
Annular Link Homology Theories and their

Homotopical Refinements

Rostislav Akhmechet

Brooklyn, New York

B.S., SUNY Binghamton (2016)

A Dissertation Presented to the Graduate Faculty

of the University of Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Mathematics

University of Virginia

May, 2022



©Copyright by Rostislav Akhmechet 2022

All Rights Reserved



Abstract

Homology theories of links which categorify quantum link invariants have been developed

over the past twenty years, starting with Khovanov’s seminal categorification of the Jones

polynomial. This thesis focuses on links in the thickened annulus and develops annular

link homology in two main directions. First, we present joint work with Krushkal and

Willis in which a stable homotopy refinement of Beliakova-Putyra-Wehrli’s quantum annular

homology is constructed. Second, we introduce equivariant annular link homology. This is

comprised of sl2 annular homology via filtrations, joint work with Khovanov in the sl2 and

sl3 setting via foam evaluation and universal construction, and a treatment of the general

gl𝑁 setting via foams.
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Chapter 1

Introduction

Knot theory, the study of knots in links in 3-space, constitutes a significant part of low-

dimensional topology. Of central importance is the notion of link invariants, which are used

to distinguish two links and shed light on intricate topological information. The celebrated

Jones polynomial 𝑉 (𝐿), discovered by Vaughan Jones in 1984 [31], was a revolutionary link

invariant that not only distinguished many links in 3-space, but also led to resolutions of

long-standing conjectures in knot theory [82] and ushered in the field of quantum topol-

ogy. Generalizations of the Jones polynomial, such as the Reshetikhin-Turaev invariants

[70] demonstrated a deep connection between low-dimensional topology and representation

theory, while connections to mathematical physics were discovered by Witten [88].

In 1999, Mikhail Khovanov [33] introduced what is now called Khovanov homology, a

bigraded cohomology theory of links 𝐾ℎ(𝐿) which categorifies 𝑉 (𝐿), in the sense that the

graded Euler characteristic of 𝐾ℎ(𝐿) is equal to 𝑉 (𝐿). Khovanov homology is a strictly

stronger invariant than the Jones polynomial [7]; it detects the unknot [47], which remains

an open question for 𝑉 (𝐿); and, perhaps most importantly, it enjoys functoriality prop-

erties which are invisible at the decategorified level. Functoriality was famously used by

Rasmussen [69] to provide a combinatorial proof of Milnor’s conjecture regarding slice genus

of torus knots. Generalizations and extensions of Khovanov’s original homology for links in

3-space are plentiful, employing methods from many areas of mathematics, namely (higher)

representation theory, symplectic geometry, and algebraic geometry.

Extensions of Khovanov homology to links in 3-manifolds besides R3 remain, for the most
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part, undiscovered. The first such extension was introduced by Asaeda-Przytycki-Sikora [6]

for interval bundles over a surface. The special case of the thickened annulus A × 𝐼, where

𝐼 := [0, 1] and A := 𝑆1 × 𝐼, is known as annular Khovanov homology. It can be defined by

taking the associated graded of an appropriate filtration on the Khovanov chain complex.

Annular homology is the most widely explored among the few known extensions of Khovanov

homology to other 3-manifolds, and moreover it has a richer structure than homology of links

in R3: it is a triply graded theory and carries representation-theoretic importance [25].

This thesis develops new features and generalizations of annular homology in two main

directions:

(I) Constructing a stable homotopy refinement of quantum annular Khovanov homology.

This is joint work with Krushkal and Willis [5] and is the content of Chapter 3.

(II) Introducing annular versions of equivariant Khovanov homology and of the foam-

theoretic approach to Khovanov-Rozansky sl𝑁 homology [42, 50, 67, 73, 24]. This

is partially based on joint work with Khovanov [3] and occupies Chapter 4.

Let us give context for the above two items.

Regarding item (I), Lipshitz-Sarkar [57] defined a stable homotopy refinement of Kho-

vanov homology. To a link 𝐿 ⊂ R3 they associate a 𝐶𝑊 spectrum 𝒳 (𝐿) whose stable

homotopy type is an invariant of 𝐿 and whose cohomology is isomorphic to 𝐾ℎ(𝐿). The

salient feature of the homotopical refinement is that it admits stable cohomology operations.

Lipshitz-Sarkar give combinatorial formulas for the Steenrod operations Sq1 and Sq2, which

are used to show that 𝒳 (𝐿) is a non-trivial extension of 𝐾ℎ(𝐿), in the sense that 𝒳 (𝐿) is not

simply a wedge of Moore spaces [59]. Seed [79] used Steenrod operations to show that 𝒳 (𝐿)

is a strictly stronger link invariant than 𝐾ℎ(𝐿). As another application, Lipshitz-Sarkar [58]

extracted a refinement of Rasmussen’s 𝑠-invariant from the homotopy type.

Beliakova-Putyra-Wehrli [11] introduced a sophisticated deformation of annular Kho-

vanov homology, called quantum annular Khovanov homology. For a link 𝐿 in the thickened

annulus, they construct a triply graded homology 𝐾ℎAq(𝐿) of k := Z[q, q−1]-modules. A

remarkable aspect of their theory is that 𝐾ℎAq(𝐿) admits an action of the quantum group

𝑈q(sl2). We use a modification of Beliakova-Putyra-Wehrli’s chain complex, given by setting
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q𝑟 = 1 before taking homology, resulting in a homology theory 𝐾ℎ𝑟Aq
(𝐿) of k/(q𝑟 − 1)-

modules. We construct a stable homotopy refinement of this theory.

Theorem A ([5, Theorem 1.1]). Let 𝐿 be an oriented link in the thickened annulus A× 𝐼.

Then for each 𝑟 ≥ 2, there exists a Z/𝑟Z-equivariant spectrum 𝒳 𝑟
Aq
(𝐿) which is well-defined

up to equivariant homotopy equivalence and whose cohomology is isomorphic to the quantum

annular homology 𝐾ℎ𝑟Aq
(𝐿), as modules over Z[Z/𝑟Z] = k/(q𝑟 − 1).

We stress two key points in the construction of 𝒳 𝑟
Aq
(𝐿). First, it is crucial in Lipshitz-

Sarkar’s definition of 𝒳 (𝐿) to have a suitable basis for the Khovanov chain complex. The

situation in quantum annular homology is more involved, because there is no such canonical

choice of generators: there is a family of preferred choices of generators, which are related

to each other by multiplication by a (non-uniform) power of q. Second, the element q is

interpreted as a generator of the cyclic group Z/𝑟Z, which gives the cohomology of the

Z/𝑟Z-spectrum 𝒳 𝑟
Aq
(𝐿) the structure of a module over Z[Z/𝑟Z] = k/(q𝑟 − 1), and thus

allows for a comparison between 𝐻*(𝒳 𝑟
Aq
(𝐿);Z) and 𝐾ℎ𝑟Aq

(𝐿).

Setting q = 1 (equivalently, taking 𝑟 = 1) in the quantum annular complex recovers

annular Khovanov homology and the sl2 action discovered by Grigsby-Licata-Wehrli [25].

On the other hand, a homotopy refinement 𝒳A(𝐿) of annular Khovanov homology is readily

defined. The following result is a spectral analogue of setting q = 1.

Theorem B ([5, Theorem 1.2]). The quotient of 𝒳 𝑟
Aq
(𝐿) by the Z/𝑟Z action recovers 𝒳A(𝐿).

We also associate maps of spectra to cobordisms, analogous to those in [58] for 𝒳 (𝐿).

Theorem C ([5, Theorem 6.1]). For any generically embedded cobordism 𝑊 ⊂ A× [0, 1]×

[0, 1] between two annular links 𝐿0 and 𝐿1, there exists a map of spectra 𝜙𝑟𝑊 : 𝒳 𝑟
Aq
(𝐿1) →

𝒳 𝑟
Aq
(𝐿0), whose induced map on cohomology (𝜙𝑟𝑊 )* equals the map induced by 𝑊 on quan-

tum annular Khovanov homology.

Theorems A, B and C are restated and proven as Theorems 3.0.1, 3.0.2, and 3.7.2 in

Chapter 3. The necessary background regarding quantum annular homology and (one ap-

proach to) Khovanov stable homotopy refinements is presented in Section 2.4.2 and Section

2.6, respectively.
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We now discuss item (II). There exist versions of Khovanov homology which are, in an

appropriate sense, universal. These link homology theories, systematically studied in [37, 40],

are associated with equivariant cohomology of CP1, explaining the terminology equivariant

Khovanov homology. By specializing parameters in a suitable way, equivariant Khovanov

homology reduces to Khovanov homology and also to important deformations of Khovanov

homology, namely the filtered Lee [55] and Bar-Natan [8] deformations, from which subtle

topological information is extracted, most notably by Rasmussen [69].

Beyond the Jones polynomial, Reshetikhin-Turaev [70] defined a family of link polyno-

mials which depend on a simple Lie algebra g and a labeling of each link component by a

representation of the corresponding quantum group 𝑈𝑞(g). The Jones polynomial is an in-

stance of these invariants as the special case where g = sl2 and all components are labeled by

the fundamental 2-dimensional representation. Murakami-Ohtsuki-Yamada [65] discovered

that, if g = sl𝑁 and components are labeled by quantum exterior powers of the fundamen-

tal representation, then the Reshetikhin-Turaev invariant can be computed combinatorially

from the link diagram. Each crossing is replaced by a Z[𝑞, 𝑞−1]-linear combination of webs,

which are certain trivalent graphs giving a diagrammatic description of (a piece of) the rep-

resentation category of 𝑈𝑞(sl𝑁) (see [48] for the sl3 setting and [18] for general 𝑁). Each

web is then evaluated to a Laurent polynomial by recursively applying the MOY relations.

The program of categorifying higher rank invariants began in work of Khovanov [35] in the

sl3 setting and was continued in the sl𝑁 setting by Khovanov-Rozansky [42] and Wu [90] via

matrix factorizations. Using higher representation theory, Webster [86] has categorified the

Reshetikhin-Turaev invariant in full generality. By now there exists a wealth of approaches

to categorifying Reshetikhin-Turaev invariants for links in R3. By studying deformations

of higher rank link homology, Lewark-Lobb [56] introduced a generalization of Rasmussen’s

𝑠-invariant, producing new bounds on slice genus of knots.

Of central importance to this thesis is the approach via foams, which are singular surfaces

viewed as cobordisms between webs. Foams were introduced in Khovanov’s categorification

of the sl3 polynomial, and developed further by many authors [12, 50, 67, 62].

Of particular focus will be the Robert-Wagner closed foam evaluation [73]. Robert-

Wagner give a state-sum evaluation ⟨−⟩RW of closed foams which is miraculously valued in
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the ring of symmetric polynomials 𝑅𝑁 = Z[𝑥1, . . . , 𝑥𝑁 ]𝑆𝑁 [73, Proposition 2.19]. This allows

them to define, for any web Γ, the state space ⟨Γ⟩ via universal construction: ⟨Γ⟩ is spanned

by all foams from the empty web to Γ, with relations determined by the evaluation ⟨−⟩RW.

They prove that ⟨Γ⟩ is a free graded 𝑅𝑁 -module of graded rank equal to the MOY evaluation

of Γ [73, Theorem 3.30]. Thus Robert-Wagner evaluation categorifies the MOY relations;

the chain complex categorifying the sl𝑁 link invariant is assembled from these state spaces.

Key benefits of this approach include

• its combinatorial nature,

• that it naturally produces equivariant link homology, and

• the strict functoriality of the resulting link homology, proven in the 𝑁 = 2 case by

Blanchet [12] and in the colored, general 𝑁 case by Ehrig-Tubbenhauer-Wedrich [24].

Webs, foams, and foam evaluation are discussed in Section 2.5.

Remark 1.0.1. As explained in the introduction of [73], Robert-Wagner, strictly speaking,

work with gl𝑁 webs and foams. Both sl𝑁 and gl𝑁 terminology appears in the literature. In

this document we will say gl𝑁 when referring to the webs and foams in [73, 24].

Item (II) addresses the problem of defining equivariant Khovanov homology and Khovanov-

Rozansky homology for links in the thickened annulus. Non-equivariant annular Khovanov-

Rozansky homology was introduced in [68] using categorical traces of categorified quantum

groups [49, 39]. We thus give a foamy construction of annular Khovanov-Rozansky homology

which enjoys the benefits of being purely combinatorial, having equivariance naturally built

in, and, in the gl𝑁 setting, strict functoriality.

A unifying aspect of all the equivariant annular link homology theories discussed below

is that the ground ring is a polynomial ring rather than the subring of symmetric polyno-

mials, which is in contrast to existing equivariant homology for links in 3-space. Robert-

Wagner foam evaluation takes values in symmetric polynomials, allowing state spaces to be

constructed over the smaller ring. Passing to the larger ground ring introduces additional

flexibility that is apparently needed for annular versions of these theories. This phenomenon
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appears already in the simplest instance of our constructions, the sl2 setting via filtrations.

See the introduction to Chapter 4 for a more thorough discussion.

One method to extend equivariant sl2 homology to the annular setting is to take the asso-

ciated graded of a suitably defined filtration, analogous to the definition of (non-equivariant)

annular homology. This strategy is applied in Section 4.1 and has appeared in [2].

For the reasons stated above, it is desirable to have a foam-based approach to higher rank

link homology. The main obstacle in the annular setting is assigning a suitable module to a

web in the annulus A. As discussed above, universal construction assigns to a planar object

a certain quotient of the free module generated by all cobordisms bounding that object.

However, a single non-contractible circle in the annulus does not bound any surface in the

thickened annulus. To overcome this, the thickened annulus is modeled as the complement

of a distinguished line ℒ ⊂ R3. Foams are allowed to generically intersect ℒ, and they must

carry additional decorations at intersection points, which contribute to the foam evaluation.

We call these anchored foams ; this perspective is based on joint work with Khovanov [3].

In addition to quantum gradings, anchored foams also carry annular gradings, coming

from intersections with ℒ. In the sl2 and sl3 case, annular degrees give Z and Z⊕Z gradings,

respectively, and in the gl𝑁 setting they give a Z𝑁 grading. This is expected from the point of

view of representation theory. It was shown in [25] that annular Khovanov homology carries

an sl2 action, with the annular grading corresponding to the weight space decomposition.

More generally, the annular sl𝑁 homology in [68] is shown to carry an action of sl𝑁 . We

note, however, that the equivariant annular homology theories presented in this thesis are

not known to admit actions by the corresponding Lie algebras.

Section 4.2 gives a foam perspective on the equivariant annular sl2 homology introduced

in Section 4.1. We define an evaluation of anchored surfaces, valued in the polynomial ring

Z[𝛼1, 𝛼2]. When the surface is disjoint from ℒ, the evaluation agrees with evaluation of

closed surfaces in equivariant Khovanov homology. Applying the universal construction to

anchored surface evaluation yields state spaces for collections of disjoint circles in the annulus.

As in annular Khovanov homology, state spaces are bigraded, carrying quantum and annular

gradings. This assembles into a functor ⟨−⟩ : ACob→ Z[𝛼1, 𝛼2]− ggmod from the category

of cobordisms in the thickened annulus to the category of bigraded Z[𝛼1, 𝛼2]-modules.
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Theorem D ([3]). Let 𝐿 ⊂ A × [0, 1] be an annular link with diagram 𝐷. Applying the

above functor ⟨−⟩ term-wise to the cube of resolutions of 𝐷 yields a chain complex 𝐶(𝐷) of

free bigraded Z[𝛼1, 𝛼2]-modules whose chain homotopy class is an invariant of 𝐿. Moreover,

𝐶(𝐷) is isomorphic to the chain complex defined in Section 4.1.

The construction of anchored surface evaluation occupies Section 4.2. Identification of

state spaces (and their bigraded rank) is Theorem 4.2.10. That the resulting homology agrees

with the filtration approach from Section 4.1 is stated as Theorem 4.2.19.

Section 4.3 addresses sl3 homology in the annular setting.

Theorem E ([3]). There exists an evaluation of anchored sl3 foams valued in the ring of

polynomials Z[𝑥1, 𝑥2, 𝑥3]. The resulting state spaces of sl3 webs in the annulus are free

triply graded Z[𝑥1, 𝑥2, 𝑥3]-modules. Applying the state-space construction to the sl3 cube

of resolutions of an annular link diagram 𝐷 yields a chain complex of free triply graded

Z[𝑥1, 𝑥2, 𝑥3]-modules whose chain homotopy class is an invariant of the annular link repre-

sented by 𝐷.

Anchored sl3 foam evaluation is defined in Sections 4.3.1 and 4.3.2. Theorem 4.3.32

identifies state spaces of annular webs. The contents of Section 4.2 and Section 4.3 are joint

work with Khovanov [3].

Section 4.4 addresses the general gl𝑁 setting. The main result is summarized as follows.

Theorem F. For each 𝑁 ≥ 2, there exists an evaluation of anchored gl𝑁 foams valued in

the ring of polynomials 𝑅′
𝑁 = Z[𝑥1, . . . , 𝑥𝑁 ]. The resulting state spaces of gl𝑁 webs in the

annulus are free Z⊕ Z𝑁 -graded 𝑅′
𝑁 -modules.

Given an annular link 𝐿 ⊂ A× [0, 1] with diagram 𝐷 ⊂ A, there exists a chain complex

𝐶(𝐷) of Z ⊕ Z𝑁 -graded 𝑅′
𝑁 -modules whose homology 𝐻(𝐷) is an invariant of the isotopy

class of 𝐿. For a link cobordism 𝑆 ⊂ A× [0, 1]× [0, 1] from 𝐿0 to 𝐿1, there exists a map on

the homology 𝑆* : 𝐻(𝐿0) → 𝐻(𝐿1), which is independent of the isotopy class of 𝑆 and is

functorial with respect to composition of cobordisms.

Anchored gl𝑁 foam evaluation is defined in Section 4.4.1. Local relations are established

in Section 4.4.2, allowing us to identify state spaces assigned to annular gl𝑁 webs in Section

4.4.3. The resulting link homology is discussed in Section 4.4.4 .
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Chapter 2

Background

2.1 The Jones polynomial

Throughout this document, a link 𝐿 will mean a smooth embedding of a disjoint union

of finitely many circles,
∐︀𝑘

𝑖=1 𝑆
1, into the 3-sphere 𝑆3. The number 𝑘 ≥ 0 is the number of

components of 𝐿. An ambient isotopy is an orientation-preserving diffeomorphism 𝑆3 → 𝑆3.

Two links 𝐿0, 𝐿1 are isotopic if there is an ambient isotopy sending 𝐿0 to 𝐿1. An oriented

link is a link 𝐿 ⊂ 𝑆3 with a choice of orientation on each component. Oriented links are

isotopic if there is an ambient isotopy which sends one link to the other and preserves the

orientation on each component.

Every link 𝐿 can be represented as a link diagram, a generic projection of 𝐿 onto a plane.

If 𝐿 is oriented then every diagram of 𝐿 inherits an orientation, depicted by drawing arrows

on the components. A classical result, proven in the 1920’s by Reidemeister, states that

two diagrams 𝐷 and 𝐷′ represent isotopic links if and only if they are related by a finite

sequence of Reidemeister moves, shown in Figure 2-1. If 𝐿 is oriented, then there are oriented

analogues of the moves.

Determining whether two links are isotopic is, in general, a difficult question. One method

to conclude that two links are not isotopic is to define a link invariant, which for our purposes

is a function 𝑓 from the set of all link diagrams into some set, such that if 𝐷 and 𝐷′ are

related by a Reidemeister move, then 𝑓(𝐷) = 𝑓(𝐷′).

We now define the Jones polynomial, discovered in the seminal work of Jones [31]. The

9



∼

(a) Reidemeister I.

∼

(b) Reidemeister II.

∼

(c) Reidemeister III.

Figure 2-1: Reidemeister moves relating diagrams of isotopic links.

= 𝑞−1 − 𝑞−2

(a) Resolving a positive crossing.

= 𝑞 − 𝑞2

(b) Resolving a negative crossing.

⊔ 𝐷 = (𝑞 + 𝑞−1)𝐷

(c) Circle removal.

Figure 2-2: The algorithm to compute the Jones polynomial.

definition given below is a modification of Kauffman’s bracket approach to the Jones poly-

nomial [32].

Definition 2.1.1. Let 𝐷 be a link diagram for an oriented link 𝐿. The Jones polynomial

𝑉 (𝐷) is defined as follows. First, replace each crossing of 𝐷 by the linear combination shown

in Figure 2-2a or 2-2b, depending on the orientation of the strands involved in the crossing.

If 𝐷 has 𝑛 crossings, this results in a 2𝑛-term sum of planar diagrams with coefficients given

by monomials ±𝑞𝑎. Each planar diagram is a collection of some number of disjoint circles

in the plane, which we evaluate using the rule in Figure 2-2c, with the understanding that

𝑉 (∅) = 1; that is, a planar diagram with 𝑘 circles evaluates to (𝑞 + 𝑞−1)𝑘. By construction,

𝑉 (𝐷) ∈ Z[𝑞, 𝑞−1].

Proposition 2.1.2. If 𝐷 and 𝐷′ are oriented link diagrams that are related by a Reidemeister

move, then 𝑉 (𝐷) = 𝑉 (𝐷′). Consequently, 𝑉 (−) is an invariant of oriented links.

Using the relations in Figure 2-2a and 2-2b, one obtains the following skein relation.

𝑞2𝑉

⎛⎝ ⎞⎠− 𝑞−2𝑉

⎛⎝ ⎞⎠ = (𝑞 − 𝑞−1)𝑉

(︃ )︃
(2.1)
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2.2 Graded rings and modules

This section records some algebraic notions regarding graded rings, modules, and chain

complexes.

A graded ring is a commutative ring 𝑅 together with a decomposition as a direct sum of

(additive) abelian subgroups

𝑅 =
⨁︁
𝑖∈Z

𝑅𝑖,

such that the multiplication in 𝑅 satisfies 𝑅𝑖 ·𝑅𝑗 ⊂ 𝑅𝑖+𝑗.

Let 𝑅 be a graded ring. A graded 𝑅-module is a (left) 𝑅-module 𝑀 , together with a

direct sum decomposition 𝑀 =
⨁︀

𝑖∈Z𝑀 , where each 𝑀𝑖 is an additive subgroup of 𝑀 , such

that 𝑅𝑖 ·𝑀𝑗 ⊂ 𝑀𝑖+𝑗. Note that 𝑅 is a graded 𝑅-module. An element 𝑚 ∈ 𝑀𝑑 is called

homogeneous of degree deg(𝑚) = 𝑑; the element 0 is homogeneous of any degree.

Often one focuses on the case when 𝑅 is trivially graded, meaning that 𝑅0 = 𝑅 and

𝑅𝑖 = {0} for 𝑖 ̸= 0. In this case, a graded 𝑅-module is an 𝑅-module with a distinguished

Z-indexed direct sum decomposition into 𝑅-submodules. In Section 2.3.4 we will consider

rings with nontrivial gradings. The key graded rings in this thesis are 𝑅 = Z with the trivial

grading and polynomial rings 𝑅 = Z[𝑥1, . . . , 𝑥𝑁 ] where each 𝑥𝑖 has degree 2.

