the actions that reach their goals as effectively as possible, i.e.,

maximizing the expected utility. Goals or preferences are inferred by the criterion that

the expected utility of observed action is maximized. Two key properties of ToM are

self-propulsion and goal-oriented behavior. This means that the autonomous agents,

learning how to infer like humans, are active and purposeful.

Now we have introduced some theory related to the intelligence in human decision

making and goal inference. These theories drive our work on developing mathematical

models to make the autonomous agents gain such ‘human-like’ intelligence. In the

machine learning domains, we call these models epistemic learning, which refers to

understanding of the nature and the principle of knowledge in observation of the

interactive decision making process.

Chapter 1. Introduction 9

1.3 Inverse Reinforcement Learning

In the control field, the idea underlying inverse reinforcement learning (IRL) was first

proposed by Kalman in the early 1960s as the problem of recovering the objective

function for a deterministic linear system. Other researchers extended this idea as

the inverse optimal control problem. Boyd has solved this control problem as a

semidefinite program [16]. Another case is to consider a control-Lyapunov function

as an optimal value function and find the cost. The theory related to the objective

and attributes in decision analysis is well developed and given numerous applications

[17]. From the viewpoint of economics, there have been empirical findings relating the

behavior of people to structured models from decision theory and planning. Rust, for

example, concluded from experiments that a MDP can be a good model of the way

humans actually solve sequential decision problems under uncertainty [18]. Sargent

developed an MDP model of a firm’s decisions on hiring how many workers in a world

with randomly changing prices and productivities [19]. This work can be viewed as

the first example of structural estimation of MDP, term the “inverse stochastic control

problem”, that aims to not only uncover the form of the stochastic process generating

the state-action pairs, but also the parameters that determine it.

The problem of IRL was first informally proposed in machine learning community

by Russell [20] with the purpose of modeling natural learning using reinforcement

learning (RL) ideas. Before applying RL algorithms, the reward function should be

determined a priori and fixed. However, in some conditions the reward functions are

unknown. Therefore, IRL is proposed in [20] to compute the reward function that

is consistent with these given constraints: (1) measurements of an agent’s behavior

over time, (2) measurements of the sensory inputs to the agent, (3) a model of the

Chapter 1. Introduction 10

physical environment. Here the measurements of (1) and (2) provide the observation

of action and state respectively, which is sampled in the form of a state-action pair.

Markov decision processes provide a framework for modeling sequential decision-

making, in which the objective is guided by the reward over state-action pairs. MDPs

are well solved via dynamic programming and reinforcement learning. But uncertainty

of the model parameters is the main bottleneck in these problems. Recent work called

inverse reinforcement learning using machine learning tools has contributed positively

to the process of eliminating this bottleneck. There have been some approaches being

proposed for IRL in various applications. Ng [2] poses the IRL problem in the settings

familiar to the machine learning community with MDP. The key idea there is to max-

imize the difference between the optimal and suboptimal policies by optimizing the

reward function in a linear approximation. Another significant idea for problems of

apprenticeship learning is to search mixed solutions in a space of learned policies with

the goal that the accumulative feature expectation is near that of the expert [21], [22].

Similarly, a game-theoretic approach is given to solve IRL problem in the setting of

playing a two-player zero-sum game, in which the apprentice chooses a policy and the

environment chooses a reward function [23]. These methods of apprenticeship learn-

ing represent the reward as linear combinations of manually defined (prior) features.

The method by which the features are selected has remarkable influence on the final

performance. Another algorithm for IRL is policy matching that the loss function

penalizing deviations from expert’s policy is minimized by tuning the parameters of

reward functions [24]. Maximum entropy IRL is proposed in the context of modeling

real-world navigation and driving behaviors in [25]. From Bayesian perspective, the

state-action samples from the expert are considered as the evidence that will be used

Chapter 1. Introduction 11

to update a prior on the reward functions. Then the reward learning and appren-

ticeship learning can be solved using this posterior on the reward functions, and a

modified Markov Chain Monte Carlo algorithm used to do the inference tasks [26].

1.4 Our Contribution

Learning goals from observed behavior in sequential decision making is challenging, as

much uncertainty inherently exists in the inference process. There are several sources

of uncertainty and difficulty in this learning problem, including:

• Goal inference is an ill-posed problem, because there may be multiple functions

that can generate the same behavior observed. In turn, there may be multiple

actions observed at one state given a reward function.

• In practice, the observed behavior is often incomplete, representing only a sam-

ple of the true policy. In MDPs, behavior is the choice of an action at a given

state. In some real-world problems, the number of state-action examples ob-

served may be too small for effective inference.

• The design of state features has a significant effect on performance guarantee

of learning the goal from the behavior observed. How to design state feature is

disputable.

• In IRL, the reward function is widely assumed as a linear function. Though it is

helpful for making the computation efficient, real-world problems often violate

this assumption. Therefore performance accuracy may be degraded.

We study new algorithms to deal with the above challenges. The main contribu-

tions of this thesis are as follows:

Chapter 1. Introduction 12

• Probabilistic model with Bayesian rule provides an approximation solution

to infer the reward function more efficiently and effectively, particularly when

the size of the observation data is small. We consider the reward function to

be a stochastic process, such as Gaussian process, which allows for a tractable

problem formulation and enables inference of a distribution with estimation of

the mean and the variance. This is a general approach for modeling observed

behavior that is bounded rational and purposeful, and may be applied in finite

or continuous domains.

• Preference graph in decision making considers the ambiguity of observed

policy in IRL with sampled decision trajectories. It deals with the condition

that observed agents make decisions with uncertainties.

• Semi-IRL resolves the practical challenge when observations are incomplete

and small in number. This work borrows the idea from semi-supervised learn-

ing that knowledge of the existence of states can help reduce the uncertainty

in estimation, even though we do not have observed behavior at these states.

In addition, previous IRL methods based on a Boltzmann distribution model

of behavior require simulation of the value function during the inference proce-

dure. Such simulations may present an overwhelming computational burden in

the case of real world problems. To overcome this difficulty, we propose using

the optimization techniques of majorization and minorization to make the com-

putation more tractable and efficient. We prove theoretical convergence and

report on a number of empirical studies.

• On-line IRL expands the probabilistic model to settings with addition uncer-

Chapter 1. Introduction 13

tainty in observation, such as goals changing during observation, the actions

observed being suboptimal or in adaptive learning process. This model vali-

dates the method of using MDP to model the observed behavior and using its

reward function to represent the agent’s goal.

• Decision strategy recognition studies the promising feasibility of using re-

ward function to characterize intelligent agents. The idea is that an agent is

described in a MDP environment and its decision strategy is represented by

the reward function. IRL is considered as a tool to compute the features that

describe the agent’s decision strategy. The recognition tasks of clustering and

classification have been validated in experiments on intelligent agents, including

machines and simulated humans.

The central objective of proposed research is to study machine learning method-

ology for goal inference and pattern recognition of decision strategies in sequential

decision-making. The approach to behavior recognition proposed here can be applied

in various fields, such as abnormality detection, recommendation systems, robotics,

personalized semantic webs, and financial trading.

1.5 Thesis Organization

The remainder of this dissertation is organized into six chapters. In Chapter 2, we

review the decision-making frameworks that pose behavior as a utility maximization

interaction with a stochastic process, as well as give problem formulations and a

review of relevant previous work. In Chapter 3, we propose IRL methods designed

for simple environments in which complete observations are available and a finite

Chapter 1. Introduction 14

state space is appropriate. In Chapter 4, we propose Bayesian IRL with Gaussian

process, which is a general approach to IRL designed to deal with infinite state space

and incomplete observations. In Chapter 5, we propose Semi-IRL, a methodology

that features a majorization-minimization approach to likelihood computation. In

Chapter 6, we define the decision strategy recognition problem and propose a new

algorithm for the problem. We also present a comparative empirical study. Finally,

in Chapter 7, we offer conclusions and suggestions for future research.

Chapter 2

Background and Related Work

Epistemic learning relies upon existing concepts and ideas from machine learning and

statistics. Specifically, the major theoretical work of this thesis is the extension of

machine learning methods to sequential decision making processes that involve inter-

action between decision makers and the environment. We review existing decision-

theoretic models of planning and decision making process, and define the model for

the problems that we will solve. Lastly, we introduce some of the common notation

and summarize the terminology that we employ throughout this thesis.

2.1 Quantifying Uncertainty and Inference

Agents have uncertainty in a decision-making process because the observation may

be noisy or partial, and the result of next state after taking a sequence of actions is

not deterministic.

15

Chapter 2. Background and Related Work 16

2.1.1 Action under uncertainty

Partial, incomplete observability and the nondeterminism may cause uncertainty.

Partial observability means that the observed state may be different from the true

state of the environment, perhaps as a result of sensor or measurement errors. Incom-

plete observability means that the observed states are not good enough to describe the

environment accurately, perhaps because the number of observations is small com-

pared with the size of state space or the state model is a poor representation of the

environment. Some techniques have been designed to handle uncertainties of these

types by keeping track of a belief state, which is a presentation of the set of all possi-

ble states given the observation. The drawback of this method is that there is no plan

to guarantee the achievement of the goal, but the agent must act or make inference.

Additionally, computation grows arbitrarily large as the problem size increases.

Consider an example of uncertain reasoning: diagnosing the credit risk of a bor-

rower failing to make a payment as promise. This example comes from a similar

discussion in [12]. The logical approach may follow a simple rule: Default ⇒ Un-

employed. But this rule may be wrong. Not all the borrowers who default are

unemployed. Some of them lose the ability to pay because of spending in other areas,

some of them have business troubles, and others may change the original plan. One

could follow a casual rule: Unemployed ⇒ Default. But this may not be right either.

Not all the unemployed borrowers will default. The connection between unemployed

and default is not just a logical consequence in either direction. Instead, the agent’s

knowledge can at best provide only a degree of belief in the inference. One main tool

we can use to deal with degree of belief is probability theory. The epistemological

ability of the agent is described in probability, which is a numerical degree of belief

Chapter 2. Background and Related Work 17

between 0 and 1.

To make choices, the agent has preferences among different possible outcomes

of the various actions. An outcome is a completely specified state. We use utility

theory to represent and reason with preferences. Preferences, as expressed by utilities,

are combined with probability theory in a general theory of rational decisions called

decision theory. The fundamental idea of decision theory is that an agent is rational

if and only if the action is selected by maximizing the expected utility, averaged over

all the possible outcomes.

2.1.2 Inference and evaluation

A basic method for probabilistic inference is to compute posterior probabilities for

query propositions given observed evidence. Given any sets of variables Y and X,

the marginalization rule is

p(Y) =
∑
x∈X

p(Y, x),

which sums over all the possible combinations of values of the set of variables X. A

variant of this rule use conditional probability instead of joint probabilities, which is

p(Y) =
∑
x∈X

p(Y |x)p(x),

which is called conditioning.

Two approaches are widely used for probabilistic inference: Maximum likelihood

estimation (MLE) and Bayes’ rule. In [27] the likelihood function is defined as

Definition Given independent and identical distributed sample X1, X2, · · · , Xn from

a population with probability density function or probability mass function that is

Chapter 2. Background and Related Work 18

written as f(x|θ1, θ2, · · · , θk), the likelihood function is

L(θ1, θ2, · · · , θk|x1, · · · , xn) =
n∏
i=1

f(xi|θ1, θ2, · · · , θk).

Similarly, in sequential settings of the sampling X1, X2, · · · , Xn, given the transition

probability function p(xi+1|xi, · · · , x1), the likelihood function is

L(θ1, · · · , θk|x1, · · · , xn) = f(x1|θ1, · · · , θk)
n∏
i=2

f(xi|xi−1, · · · , x1, θ1, · · · , θk).

Then, MLE is defined as

Definition For each sample point x, let θ̂(x) be a parameter value at which L(θ|x)

is maximized as a function θ, with x held fixed. A MLE of the parameter θ based on

a sample X is θ̂(X).

Intuitively, MLE is a reasonable choice for an estimator, since the observed is most

likely. A useful property of MLE is the invariance property [28, 29], which is

Theorem 1 If θ̂ is the MLE of θ, for any function τ(θ), the MLE of τ(θ) is τ(θ̂).

The other approach is Bayes’ rule, which underlies most AI systems for prob-

abilistic inference. In the classical approach the parameter θ is thought to be an

unknown, but fixed quantity. Consider data drawn from a distribution indexed by θ.

Knowledge about the value of θ is obtained from the observations. In the Bayesian

view, θ is a quantity that is described by a probability distribution called the prior.

This is a subjective distribution that is based on the observer’s beliefs and reflects

past experience. The inference form of Bayes equation is

p(cause|effect) =
p(effect|cause)p(cause)

p(effect)
.

The conditional probability p(effect|cause) quantifies the relationship in the causal di-

rection and encodes the evidence for inference of the reasons, whereas p(cause|effect)

Chapter 2. Background and Related Work 19

describes the inference direction. Learning from observed behavior can be well formu-

lated in Bayes’ framework. The behavior is the effect observed, and the cause is the

goal, the desire of the agent that determines which actions are taken upon the corre-

sponding states, and then the observed states and behavior follow. If we denote the

prior distribution by p(θ) and the conditional probability f(x|θ), then the posterior

probability, the conditional probability of θ given the observation x, is

p(θ|x) = f(x|θ)p(θ)/p(x),

where p(x) is the marginal probability of X, that is p(x) =
∫
f(x|θ)p(θ)dθ. The

posterior distribution is used to make statements about θ. For instance, the mean of

the posterior distribution can be used as a point estimate of θ.

Given the increasing size of observation, we would like to see the performance

of these estimators. Consistency in statistics concerns the question whether the

estimator converges to the “correct” value as the observation size becomes infinite.

The inference model should be consistent, because intuitively if we observe the policy

at every possible state, we will completely understand how to solve the problem

even though we do not know the internal goals of the agent. Besides comparing

the distance between the true goal and the recovered goal, it is more interesting to

evaluate whether the recovered goal is consistent. In [27], consistency is defined as

follows:

Definition A sequence of inference θ̂n = θ̂n(X1, · · · , Xn) is a consistent sequence

of estimators of the parameter θ if, for every ε > 0 and every θ ∈ Θ, we have

limn−>∞ Pθ(|θ̂n − θ| < ε) = 1.

Informally, consistency means that the estimator will approach the true value with

high probability, as the size of the observation increases. In experiments, we evaluate

Chapter 2. Background and Related Work 20

the accuracy as well as the consistency for each method. The performance measure-

ment is defined to evaluate the distance between the true value and the estimate

value. If the distance approaches zero, we say the estimate approaches the true value.

A good model is expected to be consistent as well as always performs better than

others when the size of observation is small or any choice.

2.2 Decision-Theoretic Model

Our research considers the goal-directness as a core property of decision-making pro-

cess. As is well known, there are several axiomatizations of “rational” decision making

that make the maximum expected utility criterion dominating in decision making un-

der uncertainty [30].

2.2.1 Utility theory

The agents’ preferences are captured by utility function U(s), which rates a state s

and formalizes the desirability of the state for agents. In a stochastic environment,

taking action a given the evidence of observation e, is written P (Result(a)|a, e). The

expected utility is just the average utility value of the outcomes, weighted by the

probability that the outcome occurs:

E[U(a|e)] =
∑
s′

P (Result(a) = s′|a, e)U(s′). (2.1)

The principle of maximum expected utility (MEU) says that a rational agent should

choose the action that maximize the expected utility E[U(a|e)].

The MEU principle can be derived from the constraints on rational preferences.

Given two objects A and B, the following notations are used to represent the agent’s

Chapter 2. Background and Related Work 21

preferences:

• A � B, the agent prefers A to B.

• A ∼ B, the agent is indifferent between A and B.

• A � B, the agent prefers A to B or is indifferent between them.

We can think the outcome for each action as a lottery, A lottery L with outcomes A

and B that occur with probabilities p and q, is written as L = [p,A, qB]. In [31], the

axioms of utility theory include

• Orderability: the agent must either choose one preference of A � B, B � A or

A ∼ B.

• Transitivity: (A � B) ∧ (B � C) ⇒ (A � C).

• Continuity: A � B � C ⇒ ∃ p [p,A; 1−p, C] ∼ B. If some state B is between

A and C in preference, then there is some probability p for which the agent

is indifferent between getting B for sure and the lottery that provides A with

probability p and C with probability 1− p.

• Substitutability: A ∼ B ⇒ [p,A; 1 − p, C] ∼ [q, B; 1 − q, C]. If an agent

is indifferent between A and B, the agent is indifferent between two lotteries

involving them.

• Monotonicity: A � B ⇒ (p > q ⇔ [p,A; 1 − p,B] � [q, A; 1 − q, B]). If

an agent prefers A to B, the agent must prefer the lottery that has a higher

probability for A, and vice versa.

Chapter 2. Background and Related Work 22

• Decomposability: [p,A; 1−p, [q, B; 1−q, C]] ∼ [p,A; (1−p)q, B; (1−p)(1−q), C].

Compound lotteries can be reduced to simple ones, which is called ”no fun in

gambling” rule.

These constraints require the agents to be rational, and from them there are some

conclusions in [32]:

• Existence of utility function: If an agent’s preferences obey the axioms of utility,

there exists function U that

U(A) > U(B)⇔ A � B

U(A) = U(B)⇔ A ∼ B

• Expected utility of a lottery: The utility of a lottery is the averaged utility of

all possible outcomes:

U([p1, s1; p2, s2; . . . ; pn, sn]) =
n∑
i=1

piU(si).

It is obvious that the states can be ranked in preference based on the utility.

2.2.2 Markov decision process

The prevailing model for discrete planning and sequential decision making is the

Markov decision process (MDP). An MDP can be described by a graph structure of

states and actions with the reward and stochastic transitions (see Figure2.1). Given

a state, for each action, there is a stochastic matrix to determine the possible next

state. A finite MDP is a tuple, M = (S,A,P , γ, r), where

• S = {sn}Nn=1 is a set of states. Let N = {1, 2, · · · , N}, then sn, n ∈ N is the

n-th state.

Chapter 2. Background and Related Work 23

0.5

3
S

a

0.3
0.1

3

1
S

1
a

2
a

0.5
0.6

0.9

0.5

1
a

0.2
0.5

1
a

2
a

0.1
r= 1.5

0.5

1
a

0.8

0.2

r 1.5

2
S

2
a

0.3
r=+2

Figure 2.1: Goal-oriented agents interact with environment

• A = {am}Mm=1 is a set of actions. Let M = {1, 2, · · · ,M}, then am,m ∈ M is

the m-th action.

• P = {Pm}Mm=1 is a set of state transition probabilities, where m ∈ M. (Here

Pm is a N × N matrix of transition probabilities after taking action am. Its

n-th row, denoted as Pm(sn, :), contains the transition probabilities upon taking

action am in state sn. The entry Pm(sn, sn′), where n′ ∈ N , is the probability of

moving to state sn′ in the next stage. Note that the rows of Pm are probability

vectors, whose components are non-negative and their sum is one.)

• γ ∈ [0, 1] is a discount factor, which makes the reward contribution of future

state and action less significant than the current ones. Discounting is a good

model of preferences over time. A discount factor γ is equivalent to an interest

rate of 1
γ
− 1.

• r denotes the reward function, mapping from S ×A to <, which is

r(sn, am) ,
N∑

n′=1

Pm(sn, sn′)r(sn, am, sn′)

Chapter 2. Background and Related Work 24

where r(sn, am, sn′) is the reward of moving to state sn′ after taking action am in state

sn. The reward function r(sn, am) may be further simplified to r(sn), if we neglect

the action’s influence. The reward only depending on state is written as a N × 1

vector r.

In decision theory for Markov decision processes, the reward is considered to be

a utility function representing the decision-maker’s preferences and the transition

probability represents the decision-maker’s subjective beliefs about uncertain future

states. If agents are assumed to be rational, they behave according to the rule of

maximizing the expected utility. An MDP is completely determined by the transition

matrix P , the initial distribution and the policy π. Figure2.2, which is mainly based

on the figure in [12], illustrates a goal-oriented MDP agent.

Agent
Sensors

Wh t i th ld

Percepts

Agent

State

Environment

What is the world

like now?How the

world

evolve?
Environment

How desire in a

state and an action
Compare

actions

Action to

be done

Rules
Actions

Utilities

Rules

or Goals
Actuators

Figure 2.2: Goal-oriented MDP agent interacts with environment

In an MDP, the agent selects an action at each sequential stage. A rule describing

the way the actions are selected, that is a mapping between states and actions, is

called a policy (or behavior). A behavior of an agent defines a random state-

Chapter 2. Background and Related Work 25

action sequence (s0, a0, s1, a1, · · · st, at, · · ·), 1 where st+1 is connected to (st, at) by

Pat(s
t, st+1). A policy that causes the agent to reach a specified goal is called a

proper policy.

The rational agents in MDP model behave according to the optimal decision rule

that each action selected at any stage should maximize the value function. This

expectation is over the distribution of the state sequence {s0, s1, ...} given policy

π = {µ0, µ1, · · · }, where at = µt(st), µt(st) ∈ W (st) and W (st) ⊂ A. The objective

at state s is to choose a policy maximizing the value of V π(s), where given initial

state s0, V π(s0) = E[
∑∞

t=0 γ
tr(st, at)|π]. Similarly, there is another function called

a Q-function (or Q-factor) that judges how good an action is performed in a given

state. Notation Qπ(s, a) represents the expected return from state s, taking action a

and thereafter following policy π.

These MDP construct can be interpreted in terms of utility theory. The reward

can be considered a short-term reward for being in a state, and the value function is

the long-term expected reward from s onwards. The utility of a state depends on the

utility of the state sequences that follow it. The value function V is considered to be

the utility function for the state, and the Q-function, Q(s, a), is considered to be the

expected utility of a one-period decision that selects action a at state s. Actions are

chosen based on the value function V and Q. Since an agent aims to reach the goal

by choosing actions, we say that the agent prefers action a to another action because

the agent prefers the expected utility of the possible outcomes induced by action a.

To find the optimal actions based on MEU rule, solutions are given based on Bellman

equations [33], which are described as

1Superscripts index time. E.g. st and at, with the upper-index t ∈ {1, 2, · · · }, denote state and

action at t-th horizon stage, while sn (or am) represents the n-th state (or m-th action) in S (or A).

Chapter 2. Background and Related Work 26

Theorem 2 (Bellman Equations) Given a stationary policy π, ∀n ∈ N ,m ∈ M,

V π(sn) and Qπ(sn, am) satisfy

V π(sn) = r(sn, π(sn)) + γ
∑
n′∈N

Pπ(sn)(sn, sn′)V
π(sn′),

Qπ(sn, am) = r(sn, am) + γ
∑
n′∈N

Pam(sn, sn′)V
π(sn′).

The actions output by the algorithms using Bellman equations maximize the ex-

pected cumulative reward V at every state. Two popular algorithms in dynamic pro-

gramming have been developed to solve the Bellman equations iteratively. The value

iteration algorithm updates the value function by computing V ∗(sn) = maxa r(sn, a)+

γ
∑

sn′
Pa(sn, sn′)V

∗(sn′). The policy iteration algorithm selects a policy according

to Theory 3 (policy improvement), and then repeatedly updates the value functions

until convergence (policy evaluation). The algorithm alternates these two steps until

the policy does not change [34].

Theorem 3 (Bellman Optimality) π is optimal if and only if, ∀n ∈ N , π(sn) ∈

arg maxa∈AQ
π(s, a).

The policy can be found deterministically, while the policy executed by the agent

can also be stochastic. In a stochastic policy, each action is chosen according to a

probability distribution, rather than deterministically choosing the action with max-

imum expected utility. Using the definition in [35], a randomized decision rule in

MDP is defined as

Definition A randomized decision rule δ(s, ·) is, for each sate s, a probability distri-

bution on A, with the interpretation that if s is observed, δ(s, a) is the probability

that an action in A will be chosen.

Chapter 2. Background and Related Work 27

The deterministic decision rules can be considered a special case of randomized rules,

in that they correspond to the randomized rules in the way that a specific action is

chosen in probability one.

A natural approach to build a probability distribution is called Boltzmann prob-

ability distribution. In MDP settings, it is written as

p(a|sn) =
eβQ(sn,a)∑

m∈M eβQ(sn,am)
. (2.2)

The parameter β encodes the confidence of choosing the action and determines the

stochasticity of the policy. When β → ∞, the policy becomes deterministic. A

Bayesian approach to IRL using this model is presented in [26], which applies Morkov

Chain Monto Carlo simulation to obtain the a posterior distribution.

2.2.3 Inverse Markov decision model

The agents in MDPs formalize their goals in terms of the reward passing through the

interaction between the environment and themselves. In many real-world problems,

however, the reward function is not known. IRL deals with the problem modeled by

a variational MDP in which the reward is unknown. Standard algorithms formulate

the problem as an optimization problem with respect to the reward with the con-

straints of observed state-action pairs. The variational MDP model in IRL is called

inverse Markov decision (IMD) model MI = (S,A,P ,O, γ), where S,A,P are prior

known as in MDP model or recovered from observation. The notation O represents

the observation data, which can be composed of explicitly given state-action pairs

observed, written as O = {ol = (sl, al)}Ll=1, or a set of sampled decision trajectories,

written as O = {oh = (s1, a1, s2, . . . , st, at)h}Hh=1. Note that sl denotes the l-th state

in S, where al indicates the action taken at this state, rather than the l-th action in

Chapter 2. Background and Related Work 28

A. We use this notation only for simple representation. Figure2.3 explains an IMD

model, including the observation of a decision-making agent, the environment, and

modeling the observed behavior in MDP.

Percepts

A
Actions

Agent

imitate
MDP:

State
Observation

Sensors

How to solve

using MDP

Action

How the world

evolve?

Environment

Why observe

these actions

using MDP

Inference

Mechanism

Reward functions

Inverse reasoning agentInverse reasoning agent

Figure 2.3: IMD model infers the goal of an agent who interacts with the environment

and makes sequential decisions.

In some difficult real-world problems, the transition probability is unknown. We

shall propose model-free reinforcement learning techniques to solve these problems.

The task of learning the reward with unknown transition probability can be modeled

as generalized inverse Markov decision process. This generalized model is defined as

a tuple M̌ = (S,A, γ, C), where C is a simulated environment in which we will learn

the reward r and the transition probability P at the same time.

Our algorithms for the inverse Markov decision model, introduced in later chap-

ters, have the following advantages:

• The reward function is not restricted to be linear formalization of the state

features. Though the reward depends on the state features because the reward

Chapter 2. Background and Related Work 29

is given according to state-action pairs, we argue there is little justification for

assuming a linear relationship between the reward vector and feature vector.

Considering the reward function values as realizations of random variables, we

select the Gaussian process as the prior distribution for these random variables

and then infer the reward based on Bayesian framework.

• Real-world applications allow for multiple actions for some certain states, which

causes the existence of multiple actions observed at one state. We use prefer-

ence graphs to represent the relations between states and actions. Each graph

denotes the observations at a state.

• If the transition probability is not known as a prior, it will be approximated

from the observed decision trajectories.

• If the observation has short-length trajectories and there are many states being

absent from the observation, the Gaussian process model performs better than

existing algorithms.

2.3 Related Work

2.3.1 Inverse optimal control

In control engineering, a linear quadratic setting is characterized by state dynamics

that are distributed according to a linear function of past state and action variables

with Gaussian noise. Cost functions are quadratic in the state variables, parameter-

ized by Q. Inverse optimal control(IOC) consists in finding, for a given system and

sampled policies, a cost function with respect to which such observed policies are

Chapter 2. Background and Related Work 30

optimal. In control engineering, the inverse problem is stated on the linear dynamical

system, such as

ṡ(t) = As(t) +Ba(t)

and the control law

a(t) = Ks(t),

where s(t) is the state vector and the control law a(t) is equivalent to the policy in

MDP model. The problem is to find a matrix Q̂ = Q̂
′ ≥ 0 such that the control law

is optimal relative to the system and the cost function

J =

∫ ∞
0

[sT (t)Q̂s(t) + a2(t)]dt.

The IOC system can be written as MLQ = {A,B,K}. The objective idea behind IRL

and IOC are similar from the perspective of learning an immediate reward or cost

function given part of or complete policies.

Recently, IRL has received active attention in machine learning field. Below we

review some fundamental algorithms.

2.3.2 Linear approximation

Most current IRL algorithms have assumed that the reward function depends only

on state and can be represented by a linear approximation. The representation

r(s) = ωTφ(s)

was proposed in [2] and has been widely adopted.

Here, we overview the algorithms proposed by Ng and Russell [2] and Abbeel and

Ng [21] as the background to our work.

Chapter 2. Background and Related Work 31

Ng’s algorithm assumes that the policy of observed agent is optimal so that the

reward function should guarantee the optimality of the observed policy πE:

QπE(s, πE(s)) ≥ max
a∈A\πE(s)

QπE(s, a)∀s ∈ S,

which gives the regularized linear programming IRL (LPIRL) shown in Algorithm 1.

The constraints in this algorithm guarantee the optimality of the observed behavior.

But the trivial solution r = 0 also satisfies these constraints, which highlights the

underspecified nature of the problem and the need for reward selection mechanisms.

Ng and Russel choose the reward function to maximize the difference between the

optimal and suboptimal policies while favoring the sparseness in the reward function.

The IRL algorithms reviewed in this section will be used in comparison with our

method in experiments.

Algorithm 1 Ng and Russel’s LPIRL with complete observation

1: It can be formulated as a linear programming problem as follows,

max
r

∑
s∈S

min
a∈A\πE(s)

[QπE(s, πE(s))−QπE(s, a)]− λ ‖r‖1

s.t. (PπE −Pm)(I−PπE)−1r ≥ 0, m ∈M

Rmin ≤ r(s) ≤ Rmax, ∀s ∈ S,

where PπE is a N ×N matrix whose (i,j) entry is PπE(si)(si, sj) and i, j ∈ N .

2.3.3 IRL from sampled trajectories

In many practical environments, it is impossible to obtain an observation of a complete

decision policy, as this would require observing the agent in every possible state, no

matter how rare. Partial policy observations, by contrast, would be available in many

Chapter 2. Background and Related Work 32

scenarios. In sequential decision-making, it is natural to collect these observations in

the form of decision trajectories. Though the evolution of observed agent’s behavior in

MDP setting provides the information on both action selection and the environment

dynamics, most IRL algorithms assume the dynamics, which is encoded by P , is given

beforehand. So the decision trajectory can be simply treated as a set of state-action

pairs. If we always observe a fixed action at a state, we say the observed policy is

deterministic. Otherwise, the policy is probabilistic.

In order to address the sampled trajectories in large state space, Ng and Russell

[2] model the reward function by using a linear approximation that is written as

r(s) =
d∑
i=1

ωiφi(s) = ωTφ(s), (2.3)

where φ : S → [0, 1]d and ωT = [ω1, ω2, · · · , ωd].

Then from the observed H decision trajectories, the value function can be esti-

mated as

V̂ πE =
1

H

H∑
h=1

ht∑
t=0

γtωTφ(st(h)), (2.4)

where ht denotes the number of states in h-th decision trajectory. Ng’s algorithm for

sampled trajectories is given in Algorithm 2, which assumes that there is available

computation resources for simulating decision trajectories for optimal policy and a

number of random policies.

Based on Eq.2.3 and Eq. 2.4, Abbeel has given an apprenticeship learning algo-

rithm which aims to find a policy that performs as well as the demonstrating agent

(DA), in the measurement of feature expectation, defined as

µ̂πE =
1

H

H∑
h=1

∞∑
t=0

γtφ(st(h)).

Chapter 2. Background and Related Work 33

Algorithm 2 Ng and Russel’s approximate LPIRL with sampled trajectories

1: Input MI = (S,A,P , γ,O), where O is composed of H decision trajectories. A

set of basis functions φ.

2: A policy set Π which has the first randomly chosen policy π1. Let k=1.

3: while k <= IterMax or ‖V πE(s0)− V πk(s0)‖ ≤ ε

4: Sample decision trajectories for the policies in Π, then we have the value

functions by calculating Eq. 2.4.

5: Solve the linear programming problem

max
ω

k∑
i=1

p(V πE(s0)− V πi(s0))

s.t. |ωi| ≤ 1, i = 1, 2, · · · , d

6: Find the policy πk+1 that is optimal with respect to r̂ = ω̂Tφ, where ω̂ is the

solution to the above linear programming problem.