Given graded 𝑅-modules 𝑀 and 𝑁 , an 𝑅-linear map 𝑓 : 𝑀 → 𝑁 , and 𝑑 ∈ Z, we say

that 𝑓 is a graded map of degree 𝑑 if 𝑓(𝑀𝑖) ⊂ 𝑁𝑖+𝑑 for all 𝑖 ∈ Z. We will write 𝑅− gmod to

denote the category of graded 𝑅-modules and graded maps (of any degree) between them.

Direct sum and tensor product extend naturally to the category 𝑅− gmod. For graded

𝑅-modules 𝑀 and 𝑁 , define a grading on 𝑀 ⊕ 𝑁 by setting (𝑀 ⊕𝑁)𝑖 = 𝑀𝑖 ⊕ 𝑁𝑖, and

on 𝑀 ⊗𝑅 𝑁 by setting a simple tensor 𝑚 ⊗ 𝑛, for homogeneous 𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 , to be

homogeneous of degree deg(𝑚) + deg(𝑛).

The category 𝑅− gmod comes equipped with a Z-action called a grading shift functor,

denoted 𝑀 ↦→𝑀{𝑛}. As an 𝑅-module, 𝑀 =𝑀{𝑛}, but as a graded 𝑅-module we have

(𝑀{𝑛})𝑖 =𝑀𝑖−𝑛. (2.2)
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A chain1 complex of graded 𝑅-modules consists of

• A graded 𝑅-module 𝐶𝑖 for each 𝑖 ∈ Z, such that 𝐶𝑖 = {0} for all but finitely many 𝑖.

• For each 𝑖 ∈ Z, a degree zero map 𝜕𝑖 : 𝐶𝑖 → 𝐶𝑖+1 such that 𝜕𝑖+1𝜕𝑖 = 0.

We write such a chain complex as (𝐶, 𝜕), sometimes omitting the differential from the nota-

tion.

Given two chain complexes 𝐶 and 𝐷, a chain map 𝑓 : 𝐶 → 𝐷 consists of a degree zero

𝑅-linear map 𝑓𝑖 : 𝐶𝑖 → 𝐷𝑖 for each 𝑖 ∈ Z, such that 𝑓𝑖+1𝜕𝑖 = 𝜕𝑖𝑓𝑖 for all 𝑖.

Write 𝐶𝑖,𝑗 to denote the degree 𝑗 part of the 𝑖-th chain group; note that, in general 𝐶𝑖,𝑗 is

only an abelian group, not necessarily an 𝑅-module. Each homology group 𝐻 𝑖(𝐶) is graded,

with its degree 𝑗 part given by 𝐻 𝑖,𝑗(𝐶), the homology of 𝐶𝑖−1,𝑗 𝜕𝑖−1−−→ 𝐶𝑖,𝑗 𝜕𝑖−→ 𝐶(𝑖+1),𝑗.

Definition 2.2.1. Let 𝐶 and 𝐷 be chain complexes of graded 𝑅-modules. Two chain maps

𝑓, 𝑔 : 𝐶 → 𝐷 are chain homotopy equivalent if there exist degree zero maps 𝐹𝑖 : 𝐶𝑖 → 𝐷𝑖−1

such that 𝜕𝑖−1𝐹𝑖 + 𝐹𝑖+1𝜕𝑖 = 𝑓 − 𝑔 for all 𝑖 ∈ Z.

A chain map 𝑓 : 𝐶 → 𝐷 is a chain homotopy equivalence if there exists a chain map

𝑔 : 𝐷 → 𝐶 such that 𝑓𝑔 and 𝑔𝑓 are chain homotopy equivalent to id𝐷 and id𝐶 , respectively.

We say that 𝐶 and 𝐷 are homotopy equivalent, written 𝐶 ≃ 𝐷, if there exists a chain

homotopy equivalence 𝑓 : 𝐶 → 𝐷.

Lemma 2.2.2. If 𝑓 : 𝐶 → 𝐷 is a chain homotopy equivalence, then it induces an isomor-

phism of graded 𝑅-modules 𝐻 𝑖(𝐶) ∼= 𝐻 𝑖(𝐷) for each 𝑖.

Suppose that 𝑅 = Z with the trivial grading and 𝑀 is a finitely generated graded abelian

group. Define the graded rank of 𝑀 to be

rank𝑞(𝑀) =
∑︁
𝑖∈Z

rank(𝑀𝑖)𝑞
𝑖 ∈ Z[𝑞, 𝑞−1].

1While the differential in Khovanov’s chain complex increases homological degree, it is nevertheless stan-
dard to refer to it as a homology rather than cohomology theory. For this reason we write chain complex
rather than cochain complex.
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If 𝐶 is a chain complex of finitely generated graded abelian groups, then the graded Euler

characteristic of 𝐶 is defined to be

𝜒𝑞(𝐶) :=
∑︁
𝑖∈Z

(−1)𝑖 rank𝑞(𝐶𝑖).

Lemma 2.2.3. For a chain complex 𝐶 of graded abelian groups,

𝜒𝑞(𝐶) =
∑︁
𝑖∈Z

(−1)𝑖 rank𝑞(𝐻 𝑖).

It follows that if chain complexes 𝐶 and 𝐷 are chain homotopy equivalent, then 𝜒𝑞(𝐶) =

𝜒𝑞(𝐷).

More generally, one can consider a ring graded over any abelian monoid ℳ. Precisely,

given an abelian monoind ℳ, an ℳ-graded ring is a ring 𝑅 with a decomposition into

additive subgroups 𝑅 =
⨁︀

𝑚∈ℳ𝑅𝑚 such that 𝑅𝑚 · 𝑅𝑛 ⊂ 𝑅𝑚+𝑛 for all 𝑚,𝑛 ∈ ℳ. The

notions of graded 𝑅-modules and chain complexes extend naturally to this setting. When

ℳ = Z, we recover the definitions given above.

We will be interested later in Z𝑛-graded rings and graded modules over them. If 𝑅 is a

Z2-graded ring, we write 𝑅− ggmod for the category of graded 𝑅-modules, and we call such

a module bigraded. The chain groups in annular Khovanov homology, recalled in Section

2.4.1, are bigraded.

2.3 Khovanov homology

In the seminal work [33], Khovanov introduced a categorification of the Jones polynomial.

We summarize some of the main results here.

Theorem 2.3.1 ([33]). Let 𝐷 be a diagram for an oriented link 𝐿. There exists a chain

complex 𝐶𝐾ℎ(𝐷) of graded abelian groups such that 𝜒𝑞(𝐶𝐾ℎ(𝐷)) = 𝑉 (𝐿). Moreover, if 𝐷′

is another diagram of 𝐿, then 𝐶𝐾ℎ(𝐷) ≃ 𝐶𝐾ℎ(𝐷′).

Calculations demonstrate that Khovanov homology is a strictly stronger invariant than

the Jones polynomial, in the sense that there exist links 𝐿1 and 𝐿2 such that 𝑉 (𝐿1) = 𝑉 (𝐿2)
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but 𝐾ℎ(𝐿1) and 𝐾ℎ(𝐿2) are non-isomorphic, c.f. [7]. Kronheimer-Mrowka proved that

Khovanov homology detects the unknot [47], while this question for the Jones polynomial

remains open. In addition to being a powerful invariant, Khovanov homology enjoys numer-

ous structural properties. We review the key property, called functoriality.

Let 𝐿,𝐿′ ⊂ R3 be oriented links. A cobordism from 𝐿 to 𝐿′ is a smoothly and properly

embedded compact oriented surface 𝑆 ⊂ R3× [0, 1] such that 𝜕𝑆 = 𝐿⊔𝐿′, where 𝐿 denotes

𝐿 with the reversed orientation. Two link cobordisms are isotopic if there exists an ambient

isotopy of R3×[0, 1] sending one to the other while fixing the boundary of R3×[0, 1] pointwise.

Any link cobordism 𝑆 is isotopic to one presented as a sequence of elementary cobordisms.

This consists of a finite sequence of oriented link diagrams 𝐷1, . . . , 𝐷𝑘, where 𝐷1 and 𝐷𝑘

are diagrams of 𝐿 and 𝐿′ respectively, and each 𝐷𝑖+1 is obtained from 𝐷𝑖 by either planar

isotopy, a Reidemeister move, or a handle attachment (cup, cap or saddle).

To each elementary cobordism 𝑆𝑖 : 𝐷𝑖 → 𝐷𝑖+1, Khovanov defined a chain map 𝐶𝐾ℎ(𝑆𝑖) :

𝐶𝐾ℎ(𝐷𝑖)→ 𝐶𝐾ℎ(𝐷𝑖+1) [33, Section 6.3]. Setting 𝐶𝐾ℎ(𝑆) = 𝐶𝐾ℎ(𝑆𝑘−1) ∘ · · · ∘ 𝐶𝐾ℎ(𝑆0),

Khovanov conjectured that the induced map on homology is independent of the decompo-

sition of 𝑆 into elementary pieces, up to an overall multiplication by ±1 [33, Conjecture

1]. The conjecture was first proven by Jacobsson [29] by a thorough case check; alternative,

more conceptual arguments are given in [8] and [36]. Several approaches to fixing the sign

ambiguity have been proposed [21, 17, 12, 84, 77].

Theorem 2.3.2 ([29, 8, 36]). Let 𝐿0, 𝐿1 ⊂ R3 be oriented links, and let 𝑆 ⊂ R3 × [0, 1] be

an oriented cobordism from 𝐿0 ⊂ R3 × {0} to 𝐿1 ⊂ R3 × {1}. There exists a chain map

𝐶𝐾ℎ(𝑆) : 𝐶𝐾ℎ(𝐿0) → 𝐶𝐾ℎ(𝐿1) of degree −𝜒(𝑆). The chain homotopy class of 𝐶𝐾ℎ(𝑆)

is an invariant of the isotopy class of 𝑆 up to multiplication by ±1.

A key application of functoriality is Rasmussen’s celebrated proof of Milnor’s conjecture

on the slice genus of positive knots [69], originally proven by Kronheimer and Mrowka [46]

using gauge theory.
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2.3.1 The Bar-Natan category and the formal complex

This section reviews the construction of Khovanov homology via the Bar-Natan category,

introduced in [8]. Let us give an executive summary: Bar-Natan defines a graded, additive

category ̃︂ℬ𝒩 and associates to every oriented link diagram 𝐷 a chain complex [[𝐷]] over ̃︂ℬ𝒩 .

The chain homotopy class of [[𝐷]] is proven to invariant under Reidemeister moves. In order

to obtain Khovanov homology, one applies a particular functor ̃︂ℬ𝒩 → Z− gmod term-wise

to [[𝐷]]. One benefit of this approach is that invariance is proven at an earlier level: any

reasonable2 functor from ̃︂ℬ𝒩 into an abelian category yields an algebraic invariant of links.

We now recall the Bar-Natan category ̃︂ℬ𝒩 and the construction of the chain complex [[𝐷]].

Key examples of such functors which yield link homology are discussed in Sections 2.3.3 and

2.3.4. Section 2.3.2 discusses the dotted Bar-Natan category, a slight but useful modification

of ̃︂ℬ𝒩 .

Let 𝑅 be a commutative ring. We begin by reviewing some categorical notions.

Definition 2.3.3. 1. A category 𝒞 is called 𝑅-linear if each hom set Hom𝒞(𝑥, 𝑦) is an

𝑅-module and composition in 𝒞 is 𝑅-bilinear.

2. An 𝑅-linear category is additive if it admits all finite products and coproducts.

3. Suppose that 𝑅 is a Z-graded ring. An 𝑅-linear category 𝒞 is graded if

• each morphism space is a graded 𝑅-module, such that composition Hom𝒞(𝑦, 𝑧)⊗𝑅
Hom𝒞(𝑥, 𝑦)→ Hom𝒞(𝑥, 𝑦) is a graded map of degree zero, and

• 𝒞 comes equipped with a Z-action, denoted 𝑥 ↦→ 𝑥{𝑛}, called a grading shift.

As 𝑅-modules, Hom𝒞(𝑥, 𝑦) = Hom𝒞(𝑥{𝑛}, 𝑦{𝑚}) for all 𝑛,𝑚 ∈ Z, but as graded

𝑅-modules we have Hom𝒞(𝑥{𝑛}, 𝑦{𝑚})𝑖 = Hom𝒞(𝑥, 𝑦)𝑖+𝑚−𝑛.

Remark 2.3.4. An 𝑅-linear category is also called a category enriched in 𝑅−mod. Our

notion of a Z-linear category is called pre-additive in [8].

We now discuss some categorical constructions.

2The functor should, at the very least, be additive on objects and linear on morphism spaces.

15



• Given a category 𝒞, we can form a 𝑅-linear category 𝑅𝒞 in a natural way: objects of

𝑅𝒞 are the same as objects of 𝒞, and Hom𝑅𝒞(𝑥, 𝑦) is defined to be the free 𝑅-module

generated by Hom𝒞(𝑥, 𝑦). Composition is defined by extending the composition in

𝒞 in an 𝑅-bilinear manner: if 𝑓1, . . . , 𝑓𝑛 ∈ Hom𝒞(𝑥, 𝑦), 𝑔1, . . . , 𝑔𝑚 ∈ Hom𝒞(𝑦, 𝑧), and

𝑟1, . . . , 𝑟𝑛, 𝑠1, . . . , 𝑠𝑚 ∈ 𝑅, then composition of 𝑓 =
∑︀𝑛

𝑖=1 𝑟𝑖𝑓𝑖 and 𝑔 =
∑︀𝑚

𝑗=1 𝑠𝑗𝑔𝑗 in 𝑅𝒞

is

𝑔 ∘ 𝑓 :=
∑︁
𝑖,𝑗

𝑟𝑖𝑠𝑗𝑔𝑗𝑓𝑖.

Note also that there is a faithful functor 𝒞 → 𝑅𝒞, so we view 𝒞 as a subcategory of

𝑅𝒞. The category 𝑅𝒞 is called the 𝑅-linear closure of 𝒞.

• Suppose that 𝑅 is graded and 𝒞 is an 𝑅-linear category satisfying the first bullet point

in item (3) of Definition 2.3.3. We can upgrade 𝒞 to a graded category by declaring

objects to be symbols 𝑥{𝑛} for 𝑛 ∈ Z, 𝑥 ∈ ob(𝒞), and defining a grading on the new

morphism spaces in the unique way such that the definition of a graded category is

satisfied: if 𝑓 ∈ Hom𝒞(𝑥, 𝑦) is homogeneous of degree 𝑑 then, viewed as a morphism

from 𝑥{𝑛} to 𝑦{𝑚}, it is homogeneous of degree 𝑑 +𝑚 − 𝑛. We call this the graded

closure of 𝒞.

• Any 𝑅-linear category 𝒞 can be upgraded to an additive category 𝒞⊕ as follows. Objects

of 𝒞⊕ are formal direct sums 𝑥1 ⊕ · · · ⊕ 𝑥𝑛 of objects of 𝒞. A morphism in 𝒞⊕ from

𝑥1⊕· · ·⊕𝑥𝑛 to 𝑦1⊕· · ·⊕𝑦𝑚 is an𝑚×𝑛matrix whose (𝑖, 𝑗)-th entry is a morphism 𝑥𝑗 → 𝑦𝑖

in 𝒞. Composition of morphisms in 𝒞⊕ is defined by usual matrix multiplication, where

multiplication of entries is given by composition in 𝒞. The category 𝒞⊕ is called the

additive closure of 𝒞.

Definition 2.3.5. Let 𝒞 be a 𝑅-linear category. Define the category of complexes over

𝒞, denoted Kom(𝒞), to have objects finite-length chains of composable morphisms in 𝒞,

𝐶 = (· · · → 𝐶𝑖 𝜕𝑖−→ 𝐶𝑖+1 𝜕𝑖+1−−→ · · · ), such that 𝜕𝑖+1 ∘ 𝜕𝑖 = 0 for all 𝑗. A morphism 𝑓 from 𝐶

to 𝐷 is a collection of morphisms 𝑓𝑖 : 𝐶𝑖 → 𝐷𝑖 which satisfy 𝜕𝑖𝑓𝑖 = 𝑓𝑖+1𝜕𝑖.

Two morphisms 𝑓, 𝑔 : 𝐶 → 𝐷 are chain homotopic if there exists a sequence of morphisms

𝐹𝑖 : 𝐶
𝑖 → 𝐷𝑖+1 such that 𝜕𝑖+1𝐹𝑖 + 𝐹𝑖+1𝜕𝑖 = 𝑓𝑖 − 𝑔𝑖 for all 𝑖. Two complexes 𝐶 and 𝐷 are
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chain homotopy equivalent if there exist morphisms 𝑓 : 𝐶 → 𝐷, 𝑔 : 𝐷 → 𝐶 such that 𝑔𝑓

and 𝑓𝑔 are chain homotopy equivalent to id𝐶 and id𝐷, respectively.

Moreover, if 𝑅 is a graded ring and 𝒞 is a graded 𝑅-linear category, then we require all

morphisms in 𝒞 appearing above to be of degree zero.

For the time being, we will focus on the case 𝑅 = Z with the trivial grading, in which

case we simply say linear rather than Z-linear. The more general situation, when 𝑅 is a

polynomial ring with nontrivial grading, will appear in Section 2.3.4. If 𝑅 is a Z𝑁 -graded

ring, then there is a natural analogue (which we do not spell out explicitly) of item (3) of

Definition 2.3.3.

We will now define the graded category ̃︂ℬ𝒩 . The formal complex [[𝐷]] associated to an

oriented link diagram 𝐷 will be a chain complex over ̃︂ℬ𝒩 , or, in other words, an object in

Kom(̃︂ℬ𝒩 ).

Definition 2.3.6. 1. Let Cob denote the following category. An object of Cob is a

(possibly empty) collection of disjoint simple closed curves in the plane R2. Define

HomCob(𝑍0, 𝑍1) to be the set of embedded cobordisms from 𝑍0 to 𝑍1 in R2×𝐼, modulo

ambient isotopy which fixes the boundary of R2× 𝐼 pointwise. The identity morphism

of an object 𝑍 is the product cobordism 𝑍 × 𝐼. Composition of morphisms is given by

stacking one on top of the other, gluing along their common boundary, and rescaling

the interval direction.

2. Consider now the linear closure ZCob; a morphism in ZCob is illustrated in Figure

2-3. Note that ZCob satisfies the first bullet point in Definition 2.3.3, by defining the

degree of a cobordism 𝑆 to be −𝜒(𝑆).

3. Let Cob/𝑙 denote the quotient of ZCob by the local Bar-Natan relations shown in

Figure 2-4. Here local means that the relations hold inside of a small ball, where the

cobordisms differ as in the linear combination depicted in the relation, and outside of

this small ball the cobordisms are identical. Note that the Bar-Natan relations are

homogeneous, so that the grading on hom-spaces in ZCob descends to a grading on

hom-spaces in Cob/𝑙.
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−

Figure 2-3: A morphism in ZCob from one circle in the plane to two un-nested circles in the plane.
Cobordisms are read bottom to top.

= 0

(a) Sphere

= 2

(b) Torus

=+ +

(c) Four tubes

Figure 2-4: Relations in ̃︂ℬ𝒩 .

4. Finally, let ̃︂ℬ𝒩 denote the additive closure of the graded closure of Cob/𝑙.

Let 𝐷 be a diagram for an oriented link 𝐿. We are now ready to define the Bar-Natan

complex [[𝐷]]. To begin, one first forms the cube of resolutions as follows.

Label the crossings of the 𝐷 by 1, . . . , 𝑛. Every crossing may be resolved in two ways,

called the 0-smoothing and 1-smoothing, as shown in Figure (2-5a). For each 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈

{0, 1}𝑛, perform the 𝑢𝑖-smoothing at the 𝑖-th crossing. The resulting diagram is a collection

of disjoint simple closed curves in the plane, which we view as an object in ̃︂ℬ𝒩 and denote

0 1

(a) The two smoothings of a crossing.

+ −
(b) Positive and negative crossings.

Figure 2-5
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by 𝐷𝑢. Viewing elements of {0, 1}𝑛 as vertices of an 𝑛-dimensional cube [0, 1]𝑛, decorate the

vertex 𝑢 by the smoothing 𝐷𝑢.

Let 𝑣 = (𝑣1, . . . , 𝑣𝑛) and 𝑢 = (𝑢1, . . . , 𝑢𝑛) be vertices which differ only in the 𝑖-th entry,

where 𝑣𝑖 = 0 and 𝑢𝑖 = 1. Then the diagrams 𝐷𝑣 and 𝐷𝑢 are the same outside of a small disk

around the 𝑖-th crossing. There is a natural cobordism from 𝐷𝑣 to 𝐷𝑢, which is a saddle

inside this disk around the 𝑖-th crossing and the identity (product cobordism) elsewhere. We

will call this the saddle cobordism from 𝐷𝑣 to 𝐷𝑢, and denote it by 𝑑𝑣,𝑢. Decorate each edge

of the 𝑛-dimensional cube by these saddle cobordisms. We now have a commutative cube in

the category ̃︂ℬ𝒩 .

A sign assignment is a label 𝑠𝑣,𝑢 ∈ {0, 1} on each edge such that, for each square face of

the cube, the sum of labels of its edges is equal to 1 mod 2. It follows that multiplying the

edge map 𝑑𝑣,𝑢 by (−1)𝑠𝑣,𝑢 results in an anti-commutative cube. We refer the interested reader

to [8, Section 2.7] and [57, Definition 4.5], for further discussion about sign assignments.

For 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈ {0, 1}𝑛, let |𝑢| =
∑︀

𝑖 𝑢𝑖. Now, form the chain complex [[𝐷]] by

setting

[[𝐷]]𝑖 =
⨁︁

|𝑢|=𝑖+𝑛−

𝐷𝑢{𝑛− − 𝑛+ − 𝑖}

where 𝑛−, 𝑛+ are the number of negative and positive crossings in 𝐷 (see Figure 2-5b), and

the brackets {−} denotes the formal grading shift in ̃︂ℬ𝒩 . The differential is given on each

summand by the edge map (−1)𝑠𝑣,𝑢𝑑𝑣,𝑢. Anti-commutativity of the cube ensures that the

differential in [[𝐷]] squares to zero.

Note that each cobordism decorating an edge in the cube of resolutions has Euler char-

acteristic −1. The grading shifts ensure that the differential in [[𝐷]] is of degree zero. Hence

we view [[𝐷]] as an object in Kom(̃︂ℬ𝒩 ).

Remark 2.3.7. There are two internal grading conventions in the literature. The internal

grading shifts in the curly brackets given above agree with those in [34, 37] but are opposite

those in [33, 8].

Theorem 2.3.8 ([8, Theorem 1, Theorem 3]). If diagrams 𝐷 and 𝐷′ are related by a Rei-

demeister move, then [[𝐷]] and [[𝐷′]] are chain homotopy equivalent.
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2

1

Figure 2-6: A diagram for the Hopf link, with crossings ordered.

The complex [[𝐷]] can also be obtained by assigning to each crossing one of the two

complexes

= {−1} → {−2} = {2} → {1} (2.3)

where the underlined terms are in homological degree zero. The complex [[𝐷]] is then

assembled by tensoring these local pieces in a planar algebra manner.

Remark 2.3.9. A key insight in Bar-Natan’s construction is that the complex [[𝐷]] can be

defined for tangles rather than links. Invariance under Reidemeister moves is proven at this

local level.

Example 2.3.10. Consider the diagram 𝐷 shown in Figure 2-6, with the indicated ordering

on its crossings. Its associated complex [[𝐷]] is shown below in (2.4). The term 𝐷0,0 is in

homological degree zero.

𝐷0,0

{−2}

𝐷1,0

{−3}

𝐷0,1

{−3}

𝐷1,1

{−4}⨁︀
− (2.4)
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= 0

(a) Sphere.

= 1∙

(b) Dotted sphere.

∙

∙
= +

(c) Neck-cutting.

∙ ∙ = 0

(d) Two dots.

Figure 2-7: Relations in the dotted Bar-Natan category ℬ𝒩 .

Section 2.3.3 details how to obtain Khovanov homology from the formal complex [[𝐷]].

A key feature of Bar-Natan’s construction is that invariance with respect to Reidemeister

moves is proven already at this “topological” stage, before passing to an algebraic category.

2.3.2 The dotted Bar-Natan category

We recall from [8, Section 11.2] a minor but useful modification of ̃︂ℬ𝒩 . Let 𝑍0, 𝑍1 ⊂ R2

be two objects in Cob (that is, each of 𝑍0 and 𝑍1 is a collection of disjoint simple closed

curves in the plane). A dotted cobordism from 𝑍0 to 𝑍1 is an embedded cobordism 𝑆 from

𝑍0 to 𝑍1 such that each component of 𝑆 carries finitely many marked points called dots. A

dot may move freely along the component it lies on, but it may not jump across components

of 𝑆.

Let Cob∙ be the category of dotted cobordisms, with composition defined in the natural

way. Morphism spaces in its linear closure ZCob∙ carry a grading, defined by

deg(𝑆) = −𝜒(𝑆) + 2𝑑(𝑆), (2.5)

where 𝑑(𝑆) denotes the number of dots on 𝑆. Degree is additive with respect to composition

of cobordisms, so ZCob∙ satisfies the first bullet point in Definition 2.3.3. Let Cob∙,/𝑙 denote

the quotient of ZCob∙ by the local relations shown in Figure 2-7; note that these relations

are homogeneous with respect to the above grading, so morphism spaces in Cob∙,/𝑙 inherit
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the grading.

Definition 2.3.11. Define ℬ𝒩 to be the additive closure of the graded closure of Cob∙,/𝑙.

Note that the neck-cutting relation, Figure 2-7c, implies that twice a dot is equal to a

handle:

∙2 =

.

Therefore if we extend scalars from Z to Z[1/2], then there is no difference between the

dotted and undotted Bar-Natan categories.

The following proposition, called delooping, implies that any object in ℬ𝒩 is isomorphic

to a direct sum of grading-shifted empty diagrams.

Proposition 2.3.12 ([9, Lemma 4.1]). Let 𝑍 ⊂ R2 be collection of 𝑘 ≥ 1 disjoint embedded

circles. Let 𝑍 ′ denote 𝑍 with one circle removed. As an object in ℬ𝒩 , 𝑍 is isomorphic to

𝑍 ′{1} ⊕ 𝑍 ′{−1}.

Proof. Using the relations in Figure 2-7, we see that the following maps are mutually inverse

isomorphisms.

⊕
∅{1}

∅{−1}

∙

∙

Given an oriented link diagram 𝐷, one can construct the formal complex [[𝐷]] over the

category ℬ𝒩 by following exactly the procedure explained in Section 2.3.1. Note that the

relations in Figure 2-7 imply the relations in Figure 2-4. It follows that [[𝐷]], as a chain

complex over ℬ𝒩 , is an invariant up to chain homotopy equivalence of the oriented link

represented by 𝐷.
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2.3.3 Frobenius algebras and homological link invariants

We will now review, to the extent necessary, the notions of topological quantum field

theories and Frobenius algebras.

Definition 2.3.13. A Frobenius system is a tuple ℱ = (𝑅,𝐴, 𝜂, 𝜀,Δ) where 𝑅 and 𝐴 are

commutative rings, 𝜂 : 𝑅 → 𝐴 is a ring inclusion, 𝜀 : 𝐴 → 𝑅 is an 𝑅-module map, and

Δ : 𝐴 → 𝐴 ⊗𝑅 𝐴 is an (𝐴,𝐴)-bimodule homomorphism. Moreover, the following diagrams

must commute

𝐴 𝐴⊗𝑅 𝐴

𝐴⊗𝑅 𝐴 𝐴⊗𝑅 𝐴⊗𝑅 𝐴

Δ

Δ Δ⊗id𝐴

id𝐴 ⊗Δ

𝐴 𝐴⊗𝑅 𝐴

𝐴⊗𝑅 𝐴

Δ

Δ
𝜏

𝐴 𝐴⊗𝑅 𝐴

𝐴

Δ

id𝐴
𝜀⊗id𝐴

,

where the map 𝜏 in the second diagram is the involution 𝜏(𝑎⊗ 𝑏) = 𝑏⊗ 𝑎.

The ring 𝑅 is the ground ring and 𝐴 is the Frobenius algebra. Multiplication in 𝐴

will be denoted 𝑚. The maps 𝜂, 𝜀, and Δ are called the unit, counit and comultiplication,

respectively. We will often write ℱ = (𝑅,𝐴) when the structure maps are clear from context,

and moreover we will sometimes refer only to the Frobenius algebra 𝐴 when both 𝑅 and the

structure maps are clear.

Let Cob′ denote the category of abstract3 2-dimensional cobordisms. Objects of Cob′ are

oriented closed 1-manifolds (i.e., a finite disjoint union of oriented circles). A morphism from

𝑍0 to 𝑍1 is a 2-dimensional, oriented, compact manifold 𝑆, together with a homeomorphism

𝜕𝑆 ∼= 𝑍0 ⊔ 𝑍1

where 𝑍0 denotes 𝑍0 with the reverse orientation. Cobordisms are considered up to orientation-

preserving homeomorphism which commutes with the above homeomorphisms on the bound-

ary. Composition of cobordisms 𝑆0 : 𝑍0 → 𝑍1 and 𝑆1 : 𝑆1 → 𝑆2 is defined in the natural

way, by gluing along the common boundary 𝑍1. Note that disjoint union makes Cob′ into

a symmetric monoidal category. Likewise, the category of 𝑅-modules, denoted 𝑅−mod, is

symmetric monoidal via tensor product.
3Here abstract means not embedded in 3-space, to distinguish from morphims in Cob.
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Figure 2-8: The elementary cup, cap, and saddle cobordisms. Every morphism in Cob′ can be
written as a composition of cobordisms where precisely one component is one of these three cobor-
disms, and the other components are the identity cobordism on the remaining circles.

Definition 2.3.14. Let 𝑅 be a commutative ring. A (1 + 1)-dimensional TQFT is a sym-

metric monoidal functor Cob′ → 𝑅−mod.

A Frobenius system ℱ = (𝑅,𝐴, 𝜂, 𝜀,Δ) defines a (1+1)-dimensional TQFT, also denoted

ℱ , from Cob′ to 𝑅−mod. Given a closed 1-manifold Z, set4 ℱ(𝑍) = 𝐴⊗𝑅|𝑍|, where |𝑍| is

the number of components of 𝑍. To define ℱ on a cobordism 𝑆, pick a Morse decomposition

of 𝑆 to write 𝑆 as a composition 𝑆 = 𝑆1 ∘ · · · ∘𝑆𝑘 where each 𝑆𝑖 is an elementary cobordism:

a disjoint union of an identity cobordism and either a cup (0-handle), cap (2-handle), or

saddle (1-handle); see Figure 2-8. To the cup and cap cobordisms assign the maps 𝜂 : 𝑅→

𝐴 and 𝜀 : 𝐴 → 𝑅, respectively. To a saddle cobordism, assign the multiplication in 𝐴,

𝑚 : 𝐴⊗𝑅𝐴→ 𝐴 if the saddle goes from two circles to one circle, and assign Δ : 𝐴→ 𝐴⊗𝑅𝐴

if the saddle goes from one circle to two circles. Define ℱ(𝑆) to be the composition of these

maps, ℱ(𝑆) = ℱ(𝑆1) ∘ · · · ∘ ℱ(𝑆𝑘).

Remark 2.3.15. Note that objects and morphisms in Cob′ are oriented manifolds, while

those in Cob do not come with a prescribed orientation. Objects of Cob are, however,

embedded in R2, which can be used to orient objects and morphisms, leading to a functor

Cob→ Cob′ (see [34, Section 2.1]). Computing maps assigned by a Frobenius system does

not involve considering orientations, so this minor adjustment is inconsequential.

Theorem 2.3.16 ([1, 23]). The map ℱ(𝑆) is independent of the decomposition of 𝑆 into

elementary cobordisms.

Remark 2.3.17. In fact, more can be said: monoidal functors Cob′ → 𝑅−mod are in

bijection with Frobenius systems with ground ring 𝑅, [23]. We refer the interested reader to
4Since every object in Cob′ is a disjoint union circles, the assignment on objects is fixed by requiring ℱ

to be monoidal.
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[44] for a comprehensive treatment of this rich theory.

We now describe the Frobenius system underlying Khovanov homology.

Definition 2.3.18. Let ℱ0 = (𝑅0, 𝐴0, 𝜂0, 𝜀0,Δ0), where 𝑅0 = Z, 𝐴0 = Z[𝑋]/(𝑋2), and

𝜂0 : 𝑍 → 𝑍[𝑋]/(𝑋2) the natural inclusion. Note that 𝐴0 is a free abelian group with basis

{1, 𝑋}. The map 𝜀0 : 𝐴0 → Z is given by 1 ↦→ 0, 𝑋 ↦→ 1, and Δ0 : 𝐴0 → 𝐴0⊗𝐴0 is given by

1 ↦→ 𝑋 ⊗ 1 + 1⊗𝑋,𝑋 ↦→ 𝑋 ⊗𝑋.

Let 𝑆 be a dotted cobordism. Following the correspondence between (1+1)-dimensional

TQFTs and Frobenius algebras outlined above, we write 𝑆 as a composition of elementary

dotted cobordisms, each of which is either an undotted cup, cap or saddle, or an identity

(product) cobordism carrying precisely one dot. Associate to an undotted elementary cobor-

disms the linear maps as detailed above, and to dotted identity cobordism multiplication

by 𝑋 ∈ 𝐴0 on the circle corresponding to the dotted component. Given a dotted cobor-

dism 𝑆 from 𝑍0 to 𝑍1, let ℱ0(𝑆) : 𝐴
|𝑍0|
0 → 𝐴

|𝑍1|
0 denote the induced map; following the

discussion preceding Theorem 2.3.16, it is straightforward to deduce that ℱ0(𝑆) is indepen-

dent of the choice of decomposition of 𝑆 into elementary cobordisms. We obtain a functor

ℱ0 : ZCob∙ → Z−mod.

Lemma 2.3.19. The functor ℱ0 : ZCob∙ → Z−mod factors through the dotted Bar-Natan

relations shown in Figure 2-7.

Proof. The dotted Bar-Natan relations (Figure 2-7) correspond to the structure of 𝐴0 in

the following way. Then the sphere relation corresponds to 𝜀0(𝜂0(1)) = 0, while the dotted

sphere comes from 𝜀0(𝑋) = 1. The two dots relation corresponds to the relation 𝑋2 = 0 in

𝐴0. Neck-cutting is a topological incarnation of the algebraic relation

𝑦 = 𝑋𝜀0(𝑦) + 𝜀0(𝑋𝑦),

which holds for every 𝑦 ∈ 𝐴0.

Definition 2.3.20. If 𝑍 ⊂ R2 consists of 𝑛 circles, then ℱ0(𝑍) is a free abelian group with

basis 𝑦1⊗ · · ·⊗ 𝑦𝑛, where each 𝑦𝑖 ∈ {1, 𝑋}. We will refer to these basis elements as standard

Khovanov generators.
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Define the quantum grading, denoted qdeg, on 𝐴0 by setting

qdeg(1) = −1 qdeg(𝑋) = 1. (2.6)

Remark 2.3.21. Viewing 𝐴0 as an algebra, it is more natural to set 1 and 𝑋 in degrees 0 and

2, respectively, to make the multiplication grading-preserving. However, when viewing 𝐴0 as

an 𝑅0-module, degrees are balanced around 0 as above. Moreover, we note that elsewhere

in the literature the quantum gradings of 1 and 𝑋 are opposite those given above. See also

Remark 2.3.7.

Given a dotted cobordism 𝑆, it is straightforward to verify that ℱ0(𝑆) is a graded map of

degree deg(𝑆), where deg(𝑆) is as defined in Equation (2.5). Combined with Lemma 2.3.19,

we obtain a functor

ℱ0 : ℬ𝒩 → Z− gmod,

which is degree-preserving on each hom-space. To summarize, ℱ0 sends an object
⨁︀𝑘

𝑖=1 𝑍𝑖{𝑛𝑖}

to
⨁︀𝑘

𝑖=1𝐴
|𝑍0|
0 {𝑛𝑖} and a morphism to the corresponding matrix of linear maps.

Definition 2.3.22. Given an oriented link 𝐿 with diagram 𝐷, let 𝐶𝐾ℎ0(𝐷) denote the

chain complex of graded 𝑅-modules obtained by applying ℱ0 term-wise to [[𝐷]].

Grading shifts in the definition of [[𝐷]] ensure that the differential is degree preserving.

Theorem 2.3.8 implies that the chain homotopy class of 𝐶𝐾ℎ0(𝐷) is an invariant of 𝐿,

moreover, 𝐶𝐾ℎ0(𝐷) is precisely the complex constructed in [33, Section 7], after negating

the quantum gradings (see Remark 2.3.21).

Remark 2.3.23. Note that, while we work with ℬ𝒩 above, the discussion holds just as well

if working over the undotted version ̃︂ℬ𝒩 .

We now expand on the relation between dots in ℬ𝒩 and the structure of the Frobenius

algebra 𝐴0. Consider the representable functor Homℬ𝒩 (∅,−) : ℬ𝒩 → Z− gmod. The

following result is essentially the content of [8, Exercise 9.3], and is also stated in [8, Section

11.2].

Proposition 2.3.24. The functors Homℬ𝒩 (∅,−) and ℱ0 and are naturally isomorphic.
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∙

Figure 2-9: Distinguished basis elements for Homℬ𝒩 (∅, 𝑍) when 𝑍 is a single circle. The undotted
and dotted cup cobordisms correspond to 1 and 𝑋 in 𝐴0, respectively.

Proof. Let 𝑍 ⊂ R2 be a collection of 𝑛 disjoint simple closed curves, ordered from 1, . . . , 𝑛.

For 𝐵 ⊂ {1, . . . , 𝑛}, let Σ𝐵 denote the cobordism from ∅ to 𝑍 whose underlying surface is

a disjoint union of cup cobordisms, where the 𝑖-th cup cobordism has a dot if 𝑖 ∈ 𝐵. See

Figure 2-9 when 𝑛 = 1. Note that each Σ𝐵 is homogeneous of degree 2|𝐵| − 𝑛, where |𝐵|

denotes the cardinality of 𝐵.

We first argue that Homℬ𝒩 (∅, 𝑍) is free with basis {Σ𝐵 | 𝐵 ⊂ {1, . . . , 𝑛}}. Using the

neck-cutting relation, Figure 2-7c, we see that this set spans Homℬ𝒩 (∅, 𝑍). To verify linear

independence, let Σ*
𝐵 denote the cobordism from 𝑍 to ∅ whose underlying surface is a

disjoint union of disks, and where the disk bounding the 𝑖-th circle is dotted if 𝑖 ̸∈ 𝐵. The

sphere relations, Figure 2-7a and Figure 2-7b, imply Σ*
𝐵Σ𝐶 = 𝛿𝐵,𝐶 for all 𝐵,𝐶 ⊂ {1, . . . , 𝑛}.

This proves linear independence of our claimed basis.

The natural isomorphism from Homℬ𝒩 (∅,−) to ℱ0 has components 𝜑𝑍 : Homℬ𝒩 (∅, 𝑍)→

𝐹0(𝑍), defined by sending Σ𝐵 to the standard generator 𝑦1 ⊗ · · · 𝑦𝑛 given by 𝑦𝑖 = 1 if 𝑖 ̸∈ 𝐵

and 𝑦𝑖 = 𝑋 if 𝑖 ∈ 𝐵. In other words, an undotted cup corresponds to 1 and a dotted cup

corresponds 𝑋. To show that the 𝜑𝑍 assemble into a natural isomorphism, it suffices to show

that they commute with elementary cobordisms, which is a straightforward case check.

2.3.4 Equivariant Khovanov homology

The Frobenius algebra 𝐴0 from Section 2.3.3 is not the only one which yields link ho-

mology when applied to [[𝐷]]. Alternative TQFTs were explored in [8, Section 9], which

are defined by introducing further relations into ̃︂ℬ𝒩 and applying a representable functor.

A systematic treatment of Frobenius algebras in the context of link homology appeared in

[37]; see also [40]. We review some of these theories here. In this section, all cobordisms are

assumed to potentially carry dots. We also fix an oriented link 𝐿 with diagram 𝐷.
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Definition 2.3.25. 1. Let ℱ𝐸 be the Frobenius system with ground ring 𝑅𝐸 = Z[𝐸1, 𝐸2]

and Frobenius algebra 𝐴𝐸 = Z[𝑋]/(𝑋2 − 𝐸1𝑋 + 𝐸2). Note that 𝐴𝐸 is a free 𝑅𝐸-

module with basis {1, 𝑋}. The counit 𝜀𝐸 is given by 𝜀𝐸(1) = 0, 𝜀𝐸(𝑋) = 1, and

comultiplication is Δ𝐸(1) = 1⊗𝑋 +𝑋 ⊗ 1− 𝐸11⊗ 1, Δ𝐸(𝑋) = 𝑋 ⊗𝑋 − 𝐸21⊗ 1.

2. Let ℱ𝛼 be the Frobenius system with ground ring 𝑅𝛼 = Z[𝛼1, 𝛼2] and Frobenius algebra

𝐴𝛼 = Z[𝑋]/((𝑋 − 𝛼1)(𝑋 − 𝛼2)). As above, 𝐴𝛼 is a free 𝑅𝛼-module with basis {1, 𝑋}.

The counit 𝜀𝛼 is given by 𝜀𝛼(1) = 0, 𝜀𝛼(𝑋) = 1, and comultiplication is Δ𝛼(1) =

1⊗𝑋 +𝑋 ⊗ 1− (𝛼1 + 𝛼2), Δ𝛼(𝑋) = 𝑋 ⊗𝑋 − 𝛼1𝛼21⊗ 1.

Denote the (1 + 1)-dimensional TQFTs assigned to (𝑅𝐸, 𝐴𝐸) and (𝑅𝛼, 𝐴𝛼) by ℱ𝐸 and

ℱ𝛼, respectively. Define a grading on 𝑅𝐸 and 𝑅𝛼 by setting deg(𝐸1) = 2, deg(𝐸2) = 4 and

deg(𝛼1) = deg(𝛼2) = 2. Likewise, make 𝐴𝐸 (resp. 𝐴𝛼) into graded modules over 𝑅𝐸 (resp.

𝑅𝛼) by setting qdeg(1) = −1, qdeg(𝑋) = 1. Under the theories ℱ𝐸 and ℱ𝛼, a cobordism 𝑆

induces a graded map of degree deg(𝑆) = −𝜒(𝑆) + 2𝑑(𝑆).

The following is a straightforward check.

Lemma 2.3.26. The TQFTs ℱ𝐸 and ℱ𝛼 factor through the Bar-Natan relations in Figure

2-4, descending to functors

ℱ𝐸 : ℬ𝒩 → 𝑅𝐸− gmod, ℱ𝛼 : ℬ𝒩 → 𝑅𝛼− gmod .

Consequently, applying either ℱ𝐸 or ℱ𝛼 to the Bar-Natan complex [[𝐷]] yields a homological

link invariant. We denote these complexes by 𝐶𝐾ℎ𝐸(𝐷) and 𝐶𝐾ℎ𝛼(𝐷), and their homologies

by 𝐾ℎ𝐸(𝐿) and 𝐾ℎ𝛼(𝐿).

The theory ℱ𝐸 is denoted by ℱ5 in [37]; the above 𝐸1 and 𝐸2 correspond to ℎ and −𝑡,

respectively, in that reference. The link homology theory given by ℱ𝐸 is sometimes called

universal Khovanov homology, due to [37, Proposition 5].

Note that the Frobenius algebra 𝐴0 is the cohomology with Z coefficients of CP1. As

noted in [37, Example 2], 𝑅𝐸 and 𝐴𝐸 are the the 𝑈(2)-equivariant cohomology of a point

and CP1, respectively. Likewise, 𝑅𝛼 and 𝐴𝛼 are the 𝑈(1)×𝑈(1)-equivariant cohomology of a

point and CP1, respectively. This explains the terminology equivariant Khovanov homology.
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We note that ℱ𝛼 is obtained from ℱ𝐸 via extension of scalars. Consider the inclusion

(𝑅𝐸, 𝐴𝐸) →˓ (𝑅𝛼, 𝐴𝛼) given by identifying 𝐸1 and 𝐸2 with the elementary symmetric poly-

nomials in 𝛼1, 𝛼2:

𝐸1 ↦→ 𝛼1 + 𝛼2, 𝐸2 ↦→ 𝛼1𝛼2.

Indeed, under the above inclusion, the defining relation 𝑋2 − 𝐸1𝑋 + 𝐸2 of 𝐴𝐸 factors as

(𝑋 − 𝛼1)(𝑋 − 𝛼2), the defining relation of 𝐴𝛼. Therefore ℱ𝛼 is equal to the composition

ℱ𝐸(−)⊗𝑅𝐸
𝑅𝛼. We will use this inclusion throughout.

It follows that the chain complex 𝐶𝐾ℎ𝛼(𝐷) is simply obtained by extending scalars,

𝐶𝐾ℎ𝛼(𝐷) ∼= 𝐶𝐾ℎ𝐸(𝐷) ⊗𝑅𝐸
𝑅𝛼. Moreover, as discussed in [40, Section 1.2], 𝑅𝛼 is a flat

(in fact, free) 𝑅𝐸-module, so there is also an isomorphism 𝐾ℎ𝛼(𝐿) ∼= 𝐾ℎ𝐸(𝐿) ⊗𝑅𝐸
𝑅𝛼.

Nevertheless, enlarging the ground ring yields additional flexibility that is crucial for defining

equivariant and foam versions of annular link homology, as will be demonstrated in Chapter

4. In light of this, we will focus on the larger theory ℱ𝛼.

Neither ℱ𝐸 nor ℱ𝛼 factors through the relations in 2-7 (as in Section 2.3.3, a dot is

interpreted as multiplication by 𝑋). Consider the 𝑅𝛼-linear completion 𝑅𝛼Cob∙ of Cob∙.