7: Π = Π ∪ πk+1

8: k = k + 1

9: end while

10: Output the reward function r̂ = ω̂Tφ.

Chapter 2. Background and Related Work 34

It is obvious that the value function is a linear combination of the feature expectation

and the coefficient vector is determined by the reward function. To find the policy

whose performance is close to that of DA, Abbeel and Ng’s algorithm is based on the

fact that the difference between DA’s value function and the estimated policy’s value

function is bounded from above by the difference between their feature expectations.

So, the problem is reduced to finding a policy that induces feature expectations close

to µπE . Two apprenticeship learning algorithms are proposed in [21], using max-

margin and projection method respectively to obtain the optimized ω̂ that minimize

‖µπE − µπk‖ at k-th iterative step. After obtaining the optimized ω̂ in each step,

another optimal policy πk+1 is computed and then used for the next iteration. It

has been proved that both these algorithms will converge in c steps of iterations 2.

Finally, the IRL process outputs an estimation of the reward function r̂ = ω̂φ, a set of

policies Π = {π1, π2, · · · , πc} and their feature expectations Ψ = {µπ1 , µπ2 , · · · , µπc}.

The goal of AL is to find the best policy by manual examination or by the algorithm

that finds a convex combination of the policies in Π. The coefficients for this convex

combination are obtained by solving the following QP: point closest to µπE in the

convex closure of the vectors in Ψ:

min
∥∥µπ̃ − µπE∥∥ s.t. µπ̃ =

∑
i=1

cλiµ
πi , λi ≥ 0,

c∑
i=1

λi = 1.

Though the selection of best policy guarantees its performance close to µπE , the recov-

ered reward function is not necessarily close to the true underlying reward function.

Based on the theory of feature expectation, Abeel presents another IRL algorithm

in [21], which is called PROJ. The details have been shown in Algorithm 3. Though

2To find a policy π̃ such that
∥∥µπ̃ − µπE

∥∥ ≤ ε, then both max-margin and projection algorithms

will terminate after at most C = O(d
(1−γ)2ε2 log d

(1−γ)ε), which means that c ≤ C

Chapter 2. Background and Related Work 35

the goal of apprenticeship learning is to learn a policy whose performance is close to

the observed, IRL is the essential part of computation. Later , we will use PROJ to

address the IRL for comparison.

Algorithm 3 PROJ in [21]

1: Input B = (M \ r,G,O), where G is a set of basis functions φ for linear approxi-

mation of the reward. O is composed of H decision trajectories.

2: Choose some policy π0 and compute its feature expectation µ0 by repeating sim-

ulations.

3: Set index i = 1, µ̄0 = µ0 and v = Inf.

4: while v ≤ ε do

5: Set ω = µE − µ̄i−1.

6: Compute the estimated reward r = ωTφ and use it to conduct forward planning

using MDP. We have µi.

7: Compute orthogonal projection of µE onto the line through µ̄i−1 and µi using

µ̄i = µ̄i−1 +
(µi − µ̄i−1)T (µE − µ̄i−1)

(µi − µ̄i−1)T (µi − µ̄i−1)
(µi − µ̄i−1)

8: Set v =
∥∥µE − µ̄i∥∥

2
and i=i+1.

9: end while

10: Output the reward function r̂ = ωTφ.

2.3.4 Game-theoretic model

Using a game-theoretic approach, Syed and Schapire [23] have developed an appren-

ticeship learning algorithm that maximizes performance relative to the observed be-

havior for the worst-case choice of reward function. Their method is based on a

Chapter 2. Background and Related Work 36

multiplicative weights algorithm for solving two-player zero-sum games due to Fre-

und and Schapire [36].

Based on the conception of feature expectation, they formulate an optimization

problem

v∗ = max
ψ∈Ψ

min
ω∈W

[ωTµ(ψ)− ωTµE], (2.5)

where Ψ is a set of all mixed policies, and W =
{
ω ∈ <k : ‖ω‖1 = 1, and ω ≥ 0

}
.

The goal is to find the mixed policy ψ∗ that achieves v∗. Since V (ψ) = ω∗µ(ψ) for

all ψ, we have that ψ∗ is the policy in Ψ that maximizes V (ψ)− V (πE) with respect

to the worst-case possibility for ω∗. As ω and ψ are both distributions, Eq. 2.5 is the

form of a two-person zero-sum game. The “min player” specifies a reward function

by choosing ω, and the “max player” chooses a mixed policy ψ. The algorithm to

solve IRL problem in game-theoretic is summarized in Alg. 4.

Algorithm 4 The MWAL algorithm

1: Given a MI and the feature expectations µ̂E.

2: Let β = (1 +
√

2 ln k
T

)−1.

3: Define G(i, µ) = ((1 − γ)(µ(i) − µ̂E(i)) + 2)/4, and initialize W 1(i) = 1, for

i = 1, . . . , k.

4: for t=1,. . . , T do

5: Set ωt(i) = W t(i)∑
iW

t(i)
, for i = 1, . . . , k.

6: Compute policy π̂t for M with respect to r(s) = ωtφ(s).

7: Compute µt = µ(π̂t).

8: W t+1(i) = W t(i) · elnβ·G(i,µ̂t), for i = 1, . . . , k.

9: end for

10: Return the mixed policy by assigning weighting 1
T

to π̂t.

Chapter 3

Bayesian IRL within Small Finite Space

The problems in this chapter are formulated in small finite space, which means that

all the states, value functions, and transition probabilities are known as a prior and

can be stored in the memory of a computer. We define the IRL problem here is to

learn the reward vector r with the assumption that the observed actions come from

the optimal policy for M = (S,A,P , γ, r). The IRL problem is, in general, highly

underspecified, which has led researchers to consider various models for restricting the

set of reward vectors under consideration. In a seminal consideration of IRL problems,

Ng and Russel [2] observe that, by the optimality equations, the only reward vectors

consistent with an optimal policy π are those that satisfy the set of inequalities

(Pπ −Pa)(I− γPπ)−1r ≥ 0, ∀a ∈ A, (3.1)

where we use the notation x �= 0 to indicate a vector x that has all non-negative

components. The Pπ is the transition probability matrix relating to observed policy

π, Pa denotes the transition probability matrix for other actions. Note that the trivial

solution r = 0 satisfies these constraints, which highlights the underspecified nature of

the problem and the need for reward selection mechanisms. Ng and Russel [2] choose

37

Chapter 3. Bayesian IRL within Small Finite Space 38

the reward function to maximize the difference between the optimal and suboptimal

policies, which can be done using a linear programming formulation. In the sections

that follow, we propose the idea of selecting reward on the basis of Maximum a

posterior (MAP) estimation in a Bayesian framework.

3.1 Bayesian Framework with Gaussian Prior

Suppose that we have a prior distribution p(r) for the reward in the M and we

also have a model for p(O|r). The Bayesian inference is to maximize the posterior

distribution p(r|O). The MAP estimation problem can be formulated as a convex

optimization problem by assuming p(r) as a Gaussian distribution.

Specifically, let r be a random vector that depends on state. The entry r(sn)

denotes the reward at n-th state. We assign a Gaussian prior on the r: r ∼ N (µr,Σr).

This is a subjective distribution; before anything is known about optimal policies for

the MDP, the learner has characterized a prior belief distribution with mean µr and

standard deviation Σr. An observation of data is taken from the population indexed

by r and the prior distribution is updated with this new information using Bayes’

Rule to form the posterior distribution

p(r|O) =
p(O|r)p(r)∫
p(O|r)p(r)dr

.

One can envision two principal types of experiments for collecting a set of obser-

vations O:

1. Decision Mapping : the observations are obtained by finding a mapping between

state and action; e.g., we ask the expert which action he, she, or it would

choose at state s, and then repeat the process. Ultimately, we will have a set

Chapter 3. Bayesian IRL within Small Finite Space 39

of independent state-action pairs, O1 =
{

(sh, ah)
}t
h=1

.

2. Decision Trajectory : Given an initial state, we simulate the decision problem

and record the history of the expert’s behavior, which is written as

O2 = {s1, a1, s2, a2, · · · , st, at}.

Formally, we define an experiment E to be a triple (O, r, {p(O|r)}), where O

is a random vector with probability mass function p(O|r) for some r in the function

space. Given what experiment E was performed and a particular observation ofO, the

experimenter is able to make inference and draw some evidence about r arising from

E and O. This evidence we denote by Ev(E,O). Consider observations made using

decision mapping O1 and decision trajectory O2, with corresponding experiments

E1 = (O1, r, {p(O1|r)}) and E2 = (O2, r, {p(O2|r)}). We would like to show that

Ev(E1,O1) = Ev(E2,O2), if the states in O1 and O2 are the same. This fact implies

that inference conclusions drawn from O1 and O2 should be identical.

Making use of independence of state-action pairs in decision mapping, we calculate

the joint probability density as

p(O1|r) =
t∏

h=1

p(sh, ah|r) =
t∏

h=1

p(sh)p(ah|sh, r).

Considering Markov transition in decision trajectory, we write the joint probability

density as

p(O2|r) = p(s1)p(a1|s1, r)
t∏

h=2

p(sh|sh−1, ah−1)p(ah|sh, r).

Finally, we get p(O1|r) = c(O1,O2)p(O2|r), where c(O1,O2) is a constant. The above

equation implies an equivalence of evidence for inference of r between the use of a

decision map or a decision trajectory.

Chapter 3. Bayesian IRL within Small Finite Space 40

−3

−2

−1

0

1

2

−4

−3

−2

−1

0

1

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r1

r2

P
ro

b
a

b
ili

ty
 D

e
n
s
it
y

−3

−2

−1

0

1

2

−4
−3

−2
−1

0
1

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r1

r2

P
ro

b
a

b
ili

ty
 D

e
n
s
it
y

Figure 3.1: An example showing the Bayesian IRL given full observation of the deci-

sion maker’s policy. The left is the prior and the right is the posterior.

3.2 Learning with Deterministic Policy Model

To simplify computation, we eliminate the elements in likelihood function p(O|r)

that do not contain r, which yields p(O|r) =
∏t

h=1 p(a
h|sh, r). Further, we model

p(ah|sh, r) by

p(ah|sh, r) =


1, if Q(sh, ah) ≥ Q(sh, a), ∀a ∈ A

0, otherwise.

(3.2)

This form for the likelihood function is based on the assumption that each observed

action is an optimal choice on the part of the expert. Note that the set of reward

values that make p(ah|sh, r) equal to one is given by Eq. 3.1.

Proposition 4 Assume a countable state and control space and a stationary policy.

Then IRL using Bayesian MAP inference is a quadratic convex programming problem.

Chapter 3. Bayesian IRL within Small Finite Space 41

Proof By Bayes rule, the posterior distribution of reward

p(r|O) =
1

(2π)N/2|Σr|1/2
exp

(
−1

2
(r− µr)TΣ−1

r (r− µr)
)
.

This posterior probability p(r|O) quantifies the evidence that r is the reward for the

observations in O. Using Eq. 3.1, we formulate the IRL problem as

min
r

1

2
(r− µr)TΣ−1

r (r− µr)

s.t. (Pa∗ −Pa)(I− γPa∗)
−1r > 0, ∀a ∈ A (3.3)

rmin < r < rmax.

Since the objective is convex quadratic and constraints are affine, Problem 3 is a

convex quadratic program.

Fig. 3.1 shows a Gaussian prior on reward and its posterior after truncation by

accounting for the linear constraints on reward implied by observation O. Note the

shift in mode.

The development above assumes the availability of a complete set of observations,

giving the optimal action at every state. If necessary, it may be possible to expand

observations of partial policies to fit the framework. A naive approach would be to

state transition probabilities averaged over all possible actions at unobserved states.

3.3 Learning with Stochastic Policy Model

Suppose that we are given observed optimal policies from decision trajectories. The

observations can be transformed into the equivalent representation that is

O = {(s1, a1), (s2, a2), ..., (sK , aK))}. The notation ak, k ∈ {1, . . . , K} indicates the

action taken at state sk ∈ S. Assume that there exists a set of reward functions,

Chapter 3. Bayesian IRL within Small Finite Space 42

denoted as Sπ, with the property that for every member of the set the optimal policy is

precisely equal to the observed policies. Considering the optimal policy as stationary,

we have the following likelihood model:

p(O|r) =
K∏
k=1

p(ak, sk|r) =
K∏
k=1

p(ak|sk, r)
K∏
k=1

p(sk)

=
K∏
k=1

eβQ
∗(sk,ak)

Zk

K∏
k=1

p(sk), (3.4)

where Zk is a normalizing constant. We can use dynamic programming to calculate

Q(sk, ak). The constant β is a confidence parameter that encodes the agent confidence

on the demonstration. Using Bayes’ rule, we can write the posterior probability of

the reward as,

p(r|O) =
p(O|r)p(r)
p(O)

=
1

Z ′
eβ

∑K
k=1Q

∗(sk,ak)p(r)
K∏
k=1

p(sk), (3.5)

where Z ′ is a normalizing constant and p(r) is the prior probability modeling the

initial uncertainty in r. If we naively ignore r in the constant Z ′, we may drop the

unrelated items in Eq.3.5, leading to

p(r|O) ∝ p(r)eβ
∑K
k=1Q(sk,ak). (3.6)

This posterior probability p(r|O) quantifies the evidence that r is the reward for the

observations in O. Using vector notation V π and r, we write Bellman equations as

V π = r + γPπV
π;Qπ(s, a) = r(s) + γPasV

π.

Now we can state a way to find the most likely reward r∗, the maximum a posterior

over the reward r constrained by the observed state-actions pairs. We write the

Chapter 3. Bayesian IRL within Small Finite Space 43

optimization problem as

max p(r)eβ
∑K
k=1Q(sk,ak)

s.t. r ∈ Sπ. (3.7)

As mentioned for the ill-posed problem, there are multiple reward function values

resulting in the same optimal policy. In the Problem 3.7, we intend to reduce the

uncertainty in the reward by maximum a posterior. In practice we obtain the r∗ by

minimizing the negative log posterior,

min
r

1

2
(r− µr)TΣ−1

r (r− µr)− β
K∑
k=1

Q(sk, ak)

s.t. r ∈ Sπ. (3.8)

To satisfy the constraints that r ∈ Sπ, we have some inequalities described as

Lemma 5 For state s, let Ao be the set of observe actions and Au be the set of

unobserved actions. Then given a sufficiently large number of observations, we have

(Pa∗ −Pa)(I− γPa∗)
−1r �= ε, ∀a∗ ∈ Ao and a ∈ Au, 0 < ε < C. (3.9)

where C is a positive constant.

Proof The notation Pa∗ is a N × N matrix whose row is the state transition prob-

abilities upon taking the action observed at that state. According to utility theory,

the observed actions are preferred by the agent to the unobserved, though the actions

are determined by stochastic policy in 2.2. Given sufficient observations, the actions

not observed indicates that the agent is not likely to select them according to the

stochastic policy model. It follows that the Q-functions for the actions unobserved

Chapter 3. Bayesian IRL within Small Finite Space 44

are much smaller than those for actions observed. For a positive value ε ∈ [0, C], we

have the inequalities that are

Q(s, a∗)−Q(s, a) ≥ ε. (3.10)

Since the Q-function is calculated as

Q(s, a) = r(s) + γPa(s, :)V
π,

and the value function V π = r+γPπV
π, we have V π = (I−γPπ)−1r. After replacing

the function V π into Eq. 3.10, we have the inequalities shown in this lemma.

For finite-state MDPs, above inequality characterizes the set of all reward functions

that make the observed actions preferred to the unobserved actions. Replacing in-

equalities (3.9) in Problem (3.8), we have

min
r

1

2
(r− µr)TΣ−1

r (r− µr)− β
K∑
k=1

Q(sk, ak)

s.t. (Pa∗ −Pa)(I− γPa∗)
−1r �= ε, (3.11)

∀a∗ ∈ Ao and a ∈ Au, 0 < ε < C. (3.12)

rmin < r < rmax.

The sum of Q(sk, ak) is calculated as

K∑
k=1

Q(sk, ak) = e(I + γPa∗(I− γPa∗)
−1)r, (3.13)

where e is a n dimensional row vector whose entries are ones for observed states in O

or zeros for unobserved states. Replacing inequalities (3.9) and Eq. (3.13) in Problem

Chapter 3. Bayesian IRL within Small Finite Space 45

(3.8), we have

min
r

1

2
(r− µr)TΣ−1

r (r− µr)− βe(I + γPa∗(I − γPa∗)
−1)r

s.t. (Pa∗ −Pa)(I− γPa∗)
−1r �= ε, (3.14)

∀a∗ ∈ Ao and a ∈ Au, 0 < ε < C.

rmin < r(·) < rmax.

This is a quadratic program called QPIRL. Since the matrix Σr is positive-definite,

Σ−1
r is also positive-definite matrix. So the objective function is convex quadratic, and

the constraint functions are affine. Finally, we formulate a convex quadratic program

for IRL in the condition that we have the complete observations to know the optimal

action at every state. If there are some states that we do not observe, we use the

average state transition probabilities to replace that of taking the optimal action at

that state. We summarize the whole process in Algorithm 5.

Algorithm 5 IRL via Quadratic Programming (QPIRL)

1: Initialization, Given µr, Σr and the observed data O =
{

(sk, ak)
K
k=1

}
.

2: for n = 1 to N do

3: if sn ∈ O then

4: Pa∗sn = Pansn

5: else

6: Pa∗sn =
∑M
m=1 Pamsn

M

7: end if

8: end for

9: Solve the convex programming in Problem 3.14.

10: return the reward r.

Although the above method naively ignores the normalizing constant in the Bayes’

Chapter 3. Bayesian IRL within Small Finite Space 46

inference, it still provides a solution better than [2] that maximizes the difference of Q-

functions between the actions observed and unobserved. We give an intuitive analysis

to explain the reasons for the superiority of our method based on the stochastic policy.

First, in practice, many agents do not follow rational behavior by always choosing the

action with maximum expected value functions. The strict constraints for rational

behavior then may not yield a reward function that approaches the true, and the

imitation performance may be not good. Second, we can show that the method of

maximizing the difference is a particular approximation to our model.

Theorem 6 Given complete observations, IRL problems can be defined as an opti-

mization problem that has the constraints shown in 3.9. The cost function based on

the stochastic policy is a general formulation to model the observed behavior, and the

method based on deterministic policy is a particular approximation to the stochastic

method.

Proof First, the deterministic policy is a particular case of the stochastic policy,

since when the confidence parameter in Eq. 2.2 goes infinity, the policy becomes

deterministic. Second, to compare the cost functions, we write the complete cost

function for stochastic policy

min−
K∑
k=1

βN ·Q(sk, ak) +
K∑
k=1

log
M∑
m=1

eβQ(sk,am) − log p(r). (3.15)

Without loss of generality, we multiply the constant number N = |S| by the Boltz-

mann distribution. In the equation
∑M

m=1 e
βQ(sk,am), without loss of generality, we

assume Q(sk, a1) = maxm∈MQ(sk, am), yielding

M∑
m=1

βeQ(sk,am) ≤M · eQ(sk,a1).

Chapter 3. Bayesian IRL within Small Finite Space 47

As we know the Q-function with discounted factor is bounded, written as Q(s, a) ≥

rmin
1−γ , we have eQ(s,a) ≥ e

rmin
1−γ . When e

(M−1)·rmin
1−γ ≥ M , the equation

∏M
m=2 e

Q(sk,am) ≥

e
(M−1)·rmin

1−γ ≥M is true. Then, it follows that

M∑
m=1

eβQ(sk,am) ≤
M∏
m=1

eQ(sk,am). (3.16)

The right equation is an upper bound of the left. To minimize the complete cost

function, we solve the following relaxed optimization problem.

min−
K∑
k=1

βN ·Q(sk, ak) +
K∑
k=1

M∑
m=1

βQ(sk, am)− log p(r)

s.t. (Pa∗ −Pa)(I− γPa∗)
−1r �= ε,

∀a∗ ∈ Ao and a ∈ Au, 0 < ε < C, rmin ≤ r ≤ rmax (3.17)

Above problem is essentially the same as the Algorithm 1 in [2], which assumes the

deterministic policy and maximizes the difference of Q-functions between the actions

observed and unobserved.

Chapter 4

Inverse Reinforcement Learning with

Gaussian Process

4.1 Introduction

The assumption that the reward function can be linearly approximated, which un-

derlies a number of IRL approaches, may not be reasonable for many problems of

practical interest. The ill-posed nature of the inverse learning problem also presents

difficulties. Multiple reward functions may yield the same optimal policy, and there

may be multiple observations at a state given the true reward function. To deal with

these problems, we design algorithms that do not assume linear structure for reward

function, but yet remain computationally efficient. In particular, we propose new IRL

models and algorithms that assign a Gaussian prior on the reward function or treat

the reward function as a Gaussian process. This approach is similar in perspective to

that Ramachandran and Eyal [26], who view the state-action samples from the expert

as the evidence that will be used to update a prior on the reward function, under a

Bayesian framework. The solution in [26] depends on non-convex optimization using

48

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 49

Markov Chain Monte Carlo simulation. Moreover, the ill-posed nature of the inverse

learning problem also presents difficulties. Multiple reward functions may yield the

same optimal policy, and there may be multiple observations at a state given the

true reward function. Our model aims to deal with the ill-posed nature by applying

Bayesian inference and preference graphs. One of the main novelties of our approach

is that it not only bears a probabilistically coherent view but also is computationally

tractable.

The main contributions of our work are as follows. First, we model the reward

function in a finite state space using a Bayesian framework with known Gaussian

priors. We show that this problem is a convex quadratic program, and hence that it

can be efficiently solved. Second, for the general case that allows noisy observation of

incomplete policies, representation of the reward function is challenging and requires

more computation. We show that a Gaussian process model is appropriate in that

case. Our approach makes use of a preference graph in action space to represent

the multiple observations at a state. Even in cases where the state space is much

larger than the number of observations, IRL via Gaussian processes has the promise

of offering robust predictions and results that are relatively insensitive to number of

observations. Finally, we use the Gaussian process model to solve IRL problems in

continuous domains where both dynamics and reward are unknown.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 50

4.2 Gaussian Process Learning

4.2.1 Regression and classification

In recent years, Gaussian processes have found increasing employment in modeling

random phenomena in a number of application domains. In this section, we provide

a brief introduction to Gaussian processes. See [37, 38, 39, 40] for a more complete

discussion.

Given a data set {X,y}, where X is a matrix that is composed of N input example

vectors xc, c ∈ N and y is a vector of corresponding targets value yc (real value for re-

gression or categorical value for classification). The Gaussian process model treats the

latent functions as random processes with Gaussian prior, which is different from the

parametric form in classical statistical models. Denote the latent function by u(xc),

which is assumed to be a random process. Then the first and second order statistics

of u(xc) are its mean function m(xc) and covariance function k(xc,xd),∀c, d ∈ N .

Both the estimation of mean function and variance function depend on the finite

dimensional distribution. Since Gaussian process is a process whose finite dimensional

distributions are Gaussian, a Gaussian process is determined by its mean and variance

functions. For every set of realizations of random variables of a Gaussian process, the

symmetric matrix K, whose entries are calculated by the covariance function k(xc,xd),

is positive semi-definite1. It is sufficient that for K is positive semi-definite, there

exists a Gaussian random field with this covariance matrix and zero-mean function

m(xc) = 0 (Kolmogorov’s theorem [41]).We denote such random field as u(xc) ∼

N(0,K).

The simplest Gaussian process model is yc = u(xc) + ε, where ε is an independent

1Positive semi-definite implies that xTKx ≥ 0 for all x.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 51

Gaussian noise, written as ε ∼ N(0, σ2
ε). Within a Bayesian framework, the inference

of u(x) at the test location x is described by maximization of the posterior probability

p(u(x)|X,y) =
p(y|X, u(x))p(u(x))

p(y|X)
.

The joint distribution of the observed target values and the function values follows a

Gaussian distribution. Therefore the posterior conditional distribution is written as

u(x)|X,y ∼ N(K(σ2
ε I + K)−1y, σ2

ε (σ
2
ε I + K)−1K).

The generative model based on Gaussian processes provides an efficient path for

inference with finite observations in a large space, offering tractable computation and

a guarantee of performance.

4.2.2 Preference learning

The area of machine learning research known as label preference learning is focused

on methods for discovering a latent function that predicts preference relations among

a finite set of labels. The label preference learning problem is a generalization of stan-

dard problems, such as classification and label ranking [42]. Considering the latent

function values as Gaussian process, Chu and Ghahramani observed that a Bayesian

framework is an efficient and competitive method for learning label preferences [38].

They proposed a novel likelihood function to capture the preference relations using

preference graph, a directed graph encoding the label preferences of each sample

[43, 44].

Let u(x, y) denote the latent function depending on both label y and instance x,

and G denote the observed preference graphs. The Bayesian inference is written as

û(x, y) , arg max
u(x,y)

p(u(x, y)|G) ∝ arg max
u(x,y)

p(G|u(x, y))p(u(x, y)) (4.1)

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 52

where p(G|u(x, y)) is the likelihood function derived from preference relations. Given

a new instance x∗, the labels y∗ can be predicted by ranking the values of latent

function, y∗ = arg maxy û(x∗, y), y ∈ Y , where Y is a finite set of labels.

We also use Bayesian inference and build off several of the ideas in [38] and related

work, but our method differs from label preference learning for classification and label

ranking. Our input data depends on states and actions in the context of an MDP.

Moreover, we are learning the reward that indirectly determines how actions are

chosen during the sequential evolution of an MDP, whereas preference learning studies

the latent functions preserving preferences. On the grounds of Bellman optimality

for MDPs, the decision maker chooses optimal actions with the maximum value of Q-

function at a given state. The preference relation will be determined by Q-functions,

the expected long-term reward, while the random variable we concern is the immediate

reward function, the intrinsic function determining the decision maker’s behavior.

4.3 IRL with Gaussian Process

We turn now to the general IRL problem defined on an IMDP. The ill-posed nature

of the problem gives rise to two principal issues: (1) uncertainty about reward func-

tions given the observation of decision behavior and (2) ambiguity associated with

observation of multiple actions at a single state.

To address uncertainty about reward functions, we propose to use Bayesian infer-

ence. To disambiguate observations at each state, we adopt a model in which reward

function is contaminated by a Gaussian noise. In particular, we assume that the re-

ward function can be modeled as r+ϑ, where ϑ ∼ N(0, σ2) and N(0, σ2) is a Gaussian

noise of zero mean and unknown variance. Figure4.1 illustrates two scenarios that

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 53

correspond to this notion. In Figure4.1 (a) we observe a group of decision makers

who share a common reward structure but vary individually in their perception of

that structure. In Figure4.1 (b) we observe a single decision maker whose perception

of reward varies noisily with the stage of the process. To lessen the ambiguity of

observing multiple actions at a state, we argue that the basis for Bayesian inference

should be an understanding of the agent’s preferences over the action space, This

argument is reasonable because the goal of IRL is to learn the reward subjectively

perceived by the decision maker from whom we have collected the observation data.

Based on decision theory, the intuition is that the decision makers will select some

actions at a given state because they prefer these actions to others. These preferences

among countable actions can be used to represent the multiple observations at one

state.

. . .
2
s

7
s

1
s

10
s

4
a 5

a
3
a

2
a

5
a. . .

4 5 3 2 5
a

Decision Maker 1 using noise r

.

.

Decision Maker 1 using
1

noise r

o
a
l r

.

1
s

5
s

6
s

7
s. . .

G
o

a a a a a4
a

3
a

4
a

1
a

5
a. . .

Decision Maker M using M
noise r

(a)

1 2 31
s

2
s

3
s

t
s. . .

1 2 3 1 t t1
a

2
a

3
a

1t
a t

a
. . .

1 2 3 1 t t. . .1
r

2
r

3
r

1t
r

t
r

. . .

rGoal !

makerDecision makerDecision

(b)

1
s

2
s 10

s. . .

. . .

1
G

2
G

10
G

1 2 10

D i i M k R d f tiDecision Maker – Reward function

(c)

Figure 4.1: Examples of observation structures for noisy reward scenarios: (a) obser-

vations come from a group of decision makers; (b) observations come from a single

decision maker; and (c) our proposed observation structure for MDP.

4.3.1 Action preference graph

Given a state and its Q-functions, we can select the optimal action according to

Bellman optimality. So we consider Q-function as the utility function for the definition

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 54

of preference relations in a finite countable action space. Next, we define action

preference relations and action preference graphs.

Definition At state sn, ∀â, ǎ ∈ A, we define the action preference relation as:

1. Action â is weakly preferred to ǎ, denoted as â �sn ǎ, if Q(sn, â) ≥ Q(sn, ǎ);

2. Action â is strictly preferred to ǎ, denoted as â �sn ǎ, if Q(sn, â) > Q(sn, ǎ);

3. Action â is equivalent to ǎ, denoted as â ∼sn ǎ, if and only if â �sn ǎ and

ǎ �sn â.

Definition An action preference graph is a simple directed graph showing prefer-

ence relations among the countable actions at a given state. At state sn, its action

preference graph Gn = (Vn, En) comprising a set Vn of nodes together with a set En

of edges. About node and edge in graph Gn let us define

1. Each node represents an action in A. Define a one-to-one mapping ϕ : Vn → A.

2. Each edge indicates a preference relation.

The following lemma provides the basis for the construction of the preference

graph.

Lemma 7 At state sn, if action â is observed, we have these preference relations:

â �sn ǎ,∀ǎ ∈ A \ {â}.

Proof According to Bellman optimality, â is observed if â ∈ arg maxa∈AQ(sn, a).

Therefore, we have

Q(sn, â) > Q(sn, ǎ), ∀ǎ ∈ A \ {â}

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 55

According to the definition on preference relations, it follows that if Q(sn, â) >

Q(sn, ǎ), we have â �sn ǎ.

Remark Here we give an example to show the details on drawing preference graphs.

Let A = {a1, a2, a3, a4, a5}. From the observation data set O, we get

1. An observation of action a1 at sn, then edges are shown in Figure4.2(a).

2. An observation of action a3 at sn, then new edges are added in Figure4.2(b).

Note that preference relation has the properties such as:

1. If â, ǎ ∈ A, then at state sn either â �sn ǎ or ǎ �sn â.

2. If â �sn ǎ or ǎ �sn ã, then â �sn ã.

Therefore we have a simple representation of the action preference graph that is

constructed by a two-layer directed graph. E.g. Figure4.2(c) showing multiple actions

at sn and Figure4.2(d) displaying the unique action at sn. In this two-layer directed

graph, the top layer V+
n is a set of nodes representing the observed actions and the

bottom layer V−n has the nodes denoting other actions. The edge in the edge set En

can be represented by a formulation of its beginning node u and ending node v. We

write the k-th edge as (u → v)k if u ∈ V+
n , v ∈ V−n , or the l-th edge (u ↔ v)l if

u ∈ V−n , v ∈ V−n . Recall the mapping between Vn and A, the representation u → v

indicates that action ϕ(u) is preferred to ϕ(v). Similarly, u ↔ v means that action

ϕ(u) is equivalent to ϕ(v).

Recall the more realistic examples in Figure4.1 (a) and (b), where the observation

data O may be multiple decision trajectories containing non-deterministic policies.

To address IRL problems for realistic cases, we propose to process O into the form

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 56

a
1
a

5
a

2
a

4
a

3
a

(a)

1
a

a

1

5
a

2
a

4
a

3
a

43

(b)

3
a

1
a

4
a

5
a

2
a

(c)

3
a

a
4
a

5
a

2
a

1
a

(d)

Figure 4.2: Examples of preference graph: (a) The first step to draw a preference

graph. (b) The second step to draw a preference graph. (c) An example of observing

two actions at a state. (d) An example of unique observation at a state.

of pairs of state and preference graph, e.g. the representation shown in Figure4.1(c),

and then apply Bayesian inference using the new formulation. Toward this goal, we

need to show the equivalence of evidence for inference of reward function between the

use of decision trajectories and the independent pairs of state and preference graph

(See Proposition 9). To show this proposition, we first state an obvious fact about

the preference graph.

Lemma 8 The set of preference relations, represented by a two-layered action pref-

erence graph Gn at state sn, is an union of two preference set, written as

En ≡
{

(â �sn ǎ)nnk=1, â ∈ Ân, ǎ ∈ A \ Ân
}

∪
{

(â ∼sn â′)mnl=1, â, â
′ ∈ Ân

}
. (4.2)

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 57

where ϕ(V+
n) → Ân and ϕ(V−n) → Ǎn. The notation (.)k denotes the k-th strict

preference relation and (.)l represents the l-th equivalent preference relation. The

number of strict preference relations nn = |Ân|×|A\Ân|, and the number of equivalent

preference relations mn = |Ân|(|Ân| − 1)/2.