For a dotted cobordism 𝑆, setting deg(𝑆) = −𝜒(𝑆) + 2𝑑(𝑆) as in Equation (2.5), we see

that the first bullet point of item (3) in Definition 2.3.3 is satisfied. Let Cob𝛼/𝑙 denote the

quotient of 𝑅𝛼Cob∙ by the relations shown in Figure 2-10. Note that these relations are

homogeneous, so that the grading on morphism spaces descends to Cob𝛼/𝑙.

Definition 2.3.27. Let ℬ𝒩 𝛼 be the additive closure of the graded closure of Cob𝛼/𝑙.

Proposition 2.3.28. The functor ℱ𝛼 : 𝑅𝛼Cob∙ → 𝑅𝛼− gmod factors through the relations

in Figure 2-10 and hence descends to a functor ℱ𝛼 : ℬ𝒩 𝛼 → 𝑅𝛼− gmod.

Proof. The sphere relation follows from 𝜀𝛼𝜂𝛼 = 0, and the dotted sphere relation follows from

𝜀𝛼(𝑋) = 1. Neck cutting is a topological version of the equality 𝑦 = 𝑋𝜀𝛼(𝑦)+𝜀(𝑋𝑦)−𝐸1𝜀(𝑦),

which holds for all 𝑦 ∈ 𝐴𝛼. Finally, the two dots relation is precisely the identity 0 =

𝑋2 − 𝐸1𝑋 + 𝐸2 = (𝑋 − 𝛼1)(𝑋 − 𝛼2) in 𝐴𝛼.

It is easy to see that the relations in Figure 2-10 imply the relations in Figure 2-4, so one

may just as well form the complex [[𝐷]] over ℬ𝒩 𝛼 and apply ℱ𝛼 to obtain 𝐶𝐾ℎ𝛼(𝐷).
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= 0

(a) Sphere.

∙

∙
= + − 𝐸1

(b) Neck-cutting.

= 1∙

(c) Dotted sphere.

∙ ∙ = 𝐸1 − 𝐸2∙

(d) Two dots.

Figure 2-10: Relations in ℬ𝒩𝛼.

Remark 2.3.29. Note that setting 𝛼1 = 𝛼2 = 0 (i.e., applying ⊗𝑅𝛼Z, where 𝑅𝛼 acts on

Z by sending 𝛼1, 𝛼2 to zero, to the morphism spaces in ℬ𝒩 𝛼) reduces the relations in

Figure 2-10 to those of 2-7. From the algebraic viewpoint, this is saying that the relation

(𝑋 − 𝛼1)(𝑋 − 𝛼2) = 0 in 𝐴𝛼 becomes 𝑋2 = 0, the defining relation in 𝐴0, upon setting

𝛼1 = 𝛼2 = 0. Setting 𝛼1 = 0 and renaming 𝛼2 = 𝑡 yields the (graded) version of Bar-Natan

homology, denoted ℱ3 in [37], while setting 𝛼1 = 0, 𝛼2 = 1 collapses the grading into a

filtration. Likewise, setting 𝛼1 = ±1, 𝛼2 = ∓1 reduces the defining relation to 𝑋2 = 1,

recovering Lee’s filtered deformation of Khovanov homology [55]. The filtered Lee and Bar-

Natan homologies are crucial for extracting topological information, most famously in the

work of Rasmussen [69].

We end this section by recalling from [40] a further extension of the Frobenius system

ℱ𝛼.

Definition 2.3.30. Let 𝒟 := (𝛼1−𝛼2)
2 denote the discriminant of the quadratic polynomial

(𝑋 − 𝛼1)(𝑋 − 𝛼2) ∈ 𝑅𝛼[𝑋], let 𝑅𝛼𝒟 := 𝑅𝛼[𝒟−1] denote the ring obtained by inverting 𝒟

(equivalently, one may invert 𝛼1 − 𝛼2), and let 𝐴𝛼𝒟 := 𝐴𝛼 ⊗𝑅𝛼 𝑅𝛼𝒟 be the extension of 𝐴𝛼

to an 𝑅𝛼𝒟-algebra. Consider the functor ℱ𝛼𝒟 given by the composition

ℬ𝒩 𝛼
ℱ𝛼−→ 𝑅𝛼− gmod→ 𝑅𝛼𝒟− gmod

where the second functor is extension of scalars, (−) ⊗𝑅𝛼 𝑅𝛼𝒟. For a link 𝐿 ⊂ R3 with
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diagram 𝐷, write

𝐶𝐾ℎ𝛼𝒟(𝐷) := ℱ𝛼𝒟([[𝐷]])

to denote the resulting chain complex. The chain complex 𝐶𝐾ℎ𝛼𝒟(𝐷) is an invariant of 𝐿

up to chain homotopy equivalence, and we will denote its homology by 𝐾ℎ𝛼𝒟(𝐿).

The elements

𝑒1 =
𝑋 − 𝛼1

𝛼2 − 𝛼1

, 𝑒2 =
𝑋 − 𝛼2

𝛼1 − 𝛼2

∈ 𝐴𝛼𝒟. (2.7)

form a basis for 𝐴𝛼𝒟 and satisfy 𝑒1 + 𝑒2 = 1, 𝑒21 = 𝑒1, 𝑒
2
2 = 𝑒2, 𝑒1𝑒2 = 0. It follows that the

algebra 𝐴𝛼𝒟 decomposes as a product, 𝐴𝛼𝒟 = 𝑅𝛼𝒟𝑒1 × 𝑅𝛼𝒟𝑒2. With respect to the basis

{𝑒1, 𝑒2}, comultiplication in 𝐴𝛼𝒟 is simply given by

Δ(𝑒1) = (𝛼2 − 𝛼1)𝑒1 ⊗ 𝑒1,

Δ(𝑒1) = (𝛼1 − 𝛼2)𝑒2 ⊗ 𝑒2.
(2.8)

As noted in [40, Section 1.2], the TQFT ℱ𝛼𝒟 is essentially the Lee deformation [55]. By

[55, Theorem 4.2], the Lee homology of a 𝑘-component link is free (over Q) of rank 2𝑘. A

quick alternate proof can be found in the final remark in [87]; see also [10]. The statement

of the following proposition is written in [40, Section 1.2], and the arguments in [87] apply

without modification.

Proposition 2.3.31. For an oriented link 𝐿 ⊂ R3 with 𝑘 components, the homology 𝐾ℎ𝛼𝒟(𝐿)

is a free 𝑅𝛼𝒟-module of rank 2𝑘.

2.4 Annular Khovanov homology

We give an overview of annular Khovanov homology, also known as annular Asaeda-

Przytycki-Sikora (APS) homology. It was originally defined in [6] as part of a broader

categorification of the Kauffman bracket skein module of 𝐼-bundles over surfaces. This theory

is sometimes called sutured annular Khovanov homology. In Section 2.4.2 we will give an

overview of the Beliakova-Putyra-Wehrli quantum annular homology [11], a sophisticated

deformation of annular Khovanov homology.
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Figure 2-11: An annular link diagram.

(a) Type (I) (b) Type (II) (c) Type (III) (d) Type (IV)

Figure 2-12: Annular saddle cobordisms involving at least one essential circle.

2.4.1 The (classical) annular TQFT

Let A := 𝑆1 × 𝐼 denote the annulus. An annular link is a link in the thickened annulus

A × 𝐼, and a diagram for an annular link is a generic projection onto A × {0}. Fix an

embedding of A into R2 in some standard way, for instance A = {𝑥 ∈ R2 | 1 ≤ |𝑥| ≤ 2}, so

that an annular link diagram and all of its smoothings are drawn in the punctured plane

𝒫 := R2 ∖ {(0, 0)}.

Identifying the interior of A with 𝒫 , we represent the annulus in the plane by simply indi-

cating the puncture using the symbol ×. Figure 2-11 illustrates an example of an annular

link diagram. By a circle in A we mean a smoothly and properly embedded 𝑆1 in A. There

are two kinds of circles in A: trivial circles, which are contractible in A, and essential ones,

which are not contractible.

A (dotted) annular cobordism is a smoothly and properly embedded surface in A × 𝐼

decorated by dots. Cobordisms are considered up to ambient isotopy fixing the boundary of

A×𝐼 and are allowed to carry dots, as in Section 2.3.2. Annular cobordisms will be depicted

in 𝒫×𝐼, with the complement of 𝒫×𝐼 in R2×𝐼 drawn as a red vertical segment; see Figure

2-12 for examples.

Annular cobordisms carry two gradings, the quantum grading qdeg(𝑆) = −𝜒(𝑆)+ 2𝑑(𝑆)
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as in Equation (2.5), and the annular grading adeg(𝑆) = 0. Let Cob∙(A) denote the category

of dotted annular cobordisms, Cob∙/𝑙(A) the quotient of ZCob∙(A) by the local relations in

Figure 2-7, and ℬ𝒩 (A) the additive closure of the graded closure of Cob∙/𝑙(A).

To summarize: an object of ℬ𝒩 (A) is of the form 𝑍1{𝑛1, 𝑎1} ⊕ · · · ⊕ 𝑍𝑘{𝑛𝑘, 𝑎𝑘}, where

each 𝑍𝑖 is a collection of disjoint simple closed curves in A and the integers 𝑛𝑖 and 𝑎𝑖 are

formal shifts in qdeg and adeg, respectively. Morphisms are matrices whose entries are

formal Z-linear combinations of dotted annular cobordisms, modulo isotopy relative to the

boundary, and subject to the local relations shown in Figure 2-4.

We now describe the annular TQFT

ℱA : ℬ𝒩 (A)→ Z− ggmod,

where Z− ggmod denotes the category of bigraded (Z×Z-graded) abelian groups. Let 𝑍 ⊂ A

be a collection of 𝑛 trivial and 𝑚 essential circles. Viewing A × 𝐼 as a subspace of R2 × 𝐼,

apply the TQFT ℱ0 from Section 2.3.3,

ℱ0(𝑍) = 𝐴⊗𝑛
0 ⊗ 𝐴⊗𝑚

0 .

Recall that ℱ0(𝑍) carries a quantum grading, Equation (2.6). Define a second grading, called

the annular grading and denoted adeg, on ℱ0(𝑍) as follows. A tensor factor 𝐴0 corresponding

to a trivial circle is concentrated in annular degree 0. For a factor 𝐴0 corresponding to an

essential circle, let

𝑣0 = 1, 𝑣1 = 𝑋

denote a basis for this copy of 𝐴0, and set

adeg(𝑣0) = −1 adeg(𝑣1) = 1. (2.9)

Bigradings are summarized in Figure 2-13.

The underlying abelian group of ℱA(𝑍) is defined to be ℱ0(𝑍), with the bigrading given

by (qdeg, adeg). For a cobordism 𝑆 ⊂ A× 𝐼, first view 𝑆 as a surface in R2× 𝐼 and consider
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qdeg
−1 1

adeg

−1

1 𝑣1

𝑣0

𝑋1

Figure 2-13: Bigradings, where {1, 𝑋} is a homogeneous basis for trivial circles, and {𝑣0, 𝑣1} is a
homogeneous basis for essential ones.

the map ℱ0(𝑆). The following lemma says that ℱ0(𝑆) is non-decreasing with respect to adeg.

Lemma 2.4.1 ([74, Section 2]). The map ℱ0(𝑆) splits as a sum

ℱ0(𝑆) = ℱ0(𝑆)0 + ℱ0(𝑆)+ (2.10)

where ℱ0(𝑆)0 preserves adeg and ℱ0(𝑆)+ increases adeg.

Definition 2.4.2. Given an annular cobordism 𝑆, define ℱA(𝑆) := ℱ0(𝑆)0, the adeg-

preserving part of ℱ0(𝑆).

Lemma 2.4.3. The above definition of ℱA assembles into a functor ℱA : ℬ𝒩 (A)→ Z− ggmod.

Proof. That ℱA factors through the relations in Figure 2-7 is clear from the definition. To

show that ℱA is functorial, consider annular cobordisms 𝑆0 : 𝑍0 → 𝑍1 and 𝑆1 : 𝑍1 → 𝑍2.

Using the notation in Equation (2.10), we have

ℱ0(𝑆1𝑆0) = ℱ0(𝑆1)ℱ(𝑆0)

= ((ℱ0(𝑆1)0 + ℱ0(𝑆1)+) (ℱ0(𝑆0)0 + ℱ0(𝑆0)+)

= ℱ0(𝑆1)0ℱ0(𝑆0)0 +𝐺+

where 𝐺+ strictly increases the annular degree. It follows that the adeg-preserving part of

ℱ0(𝑆1𝑆0), which is precisely ℱA(𝑆1𝑆0), is equal to ℱ0(𝑆1)0ℱ0(𝑆0)0 = ℱA(𝑆1)ℱA(𝑆0).

The functor ℱA : ℬ𝒩 (A)→ Z− ggmod is called the annular TQFT. By construction, an

annular cobordism 𝑆 is assigned a map of (qdeg, adeg)-bidegree (−𝜒(𝑆) + 2𝑑(𝑆), 0).
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To distinguish the bigraded modules assigned to trivial and essential circles, write

𝑉A = ℱA(𝐶)

if 𝐶 ⊂ A is an essential circle, with basis {𝑣0, 𝑣1}, and keep the notation 𝐴0 = ℱA(𝐶) when

𝐶 is trivial, with basis {1, 𝑋}. Then if 𝑍 ⊂ A consists of 𝑛 trivial and 𝑚 essential circles,

the module assigned to 𝑍 is

ℱA(𝑍) = 𝐴⊗𝑛
0 ⊗ 𝑉 ⊗𝑚

A .

Note that the construction of the Bar-Natan complex from Section 2.3.1 is completely

local. For an oriented annular link 𝐿 with diagram 𝐷, its crossings are away from the

puncture ×, and we may form the chain complex [[𝐷]] over the category ℬ𝒩 (A) exactly as

described in Section 2.3.1. The only modification is that qdeg shifts {−} are rewritten as

(qdeg, adeg) shifts {−, 0} in ℬ𝒩 (A).

Proposition 2.4.4. Let 𝐿 be an oriented annular link, and let 𝐷, 𝐷′ be two annular link di-

agrams for 𝐿. Then [[𝐷]], [[𝐷′]] ∈ Kom(ℬ𝒩 (A)) are chain homotopy equivalent via bidegree-

preserving maps.

Proof. Isotopies of annular links are described by Reidemeister moves away from the punc-

ture. That [[𝐷]] and [[𝐷′]] are chain homotopy equivalent follows from the local arguments

in the proof of [8, Theorem 1]. An inspection of the explicit chain homotopy equivalences

assigned to Reidemeister moves verifies that they preserve annular degree.

Definition 2.4.5. Let 𝐷 be a diagram for an oriented annular link 𝐿. Define the annular

Khovanov complex, denoted 𝐶𝐾ℎA(𝐷), to be the chain complex obtained by applying ℱA

term-wise to [[𝐷]],

𝐶𝐾ℎA(𝐷) := ℱA([[𝐷]])

Denote the homology of the above complex by 𝐾ℎA(𝐷). We write 𝐾ℎA(𝐿) to be 𝐾ℎA(𝐷′)

for any diagram 𝐷′ for 𝐿.

Proposition 2.4.4 implies that 𝐶𝐾ℎA(𝐷) is an invariant of 𝐿 up to chain homotopy

equivalence. Annular Khovanov homology 𝐾ℎA(𝐿) is triply graded: it carries homological,

quantum, and annular gradings.
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An elementary annular cobordism is one that has a single non-degenerate critical point

with respect to the height function A× 𝐼 → 𝐼. It is a disjoint union of a product cobordism

and a single cup, cap, or saddle. By Definition 2.4.2, an elementary cobordism 𝑆 whose

boundary consists of only trivial circles is assigned the same map by ℱ0 and ℱA. We record

the maps assigned to the four elementary saddles involving at least one essential circle, Figure

2-12.

𝑉A ⊗ 𝐴0
(I)−→ 𝑉A

𝑣0 ⊗ 1 ↦→ 𝑣0

𝑣1 ⊗ 1 ↦→ 𝑣0

𝑣0 ⊗𝑋 ↦→ 0

𝑣1 ⊗𝑋 ↦→ 0

(2.11)

𝑉A ⊗ 𝑉A
(II)−−→ 𝐴0

𝑣0 ⊗ 𝑣0 ↦→ 0

𝑣1 ⊗ 𝑣0 ↦→ 𝑋

𝑣0 ⊗ 𝑣1 ↦→ 𝑋

𝑣1 ⊗ 𝑣1 ↦→ 0

(2.12)

𝑉A
(III)−−→ 𝑉A ⊗ 𝐴0

𝑣0 ↦→ 𝑣0 ⊗𝑋

𝑣1 ↦→ 𝑣1 ⊗𝑋

(2.13)

𝐴0
(IV)−−→ 𝑉A ⊗ 𝑉A

1 ↦→ 𝑣0 ⊗ 𝑣1 + 𝑣1 ⊗ 𝑣0

𝑋 ↦→ 0

(2.14)

Remark 2.4.6. There is an evident symmetry of the above maps given by interchanging

𝑣0 and 𝑣1. Grigsby-Licata-Wehrli [25] showed that the annular Khovanov complex carries

an action of the Lie algebra sl2(Z). The module 𝑉A assigned to an essential circle is the

fundamental representation, with weights given by adeg, and the module 𝐴0 assigned to a

trivial circle is the trivial two-dimensional representation.

From (2.11), we see that 𝑋 acts trivially on any essential circle. It follows that a cobor-

dism with a component that carries a dot and a closed curve which is nonzero in 𝜋1(A× 𝐼)

is assigned the zero map by ℱA. Thus ℱA factors through the relation shown in Figure 2-14,

called Boerner’s relation [14]. Indeed, for an essential circle 𝐶 ⊂ A, there are no nonzero

endomorphisms of ℱA(𝐶) of bidegree (2, 0).

The category ℬ𝒩 (A) has a monoidal product given by taking two copies A1,A2 of A and

gluing the boundary component 𝑆1×{1} of A1 to the boundary component 𝑆1×{0} of A2.

The annular TQFT ℱA is evidently monoidal.

36



∙

×

×

= 0

Figure 2-14: Boerner’s relation.

2.4.2 Quantum annular homology

This section outlines the construction of the Beliakova-Putyra-Wehrli quantum annular

link homology [11]. Their theory is built over a commutative ring k and a unit q ∈ k.

We set k := Z[q, q−1], the ring of Laurent polynomials in q with integer coefficients, and

the distinguished unit q ∈ k is the same q appearing in Z[q, q−1]. The main object is the

quantum annular TQFT

ℱAq : ℬ𝒩 q(A)→ k− gmod,

where ℬ𝒩 q(A) is a certain deformation of ℬ𝒩 (A). We will give an overview of the functor

ℱAq and state a main theorem [11, Theorem 6.3].

Remark 2.4.7. As mentioned above, we work over the Laurent polynomial ring k throughout

this section. To construct the stable homotopy refinement in Chapter 3, we will tensor the

resulting theory with k𝑟 := k/(q𝑟 − 1).

Definition 2.4.8. Let 𝑛,𝑚 ≥ 0. A planar (𝑛,𝑚)-tangle is a smooth and proper embedding

of 𝑛 +𝑚 intervals and a finite number of circles into 𝐼2, such that 𝑛 boundary points map

to points in 𝐼 × {0} and 𝑚 boundary points map to points in 𝐼 × {1}. See Figure 2-15 for

an example.

Let 𝑇0 and 𝑇1 be planar (𝑛,𝑚)-tangles. A cobordism from 𝑇0 to 𝑇1 is a smoothly and

properly embedded compact surface 𝑆 in 𝐼3, such that 𝑆 ∩ 𝐼2×{𝑖} = 𝑇𝑖, 𝑆 ∩ ({𝑖}× 𝐼2) = ∅

for 𝑖 = 1, 2, and both 𝑆 ∩ (𝐼 ×{0}× 𝐼) and 𝑆 ∩ (𝐼 ×{1}× 𝐼) are vertical intervals above the

𝑛 +𝑚 points comprising the boundary of 𝑇0 and 𝑇1. Tangle cobordisms are considered up

to ambient isotopy of 𝐼3 fixing 𝜕𝐼3 pointwise.

Let ℬ𝒩 (𝑛,𝑚) denote the Bar-Natan category of the rectangle with 𝑛 points on the

bottom and 𝑚 on top. Its objects are formal direct sums of formally graded planar (𝑛,𝑚)
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Figure 2-15: A planar (3,1)-tangle

tangles. Morphisms in ℬ𝒩 (𝑛,𝑚) are matrices whose entries are formal k-linear combinations

of embedded dotted cobordisms in 𝐼3 between planar (𝑛,𝑚)-tangles, subject to the relations

in Figure 2-7.

A seam of A = 𝑆1 × 𝐼, denoted 𝜇, is an interval {*} × 𝐼. In our representation of the

interior of the annulus as the puncture plane 𝒫 , we will fix the seam as the positive 𝑥-axis,

emanating from the puncture ×. See Figure 2-17 for an example.

We now recall the quantum Bar-Natan category of the annulus ℬ𝒩 q(A), a deformation

of ℬ𝒩 (A). The objects of ℬ𝒩 q(A) are nearly the same as those of ℬ𝒩 (A), with the slight

modification that curves in A must be transverse to 𝜇. Morphisms in ℬ𝒩 q(A) are also

similar to those in ℬ𝒩 (A). In ℬ𝒩 q(A), isotopic cobordisms are equal if the isotopy fixes the

membrane 𝜇× 𝐼 ⊂ A× 𝐼. Otherwise, the cobordisms are scaled by a power of q according to

the degree of the part of the cobordism that passes through the membrane during the isotopy,

accounting also for the coorientation of the membrane induced by the standard orientation

of the core circle of A. These will be referred to as trace moves. The relations are depicted

in Figure 2− 16; for details see [11, Section 6.2]. Moreover, the dotted Bar-Natan relations

in Figure 2-7 are imposed, where the local pictures are understood to be disjoint from the

membrane.

Remark 2.4.9. In [11, Section 6.2], ℬ𝒩 q(A) is obtained from a 2-categorical construction

known as a (twisted) horizontal trace, see [11, Definition 3.3]. We will not need the details

of this construction, so we do not review it.

General position implies that if two annular cobordisms are isotopic, then they are related

by a sequence of trace moves and isotopies which fix the membrane. Therefore, if two

cobordisms 𝑆, 𝑆 ′ ⊂ A × 𝐼 are isotopic, then 𝑆 = q𝑘𝑆 ′ as morphisms in ℬ𝒩 q(A), for some

𝑘 ∈ Z; see also [11, Proposition 6.2].

A configuration C is a collection of disjoint simple closed curves in A which are transverse
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= q−1

= q

= q

= q2

Figure 2-16: The trace relations in ℬ𝒩 q(A).

× 𝜇

C C cut

Figure 2-17: Cutting open a configuration C along 𝜇 to obtain the (3, 3)-tangle C cut

to 𝜇. Note that an object of ℬ𝒩 q(A) is a formal direct sum of formally graded configurations.

Given a configuration C which intersects 𝜇 in 𝑛 points, we can cut along 𝜇 to obtain a planar

(𝑛, 𝑛)-tangle C cut. Figure 2-17 shows an example.

A construction of Chen-Khovanov [19] (see also work of Stroppel [81] and Brundan-

Stroppel [16]) yields graded k-algebras 𝐴𝑘 for each 𝑘 ≥ 0, and a functor

ℱ𝐶𝐾 : ℬ𝒩 (𝑛,𝑚)→ gBimod(𝐴𝑛, 𝐴𝑚)

where gBimod(𝐴𝑛, 𝐴𝑚) is the category of graded (𝐴𝑛, 𝐴𝑚)-bimodules. Let I𝑛 denote the

planar tangle consisting of 𝑛 vertical strands. Then, by definition of ℱ𝐶𝐾 , we have ℱ𝐶𝐾(I𝑛) =

𝐴𝑛. A thorough account of Chen-Khovanov algebras and bimodules will not be needed, so

we do not review the construction.

Remark 2.4.10. Strictly speaking, Chen-Khovanov define Z-algebras. The k-algebras above

are obtained by simply extending scalars to k.
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The quantum Hochschild homology, denoted 𝑞𝐻𝐻 and defined in [11, Section 3.8.5], is a

deformation of the usual Hochschild homology of bimodules. It takes as input a graded k-

algebra 𝐵 and a graded (𝐵,𝐵)-bimodule 𝑀 . The output 𝑞𝐻𝐻(𝐵,𝑀) =
⨁︀

𝑖≥0 𝑞𝐻𝐻𝑖(𝐵,𝑀)

is a k-module. Due to [11, Proposition 6.6] (stating that 𝑞𝐻𝐻𝑖(ℱ𝐶𝐾(C cut)) = 0 for 𝑖 > 0),

we restrict our focus to 𝑞𝐻𝐻0. It follows immediately from the definition of 𝑞𝐻𝐻 that

𝑞𝐻𝐻0(𝐵,𝑀) =𝑀/spank{𝑏𝑚− q|𝑏|𝑚𝑏 | 𝑏 ∈ 𝐵,𝑚 ∈𝑀}, (2.15)

where |𝑏| denotes the degree of 𝑏.

We are now ready to define ℱAq on objects. Let C be a configuration which intersects

𝜇 in 𝑛 points. Using the Chen-Khovanov functor, form the (𝐴𝑛, 𝐴𝑛)-bimodule ℱ𝐶𝐾(C cut).

The quantum annular TQFT ℱAq is then defined on objects by

ℱAq(C ) := 𝑞𝐻𝐻(𝐴𝑛,ℱ𝐶𝐾(C cut)).

By [11, Proposition 6.6], we have 𝑞𝐻𝐻𝑖(ℱ𝐶𝐾(C cut)) = 0 for 𝑖 > 0. Suppose C consists

of 𝑛 essential curves each intersecting the seam once. Then C cut = I𝑛, so

ℱAq(C ) = 𝑞𝐻𝐻0(𝐴
𝑛, 𝐴𝑛).

Let 𝐴𝑛0 ⊂ 𝐴𝑛 denote the subalgebra consisting of elements of degree 0. By [11, Proposi-

tion 6.6], the inclusion 𝐴𝑛0 →˓ 𝐴𝑛 induces an isomorphism 𝑞𝐻𝐻0(𝐴
𝑛
0 , 𝐴

𝑛
0 )
∼= 𝑞𝐻𝐻0(𝐴

𝑛, 𝐴𝑛).

Moreover, 𝐴𝑛0 is freely generated over k by 2𝑛 elements 𝑥1, . . . , 𝑥2𝑛 , which are the primitive

idempotents of [11, Section 5.5]. They are in bijection with the cup diagrams and satisfy

𝑥𝑖𝑥𝑗 = 𝛿𝑖𝑗𝑥𝑖. It follows from (2.15) that

𝑞𝐻𝐻0(𝐴
𝑛
0 , 𝐴

𝑛
0 )
∼= k2𝑛 .

Every configuration C is isomorphic in ℬ𝒩 q(A) to a configuration C ∘ in which every com-

ponent intersects the seam at most once. If C has 𝑒 essential and 𝑡 trivial circles, then by
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delooping, one obtains

ℱAq(C ) ∼= ℱAq(C
∘) ∼= k2𝑒+𝑡

.

The above isomorphism is, however, not canonical, and a general configuration C does

not have a canonical choice of basis. This is an obstacle for defining the stable homotopy

refinement of quantum annular homology. An extensive discussion of choosing a basis is the

content of Section 3.2.

We have so far only explained the definition of ℱAq on objects. The full construction of

ℱAq in [11] follows from a general theory of (twisted) horizontal traces of bicategories, which

we will not describe. The definition of ℱAq on morphisms follows from this general theory as

well. The rest of this subsection describes the set-up for [11, Theorem 6.3], which is stated

as our Theorem 2.4.13, and which is the main computational tool.

Let ℬℬ𝒩 q(A) denote the quotient of ℬ𝒩 q(A) by Boerner’s relation, Figure 2-14. The

functor ℱAq factors through ℬℬ𝒩 q(A). Given a diagram 𝐷 for an annular link 𝐿 such that 𝐷

is transverse to 𝜇 and the crossings are disjoint from 𝜇, we form the cube of resolutions [[𝐷]]

in the usual manner and view the result as a chain complex over the category ℬℬ𝒩 q(A).

Definition 2.4.11. If 𝐷 is a diagram for an annular link 𝐿 which is transverse to the seam,

define the quantum annular Khovanov complex of 𝐷 to be

𝐶𝐾ℎAq(𝐷) := ℱAq([[𝐷]]).

The chain complex 𝐶𝐾ℎAq(𝐷) is an invariant of 𝐿 up to chain homotopy equivalence by

[11, Proposition 6.8].

Definition 2.4.12 ([11, Appendix A.1]). Let TL denote the additive closure of the formally

graded Temperley-Lieb category. Its objects are formal direct sums of formally graded finite

collections of points on a line, and morphisms are k-linear combinations of planar tangles

between the points, modulo planar isotopy and the local relation that a circle is set to q+q−1.

Composition is given by stacking planar tangles, see Figure 2-18 for an example.

There is a functor 𝑆1 × (−) : TL → ℬ𝒩 q(A), which sends a collection of 𝑛 points to 𝑛

essential circles in A, each intersecting 𝜇 once, and sends a planar tangle 𝑇 to the cobordism
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(q+ q−1)∘ = =

Figure 2-18: Composition and relations in TL.

𝑆1 × 𝑇 . A circle evaluates to q + q−1 in TL. On the other hand, the relations in ℬ𝒩 q(A)

imply that a torus wrapping once around the annulus evaluates to q + q−1, ensuring that

𝑆1 × (−) is well-defined.

Let gRep(𝑈q(sl2)) denote the category of graded representations of 𝑈q(sl2). We follow

the conventions established in [11, Appendix A.1] concerning 𝑈q(sl2); also see Section 3.9

below for further discussion. There is another functor ℱTL : TL→ gRep(𝑈q(sl2)), defined as

follows. Let 𝑉1 = ⟨𝑣−1, 𝑣1⟩ be the fundamental representation of 𝑈q(sl2) and 𝑉 *
1 = ⟨𝑣*−1, 𝑣

*
1⟩

its dual. Let 𝑉q be a free k-module with basis {𝑣+, 𝑣−}. Consider two k-linear isomorphisms

𝛼 : 𝑉1 → 𝑉q and 𝛽 : 𝑉 *
1 → 𝑉q defined by

𝛼 : 𝑣1 ↦→ 𝑣+ 𝛽 : 𝑣*1 ↦→ 𝑣−

𝛼 : 𝑣−1 ↦→ 𝑣− 𝛽 : 𝑣*−1 ↦→ q−1𝑣+

These equip 𝑉q with two actions of 𝑈q(sl2), which are detailed in [11, Appendix A.1]. Note

that, while 𝑉1 and 𝑉 *
1 are isomorphic as 𝑈q(sl2)-modules, the composition 𝛽−1 ∘𝛼 : 𝑉1 → 𝑉 *

1

is not 𝑈q(sl2)-linear.

The functor ℱTL assigns 𝑉 ⊗𝑛
q to a collection of 𝑛 points. Since 𝛽−1𝛼 is not 𝑈q(sl2)-linear,

there is an ambiguity in specifying the 𝑈q(sl2)-module structure on 𝑉 ⊗𝑛
q . The convention

is that the 𝑚-th point is assigned 𝑉1 if 𝑚 is odd, and 𝑉 *
1 if 𝑚 is even, so that the module

assigned to 𝑛 points is given the 𝑈q(sl2)-action according to the identification

𝑉 ⊗𝑛
q
∼= 𝑉1 ⊗ 𝑉 *

1 ⊗ 𝑉1 ⊗ · · ·

To define the value of ℱTL on any planar tangle, it suffices to specify its value on caps
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and cups. For a cap ∩, ℱTL assigns the evaluation map 𝑒𝑣 : 𝑉q ⊗ 𝑉q → k, defined by

𝑣+ ⊗ 𝑣+ ↦→ 0 𝑣+ ⊗ 𝑣− ↦→ q

𝑣− ⊗ 𝑣− ↦→ 0 𝑣− ⊗ 𝑣+ ↦→ 1

On a cup ∪, ℱTL assigns the coevaluation 𝑐𝑜𝑒𝑣 : k→ 𝑉q ⊗ 𝑉q, defined by

1 ↦→ 𝑣+ ⊗ 𝑣− + q−1𝑣− ⊗ 𝑣+

The above assignments extend to define ℱTL(𝑇 ) for any planar tangle 𝑇 , by writing 𝑇 as

a composition of tangles consisting of either a cup or cap together with the identity tangle

on the remaining points. It is well-known that the map ℱTL(𝑇 ) is independent of the

decomposition of 𝑇 into such pieces. Finally, the relation 𝑐𝑜𝑒𝑣 ∘ 𝑒𝑣 = q + q−1 implies that

the above assignments assemble into a functor ℱTL : TL→ gRep(𝑈q(sl2)).

The evaluation map is always identified with either 𝑉1⊗𝑉 *
1 → k or 𝑉 *

1 ⊗𝑉1 → k, and the

coevaluation is identified with either k→ 𝑉1⊗𝑉 *
1 or k→ 𝑉 *

1 ⊗𝑉1. With these identifications,

the cap and cup are assigned 𝑈q(sl2)-linear maps by ℱTL.

We have now explained the functors ℱTL : TL → gRep(𝑈q(sl2)) and 𝑆1 × (−) : TL →

ℬ𝒩 q(A). To compare ℱTL with the composition ℱAq ∘ (𝑆1 × (−)) in the statement of Theo-

rem 2.4.13, the value of ℱAq on 𝑛 essential circles intersecting the seam once needs to be given

a 𝑈q(sl2)-module structure. Recall that the Chen-Khovanov functor assigns the k-algebra

𝐴𝑛 to the planar tangle I𝑛 consisting of 𝑛 vertical strands. There is distinguished k-linear

isomorphism

𝑞𝐻𝐻0(𝐴
𝑛, 𝐴𝑛) ∼= 𝑉 ⊗𝑛

q (2.16)

which we now describe. Recall that the inclusion 𝐴𝑛0 →˓ 𝐴𝑛 induces an isomorphism on

𝑞𝐻𝐻0, and that 𝑞𝐻𝐻0(𝐴
𝑛
0 , 𝐴

𝑛
0 ) has a distinguished k-basis {𝑥1, . . . , 𝑥2𝑛} corresponding to

cup diagrams. Chen-Khovanov in [19, Section 6] assign to each 𝑥𝑖 an element 𝑝𝑖 ∈ 𝑉 ⊗𝑛
q

such that the collection {𝑝𝑖} forms a basis of 𝑉 ⊗𝑛
q . The isomorphism (2.16) is obtained by

composing 𝑞𝐻𝐻0(𝐴
𝑛, 𝐴𝑛) ∼= 𝑞𝐻𝐻0(𝐴

𝑛
0 , 𝐴

𝑛
0 ) with the assignment 𝑥𝑖 ↦→ 𝑝𝑖.
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Theorem 2.4.13. ([11, Theorem 6.3]) There is a commuting diagram

TL ℬℬ𝒩 q(A)

gRep(𝑈q(sl2))

𝑆1×(−)

ℱTL ℱAq

with the horizontal functor an equivalence of categories.

The above theorem is a key tool for carrying out calculations in quantum annular ho-

mology, allowing one to bypass unraveling the categorical machinery of twisted horizontal

traces used to define ℱAq . In particular, it will play an important role in determining the

values of the differential on generators in Section 3.2.1.

2.5 Categorification of the Reshetikhin-Turaev invariants

Reshetikhin-Turaev [70] introduced a wealth of quantum invariants of oriented links. 5

As a rough summary, consider an oriented link diagram 𝐷 where each component is labeled

by some representation of the quantum group 𝑈𝑞(g), for some fixed Lie algebra g. The

representations labeling components are often called colors. Given such input, Reshetikhin-

Turaev define a Laurent polynomial invariant of 𝐿.

This thesis considers the case g = sl𝑁 or g = gl𝑁 , and where components are colored

by (quantum) exterior powers of the fundamental representation 𝑉 . In this case, the colors

consist of labels on each component by an integer 𝑖 ∈ {0, . . . , 𝑁}, where 𝑖 corresponds to

the 𝑖-th exterior power Λ𝑖𝑞𝑉 . In this situation, Murakami-Ohtsuki-Yamada [65] showed that

the Reshetikhin-Turaev invariant can be combinatorially computed from a link diagram by

resolving each crossing as a particular linear combination of webs, and then evaluating each

resulting closed web using the MOY relations (Figure 2-24). The Jones polynomial corre-

sponds to g = sl2 and where all components are colored are labeled 1 (i.e., all components

are colored by the fundamental representation).

A categorification of the invariant for sl3 and all components colored 1 was introduced
5In fact, the Reshetkhin-Turaev define an invariant of tangles, but we consider only the restriction to

links
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Figure 2-19: The orientations of edges at each trivalent vertex of an sl3 web must be either all
outgoing or all incoming.

by Khovanov in [35]; we give an overview of this construction in Section 2.5.1. Khovanov-

Rozansky [42] categorified the invariant for all sl𝑁 , again in the case where strands are

colored by 1. An extension to all colors was given by Wu [90]. An equivariant version of sl3

homology was constructed in [63], and a generalization to sl𝑁 homology was introduced in

[45] in the uncolored case and in [89] for colored links.

The approach to categorified sl𝑁 invariants considered in this thesis is via Robert-Wagner

closed foam evaluation [73], which we review in Section 2.5.3. Key benefits of this construc-

tion include its combinatorial nature, that it produces naturally equivariant link homology,

and the strict functoriality of the resulting link homology, proven by Ehrig-Tubbenhauer-

Wedrich [24].

2.5.1 Categorification of the sl3 polynomial

This section gives an overview of the sl3 link polynomial via the Kuperberg bracket [48]

and Khovanov’s categorification of this invariant [35]. We will follow the normalization and

conventions in [35], except the one in the following remark.

Remark 2.5.1. Note that [35] uses the opposite conventions for positive and negative cross-

ings, see [35, Figure 8].

Definition 2.5.2. An sl3 web is a planar trivalent graph Γ ⊂ R2 embedded in the plane,

which may have closed loops with no vertices. Moreover, edges and loops of Γ carry orien-

tations such that each vertex is either a source or a sink, as shown in Figure 2-19. In this

section we will simply write web rather than sl3 web.

Given an sl3 web Γ, the Kuperberg bracket of Γ, denoted ⟨Γ⟩Kup is a Laurent polynomial

invariant of Γ, computed as follows. A straightforward Euler characteristic argument shows

that any web Γ contains either an innermost circle, a bigon, or a square. Repeatedly applying

45



= 𝑞2 + 1 + 𝑞−2

(a) An innermost circle.

= (𝑞 + 𝑞−1)

(b) A bigon face.

∼= +

(c) A square face.

Figure 2-20: The local relations used to recursively compute the Kuperberg bracket ⟨Γ⟩Kup.

= 𝑞2 − 𝑞3 = 𝑞−2 − 𝑞−3

Figure 2-21: Crossing resolution used to compute the sl3 polynomial.

the relations in Figure 2-20 simplifies any web into a Z≥0[𝑞, 𝑞
−1]-linear combinations of the

empty web, which evaluates to 1. That ⟨Γ⟩Kup is well-defined is proven in [48].

Example 2.5.3. By first applying the bigon relation and then the circle relation, we have⟨ ⟩
Kup

= (𝑞 + 𝑞−1)(𝑞2 + 1 + 𝑞−2).

We now define the sl3 link polynomial. Let 𝐷 be a diagram of an oriented link 𝐿.

Resolve each crossing according to the rule in Figure 2-21, resulting in a linear combination

of webs, and evaluate each web using the Kuperberg bracket to obtain a Laurent polynomial

⟨𝐷⟩Kup ∈ Z[𝑞, 𝑞−1].

Proposition 2.5.4 ([35, Proposition 2]). The polynomial ⟨𝐷⟩Kup is invariant under Reide-

meister moves, and hence is an invariant of the oriented link 𝐿.

We now give a brief overview Khovanov’s chain complex 𝐶𝐾ℎ3(𝐷) categorifying the sl3

polynomial, following [35, Section 4]. To each web Γ, Khovanov assigns a free, graded abelian

group ℱ3(Γ), and shows that the graded rank of ℱ3(Γ) is equal to the Kuperberg bracket of

Γ [35, Corollary 2]. This is proven by categorifying the relations in Figure 2-20. We do not

discuss the definition of ℱ3; an equivariant version of this construction using foam evaluation
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1 0

0 1

Figure 2-22: The 0- and 1-smoothings used to define the sl3 chain complex.

in the style of Robert-Wagner is given in Section 4.3.

Let 𝐷 be an 𝑛-crossing diagram of an oriented link 𝐿. Similar to the discussion in

Section 2.3.1 , first form the cube of resolutions as follows. Using the rules in Figure 2-22,

each vertex 𝑢 ∈ {0, 1}𝑛 is assigned a web 𝐷𝑢. If vertices 𝑢 and 𝑣 differ in exactly one entry,

where 𝑢𝑖 = 0, 𝑣𝑖 = 1, then there is an associated map ℱ3(𝐷𝑢) → ℱ3(𝐷𝑣), and decorating

edges by these maps results in a commutative cube. Add minus signs to edges to make the

cube anti-commutative. The chain complex 𝐶𝐾ℎ3(𝐷) is given by

𝐶𝐾ℎ𝑖3(𝐷) =
⨁︁

|𝑢|=𝑖+𝑛+

ℱ3(𝐷𝑢){2(𝑛+ − 𝑛−)− 𝑖}, (2.17)

and the differential is given on each summand by the sum of all (signed) edge maps which

start at the corresponding vertex.

Theorem 2.5.5 ([35, Theorem 1, Proposition 1]). The chain homotopy class of 𝐶𝐾ℎ3(𝐷) is

invariant under Reidemeister moves, and the graded Euler characteristic of 𝐶𝐾ℎ3(𝐷) equals

the sl3 polynomial ⟨𝐷⟩Kup.

2.5.2 MOY webs

In this section we fix an integer 𝑁 ≥ 1.

Definition 2.5.6. A gl𝑁 web (also called a MOY web) is a embedded trivalent graph Γ ⊂ R2,

which may also contain closed loops with no vertices. Moreover, edges and loops of Γ are

oriented and carry weights in {0, . . . , 𝑁}, called the thickness of the edge, such that the
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𝑖+ 𝑗

𝑗𝑖

𝑖 𝑗

𝑖+ 𝑗

Figure 2-23: The flow condition near each trivalent vertex in a gl𝑁 web.

flow condition shown in Figure 2-23 is satisfied at each vertex. Let Web𝑁 denote the set of

planar isotopy classes of gl𝑁 webs. We will often simply write web instead of gl𝑁 web in this

section.

Definition 2.5.7. For 𝑛 ∈ Z, The quantum integer [𝑛] is defined to be

[𝑛] =
𝑞𝑛 − 𝑞−𝑛

𝑞 − 𝑞−1
= 𝑞𝑛−1 + 𝑞𝑛−3 + · · ·+ 𝑞3−𝑛 + 𝑞1−𝑛 ∈ Z≥0[𝑞, 𝑞

−1].

If 𝑘 > 0, set [︂
𝑛

𝑘

]︂
=

[𝑛][𝑛− 1] · · · [𝑛− 𝑘 + 1]

[𝑘][𝑘 − 1] · · · [2][1]
.

Also define
[︀
𝑛
0

]︀
= 1.

Remark 2.5.8. It is straighforward to verify the identity

[︂
𝑛+ 1

𝑘

]︂
= 𝑞−𝑘

[︂
𝑛

𝑘

]︂
+ 𝑞𝑛−𝑘+1

[︂
𝑛

𝑛− 1

]︂
,

which holds for all 𝑛 and 𝑘 with 𝑘 > 0. It follows that
[︀
𝑛
𝑘

]︀
∈ Z≥0[𝑞, 𝑞

−1].

Theorem 2.5.9 ([65], see also [90, Theorem 2.4]). There is a unique function ⟨−⟩𝑁 :

Web𝑁 → Z[𝑞, 𝑞−1] which factors through the local relations in Figure 2-24.

Indeed, the evaluation ⟨Γ⟩𝑁 for any web Γ can be recursively computed using the relations

in Figure 2-24; this is part of the proof of uniqueness of the evaluation in [90, Theorem 2.4].

That applying the MOY relations to simplify a web results in a well-defined polynomial

follows from the state-sum formulation of ⟨−⟩𝑁 defined in [65].

The evaluation ⟨−⟩𝑁 can be used to define the Reshetikhin-Turaev sl𝑁 invariant of a

colored link 𝐿. This invariant is obtained by resolving crossings in a particular way, resulting
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𝑖 =

[︂
𝑁

𝑖

]︂
(a)

𝑖+𝑗+𝑘

𝑗+𝑘

𝑗 𝑘
𝑖

𝑖+𝑗+𝑘

𝑘

𝑖+𝑗

𝑗𝑖

=

(b)

𝑖+ 𝑗

𝑖+ 𝑗

𝑗𝑖

[︂
𝑖+ 𝑗

𝑖

]︂
𝑖+ 𝑗=

(c)

𝑖

𝑖

𝑗𝑖+ 𝑗

[︂
𝑁 − 𝑖
𝑗

]︂
𝑖=

(d)

1
𝑖+1

𝑖

𝑖

𝑖+1

1

1 𝑖

1 𝑖 [𝑁 − 𝑖− 1]

1 𝑖

𝑖− 1

1 𝑖

= +

(e)

𝑖
𝑗

𝑘

𝑖+𝑗

𝑖+𝑗−1

𝑘−𝑗

1 𝑘+𝑖−1

[︂
𝑘 − 1

𝑗

]︂
1

𝑖

𝑘 + 𝑖− 1

𝑖− 1
𝑘 [︂

𝑘 − 1

𝑗 − 1

]︂
1 𝑘 + 𝑖− 1

𝑘 + 𝑖

𝑖 𝑘

= +

(f)

𝑖
𝑗+𝑘−𝑖

𝑗+𝑙

𝑗+𝑘

𝑘

𝑖+𝑙−𝑘

𝑗 𝑖+𝑙

𝑗∑︁
𝑛=max(0,𝑖−𝑗)

[︂
𝑙

𝑘 − 𝑛

]︂ 𝑖
𝑛

𝑗+𝑙

𝑖−𝑛

𝑗−𝑖+𝑛

𝑗+𝑙+𝑛

𝑗 𝑖+𝑙

=

(g)

Figure 2-24: The MOY relations.
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in a sophisticated Z[𝑞, 𝑞−1]-linear combination of webs, and then evaluating each web to

obtain a Laurent polynomial. See [65, Section 5] and [90, Section 2.5] for details.