Then we have the following proposition.

Proposition 9 The observation data set O1 is given as a set of decision trajecto-

ries. Assume independence among the observed decision trajectories. Observation

of policy at a state can be specified by an action preference graph. Let O2 be the

set of independent pairs of state and action preference graph, which is written as

O2 = {(sn, Gn)}Nn=1. The inference of reward function drawn from O1 and O2 is iden-

tical. There is a constant factor C that makes likelihood function p(O1|r) = Cp(O2|r).

Proof Let O1 , {ho}Ho=1 denote a sampled decision trajectory, where ho is a decision

trajectory and

ho =,
{
so1, ao1so2, ao2 · · · , soto , aoto

}
,

to is the length of the o-th trajectory and H is the number of sampled decision

trajectories. The conditional probability of observing these decision trajectories in

O1 is calculated by

p(O|r) =
H∏
o=1

p(so1)p(ao1|so1, r)

to∏
q=2

p(soq|soq−1, aoq−1)p(aoq|soq, r)

∝
H∏
o=1

to∏
q=1

p(aoq|soq, r) =
N∏
n=1

p(on|sn, r)

where p(on|sn, r) =
∏

(o,q)∈B p(a
oq|soq, r),

and B , {(o, q) : soq = sn, o ∈ {1, 2, · · · , H} , q ∈ {1, 2, · · · , to}}.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 58

Above equations show that the joint generating probability distribution of O is

proportional to a multiplication of probabilities of taking observed actions at each

state. According to definitions on preference relation, the preference among observed

actions is equivalent relation and observed actions are strictly preferred to unobserved

actions. Let Ân = {aoq|soq = sn} denote the set of actions observed at state sn. By

Lemma 7, we have p(â|sn, r) = p(â �sn ǎ), ∀ǎ ∈ A \ Ân. Consider two actions

â, â′ ∈ Ân. Since â �sn ǎ and ǎ �sn â, we have â ∼sn ǎ.

Thus, the likelihood function at state sn is written as

p(on|sn, r) =
nn∏
k=1

p((â �sn ǎ)k)
mn∏
l=1

p((â ∼sn â′)l) (4.3)

where â, â′ ∈ Ân and ǎ ∈ Ǎn. Now, according to Lemma 4, we see the likeli-

hood function for observations of sampled decision trajectories p(O1|r) is proportional

to the production of likelihood function p(Gn|sn, r), which is p(O1|r) ∝ p(O2|r) =∏N
n=1 p(Gn|sn, r). The proportional constant C =

∏H
o=1 p(s

o1)
∏to

q=2 p(s
oq|soq−1, aoq−1)

can be easily shown.

Remark In the proof of proposition 9, we find that at state sn the observed set of

actions Ân implies that
Q(sn, â) > Q(sn, ǎ)⇒ â �sn ǎ,∀â ∈ Ân, ǎ ∈ A \ Ân

|Q(sn, â)−Q(sn, â
′))| ≤ η ⇒ â ∼sn â′, ∀â, â′ ∈ Ân

where η is a small positive number. We will use this implication to formulate the

likelihood function for Bayesian inference in next section.

Based on Proposition 9, we can represent O as shown in Figure4.1 (c). At state

sn, its action preference graph is constructed by a two-layer directed graph: a set of

nodes V+
n in the top layer and a set of nodes V−n in the bottom layer.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 59

Consider the existence of alternative actions at a state. We adopt a reward struc-

ture depending on both state and action. Let r be the vector containing the reward

for m possible actions at N observed states. We have

r = (ra1(s1), ..., ra1(sN)︸ ︷︷ ︸, . . . , ram(s1), . . . , ram(sN)︸ ︷︷ ︸)
= (ra1 , · · · , ram) (4.4)

where ram ,∀m ∈M, denotes the reward for m-th action.

4.3.2 Bayesian inference

Bayesian analysis combines the prior knowledge about the hypotheses r and the

observed data O into what is called posterior distribution of r given O. We quantify

the evidence that r is the underlying function for the true reward by this posterior

distribution. To deal with Generalized IRL in large and infinite state space, we use

Gaussian process to represent the prior knowledge.

Gaussian prior

Consider ram a Gaussian process. For any {s1, · · · , sN} ∈ S, the random variables

{ram(s1), · · · , ram(sN)} are normally distributed. We denote by kam(sc, sd) the func-

tion generating the value of entry (c, d) for covariance matrix Kam , which leads to

ram ∼ N(0,Kam). Then the joint prior probability of the reward is a product of

multivariate Gaussian, namely p(r|S) =
∏M

m=1 p(ram |S) and r ∼ N(0,K). Note that

r is completely specified by the positive definite covariance matrix K.

A simple strategy is to assume that the M latent processes are uncorrelated. Then

the covariance matrix K is block diagonal in the covariance matrices {K1, ...,KM}.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 60

In practice, we use a squared exponential kernel function, written as:

kam(sc, sd) = e
1
2

(sc−sd)Mam (sc−sd) + σ2
amδ(sc, sd)

where Mam = κamIN and IN is an identity matrix of size N . The function δ(sc, sd) =

1, when sc = sd; otherwise δ(sc, sd) = 0. Under this definition the covariance is

almost unity between variables whose inputs are very close in the Euclidean space, and

decreases as their distance increases. An advantage of choosing this kernel function

for Gaussian process is summarized in the following lemma in [45].

Lemma 10 Assume a Gaussian process F with zero mean function and squared ex-

ponential covariance function. Using F to model the latent function is equivalent to

learning using infinitely many Gaussian shaped basis functions placed everywhere

After setting the prior distribution, we still need to know the marginal likelihood

distribution p(G|S, r) for Bayesian inference. In the following sections, we will show

how to choose an appropriate likelihood distribution that favor the least complex

model able to fit the data, rather than the best fitting model.

Likelihood

Consider the likelihood function for action preference graph. We generate two kinds

of likelihood functions: one for strict preference relations and the other for equivalence

preference relations.

Let us first establish a Gaussian form for the strict preference relation (â �sn ǎ)k.

Its likelihood function is calculated by

p((â �sn ǎ)k) = Φ (f(r, sn, k)) (4.5)

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 61

where f(·) is a linear function of r, and Φ is a cumulative normal distribution func-

tion. To derive the above Gaussian form, we adopt a variation of likelihood function

proposed by Chu and Ghahramani in [38] to capture the strict preference relation.

The likelihood function for the reward without noise is as follows,

pideal(â �sn ǎ|râ(sn), rǎ(sn)) =


1 if Q(sn, â, r) > Q(sn, ǎ, r)

0 otherwise

This form of likelihood function requires that the preference relation should be consis-

tent with the ranking hypothesis on values of Q-functions. Without loss of generality,

we assume the transition probability matrices are known here. Then Q-function takes

the form,

Q(sn, am, r) = ram(sn) + γPam(sn, :)
(
IN − γPπ(sn)(sn, :)

)−1
Îr (4.6)

where Î is a sparse matrix with N rows and N ×M columns, which is written as

Î = (Î1, Î2, · · · , ÎM). The subindex of Îm denotes the relation with the j-th action. Let

Îm be an N×N matrix whose entires are 0 except Îm(n, n) = 1, i ∈ {1, 2, . . . , N} if, at

state sn, the action am is optimal. Hence, the n element of Îr is ra∗(sn), ∀n ∈ N , a∗ =

argmaxaQ(sn, a). If the latent functions have been contaminated with Gaussian noise

that has zero mean and unknown variance σ2, the likelihood function for k-th strict

preference relation is

p((â �sn ǎ)k|râ(sn) + δâ, rǎ(sn) + δǎ)

=

∫ ∫
pideal(â �sn ǎ|râ(sn), rǎ(sn))

N(δâ|0, σ2)N(δǎ|0, σ2)dδâdδǎ = Φ(f(r, sn, k)) (4.7)

where f(r, sn, k) = Q(sn,â)−Q(sn,ǎ)√
2σ

, and Φ(f(r, sn, k)) =
∫ f(r,sn,k)

−∞ N(v|0, 1)dv, which

has the desired form.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 62

Next, we give define likelihood function for the equivalenence preference relation.

Consider the l-th preference relation (â ∼sn â′)l, where â, â′ ∈ Ân. Its likelihood

function is

p((â ∼sn â′)l|r) ∝ e−
1
2

(Q(sn,â)−Q(sn,â′))2 = e−σ
2f2(r,sn,l) (4.8)

This likelihood function is designed to that if the Q-values are close for two actions the

corresponding nodes in the preference graph are more likely to have an equivalence

preference relation, since the actions are close in attractiveness to the decision maker.

Combining Eq. 4.5 and Eq. 4.8, we arrive at the formulation of the likelihood

function for observation data with preference graphs. We summarize the likelihood

function in the following proposition.

Proposition 11 The likelihood function, giving the evidence of the observation data

O in the form of pairs of state and action preference graph, is calculated by

p(G|S, r) =
N∏
n=1

p(Gn|sn, r) =
N∏
n=1

nn∏
k=1

Φ(f(r, sn, k))e
∑N
n=1

∑mn
l=1−σ

2f2(r,sn,l) (4.9)

To summarize, the probabilistic IRL model is controlled by kernel parameters κam

and σam for computing the covariance matrix of reward realizations, and σ to tune

the noise level in the likelihood function. We put these parameters into the hyper-

parameter vector θθθ = (κam , σam , σ). More often than not, we do not have a priori

knowledge of the hyper-parameters. To address this problem, we apply maximum a

posterior estimate to adjust the hyper-parameters in Section 4.3.3.

Posterior inference

Here we adopt a hierarchical model. At the lowest level are reward function values

encoded as a parameter vector r. At the top level are hyper-parameters in θθθ control-

ling the distribution of the parameters at the bottom level. Inference takes place one

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 63

level at a time. At the bottom level, the posterior over function values is given by

Bayes’ rule

p(r|S,G, θθθ) =
p(G|S, θθθ, r)p(r|S, θθθ)

p(G|S, θθθ)
. (4.10)

The posterior combines the information from the prior and the data, which reflects

the updated belief about r after observing the decision behavior. We can calculate

the denominator in Eq.4.10 by integrating p(G|S, θθθ, r) over the function space with

respect to r, which requires a large amount of computation, as discussed in a later

section. Fortunately, we are able to maximize the unnormalized posterior density of

r without calculating the normalizing denominator, since the denominator p(G|S, θθθ)

is independent of the values of r. In practice, we obtain the maximum posterior by

minimizing the negative log posterior, which is written as

U(r) ,
1

2

M∑
m=1

rTamK−1
amram −

N∑
n=1

nn∑
k=1

ln Φ(
M∑
m=1

ρnkamram)

+
N∑
n=1

mn∑
l=1

1

2
(
M∑
m=1

ρnlamram)2 (4.11)

where given (â ∼sn â′)l, let ∆l , γ(Pâ(sn, :)−Pâ′(sn, :))(IN − γPπ(sn)(sn, :))
−1, then

we have

ρnlam = en[1(am = â)− 1(am = â′)] + ∆lÎam

where en is a 1×N vector whose entry en(n) = 1, and en(j) = 0, ∀j ∈ N \ {n}. The

notation 1(.) is an indicator function. Similarly, ρnkam denotes the coefficient vector for

the k-th strict preference relation â �sn ǎ.

Proposition 12 Minimizing Eq.4.11 is a convex optimization problem.

We give the proof for Proposition 12 in Appendix 8.1.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 64

At the minimum of U(r) we have

∂U

∂ram
= 0⇒ r̂am = Kam(∇ logP (G|S, r̂, θθθ)) (4.12)

where r̂ = (r̂1, · · · , r̂am , · · · , r̂m). In Eq.4.12, we can use Newton’s method to find the

maximum of U with the iteration,

rnew
am = ram − (

∂2U

∂ram∂ram
)−1 ∂U

∂ram
.

4.3.3 Model selection

The Gaussian probabilistic model discussed so far is fully specified by the hyper-

parameter vector θθθ. In principle, we can do inference jointly over r and θθθ using

sampling techniques. Another approach in the view of a hierarchical model is to learn

the hyper-parameters from data and prior knowledge at the top level, which can be

considered training of a Gaussian process [37]. In other words, we are concerned with

how to choose the parameters for the the Gaussian process to model the observed

data well.

Now at the top level, we can optimize the hyper-parameters by maximizing the

posterior over these hyper-parameters, p(θθθ|G,S). The marginal likelihood from the

first level plays the role of the likelihood in Bayesian equation:

p(θθθ|G,S) =
p(G|S, θθθ)p(θθθ)

p(G|S)
. (4.13)

Discard the items not containing θθθ and consider the prior distribution of hyper-

parameters with no population basis. Optimization over θθθ becomes the problem

of maximizing the marginal likelihood also known as the evidence framework [46].

Calculation of marginal likelihood calls for

p(G|S, θθθ) =

∫
p(G|S, θθθ, r)p(r|S, θθθ)dr.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 65

We approximate the integral of the marginal likelihood p(G|S, θθθ) using a Laplace

approximation (LA) local expansion around the maximum, which yields

p(G|S, θθθ) ≈ p(G|S, r̂, θθθ)× p(r̂|θθθ)ξr|S (4.14)

where ξr|S = | − ∇∇ lnP (r|G,S, θθθ)|− 1
2 is called an Occam factor that encodes the

posterior uncertainty in r. Thus the evidence is found by computing the best fit

likelihood P (G|S, r̂, θθθ) that the model can achieve and multiply it by an Occam factor.

By its nature, marginal likelihood incorporates a trade-off between model fit and

model complexity. The approximation is expected to become increasingly accurate

with increasing data. The marginal likelihood is approximated by Eq.4.14, yielding

log p(G|S, θθθ) ≈ −1

2

M∑
m=1

r̂TamK−1
am r̂am −1

2
log |I + KΠ|︸ ︷︷ ︸

complexity penalty

−
N∑
n=1

mn∑
l=1

1

2
(
M∑
m=1

ρnlam r̂am)2 +
N∑
n=1

nn∑
k=1

ln Φ(
M∑
m=1

ρnkam r̂am)︸ ︷︷ ︸
data fit likelihood

,

where r̂ is the maximum of the posterior in Eq.4.10 and Π is the negative Hes-

sian of ln p(G|r̂,Sθθθ). Now we can find the optimal hyper-parameters by maximizing

log p(G|S, θθθ). To this end, we seek partial derivatives on variables in θθθ. Gradient

decent optimization methods may be adopted to determine the values of the hyper-

parameters θθθ, as follows:

∂ logP (G|S, θθθ)
∂κam

=
1

2
r̂TamK−1

am

∂Kam

∂κam
K−1
am r̂am

−1

2
tr

[
(I + KΠ)−1(

∂K

∂κam
Π + K

∂Π

∂κam
)

]
∂ logP (G|S, θθθ)

∂σ
= −1

2
tr

[
(I + KΠ)−1K

∂Π

σ

]
N∑
n=1

nn∑
k=1

[
−

∑M
m=1 ρ

nk
amram√

2Φ (f(r, sn, k))σ2
N(

∑M
m=1 ρ

nk
amram√

2σ
, 0, 1)

]
.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 66

The derivative of logP (G|S, θθθ) with respect to σam has the similar formulation as the

derivative with respect to κam .

There are also other approximation techniques, e.g., expectation propagation (EP)

which is an iterative method to find approximations based on approximate marginal

moments. Experimental results generally show that EP can yield a more accurate

approximation than Monte Carlo simulations, but this comes at the expense of ad-

ditional computation. To balance the tradeoff between accuracy and computational

efficiency, we adopt the LA approach in our algorithm. Extensive discussions about

the approximation methods are given in [47].

4.3.4 Learning in large state space

Posterior predictive reward

If the state space is very large and even infinite, and we only have the computation

ability to deal with a certain size of observation data, it is profitable to make the

model learn from the limited number of observations and be able to predict the

reward successfully at the new coming state. This also implies that the recovered

reward function will be smoother. To make predictions at a new state s∗, we have to

know the posterior distribution p(r∗|G,S, s∗, θθθ), where r∗ is a M ×1 vector. We have,

p(r∗|G,S, s∗, θθθ) =

∫
p(r∗|G,S, s∗, r, θθθ)p(r|S,G, θθθ)dr. (4.15)

In Section 4.3.2, we have assumed that latent function values have Gaussian noise

with variance σ2. Denote the noisy function values as r̂(s) = r(s) + δ, and δ ∼

N(0, σ2). Laplace approximation provides a Gaussian approximation to p(r|S,G, θθθ).

Since both p(r∗|G,S, s∗, r, θθθ) and p(r|S,G, θθθ) are Gaussian, p(r∗|G,S, s∗, θθθ) is also

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 67

Gaussian. Therefore, we only need to compute the mean and the covariance. The

predictive computation for action am is given by

µ∗am = E(r∗am |G,S, s
∗, θθθ) = kam(S, s∗)T (Kam + σ2I)−1r̂am

cov(r∗am|G,S, s
∗, θθθ) = (4.16)

kam(s∗, s∗)− kam(S, s∗)T (Kam + σ2I)−1kam(S, s∗)

where S is a matrix being composed of state vectors and kam(S, s∗) is the vector of

covariance between the test point and training points relating to action am.

Posterior predictive actions

Reward plays a role on the preference graph through Q functions. That is, if action

a∗ is optimal at state s, the function values satisfy these inequalities: Qπ(s, a∗) ≥

Qπ
a∈A(s, a).

Definition An action â dominates at state s if and only if â �s ǎ,∀ǎ ∈ A. An

action set A+ dominates another set A−, denoted as A+ � A−, if and only if â � ǎ,

∀â ∈ A+ and ∀ǎ ∈ A−.

The preference prediction on two nodes is given by

p(u � v|S,G) =

∫
p(u � v|S,G, r)p(r|S,G)dr

where we assign the uniform distribution over the state transition probability for the

test point.

Proposition 13 Given A∗ ⊂ A, ∀Ǎ ⊂ A \ A∗, A∗ � Ǎ and â ∼ ǎ,∀â, ǎ ∈ A∗,

policy π is optimal if and only if, ∀s ∈ S, π(s) ∈ A∗.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 68

Proof If π is optimal, then ∀s ∈ S, Q(s, π(s)) = maxaQ(s, a). We have ∀a ∈

A, Q(s, π(s)) ≥ Q(s, a), then π(s) � a. Assume π(s) /∈ A∗. By Definition, we get

∃â ∈ A∗, â � π(s), which conflicts the assumption that π is optimal. So we conclude

π(s) ∈ A∗.

If ∀s ∈ S, π(s) ∈ A∗ and A∗ � Ǎ â ∼ ǎ,∀â, ǎ ∈ A∗ are true, we have π(s) �

a,∀a ∈ A \ A∗, and π(s) ∼ â,∀â ∈ A∗. Hence Q(s, π(s)) ≥ Q(s, a), a ∈ A, so π is

optimal.

4.3.5 Model checking and improvement

In Bayesian inference, the posterior distribution of the reward may underestimate the

uncertainty because the model may be not able to fit the data, so we need to check

the model against the observed data.

Model checking is for self-consistency purpose. We view model checking here as the

comparison of observation data to replicated data under the model. If the replicated

data generated by the model is similar to the observed data, we may say the model

fits. A basic Bayesian data analysis technique for checking the fit of a model is to

compare the observed data with the simulated samples from the posterior predictive

distribution of replicated data [48]. Any obvious difference between them indicates

the potential failure of the model. However the decision model is not concerned

with the individual pair of instance-target but underscores whether the objective will

be reached. Based on this basic idea, we design a technique to check whether the

learned decision rules are able to replicate decision behaviors as similar as those of

the expert. Later in our experiments, first we learn the reward from observed decision

trajectories and then use this learned reward to solve new generated problems, the

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 69

results of which will be considered as the simulated samples. At the same time we

obtain the observation data from the expert’s performance on the these new generated

problems. Finally, we compare these observation data with the simulated samples to

see whether our model is able to capture the expert’s goal.

4.4 Approximate Gaussian Process IRL

The standing assumption in previous sections has been that the problems are in finite

space. But in some real-world problems, the state space can be infinitely large or

continuous, making it costly at best to observe a large number of decision trajectories

and precluding the use of IRL techniques developed for finite space, which suffer from

the curse of dimensionality.

In particular, if the state space is very large, one or more of the following may

happen:

• The dynamics may be unknown as the system becomes more complicated.

• Prediction on the new coming state is required, as the observation data set is

relatively small in comparison with the whole state space and the recovered

values of the reward function are not enough to solve new problems.

• For small size problems, IRL can use pre-defined Gaussian prior distribution

on the reward, while for a large complicated system, it is difficult to set the

covariance function appropriately.

Most IRL methods deal with the problems in finite space with known transition

probabilities. Ng proposed a method for IRL within infinite state space using linear

function approximation. After sampling the optimal policy and generating randomly

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 70

chosen policies, a linear programing problem is used to maximize the difference be-

tween the optimal and random policies’ value functions. This method has a high

computational and suffers from some ambiguity about how to differentiate two opti-

mal policies.

IRL using Gaussian process can be used to address problems with infinitely large

state space, provided the following two assumptions hold:

• Though the observation data is relatively small in the large or infinite space,

the observations are sampled in a way the expert’s behavior is well represented.

• The size of observation data is still in the range that a computer can deal with

in memory.

Using observed decision trajectories, we are able to estimate an approximate state

transition probability P̃ on a Cartesian space Ŝ×Ŝ. Based on the notation of induced

MDP in [49] and [50], we define an induced IRL model correspondingly.

Definition Given a number of decision trajectories as many as we can use to obtain

P̃ to approximate transition probabilities accurately in Ŝ × Ŝ. Then the induced

inverse MDP M̂I =
{

(Ŝ ∪ s0,A, P̂ , γ,O)
}

, where P̂ =
{

P̂a

}m
a=1

and

• ∀a ∈ A, we have P̂as0(s0) = 1. Thus s0 is an absorbing state.

• ∀i, j ∈ Ŝ and a ∈ A, P̂ai(j) = P̃ai(j)

• ∀i ∈ Ŝ and a ∈ A, P̂ai(s0) = 1−
∑

j∈Ŝ P̃(j)

There has been some work showing that if the number of trajectories exceeds a thresh-

old value, then the estimate of transition probability has bounded error in comparison

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 71

with the problem with known transition probability. Applying the work from Sec-

tion 4.3 in induced IMDP, we summarize the approximate Gaussian IRL method in

Algorithm 6.

Algorithm 6 Gp IRL in continuous state space

1: Initialization, Given trajectories

ht = {(s1, a1, s2), (s2, a2, s3), · · · } , t = {1, 2, · · · , H}.

2: for t = 1 to H do

3: for (si, ai, si+1) ∈ ht do

4: P̃(si, ai, si+1)+ = 1

5: end for

6: end for

7: Normalize transition probability P̃

8: Construct induced inverse MDP model

9: r= arg max p(G|s, r, θθθ)p(r|θθθ) solved in Section 4.3

10: Prediction on other unobserved states using Eq. 16

11: return r

4.5 Experiments

4.5.1 GridWorld problem

The grid world problem, in which the agent starts from an initial square on a grid and

attempts to reach a destination square, has been extensively studied in many academic

areas. In our experiments, we consider a grid that contains an obstacle that can block

movement. The agent is able to take five actions, moving in four directions or staying

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 72

0
2

4
6

8
10

0

5

10
−1

−0.5

0

0.5

1

(a) True reward

0
2

4
6

8
10

0

5

10

0

5

10

15

(b) Reward by linear IRL

0 2 4 6 8 10

0
5

10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Reward by QPIRL

0 2 4 6 8 10
0

5
10

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(d) Reward by GPIRL

Figure 4.3: Comparisons of the recovered reward shape.

put. The outcome of the moving actions succeeds in probability 0.65, fails to move in

probability 0.15, and results in unforeseen direction in probability 0.2. Considering

this problem as benchmark experiment, we simulate an expert who navigates in the

grid world with its own objective. We then use IRL techniques to learn the agent’s

reward function and compare the performances of our methods and other standard

algorithms. Two kinds of experiments are discussed below.

Simple goal and complete observations

The first experiment is a simple grid world problem where complete observations at

every state in a finite domain are available. The problem is simple in the sense of the

goal; the expert starts from the left-lower corner square and moves until arriving at one

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 73

destination corner. We do this experiment not to mimic the expert though complete

observations, but to study the reward structure to compare different algorithms. We

compare our method QPIRL in Algorithm 5 and [51], and GPIRL in Section 4.3

with the standard algorithm LIRL based on linear programming in [2]. Note that

the reward is not known to the algorithms. But the complete observations of the

expert’s navigations are available. With complete observations, all the algorithms

are able to recover the reward, by which reinforcement learning is able to output a

best policy that is the same as the optimal policy of the expert. However, the shape

of reward given by our method looks the most similar to the true reward, as can be

seen in Figure4.3. In addition, we input the recovered reward functions to standard

RL method, then we record the RL computation time in Table 4.1, in seconds. Each

entry of time is calculated by averaging the RL computation time in 50 times of

independent runs. These results suggest that our method tends to produce rewards

that are shaped in the sense that they lead to fast convergence (cf. [52]). Here we

do not go further in investigating the relationships between reward structure and

convergence rate, but suggest this would be a fruitful area for future research.

Table 4.1: Time(sec) to find the apprentice policy

GridWorld Size r-LIRL r-QPIRL r-GPIRL

10x10 2.61 2.06 1.20

20x20 20.05 15.75 9.32

30x30 75.12 64.30 35.11

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 74

Hybrid goal and incomplete observations

A hybrid goal in grid world problem implies that multiple squares may be the objective

destination for the expert, with the desire for each destination square being governed

by a probability distribution. From the view of apprenticeship learning, we access only

partially sampled state-action pairs from the expert. According to the idea of model

checking in Section 4.3.5, the IRL performance is proportional to the performance

of the best policy output by the algorithm, which measures how the best policy is

consistent with the observed policies. We report the performance of our algorithms,

CPIRL and GPIRL, in comparison with the following methods:

• Mimic the expert, which for any state uses the expert’s action if that action has

been observed for the state, and a random action otherwise.

• Linear IRL, Apprenticeship learning (AL) in [21] [22].

Given the sampling number of decision trajectories, an average accuracy is calculated

by steps:

1. Sample a certain number of decision trajectories.

2. Learn the reward using IRL algorithms.

3. Obtain the best policy for apprentice by dynamic programming using the re-

covered reward.

4. Generate 1000 grid-world tasks with random initial state as testing data, then

let the expert and apprentice navigate in these grid-world tasks simultaneously

and independently within fixed horizon limitation. Figure4.4 illustrates how

the expert and the apprentice navigate in a grid world to reach the right-upper

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 75

corner with maximum reward. But due to noisy action, the real movement may

differ from the planned direction. Both the expert and the apprentice reach

the goal state, though their trajectories are quite different at the beginning.

If the expert fails in the task, this task will not be counted in evaluation of

the performance. The accuracy of IRL (Acc) is defined as the ratio of the

performance of the apprentice and the expert, Acc = na
ne

, where na is the number

of times the apprentice is able to achieve the goals and ne is for the expert.

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

6

13
19

6

1011

1213

14

20

Figure 4.4: Noisy navigation: red decision trajectory for the expert and green decision

trajectory for the apprentice. The arrow direction denotes the action taken by the

agent.

Results, shown in Figure4.5, suggest our algorithms can attain performance ap-

proaching that of the expert with fewer samples of decision trajectories. As the num-

ber of samples increases, apprenticeship learning using estimated reward becomes

better at following the expert’s behavior. The variance of performance accuracy de-

creases as the number of samples increases. The second advantage of our method is

its robustness, which in the empirical tests is better than algorithms assuming linear

approximation. Note that the estimated reward during apprenticeship learning is not

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 76

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x 5(number of of observed trajectories)

A
v
e
ra

g
e
 A

c
c
u
ra

c
y

Mimic the expert

(a) Mimic the expert

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x 5 (number of observed trajectories)

A
v
e
ra

g
e
 A

c
c
u
ra

c
y

Ng IRL

(b) Linear approximation IRL

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x 5(number of observed trajectories

A
v
e
ra

g
e
 A

c
c
u
ra

c
y

IRL via Convex programming

(c) IRL via convex programming

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x 5 (number of observed trajectories)

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

IRL via Gaussian process

(d) IRL via Gaussian process

Figure 4.5: Plot of average accuracy vs. number of sampled trajectories from the

expert. For each fixed number of sampled trajectory, we repeat 100 times of inde-

pendent experiments and then take average over the accuracies. The value of x-axis

times 5 is the number of sampled trajectories used in IRL.

able to let apprentice plan similarly as the expert, because AL is designed to find the

best policy whose feature expectation is closest to the expert’s, not to search the true

underlying reward. So, in Figure4.5, we do not show the results of the experiments

using the reward function estimated during apprenticeship learning. In Figure4.6, we

plot the mean accuracy of 1000 testing problems in order to compare the differences

among several IRL methods. These results show our algorithms’ superiority to others,

as the apprentice using the reward learned by our algorithms behaves more closely to

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 77

the expert and exhibits more robust behavior.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

(Number of sampled decision trajectories)/5

P
e

rf
o

rm
a

n
c
e

 A
c
c
u

ra
c
y

CP

GP

Linear

Mimic

R in AL

GP

CP

Mimic

Linear

R in AL

Figure 4.6: Comparison of average accuracy for testing problems.

4.5.2 Pendulum control problem

We analyze GPIRL in the continuous domains by applying it to a control problem

known as the under-actuated pendulum swing up problem. This task was shown to be

not trivial by Atkeson and Schaal in [53]. Doya pointed a challenge of this problem

that the discretization can become prohibitively expensive [54]. Recently Deisen-

roth proposed a method called Gaussian process dynamic programming (GPDP) to

counter the discretization challenge in [1]. Our algorithms are implemented using

both the gpml2 toolbox [37] and the GPDP code [1].

The dynamics in our experiment is determined by

φ̈(t) =
−µ ˙φ(t) +mgl sin(φ(t)) + u(t)

ml2
,

where φ denotes the angle of pendulum and the vertical line, the coefficient of friction

2http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 78

µ = 0.05kgm2/s, the pendulum length l = 1m, the pendulum mass m = 1kg and the

gravitational constant g = 9.81m/s2. The range of applied torque u is restricted to

[−5, 5], which is not enough to swing pendulum up directly. We define the state with

two features, angle and angular velocity. The problem setup we used here is from the

work in [1]. Starting from an initial state, the original control task is to learn the

actions that swing the pendulum up and make it stay in the goal position at [0, 0]T .

Our task is an inverse process that we learn the reward from samples of expert’s

decision trajectories. The expert is simulated by running RL with given reward

functions. We learn the dynamics from the samples and randomly selected 200 states

as the training data for IRL. To check the accuracy of estimation of reward, we

compare the performance of expert and the apprentice using learned reward on a

new test problem in 20 horizon length. If the estimation of reward can capture

the structure of expert’s reward, the apprentice should display similar behavior and

reach close to the same objective, swinging the pendulum to the goal position and

staying there. The experimental results are summarized in Figure4.7. The recovered

Q function values and reward function values are shown in Figure4.8, providing the

evidence that these random variables are well estimated by modeling with Gaussian

process.

4.6 Conclusions

We have studied a Bayesian inference framework using Gaussian process for IRL prob-

lems that arise in decision making and convex optimization. The IRL problems can

be solved efficiently by convex programming techniques, under the assumption that

relationships between actions and reward can be modeled in a Bayesian framework.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 79

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

time in s

im
m

e
d
ia

te
 r

e
w

a
rd

s

(a) Expert’s reward

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

time in s

im
m

e
d
ia

te
 r

e
w

a
rd

s

(b) Apprentice’s reward

−2 0 2

−5

0

5

angle in rad

a
n
g
.v

e
l.
 i
n
 r

a
d
/s

−15

−10

−5

0

(c) Expert’s trajectory

−2 0 2

−5

0

5

angle in rad

a
n
g
.v

e
l.
 i
n
 r

a
d
/s

−15

−10

−5

0

(d) Apprentice’s trajectory

Figure 4.7: Plot of pendulum experimental results, where the first row contains the

figures from [1] and the second row displays the results using the estimated reward

by our ALGPIRL algorithm.