2.5.3 Robert-Wagner foam evaluation

This section gives an overview of Robert-Wagner foam evaluation, which is used to cat-

egorify the MOY calculus, as we will detail in Section 2.5.4. Later in Section 4.4 we extend

Robert-Wagner foam evaluation to the annular setting.

Definition 2.5.10. A (closed) gl𝑁 foam 𝐹 is a compact, PL, 2-dimensional CW complex

with the following properties and data.

• Every point of 𝐹 has neighborhood homeomorphic to either a disk, the letter 𝑌 times

an interval, or the cone on the 1-skeleton of a tetrahedron; the latter two types of

points, illustrated in Figure 2-25, are called singular points. The singular graph of 𝐹 ,

denoted 𝑠(𝐹 ), consists of all singular points. Note that 𝑠(𝐹 ) may contain closed loops

with no vertices. Edges and loops in 𝑠(𝐹 ) are called bindings ; moreover, the edges are

called interval bindings. A singular vertex of 𝐹 is a vertex of 𝑠(𝐹 ), shown in Figure

2-25b.

• A facet of 𝐹 is a connected component of 𝐹 ∖ 𝑠(𝐹 ); the set of facets is denoted 𝑓(𝐹 ).

Each facet 𝑓 ∈ 𝑓(𝐹 ) of 𝐹 carries a label in {0, . . . , 𝑁} called its thickness and denoted

th(𝑓).

• The singular graph and facets of 𝐹 must be oriented, and moreover these orientations

must be compatible with thicknesses in the following way. Three facets meeting along

a binding must have thickness 𝑎, 𝑏, and 𝑎+𝑏. The orientation of the binding must agree

with the orientations of the thickness 𝑎 and 𝑏 facets and disagree with the orientation

of thickness 𝑎+ 𝑏 facet. See Figure 2-25 for a summary.

• Foams moreover carry decorations, consisting of a homogeneous symmetric polynomial

𝑃𝑓 in th(𝑓) variables for each facet 𝑓 . The variables are all of degree two. We will

indicate these polynomial decorations by an arrow pointing from a polynomial to the
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𝑎 𝑏

𝑎+𝑏

(a) An interval binding, where three facets
meet.

𝑎

𝑏+𝑐

𝑏

𝑎+𝑏

𝑐

𝑎+𝑏+𝑐

(b) A singular vertex, where six facets meet.

Figure 2-25: A summary of the thickness and orientation conventions at singular points.

facet it decorates, see (2.18). When depicting foams, a facet with no such decoration

appearing indicates that it is decorated by the constant polynomial 1.

• Finally, foams considered in the present paper will always be PL embedded in R3. As

for webs, we will often write foam instead of gl𝑁 foam.

Remark 2.5.11. One may consider abstract foams (not embedded in R3). In this case a cyclic

order of the three facets at each interval binding must be fixed. In our situation, when all

foams are embedded, the cyclic order is determined by the left-hand rule.

We will generally omit orientations of facets from the pictures; they are determined by

the orientation of the binding and the thickness of facets.

Example 2.5.12. Consider the foam 𝐹 shown in Equation 2.18. It consists of three disks with

thicknesses 𝑎, 𝑏, and 𝑎+ 𝑏 glued along their common boundary, with symmetric polynomial

labels 𝑃1, 𝑃2, and 𝑃3, respectively. The orientations on facets can be determined from the

orientation of the singular circle.

𝑏

𝑎+ 𝑏

𝑎

𝑃2

𝑃3

𝑃1

(2.18)
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Definition 2.5.13. Let 𝐹 be a gl𝑁 foam. Consider the following quantities.

• For a facet 𝑓 of thickness 𝑎, set 𝑑(𝑓) = 𝑎(𝑁 − 𝑎)𝜒(𝑓).

• For an interval binding 𝑖 which meets facets of thicknesses 𝑎, 𝑏, and 𝑎 + 𝑏, set 𝑑(𝑖) =

𝑎𝑏+ (𝑎+ 𝑏)(𝑁 − 𝑎− 𝑏).

• For a singular vertex 𝑣 which meets facets of thicknesses 𝑎, 𝑏, 𝑐, 𝑎+ 𝑏, 𝑎+ 𝑐, 𝑏+ 𝑐, and

𝑎+ 𝑏+ 𝑐, set 𝑑(𝑣) = 𝑎𝑏+ 𝑎𝑐+ 𝑏𝑐+ (𝑁 − 𝑎− 𝑏− 𝑐)(𝑎+ 𝑏+ 𝑐).

Define the degree of a foam 𝐹 to be

deg(𝐹 ) = −
∑︁

𝑓∈𝑓(𝐹 )

𝑑(𝑓) +
∑︁
𝑖 an

interval binding

𝑑(𝑖)−
∑︁
𝑣 a

singular vertex

𝑑(𝑖) +
∑︁

𝑓∈𝑓(𝐹 )

deg(𝑃𝑓 )

We introduce the following notation.

• Let [𝑁 ] = {1, 2, . . . , 𝑁}.

• For a set 𝐴, we let 2𝐴 denote its powerset.

• We will write #𝐴 to denote the cardinality of a finite set 𝐴.

Definition 2.5.14. A coloring of a foam 𝐹 is a function 𝑐 : 𝑓(𝐹 )→ 2[𝑁 ] such that #𝑐(𝑓) =

th(𝑓) for all 𝑓 ∈ 𝑓(𝐹 ). Moreover, if three facets 𝑓1, 𝑓2, 𝑓3, of thicknesses 𝑎, 𝑏 and 𝑎 + 𝑏

respectively, meet at a singular edge, then we must have 𝑐(𝑓1)⊔𝑐(𝑓2) = 𝑐(𝑓3). This condition

is illustrated in Figure 2-26a. Let adm(𝐹 ) denote the set of colorings of 𝐹 .

For 𝑖 ∈ [𝑁 ], we say a facet 𝑓 ∈ 𝑓(𝐹 ) is colored 𝑖 (according to 𝑐) if 𝑖 ∈ 𝑐(𝑓); more

generally, for 𝐼 ⊂ [𝑁 ], we say 𝑓 is colored 𝐼 if 𝐼 ⊂ 𝑐(𝑓).

Now fix a foam 𝐹 and a coloring 𝑐.

• For 1 ≤ 𝑖 ≤ 𝑁 , let 𝐹𝑖(𝑐) denote the union of all 𝑖-colored facets of 𝐹 .

• For 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑁 , let 𝐹𝑖𝑗(𝑐) denote the union of facets colored either 𝑖 or 𝑗 but not

both.
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𝑎 𝑏

𝑎+ 𝑏

𝑐(𝑓1) 𝑐(𝑓2)

𝑐(𝑓3) = 𝑐(𝑓1) ∪ 𝑐(𝑓2)

(a) The condition on a foam coloring 𝑐 around each singular
edge.

{𝑗} {𝑖}

{𝑖, 𝑗}

(b) A positive (𝑖, 𝑗) binding, where 1 ≤ 𝑖 <
𝑗 ≤ 𝑁 .

Figure 2-26

• Let 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 and let 𝛽 be a binding joining facets 𝑓1, 𝑓2, 𝑓3 with 𝑓1 colored 𝑖, 𝑓2

colored 𝑗, and 𝑓3 colored {𝑖, 𝑗}. We say 𝛽 is positive with respect to (𝑖, 𝑗) if, according

to the left-hand rule, the cyclic ordering is (𝑓1, 𝑓2, 𝑓3); otherwise we say 𝛽 is negative.

This is summarized in Figure 2-26b. Let

𝜃+𝑖𝑗(𝑐)

denote the number of positive (𝑖.𝑗) bindings.

• Recall that facets of foams are decorated by symmetric polynomials. If 𝐴 ⊂ [𝑁 ]

and 𝑃 ∈ Z[𝑦1, . . . , 𝑦𝑚] is a symmetric polynomial in 𝑚 = #𝐴 variables, let 𝑃 (𝐴) :=

𝑃 ((𝑥𝑎)𝑎∈𝐴) ∈ Z[𝑥1, . . . , 𝑥𝑁 ].

Definition 2.5.15. Define the following rings.

• 𝑅′
𝑁 = Z[𝑥1, . . . , 𝑥𝑁 ].

• 𝑅𝑁 ⊂ 𝑅′
𝑁 the subring of symmetric polynomials.

• 𝑅′′
𝑁 = 𝑅′

𝑁 [(𝑥𝑖 − 𝑥𝑗)
−1 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 ] the extension of 𝑅′

𝑁 obtained by inverting

𝑥𝑖 − 𝑥𝑗 for all 𝑖 < 𝑗. We have an inclusion of rings 𝑅𝑁 ⊂ 𝑅′
𝑁 ⊂ 𝑅′′

𝑁 . These rings are

all graded by setting deg(𝑥𝑖) = 2.

We are now ready to introduce Robert-Wagner closed foam evaluation [73, Definition

2.12].
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Definition 2.5.16. Let 𝐹 be a foam and 𝑐 ∈ adm(𝐹 ) a coloring. Define

𝑠(𝐹, 𝑐) =
𝑁∑︁
𝑖=1

𝑖𝜒(𝐹𝑖(𝑐))/2 +
∑︁

1≤𝑖<𝑗≤𝑁

𝜃+𝑖𝑗(𝑐),

𝑃 (𝐹, 𝑐) =
∏︁

𝑓∈𝑓(𝐹 )

𝑃𝑓 (𝑐(𝑓)),

𝑄(𝐹, 𝑐) =
∏︁

1≤𝑖<𝑗≤𝑁

(𝑥𝑖 − 𝑥𝑗)𝜒(𝐹𝑖𝑗(𝑐))/2,

⟨𝐹, 𝑐⟩RW = (−1)𝑠(𝐹,𝑐)𝑃 (𝐹, 𝑐)
𝑄(𝐹, 𝑐)

.

Finally, the evaluation of 𝐹 is given by ⟨𝐹 ⟩RW =
∑︀

𝑐∈adm(𝐹 )

⟨𝐹, 𝑐⟩RW

Note that Definition 2.5.14 implies that 𝐹𝑖(𝑐) and 𝐹𝑖𝑗(𝑐) are closed orientable surfaces

and hence have even Euler characteristic. A priori, ⟨𝐹 ⟩RW is valued in 𝑅′′
𝑁 . However, Robert

Wagner prove the following.

Proposition 2.5.17 ([73, Proposition 2.19]). For any foam 𝐹 , its evaluation ⟨𝐹 ⟩RW lies in

𝑅𝑁 , the ring of symmetric polynomials.

2.5.4 Universal construction and categorification of the MOY cal-

culus

Robert-Wagner use universal construction applied to ⟨−⟩RW to build state spaces for

gl𝑁 webs, and they show that applying the universal construction to the evaluation ⟨−⟩RW
categorifies the MOY relations [73, Theorem 3.30]. Precisely, to any gl𝑁 web Γ, Rober-

Wagner define a 𝑅𝑁 -module ⟨Γ⟩RW. They show that ⟨Γ⟩RW is a free 𝑅𝑁 -module with graded

rank equal to ⟨Γ⟩𝑁 . We recall the construction here. A positive integer𝑁 is fixed throughout.

Definition 2.5.18. Let Γ0,Γ1 be gl𝑁 webs. A gl𝑁 foam with boundary (Γ0,Γ1) consists of

an intersection of a gl𝑁 foam 𝐹 with R2× [0, 1] such that, for some 𝜀 > 0, 𝐹 ∩ (R2× [0, 𝜀]) =

(−Γ0) × [0, 𝜀], 𝐹 ∩ (R2 × [1 − 𝜀, 1]) = Γ1 × [1 − 𝜀, 𝜀]. Foams with boundary are considered

up to ambient isotopy of R2 × [0, 1] which is the identity near the boundary of R2 × [0, 1].

The degree of a foam with boundary is defined as in Definition 2.5.13.

54



A gl𝑁 foam with boundary (Γ0,Γ1) is viewed as a cobordism from Γ0 to Γ1. Let Foam𝑁

denote the category with objects gl𝑁 webs and morphisms foams with boundary. Compo-

sition of foams with boundary is given, as usual, by stacking one on top of the other and

re-scaling.

Let Γ be a gl𝑁 web. Define Fr(Γ) to be the free 𝑅𝑁 -module generated by all foams from

the empty web ∅ to Γ. Next, define a bilinear pairing

⟨−,−⟩ : Fr(Γ)× Fr(Γ)→ 𝑅𝑁

by setting ⟨𝐹,𝐺⟩ =
⟨︀
𝐹𝐺
⟩︀
RW

, where 𝐹 denotes the foam Γ → ∅ obtained by reflecting 𝐹

through a horizontal plane. Note that the pairing ⟨−,−⟩ is symmetric.

Definition 2.5.19. The state space of Γ, denoted ⟨Γ⟩RW, is defined to be the quotient of

Fr(Γ) by the kernel of ⟨−,−⟩:

ker(⟨−,−⟩) := {𝑥 ∈ Fr(Γ) | ⟨𝑥, 𝑦⟩ = 0 for all 𝑦 ∈ Fr(Γ)},

⟨Γ⟩RW := Fr(Γ)/ ker(⟨−,−⟩)

Since the bilinear pairing respects degrees, the degree of foams descends to a grading on

⟨Γ⟩RW. Given a foam cobordism 𝐹 : Γ0 → Γ1, there is an induced map Fr(Γ0) → Fr(Γ1)

defined by sending a basis element 𝐺 : ∅ → Γ0 to the composition 𝐹𝐺 : ∅ → Γ1. The

definition of the state space immediately implies that we obtain an induced map ⟨𝐹 ⟩RW :

⟨Γ0⟩RW → ⟨Γ1⟩RW, which is graded of degree deg(𝐹 ). Moreover, this assignment is functorial:

if 𝐹 ′ : Γ1 → Γ2 is a foam cobordism, then ⟨𝐹 ′𝐹 ⟩RW = ⟨𝐹 ′⟩RW ⟨𝐹 ⟩RW. Thus the state space

construction yields a functor Foam𝑁 → 𝑅𝑁− gmod.

The above state space assignment is an instance of universal construction, due to [13].

Note that functoriality follows immediately, but this is at the cost of defining state spaces

to be quotients of infinite-dimensional modules. Identifying state spaces obtained from a

general evaluation involves establishing “local relations” satisfied by the evaluation. In the

case of ⟨−⟩RW, the relevant relations are established in [73, Section 3.2].

The following theorem is the main result of [73]. It says that universal construction
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applied to the evaluation ⟨−⟩RW categorifies the MOY relations.

Theorem 2.5.20 ([73, Theorem 3.30]). For any gl𝑁 web, the state space ⟨Γ⟩RW is a free

𝑅𝑁 -module of graded rank equal to ⟨Γ⟩𝑁 , the MOY evaluation of Γ.

The above theorem is proven by lifting, in an appropriate sense, the MOY relations

(Figure 2-24) to isomorphisms of state spaces.

2.6 Khovanov spectra

This section reviews the spectral refinement of Khovanov homology, originally defined by

Lipshitz and Sarkar in [57] using framed flow categories and (a modification of) the Cohen-

Jones-Segal [22] construction. We follow the approach in [52] via Burnside functors, which

is more categorical but bypasses the many technicalities of framed flow categories. Another

construction of a Khovanov homotopy type was given in [26]. By [52, Theorem 3], all three

constructions are equivalent.

Before delving into the details, let us give an overview of the main results. Let 𝐿 be an

oriented link and 𝐷 a diagram for 𝐿 containing 𝑛− negative crossings.

Theorem 2.6.1 ([57]). There exists a CW suspension spectrum 𝒳𝐾ℎ(𝐷) such that its cellular

cochain complex is isomorphic to the Khovanov complex 𝐶𝐾ℎ0(𝐷),

𝐶*
cell(𝒳𝐾ℎ(𝐷)) ∼= 𝐶𝐾ℎ*0(𝐷).

Moreover, 𝒳𝐾ℎ(𝐷) splits as a wedge sum of subcomplexes, 𝒳𝐾ℎ(𝐷) =
⋁︀
𝑗∈Z𝒳

𝑗
𝐾ℎ(𝐷), such

that 𝐶*
cell(𝒳

𝑗
𝐾ℎ(𝐷)) ∼= 𝐶𝐾ℎ*,𝑗0 (𝐷). If 𝐷 and 𝐷′ are related by a Reidemeister move, then

𝒳𝐾ℎ(𝐷) and 𝒳𝐾ℎ(𝐷′) are stably homotopy equivalent.

The spectrum 𝒳𝐾ℎ(𝐷) is defined by first building a based CW complex 𝒳𝑁(𝐷) associated

to a particular functor (a Burnside functor) and a choice of integer 𝑁 >> 0. For 𝑀 ≥ 𝑁 ,

the CW complexes 𝒳𝑁(𝐷) and 𝒳𝑀(𝐷) are related via 𝒳𝑀(𝐷) ≃ Σ𝑀−𝑁𝒳𝑁(𝐷), where Σ*

denoted reduced suspension and≃ denotes homotopy equivalence of based topological spaces.

Cells of 𝒳𝑁(𝐷) except the basepoint are in bijection with Khovanov generators of 𝐶𝐾ℎ0(𝐷).
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The CW complex 𝒳𝑁(𝐷) splits as a wedge sum over the quantum gradings, and there is an

isomorphism of chain complexes

𝐶*
cell(𝒳

𝑗
𝑁(𝐷))[−𝑁 − 𝑛−] ∼= 𝐶𝐾ℎ*,𝑗0 (𝐷),

obtained by mapping cells to the corresponding generators (the brackets [𝑛] denote an up-

wards homological degree shift by 𝑛).

The spectrum 𝒳𝐾ℎ(𝐷) is then obtained by taking a suitable formal desuspension of the

suspension spectrum of 𝒳𝑁(𝐷),

𝒳𝐾ℎ(𝐷) := Σ−𝑁−𝑛−Σ∞𝒳𝑁(𝐷).

The terminology stable homotopy equivalence means, in this context, that if 𝐷′ is obtained

from 𝐷 by a Reidemeister move, then the CW complexes 𝒳𝑁(𝐷) and 𝒳𝑁(𝐷′) become homo-

topy equivalent after suspending each space some number of times. The spectrum 𝒳𝐾ℎ(𝐷)

is an invariant of 𝐿, allowing the notation 𝒳𝐾ℎ(𝐿).

It is natural to ask if one can find homotopical refinements of other versions of other

link homology theories. If one intends to use the Burnside functor approach, then a negative

answer to this question for the Lee deformation was given in [52] (see in particular [52, Figure

4.1]). A homotopy type for Bar-Natan homology was introduced in [76]. Some proposals for

defining a stable homotopy refinement of Khovanov-Rozansky sl𝑁 homology for 𝑁 ≥ 3 have

been outlined in [27, 30, 43].

2.6.1 Burnside functors

Following the general strategy of [52], the first step towards lifting Khovanov homology

to a spectrum is to build a Burnside functor from the cube category 2𝑛 [52, Section 2.1]

to the Burnside category B [52, Section 4.1] which encodes the information underlying

the chain complex 𝐶𝐾ℎ0(𝐷) in a higher categorical manner. This encoding is, however, not

determined by the Khovanov chain complex. In this section we review the general framework

of such categories and functors.
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We begin by recalling the cube category 2𝑛 from [52, Section 2.1].

Definition 2.6.2. The objects of 2𝑛 are the elements of {0, 1}𝑛, thought of as vertices

of the 𝑛-dimensional cube 𝐼𝑛. There is a natural partial order on {0, 1}𝑛: for vertices

𝑢 = (𝑢1, . . . , 𝑢𝑛) and 𝑣 = (𝑣1, . . . , 𝑣𝑛), write 𝑢 ≥ 𝑣 if each 𝑢𝑖 ≥ 𝑣𝑖. The set of morphisms

Hom2𝑛(𝑢, 𝑣) is defined to be empty unless 𝑢 ≥ 𝑣, in which case Hom2𝑛(𝑢, 𝑣) consists of a

single element, denoted 𝜙𝑢,𝑣. In particular, given 𝑢,𝑤 ∈ {0, 1}𝑛 with 𝑢 ≥ 𝑤, in 2𝑛 we have

𝜙𝑢,𝑤 = 𝜙𝑣,𝑤 ∘ 𝜙𝑢,𝑣 for any 𝑣 such that 𝑢 ≥ 𝑣 ≥ 𝑤.

Remark 2.6.3. Note that the edges in 2𝑛 point in the opposite direction of those in the cube

of resolutions of a link diagram.

We establish some useful notation and definitions regarding 2𝑛.

Definition 2.6.4. Let 𝑢, 𝑣 ∈ {0, 1}𝑛 be vertices.

• If 𝑢 = (𝑢1, . . . , 𝑢𝑛), define |𝑢| :=
∑︀

𝑖 𝑢𝑖.

• Write 𝑢 ≥𝑘 𝑣 if 𝑢 ≥ 𝑣 and |𝑢| − |𝑣| = 𝑘. In particular, 𝑢 ≥1 𝑣 means there is a saddle

cobordism from 𝐷𝑣 to 𝐷𝑢 in the cube of resolutions of 𝐷.

• If 𝑢 ≥𝑘 𝑣, then 𝑢 and 𝑣 specify a 𝑘-dimensional sub-cube, which is the full subcategory

of 2𝑛 with objects consisting of all vertices 𝑤 satisfying 𝑢 ≥ 𝑤 ≥ 𝑣.

We now recall the notion of correspondences, following the exposition in [52, Section 4.1].

Correspondences are sometimes called spans elsewhere in the literature.

Definition 2.6.5. • For sets 𝑋 and 𝑌 , a correspondence from 𝑋 to 𝑌 is a triple (𝐴, 𝑠, 𝑡)

where 𝐴 is a set and 𝑠 : 𝐴 → 𝑋, 𝑡 : 𝐴 → 𝑌 are functions, called the source map and

target map, respectively. We will often denote a correspondence by 𝑋
𝑠←− 𝐴

𝑡−→ 𝑌 or

simply 𝑋 ← 𝐴→ 𝑌 .

• Given correspondences 𝑋
𝑠𝐴←− 𝐴

𝑡𝐴−→ 𝑌 and 𝑌
𝑠𝐵←− 𝐵

𝑡𝐵−→ 𝑍, their composition

(𝐵, 𝑠𝐵, 𝑡𝐵) ∘ (𝐴, 𝑠𝐴, 𝑡𝐴) is the correspondence (𝐶, 𝑠, 𝑡) from 𝑋 to 𝑍 obtained as the

fiber product

𝐶 = 𝐵 ×𝑌 𝐴 = {(𝑏, 𝑎) ∈ 𝐵 × 𝐴 | 𝑠𝐵(𝑏) = 𝑡𝐴(𝑎)}

with the source and target maps 𝑠(𝑏, 𝑎) = 𝑠𝐴(𝑎), 𝑡(𝑏, 𝑎) = 𝑡𝐵(𝑏).
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• A morphism from a correspondence 𝑋 𝑠𝐴←− 𝐴
𝑡𝐴−→ 𝑌 to a correspondence 𝑋 𝑠𝐵←− 𝐵

𝑡𝐵−→ 𝑌

is a bijection 𝑓 : 𝐴→ 𝐵 which commutes with the source and target maps. That is, 𝑓

is a bijection fitting into the commutative diagram

𝐴

𝑋 𝑌.