Furthermore, the use of preference graphs to present action allows for dealing with

ill-posed IRL problems, which extends application of our algorithms to more practical

areas. The experimental data shows that the apprentice using learned reward by our

methods displayed more robust behavior and better performance with limited obser-

vations. Our Gaussian process method has other advantages over non-probabilistic

kernel methods. Because our method has no assumption on function structure, we

can use observations for model selection and hyper parameter optimization, and make

probabilistic prediction on new coming data.

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 80

−50 0 50−50 0 50−50 0 50−50 0 50−50 0 50

−50

0

50

−50

0

50

−50

0

50

−50

0

50

−50

0

50

(a) Apprentice Q-factors

−1 −0.5 0−1 −0.5 0−1 −0.5 0−1 −0.5 0−1 −0.5 0

−1

−0.5

0

−1

−0.5

0

−1

−0.5

0

−1

−0.5

0

−1

−0.5

0

(b) Apprentice reward

Figure 4.8: Plot of Q-factors and reward values

The main contributions of this chapter are summarized as follows:

1. We develop a new probabilistic framework to solve IRL problems in convex

programming domains.

2. We design preference graphs to represent the decision behavior, reducing the

uncertainty and computation burden caused by the ill-posed nature. We build

new likelihood functions for preference graphs and prove the effectiveness of

Chapter 4. Inverse Reinforcement Learning with Gaussian Process 81

these formulations in experiments.

3. We model the reward function using Gaussian process, which offers the advan-

tage that IRL using Gaussian process is relatively insensitive to the number of

the observations and it performs better than other algorithms when the size of

observation data set is small.

4. We use Gaussian process model to solve IRL problems in continuous domains

where both dynamics and reward are unknown.

Future work in this area should focus on experiments on problems within contin-

uous state domains, and should include consideration of methods for using Gaussian

processes to model systems without knowledge of environmental dynamics.

Chapter 5

Semi-supervised Inverse Reinforcement

Learning using MM

Most of existing IRL algorithms assume that there is a large number of decision

trajectories being observed. If we consider the observation of action at state as the

supervision given by the agent, we call IRL with a large number of observations as

supervised IRL. However, we still have many practical problems in which it is not

easy to obtain observations, and it is a non-trivial to apply IRL with limited observa-

tion. In this paper, we particularly study the problem of how to use IRL with limited

observation, which is called semi-supervised IRL. Assume the environment informa-

tion is known as a prior. Semi-supervised IRL(Semi-IRL) aims to utilize the known

knowledge of state and action to reduce the uncertainty due to insufficient supervi-

sion. We show that an efficient semi-supervised IRL algorithm can be formulated

by using the philosophy of majorization and minorization. A number of examples is

considered to illustrate the quality and flexibility of the approach.

82

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 83

5.1 Introduction

The significance of IRL directly comes from the powerful application of DP/RL in

varieties of research areas, such as optimal control [55, 56], animal learning [57],

neurophysiology [58], behavioral neuroscience [59, 60] and economics [61, 62].

The difficulty of manually setting the reward function is a barrier to use RL in

many real-world problems. Hence it is desirable to use IRL to learn the reward func-

tion from the demonstrating agent (teacher), and it follows that we can build an

intelligent agent that imitates the teacher’s behavior. Another potential advantage

of IRL is that the reward function can be used to characterize the decision-making

rule of an agent whose behavior has been sampled for demonstration. Though human

may have bias in applying the decision-making rule, which results in noisy obser-

vations of behaviors, the abstract encoding of decision-making rule in the form of

reward function is expected to be similar for the group of agents adopting the same

decision-making rule. A study in how to recognize the decision-makers by using IRL

is presented in [63].

Most of current IRL algorithms assume that the reward function can be well re-

covered in a MDP model that only considers the state and action in the decision

trajectories observed. Although this assumption provides a good starting point for

developing IRL algorithms with incomplete observations, the implication is that the

agent is able to access a sufficient number of observations. But it is often difficult

to get a number of observations under some practical conditions. For example, when

we deal with the small-scale problems with incomplete observations, the number of

observed states is too small to represent the true environment. Another widely used

assumption in IRL algorithms is that the reward function is well approximated by

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 84

a linear combination of a set of pre-defined basis functions, which is too strong in

practice. In addition, a high computation capacity is required by some IRL algo-

rithms in [2, 26] to simulate many random policies. Hence, to enhance the ability of

learning with limited observations, reduce the computational burden and widen the

formulation of reward function, we propose an new solution to IRL problem, which is

based on probabilistic model and brings in the strategy of semi-supervised learning,

utilizing not only the observation data but also the prior knowledge about state and

action.

Semi-supervised learning, as the name suggests, extends either supervised learn-

ing or unsupervised learning to add additional information. It is attractive because

it can potentially exploit both labeled and unlabeled data to achieve better perfor-

mance than supervised learning [64], provided that there is a good match between

the problem structure and the model assumption. The similar idea exists in IRL.

Given a finite MDP model, the state and action space is always known as a prior.

Observation consists of state and action taken upon the state by teacher. If we have

an observation of action at a state, we say this state is observed; otherwise, the state

is said unobserved. Semi-IRL can perform better with incomplete observation, which

is based on the assumption that the unobserved states contain additional information

that can be used to facilitate the learning process.

We propose to solve IRL using information from observation of teacher and the in-

formation on environment that is not included in observation. An important optimiza-

tion method we used in formulating the Semi-IRL algorithm is called Minorization-

Maximization (MM). The MM principle appears in lots of study and areas, such as

robust regression [65], survival analysis [66], wavelet-based image restoration [67] and

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 85

dictionary learning [68]. One of virtue of a successful MM is to substitute a simple

optimization problem for a difficult one.

The first step of Semi-supervised IRL is to formulate the learning problem in

the form of maximum likelihood estimation (MLE). The IRL problem with complete

observation can be solved efficiently by using the quadratic convex programming

[51]. Consider both observed and unobserved states, the likelihood depends on both

observed state-action pairs and the unobserved - this is how the unobserved data

might help according to the idea of semi-supervised learning. However, we are not

able to solve the MLE analytically, if the likelihood function includes unobserved

data. We propose a method under conceptually simple Expectation-Maximization

(EM) framework to learn the reward function if the observation data is incomplete.

It is proved that the optimization problem for IRL with incomplete observation is

convex programming. In the E-step, we calculate the joint probability distribution

of the observation data, in which the action at unobserved state is considered as

the missing data. In the M-step, we maximize with respect to the reward function

the likelihood function given by the previous E-step. But in the E-step the joint

likelihood function is too complicated to be calculated efficiently, therefore we replace

the original likelihood function with its minorize function which turns the calculation

more smooth and tractable. In the optimization theory, EM is an special case of the

class of MM algorithms [69]. That is the likelihood function in the E-step is just

the process to construct a minorize function which has the promise of being easily

solvable in the maximization step.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 86

5.2 Preliminaries

5.2.1 Forward planning with MDP

To model the decision-making process for an agent, we consider an optimistic con-

dition that the expert is seeking the optimal deterministic policy π and follows it.

Following π means that at time t the expert selects an action at using at = π(st).

Therefore, the value function for a policy π evaluated at any initial state st=0, which

is calculated by V π(s0) = E[
∑∞

t=0 γ
tr(st)|π], is always maximized at every stage, if π

is optimal.

And we have the constraints for the optimality assumption as follows,

Qπ(s, π(s)) ≥ Q(s, a) + εs, (5.1)

where εs is a parameter controlling the confidence of optimality. If εs ≥ 0, π(s) is an

optimal action at state s; If εs < 0 and |εs| is smaller than a given positive number,

π(s) is a suboptimal action at state s.

An IRL problem is to learn a reward function for an MDP model, based on the

observation model that is written as M = (S,A,P , γ,O). The variable O contains

the measurements of teacher’s behavior, which is action and the measurements of

sensory inputs to the teacher, which is state. The observation is called incomplete1,

if the state-action pairs in O only cover part of the state space S. Otherwise, the

observation is called complete.

1The observation O can rewritten as a mapping between a subset Ŝ ⊂ S and Â ⊂ A, which is

Ŝ → Â. Let Š = S − Ŝ denote the subset of states that we do not observe. Then we represent Ŝ as

Ŝ = {ŝl}Ll=1 ⊂ S, and Š as Š = {šk}Kk=1 ⊂ S, where L = |Ŝ|, K = |Š| and L + K = N . We know

Ŝ ∪ Š = S and Ŝ ∩ Š = ∅.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 87

Let Z = {O,Y} denote the complete observation, where O = {Ol : (ŝl, al)}Ll=1

and Y = {yk : (šk, ayk)}
K
k=1. At K states in Š, an instantiation of the unknown

actions at these states is defined as a vector y = (y1, y2, . . . , yK), where yk ∈M, k ∈

{1, 2, . . . , K} indicates that the action ayk is selected at k-th state in Š. A complete

policy is written as z = (O,y).

The problem we aim to solve in this paper has these properties: 1) The observation

only contains a subset of states; 2) The computing resources are too limited to run a

large simulation.

5.2.2 Review of IRL as a supervised learning problem

Consider a learning machine has a set of functions f(x, α), where α is the param-

eter variable. The supervised learning problem is to learn a realization of α that

makes f(x, α) best fit the supervisor’s response. The selection of desired function

is based on the training data set of independent and identically distributed obser-

vations (x1, y1), (x2, y2), . . . , (xn, yn). The learning problem can be formulated as an

optimization problem to minimize the risk function R(α) =
∫
l((x, y), α)dF ((x, y)),

where l(x, y) is a loss function. A commonly used method is to minimize the empirical

risk function Remp(α) = 1
n

∑n
i=1 l((xi, yi), α).

Most of existing IRL algorithms can be viewed as a supervised learning problem,

in which the observed agent is considered as a teacher providing the demonstrations

as the supervisions. With the teacher’s supervision, the IRL algorithms search for an

optimal reward function. The forward planning using this reward function can find a

policy that minimizes the cost function or is consistent with the teacher’s supervision.

Ng’s algorithm assumes that the policy of teacher is optimal so that the reward

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 88

function should guarantee the optimality of the observed policy πE:

QπE(s, πE(s)) ≥ max
a∈A\πE(s)

QπE(s, a)∀s ∈ S

which gives the linear programming IRL (LPIRL) shown in Algorithm 1. Ng and

Russel choose the reward function to maximize the difference between the optimal

and suboptimal policies while favoring the sparseness in the reward function. This

algorithm can viewed as a supervised learning problem.

To formulate IRL as a binary classification model, we let x denote the state-action

pair (s, a) and y be a binary value in the set (−1, 1). A positive y means that the

teacher takes action a at state s. Otherwise y is assigned −1. The observed pairs in

O are used as positive instances and the combinations of (s, a) not shown in O are

negative instances. Let the reward function be parameters for the scoring function.

The Q function becomes the score function f(x, α) for an instance (s, a). Based on

the Bellman equation, the loss function can be defined as follows.

l(x, y) =


Q(s, a)−Q(s, a∗), if y=-1;

0, if y=1.

(5.2)

In above equation (s, a∗) ∈ O. Then, the objective function in Algorithm 1 is the

empirical risk with L1 regularization, and the constraints enforce the teacher’s super-

vision.

5.2.3 Review of MM conception

MM is an iterative method that relies heavily on convexity arguments and particularly

useful in high-dimensional problems. Here we review the philosophy of MM algorithm

described in [69].

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 89

Use x as a variable, a function g(x|xt) is said to majorize a function f(x) at xt

provided 
f(xt) = g(xt|xt), x = xt

f(x) ≤ g(x|xt), x 6= xt,

where xt represents the current iterate estimate of x in a search of the value of f(x).

The function g(x|xt) sets a upper boundary of the function f(x) and its surface

is tangent to that of f(x) at the point x = xt. Then, a minimization problem

using MM algorithm is formulated by minimizing the surrogate majorizing function

g(x|xt) rather than the original function f(x). The point xt+1 = argmin g(x|xt) also

forces f(x) downhill, which is f(xt+1) ≤ f(xt). This property makes MM algorithm

remarkable numerical stability.

To maximize a function f(x), we minorize it by a surrogate function g(x|xt) and

maximize it to produce the next iterate xt+1.

5.3 Semi-supervised IRL using MM

A semi-supervised IRL method learns from not only the set of observations O but

also the set of states not seen in O. The hypothesis underlying our approach is

that the unobserved states can help us reduce the uncertainty in estimation and the

formulation of problem with complete data might be more computationally tractable.

5.3.1 A Maximum likelihood estimation model

Consider a probabilistic model which we use to denote the joint distribution of ob-

served variables O and hidden variables y. teacher’s behavior can be modeled by two

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 90

approaches: a soft policy which is

π(s) ∼ p(a|s),

and a deterministic policy that is

π(s) = argmax
a∈A

p(a|s),

where the conditional probability

p(a = am|s) =
eβQ(s,am)∑M
j=1 e

βQ(s,aj)
. (5.3)

Our goal is to maximize the likelihood function that is given by

p(O|r) =
∑
y∈Y

p(O,y|r). (5.4)

It is difficult to optimize p(O|r) directly, since we need complete information on

policy-related probability matrix Pπ to calculate the Q-function based on Bellman

equation. We introduce a distribution q(y) over the hidden variables. After taking

logarithm on Eq.5.4, we have the following equation similar as that in [70].

ln p(O|r) = L(r|rt) +KL(q||p), (5.5)

and

L(r|rt) =
∑
y

q(y) ln[
p(O,y|rt)
q(y)

],

KL(q||p) = −
∑
y

q(y) ln[
p(y|O, rt)
q(y)

].

Note that L(r|rt) is a function of y and r, and KL(q||p) is the Kullback-Leibler (KL)

divergence between q(y) and p(y|O, rt). Since ln p(O|r) is difficult to calculate, gen-

eralized EM method provides a method to maximize the function L(r|rt) iteratively,

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 91

Algorithm 7 EM IRL algorithm

1: Initialize r0.

2: Expectation: L(r|rt) =
∑

y p(y|O, rt) ln p(O,y|r).

3: Maximization: we have rt+1 = argmaxr L(r|rt).

4: Given δ, if ||rt+1 − rt||2 ≥ δ, go to step 2; Otherwise stop and output rt+1.

rather than directly dealing with ln p(O|r), which is summarized in Algorithm 7. The

complete proof of generalized EM algorithm in this formulation can be found in [70].

For the convenience of the readers, we will briefly review the proof of generalized EM

as a particular case of MM method.

We have the following propositions.

Proposition 14 Consider function ln p(O|r) in MDP, we minorize it by function

L(r|rt), which is 
ln p(O|rt) = L(r|rt)

ln p(O|rt) ≥ L(r|rt), r 6= rt

Proof By Eq. 5.5, we know ln p(O|rt) ≥ L(r|rt), because the KL divergence has the

property that KL(q||p) ≥ 0, where if and only if q(y) = p(y|O, rt), KL(q||p) = 0.

In the E-step, the lower bound function L(r|rt) is maximized with respect to q(y)

by making KL divergence vanish. Then we have ln p(O|rt) = L(r|rt). The solution

to this maximization is to set q(y) = p(y|O, rt). Therefore, L(r|rt) is a surrogate

function that miniorizes ln p(O|rt). Since q(y) does not contain the parameter r we

are optimizing, we drop it while writing the surrogate function in the E-step. Based

on the philosophy of the MM algorithm introduced in Section 5.2.3, we say that EM

IRL algorithm is a version of MM algorithm.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 92

5.3.2 MM optimization

Using the Boltzman distribution to model the joint distribution of state and action

shown in Eq. 5.3, we write the lower bound function as L(r|rt) = wT r− κ(r), where

wT =
M∑
y1=1

M∑
y2=1

...

M∑
yK=1

[βeT1 + (
L∑
l=1

Pl(sl, :)

+
K∑
k=1

Pyk(sk, :))H(y)]
K∏
k=1

p(yk|O, rt),

κ(r) =
M∑
y1=1

M∑
y2=1

...
M∑

yK=1

βeT1 r + log
N∏
i=1

M∑
j=1

ePj(si,:)H(y)r

and H(y) = βγ(I − γPπ(s))
−1. The details to compute function L(r|rt) are shown in

Appendix 8.2. We also have shown a proposition which is given below.

Proposition 15 Function L(r|rt) is a concave function.

Proof See Appendix 8.3.

To obtain an upperbound of rt+1 such that L(rt+1|rt) ≥ L(rt|rt), we may use

Newton-Raphson algorithm as

rt+1 = rt − (O2L(rt|rt))−1OL(rt|rt) (5.6)

But it is difficult to calculate the Hessian matrix O2L(r|rt). Here, we present an

approximation technique that offers a minorize surrogate function not overshooting

or lowerbounding the objective function.

In the MM algorithm, we attack the objective function using Taylor expansion

of L(r|rt). This yields the minorization function g(r|rt). It is shown that L(r|rt) is

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 93

)|(ln rOp

)|(trrg

1)|(trrYL

tr 1tr

)|(1trrg
*r

)|,(rrYL

Figure 5.1: An illustration of minorization function

concave and twice differentiable. Therefore, given a negative definite matrix B such

that B ≤ O2L(r|rt),2 we have

g(r|rt) = L(rt) + OL(rt|rt)(r− rt) +
1

2
(r− rt)TB(r− rt), (5.7)

which satisfies 
g(rt|rt) = L(rt|rt) = ln p(O|rt)

g(r|rt) ≤ L(r|rt) ≤ ln p(O|rt).
(5.8)

The selection of matrix B can not be overshooting or lowerbounding the maximum of

the likelihood along its current direction of search in the maximization step. Figure5.1

illustrates a good design of the minorization function for maximum of the likelihood.

We propose a choice of B in the following theory.

Theorem 16 To satisfy B ≤ O2L(r|rt), we define matrix B by calculating

B = −
N∑
i=1

H(y∗)T
Π(y∗)

(
∑M

a=1 e
Pa(si,:)H(y∗)r̂)2

H(y∗).

Proof The proof and the process of computing hidden action y∗ and the reward r̂

are shown in Appendix 8.4.

2It means that ∀x ∈ RN , we have xTBx− xTO2L(r|rt)x ≤ 0

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 94

This theory completes the miniorization step of the algorithm. The maximization

step can be accomplished by introducing the regularization and finding the optimal

point of the regularized likelihood function. The following theorem states that in

the Bayesian inference setting, the prior distribution plays a role of regularization

function in the maximum likelihood estimation.

Theorem 17 Suppose we have a Laplace prior distribution f(r|0, 1) on r. The MAP

estimator is the solution to

max
r
g(r|rt) + λ|r|

s.t. r ∈ Ω (5.9)

Proof The MAP estimation is formulated as follows

p(r|O) =
p(r|O)p(r)

p(O)

After taking logarithm and removing the element not containing the variable r, we

get

ln p(r|O) ∝ ln p(r|O) + ln p(r).

This leads to the problem formulation that is given by

max
r

N∑
i=1

log
eβQ(si,π(si))∑M
j=1 e

βQ(si,aj)
+ λ|r|. (5.10)

Now compare this problem to the original maximum likelihood estimation, we can

solve it using our proposed algorithm to formulate the surrogate function g(r|rt)

for likelihood function. Finally, in the maximiation step, note that the problem is

formulated as Eq. 5.9.

The regularization function we can choose from the following options:

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 95

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Laplace Density

Gaussian Density

Figure 5.2: Graphs of prior distribution

1. Laplace distribution: f(x) = 1
2
e−|x|,∀x ∈ <k, which provides a l1 regularization;

2. Gaussian distribution: f(x) = (2π)−
k
2 e−

1
2
xTx, ∀x ∈ <k, which provides a l2

regularization.

See the Figure5.2 comparing the different kinds of regularization method. If we choose

the Gaussian prior, the l2 regularization term is selected.

5.3.3 Convergence analysis

Existing study in EM convergence theory [71] and MM convergence theory [69] can

not be applied directly in our method, since the differentiability required of the update

map does not hold.

The successive iteration in our method is denoted as rt. To prove the monotonicity

of the maximum likelihood, we have the following lemma.

Lemma 18 The likelihood function for incomplete observation is not decreased in

MM IRL method, which is L̃(rt+1) ≥ L̃(rt), with equality iff rt+1 = rt.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 96

Algorithm 8 MM IRL - Main process

1: Input MI = (S,A,P , γ,O).

2: Initialize r0 and t=0.

3: for c = 1 to MaxIter do

4: Minorization: Given rt, after calling Alg. 9, we have function g(r|rt).

5: Maximization: Maximize the function g(r|rt) by calling Alg. 10.

6: if ||rt+1 − rt|| ≤ δ then

7: Return rt+1.

8: end if

9: end for

10: Return rt+1.

Algorithm 9 MM IRL - Part 1 Minorization

1: Given rt, we have ay∗ = arg maxaQ(s, a), and an estimate of r̂ obtained by solving

the following problem

max
r

eTH(y∗)r

s.t. r ∈ Ωr (5.11)

2: To minorize ln p(O|r), we have its surrogate function g(r|rt).

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 97

Algorithm 10 MM IRL - Part 2 Maximization

1: Maximization: Setting the feasible set Ωr with these constraints:

1. r ≥ 0, and ‖r‖ ≤ Rmax;

2. Q(si, ai)−maxa∈A\ai Q(si, a) ≥ εi, εmin ≤ ε ≤ 0, ∀(si, ai) ∈ O ∪ {S,y∗}

, we obtain rt+1 = arg maxrOL(rt|rt)r + 1
2
(r− rt)TB(r− rt) + λ|r|, s.t. r ∈ Ωr.

The parameters are updated by computing the following equations.

B = −
N∑
i=1

H(y∗)T
Π(y∗)

(
∑M

a=1 e
Pa(si,:)H(y∗)r̂)2

H(y∗) (5.12)

Π̂uu =
M−1∑
i=1

M∑
j=i+1

e(bi+bj)H(y∗)r̂(biu − bju)2 (5.13)

Π̂uv =
M−1∑
i=1

M∑
j=i+1

e(bi+bj)H(y∗)r̂|(biu − bju)(biv − bjv)| (5.14)

OL(rt|rt) =
N∑
i=1

Pπ(si)(si, :)H(y∗)−
∑M

a=1 Pa(si, :)H(y∗)ePa(si,:)H(y∗)rt∑M
a=1 e

Pa(si,:)H(y∗)rt

In above equations, we define bi := Pi(s, :) = (bi1, b
i
2, · · · , biN), i ∈ M. The

notation Πuu is u-th diagonal entry for the Hessian matrix Π and Πuv denotes

the entry of (u, v).

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 98

Proof Standard EM theory [72] gives the decomposition

L̃(r′) = log p(y|r) = L(r′|r)−H(r′|r)

Set r = rt. It follows that H(rt+1|rt) ≤ H(rt|rt) and L(rt+1|rt) ≥ L(rt|rt) (this

feature is not obvious due to the majorization step and is proved in Appendix 8.6).

Thus

L̃(rt+1) +H(rt+1|rt) ≥ L̃(rt) +H(rt|rt).

Therefore

L̃(rt+1) ≥ L̃(rt)−H(rt+1|rt) +H(rt|rt) ≥ L̃(rt|rt)

with equality iff rt+1 = rt.

Lemma 19 {L̃(rt)}t≥0 is bounded and has a finite limit.

Proof By L̃(rt+1) ≥ L̃(rt), we know L̃(rt) ≥ L̃(r0). This establishes lower bounded-

ness.By Bellman Equation, we have

(I− γPπ(s))
−1V = r

Thus, the general solution to above equation is V = A†r + (I − A†A)w, where

A = I − γPπ(s) and w is an arbitrary vector. According to Bellman equation, we

have

V∗(s, r) = max
a
E[r(x, a) + γ

∑
s′

Pa(s, s
′)V∗(s′, r)],

V∗(s, r) = min
a
E[r(x, a) + γ

∑
s′

Pa(s, s
′)V∗(s′, r)].

And we get Pa(s, :)H(y)r ≤
∑N

i=1 |V∗(si)| and Pa(s, :)H(y)r ≥
∑N

i=1 V∗(si). These

properties lead to L̃ ≤ N
∑N

i=1[|V∗(si)|−V∗(si)]−N logM . As L̃(rt) is nondecreasing

and bounded, it must have a finite limit.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 99

From Lemma 19, L̃(rt) converges monotonically to some L̃∗. Depending on global

convergence theorem (See [71, 73]), which is described in Appendix 8.7, and Wu’s

theorem on EM that if the complete likelihood function L(r′|r) is continuous in both

r′ and r, M is a closed point-to-set map over the complement of Γ, we have a theorem

in the following

Theorem 20 The limit points of sequence {rt}, optimized with l1 regularization, are

local maxima points of L̃(r) and L̃(rt) converges monotonically to L̃∗ = L̃(rt) for

some points r∗.

Proof The condition 1) and 3) in Global convergence theorem follow from Lemma

18 and 19. Then Following from Wu’theorem, the convergence theorem becomes as

a special case that has a simplified condition: L(rt+1) > L(rt),∀rt /∈ Γ. Then, all the

limit points of {rt} are local maxima of L̃, and L̃(rt) converges to L̃∗. Since it is not

straightforward for this property, we show the proof in the following.

Let Γ be set of local maxima in the interior of Ω. Consider a rt /∈ Γ, which is in

the interior of Ω. From the proof for Lemma 18, we have H(rt|rt) ≥ H(r′|rt), ∀r′ ∈

Ω. As rt /∈ Γ, it is not a local maximum of L(r|rt). Then, OL(r|rt) 6= 0, and

Og(r|rt) 6= 0 since g(rt|rt) = L(rt|rt). It follows that g(rt+1|rt) > g(rt|rt). Together

with L̃(rt+1) ≥ g(rt+1|rt) − H(rt+1|rt) and L̃(rt) = g(rt|rt) − H(rt|rt), this proves

L̃(rt+1) > L̃(rt),∀rt /∈ Γ. In addition, though l1 regularization is not differentiable

at r = 0, the regularization penalizes the movement to this point (see discussion in

[2]). For convex functions, the stationary points or local maxima points are global

maxima.

Theorem 21 The sequence {rt} converges to some stationary point r∗, the limit of

L̃(r).

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 100

Proof Since the surrogate function g(r|rt) is convex, the limit point of r is the

maximum point of L(r|rt). If w is a maximum point of L(r|rt), it is known that

the matrices C = OL(w|rt) and D = Og(w|w) are negative definite. So C − D is

positive semidefinite. In [69], it is shown that the iteration map h(r) has differential

I −D−1C at w, and the norm ‖I−D−1C‖T ≤ 1. Then, Ostrowski’s result applies.

Hence, iterates are locally attracted to w.

In maximization step, we have

L̃(rt+1)− L̃(rt) ≥ g(rt+1|rt)− g(rt|rt)

= OL(rt|rt)(rt+1 − rt) +
1

2
(rt+1 − rt)TB(rt|rt)(rt+1 − rt)

By projection theorem to solve maximization problem, rt+1 = rt + βtAOL(rt|rt),

where 0 < βt < 1. Then we have

(rt + βtAOL(rt|rt)− rt+1)(r− rt+1) ≤ 0 (5.15)

Applying with r = rt, we get

OL(rt|rt)(rt+1 − rt) ≥ 1

βt
A−1

∥∥rt+1 − rt
∥∥ (5.16)

Let λa = supr{max eigenvalue of A(r)} and λb be the minimum eigenvalue of matrix

B, then

L̃(rt+1)− L̃(rt) ≥ (
1

βtλa
+
λb
2

)
∥∥rt+1 − rt

∥∥
which means limt→∞ ‖rt+1 − rt‖ = 0. Therefore, rt converges to the stationary point

r∗ with L̃(r∗) = L̃∗.

If the regularization function is l2, the objective function is continuous and differ-

entiable. It is easily shown {L̃(rt)}t≥0 is bounded and the theorems in [71, 69] follow

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 101

successfully. In general, if the sum of surrogate function and regularization function

underlying nonlinear shrinkage function employed in the M-step is continuous and

differentiable in r, then our method converges to a stationary point of the regularized

log-likelihood. The limit points may be local maxima or saddle-points.

The following points summarize the convergence properties of MMIRL algorithm.

1. It is difficult to write the formulation for the incomplete likelihood function

due to uncertainty in optimal policy. One widely used method is to run a lot

of simulations to obtain the estimation of value functions. Without running

simulations, we can maximize the incomplete likelihood function by using EM

method to iteratively maximize the complete likelihood function. EM is a spe-

cial case of MM algorithm. To further simplify the problem, we turn to find

another surrogate function which is easier to calculate, while we prove it is

still effective under MM framework. Each iteration of MM algorithm produces

a reward function with a penalized likelihood value greater than or equal to

the previous estimation of the reward function. As {L̃(rt)} is bounded, the

limit points of any instance of {rt} converges monotonically to L̃(r∗), for some

stationary points r∗.

2. Consider the regularization function in Bayesian inference framework. If the

surrogate function and convex function are convex, then the sequence of com-

plete log likelihood values converges to the global maximum. However, since

there may be many points, the reward function is not fixed. If the incomplete

likelihood function is unimodel and has only stationary point, then rt converges

to the unique maximizer of r∗.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 102

5.4 Experiments

In this section, we do experiments in some sequential decision making benchmark

domains: GridWorld, Mountain car and Secretary problems. A purpose of these

experiments is to show that our method is superior to other algorithms in dealing

with a small number of observations. This is useful for potential application in many

real world problems.

In our proposed method, there are some tuning parameters waiting to be selected:

the temperature parameter β and the regularization coefficient λ. Here, we give some

examples to find the optimal selection by using the Bayesian information criterion

(BIC):

BIC(β, λ) = −2 ln p(O|r∗) + (lnn)Dim(r∗)

where n is the sample size of teacher and Dim(r∗) is the number of parameters. In

the following experiments, we compare our method with the popular IRL algorithms

in two ways: qualitatively analyzing the reward function and its output policies;

quantitatively calculating the performance accuracy that will be defined in the next

section for GridWorld problem. The available IRL algorithms we used in comparison

with our method contain

1. Naive mimic: choose the action if observed; otherwise randomly select an action.

2. Mimic IRL: we uniformly choose the random action at the states unobserved.

Then, the value function for the unobserved state is an average over the Q

functions of taking an action at that state. Finally, we can solve the IRL

problem as a problem with complete observation, using the algorithm described

in [2].

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 103

3. PROJ IRL: an algorithm in [21] and mentioned in Section 5.2.3.

4. WMAL IRL: a game theoretic approach algorithm in [23].

5.4.1 GridWorld problem

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

(a) Grid World

1.5

0.5

1

-0 5

0

1 5

-1

-0.5

-1.5 -1 -0.5 0 0.5
-1.5

(b) Mountain car

Figure 5.3: Picture of (a) Grid World (b) Mountain Car problem

The first experiment we study is GridWorld problem in which an agent starts from

an initial square and is going to a destination square (See Figure5.3 (a) in which the

stars indicate the destinations). In our environment, there may be some obstacle in

the grid world. The agent is able to take five actions, moving in four directions or

staying put. The outcome of the moving actions succeeds in probability 0.65, fails to

move in probability 0.15, and results in unforeseen direction in probability 0.2.

In practical problems, we can observe the decision behavior from other agents

using some techniques such as sensors. In this simulation, to generate the observation

data, we first manually design a reward function that has encoded the objective

functions, and then simulate a demonstrating agent who navigates in the grid world

by forward planning with this designed reward function. Only a small number of

observations are collected.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 104

To evaluate the performance of IRL algorithms, a direct method is to compare the

underlying true reward functions with the reward functions recovered by IRL. E.g.,

we can compute the Euclidean distance between the true reward function and the

recovered reward function. However, it is not accurate and even meaningless in prac-

tical purpose due to the illness of IRL problems. Because an identical optimal policy

may be induced by two different reward functions, and two similar reward functions

may provide different optimal policies. Due to the noise added to observations by

uncertainty in the environment dynamics, it is also not appropriate to compare the

policy directly.

Since the reward function is considered as a function encoding the goal of an agent,

the most concerned should be whether the recovered reward is also able to encode

the original goal. To evaluate IRL algorithms quantitatively, we propose to count the

percentage of successfully solved problems, which is called performance accuracy. A

problem is formulated by randomly selecting an initial state in the same environment.

We call a reward function has successfully solved a problem, if the best policy, which

is output by forward planning with this reward function, can make the agent reach

the true goal. The following steps describe how to compute the performance accuracy

pa for learned reward r̂ in 1000 runs of replicate simulations.

1. Initialize Cr = 0, which counts the number of problems solved by r̂, and Cn = 0

which counts the quantity of problems not solved by the true reward.

2. Generate a GridWorld problem by randomly choosing an initial state.

3. Apply RL to solve this problem using learned reward. If the objective is reached

in finite time, Cr = Cr + 1. Consider the suboptimal solution, we have addi-

tional calculation for our MMIRL (which is represented by MMIRLsub): if the

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 105

destination is not the true objective, but adjacent to the objective (E.g. grid

(10, 2) is considered close to grid (10, 1)), Cr = Cr + 0.5.

4. Ask the teacher using the true reward to solve the problem the same as that

in last step. If the teacher fails to arrive at the true goal in the finite time,

Cn = Cn + 1 and Cr = Cr − 1.

5. Repeat the step 2 to step 4 for 1000 times. Calculate performance accuracy

pa = Cr
1000−Cn .

We did four sets of experiments on GridWorld problem. The first two sets of

experiments are designed to qualitatively show the learned reward function and its

influence on policy, value function and goals. Then we compute the performance

accuracy pα to quantitatively compare the performance of our method with several

prevailing IRL algorithms.

Qualitative evaluation - part of goals being observed

A set of experiments are conducted given the observation that includes partial goal

states. We directly show the policy in Figure5.4 (a), (b) and (c). In the Figure5.4 (a),

we see that the true reward function directs the agent to reach the goal states marked

at the positions (1, 10), (10, 1) and (10, 10). The observation data only contains 50%

of states and has missed the goal state (10, 1). For the learned reward function, we

show its best policy in Figure5.4 (b) for LIRL and (c) for MMIRL, display the value

function for the best policies respectively in Figure5.4 (d), (e) and (f). The policy

maps show that the best policy output by our learned reward function in Figure5.4

(c) is more similar as the true policy than the result displayed in Figure5.4 (b). The

proofs can be found in the arrow manifold and the number of and position of estimated

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 106

goal states3 . A comparison of the plots of value functions reveals more evidence that

our learned reward approaches more closely to the true reward. From the color map

in Figure5.4 (e), it is apparent that the value function estimated by LIRL has high

values at many states, implying much more uncertainty on estimation of the goal.

Qualitative evaluation - goals not observed

In the second set of experiments, we simulate a condition in which the the true goal

states (Grid (1, 10), (6, 5) and (10, 10)) are completely unobserved. The percentage of

states observed is still 50%. Using the similar steps in the first experiment, we compare

the best policies output by learned reward function and their value functions.

Figure5.5 displays the convergence rate for two sets of experiments respectively.

As an illustration of goal and the actions taken to reach the goal, Figure5.6 (a),

(b), and (c) show the best policy output by RL using the ture or recovered reward

function. It is clear that MMIRL has less noise in goal estimation, and its policy

map, drawed by directed arrows, is more similar as the true policy map than that of

LIRL. Figure5.6 (d), (e) and (f), displaying the value functions, confirm that MMIRL

is better at capturing the goal with incomplete observations. In comparision with the

energy map of true value function, MMIRL provides a map with more accurate shape

and energy distribution.

Quantitative evaluation

The third set of experiments are conducted to compare the IRL algorithms using

performance accuracy pα. Besides the settings mentioned in the previous two sets

of experiments, we also consider the performance with respect to varying number

3The goal states are denoted as asterisks in the figure.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 107

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

(a) True policy map

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

(b) Policy map by LIRL

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

(c) Policy map by MM IRL

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

30

40

50

60

70

80

90

(d) True value function

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

60

80

100

120

140

160

180

(e) Value function by LIRL

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10
60

70

80

90

100

110

120

130

(f) Value function by MM IRL

Figure 5.4: The arrows represent the optimal moving actions selected at each state

and the circle denotes the destination place.

of observations. The number of observations obtained through decision trajectories

depend on two parameters: the number of trajectories H and the length of horizon

stage T .

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 108

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

(a) First experiment

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

(b) Second experiment

Figure 5.5: The convergence plot: ‖rt+1 − rt‖ as a function of iteration step t.

Since the GridWorld example we studied is a 10× 10 square field, we set a fixed

length of horizon stages T = 10 while comparing IRL algorithms in the third set of

experiments. So the number of observations is completely specified by H4. In this

4The success of applying IRL algorithms based on the conception of feature expectation is more

tricky than we first thought, which depends on both the number of trajectories H and the horizon

length T . Further study shows that the horizon length T has more influence on the algorithm

performance. It is reasonable because when the horizon is relatively larger than the problem size,

we will arrive at the goal state almost sure. Consequently, the larger the horizon is, the more

probable we will observe the true goal in every trajectory, and the weights in calculation of feature

expectation will increase more heavily. Since we may observe true state every time and assign more

weights to the goal state, the advantage of using IRL for goal inference diminishes. Therefore, it is

more useful to set the horizon length short in the small problem, to make the observation incomplete.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 109

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

(a) True policy map

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

(b) Policy map by naive mimic IRL

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

(c) Policy map by MMIRL

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

110

120

130

140

150

160

170

180

190

(d) True value function

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10 300

310

320

330

340

350

360

370

380

390

(e) Value function by naive mimic IRL

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

25

30

35

40

45

50

55

(f) Value function by MMIRL

Figure 5.6: The arrows represent the optimal moving actions selected at each state

and the circle denotes the destination place.

experimentation, when H is in the range (12, 15), the number of observed states is

around 50% of the size of the state space. With the consideration of randomness in

sampling, we run 50 replications of learning to get the averaged performance accuracy

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 110

0 5 10 60 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sampled decision trajectories

P
e

rf
o

rm
a

n
c
e

 a
c
c
u

ra
c
y

PROJ

WMAL

LIRL

MM

MMsub

50% obs area

Figure 5.7: Plot of performance accuracy with respect to the number of sampled

decision trajectories.

for a given H. The results with respect to performance accuracy pα are shown in

Figure5.7.

The fourth set of experiments aim to show that our method performs much better

than the prevailing IRL algorithms when the horizon length of the sampled decision

trajectories is small. In Figure5.8, we show the performance accuracy with different

settings of horizon length, such as T = 6, 12, 15, and 50. It is obvious that our

method, MMIRL, provides higher performance accuracy than other IRL algorithms

while T is small. The PROJ and WMAL, which is based on feature expectation, fails

to identify the reward functions until the horizon length T becomes larger than 15.

Table 5.1 lists the observation rate5 as a function of horizon length, which is

calculated by 1000 times of simulations. We have observed that the observation rate

is mainly determined by the number of samples, rather than the horizon length. But

the goodness of feature expectation heavily depends on the horizon length, since the

long sampling length will make the goal state observed for many times, and then

5The observation rate denotes ratio of observed states to all the states in state space.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 111

0 5 10 60 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sampled decision trajectories

P
e
ro

fr
a
m

c
n
e
 a

c
c
u
ra

c
y

PROJ

WMAL

LIRL

MM

MMsub

Samples’ Horizon
Length T =6

(a) T=6

0 5 10 60 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sampled decision trajectories

P
e
ro

fr
a
m

c
n
e
 a

c
c
u
ra

c
y

PROJ

WMAL

LIRL

MM

MMsub

Samples’ Horizon Length T=12

(b) T=12

0 5 10 60 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sampled decision trajectories

P
e
ro

fr
a
m

c
n
e
 a

c
c
u
ra

c
y

PROJ

WMAL

LIRL

MM

MMsub

Samples’ Horizon Length T = 15

(c) T=15

0 5 10 60 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sampled decision trajectories

P
e
ro

fr
a
m

c
n
e
 a

c
c
u
ra

c
y

PROJ

WMAL

LIRL

MM

MMsub

Sample’s Horizon Length T = 50

(d) T=50

Figure 5.8: Plot of performance accuracy with respect to the number of sampled

decision trajectories.

add more weights to the goal states. This property will restrict the applicability of

algorithms based on feature expectation in real-world problems where the access to

observation is restricted. For the 10 × 10 GridWorld problem, when H ≥ 15, the

feature expectation approaches to the true goal function. Consequently, our method

is more useful when the access to observation is restricted, e.g. a few number of

short-length decision trajectories.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 112

Table 5.1: Observation rate

T
Number of sampled decision trajectories - H

1 3 5 6 9 10 15 25 40 60 80 100

10 0.1 0.22 0.27 0.28 0.4 0.46 0.52 0.63 0.73 0.86 0.86 0.96

12 0.09 0.17 0.39 0.29 0.41 0.46 0.5 0.64 0.86 0.88 0.9 0.95

13 0.06 0.19 0.28 0.37 0.35 0.48 0.46 0.58 0.8 0.87 0.88 0.92

15 0.1 0.19 0.23 0.36 0.41 0.49 0.54 0.74 0.77 0.94 0.99 0.98

50 0.01 0.17 0.21 0.18 0.38 0.58 0.49 0.51 0.8 0.86 0.88 0.97

5.4.2 Mountain car problem

We operate the second experiment on the simulation of an under-powered car that

aims to reach a hill top (See Figure5.3(a)). The difficulty is that the gravity of the

car is stronger than its engine, so the car must goes back and forth to gain enough

momentum to arrive at the destination - hill top. Mountain car problem can be well

solved by RL algorithms, such as SARSA [74, 75]. The state of this problem can

be described by two continuous variables, car position x and its speed ẋ, which are

constrained to −1.5 ≤ x ≤ 0.55 and −0.07 ≤ ẋ ≤ 0.07 respectively. The action

consists of three countable values (forward, keep and backward). The true reward

function is a Gaussian distribution function whose mean position is at the position

of hill top.

In our experiments, we convert the continuous state into finite discrete state by

applying grid discretization of state space. E.g. a 20 × 6 grid will provide a state

space with 120 states. Given the predefined reward function, using SARSA, we are

able to find the optimal policy to drive the car up the hill top. We call the driver an

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 113

expert, if he/she knows the optimal policy. The IRL problem here is that if we have

some incomplete observation of the expert, are we able to infer the goal of the expert

and learn his/her skills to drive up the car?

We sample a set of short decision trajectories and use IRL algorithms to learn the

reward function from these observations. Once the reward function is determined,

we can find the optimal policy by SARSA or other DP algorithms based on a MDP

with estimated transition probabilities. The quality of learned reward function is

determined by the best policy output by the RL/DP algorithms using this reward

function. A learned reward function is considered as correct if its best policy is able

to drive the car up the hill top. Otherwise we say the IRL method fails to identify

the true reward function.

In the experiments, the state transition probabilities are estimated from the de-

cision trajectories and then used as a prior. When the horizon length of a decision

trajectory T = 50 and the number of trajectory H = 500, experimental results show

that PROJ, WMAL, LIRL all fail to learn a correct reward function6. But our method

is able to infer a good reward function that drives the car up the hill top. The results

are summarized in Figure5.97. The second set of experiments studies the performance

of reward function on Q-learning algorithms with unknown dynamics, e.g. SARSA.

Our method is also the only one that is able to infer the correct reward function.

Figure5.10 draws the number of steps the car has taken to reach the destination.

6The observation rate is near 90%
7Some videos, recording the car’s behavior determined by these recovered reward functions, are

available at http://people.virginia.edu/ qq2r/mcarvideo.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 114

1 2 3 4 5 6 7 8 9 10
200

300

400

500

600

700

800

900

1000

Observation rate

N
u

m
b

e
r

o
f

s
te

p
s
 t

o
 g

o

Figure 5.9: Plot of number of steps the car used to reach the goal vs. the observation

rate.

0 50 100 150 200 250 300
0

200

400

600

800

1000

episodes

n
u

m
b

e
r

o
f

s
te

p
s
 t

o
 g

o
a

l

0 50 100 150 200 250 300
0

200

400

600

800

1000

episodes

n
u

m
b

e
r

o
f

s
te

p
s
 t

o
 g

o
a

l

SARSA with true reward function

SARSA with estimated reward by MM

Figure 5.10: Plot of number of steps the car used to reach the goal.

5.4.3 Secretary problem

Secretary problem is a class of optimal stopping sequential decision tasks in which

the binary decision to either stop or continue a search is made on the basis of objects

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 115

already seen [76]. The study of secretary problem is to prove the hypothesis that

in the framework of modeling decision making process by MDP, the learned reward

function is able to capture the heuristic decision rule behind the observations of

decision trajectories (See our work in [63]). Note that the decision makers in secretary

problem are not required to follow MDP model.

In the archetypal problem, there is a job vacancy with a pool of applicants. Appli-

cants are interviewed sequentially, one by one, in a random order. At the conclusion

of each interview, the employer has to make a decision to accept or reject the ap-

plicant, with no opportunity to recall a rejected applicant. The interview process is

terminated once an applicant is accepted.

Based on the study by Seale [76], many decisions in secretary problem can be

explained by the following heuristic decision rules

• A cutoff rule: With a cutoff value h, the DM will reject the first h − 1 appli-

cants and then accept the next candidate. The cutoff decision rule includes the

optimal policy as a special case.

• A successive non-candidate counting rule: With a parameter value k, the DM

will accept the first candidate who follows k successive non-candidate applicants

since the last candidate.

• A candidate counting rule: The DM selects the next candidate once there have

been l different candidates interviewed.

These decision rules all assume a single counter as the parameter but differ from each

other in what will be counted. The dependency of the parameters are on the value of

how many applicants have been interviewed.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 116

Each of decision rules was evaluated for the secretary problem with 80 applicants.

The simulation of decision strategy was carried according to the process described in

[76]. We briefly summarize this process in Alg. 11. Each possible variant of decision

rule with a specific parameter value (cutoff value h or non-candidate applicants k) was

replicated 10, 000 times to obtain an estimate of its accuracy. This accuracy means

that how many times the decision maker can find a correct secretary, given a specific

decision rule. The simulation results indicate that different decision strategies have

different shapes of accuracy curves that are plotted in a function of the rule parameter

(See Figure5.11).

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Cutoff Rule

Non−candidate Rule

Figure 5.11: Plot of decision rules: cutoff rule and non-candidate rule

We study Secretary problem here because it is a sequential decision making prob-

lem widely existing in many practical areas, and it is more important that the simu-

lated human agent, who adopts any of the three heuristic decision rules, behaves out

of MDP rational property’s constraints. Therefore, we aims to test whether our IRL

method can recognize the decision strategy even when the decision making process

is not in MDP world. Technically, to apply IRL algorithms, we model the observed

behavior using MDP and learn the reward function of this MDP which is considered

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 117

Algorithm 11 Heuristic decision rule simulation

1: Set the number of applicants N .

2: for Set parameter value 1 to N − 1 do

3: for Repeat 1 to 10, 000 do

4: Generate a set of N applicants randomly.

5: while Interview continues do

6: Present applicants to the decision rule one at a time in a random order.

7: if Applicant is a candite and meets the criteria of the decision rule then

8: Applicant is selected and interview is over.

9: else

10: Interview continues.

11: end if

12: if All the applicants have been interviewed then

13: Accept the last applicant and interview is over.

14: end if

15: end while

16: Reveal the rank of applicants.

17: if The selected applicant is top ranked then

18: We call a correct selection and accuracy counting C = C + 1.

19: end if

20: end for

21: The accuracy of correct selection is estimated by C
10000

.

22: end for

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 118

as a coding of the decision strategy. The experimental process includes:

1. Simulate the given number of interviewing examples using Alg. 11. Note that

we only sample the behaviors in these examples, rather than computing the

selection accuracy.

2. Model the interviewing process using MDP and apply IRL algorithms to esti-

mate the reward function.

3. Generate a new set of 10000 interviewing problems with random applicants.

Run forward planning with the reward function recovered in the previous step.

Solve these interviewing problems according to the best policy output by the

forward planning. Calculate the selection accuracy.

0 40 80
0

0.2

0.4
H =1

0 40 80
0

0.2

0.4
H =5

0 40 80
0

0.2

0.4
H =10

0 40 80
0

0.2

0.4
H =20

0 40 80
0

0.2

0.4
H =50

0 40 80
0

0.2

0.4
H =100

0 40 80
0

0.2

0.4

H =200

0 40 80
0

0.2

0.4

H =600

0 40 80
0

0.2

0.4

H =1000

0 40 80
0

0.2

0.4

H =1500

0 40 80
0

0.2

0.4

H =2000

0 40 80
0

0.2

0.4

H =5000

Figure 5.12: Plot of LIRL’s selection accuracy vs the cutoff parameter

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 119

0 40 80
0

0.2

0.4
H =1

0 40 80
0

0.2

0.4
H =5

0 40 80
0

0.2

0.4
H =10

0 40 80
0

0.2

0.4
H =20

0 40 80
0

0.2

0.4
H =50

0 40 80
0

0.2

0.4
H =100

0 40 80
0

0.2

0.4

H =200

0 40 80
0

0.2

0.4

H =600

0 40 80
0

0.2

0.4

H =1000

0 40 80
0

0.2

0.4

H =1500

0 40 80
0

0.2

0.4

H =2000

0 40 80
0

0.2

0.4

H =5000

Figure 5.13: Plot of MMIRL’s selection accuracy vs the cutoff parameter

A comparison of accuracy curves between the heuristic decision strategy and

learned MDP reveals that IRL method can be applied to identify the decision strat-

egy. It can been seen from the comparison between Figure5.12 and Figure5.13 for

cutoff heuristic decision rule, and the comparison between Figure5.14 and Figure5.15

for noncandidate heuristic decision rule8, that our method, given incomplete observa-

tions, approximates the true decision strategy better than IRL algorithms based on

linear approximation without aid of the state knowledge.

8Here we only show the results of experiments in which the number of applicants N = 80. Because

the replicate experiments with varied N show that the problem size does not affect performance

report.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 120

5.5 Conclusion

We propose an IRL framework that utilizes the philosophy of MM optimization tech-

niques to deal with the question of learning with the help of unobserved information.

The traditional IRL algorithms gain the information from observation of action on

state, while if the number of observations is small, the performance of recovering a

good reward function degrades severely. Like the idea of semi-supervised learning

in machine learning field, we expect to reduce the uncertainty by mining more in-

formation from the unobserved states. At the same time, we solve the question of

how to use IRL with incomplete and suboptimal observation. First, we developed

the maximum likelihood formulation for incomplete observation with the constraints

to guarantee the true of observation. Then, we built optimization problems using

MM techniques to solve IRL with incomplete and suboptimal observation. Finally,

we prove the convergence of our proposed method and conduct experiments to show

the effectiveness in comparison with prevailing IRL algorithms.

Chapter 5. Semi-supervised Inverse Reinforcement Learning using MM 121

0 40 80
0

0.2

0.4

H =1

0 40 80
0

0.2

0.4

H =5

0 40 80
0

0.2

0.4

H =10

0 40 80
0

0.2

0.4

H =20

0 40 80
0

0.2

0.4

H =50

0 40 80
0

0.2

0.4

H =100

0 40 80
0

0.2

0.4

H =200

0 40 80
0

0.2

0.4

H =600

0 40 80
0

0.2

0.4

H =1000

0 40 80
0

0.2

0.4

H =1500

0 40 80
0

0.2

0.4

H =2000

0 40 80
0

0.2

0.4

H =5000

Figure 5.14: Plot of LIRL’s selection accuracy for the non-candidate decision rule.

0 40 80
0

0.2

0.4
H =1

0 40 80
0

0.2

0.4
H =5

0 40 80
0

0.2

0.4
H =10

0 40 80
0

0.2

0.4
H =20

0 40 80
0

0.2

0.4
H =50

0 40 80
0

0.2

0.4
H =100

0 40 80
0

0.2

0.4
H =200

0 40 80
0

0.2

0.4
H =600

0 40 80
0

0.2

0.4
H =1000

0 40 80
0

0.2

0.4
H =1500

0 40 80
0

0.2

0.4
H =2000

0 40 80
0

0.2

0.4
H =5000

Figure 5.15: Plot of MMIRL’s selection accuracy for the non-candidate decision rule.

Chapter 6

Decision Strategy Recognition in Reward

Space

In this chapter, we study the use of inverse reinforcement learning (IRL) as a tool

for the recognition of decision agents on the basis of observation of their actions in

solving sequential decision problems. We model the problem faced by the decision

agents as a Markov decision process (MDP) and model the observed behavior of the

agents in terms in terms of degrees of rationality with respect to optimal forward

planning for the MDP. To recognize the agents, we first use IRL to learn reward

functions consistent with observed actions and then use these reward functions as the

basis for clustering or classification models. Experimental studies with GridWorld, a

navigation problem, and the secretary problem, an optimal stopping problem, suggest

reward vectors found from IRL can be a good basis for classifying automated decision

rules (e.g., cutoff rule, successive first candidates), even in the presence of action

noise and variations in the parameters of the rule. We propose a new Bayesian IRL

approach in which the likelihood function can be interpreted in terms of rationality

models. Empirical comparisons of our method with several existing IRL algorithms

122

Chapter 6. Decision Strategy Recognition in Reward Space 123

and with direct methods that use feature statistics observed in state-action space

suggest it may be superior for recognition problems.

6.1 Introduction

6.1.1 The decision strategy recognition problem

In sequential decision problems, the forward planning problem is one in which an

agent seeks to find a decision strategy that yields a sequence of actions that achieve

a given goal. The inverse process, which is sometimes called plan or goal recognition,

is to infer the goal of an agent on the basis of observations of its actions [77, 78, 79].

Much of the existing work on plan recognition uses plan libraries that represent sets of

alternative plans for solving domain-specific problems, and thus has a primary focus

that independent of the method used for planning. More recent work has proposed

the idea of solving the plan recognition problem using decision-theoretic planning

models [10, 79].

Models for inferring the goals of decision makers as part of plan recognition or

inverse decision theory have been the subject of considerable research in cognitive

and psychology science (see, e.g., [80, 10, 81]). To take an example, it has been

shown that before 18 months of age, children have difficulty in understanding the

subjective nature of intentions [82], but two-year-olds readily recognize when another

person holds a preference similar to their own and achieves desired outcomes using

the shared preference [83]. Varieties of experiments on children and adults prove

the effectiveness of some computational models for how people infer others’ goals or

preferences as a kind of inverse planning or inverse decision theory. Most such models

Chapter 6. Decision Strategy Recognition in Reward Space 124

have been developed on the basis of optimal control theory or theory of planning under

uncertainty, using the principle of rational behavior. Rationality is also at the heart

of the classical theory of mind [14] in which agents choose actions that achieve their

desires through maximization of expected utility. Under such a framework, the goals

or preferences of a decision maker can be inferred from observation of actions; the

decision maker’s utility function must have the property that the set of actions that

maximize it in expectation include the observed behavior as a subset.

The IMDP problem defined in Chapter 2 can be considered a generalization of

the plan recognition problem. The forward planning problem of achieving a goal,

such as reaching a particular cell in GridWorld, can be modeled as an MDP with a

restricted reward function (e.g., reward everywhere zero except positive at an absorb-

ing state corresponding to the goal). In such a case, the goal recognition problem

could be solved using an IRL formulation with side constraints to ensure the learned

reward function has the desired structure. IMDP can be addressed using IRL without

side constraints, and so much be a generalization of the restricted, goal recognition

problem.

We now define a problem that is related to but distinct from goal recognition and

IMDP.

Definition The decision strategy recognition problem is to identify the patterns of

the decision rules that determine the sequential behavior observed in a particular

environment.

The assumption is that each agent has adopted a decision rule that is hidden from

the observer. Thus, the recognition problem can be framed as a supervised or unsu-

pervised learning problem:

Chapter 6. Decision Strategy Recognition in Reward Space 125

1. Given observations of decision trajectories consisting of sequential actions and

given a label for each trajectory indicating which decision strategy was used by

the agent, the problem is to determine the decision strategy for an unlabeled

trajectory.

2. Given only observations of the decision trajectories, the problem is to assign

trajectories to clusters on the basis of similarity of decision strategy.

We propose an IRL-based approach to the decision strategy recognition problem.

Figure6.1.2 interprets the tasks of clustering and classification. In sub-figure (a), the

input data consists of behavior observed from the agents, and for each agent the

IRL learns his/her reward function, which is denoted by x. Finally, the agents have

been grouped according to their reward functions. Similarly, in sub-figure (b), every

agent’s reward function has been recovered and input into the classifier for training

or testing. The training set of agents have labels indicating the decision rule they

have adopted.

The agents in our study are meant to model human decision makers as well as

machine agents that automatically plan and choose actions. We model the problem

faced by the decision agents as a Markov decision process (MDP) and model the

observed behavior of the agents in terms of degrees of rationality with respect to

optimal forward planning for the MDP. To recognize the agents, we first use IRL to

learn reward functions consistent with observed actions and then use these reward

functions as the basis for clustering or classification models. Adopting a Markov

Decision Process (MDP) framework, we use variables of state and action to represent

the environment and characterize the individual agent using its belief of environmental

dynamics and the reward function that is assumed to encode the goals.

Chapter 6. Decision Strategy Recognition in Reward Space 126

IRL depends on the principle of rationality and optimizes the reward function by

minimizing a cost function of observation. It is more difficult to learn the reward

function from the given behavior than forward planning, because the inverse problem

is ill-posed. We propose the new IRL algorithm to reduce the ill-posed uncertainty

and infer the reward function adaptively when the observed behavior is not strictly

rational.

6.1.2 The secretary problem

In this section we introduce the secretary problem which, with GridWorld, is the sub-

ject of numerical experiments described later in the chapter. Secretary problem has

been introduced in Chapter 5. Here we review this problem and show its assumptions.

In the classical problem N rankable objects (job candidates, alternatives) appear se-

quentially and randomly, before a decision maker who has to accept or reject the

object on the basis of rank relative to the objects already seen. Time is assumed to

be discrete and the number of objects N is known. The goal of the decision maker is

to maximize the probability that the item accepted is, in fact, the best. The secretary

problem with uncertainty (SPU) is formulated in terms of the following assumptions:

1. The number of applicants is finite and known before solving this problem.

2. The applicants are interviewed sequentially in a random order.

3. There is only one position to be filled

4. At every interview, the interviewer has to make a decision whether to accept or

reject the applicant based on the relative ranking of current applicant. Once the

applicant is accepted, the problem is over. Otherwise the problem continues.

Chapter 6. Decision Strategy Recognition in Reward Space 127

(a) (b)

Figure 6.1: (a) clustering (b) classification

When the last applicant comes, the interviewer has to accept him/her. The

rejected applicant can not be recalled.

5. The interviewer receives the reward if the best applicant is selected, otherwise

no reward.

Though these assumptions place more constraints on the problem than apply in prac-

tice, they make a good example to explain the decision process numerically.

Using SPU as a study case, it is important that we do not add constraints to

the agents that their actions are determined in MDP. In fact, the behavior we have

observed in experiments are the results of using the heuristic decision rules, which

are completely not related to MDP and the rationality assumption. However, we

model the observed behavior in MDP and have successfully recognized the decision

rule within the inverse MDP framework. By doing varieties of experiments, we have

shown IRL method’s superiority to other methods in the tasks of prediction, clustering

and classification.

Chapter 6. Decision Strategy Recognition in Reward Space 128

6.1.3 Bayes inverse learning

The Bayesian expected reward provides a way for us to evaluate the learned reward

function, which is introduced in the following definition.

Definition The Bayes inverse learning principle

Given an observation of action a at state sn, a reward function with distribution θ(r)

is feasible if it satisfies

ρ(θ(r), sn, a) > ρ(θ(r), sn, â) ∀â ∈ A \ a.

Remark We design an IRL rule that the optimal reward is to minimize a Bayes

risk L((ρ(θ(r), sn, a) − ρ(θ(r), sn, â)). The risk L(ρ(θ(r), sn, a) − ρ(θ(r), sn, â))) =

L(Q(sn, a|r = Eθ(r)(r)) − Q(sn, â|r = Eθ(r)(r))). This risk function should penalize

the positive difference between Q(sn, a|r = Eθ(r)(r)) and Q(sn, â|r = Eθ(r)(r)).

Definition The principal of satisfying behavior

Given observations O = {Oh : (s0, a0, · · · , st, at)h}, where h ∈ {1, 2, · · · , H} and t

is the length of the trajectory. Given the same problem, a decision satisfies the

observation O, if its output action am at state sn is contained in the set of actions

observed at sn.

A solution to the IRL problem B outputs satisfying behavior in forward planning.

The decision strategy behind the observed behavior has been represented by this

recovered reward function.

6.2 Action Space and Goal Space

To solve the behavior recognition problem, the common approach is to process the

observation data and formulate a feature vector on the basis of the observation, which

Chapter 6. Decision Strategy Recognition in Reward Space 129

we call learning in action space. E.g. there are five alternative actions, and we can

build a feature vector by counting the frequency of utilization for each action. Here,

we analytically discuss the properties of action space in short and why we propose to

learn in goal space.

First, the action space is probably too large to describe in a finite set. The size of

feature space directly characterizing the decision behavior may increase exponentially

with the number of actions.

Second, there is no obvious approach to defining the action space, which varies

as the problems change. Moreover, recognition results heavily depends on how well

the features are constructed in the action space to represent and identify the decision

rules.

Third, the manual designed features in action space often ignore some part of the

decision process that can not be explicitly seen from the observation. The hidden

goal functions, which determines the actions implicitly, are not guaranteed to be

considered in the features of action space. It is like a relationship between rule-based

decision making and principle-based decision making. Modeling of decision making

using action is like to learn the decision making in the form of rule-based process,

while the goal function behind the observations plays a role as the principle that

influences the individual decision implicitly while giving a guarantee of reaching the

objective state in the long run. As a result, the action space may be sensitive to

noise for representation of the agents, while the goal space is more robust in this

perspective.

Chapter 6. Decision Strategy Recognition in Reward Space 130

6.3 Computational Framework

Our proposed computational framework formalizes the behavior recognition problem

as Bayesian inverse learning of MDP. We consider two practical scenarios: the first

condition is that the observation is given one at a time, providing an explicit action

at current state. Therefore, the observer has the option of making a decision now or

waiting more observations; the second condition is that a number of sampled behavior

trajectories are ready for the observer at the beginning.

6.3.1 On-line inference

Given a sequence of observations, denoted as Oh = (s0
h, a

0
h, s

1
h, a

1
h, · · · , sth, ath), the

Bayesian inference of goal function is given by

p(r|Oh) =
p(s0

h, a
0
h, s

1
h, a

1
h, · · · , sth, ath|r)p(r)∫

r∈D p(s
0
h, a

0
h, s

1
h, a

1
h, · · · , sth, ath|r)p(r)dr

(6.1)

where p(s0
h, a

0
h, s

1
h, a

1
h, · · · , sth, ath|r) = p(s0

h|r)p(a0
h|s0, r)p(s1

h|s0, a0, r) · · · p(ath|sth, r). By

Markov property, this joint probability calculation is simplified by dropping the com-

ponents not containing the reward function, then the function becomes

p(r|Oh) ∝
t∏
i=0

p(ai|si, r)p(r) (6.2)

In this equation, p(ai|si, r) is the likelihood function of choosing the action observed

in the forward planning. The prior p(r) sets up a hypothesis space of goals that

are realizable in the environment, and it can be uninformative prior as a uniform

distribution. The Bayes’ rule integrates the exterior information from observed be-

havior and the inner constraints from the prior to infer the reward. When we have no

prior information on the possible goals, the problem is solved by Maximum-likelihood

methods. Our previous study shows that Bayesian inference with Gaussian prior is

Chapter 6. Decision Strategy Recognition in Reward Space 131

1 2 31
s

2
s

3
s

t
s. . .

1 2 3 1 t t1
a

2
a

3
a

1t
a t

a
. . .

. . .

rGoal !

makerDecision makerDecision

(a)

1 2 3 t1
s

2
s

3
s

t
s. . .

1
a

2
a

3
a

1 t
a t

a
. . .

a

1
r

1
r

2
r

i
r

i
r. . .

rGoal !

kD i i makerDecision

(b)

1 2 31
s

2
s

3
s

t
s. . .

1 2 3 1 t t1
a

2
a

3
a

1t
a t

a
. . .

1 2 3 1 t t. . .1
r

2
r

3
r

1t
r

t
r

. . .

rGoal !

makerDecision makerDecision

(c)

Figure 6.2: Stationary and Changing reward structure

an effective and tractable method for IRL in both finite and continuous domains [51],

particularly being superior to other algorithms when the number of observations is

small.