𝐵

𝑓

𝑠𝐴 𝑡𝐴

𝑠𝐵 𝑡𝐵

Composition of correspondences be summarized by the fiber product diagram

𝐶

𝐴 𝐵

𝑋 𝑌 𝑍.

𝑡𝑠

𝑠𝐴 𝑡𝐴 𝑠𝐵 𝑡𝐵

The collection of sets, correspondences between them, and morphisms of correspondences

forms a bicategory in the language of [11] or, equivalently, a weak 2-category in the lan-

guage of [52]. The objects are sets, 1-morphisms are correspondences, and 2-morphisms

are morphisms of correspondences. We will use the terms bicategory and weak 2-category

interchangebly. A quick reference for the notion of bicategories is [11, Appendix A.4].

The identity 1-morphism of a set 𝑋 is the identity correspondence

𝑋
id𝑋←−− 𝑋

id𝑋−−→ 𝑋.

Given correspondences 𝑋 𝑠𝐴←− 𝐴
𝑡𝐴−→ 𝑌 and 𝑍

𝑠𝐵←− 𝐵
𝑡𝐵−→ 𝑋, the compositions (𝐴, 𝑠𝐴, 𝑡𝐴) ∘

(𝑋, id𝑋 , id𝑋) and (𝑋, id𝑋 , id𝑋) ∘ (𝐵, 𝑠𝐵, 𝑡𝐵) are not equal to (𝐴, 𝑠𝐴, 𝑡𝐴) and (𝐵, 𝑠𝐵, 𝑡𝐵), but

there are natural 2-morphisms

(𝐴, 𝑠𝐴, 𝑡𝐴) ∘ (𝑋, id𝑋 , id𝑋) ∼= (𝐴, 𝑠𝐴, 𝑡𝐴)

(𝑋, id𝑋 , id𝑋) ∘ (𝐵, 𝑠𝐵, 𝑡𝐵) ∼= (𝐵, 𝑠𝐵, 𝑡𝐵)
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Similarly, composition of correspondences is not strictly associative, but is associative up

to natural isomorphism. This is the sense in correspondences form a weak 2-category, as

opposed to a strict 2-category.

We are now ready to define the Burnside category B and Burnside functors 2𝑁 → B, as

in [52, Section 4.1].

Definition 2.6.6. The Burnside category, denoted B, is the bicategory of finite sets and

finite correspondences.

Remark 2.6.7. Even though B is a bicategory, it will always be referred to as a category.

The construction of Khovanov homotopy types in [52], [78] utilizes functors 𝐹 : 2𝑛 → B,

which we explain here. First, make 2𝑛 into a (strict) 2-category by introducing only identity

2-morphisms. There is a notion of a lax 2-functor between 2-categories, and also of a strictly

unitary lax 2-functor. The complete definitions, consisting of a slew of data and naturality

conditions, can be found in [52, Definition 4.2] and [52, Defintion 4.3].

Definition 2.6.8. A Burnside functor is a strictly unitary lax 2-functor 𝐹 : 2𝑛 → B.

We will only be interested in the above type of functor between 2-categories. Lemma

2.6.9 below specifies the data needed to define a Burnside functor uniquely up to natural

isomorphism (see Definition 2.6.11 for the definition of natural isomorphism of Burnside

functors). In light of this, we do not recall definitions of the various types of functors

between 2-categories, and instead refer the interested reader to the above references.

Lemma 2.6.9 (([52, Lemma 4.5], [51, Proposition 4.3])). Consider the following data:

• A finite set 𝐹 (𝑢) for each vertex 𝑢 ∈ 2𝑛.

• A finite correspondence 𝐹 (𝜙𝑢,𝑣) from 𝐹 (𝑢) to 𝐹 (𝑣) for each pair of vertices 𝑢, 𝑣 ∈ 2𝑛

with 𝑢 ≥1 𝑣.

• A 2-morphism

𝐹𝑢,𝑣,𝑣′,𝑤 : 𝐹 (𝜙𝑣,𝑤) ∘ 𝐹 (𝜙𝑢,𝑣)→ 𝐹 (𝜙𝑣′,𝑤) ∘ 𝐹 (𝜙𝑢,𝑣′)

for each 2-dimensional face of 2𝑛 with vertices 𝑢, 𝑣, 𝑣′, 𝑤 satisfying 𝑢 ≥1 𝑣, 𝑣
′ ≥1 𝑤.
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Suppose also that the above data satisfies the following conditions:

(1) 𝐹−1
𝑢,𝑣,𝑣′,𝑤 = 𝐹𝑢,𝑣′,𝑣,𝑤

(2) For every 3-dimensional sub-cube of 2𝑛 as in Figure 2-27a, the hexagon of Figure 2-27b

commutes.

𝑣′ 𝑤

𝑢 𝑣

𝑤′ 𝑧

𝑣′′ 𝑤′′

(a) 3D cube

∘ ∘

∘ ∘

∘ ∘

𝐹𝑣′,𝑤,𝑤′,𝑧×id

id×𝐹𝑢,𝑣′,𝑣′′,𝑤′id×𝐹𝑢,𝑣,𝑣′,𝑤

𝐹𝑣,𝑤,𝑤′′,𝑧×id

id×𝐹𝑢,𝑣,𝑣′′,𝑤′′

𝐹𝑣′′,𝑤′′,𝑤′,𝑧×id

(b) The hexagon relation

Figure 2-27

Then the data can be extended to a strictly unitary lax 2-functor 𝐹 : 2𝑛 → B, which is

unique up to natural isomorphism.

The hexagon of Figure 2-27b comes from two ways traversing the faces of the 3-dimensional

cube, starting from the correspondence 𝐹 (𝜙𝑤,𝑧) ∘𝐹 (𝜙𝑣,𝑤) ∘𝐹 (𝜙𝑢,𝑣) and ending at 𝐹 (𝜙𝑤′,𝑧) ∘

𝐹 (𝜙𝑣′′,𝑤′) ∘ 𝐹 (𝜙𝑢,𝑣′′). The top half of the hexagon comes from traversing the faces as shown

in the left side of (2.19), and the bottom half comes from traversing the faces as shown

in the right side of (2.19). Lemma 2.6.9 states that verifying the hexagon relation suffices

guarantee that the functor is coherent on all higher dimensional cubes as well.

𝑣′ 𝑤

𝑢 𝑣

𝑤′ 𝑧

𝑣′′ 𝑤′′

3
2

1
𝑣′ 𝑤

𝑢 𝑣

𝑤′ 𝑧

𝑣′′ 𝑤′′

1
2

3

(2.19)

Remark 2.6.10. We make some comments about verifying the hexagon relation which will

be useful in proving Theorem 3.5.2. Suppose we have 2-morphisms 𝐹𝑢,𝑣,𝑣′,𝑤 for each square

61



face 𝑢 ≥1 𝑣, 𝑣
′ ≥1 𝑤 of 2𝑛, which satisfy 𝐹−1

𝑢,𝑣,𝑣′,𝑤 = 𝐹𝑢,𝑣′,𝑣,𝑤 as in condition (1) of Lemma

2.6.9. Then verifying the hexagon relation is equivalent to the following. Start at the

correspondence 𝐹 (𝜙𝑤,𝑧) ∘ 𝐹 (𝜙𝑣,𝑤) ∘ 𝐹 (𝜙𝑢,𝑣) and traverse the six faces of the cube using the

2-morphisms; i.e., first move across the three faces in the left part of (2.19), and then move

across the remaining three faces as in the right part of (2.19), except in the reverse order.

Composing these six 2-morphisms yields a 2-morphism

Φ𝑢,𝑣,𝑤,𝑧 : 𝐹 (𝜙𝑤,𝑧) ∘ 𝐹 (𝜙𝑣,𝑤) ∘ 𝐹 (𝜙𝑢,𝑣)→ 𝐹 (𝜙𝑤,𝑧) ∘ 𝐹 (𝜙𝑣,𝑤) ∘ 𝐹 (𝜙𝑢,𝑣).

Verifying commutativity of the hexagon of Lemma 2.6.9 is equivalent to verifying that Φ𝑢,𝑣,𝑤,𝑧

is the identity. Moreover, for each 3-dimensional sub-cube of 2𝑛, it suffices to verify Φ𝑢,𝑣,𝑤,𝑧 =

id for just one tuple of vertices 𝑢 ≥1 𝑣 ≥1 𝑤 ≥1 𝑧 within the sub-cube.

Furthermore, such verifications are immediate under certain circumstances. Let 𝐴 denote

the correspondence 𝐹 (𝜙𝑤,𝑧) ∘ 𝐹 (𝜙𝑣,𝑤) ∘ 𝐹 (𝜙𝑢,𝑣), with source and target maps 𝑠 : 𝐴→ 𝐹 (𝑢),

𝑡 : 𝐴→ 𝐹 (𝑧). Suppose that for every 𝑥 ∈ 𝐹 (𝑢) and 𝑦 ∈ 𝐹 (𝑧), 𝑠−1(𝑥)∩ 𝑡−1(𝑦) is either empty

or has one element. Let 𝑎 ∈ 𝐴 and let 𝑎′ = Φ𝑢,𝑣,𝑤,𝑧(𝑎). Since Φ𝑢,𝑣,𝑤,𝑧(𝑎) is a 2-morphism, we

have 𝑠(𝑎′) = 𝑠(𝑎) and 𝑡(𝑎′) = 𝑡(𝑎). Then 𝑎′ = 𝑎, so the hexagon relation is satisfied for this

3-dimensional sub-cube. In this situation, we will say that this 3-dimensional cube is simple

.

We end this section with a discussion of natural transformations (including natural iso-

morphisms) of Burnside functors.

To start, note that there is a canonical identification 2𝑛+1 = 2 × 2𝑛. In the context of

natural transformations, we will think of 2𝑛+1 = 2× 2𝑛 as two “horizontal" copies of 2𝑛 with

vertical edges connecting them, pointing downwards. The top copy of 2𝑛 corresponds to

{1} × 2𝑛 ⊂ 2× 2𝑛, and likewise the bottom copy corresponds to {0} × 2𝑛 ⊂ 2× 2𝑛. Recall

that for 𝑢 ≥ 𝑣, 𝜙𝑢,𝑣 denotes the unique element in Hom2𝑛(𝑢, 𝑣). We distinguish two types of

morphisms in 2× 2𝑛. First, for each 𝑢 ∈ 2𝑛, there is a morphism

(𝜙1,0, id𝑢) : (1, 𝑢)→ (0, 𝑢).
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We denote this edge by 𝑒𝑢, and think of it a vertical arrow

(1, 𝑢)

(0, 𝑢)

𝑒𝑢

The second type consists of morphisms in 2× 2𝑛 of the form

(id𝑖, 𝜙𝑢,𝑣) : (𝑖, 𝑢)→ (𝑖, 𝑣)

where 𝑖 ∈ {0, 1}, and 𝑢, 𝑣 ∈ 2𝑛 with 𝑢 ≥ 𝑣. These will be denoted 𝜙𝑖𝑢,𝑣 and viewed as living

in the “horizontal” cube {𝑖} × 2𝑛.

With these conventions, the diagram

(𝑖, 𝑣′) (𝑖, 𝑤)

(𝑖, 𝑢) (𝑖, 𝑣)

𝜙𝑖
𝑣′,𝑤

𝜙𝑖
𝑢,𝑣

𝜙𝑖
𝑢,𝑣′

𝜙𝑖
𝑣,𝑤

(2.20)

lives in the horizontal cube {𝑖} × 2𝑛, and the diagram

(1, 𝑢) (1, 𝑣)

(0, 𝑢) (0, 𝑣)

𝑒𝑢

𝜙1
𝑢,𝑣

𝑒𝑣

𝜙0
𝑢,𝑣

(2.21)

is between the horizontal cubes. We will often not label some or all of the edges, with the

understanding that the above conventions (2.20) and (2.21) are followed.

Definition 2.6.11. A natural transformation 𝜂 : 𝐹1 → 𝐹0 of Burnside functors 𝐹1, 𝐹0 :

2𝑛 → B is a functor 𝜂 : 2𝑛+1 → B such that the restriction of 𝜂 to {𝑖} × 2𝑛 is equal to 𝐹𝑖.

We say 𝜂 is a natural isomorphism if 𝜂(𝑒𝑢) : 𝐹1(𝑢)→ 𝐹0(𝑢) is an isomorphism in B for each

vertex 𝑢.

Due to Lemma 2.6.9, in order to define a natural transformation 𝜂 : 𝐹1 → 𝐹0, one needs to

specify a correspondence 𝜂(𝑒𝑢) for each vertical edge 𝑒𝑢, a 2-morphism 𝜂𝑢,𝑣 : 𝜂(𝑒𝑣)∘𝜂(𝜙1
𝑢,𝑣)→
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𝜂(𝜙0
𝑢,𝑣) ∘ 𝜂(𝑒𝑢) for each vertical face as in (2.21), and verify the hexagon relation of Figure

2-27.

2.6.2 Totalizations of Burnside functors

Associated to any Burnside functor 2𝑛 → B is a chain complex, called the totalization.

Definition 2.6.12 ([51, Definition 5.1], [78, Section 3.6]). For a set 𝑋, let 𝒜(𝑋) denote the

free abelian group generated by 𝑋. Given a correspondence 𝑋 𝑠←− 𝐴
𝑡−→ 𝑌 , define a map

𝒜(𝐴) : 𝒜(𝑋)→ 𝒜(𝑌 ) by

𝒜(𝐴)(𝑥) =
∑︁

𝑎∈𝑠−1(𝑥)

𝑡(𝑎). (2.22)

Let 𝐹 : 2𝑛 → B be a Burnside functor. For 𝑢 ≥ 𝑣, let 𝐴𝑢,𝑣 denote the correspondence

assigned by 𝐹 to the morphism 𝜙𝑢,𝑣 : 𝑢→ 𝑣. The complex Tot(𝐹 ) is defined by

Tot(𝐹 ) :=
⨁︁
𝑢∈2𝑛
𝒜(𝐹 (𝑢))

with the term 𝒜(𝐹 (𝑢)) in homological degree |𝑢|. The differential

𝜕 :
⨁︁

|𝑢|=𝑖+1

𝒜(𝐹 (𝑢))→
⨁︁
|𝑣|=𝑖

𝒜(𝐹 (𝑣))

is given on summands by maps 𝜕𝑢,𝑣 : 𝒜(𝐹 (𝑢))→ 𝒜(𝐹 (𝑣)), for |𝑢| = 𝑖+1, |𝑣| = 𝑖, defined as

𝜕𝑢,𝑣(𝑥) = (−1)𝑠𝑢,𝑣𝒜(𝐴𝑢,𝑣).

In the above, 𝑠𝑢,𝑣 ∈ {0, 1} is a sign assignment on edges, ensuring that 𝜕2 = 0 (see [8, Section

2.7], also [57, Definition 4.5] for a discussion of 𝑠𝑢,𝑣).

Remark 2.6.13. Note that the above differential decreases homological grading.

Given a natural transformation 𝜂 : 𝐹1 → 𝐹0, there is an induced chain map Tot(𝜂) :

Tot(𝐹1)→ Tot(𝐹0), defined on each summand by 𝒜(𝜂(𝑒𝑢)) : 𝒜(𝐹1(𝑢))→ 𝒜(𝐹0(𝑢)).
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2.6.3 From Burnside functors to spaces

In [52, Section 4], Lawson-Lipshitz-Sarkar explain how to build a CW complex ‖𝐹‖𝑘
associated to a Burnside functor 𝐹 and an integer 𝑘 >> 0. In this section we record the key

properties of this construction; a thorough treatment is given in Sections 3.6.3 and 3.6.4,

where we will need an equivariant analogue.

Proposition 2.6.14 ([52, Proposition 6.1], [78, Section 4.4]). Let 𝐹 : 2𝑛 → B be a Burnside

functor. For each 𝑘 ≥ 𝑛, there exists a based CW complex ‖𝐹‖𝑘 satisfying the following

properties.

1. If 𝑘′ > 𝑘, then |𝐹 |𝑘′ is homotopy equivalent to Σ𝑘′−𝑘‖𝐹‖𝑘.

2. The cells of ‖𝐹‖𝑘, except the basepoint, are in bijection with
∐︀

𝑢∈2𝑛 𝐹 (𝑢).

3. Its reduced shifted cellular chain complex ̃︀𝐶𝑐𝑒𝑙𝑙
* (‖𝐹‖𝑘)[−𝑘] is isomorphic to the totaliza-

tion Tot(𝐹 ), with the cells mapping to the corresponding generators.

4. If 𝜂 : 𝐹1 → 𝐹0 is a natural transformation of Burnside functors, then there is a cellular

map ‖𝐹1‖𝑘 → ‖𝐹0‖𝑘. Under the identification ̃︀𝐶𝑐𝑒𝑙𝑙
* (‖𝐹‖𝑘)[−𝑘] ∼= Tot(𝐹 ), the induced

map on cellular chain complexes agrees with Tot(𝜂).

5. If 𝜂 : 𝐹1 → 𝐹0 is a natural transformation such that the induced map Tot(𝜂) :

Tot(𝐹1) → Tot(𝐹0) is a chain homotopy equivalence, then the induced map ‖𝐹1‖𝑘 →

‖𝐹0‖𝑘 is a homotopy equivalence.

2.6.4 The Khovanov stable homotopy type

In this section we define the Khovanov stable homotopy type. We begin by describing

the Burnside functor 𝐹𝐾ℎ associated to a link diagram; its construction is sketched in [52,

Example 4.21]. Let 𝐷 be a link diagram with 𝑛 crossings. Recall from Definition 2.3.18 and

Definition 2.3.20 the Frobenius system ℱ0 and that, for each 𝑢 ∈ 2𝑛, the module ℱ0(𝐷𝑢)

assigned to the smoothing 𝐷𝑢 has a standard basis consisting of Khovanov generators, each

of which is a choice of label of either 1 or 𝑋 on every circle in 𝐷𝑢.
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The Burnside functor 𝐹𝐾ℎ is defined so that its totalization Tot(𝐹𝐾ℎ) (Definition 2.6.12)

is isomorphic (up to a homological grading shift) to the Khovanov complex 𝐶𝐾ℎ0(𝐷), with

the distinguished basis of the totalization mapping to the Khovanov generators. However,

constructing the Burnside functor requires strictly more data than is contained in the Kho-

vanov chain complex, namely the specification of 2-morphisms across square faces.

Definition 2.6.15 ([52, Example 4.21]). Fix an 𝑛-crossing link diagram 𝐷. Define the

Burnside functor 𝐹𝐾ℎ : 2𝑛 → B as follows (dependence on 𝐷 is omitted from the notation).

• For a vertex 𝑢 ∈ 2𝑛, 𝐹𝐾ℎ(𝑢) is the set of Khovanov generators of ℱ0(𝐷𝑢).

• Consider an edge 𝑢 ≥1 𝑣 in 2𝑛. Let 𝑑𝑣,𝑢 : ℱ0(𝐷𝑣)→ ℱ0(𝐷𝑢) denote the corresponding

map induced by the saddle cobordism from 𝐷𝑣 to 𝐷𝑢. For a Khovanov generator

𝑥 ∈ ℱ0(𝐷𝑣), an examination of multiplication and comultipilication in 𝐴0 (Definition

2.3.18) shows that, when writing 𝑑𝑣,𝑢(𝑥) as a linear combination of Khovanov generators

of ℱ0(𝐷𝑢), all coefficients are in {0, 1}. We say 𝑦 ∈ ℱ0(𝐷𝑢) appears in 𝑑𝑣,𝑢(𝑥) if its

coefficient is 1. Define the correspondence 𝐴𝑢,𝑣 from 𝐹𝐾ℎ(𝑢) to 𝐹𝐾ℎ(𝑣) to be

𝐴𝑢,𝑣 = {(𝑦, 𝑥) ∈ 𝐹𝐾ℎ(𝑢)× 𝐹𝐾ℎ(𝑣) | 𝑦 appears in 𝑑𝑣,𝑢(𝑥)},

with source and target maps given by projection.

• Consider a square face 𝑢 ≥1 𝑣, 𝑣
′ ≥1 𝑤 in 2𝑛. It corresponds to performing two saddle

cobordisms on 𝐷𝑤. Consider the two composition correspondences 𝐴𝑣,𝑤 ×𝐹𝐾ℎ(𝑣) 𝐴𝑢,𝑣

and 𝐴𝑣′,𝑤×𝐹𝐾ℎ(𝑣′)𝐴𝑢,𝑣′ , with source and target maps denoted 𝑠, 𝑡 and 𝑠′, 𝑡′, respectively.

In [57, Lemma 5.7], Lipshitz-Sarkar show, besides a special case discussed below, that

for any 𝑧 ∈ 𝐹𝐾ℎ(𝑢), 𝑥 ∈ 𝐹𝐾ℎ(𝑤), the two sets 𝑠−1(𝑧) ∩ 𝑡−1(𝑥) and (𝑠′)−1(𝑧) ∩ (𝑡′)−1(𝑥)

are either both empty or both consist of one element. It follows that, outside of this

special case, the 2-morphism 𝜑𝑢,𝑣,𝑣′,𝑤 : 𝐴𝑣,𝑤×𝐹𝐾ℎ(𝑣)𝐴𝑢,𝑣 → 𝐴𝑣′,𝑤×𝐹𝐾ℎ(𝑣′)𝐴𝑢,𝑣′ is uniquely

determined.

The remaining case is called the ladybug configuration. It occurs when one circle

in 𝐷𝑤 splits into two circles in each of 𝐷𝑣, 𝐷𝑣′ , and then the two circles in each of

𝐷𝑣, 𝐷𝑣′ merge into one circle in 𝐷𝑤; see Figure 2-28. In this case, one can check that
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𝐷𝑤

𝐷𝑣

𝐷𝑣′

𝐷𝑢

Figure 2-28: The ladybug configuration and its cube of resolutions. On the left, thick red arcs
indicate where 1-handles will be attached.

𝑠−1(𝑧) ∩ 𝑡−1(𝑥) and (𝑠′)−1(𝑧) ∩ (𝑡′)−1(𝑥) are either both empty or both consist of two

elements, and the 2-morphism is not uniquely determined in the latter case. In [57,

Section 5.4] (see in particular [57, Figure 5.1]), Lipshitz-Sarkar define a bijection, called

the ladybug matching by using one of two global choices, which we now describe.

Let 𝑍 denote the circle in 𝐷𝑤 which is split into two circles 𝑍𝑣, 𝑍 ′
𝑣 in 𝐷𝑣 and 𝑍𝑣′ , 𝑍 ′

𝑣′ in

𝐷𝑣′ . To define the 2-morphism, one needs a bijection between {𝑍𝑣, 𝑍 ′
𝑣} and {𝑍𝑣′ , 𝑍 ′

𝑣′}.