To formulate the likelihood function p(r|Oh), we should make the principle of

satisfying behavior true in the formulation. This requirement adds a set of constraints

in the settings of MDP, which means that at every state observed in O, the reward

function should be feasible. According to the Bayes inverse learning principle, we

have, ∀(si, ai) ∈ Ot, a ∈ A \ ai,∀r ∈ D, Q(si, ai) ≥ Q(si, a). Another concern we

have is whether the observed agent’s goals change over the course of making decisions.

Figure6.2 interprets three kinds of reward functions: (a) is the deterministic reward

function that is completely known and employed by the decision maker until the

end of the process (denoted as R1), (b) is the reward representing the agent who

Chapter 6. Decision Strategy Recognition in Reward Space 132

changes the goal in the observation process (denoted as R2), and (c) is that the

underlying reward does not change but the agent’s perception of it varies noisily in

the observation process (denoted as R3). The Eq. 6.2 has already modeled R1 and

we modify it for R2 by introducing a parameter λ ∈ (0, 1]. With λ = 1, goal changing

is prohibited, and R2 is equal to R1. The setting of λ close to 1 implies that the past

and the recent observations are weighted equally in the inference. With λ close to 0,

the mode R2 consider that the reward changes frequently, and only the most recent

observation factors into the inference. The modified equation is written as

p(r|Ot) ∝
t∏
i=1

λt−ip(ai|si, r). (6.3)

The element of the above equation, p(ai|si, r), is calculated in two ways. We

discuss them in the following sub-sections.

6.3.2 Existing IRL for rational behavior

With the assumption that the observed behavior modelled by using MDP is determin-

istic and optimal, we have the existing IRL algorithms like the linear IRL(LIRL) in

[2], WMAL in [23] and PROJ in [84]. These algorithms consider the reward function

as a linear formulation which is written as

r(s) =
d∑
i=1

ωiφi(s) = ωTφ(s),

where φ : S → [0, 1]d and ωT = [ω1, ω2, · · · , ωd]. Then using the observed decision

trajectories, apprenticeship learning algorithms aim to find a policy that performs as

well as the observation by comparing a metric called feature expectation defined as

µ̂πE =
1

H

H∑
h=1

∞∑
t=0,st∈Oh

γtφ(st).

Chapter 6. Decision Strategy Recognition in Reward Space 133

Feature expectation can be considered to be a measurement in state-action space.

We can use feature vectors to represent the observed agent and then recognize them

in action space (This method is called as Action or Action Feature).

In [51], a Bayesian inference model adopts the likelihood function that is

p(a|s, r) =


1, if Q(s, a) > Q(s, â), â ∈ A \ a

0, otherwise.

Consider Gaussian prior over the reward function which has mean vector µr and

covariance matrix Σr. It has been proved that the IRL problem is a quadratic convex

programming, yielding

min
r

1

2
(r− µr)

TΣ−1
r (r− µr)

s.t. (Pa∗ −Pa)(I− γPa∗)
−1r ≥ 0, ∀a ∈ A \ a∗

rmin < r < rmax,

where the optimal transition matrix Pa∗ is constructed by approximate observation

rule. At state sn, the transition probabilities are defined as

Pa∗(sn, :) =

 Pm(sn, :) if (sn, am) ∈ O

1
M

∑M
m=1 Pm(sn, :) if (sn, am) 6∈ O.

Boltzmann distribution

Consider the case showed in Figure6.2 (c) that the reward is understood and used in

the noisy perception. Boltzmann distribution can be adopted to model the decisions

that are made in a learning process. The likelihood function based on this is written

as follows.

max
N∑
n=1

[
∑

a∈Û(sn)

βQ(sn, a)− cn log
M∑
m=1

eβQ(sn,am)] + log p(r) (6.4)

Chapter 6. Decision Strategy Recognition in Reward Space 134

where Û(sn) is a collection of observed actions at state sn, and cn =
∣∣∣Û(sn)

∣∣∣ is the

frequency weighting of observation at sn. Note that in practice, many problems have

infinite state space. It motivates us to adopt IRL algorithms being capable to learning

with finite observations in large space. We propose to use the IRL method in [85].

Here, we give a summary of that method in the following subsection.

IRL with Gaussian process

The key idea of the method in [85] (GPIRL) to deal with the ill-posed difficulty em-

ploy the techniques of preference learning in the intersected field of machine learning

and decision making. The basis argument is that Bayesian inferences should be an un-

derstanding of the observed agent’s preferences over the action space. The argument

complies with the principles of ToM.

First, GPIRL uses preference graph to represent the observed behavior at a state.

A graph consists of nodes and edges. Each node indicates an action and each edge

represents a preference relation at a state. The observed action is considered to

be preferred to other unobserved actions. Given a set of decision trajectories, we

transform the observation at a state into a preference graph.

Second, the reward is modeled by using Gaussian process, which is completely

specified by a positive definite covariance matrix. A simple strategy is to assume that

the latent processes are uncorrelated and the convariance matrix is calculated by using

a squared exponential kernel function. With the likelihood function defined in MDP

settings, a Bayesian inference is conducted to obtain the optimized reward functions

by maximizing the posterior probability function. Since the hyper parameters, such as

the parameters of kernel function, are unknown, appropriate model selection methods

Chapter 6. Decision Strategy Recognition in Reward Space 135

are employed to maximize the marginal likelihood function in order to obtain a trade

off between the model’s complexity penalty and the data fit likelihood.

Finally, the probabilistic model based on Gaussian process provides us a closed

form posterior prediction on the new state coming in the future.

6.3.3 Bounded rationality

In practice, the individual bias may creep into the decision making process and distort

the planning and decisions. The agent may also need to make decisions while being

lack of sufficient computation and memory resources. Therefore, some of observed

actions may not be consistent with the agent’s underlying goals. When we model the

behavior in MDP, these actions will violate the assumption that they are determin-

istic and completely rational in forward planning. As a result, the feasible reward

space defined by the observed behavior may exclude the true reward representing the

underlying goals.

In order to consider the reward in a larger feasible region, our model adopts the

assumption of bounded rationality. The bounded rational agent behaves as well as

possible based on its knowledge resources available. This means that the agent may

take a suboptimal action which provides a Q function that is smaller than the possible

maximum value but the difference is in a controlled range. Considering this require-

ment, we modify the IRL model by relaxing the constraints on observed behavior.

Moreover, we propose a new likelihood function that includes the parameters to con-

trol the degree of rationality and the rate of learning process. This new likelihood

Chapter 6. Decision Strategy Recognition in Reward Space 136

function, denoting the observation of an action at a given state, is written as

p(a|s, r) = (6.5)

1 +
∑M

m=1 g(∆Q(a, am))(1− e−β(∆Q(a,am))α)

M
,

where g(∆Q(a, am)) is a function to enable:
0 ≤ p(a|s, r) ≤ 1∑

a∈A p(a|s, r) = 1,

and the notation

∆Q(a, am) = Q(s, a)−Q(s, am)

= (Pa −Pam)V ∗.

Remark The notation V ∗ denotes the optimal value function. The α ∈ {1, 2}, which

denotes |∆Q(a, am)| and (∆Q(a, am))2 respectively. The function g(∆Q(a, am)) can

be defined as

g(∆Q(a, am)) =
∆Q(a, am)∑
a∈AQ(s, a)

.

Let us denote

δ1 = min
am 6=a

(Q(s, a)−Q(s, am)),

δ2 = max
am 6=a

|Q(s, a)−Q(s, am)| .

Then we have,

P {sup |p(a|s, r)− 1| > ε} −−−→
δ1→∞

0

P{sup |p(a|s, r)− 1

M
| > ε} −−−→

δ2→0
0.

Chapter 6. Decision Strategy Recognition in Reward Space 137

When δ1 goes infinity, the Q-function difference between the observation and the

next best action is very large. This is the strong evidence for observation data.

Consider the sub-optimal policy. The values of Q-functions are close to those of other

policies. When δ2 approaches zero, the differences between Q-functions are vary small.

It follows that the likelihood of observing the actions becomes a uniform distribution.

If an observed action is considered as optimal and contains more evidence, the value of

δ1 should be large and its likelihood is also large. So this observed action gains more

weighting factors during the inference. If an observed action is treated as suboptimal,

its Q-function will be close to others’, and its likelihood is smaller with less influence

on inference.

In summary, we state the problem formulation as:

Proposition 22 The problem of learning from observations with sub-optimal deci-

sions (we call SubIRL) is formulated as follows,

max C
t∑
i=1

εi + log p(r) +

∑
(s,a)∈O

log(1 +
M∑
m=1

g(∆Q(a, am))(1− e−β[∆Q(a,am)]2))

s.t. ∆Q(a, am) ≥ εi, ∀am ∈ A \ a (6.6)

rmin < r < rmax, εi ≤ 0, i ∈ 1, 2, . . . , t, t = |O|

Remark The parameter β and C are constants that can be tuned by employing cross-

validation. This method introduces slack variables εi, which measure the degree of

optimality of the observed behavior. The objective function in Problem 2 is increased

by a function that penalizes non-zero εi, with the relaxed constraints, which allows

the value function of the observed action is less than those of other actions. If we

Chapter 6. Decision Strategy Recognition in Reward Space 138

consider the constraints, which are difference of Q-functions with respect to actions

at a given state, as a measurement of the degree of belief in rationality, slack variables

make the bounded rationality possible. The optimization becomes a trade-off between

a large degree of belief and a small error penalty. The objective function not only

maximizes the posterior probability of the reward but also minimizes the Bayes risk

as a function of ∆Q(a, am).

If the sampled trajectories have some states unobserved, we can apply the approx-

imate observation rule to write Q functions. Or we can take an iterative algorithm

to learn the Q function and the reward function at the same time, which has been

shown well-behaved and effective of producing a well-defined solution in previous

studies [2, 86]. The iterative method is summarized in Algorithm 12 .

This algorithm has the following property.

Proposition 23 The SubIRL is a generalized optimization model, which can be ap-

proximated by Maximum likelihood IRL(MLIRL) using Boltzmann Distribution in [86]

and LIRL provided with the strict rationality assumption.

Proof Based on the rationality assumption, we have εi > 0. When the differ-

ence between the observed action and the second best action is maximized, we have

g(∆Q(a, am))→ 1. Let α = 1. Then the objective function of SubIRL is

max C

t∑
i=1

εi +
∑

(s,a)∈O

log(M + 1−
M∑
m=1

e−β∆Q(a,am)).

The maximization of the lower bound of above function is equal to

min
∑

(s,a)∈O

log(
M∑
m=1

e−β∆Q(a,am)).

Chapter 6. Decision Strategy Recognition in Reward Space 139

Algorithm 12 SubIRL

1: Input B = (M \ r, θ(r),O), where θ(r) consists of the Gaussian prior distribution

for the reward r. O is composed of the sequential observations.

2: Choose the initial reward function r0. Set c = 0 and v = Inf .

3: Set the initial optimal transition matrix P0
a∗ .

4: if s ∈ O then

5: P0
a∗(s, :) =

∑
(s,ai)∈O p(ai|s)Pai(s, :)

6: else

7: P0
a∗(s, :) =

∑
a∈A

Pa(s,:)
M

8: end if

9: while c ≤ Cmax or v ≤ ε do

10: Solve the optimization Problem 2, where

∆Q(a, am) = (Pa −Pam)(I − γPc
a∗)
−1r.

11: Compute the Bayesian expected reward Q(s, a|r = rc) and choose the policy

πc at the unobserved states.

12: Update Pc
a∗ and ∆Q(a, am).

13: c = c+ 1

14: v =‖ rc − rc−1 ‖.

15: end while

16: Output r = rc.

Chapter 6. Decision Strategy Recognition in Reward Space 140

Above equation can be further simplified into

min−
∑

(s,a)∈O

β ·Q(s, a) +
∑

(s,a)∈O

log
M∑
m=1

eβQ(s,am),

which is the likelihood function in MLIRL that uses Boltzmann distribution. In the

equation
∑M

m=1 e
βQ(s,am), let Q(s, a1) = maxm∈MQ(s, am), yielding

M∑
m=1

eβQ(s,am) ≤M · eQ(s,a1).

As we know the Q-function with discounted factor is bounded, written as Q(s, a) ≥

rmin
1−γ . We have eQ(s,a) ≥ e

rmin
1−γ . When e

(M−1)·rmin
1−γ ≥ M , the equation

∏M
m=2 e

Q(s,am) ≥

e
(M−1)·rmin

1−γ ≥M is true. Then, it follows that

M∑
m=1

eβQ(s,am) ≤
M∏
m=1

eQ(s,am).

The right equation is an upper bound of the left. Another relaxed formulation is

proposed as follows.

min−
∑

(s,a)∈O

βM ·Q(s, a) +
∑

(s,a)∈O

M∑
m=1

βQ(s, am),

which is essentially the similar form of the LIRL in [2] that assumes the deterministic

policy and maximizes the difference of Q-functions between the actions observed and

unobserved.

6.4 Case Study and Experiments

Now, we present the results from experiments on GridWorld and secretary problem.

The GridWorld problem gives insight into the tasks of goal inference and behavior

predictions for the agents that are simulated by forward planning of MDP model.

The secretary problem provides an environment in which the decision-makers are

Chapter 6. Decision Strategy Recognition in Reward Space 141

not based on MDP. Instead, the agents are imitating human behavior and they are

simulated by employing the heuristic decision rules from the experimental study of

human behavior in psychology and economics field.

About the behavior recognition including clustering and classification, we conduct

the experiments using the following algorithms.

1. Clustering: Kmeans [87].

2. Classification: Support Vector Machine (SVM) [88], K-nearest neighbors (KNN),

fisher discriminant analysis (FDA) and logistic regression (LR) [87].

In order to compare the clustering results, the following evaluation methods are em-

ployed:

1. Clustering Accuracy : The clustering accuracy is used to evaluate the final clus-

tering performance in [89]. Specifically, we have the ground truth labels on the

agents observed and know their true reward functions, but these are unknown

to the observer. The observer learns the reward functions using IRL algorithms,

and then relabel the agents observed using the clustering algorithms. Finally,

the evaluator knows the ground truth label and the assigned label. A popular

measure the evaluator can use is called clustering accuracy, which is to calculate

the classification error rate using

Accuracy =

∑n
i=1 δ(yi,map(ci))

n
(6.7)

where n is the number of examples, yi and ci denote the true category label

and the obtained cluster label of the agent. The function map(·) is a permuta-

tion function that maps each cluster label to a category label and the optimal

matching is found by the Hungarian algorithm [90]. It is clear that clustering

Chapter 6. Decision Strategy Recognition in Reward Space 142

accuracy measures the one-to-one matches between clusters. The greater the

clustering accuracy, the better the performance of the clustering algorithm.

2. Normalized Mutual Information (NMI): It is a quantity bounded in [0, 1], equal-

ing 1 when the two clusterings are identical, and 0 when they are independent. If

two clusters are independent, they share no information about each other. This

criteria has been applied in cluster analysis in [91, 92]. More specifically, for

two random variables, NMI is defined as NMI(X, Y) = I(X, Y)
√
H(X)H(Y).

The notation I(X, Y) denotes mutual information between X and Y , telling

how much knowing one clustering reduces the uncertainty about the other.

The notation H(X) and H(Y) are entropies of X and Y respectively. Given

two clustering results, we consider the clustering assignments as distributions

of random variables. E.g. we compare the ground truth label and the label

assigned by clustering algorithm. The NMI value is estimated as

NMI =

∑k
p=1

∑k
q=1 np,q log(n·np,q

np·nq)√
(
∑k

p=1 np log np
n

)(
∑k

p=1 nq log nq
n

)
(6.8)

where k is the number of clusters, np and nq refer to the number of agents

assigned to the pth and qth cluster respectively, and np,q represents the number

of agents shared by the pth and qth clusters.

To compare the experimental results in the task of classification, we adopt the

criteria of classification accuracy (ClassAcc). Specifically, given the ground truth

label and the predicted label, we have the number of labels predicted as true positive

(TP), false positive (FP), false negative (FN) and true negative (TN). Then, the

accuracy is calculated using ClassAcc = TP+TN
TP+TN+FP+FN

.

Now, we discuss the experiments one by one.

Chapter 6. Decision Strategy Recognition in Reward Space 143

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

B

AC

(a) Condition 1-1-A

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

C A

B

(b) Condition 1-1-B

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

C A

B

(c) Condition 1-1-C

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

C A

B

(d) Condition 1-2-A

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

C A

B

(e) Condition 1-2-B

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

C A

B

(f) Condition 1-2-C

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

C

A

B

(g) Condition 2-1-A

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

C

B

A

(h) Condition 2-1-B

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

B

A

C

(i) Condition 2-1-C

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

C

A

B

(j) Condition 2-2-A

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

C

A

B

(k) Condition 2-2-B

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

A

B

C

(l) Condition 2-2-C

Figure 6.3: All stimuli from Experiment 1. We vary the goal configuration by chang-

ing the location of the goal candidate marked with C, obstacle influence and path

trajectory.

Chapter 6. Decision Strategy Recognition in Reward Space 144

6.4.1 Grid world problem

GridWorld problem is used as a benchmark experiment by Ng and Russell in [2],

where the agent starts from a square and moves towards a destination square. The

agent has five actions to take, moving in four directions or staying put. The outcome

of an action succeeds in probability 0.65, fails to move in probability 0.15, or results

in random direction in probability 0.2.

The IRL problem of GridWorld is that of recovering the reward structure given

the observations of the moving behavior. It is obvious that the reward function in this

problem well encodes the goal of the agent. The agent will assign fewer or penalty

to the states where he/she is not going to. It is easy to build an autonomous agent

using MDP to move in the GridWorld. Then the observation data is collected by

sampling the autonomous agent’s behavior. Note that the true reward function is

used for simulation of autonomous agent, not known to IRL learner.

Using a 10× 10 GridWorld problem, we did three sets of experiments to illustrate

how to solve behavior recognition problems by employing IRL algorithms.

On-line goal inference

The authors in [93] conduct experiments on human beings’ goal inference, and their

results prove that the humans’ goal inferences in their experimental domains can be

explained as a process of inverse planning. This work provides quantitative evidence

that Bayesian inference using probabilistic model can explain the human goal infer-

ence effectively. Our first experiment, inspired by the experimental design in [93],

measures online goal inferences using IRL in response to animated stimuli of agents

moving to reach destination in GridWorld. The stimuli alters the environmental set-

Chapter 6. Decision Strategy Recognition in Reward Space 145

tings, such as the configuration of the destination, the agent’s moving paths and the

point at which the IRL learner’s judgments are collected. Given a problem, com-

paring the policy, which is output by forward planning with learned reward, tests

whether the observed agent’s goal has been captured by the IRL learner.

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(a) Condition 1-1-A

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(b) Condition 1-1-B

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(c) Condition 1-1-C

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(d) Condition 1-2-A

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(e) Condition 1-2-B

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(f) Condition 1-2-C

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(g) Condition 2-1-A

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(h) Condition 2-1-B

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(i) Condition 2-1-C

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(j) Condition 2-2-A

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(k) Condition 2-2-B

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Judgment point

P
(G

o
a

l|
O

b
s
e

rv
e

d
 B

e
h

a
v
io

r)

C

B

A

(l) Condition 2-2-C

Figure 6.4: IRL prediction on the goal in Experiment 1.

Figure6.3 illustrates all the settings of Experiment 11. They are different in three

1The sub-figure name, called condition x-y-Z, encodes the factors of environmental settings. The

Chapter 6. Decision Strategy Recognition in Reward Space 146

factors: goal configuration, obstacle shape and the agent path. We compare two goal

configurations. Only one of the candidate goals changes its location (In Figure6.3,

the goal marked with C changes). Every environment shown has a wall obstacle built

from the bottom. The line with a gap means a hole in the wall so that the agent can

pass through the wall. The simulated agent is moving in the GrodWorld with the

goal of arriving at one destination location.

The observed behavior is taken from an agent whose path is manually defined

with two choices. One choice is which goal the agent is heading toward, and the

other choice is whether the agent move around the obstacle or through it. The agent

always starts from the left bottom corner grid and follows the path defined. The IRL

learner is watching the agent online and infers its goal at the judgment points. In

replicate trials, we set the judgment points at every observation point. E.g. we have

an observed path with 10 states, then there are 10 judgment points where we infer

the goal according to states and actions already seen.

The procedure of our experiment includes simulation of a robot moving in the

GridWorld with manually defined path (See Figure6.3), simulation of an IRL learner

observing the robot’s behavior and modeling the solver to infer the robot’s goal at

the judgment points. Specifically, at each judgment point, a behavior recognition

problem B = (M \ r,G,O) is proposed, and a reward function for M is estimated by

the IRL learner. With the recovered reward function, the probability distribution of

notation x ∈ {1, 2} denotes the two kinds of goal configurations, y ∈ {1, 2} means that the agent

move around the obstacle if y = 1 or through the obstacle if y = 2, Z ∈ {A,B,C} represents the

goal to which the agent is heading.

Chapter 6. Decision Strategy Recognition in Reward Space 147

3 4 5 6 7 8 9 10 11 12

0

2

4

6

8

10

12

location

lo
c
a

ti
o

n Goal A

Goal C

Goal B

Figure 6.5: A Gaussian prior distribution with three possible goals

the goals is recalculated using

p(sn is Goal) =
exp(V (sn)|r)∑
si∈G exp(V (si)|r)

,

where G describes the possible goal candidates known as a prior, given in the form of

a set of states, or equivalently a Gaussian prior distribution. The Gaussian prior can

be defined by its mean functions indicating the states as possible goal candidates and

the variance function encoding the initial confidence. E.g. the mean vector of multi-

variate Gaussian prior defines its entries to be small quantities close to zero except the

entries representing the goal candidates that have a positive value one (See Figure6.5,

where the goal candidates are generated according to a Gaussian distribution).

Figure6.4 displays the results of using IRL to infer the goal from experiment 1.

Here, we analyze these results qualitatively. In general, the results prove that IRL

method estimates the goal very accurately across most conditions. Since the agent’s

behavior follows the pre-defined path, the observed behavior may be considered sub-

Chapter 6. Decision Strategy Recognition in Reward Space 148

(a) incomplete path

0 2 4 6 8 10

0

5

10

−5

0

5

10

15

20

(b) complete path

Figure 6.6: learned reward functions in condition 2-1-C, given observation of the goal

marked with C (b) or not (a).

optimal in MDP settings. Before the agent passes the obstacle, the inverse learning

algorithm assigns larger likelihood to the goal marked with C, because that potential

goal’s position is much more close to the trajectory and the action sequence is in the

subset of optimal policy for goal marked with C. Beyond the obstacle, IRL model

is able to identify the goal correctly. The distributions of the likelihood plotted in

Figure6.4 comply with the study of human being’s inference in [93].

Results on this side show that IRL method is also an effective model capturing

humans’ judgment and providing ”human-like” intelligence. It brings new advantages

for goal inference, in terms of employing a MDP model to explain and imitate the

behavior, evaluating the goal quantitatively with an estimation of the probability

distribution and dealing with the goals that change during observation. E.g. in

Figure6.3 Condition 1-2-A, the agent moves up in the left area of obstacle, toward

the goal marked with C, the learner has assigned the largest probability to C (See

Figure6.4 Condition 1-2-A). As soon as the robot changes its direction to the obstacle,

the learner turns uncertain about the possible goals. But after the robot passes

Chapter 6. Decision Strategy Recognition in Reward Space 149

through the obstacle and continues to east, the goal marked with B seems more

probable. Finally, with more observations, the goal marked with A becomes more

likely and clear, so the learner increases A’s probability and decreases the probability

of B and C.

Though most conditions are well solved by the IRL learner, condition 2-1-A and

2-1-C are difficult to solve if the observation is not long enough to include the goal

state. We see that the observer has great uncertainty to make decisions, since two

possible goal states have the same amount of reward. We are not surprised at this

difficulty because given the prior distribution of the reward, the likelihood function of

observed behavior does not have enough evidence to differentiate the two possible goal

states. We draw the learned reward for these two conditions in Figure6.6: one does

not include the goal marked with C and the other contains. Using the reward shown

in Figure6.6(a), we are uncertain in the area circled and labeled with ”Uncertainty”,

so the goal is not identified. But the more behavior the learner has observed, the

better reward with less uncertainty can be recovered as shown in 6.6 (b).

In summary, Experiment 1 shows that the IRL learner based on goal priors can

predict the online goal inference accurately in GridWorld problem. IRL models are

stable and robust, providing the reward function within a MDP as a principle encoding

of the goal. We do not need to design different models for different tasks when the

environmental factors have changed. All kinds of observed behavior are studied in

MDP settings, even the decision strategies are different and suboptimal. In turn, the

MDP models with learned reward can be used to imitate the behavior or represent the

decision strategy. We will study this topic in Experiment 2 on GridWorld problems.

Chapter 6. Decision Strategy Recognition in Reward Space 150

Learning from decision trajectories

Experiment 2 presents a new task of learning with multiple decision trajectories.

Without loss of generally, a 10× 10 GridWorld problem has been studied. We inves-

tigate the behavior recognition problem in terms of clustering and classification. The

experiments are conducted according to the steps in Algorithm 13.

Algorithm 13 Experimentation steps

1: Input the variables S,A and P . Design two base reward functions to represent

two decision strategies, which are written as r∗1 and r∗2.

2: Simulate agents and sample their behavior.

3: for i = 1→ 2 do

4: for j = 1→ 200 do

5: Model agent Aij using M = (S,A,P , r, γ), where the reward r is a variation

of r∗i contaminated by Gaussian noise.

6: Sample decision trajectories Oij from Aij.

7: end for

8: end for

9: IRL learner has access to the problem B = (S,A,P ,Oij) for each agent Aij, and

then infers the reward rij for the agent’s decision strategy .

10: Recognize these agents based on the learned rij.

The simulated agents in our experiments have hybrid destinations. A small num-

ber of short decision trajectories brings more challenges for the existing IRL algo-

rithms, which is of particular interest. Meanwhile, the length of the trajectory may

impact the performance seriously. Thus, we evaluate and compare the performance

in a scalability of the number of decision trajectories observed in combination with

Chapter 6. Decision Strategy Recognition in Reward Space 151

10 30 50 70 90 110 130 150 170 200
50

55

60

65

70

75

80

85

90

95

100

Number of decision trajectories observed

C
lu

s
te

ri
n

g
 A

c
c
u

ra
c
y

Action

GPIRL

SubIRL

WMAL

PROJ

Figure 6.7: Clustering accuracy

the length of the trajectory.

Table 6.1 displays the NMI scores and Figure6.7 shows the clustering accuracy.

The length of the trajectory is ten, as we assume the observation is incomplete and

the learner does not have sufficient information to infer the goal directly. Results are

averaged over 100 replications. The clustering performance is improved by increasing

the number of observations. When the number of observations is small, SubIRL

method achieves high clustering accuracy and NMI scores due to the consideration of

suboptimal behavior. The apprenticeship learning algorithms that depend on feature

expectations, such as PROJ and WMAL, is not effective in this problem because

the length of the observed decision trajectory is too small to provide a good feature

expectation. The feature expectation is required to be good enough to approximate

the agent’s decision strategy. Otherwise the algorithms may find a divergent solution.

In Figure6.8, using reward functions to represent agents, we project the high-

dimensional reward vectors into two dimensional space using principle component

Chapter 6. Decision Strategy Recognition in Reward Space 152

Table 6.1: NMI scores for GridWorld problem

H Action MWAL PROJ GPIRL SubIRL

10 0.0077 0.0031 0.0068 0.0078 0.6069

30 0.0114 0.0060 0.0130 0.0932 0.8299

50 0.0177 0.0058 0.0165 0.7751 0.9198

70 0.0340 0.0039 0.0243 0.8113 0.9328

90 0.0321 0.0062 0.0365 0.8119 0.9377

110 0.0361 0.0114 0.0389 0.8123 0.9306

130 0.0387 0.0046 0.0388 0.8149 0.9362

150 0.0441 0.0035 0.0421 0.8095 0.9362

170 0.0434 0.0059 0.0478 0.8149 0.9327

200 0.0502 0.0050 0.0498 0.8149 0.9372

infinite 0.932 0.2343 0.871 0.931 0.9391

Chapter 6. Decision Strategy Recognition in Reward Space 153

analysis. It is obvious that the reward functions recovered by GPIRL within one

group have been clustered more closely than the true reward functions. Therefore,

the clustering algorithm, k-means, works better in reward space than in action space,

and the GPIRL algorithm achieves higher accuracy than other algorithms given the

small number of observations due to the maximization of the ratio of between-class

variance to within-class variance.

−8 −6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

5

6

Cluster 1

Cluster 2

(a) True underlying reward

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Ground truth label 1

Ground truth label 2

Clustered in group 1

Clustered in group 2

Clustered error

(b) Recovered reward by GPIRL

−4 −2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

Clustered in Group 1

Clustered in Group 2

Ground truth label 1

Ground truth label 2

Clustered error

(c) Recovered reward by PROJ IRL

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Ground truth label 1

Ground truth label 2

Clustered in group 1

Clustered in group 2

Clustered error

(d) Feature points in action space

Figure 6.8: Clustering problem: the reward vectors are projected into the two dimen-

sional space by principal component analysis.

The second recognition problem studied here is called classification of agents ac-

Chapter 6. Decision Strategy Recognition in Reward Space 154

cording to their decision strategy. Figure6.9 and Figure6.10 display the classification

accuracy. A binary GridWorld classification problem consists of two hundred ex-

amples in our experiment. Every example is an agent that has been simulated by

modeling a n MDP with a particular reward function. The reward functions of the

agents in one class are generated from the same true reward function by adding

Gaussian noise. Each true reward function corresponds to a class. Two true reward

functions are used to simulate two groups of 100 agents. The classification accuracy

for a classification problem is obtained by tenfold cross-validations. Given the size

of observation data, we replicate 100 GridWorld classification problems to get an

average accuracy.

Four popular classifiers (SVM, KNN, FDA and LR) are employed to solve the

classification problem. We compare the classification algorithms between using the

reward function and using the feature expectation that is computed in state-action

space. It indicates that the classifiers based on IRL perform better than the meth-

ods using the action features, particularly when the number of observation and the

trajectory length are small. In addition, it is safe to say, in GridWorld problem,

our probabilistic model for IRL provides the estimations of reward functions that are

more robust and close to the true reward. Further, we are able to identify the agents

based on the reward functions that have been learned for characterizing the decision

strategies of these agents.

6.4.2 Secretary problem

GridWorld problem is used for conducting experiments on learning the goal of the

autonomous agents. Now let us turn to simulated experiments on human decision

Chapter 6. Decision Strategy Recognition in Reward Space 155

10 30 50 70 90 110 130 150 170 200 300 500 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sampled observations

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

GPIRL

ConvexIRL

Action Feature

MWAL IRL

PROJ Average

SubIRL

T=50T=30 T=100

(a) SVM

10 30 50 70 90 110 130 150 170 200 300 500 800 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sampled observations

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

GPIRL

ConvexIRL

Action Feature

PROJ Average

MWAL IRL

SubIRL

T=30 T=50 T=100

(b) KNN

Figure 6.9: Classification accuracy using SVM and KNN. In these figures, the notation

T denotes the length of the observed decision trajectory.

making process. We use Secretary problem to study the behavior recognition in

human decision making process.

The details on Secretary problem have been introduced in Section 5.4.3 and 6.1.2.

Chapter 6. Decision Strategy Recognition in Reward Space 156

10 30 50 70 90 110 130 150 170 200 300 500 800 1000
0.5

0.55

0.6

0.65

0.7

0.8

0.9

1

Number of sampled observations

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

SubIRL

Action Feature

GPIRL

PROJ Average

ConvexIRL

T=30 T=50 T=100

(a) LR

10 30 50 70 90 110 130 150 170 200 300 500 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of sampled observations

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

ConvexIRL

SubIRL

GPIRL

PROJ Average

Action Feature

T=30 T=50 T=100

(b) FDA

Figure 6.10: Classification accuracy using LR and FDA.

There heuristic decision rules (cutoff, successive non-candidate counting and candi-

date counting) will be studied in this section.

Chapter 6. Decision Strategy Recognition in Reward Space 157

Experiment Design

In the following experiments, we simulate human agents by adding different amount

of noise on decision rules. For example, if the actual decisions of a human decision

maker are assumed to be consistent with a cutoff rule, we are able to simulate the DM

using the cutoff rule with a predefined cutoff value. The cutoff value has been added

white noise to simulate the bias in human thinking. Note that based on previous study

in how humans are solving the secretary problem, we simulate the human behavior

using the heuristic decision rules. Since humans using the same heuristic decision

rule still have difference in thinking and making decisions, we add random noise to

represent different people.

To apply IRL, we model the secretary problem using MDP framework. This

idea supports the expectation that even two decision makers are using two different

heuristic rules which are not easily differentiated by direct observation, the differences

between two heuristic decision rules can still be found in the reward space.

The secretary problem is simulated by following steps: Given the number of ap-

plicants N , we generate a sequence of interviews by random permutation (each of

N ! possibilities being equally likely) and then present the applicants to the observer

one at a time. If the applicant is a candidate and the decision criteria is satisfied,

the applicant is selected. Otherwise, the observer moves on to the next applicant.

For each human observer, we will simulate R times of independent replications of

the secretary problem. Each trial followed the same pattern. We will generate H

human decision makers in the following experiments. Every human observer takes

and follows a heuristic decision rule, while particular random noise is added to the

rule’s parameter because of the individual thinking bias. We add the Gaussian ran-

Chapter 6. Decision Strategy Recognition in Reward Space 158

dom noise to the parameters, such as h in cutoff rule and k in non-candidate rule.

Same experiments are conducted with two different values of the number of appli-

cants: N = 40 or N = 80. The simulation process is also summarized in Algorithm

14.

Algorithm 14 Simulation of an agent according to a heuristic rule

1: Given a heuristic rule with a parameter h, k or l.

2: Add random Gaussian noise to the parameter, which is written as p̂.

3: Generate new secretary problems and let the agent solve these problems using this

heuristic rule with its own parameter p̂. Save the observed decision trajectories

into O.

4: Model the secretary problem in MDP settings.

5: Infer the reward function by solving the problem B = (S,A,P , γ,O).

Behavior Prediction

From learning perspective, if a state-action pair has been observed, the apprentice

knows the optimal decision at that state. However, it is often impossible to sample

observations over all the environmental space, so the practical problems demand the

model that is able to infer the optimal actions at unknown states, after being trained

with the sampled observations in the decision state-action space.

Given a Behavior recognition problem B = (M \ r,G,O), the problem of behavior

prediction is a learning process based on MDP to output optimal actions for future

problems. The reward function of model M is learned from O. The predicted policy

Chapter 6. Decision Strategy Recognition in Reward Space 159

µe satisfies the observation µh policy, if
|E(µe)− E(µh)| ≤ ε, ε ≥ 0,

Ge ⊂ G
(6.9)

where E(·) is a performance measurement of the policy.

The definition of behavior prediction expects that the predicted policy performs

as well as the expert. Here, we define the measurement function E(·) as the accuracy

of finding the best secretary, given the decision rule’s parameter. E.g., in 1000 runs of

interview problems, if the observer is able to choose the best secretary in 600 runs, the

accuracy is 0.6. We conduct experiments on the interview problems with 40 and 80

applicants respectively. Given a heuristic decision rule and its specified parameters,

we simulate a set of humans using this decision rule to solve Secretary problems,

which is replicated 10000 times in our experiments to provide an average estimate of

accuracy. In Figure6.11, we draw the accuracy curves of finding the best secretary

and compare the curves of simulated agents and the behavior predicted by IRL.

Different decision rules have own accuracy distribution. The recovered distribution

reaches its peak at the parameter value the same as that of the simulated agents and

the peak value is even higher than the value for humans. E.g. in the problem with

40 applications, the peak is at k = 8 applicants for the non-candidate rule, with a

probability of correct selection of 0.365. These experimental discoveries in Figure6.11

back up the hypothesis that our estimated reward is close to the true reward with

a guarantee of performance. It can be seen from the experiments with N = 40 and

N = 80 that the number of applicants does not affect the learning result, since the

shape of the distribution and comparison to the simulated subjects are analogous.

Chapter 6. Decision Strategy Recognition in Reward Space 160

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

cutoff value or k consecutive non−candidate

a
c
c
u

ra
c
y

human cut−off decision

human non−candidate decision

automated cut−off

automated non−candidate

(a) N=40

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

cutoff value or k consecutive non−candidate

a
c
c
u

ra
c
y

human cut−off decision

human non−candidate decisoin

automated cut−off

automated non−cadidate

(b) N=80

Figure 6.11: A comparison between the predicted behavior and the true behavior

−0.5

0

0.5

1

−0.4

−0.2

0

0.2

0.4
−0.4

−0.2

0

0.2

0.4

0.6

3

33

3

3
3

3

3

3

3

3
33

3
3

3

33

3
3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3
3

3
3

3
3

3

3
3

3
3

3

3

3

3

3

3

33

3

3

3

3
3

3

3
3

3

333
3

3

3

3

3

3

3

3

3
3

3

3

33

3

333
33

3

3

3

3

3

3

3

3

3

3

22

111111111111111111111111111111111111111
111

cutoff DM

noncandidate DM

count DM

(a) True reward Distributed

−0.5

0

0.5

1

−0.4

−0.2

0

0.2

0.4
−0.4

−0.2

0

0.2

0.4

0.6

2

22

2

2
2

2

2

2

2

2
22

2
2

2

22

2
2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2
2
2

2
2

2
2

2

2
2

2
2

2

2

2

2

2

2

22

2

2

2

2
2

2

2
2

2

222
2

2

2

2

2

2

2

2

2
2

2

2

22

2

222
22

2

2

2

2

2

2

2

2

2

2

33

111111111111111111111111111111111111111
111

DM Group 1

DM Group 2

DM Group 3

(b) Clustered

Figure 6.12: Visualization of the reward feature vectors in 3 dimensions. In Figure

(a) and (c) we assign the true group labels, while clustered group labels are shown

in Figure (b) and (d) . The clustering accuracy is 100%. The high dimensional

reward vectors are projected into the three dimensional space by principle component

analysis.

Clustering Analysis

One approach to drawing inferences about behavior recognition is to determine the

behavior patterns for the agents even though no explicit feedback is supplied.

Here, we simulate the humans in the secretary problem on the basis of these three

Chapter 6. Decision Strategy Recognition in Reward Space 161

heuristic decision rules. A group of simulated humans (called subjects) are generated

from a heuristic decision rule, and the individuals in the group are differentiated by

adding Gaussian noise to the parameter of the heuristic decision rule. Every subject

has to solve one hundred replicate secretary problems, which provides an averaged

performance measurement. We assume that every subject follows exactly his/her

decision rule until finishing all the secretary problems. In each problem, the relative

rank of interviewed applicants is known to the subject. The subject can select the

current applicant, or move on to the next applicant. For example, after interviewing

3 applicants, the relative rank is either (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) or

(3, 2, 1). The subject selects the candidate according to the decision rule. IRL learner

observes the decision making process of every subject, models the observed behavior

on the basis of MDP and infers the reward function for every subject. Finally, k-means

algorithm is employed to discover the patterns in the reward space.

An experiment is to group 300 subjects into 3 clusters. These subjects, simulated

in this experiment, are equally distributed in three heuristic decision rules with spec-

ified parameters. So the number of clusters is known, but the IRL learner does not

know the identity of every subject. The learner has the observed behavior for each

subject, and aims to put the subject into the group where the subject comes from.

Figure6.12 displays the distribution of true reward functions with the true group

labels or the clustered labels2. In this experiment, each subject takes one of three

decision rules with the parameter values that are fixed at N = 80 and h = k = l = 16

2Note the group label we mention here indicates the true group that the corresponding agent

comes from, and it is only used for evaluation of the clustering performance. The clustered labels are

predicted results from the clustering algorithm. It is different from the labels used in the classification

task.

Chapter 6. Decision Strategy Recognition in Reward Space 162

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

1

1

11

1

1

1

1

1

1

1 1

1

11
1

1

1
1

1

11

1 1

1

1

1
1

1 1

1

1

1

1
11

11

1 1

1

1

1

1
1
1

1

1 11
11

1 11

11

1

1

1

1

1

11

1

1

1

11

1

1
1

1

1
1

1

1

1
1

11
1

1

1
1

1

1
1

11

1

1

1

1

1

1

11

1

1
2

2

2 22

2

2

2
2

2 2

2

2

2

2

2

2
2

2

2

2
22

2
2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2
2

2

2

2

2
22
2

2

22

2

2
2

2

22

2

2

2

2

2
2

2

2

2

2
2

2

2 22

2

2 2

22

2

2
2

22

2

22

2

2

2
2

2

2

2

2

2

2
2

2

2
2

3

3 3
3

33 33

3

3

3

3

3

3
3

3

3

3

3

3
3 3

3
3

3

3
3

3
3

3

3

3

3 3

3

3

3
3

3

3

3
3

3

3

3

3

33 3

3
3

3

3

3

3
3

33
3

3

3

3

3

33
3

3

3

33
3

3

3

3
3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

cluster 1

cluster 2

cluster 3

Uncertainty

(a)

−0.1 −0.05 0 0.05 0.1 0.15
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
1

1
1 11

1
1

1 1
11

11

1
1

1

1
1

1
111 1

1
1

1 11 1
1

1

1

1
11 11

1

11 11
11

1

1

2

22
2

2

2

2 2
2

2

2
2

2

2

2

2
2

22

2

2

2

2
2

2

2

2

2

22

2

2

2

2
2

2

2

2

2

22

2

2

2

2

2

2

2

22

2

2

2

2

2

2
2

22

2

2

22

2
2

2

3
3
3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3
3

3
33

33
3

3

3
3

3

3

3

3
3

33

3
3

3
3

3
3
3
3

3
3

3
3

3

3 3

3
3

3

3
3

3
3

3

3

3

3

3

33

3
3

cluster 1

cluster 2

cluster 3

(b)

Figure 6.13: The distribution of constructed feature points that are assigned with

ground truth group label. In Figure (a), the agent is represented by the feature

vector constructed in the action space, while in Figure (b), the agent is denoted by

its recovered reward function.

respectively. For each decision rule, we simulate 100 subjects. The results obviously

prove the effectiveness of our method, as all the subjects have been grouped into the

right cluster.

Another experiment is to examine the performance of clustering subjects that are

simulated by the same heuristic decision rule but with different parameter values.

E.x. all the subjects make decisions according to the cutoff rule but different groups

have different cut-off values. The candidate cutoff values in our experiment are in

a set c = (6, 15, 45). We simulate three hundred subjects that randomly takes a

cutoff value from the possible set c. Then the observed behavior is used for feature

construction. To compare the clustering performance between the methods based

on action space and reward space, we design an action space that consists of the

frequencies of the heuristic decisions rules that have been used in the observations.

Because the heuristic decision rules are known, we can program hard classification

rules to determine which rule an observed agent has used. This method has been used

Chapter 6. Decision Strategy Recognition in Reward Space 163

in the research on Secretary problem and other behavior studies [76, 94]. Given a set

of simulated agents and a fixed number of observations from them, we characterize

the agents in action space or reward space. Then the performance is evaluated on

the k-means algorithm. We show the data distribution in Figure6.13, where every

point has been assigned the true group label. It is obvious that the data points in the

reward space is easier to recognize, because we can qualitatively state that the data

points has lower variance in the same group and higher variance between the different

groups. Figure6.13 (a) displays an area marked with ”uncertainty”, containing the

data points mixed from two underlying groups. The quantitative results are shown in

Table 6.2, which displays the NMI for k-means clustering. We record the NMI scores

as increasing the number of observed decision trajectories, with the expectation that

the score will increase too. These quantitative evidence also prove that the cluster

patterns can be discovered in reward space with a guarantee of performance that is

better than in action space.

Classification Analysis

The classification analysis in behavior recognition has a similar procedure described

in clustering analysis. The main difference between them is that the input subjects

have labels that indicate the heuristic decision rule they have used. The subjects are

simulated on the basis of three heuristic decision rule by the procedure described in

clustering analysis.

Each classification problem has a number of subjects demonstrating their behav-

ior. These subjects are partitioned into training and testing data set. We use the

SVM classifier and employ the cross-validation to estimate the classification accu-

racy. Assume there are M subjects in an experiment, we model every subject using

Chapter 6. Decision Strategy Recognition in Reward Space 164

Table 6.2: NMI score for clustering the agents using the same heuristic decision rule

but with different parameter values

H
Cutoff rule Noncandidate rule Count-candidate rule

Action SubIRL LIRL Action SubIRL LIRL Action SubIRL LIRL

1 0.0557 0.5497 0.0000 0.0551 0.1325 0.0124 0.0229 0.2081 0.1356

11 0.3852 0.6893 0.4190 0.2916 0.7190 0.5772 0.1844 0.4974 0.3646

21 0.6017 0.7898 0.4478 0.4305 0.8179 0.6234 0.2806 0.5181 0.5312

31 0.7654 0.8483 0.4506 0.5504 0.8641 0.6624 0.4053 0.6171 0.5521

41 0.8356 0.9676 0.6349 0.5682 0.9218 0.6772 0.4524 0.6533 0.6123

51 0.8781 0.9739 0.6356 0.5894 0.9423 0.7121 0.5464 0.6507 0.6213

61 0.9102 0.9913 0.6580 0.5984 0.9518 0.7132 0.5492 0.6513 0.6255

71 0.9115 0.9915 0.6684 0.6460 0.9639 0.7204 0.6024 0.6512 0.6342

81 0.9532 1.0000 0.6702 0.6541 0.9721 0.7325 0.6708 0.6563 0.6378

91 0.9707 1.0000 0.7316 0.6494 0.9864 0.7423 0.6884 0.6544 0.6482

Chapter 6. Decision Strategy Recognition in Reward Space 165

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

1 (training)

1 (classified)

2 (training)

2 (classified)

Support Vectors

(a) complete observation

−0.4

−0.2

0

0.2

0.4

−0.2

−0.1

0

0.1

0.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

1
111111

1

11111

11

1

11

1111

11

1111111111111

11

111111111

111111

111111111

11

11

1

1

11111111
1

111

111111111111111111

1

11111111111111

1

1111111111111111111111111111111111111

22222222
22222

222222222222

222222222222222222222222
222222222222222222222

22

22

222

2222
22222222222
2222222222222222

DM using optimal cutoff

DM using optimal non−cand

(b) complete observation

−0.5 0 0.5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

1 (training)

1 (classified)

2 (training)

2 (classified)

Support Vectors

(c) incomplete observation

−0.5

0

0.5

−0.4

−0.2

0

0.2

0.4
−0.2

−0.1

0

0.1

0.2

0.3

2
2
2
222222222222222
2222222
2
2222
2222222
22
2

2
22
2
2
222
22

2
2
2
222222222
222
2

2
22222222222222222222
22
22
2
222222
22
22222
2222
2
2

2

2222
222
22
2
2
2
22
22

2
2222
2
2
2
2
22222222222222222222

2
2

2

2222
2
222
2

2
22
2
2

222
2
22222
2
22222222
22222222

1

1
11
1

1

1

1

1
1
1

1
1

1

1
1

1

1

1

1
1

1

11

1
1

1

1

11

1

11

1
1

1

1
111

1

1

1

1

1

1
1

11

1

111

1

1

1

1

1
1
11

1

1

1

111
1

1

1

1
1

1

11
11

1

1

1

1

1

111
1
1111

1
1

11

1

111
1

1

1
1

1
1

11

111111

1

1
111

1
1

1

1
1
1

1

1

11
1
11111

1

1
1
1

11
1
1
111111111111111
11
11
1

1

11
11
1
1
111111111111111

1

1
11
11
111111111

11

DM using cutoff

DM using non−cand

(d) incomplete observation

Figure 6.14: Visualization of a binary classification problem for subjects using cutoff

rule and non-candidate rule. The left is the classified feature points projected in 2D

space; The right is the classified feature points projected in 3d space. The classifi-

cation accuracy is 100%. For the complete observation, we use linear IRL in [2] and

use PROJ for the incomplete observation.

an MDP. The input data is written as {(M1, y1), (M2, y2), ..., (MH , yH)}, where Mi

denotes a MDP model for i-th subject and yi denotes a label for the subject’s deci-

sion rule. Using xi to denote the reward vector for model Mi, after using IRL, we

have X = {(x1, y1), (x2, y2), ..., (xH , yH)}.

The first problem is to classify the subjects simulated from two decision rules.

Assume we have H = 400 subjects, half of which are simulated by using cut-off rule

Chapter 6. Decision Strategy Recognition in Reward Space 166

−0.6 −0.4 −0.2 0 0.2 0.4
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

1 (training)

1 (classified)

2 (training)

2 (classified)

Support Vectors

(a) complete observation

−0.6
−0.4

−0.2
0

0.2
0.4

−1

−0.5

0

0.5
−0.4

−0.2

0

0.2

0.4

11
11

111
1
11

2

2

2

2

2

2

2

2

22

2

2

2
22
2
2

2

2
222

2

2

2

2

2
2

22

2

2
22

2

22
2

2

22

2

2

2

2

2

2
2

22
222

2
2

2

2

2

2
2

2
2
2

22

2

2

2

2

2
2

2
22
2

2

2

2

2

2

2
2

2

2

2

2

2

2
2

2

2

2

2

22

2
2

2

2

2

2

2

2

2

2

2

2

2

222

2

2

2

2

2

2

2

2

2

2
2

2

2

22

2

2

2

2

2

2

22

2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

22

2

2

2
2
2

2

2

2

22

2

2

2

2

22

2

2

2

2
2

2

2
2

2

2

2

22

2
2

2

2
22

2

2
2

2

2
2

2

222
2

Distributed DM using optimal cutoff

Distributed DM using random rule

(b) complete observation

−1 −0.5 0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

1 (training)

1 (classified)

2 (training)

2 (classified)

Support Vectors

(c) incomplete observation

−1
−0.5

0
0.5

1
1.5

−0.4

−0.2

0

0.2

0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

2

2

2

2
2

2
2

2

2

2

2
2
2

2

2

22

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2

2

2

2

2

2

22
2
2
2
2

2

2

2

2
2

2

2

2

2

2

2

2
2

2
2

2

2

2

2

22
2

2

2

2

22

2

22
2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

22

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2
2

2

2

2

2

2

22
2

2

2
2

2
2
2

2

2

2

2

2

2

22

2

22

2

2

2

2

22
2

2
2

2

2

22

2

2
2

2

2

2
22

2

2

2
2

2

2
2
2

2
2

22

2

222

2222

1

2

11

1
1
1

1
1

11

1

1

1
11

1

1

1

1111

1

1

1

1

1

1
1

11

1

1

111

1

1

11

1

1

1

111

1

1

11

11

11

111
1

1111
1

11

1

1

1

1

1

111
1
111
1

1111111

111

1

11

1
1

1

1
1

1
1
111
1

1

1

1
1
1
1
1

1

11
1
1
1
1111

1

11
111

1111
1

1111

11
111

1111111111111
11111
1
1
1

1111

1
1

1
1
1111
11111111111111111111111
11111

DM using cutoff

DM using Random

(d) incomplete observation

Figure 6.15: Visualization of a binary classification problem for subjects using cutoff

rule and random rules. We use linear IRL in [2] or the problem given complete

observation and use PROJ for the problem with incomplete observation.

and the remaining are simulated by using successive non-candidate rule. Figure6.14

displays the distribution of true reward functions that are labeled by the classifier.

In the experiment, the cut-off value h = 30 and the number of non-candidate k = 14.

The classification accuracy is 100%.

To give insight into the problem of abnormal detection, we design another exper-

iment to classify the subjects using the heuristic decision rule from the subjects with

random behavior. E.g. to hack into the network, some agent may repeat random

behavior to detect the security holes. We simulate 200 subjects using the optimal

Chapter 6. Decision Strategy Recognition in Reward Space 167

cutoff decision rule h = 30 and another 200 agents choosing the secretary randomly.

It is formulated as a binary classification problem: the agents using random rules

are assigned with negative labels and the subjects using the heuristic rule are given

positive labels. An experimental result is shown in Fig6.15.

Another set of experiments are conducted to show the classification performance

on the input subjects who are simulated on the basis of one decision rule but with

different parameter values. We show the experimental condition in which the ob-

servation is incomplete and the reward is recovered by applying PROJ algorithm.

Figure6.16 gives the distribution of reward points with predicted labels. It is shown

that when the distance between the parameter values increases, the classification ac-

curacy becomes higher up to 100%, whereas when the parameter values are very close,

the classification accuracy decreases. With the evidence that the margin between two

classes increases as the distance between two parameter values increases, we may say

that the reason for misclassification of subjects shown in Figure6.16 (c) and (d) is

because the heuristic decision rules are very similar.

6.5 Conclusions

We have proposed the use of IRL to solve the problem of decision strategy recognition.

The observed agent does not have to make decisions based on MDP. However, we

model their behavior in a MDP environment and assume that the MDP’s reward

function has encoded the agent’s underlying decision strategies.

Numerical experiments on GridWorld and the secretary problem suggest that

the advantage that IRL enjoys over action space methods is more pronounced when

observation are limited and incomplete. Though our experiments are conducted in

Chapter 6. Decision Strategy Recognition in Reward Space 168

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

1 (training)

1 (classified)

2 (training)

2 (classified)

Support Vectors

(a)

−1

−0.5

0

0.5

1

−0.2

0

0.2

0.4

0.6
−0.1

−0.05

0

0.05

0.1

0.15

2
2

22

2
2

2

2
2
2
22

2

2
2
2
22
222
2

2

22
222
2222
22
2
2
22
22222222222
2222
2

2
22
22222
22222
222

2

2
2
222
2
222
2222
2222222
22
2
222222
2
22
222
22
222
2
2222
22

22
2
2
222
222
2222
2
2
222
22
22222
2
2222

2

2
2

2
222
2
2
22
2
222
2
2

2
2
222
2

2

222222
222

222
222

2

22222
2
22

2

22

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1
11

1

1

1

1

11

1

1

11

1

111

1

1

11

1

1

11

1
1

1
1

1

1

1

1

1

1

1
1

11

1

1

1

1
1

111

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

11

1

11

1

1

11

1

1

11111

1

1

1

1

1

11

1

1

1

1

1

111

1

1

11

1111

1

111

1

11

1

11111

1

1

1

1

11

1

1

1

1

11

111

1

1

1

1

1

11

1

11

1

111

1

1

1

1

1
1

1

1

1
1

1

1

1

1

1

1
11

1

1

1

1

1

11

1

1

1

1

1

1

1

1
1

11
1

1

1
1

DM using cutoff 30

DM using cutoff 16

(b)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

1 (training)

1 (classified)

2 (training)

2 (classified)

Support Vectors

(c)

−0.4
−0.2

0
0.2

0.4
0.6

−0.4

−0.2

0

0.2

0.4
−0.2

−0.1

0

0.1

0.2

0.3

2

222222
2

2

2

2

2
2
2

2

2
2222
22
2

2

2

22

2

22

2

1
22

2

2

2

2
2

2

22
2
2

2

22
2
22
2
2

2

2222

22

2

2

2
2

2

2

2222
2
222

222

2

2

22
2

2

22

2

2
12
2

2

1
2

222

2
2

2

2
11
2

2

21
2

1

22222

2

222

2

2
22

2

2
1
22

2

2

2

2

22

2

1

2

1

2

2

2

22

22

2
2

2

2

2

22

2

22

21

2

2

2

1

2

1
2
111

2

1
1
2112

1

2
1

1

212
2
1

2

11

2

11111111

2

11111
111
1
1111
111
1
1

2

111
2
1

22

1
1

22

1111
1
2

2

2

1

222
11
222

1

1

111111
11
1
11

11111121111
1

111

11

1

1

1

11

111111

2

1111

1

1
1
1111111
11
11
1
1
111
1
1111
12

11
1

1

1111

2111
112
112
11

2

1

11
221

1

2

1

1

111
1111
111
1

1

1

2

1

1

2

1

1
1

111
1
121
2
211
11
1

1

1
11
2
122

2

1

2112

12

2

2

1

1

2

2

2

Cutoff 30

Cutoff 28

(d)

Figure 6.16: Visualization of a binary classification problem for subjects using the

cutoff rule with different cutoff parameter values. The observation is incomplete and

the reward is estimated by PROJ method.

simulations, we believe that IRL is also able to enhance the capacity of dealing with

the real data in practice. More work here is certainly needed. Our expectation

is that IRL will be successfully applied to many applications involving sequential

decision-making, such as recommendation systems. To investigate the potential for

application of our approaches beyond machine problems, we plan to consider more

difficult sequential decision problems, such as periodic investment, for which data on

human decisions has already been gathered.

Chapter 7

Conclusion

The central objective of this thesis is to develop new goal inference methods that are

practical and efficient in terms of the number of observations required for learning,

as well as to model the behavior observed in MDP settings for recognition of decision

strategies. Based on well-developed Bayesian statistics, decision-making theory, and

other machine learning techniques, we propose the GPIRL in Chapter 4. GPIRL is a

probabilistic approach to general IRL problems that mimics two important features

of biological learners: the ability to generalize and incorporation of uncertainty into

the inverse reference process. It is also a non-parametric probabilistic model based on

Gaussian process, which provides a closed form of prediction on the new states. The

simple representations of unknown quantities using Gaussian process are sufficient to

extract valuable information from small-sized datasets and support Bayesian infer-

ence with performance guarantees in only a few trials. In experiments with several

benchmark problems, GPIRL has shown empirical performance superior to that of

several of the prevalent IRL algorithms.

In Chapter 5, we propose an IRL framework that utilizes the philosophy of MM

optimization techniques to deal with the question of learning with the help of unob-

169

Chapter 7. Conclusion 170

served states. We borrow the idea of semi-supervised learning, which potentially uses

both labeled and unlabeled data to achieve better performance than supervised learn-

ing. In IRL settings, the observed behavior is like the labeled data and the learner

aims to predict the latent functions on the states that are not observed. The reason

that unobserved states provide useful information is because there exists a link be-

tween the marginal distribution of state and the distribution of actions conditional on

state. At an unobserved state, we do not know which actions the agent may choose,

while we consider these optimal actions as hidden variables. The reward function

is optimized by maximizing the complete likelihood function. Experimental results

support the hypothesis that the recovered reward function will be more accurate and

close to the true reward than would be achieve if only observed state information is

used.

In Chapter 6, we study the use of IRL as a tool for the recognition of decision

agents on the basis of observation of their actions in solving sequential decision prob-

lems. We model the observed behavior of the agents in terms of degrees of rationality

with respect to optimal forward planning for the MDP. To recognize the agents, we

first use IRL to learn reward functions consistent with observed actions and then use

these reward functions as the basis for clustering or classification models. Experi-

mental studies with GridWorld, a navigation problem, and the secretary problem, an

optimal stopping problem, suggest reward vectors found from IRL can be a good basis

for classifying automated decision rules (e.g., cutoff rule, successive first candidates),

even in the presence of action noise and variations in the parameters of the rule. We

propose a new Bayesian IRL approach in which the likelihood function can be in-

terpreted in terms of rationality models. Empirical comparisons of our method with

Chapter 7. Conclusion 171

several existing IRL algorithms and with direct methods that use feature statistics

observed in state-action space suggest it may be superior for recognition problems.

In summary, we explore the IRL in the following main areas: (1) Bayesian proba-

bilistic model based on Gaussian process, (2) Semi-supervised learning in IRL, where

we learn from the observation as well as the states unobserved, (4) Goal inference and

pattern recognition of the decision strategy behind the observations. Finally, we have

a central claim that is that the principle of inverse reinforcement learning creates a

MDP model of the decision making that is purposeful and approximately rational.

This framework supports inference of the goals of the decision maker and also provides

a pattern recognition mechanism for sequential decision making problems.

Recent years have seen an increase in the attention for IRL in a variety of fields,

such as cognitive science, psychology, machine learning, financial engineering, com-

puter graphics, and control engineering. However, the theory of IRL, in terms of

interaction with the agents, utilization of environmental knowledge, and particularly

multiple agents, has not yet seen full development. Additionally, the application of

IRL to date has been focused in the area of control engineering. We would like to see

more practical applications in goal inference and recognition of the agents based on

IRL.

Chapter 8

Appendix

8.1 Proof of Proposition 12

Proof The second order derivative with respect to ram is

∂2U

∂ram∂rTam
= K−1

am +
∂2
∑n

i=1

∑ni
k=1− ln Φ(

∑m
j=1 ρ

ik
am r̂am)

∂ram∂rTam

+
n∑
i=1

mi∑
l=1

(ρilam)Tρilam (8.1)

It is obvious that K−1
am and (ρilam)Tρilam are positive definite matrix. If the second part

in Eq.8.1 is also positive definite, the minimization of Eq.4.11 is a convex problem.

Let W denote the n×n matrix for the second part and Wcd be the entry at c-th row

and d-th column, which is calculated in the following,

Wcd =
∂2
∑n

i=1

∑ni
k=1− ln Φ(

∑m
j=1 ρ

ik
am r̂am)

∂ram(sc)∂ram(sd)
(8.2)

and let zki ,
∑m

j=1 ρ
ik
am r̂am . We have

−∂lnΦ(zki)

∂ram(sc)
= −

ρikam(xc)N(zki |0, 1)
√

2σΦ(zki)

−∂2 ln Φ(zki)

∂ram(sc)∂ram(sd)
=

ρikam(sc)ρ
ij
am(sd)N(

∑m
j=1 ρ

ik
am r̂am|0, 1)

2σ2Φ(zki)

[
zki +

N(zki |0, 1)

Φ(zki)

]
172

Chapter 8. Appendix 173

where let ωik =
N(zki |0,1)

2σ2Φ(zki)

[
zki +

N(zki |0,1)

Φ(zki)

]
, we have

Wcd =


∑n

i=1

∑ni
k=1

[
ρikam(sc)

]2
ωik ≥ 0 if c=d∑n

i=1

∑ni
k=1 ρ

ik
am(sc)ρ

ik
am(sd) = Wdc otherwise

(8.3)

Let y = [y1, y2, · · · , yn] denotes a n× 1 vector. Then

yTWy =
n∑
i=1

ni∑
k=1

y1

n∑
b=1

ρikam(sb)ρ
ik
am(s1)yb

+
n∑
i=1

ni∑
k=1

y2

n∑
b=1

ρikam(sb)ρ
ik
am(s2)yb

+ · · ·+
n∑
i=1

ni∑
k=1

yn

n∑
b=1

ρikam(sb)ρ
ik
am(sn)yb

=
n∑
i=1

ni∑
k=1

[
n∑
b=1

y2
b [ρ

ik
am(sb)]

2

+2
n∑
b=1

∑
b′ 6=b

ybyb′ρ
ik
am(sb)ρ

ik
am(sb′)]

=
n∑
i=1

ni∑
k=1

(
n∑
b=1

ybρ
ik
am(sb)

)2

≥ 0 (8.4)

we prove the matrix W is semi-positive definite. So the Hessian matrix of Eq.4.11 is

positive semi-definite on the interior of a convex set. Hence, minimizing Eq.4.11 is a

convex programming problem.

Chapter 8. Appendix 174

8.2 Computation of lower bound function L(r|rt)

The lower bound function L(r|rt) is computed as follows.

L(r|rt) =
∑
y

(
L∑
l=1

log(p(ŝl, al|r)) +
K∑
k=1

log(p(šk, ayk |r)))p(y|O, rt) (8.5)

=
M∑
y1=1

M∑
y2=1

...
M∑

yK=1

[
L∑
l=1

log(p(ŝl, al|r)) +
K∑
k=1

log(p(šk, ayk |r))

]
K∏
k=1

p(yk|O, rt)

=
M∑
y1=1

M∑
y2=1

...

M∑
yK=1

[
β

L∑
l=1

Q(ŝl, al) + β
K∑
k=1

Q(šk, ayk)

]
K∏
k=1

p(yk|O, rt)

−
M∑
y1=1

M∑
y2=1

...

M∑
yK=1

N∑
i=1

log(
M∑
j=1

eβQ(si,aj))
K∏
k=1

p(yk|O, rt)

Recall that Q(s, a) = r(s) + γPa(s, :)(I − γPπ(s))
−1r. Given a complete observation

z, we know the transition probability matrix Pπ(s) related to policy π(s). Let H(y) =

βγ(I − γPπ(s))
−1. After simplifying the Eq.8.6, we have L(r|rt) = wT r− κ(r).

8.3 Proof of Proposition 15

Proof The first and second differentiations of L(r|rt) are

OL(r|rt) = w − Oκ

O2L(r|rt) = −O2κ (8.6)

where

Oκ =
M∑
y1=1

M∑
y2=1

...

M∑
yK=1

N∑
i=1

∑M
a=1 Pa(si, :)H(y)ePa(si,:)H(y)r∑M

a=1 e
Pa(si,:)H(y)r

K∏
k=1

p(yk|sk, rt) (8.7)

Chapter 8. Appendix 175

Let Pa(si, :)H(y) = ωT = (ω1, ..., ωN). We have some derivative facts as follows,

∂ePa(si,:)H(y)r

∂r
= [ω1, · · · , ωn]ePa(si,:)H(y)r

∂2ePa(si,:)H(y)r

∂r∂rT
=



ω2
1 ω1ω2 · · · ω1ωN

ω2ω1 ω2
2 · · · ω2ωN

...
... · · · ...

ωNω1 ωNω2 · · · ω2
N


ePa(si,:)H(y)r

= (Pa(si, :)H(y))T (Pa(si, :)H(y))ePa(si,:)H(y)r. (8.8)

Then we can write the second derivative of κ with respect to r as

O2κ =
M∑
y1=1

M∑
y2=1

...
M∑

yK=1

N∑
i=1

∏K
k=1 p(yk|sk, rt)

(
∑M

a=1 e
Pa(si,:)H(y)r)2

{
M∑
a=1

(Pa(si, :)H(y))T (Pa(si, :)H(y))ePa(si,:)H(y)r

M∑
a=1

ePa(si,:)H(y)r

−[
M∑
a=1

Pa(si, :)H(y)ePa(si,:)H(y)r]2} (8.9)

Suppose a function ρ(si,y, r) being written as

ρ(si,y, r) =
M∑
a=1

(Pa(si, :)H(y))T (Pa(si, :)H(y))ePa(si,:)H(y)r

M∑
a=1

ePa(si,:)H(y)r

−[
M∑
a=1

Pa(si, :)H(y)ePa(si,:)H(y)r]T [
M∑
a=1

Pa(si, :)H(y)ePa(si,:)H(y)r] (8.10)

=
M∑
a=1

{
(Pa(si, :)H(y))T

M∑
a=1

ePa(si,:)H(y)r − [
M∑
a=1

Pa(si, :)H(y)ePa(si,:)H(y)r]T

}
Pa(si, :)H(y)ePa(si,:)H(y)r

= H(y)T [
M∑
a=1

[Pa(si, :)
T

M∑
a=1

ePa(si,:)H(y)r

−(
M∑
a=1

Pa(si, :)
T ePa(si,:)H(y)r)]Pa(si, :)e

Pa(si,:)H(y)r]H(y)

= H(y)TΠH(y)

Chapter 8. Appendix 176

where Π is a N × N matrix. Let pa=i(s) = bi = (bi1, b
i
2, · · · , biN)T , i ∈ M, where bi

denotes the N × 1 probability transition vector of taking action ai ∈ A at state s and

bij, j ∈ N means the j-th feature value in the vector bi. Since we are not concerned

with si during calculating ρ, si can be treated as a constant here. To calculate Π, we

have to know

M∑
a=1

Pa(si, :)
T ePa(si,:)H(y)r =



∑M
i=1 b

i
1e
biH(y)r∑M

i=1 b
i
2e
biH(y)r

...∑M
i=1 b

i
Ne

biH(y)r


(8.11)

Pa(si, :)
T

M∑
a=1

ePa(si,:)H(y)r =



∑M
i=1 b

a
1e
biH(y)r∑M

i=1 b
a
2e
biH(y)r

...∑M
i=1 b

a
Ne

biH(y)r


(8.12)

Using above equations, we finally write Π as

Π =
M∑
a=1

eb
aH(y)r (8.13)

ba1
∑M

i=1(ba1 − bi1)eb
iH(y)r ba2

∑M
i=1(ba1 − bi1)eb

iH(y)r · · · baN
∑M

i=1(ba1 − bi1)eb
iH(y)r

ba1
∑M

i=1(ba2 − bi2)eb
iH(y)r ba2

∑M
i=1(ba2 − bi2)eb

iH(y)r · · · baN
∑M

i=1(ba2 − bi2)eb
iH(y)r

...
... · · · ...

ba1
∑M

i=1(baN − biN)eb
iH(y)r ba2

∑M
i=1(baN − biN)eb

iH(y)r · · · baN
∑M

i=1(baN − biN)eb
iH(y)r



Chapter 8. Appendix 177

It is obvious that ΠT = Π. Denote the element in Π as [Π]uv, particularly [Π]uu

representing the element along the diagonal. Then we have

Πuu = b1
ue
b1H(y)r[b1

u

M∑
i 6=1

eb
iH(y)r − b2

ue
b2H(y)r − b3

ue
b3H(y)r − · · · − bMu eb

MH(y)r]

+b2
ue
b2H(y)r[−b1

ue
b1H(y)r + b2

u

M∑
i 6=2

eb
iH(y)r − b3

ue
b3H(y)r − · · · − bMu eb

MH(y)r]

+b3
ue
b3H(y)r[−b1

ue
b1H(y)r − b2

ue
b2H(y)r + b3

u

M∑
i 6=3

eb
iH(y)r − · · · − bMu eb

MH(y)r]

+ · · ·

+bMu e
bMH(y)r[−b1

ue
b1H(y)r − b2

ue
b2H(y)r − · · · − bM−1

u eb
M−1H(y)r + bMu

M∑
i 6=M

eb
iH(y)r]

=
M∑
j=2

e(b1+bj)H(y)r(b1
u − bju)2 +

M∑
j=3

e(b2+bj)H(y)r(b2
u − bju)2

+ · · ·+ e(bM−1+bM)H(y)r(bM−1
u − bMu)2

=
M−1∑
i=1

M∑
j=i+1

e(bi+bj)H(y)r(biu − bju)2 (8.14)

Chapter 8. Appendix 178

and

[Π]uv = b1
ve
b1H(y)r[b1

u

M∑
i 6=1

eb
iH(y)r − b2

ue
b2H(y)r − b3

ue
b3H(y)r − · · · − bMu eb

MH(y)r]

+b2
ve
b2H(y)r[−b1

ue
b1H(y)r + b2

u

M∑
i 6=2

eb
iH(y)r − b3

ue
b3H(y)r − · · · − bMu eb

MH(y)r]

+b3
ve
b3H(y)r[−b1

ue
b1H(y)r − b2

ue
b2H(y)r + b3

u

M∑
i 6=3

eb
iH(y)r − · · · − bMu eb

MH(y)r]

+ · · ·

+bMv e
bMH(y)r[−b1

ue
b1H(y)r − b2

ue
b2H(y)r − · · · − bM−1

u eb
M−1H(y)r + bMu

M∑
i 6=M

eb
iH(y)r]

=
M∑
j=2

e(b1+bj)H(y)r(b1
u − bju)(b1

v − bjv) +
M∑
j=3

e(b2+bj)H(y)r(b2
u − bju)(b2

v − bjv)

+ · · ·+ e(bM−1+bM)H(y)r(bM−1
u − bMu)(bM−1

v − bjv)

=
M−1∑
i=1

M∑
j=i+1

e(bi+bj)H(y)r(biu − bju)(biv − bjv) (8.15)

Now it can be easily shown that Π is positive definite, by ∀x = [x1, x2, · · · , xN]T ∈

<N , xTΠx > 0.

xTΠx =
M−1∑
i=1

M∑
j=i+1

e(bi+bj)H(y)r[
N∑
k=1

xk(b
i
k − b

j
k)]

2 > 0 (8.16)

Replace it in O2κ to obtain

O2κ =
M∑
y1=1

M∑
y2=1

...

M∑
yK=1

N∑
i=1

K∏
k=1

p(yj|sk, rt)H(y)T
Π

(
∑M

a=1 e
Pa(si,:)H(y)r)2

H(y) (8.17)

So O2κ is positive definite and O2Φ is negative definite.

8.4 Proof of Theory 16

Proof Consider the learning process as follows:

1. Upteacherte the the value functions in the rational strategy. The value functions

are upteacherted according to Bellman optimality.

Chapter 8. Appendix 179

2. Select the policy using soft strategy with the Boltzmann distribution in Eq. 5.3.

At t-step, we have the estimation rt = arg maxr L(r|rt). Then, in the next step, we

have ay∗(s) = arg maxaQ(s, a), where y∗ is a vector containing the optimal policy at

the unobserved states. Consider a feasible region Ωr

Ω =

{
r : Q(si, ai) ≥ max

a∈A\ai
Q(si, a),∀(si, ai) ∈ O ∪

{
Š,y∗

}}
∪ {r : ‖r‖ ≤ Rmax} (8.18)

∀r ∈ Ωr, H(y∗) is the inverse matrix that is computed by using y∗. So, at the t + 1

step, we have matrix

L1 = −
N∑
i=1

H(y)T
Π(y)

(
∑M

a=1 e
Pa(si,:)H(y)r)2

H(y)

L2 = −
N∑
i=1

H(y∗)T
Π(y∗)

(
∑M

a=1 e
Pa(si,:)H(y∗)r)2

H(y∗) (8.19)

To obtain eTH(y∗)r ≤ eTH(y∗)r̂, we get r̂ by solving the following problem.

max
r

eTH(y∗)r

s.t. r ∈ Ωr (8.20)

In L2, let

Π̂(r) =
Π(y∗)

(
∑M

a=1 e
Pa(si,:)H(y∗)r)2

(8.21)

Consider for arbitrary vector x ∈ <N xT Π̂(r̂)x ≥ xT Π̂(r)x, which has been proved

in Appendix 8.5. Therefore, setting B = −
∑N

i=1 H(y∗)T Π̂(r̂)H(y∗), we find that

B ≤ L2. Using similar techniques in Appendix 8.5, we are able to show L2 ≤ L1

when r = rt. Thus ∀r ∈ Ωr, B ≤ O2L(r|rt).

Chapter 8. Appendix 180

8.5 Proof for the inequality in Theorem 16

Proof Here we prove the claim that Π̂(r̂) ≥ Π̂(r) in Theorem 16. Consider for

arbitrary vector x ∈ <N the form:

xT Π̂(r̂)x =

∑M−1
i=1

∑M
j=i+1 e

(bi+bj)H(y∗)r̂[
∑N

k=1 xk(b
i
k − b

j
k)]

2

(
∑M

j=1 e
Paj (si,:)H(y∗)r̂)2

where

(
M∑
a=1

ePa(si,:)H(y∗)r̂)2 =
M∑
m=1

e2Pam (si,:)H(y∗)r̂ + 2
M−1∑
m1=1

M∑
m2=m1+1

e(Pam1
(si,:)+Pam2

(si,:))H(y∗)r̂(8.22)

Denote the first part in Eq. 8.22 as τ(r̂) and the second part as 2υ(r̂). Let ∆υ =

υ(r̂)− υ(r). Then ∆υ ≥ 0 is guaranteed in the previous computation. We can write

xT Π̂(r̂)x =
C1υ(r) + C1∆υ

τ(r) + 2υ(r) + (2C2

M−1
+ 2)∆υ

(8.23)

where C1 and C2 are two constant factors, and it is easily shown that C1 ≥ 0, 0 ≤

C2 ≤ 1. Now making the difference between xT Π̂(r̂)x and xT Π̂(r)x leads to

xT Π̂(r̂)x− xT Π̂(r)x =
C1∆υ

(
τ(r) + 2υ(r)− (2C2

M−1
+ 2)υ(r)

)(
τ(r) + 2υ(r) + (2C2

M−1
+ 2)∆υ

)
C1υ(r)

(8.24)

Since the denominator in above equation is greater than zero, we are only concerned

with

τ(r) + 2υ(r)− (
2C2

M − 1
+ 2)υ(r)

= τ(r)− C2
2

M − 1
υ(r) ≥ τ(r)− 2

M − 1
υ(r) ≥ 0 (8.25)

To prove Eq. 8.25, denoting

αi = ePai (si,:)H(y∗), i ∈M

α = (α1, α1, . . . , α1︸ ︷︷ ︸
M−1

, α2, α2, . . . , α2︸ ︷︷ ︸
M−2

, . . . , αM−1︸ ︷︷ ︸
1

)T

β = (α2, α3, . . . , αM︸ ︷︷ ︸
M−1

, α3, α4, . . . , αM︸ ︷︷ ︸
M−2

, . . . , αM︸︷︷︸
1

)T

Chapter 8. Appendix 181

, we have

υ(r) = αTβ ≤
√
αTα

√
βTβ

This inequality can be easily proved by Cauchy’s inequality

αTβ ≤
√

(M − 1)α2
1 + (M − 2)α2

2 + · · ·+ α2
M−1√

α2
2 + α2

3 + · · ·+ (M − 2)α2
M−1 + (M − 1)α2

M

≤ M − 1

2

M∑
i=1

α2
M ≤

M − 1

2
τ(r) (8.26)

, where the second inequality follows from x1x2 ≤ x2
1 + x2

2,∀x1, x2 ∈ <. Indeed, Eq.

8.26 implies for this inequality

τ(r) ≥ 2

M − 1
υ(r)

from which the inequality xT Π̂(r̂)x ≥ xT Π̂(r)x follows.

8.6 Proof of Lemma 18

We have

L(r|rt) = E
{

log p(z|r)|y, rt
}
,

H(r|rt) = E
{

log p(z|Y, r)|y, rt
}
.

First, the Jensen’s inqeuality ensures

H(r|rt)−H(rt|rt)

=

∫
p(z|y, rt) log

p(z|y, r)

p(z|y, rt)
dz

≤ log

∫
p(z|y, r)dz = 0.

Chapter 8. Appendix 182

It is obvious that when r = rt, H(r|rt) = H(rt|rt). In the majorization step, we have

L(rt+1|rt)− L(rt|rt) = OL(rt|rt)(rt+1 − rt) +
1

2
(rt+1 − rt)TO2L(rt|rt)(rt+1 − rt) + · · · .

Due to maximization step, we have

g(rt+1|rt)− g(rt|rt) = OL(rt|rt)(rt+1 − rt) +
1

2
(rt+1 − rt)TB(rt|rt)(rt+1 − rt)

≤ L(rt+1|rt)− L(rt|rt).

By g(rt+1|rt) ≥ g(rt|rt), we prove L(rt+1|rt) ≥ L(rt|rt).

8.7 Global Convergence Theory

Theorem 24 Let the sequence {xk}∞k=0 be generated by xk+1 ∈ F (xk), where F is

a point-to-set map on X Let a solution set Γ ⊂ X be given. The limits points of

{xk} are in the solution set and a continuous function l(x) converges monotonically

to l(x∗) for some points x∗ ∈ Γ, if

1. all points xk are in a compact set;

2. M is closed over the complement of Γ;

3. The function l(y) > l(x), if x /∈ Γ, ∀y ∈ F (x), and if x ∈ Γ, l(y) ≥ l(x),∀y ∈

F (x).

Chapter 8. Appendix 183

8.8 Proof of Proposition 22

Proof Without loss of generality, assume that at state s1 = s2 = sn ∈ A, we have

observed action a1 and a2. Then Û(sn) = {a1, a2}. Based on Bellman optimality, we

have ∀a ∈ A \ Û(sn),

Q(sn, a1) > Q(sn, a); Q(sn, a2) > Q(sn, a) (8.27)

And ∀a ∈ A, the Q-function is calculated by

Q(sn, a) = r(sn) + γPa(sn, :)V
π (8.28)

where the value function is written as

V π(sn) = r(sn) + γ
∑

a∗∈Û(sn)

1

|Û(sn)|
Pa∗(sn, :)V

π (8.29)

So given observation (sn, a1), we have

V π = r + γPa∗V
π ⇒ V π = (In − γPa∗)

−1r

where Pa∗ is the transition matrix, whose n-th row written as Pa∗(sn, :) =
∑

a∗∈Û(sn)
Pa∗ (sn,:)

|Û(sn)|

if sn is observed, otherwise Pa∗(sn, :) =
∑M

m=1
Pam (sn,:)

M
.

Then ∀a ∈ A \ Û(sn), we have

(Pa1(sn, :)−Pa(sn, :))(I− γPa∗)
−1r ≥ ε1

(Pa2(sn, :)−Pa(sn, :))(I− γPa∗)
−1r ≥ ε2

where ε1 and ε2 are slack variables. Generally, ∀a∗ ∈ Û(sn), its constraint is written

as that in Eq. 6.7.

Bibliography

[1] Marc Peter Deisenroth, Carl Edward Rasmussen, and Jan Peters, “Gaussian

process dynamic programming,” Neurocomputing, vol. 72, no. 7-9, pp. 1508–

1524, 2009.

[2] Andrew Y. Ng and Stuart Russell, “Algorithms for inverse reinforcement learn-

ing,” in Proc. 17th International Conf. on Machine Learning. 2000, pp. 663–670,

Morgan Kaufmann.

[3] John L. Pollock, Thinking about Acting, Oxford University Press, 2006.

[4] Edwards, “The theory of decision making,” Psychological Bulletin, vol. 51, no.

4, pp. 380–417, 1954.

[5] Simon H.A., Models of Man: Social and Rational, Wiley, 1957.

[6] Elizabeth F. Chua, Erin Rand-giovannetti, Daniel L. Schacter, Marilyn S. Al-

bert, and Reisa A. Sperling, “Dissociating confidence and accuracy: Functional

magnetic resonance imaging shows origins of the subjective memory experience,”

J. Cognitive Neuroscience, vol. 16, no. 7, pp. 1131–1142, 2004.

[7] Scott Plous, The psychology of judgment and decision making, McGraw-Hill,

1993.

184

Bibliography 185

[8] A. C. Courville, N. D. Daw, and D. S. Touretzky, “Bayesian theories of condi-

tioning in a changing world,” Trends in Cognitive Sciences, vol. 10, pp. 294–300,

2006.

[9] J. B. Tenenbaum, T.L. Griffiths, and C. Kemp, “Theory-based bayesian models

of inductive learning and reasoning,” Trends in Cognitive Sciences, vol. 10, pp.

309–318, 2006.

[10] Chris L. Baker, Rebecca Saxe, and Joshua B. Tenenbaum, “Action understand-

ing as inverse planning,” Cognition, 2009.

[11] Ullman Tomer David, Tenenbaum Joshua B., Baker Christopher Lawrence,

Macindoe Owen, Evans Owain Rhys, and Goodman Noah Daniel, “Help or

hinder: Bayesian models of social goal inference,” in Advances in Neural Infor-

mation Processing System, 2009.

[12] Stuart Russell and Norvig Peter, Artificial Intelligence: A Modern Approach

(3rd Edition), Prentice Hall, 3 edition, Dec. 2009.

[13] A. Rosenblueth, N.Wiener, and J. Bigelow, “Behavior, purpose and teleology,”

Philosophy of Science, vol. 10, pp. 18–24, 1943.

[14] D. G. Premack and G. Woodruff, “Does the chimpanzee have a theory of mind?,”

Behavioral and Brain Sciences, vol. 1, pp. 515–526, 1978.

[15] L. Bergen, O.R. Evans, and J.B. Tenenbaum, “Learning structured preferences,”

in the Thirty-second Annual Conference of the Cognitive Science Society, 2010.

Bibliography 186

[16] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities

in System and Control Theory, vol. 15 of Studies in Applied Mathematics, SIAM,

Philadelphia, PA, June 1994.

[17] Ralph L. Keeney and Howard Raiffa, Decisions with multiple objectives: prefer-

ences and value tradeoffs, Cambridge Univsersity Press, 1993.

[18] John Rust, “Estimation of dynamic structure models: Problems and prospects

part i: Discrete markov decision processes,” in Proc. 6th World Congress of the

Econometric Society, 1994.

[19] T.J. Sargent, “Estimation of dynamic labor demand schedules under rational

expectations,” Journal of Political Economy, vol. 86, pp. 1009–1044, 1978.

[20] Stuart Russell, “Learning agents for uncertain environments (extended ab-

stract),” in 11th Annual Conference on Computational Learning Theory, 1998,

pp. 101–103.

[21] Peter Abbeel and Andrew Y. Ng, “Apprenticeship learning via inverse reinforce-

ment learning,” in Proc. 21st International Conf. on Machine learning. 2004,

p. 1, ACM.

[22] Umar Syed, Michael Bowling, and Robert E. Schapire, “Apprenticeship learn-

ing using linear programming,” in Proc. 25th international Conf. on Machine

learning. 2008, pp. 1032–1039, ACM.

[23] Umar Syed and Robert E. Schapire, “A game-theoretic approach to apprentice-

ship learning,” in Advances in Neural Information Processing Systems. 2008, pp.

1449–1456, MIT Press.

Bibliography 187

[24] Gergely Neu and Csaba Szepesvari, “Apprenticeship learning using inverse re-

inforcement learning and gradient methods,” in Proc. Uncertainty in Artificial

Intelligence, 2007.

[25] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey, “Max-

imum entropy inverse reinforcement learning,” in Proc. AAAI, 2008.

[26] Ramachandran Deepak and Amir Eyal, “Bayesian inverse reinforcement learn-

ing,” in Proc. 20th International Joint Conf. on Artificial Intelligence, 2007.

[27] George Casella and Roger Berger, Statistical Inference, Duxbury Resource Cen-

ter, June 2001.

[28] Peter W. Zehna, “Invariance of maximum likelihood estimators,” Annals of

Mathematical Statistics, vol. 37, pp. 744, 1966.

[29] Nabendu Pal and J. Calvin Berry, “On invariance of maximum likelihood esti-

mation,” The American Statistics, vol. 46, pp. 209–212, 1992.

[30] S.French, Decision Theory, Ellis Horwood, Chichester, West Sussex, England,

1988.

[31] Barbera Salvador, Hammond Peter, and Seidl Christian, Handbook of Utility

Theory, Springer, 1999.

[32] von Neumann John and Morgenstern Oskar, Theory of Games and Economic Be-

havior (Commemorative Edition) (Princeton Classic Editions), Princeton Uni-

versity Press, May 2004.

[33] Bellman R., Dynamic programming, Princeton University Press, 1957.

Bibliography 188

[34] Puterman Martin L., Markov Decision Processes: Discrete Stochastic Dynamic

Programming, Wiley-Interscience, April 1994.

[35] James O. Berger, Statistical decision theory and Bayesian analysis, Springer

series in statistics. Springer, New York, NY [u.a.], 2. ed edition, 1985.

[36] R. E. Schapire Y. Freund, “Adaptive game playing using multiplicative weights,”

Games and Economic Behavior, vol. 29, pp. 79–103, 1999.

[37] Carl Edward Rasmussen and Christopher K.I.Williams, Gaussian Processes for

Machine Learning, MIT Press, 2006.

[38] Chu Wei and Ghahramani Zoubin, “Preference learning with gaussian pro-

cesses,” in Proc. 22th Iinternational Conf. on Machine learning. 2005, pp. 137–

144, ACM.

[39] Matthias Seeger, “Gaussian processes for machine learning,” International Jour-

nal of Neural Systems, vol. 14, pp. 2004, 2004.

[40] Takeyuki Hida and Masuyuki Hitsuda, Gaussian Processes, American Mathe-

matical Society, 1993.

[41] A.N.Kolmogorov, Foundations of the Theory of Probability, AMS Chelsea, 2nd

edition, 1956.

[42] J. Fürnkranz and E. Hüllermeier, “Preference learning,” in Künstliche Intelli-

genz, 2005.

[43] Fabio Aiolli and Alessandro Sperduti, “Learning preferences for multiclass prob-

lems,” in Advances in Neural Information Processing Systems 17. 2004, pp.

17–24, MIT Press.

Bibliography 189

[44] Ofer Dekel, Christopher D. Manning, and Yoram Singer, “Log-linear models for

label ranking,” in 21st International Conference on Machine Learning, 2004.

[45] Christopher Williams Neural, Christopher K. I. Williams, and Carl E. Ras-

mussen, “Gaussian processes for regression,” in Advances in Neural Information

Processing Systems. 1996, pp. 514–520, MIT press.

[46] David C. Mackay, “Bayesian interpolation,” Neural Computation, vol. 4, no. 3,

pp. 415–447, 1992.

[47] Hannes Nickisch and Carl Edward Rasmussen, “Approximations for Binary

Gaussian Process Classification,” Journal of Machine Learning Research, vol. 9,

pp. 2035–2078, October 2008.

[48] A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian Data Analysis, Second

Edition, Chapman & Hall/CRC, 2003.

[49] Umar Syed, Robert E. Schapire, and Let ??, “A game-theoretic approach to

apprenticeship learning,” in In Advances in Neural Information Processing Sys-

tems. 2008, pp. 1449–1456, MIT Press.

[50] Michael Kearns, “Near-optimal reinforcement learning in polynomial time,” pp.

209–232, 2002.

[51] Qifeng Qiao and Peter A. Beling, “Inverse reinforcement learning via convex

programming,” in Americon Control Conference, 2011.

[52] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell, “Policy invariance under

reward transformations: Theory and application to reward shaping,” in ICML

Bibliography 190

1999: The Sixteenth International Conference on Machine Learning, 1999, pp.

278–287.

[53] Atkeson Christopher G. and Schaal Stefan, “Robot learning from demonstra-

tion,” in ICML ’97: Proceedings of the Fourteenth International Conference on

Machine Learning, San Francisco, CA, USA, 1997, pp. 12–20, Morgan Kaufmann

Publishers Inc.

[54] Kenji Doya, “Reinforcement learning in continuous time and space,” Neural

Computation, vol. 12, pp. 219–245, 2000.

[55] Dimitri P. Bertsekas, Dynamic Programming and Optimal Control, Athena

Scientific, 1995.

[56] Dimitri P. Bertsekas and John N. Tsitsiklis, Neuro-Dynamic Programming,

Athena Scientific, 1996.

[57] Rutledge R.B., Lazzaro S.C., Lau B., Myers C.E., Gluck M.A., and Glimcher

P.W., “Dopaminergic drugs modulate learning rates and perseveration in parkin-

son’s patients in a dynamic foraging task,” The Journal of Neuroscience, vol.

29, no. 48, pp. 15104–15114, 2009.

[58] Michael X Cohen and Charan Ranganath, “Reinforcement learning signals pre-

dict future decisions,” Journal of Neuroscience, vol. 27, no. 2, pp. 371–378,

2007.

[59] Peter Dayan and Nathaniel D. Daw, “Decision theory, reinforcement learning,

and the brain,” Cognitive, Affective, and Behavioral Neuroscience, vol. 8, pp.

429–453, 2008.

Bibliography 191

[60] Botvinick Matthew M., Niv Yael, and Barto Andrew C., “Hierarchically orga-

nized behavior and its neural foundations: a reinforcement learning perspective,”

Cognition, vol. 113, no. 3, pp. 262–280, Dec. 2009.

[61] Hopkins Ed, “Reinforcement learning signals predict future decisions,” Journal

of Economic Behavior and Organization, vol. 64, no. 3-4, pp. 348–368, 2007.

[62] Choi James Jinwoo, Laibson David, Madrain Brigitte, and Metrick Andrew, “Re-

inforcement learning in investment behavior,” Tech. Rep., UCLA Department

of Economics, 2007.

[63] Qifeng Qiao and Peter Beling, “Behavior recognition as bayesian inverse learning

problem,” Tech. Rep., University of Virginia Department of Systems Engineer-

ing, 2011.

[64] Xiaojin Zhu and Andrew B.Goldberg, Introduction to Semi-Supervised Learning,

Morgan and Claypool, 2009.

[65] Huber P.J., Robust Statistics, Wiley, 1981.

[66] Hunter D.R. and Lange K., “Computing estimates in the proportional odds

model,” Annuals of the Institute of Statistical Mathematics, vol. 54, pp. 155–

168, 2002.

[67] Mrio A. T. Figueiredo, Jos M. Bioucas-Dias, and Robert D. Nowak,

“Majorization-minimization algorithms for wavelet-based image restoration.,”

IEEE Transactions on Image Processing, pp. 2980–2991, 2007.

Bibliography 192

[68] Mehrdad Yaghoobi, Thomas Blumensath, and Mike E. Davies, “Dictionary

learning for sparse approximations with the majorization method,” IEEE Trans-

actions on Signal Processing, vol. 57, no. 6, pp. 2178–2191, June 2009.

[69] Kenneth Lange, Springer, 2004.

[70] Christopher M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics), Springer, 2007.

[71] C.F.Jeff Wu, “On the convergence properties of the em algorithm,” Annals of

Statistics, vol. 11, no. 1, pp. 95–103, 1998.

[72] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the em algorithm,” Journal of the Royal Statistical Society,

series B, vol. 39, no. 1, pp. 1–38, 1977.

[73] Willard I. Zangwill, Nonlinear Programming; a Unified Approach, Prentice Hall,

1969.

[74] G. Rummery and M. Niranjan, “On-line q-learning using connectionist systems,”

Tech. Rep., University of Cambridge, 1994.

[75] Richard S. Sutton and Andrew G. Barto, “Reinforcement learning i: Introduc-

tion,” 1998.

[76] Darryl A. Seale, “Sequential decision making with relative ranks: An experi-

mental investigation of the ’secretary problem’,” Organizational Behavior and

Human Decision Process, vol. 69, pp. 221–236, March 1997.

Bibliography 193

[77] C. F. Schmidt, N. S. Sridharan, and J. L. Goodson, “The plan recognition

problem: An intersection of psychology and artificial intelligence,” Artificial

Intelligence, vol. 11, pp. 45–83, 1978.

[78] Miquel Ramirez and Hector Geffner, “Probabilistic plan recognition using off-

the-shelf classical planners,” in AAAI, 2010.

[79] Miquel Ramirez and Hector Geffner, “Goal recognition over pomdps: Inferring

the intention of a pomdp agent,” in IJCAI, 2011, pp. 2009–2014.

[80] C.Lucas, T.L.Griffiths, F. Xu, and C.Fawcett, “A rational model of preference

learning and choice prediction by children,” in Advances in Neural Information

Processing Systems 21, 2009.

[81] W. Yoshida, R.J.Dolan, and K.J.Friston, “Game theory of mind,” PloS Com-

putational Biology, vol. 4, no. 12, pp. 1–14, 2008.

[82] B.M.Repacholi and A. Gopnik, “Early reasoning about desires: Evidence from

14- and 18- mont-olds,” Developmental Psychology, vol. 33, no. 1, 1997.

[83] Christine A Fawcett and Lori Markson, “Children reason about shared prefer-

ences,” Developmental Psychology, vol. 46, pp. 299–309, 2010.

[84] Pieter Abbeel and Andrew Y. Ng, “Apprenticeship learning via inverse reinforce-

ment learning,” in In Proceedings of the Twenty-first International Conference

on Machine Learning, 2004.

[85] Qifeng Qiao and Peter A.Beling, “Gaussian process inverse reinforcement learn-

ing with bayesian inference and convex optimization,” manuscript, 2011.

Bibliography 194

[86] Monica Babes-Vroman, Vukosi Marivate, Kaushik Subramanian, and Michael

Litman, “Apprenticeship learning about multiple intentions,” in the 28th Inter-

national Conference on Machine learning, WA, USA, 2011.

[87] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley, 2001.

[88] C.-C. Chang and C.-J. Lin, “Libsvm : a library for support vector machines,”

ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 1–27, 2011.

[89] L. Xu amd J. Neufeld, B. Larson, and D. Schuurmans, “Maximum margin

clustering,” in Av. Neural Inf. Process Syst., 2005, pp. 1537–1544.

[90] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms

and Complexity, New York: Dover, 1998.

[91] A. Strehl and J.Ghosh, “Cluster ensembles? a knowledge reuse framework for

combining multiple partitions,” Journal of Machine Learning Research, vol. 9,

pp. 386–396, 2002.

[92] A. Banerjee, I.S.Dhillon, J.Ghosh, and S.Sra, “Clustering on the unit hyper-

sphere using von mises-fisher distributions,” Journal of Machine Learning Re-

search, vol. 6, pp. 1345–1382, 2005.

[93] Chris L. Baker, Rebecca Saxe, and Joshua B. Tenenbaum, “Action understand-

ing as inverse planning,” Cognition, vol. 113, pp. 329–349, 2009.

[94] Daniel Schunk and Joachim Winter, “The relationship between risk attitudes

and heuristics in search tasks: A laboratory experiment,” Journal of Economic

Behavior and Organization, vol. 71, pp. 347–360, 2009.

	title.pdf
	signature
	main_dissertation