Represent the two saddle cobordisms as surgery arcs on 𝐷𝑤 (Figure 2-28). The two

surgery arcs split 𝑍 into four arcs, and the following procedure is used to specify two

of them: traveling along the two surgery arcs (in either direction) and turning right

specifies two arcs in 𝑍. See Figure 2-29, where these two distinguished arcs are drawn

bold. The two arcs, which we label 1 and 2 (the exact labeling is irrelevant), appear in

both intermediate diagrams 𝐷𝑣 (on the circles 𝑍𝑣, 𝑍 ′
𝑣) and 𝐷𝑣′ (on the circles 𝑍𝑣′ , 𝑍 ′

𝑣′).

The desired bijection between these two pairs of circles is then given by matching the

circle labeled 1 (resp. 2) in 𝐷𝑣 with the circle labeled 1 (resp. 2) in 𝐷𝑣′ .

Remark 2.6.16. Note that the ladybug matching described above is made by turning right

at the surgery arcs. One could just as well have turned left. It is shown in [57, Proposition

6.5] that the resulting spectrum is independent of this choice.
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1 2

𝐷𝑤 𝐷𝑣

1 2

𝐷𝑣′

1 2

Figure 2-29: The ladybug matching made with the right pair. Traveling along the two surgery arcs
and turning right specifies two arcs (drawn bold and labeled 1, 2) in 𝐷𝑤. These two distinguished
arcs appear in the diagrams 𝐷𝑣, 𝐷𝑣′ and determine the bijection by matching the 1-labeled circle
with the 1-labeled circle and the 2-labeled circle with the 2-labeled circle

The above definition specifies the data needed for Lemma 2.6.9. The following proposition

is proven (using different language) in [57, Section 5.5]; it involves reducing the problem to a

small list of 3-dimensional cubes and then verifying that the relation does hold in each case.

Proposition 2.6.17 ([57, Section 5.5]). The data in Definition 2.6.15 satisfies the hexagon

relation of Lemma 2.6.9, and hence defines a Burnside functor 𝐹𝐾ℎ.

Let 𝐷 be an 𝑛-crossing diagram for an oriented link 𝐿, with 𝑛− negative crossings and 𝑛+

positive crossings. Consider the corresponding Burnside functor 𝐹𝐾ℎ : 2𝑛 → B. For 𝑘 >> 0,

let ‖𝐹𝐾ℎ‖𝑘 denote the CW complex of Proposition 2.6.14. By dualizing the isomorphism in

item (3) of Proposition 2.6.14, we see that the reduced cellular cochain complex of ‖𝐹𝐾ℎ‖𝑘
is isomorphic (up to a homological shift) to the Khovanov chain complex 𝐶𝐾ℎ0(𝐷),

𝐶*
cell(‖𝐹𝐾ℎ‖𝑘)[−𝑘 − 𝑛−] ∼= 𝐶𝐾ℎ0(𝐷).

We are now ready to define the Khovanov spectrum 𝒳𝐾ℎ(𝐷) from Theorem 2.6.1.

Definition 2.6.18. The Khovanov spectrum of 𝐷 is defined to be

𝒳𝐾ℎ(𝐷) = Σ−𝑘−𝑛−Σ∞‖𝐹𝐾ℎ‖𝑘,

the (𝑘 + 𝑛−)-fold desuspension of the suspension spectrum of ‖𝐹𝐾ℎ‖𝑘.
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Chapter 3

Stable homotopy refinement of quantum

annular homology

The main result of this chapter is a construction of a stable homotopy refinement of

quantum annular homology, which was reviewed in Section 2.4.2. All the results presented

in this chapter are from joint work with Krushkal and Willis [5].

We work over the Laurent polynomial ring k := Z[q, q−1], and tensor the quantum annular

chain complex with k𝑟 := Z[q, q−1]/(q𝑟−1), where 𝑟 ≥ 2; see the beginning of Section 3.5 for

a detailed discussion of this modification. Denote the resulting chain complex by 𝐾ℎ𝑟Aq
(𝐿).

Theorem 3.0.1 ([5, Theorem 1.1]). Let 𝐿 be an oriented link in the thickened annulus A×𝐼.

Then for each 𝑟 ≥ 2, there exists a naive1 Z/𝑟Z-equivariant spectrum 𝒳 𝑟
Aq
(𝐿) which is well-

defined up to equivariant homotopy equivalence and whose cohomology is isomorphic to the

quantum annular homology 𝐾ℎ𝑟Aq
(𝐿), as modules over Z[Z/𝑟Z] = Z[q, q−1]/(q𝑟 − 1).

The definition of 𝒳 𝑟
Aq
(𝐷) is given for link diagrams 𝐷 in Definition 3.6.12 in Section 3.6.5;

the proof of invariance with respect to all choices involved (including choice of diagram) is

presented there via Theorems 3.6.13 and 3.6.14. We also study structural properties of the

spectra, including maps induced by cobordisms, which is the content of Theorem 3.7.2

The construction begins by giving a concrete description of generators and of the dif-

ferential, starting from the quantum Hochschild homology definition [11] of the quantum
1The terminology naive is to distinguish from the genuine 𝐺-spectra studied in equivariant stable homo-

topy theory. See the end of Section 3.6.5 for further discussion.
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annular TQFT ℱAq(𝐷) (see Section 2.4.2 for an overview of ℱAq). In fact, there is an impor-

tant distinction between (annular) Khovanov homology and the quantum annular homology

𝐾ℎAq(𝐿). In Khovanov homology, the module assigned to each resolution of the link diagram

has a preferred collection of generators, and this is a crucial feature used in constructions

of stable homotopy refinements. On the other hand, in the context of quantum annular

homology, generators are well-defined only up to a multiple of a power of q. The proof of

Theorem 3.0.1 involves a careful analysis of this indeterminacy and its relation to the group

action on the spectrum.

Moreover, the differential depends in a non-trivial way on the combinatorics of a given

curve configuration in the annulus. A detailed analysis of the saddle maps defining the

differential, using the definition in terms of the quantum annular TQFT ℱAq , is given in

Section 3.2.1. For 𝑟 > 2, the powers of q appearing in the differential affect the construction

of the Burnside functor, similar to how the signs appearing in odd Khovanov homology affect

the analysis in [78].

A stable homotopy refinement 𝒳A(𝐿) of classical annular Khovanov homology may be

defined along the lines of [57, 52] and is discussed in Section 3.5.3. The following result

is spectral analogue to setting q = 1 in the quantum annular chain complex; its proof is

presented in Section 3.8.

Theorem 3.0.2 ([5, Theorem 1.2]). The quotient of 𝒳 𝑟
Aq
(𝐿) by the action of Z/𝑟Z recovers

𝒳A(𝐿).

Note that no group action is present on the link 𝐿 ⊂ A× 𝐼, so the context for our work

is different from that in [15, 66, 80]. Therefore 𝒳 𝑟
Aq
(𝐿) may be thought of as an “equivariant

refinement” of 𝒳A(𝐿), a structure that is not apparent in other constructions of the annular

spectrum 𝒳A(𝐿).

3.1 Notational and diagrammatic conventions

This section establishes conventions that will be used throughout this chapter. In order to

adhere to notation in [11], we make some minor adjustments to the conventions established

in Section 2.3.3 and Section 2.4.1 regarding (annular) Khovanov homology.
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× 𝑣+ × 𝑣−

× 𝑤+ × ∙ 𝑤−

Figure 3-1: Diagrammatic representation of generators.

The main change in this chapter is that all quantum gradings are negated. See Remark

2.3.7 and Remark 2.3.21 for a discussion of the two, opposite grading conventions in the

literature. In particular, a cobordism 𝑆 will induces a map of degree 𝜒(𝑆)− 2𝑑(𝑆); compare

with Equation (2.5). We write the modules assigned to a trivial and essential circle by the

classical annular TQFT as

𝑊 = Z𝑤− ⊕ Z𝑤+ and 𝑉A = Z𝑣− ⊕ Z𝑣+,

respectively. For a trivial circle 𝐶, the basis element 𝑤+ (resp. 𝑤−) in ℱA(𝐶) is the image

of 1 ∈ Z under the cup cobordism (resp. dotted cup cobordism). Because of the grading

negation, quantum gradings are given by qdeg(𝑤−) = −1, qdeg(𝑤+) = 1. Beliakova-Putyra-

Wehrli use a modified quantum grading, given as the difference between the usual quantum

degree and the annular degree, which is more natural in the setting of annular link homology

(see also Remark 4.2.18). Bigradings are recorded in Equation (3.1) below.

qdeg(𝑣±) = 0 qdeg(𝑤±) = ±1

adeg(𝑣±) = ±1 adeg(𝑤±) = 0
(3.1)

Then for 𝑍 ⊂ A a collection of disjoint simple closed curves with 𝑒 essential and 𝑡 trivial

circles, the free abelian group ℱA(𝑍) has a standard basis consisting of a label of 𝑣− or 𝑣+

on each essential circle, and 𝑤− or 𝑤+ on each trivial one. Following the conventions in

[11], a generator of ℱA(𝑍) will be represented as a choice of counterclockwise or clockwise

orientations on each essential circle, corresponding to 𝑣+ and 𝑣− respectively, and either a

dot or no dot on each trivial circle, corresponding to 𝑤− and 𝑤+. This is shown in Figure 3-1.

We will often switch between the diagrammatic and algebraic representations of generators.
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Figure 3-2: Surgery formulas in classical annular Khovanov homology. The table lists topological
types of surgeries and their corresponding maps on generators.

The maps assigned to cobordisms by ℱA are defined by taking the adeg-preserving part,

as in Section 2.4.1. Figure 3-2 records, in the diagrammatic notation, maps assigned to each

of the six types of annular saddle cobordisms.

3.2 Fixing generators

Recall from Definition 2.6.15 that a key ingredient in constructing Khovanov homotopy

refinements is having a fixed set of generators for the module assigned to each collection

of circles. Due to the definition of the quantum annular TQFT ℱAq , discussed in Section

2.4.2, the situation is more complicated in quantum annular homology. Indeed, consider
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a trivial circle 𝐶 ⊂ A. In classical annular homology, the module assigned to 𝐶 has a

distinguished basis 𝑤+ and 𝑤−, given as the image of 1 ∈ Z under the undotted and dotted

cup cobordism from the empty diagram to 𝐶. However, in quantum annular homology,

there is not necessarily a canonical choice for the dotted cup cobordism. If, for example,

𝐶 intersects the seam 𝜇 twice, then there are two dot placements, related to each other by

sliding the dot through the membrane, which introduces a power of q (Figure 2-16). This

subsection explains how to fix generators for a general configuration.

Definition 3.2.1. A configuration C ⊂ A is standard if every component intersects the seam

in at most one point. Every configuration C is isotopic in A to a standard configuration,

denoted C ∘, which is unique up to planar isotopy of the cut-open planar tangle.

Next we explain how Theorem 2.4.13 gives a canonical choice of generators for ℱAq(C )

when C is standard.

For a configuration C , we will write C𝐸 to denote the essential circles in C , and C𝑇 to

denote the trivial circles. Figure 3-3 illustrates these conventions.

(a) A configuration C (b) Its standard form C ∘

(c) The essential circles C𝐸 in C . (d) The trivial circles C𝑇 in C .

Figure 3-3: A depiction of various configurations associated to a given configuration.

We will often suppress the notation ℱAq(C ) when it is clear from context; that is, 𝑥 ∈ C

means 𝑥 ∈ ℱAq(C ). Likewise, for a cobordism 𝑆 : C → C ′, we will often write 𝑆(𝑥) to mean

ℱAq(𝑆)(𝑥), where ℱAq(𝑆) : ℱAq(C )→ ℱAq(C
′) is the induced map.

Given a cobordism 𝑆 ⊂ A × 𝐼, denote by 𝑆 its reflection in the 𝐼-coordinate. For

cobordisms C
𝑆1−→ C ′ and C ′ 𝑆2−→ C ′′, we will write 𝑆2𝑆1 to denote their composition.

Suppose 𝐶 ⊂ A is a trivial circle intersecting 𝜇 transversely, and let 𝑛 = |𝐶 ∩ 𝜇| be the

number of intersection points. The circle 𝐶 bounds an embedded disk 𝐷 ⊂ A, and we may
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push the interior of 𝐷 down into the 𝐼 coordinate to obtain a cobordism Σ ⊂ A × 𝐼 from

the empty set to 𝐶 which intersects the membrane in exactly 𝑛/2 arcs. We refer to Σ as the

cup cobordism on 𝐶. Similarly, we may pull 𝐷 up into the 𝐼 coordinate to obtain the cap

cobordism on C, which is simply the reflection Σ of Σ.

Let 𝑊 denote the k-module assigned by ℱAq to a trivial circle 𝐶 which is disjoint from the

seam. The module 𝑊 is free of rank 2. with standard generators 𝑤+, 𝑤−. The standard gen-

erator 𝑤+ (resp. 𝑤− is the image of 1 ∈ k under the undotted (resp. dotted) cup cobordism

on 𝐶. Therefore, we will often identify 𝑤± with these cup cobordisms. Diagrammatically,

we will signify that a trivial circle 𝐶 in C is labelled by 𝑤− by drawing a dot on 𝐶, as in

Figure 3-1.

Suppose C is a standard configuration with 𝑒 essential circles and 𝑡 trivial circles. Order

the trivial circles in some way, and order the essential circles from the innermost (closest to

the puncture) to the outermost. The exact ordering of the trivial circles is irrelevant, but

it is important to order the essential circles in this way in light of Theorem 2.4.13 and the

asymmetry of the evaluation and coevaluation maps.

We have that

ℱAq(C ) = 𝑉 ⊗𝑒
q ⊗𝑊⊗𝑡, (3.2)

where the tensor products above are understood to be over k, and the identification of

the value of ℱAq on 𝑒 standard essential circles with 𝑉 ⊗𝑒
q is the isomorphism from (2.16).

The modules 𝑉q and 𝑊 are each bigraded, carrying a quantum grading qdeg and an annular

grading adeg. The degrees of generators are as in (3.1). A standard generator will be written

as

𝑣𝑎1 ⊗ · · · ⊗ 𝑣𝑎𝑒 ⊗ 𝑤𝑏1 ⊗ · · · ⊗ 𝑤𝑏𝑡

where each 𝑎𝑖, 𝑏𝑗 ∈ {−,+}, the 𝑣𝑎𝑖 label the essential circles, and the 𝑤𝑏𝑗 label the trivial

circles. We will often shorten the notation to 𝑣ℐ ⊗ 𝑤𝒥 , where ℐ is a sequence of ± labelling

the essential circles and 𝒥 is a sequence of ± labelling the trivial ones. Note also that each

standard generator 𝑥 = 𝑣ℐ ⊗𝑤𝒥 ∈ C of a standard configuration C is the image of 𝑣ℐ under

the cobordism

Σ𝒥 : C𝐸 → C
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Figure 3-4: The isotopies 𝑃, 𝑃−1, 𝑁, and 𝑁−1 in the proof of Lemma 3.2.2.

which is the identity on C𝐸 and a cup cobordism on each trivial circle, with some cups

possibly carrying dots as specified by the labels 𝒥 . Diagrammatically, we will use the same

convention as in Figure 3-1.

The following lemma concerns general (not necessarily standard) configurations; the ar-

gument is similar to the proof of [11, Lemma 6.4].

Lemma 3.2.2. Let C ,C ′ ⊂ A be two isotopic configurations. Let 𝜑 be an isotopy from C

to C ′, and denote by 𝑆 : C → C ′ the cylindrical cobordism in A× 𝐼 formed by 𝜑. Then 𝑆 is

an isomorphism in ℬ𝒩 q(A), with 𝑆−1 = q𝑘𝑆 for some 𝑘 ∈ Z.

Proof. Isotopic cobordisms are equal in ℬ𝒩 q(A) if the isotopy between them fixes the mem-

brane. We may therefore assume that the isotopy 𝜑 is a sequence of the local moves in Figure

3− 4, denoted 𝑃, 𝑃−1, 𝑁, and 𝑁−1.

Let 𝑝 denote the number of moves of type 𝑃 or 𝑃−1, let 𝑛 denote the number of moves

of type 𝑁 or 𝑁−1, and set 𝑘 = 𝑛− 𝑝. It follows from the relations in Figure 2-16 that

q𝑘𝑆𝑆 = idC , q
𝑘𝑆𝑆 = idC ′ .

Lemma 3.2.3. Let C be a standard configuration. Let 𝜑 be a component-preserving isotopy

from C to itself, with corresponding cobordism 𝑆 : C → C . For any standard generator

𝑥 ∈ C , q𝑘𝑆(𝑥) = 𝑥 for some 𝑘 ∈ Z.

Proof. As discussed above, each standard generator 𝑥 = 𝑣ℐ ⊗ 𝑤𝒥 ∈ C is the image of 𝑣ℐ

under a cobordism

Σ𝒥 : C𝐸 → C

which is the identity on C𝐸 and a cup cobordism on all circles in C𝑇 , with dot placement on
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cups specified by 𝒥 . Every component of the cobordism 𝑆Σ𝒥 is either an undotted annulus

between essential circles or a possibly dotted disk with trivial boundary. Each disk can be

isotoped to a cup cobordism on its trivial boundary circle at the cost of multiplying by a

power of q. Then, at the cost of introducing further powers of q, the remaining annuli may

be isotoped to the identity cobordism on C𝐸 while fixing each cup cobordism. This yields

q𝑘𝑆Σ𝒥 = Σ𝒥 for some 𝑘 ∈ Z, so q𝑘𝑆(𝑥) = q𝑘𝑆Σ𝒥 (𝑣ℐ) = Σ𝒥 (𝑣ℐ) = 𝑥.

Lemma 3.2.4. Let C be a configuration and let 𝜑1, 𝜑2 two isotopies from C ∘ to C that

induce the same correspondence between components. Denote the corresponding cobordisms

by 𝑆1, 𝑆2 : C ∘ → C . If 𝑥 ∈ C ∘ is a standard generator, then 𝑆1(𝑥) = q𝑘𝑆2(𝑥) for some

𝑘 ∈ Z.

Proof. Consider the component-preserving cobordism 𝑆1𝑆2 : C ∘ → C ∘, which is formed by

the isotopy 𝜑−1
1 𝜑. By Lemma 3.2.3, we have q𝑚𝑆1𝑆2(𝑥) = 𝑥 for some 𝑚 ∈ Z. By Lemma

3.2.2, we know qℓ𝑆1𝑆1 = idC for some ℓ ∈ Z. Then

qℓ𝑆1𝑆1(𝑥) = 𝑥 = q𝑚𝑆1𝑆2(𝑥),

and we obtain

𝑆1(𝑥) = q𝑚−ℓ𝑆2(𝑥).

Remark 3.2.5. Given 𝑆1, 𝑆2 as in Lemma 3.2.4, in general the power 𝑘 of q depends on the

generator 𝑥 ∈ C ∘.

Lemma 3.2.4 may be interpreted as follows. Suppose C has 𝑡 trivial and 𝑒 essential

circles. The cobordisms 𝑆1, 𝑆2 : C ∘ → C induce isomorphisms

𝑉 ⊗𝑒
𝑞 ⊗𝑊⊗𝑡 = ℱAq(C

∘)
𝑆1−→∼ ℱAq(C )

𝑆2←−∼ ℱAq(C
∘) = 𝑉 ⊗𝑒

𝑞 ⊗𝑊⊗𝑡,

and Lemma 3.2.4 says that the matrix of the composite automorphism 𝑆−1
2 𝑆1 of 𝑉 ⊗𝑒

𝑞 ⊗𝑊⊗𝑡

is diagonal with entries powers of q.
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So far the discussion concerned only generators of standard configurations. Next we

consider generators for arbitrary configurations.

Definition 3.2.6. Fix a configuration C and an isotopy from C ∘ to C . Let 𝑆 denote the

resulting cobordism C ∘ → C . The generators of ℱAq(C ) corresponding to the cobordism 𝑆,

are the images of the standard generators of C ∘ under 𝑆. We will also write generators of C

as 𝑣ℐ ⊗𝑤𝒥 , which is to be understood as the image of the corresponding standard generator

of C ∘. Note that this image 𝑣ℐ ⊗ 𝑤𝒥 depends on the choice of isotopy C ∘ → C , which we

suppress from the notation.

By Lemma 3.2.4, these generators of C are well-defined up to multiplication by a (non-

uniform, according to Remark 3.2.5) power of q, and also a possible re-ordering of the

trivial circles in C ∘ which corresponds to a permutation of the indexing set 𝒥 . We assume

throughout that there is a fixed isotopy C ∘ → C , which will often not be named. Likewise,

an unnamed cobordism C → C ∘ denotes the inverse of C ∘ → C .

As discussed earlier, a standard generator 𝑥 ∈ C ∘ is the image of the corresponding

standard generator of C ∘
𝐸 under a cobordism Σ𝒥 : C ∘

𝐸 → C ∘, where Σ𝒥 is the identity on

C ∘
𝐸 and a cup cobordism on each circle in C ∘

𝑇 , with some cups possibly carrying dots. Up

to a power of q, the cobordism 𝑆Σ𝒥 represents a cobordism which traces out an isotopy

C ∘
𝐸 → C𝐸 and is a cup cobordism on each circle in C𝑇 . Then each standard generator of C

can also be realized as the image of a cup cobordism on each trivial circle and an isotopy on

the essential circles.

Note also that we do not make any assumptions about how these isotopies are picked for

different configurations within a single cube of resolutions.

3.2.1 Computations of saddle maps

In this subsection we compute saddle maps in quantum annular homology using the

relations in ℬℬ𝒩 q(A) and Theorem 2.4.13. These results will be used in the formulation of

the quantum annular Burnside functor in Section 3.5.

We start with several examples; the general case is treated in Proposition 3.2.13. Saddle

maps for various types of configurations (where intersections with the seam are minimal) are
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summarized in Figure 3-5. In the first two examples the calculation relies on the Boerner

relation, Figure 2-14, and relations satisfied by cobordisms in the Bar-Natan category, Figure

2-7. Specifically, one uses delooping (see Proposition 2.3.12) and the neck-cutting relation.

See also the proof of [11, Proposition 5.3]. Note that delooping makes sense only for trivial

circles in the annulus.

To analyze our saddle maps, we will use the language of surgery arcs, as in [57, Section

2]. For a configuration C , a surgery arc is an interval embedded in A whose endpoints lie on

C and whose interior is disjoint from C . In the construction of quantum annular homology,

link diagrams are assumed transverse to 𝜇, and all crossings are away from 𝜇. We may then

assume that surgery arcs are disjoint from the seam. For a configuration C with a surgery

arc, let 𝑠(C ) denote the configuration obtained by surgery on the arc. There is a saddle

cobordism C → 𝑠(C ), which is well-defined in ℬ𝒩 q(A). In terms of the cube of resolutions

of a link diagram, a surgery arc may be placed at a 0-smoothing to indicate that there will

be a saddle cobordism at that smoothing.

Example 3.2.7. For the saddle

between standard configurations, we have the following formulas

Algebraically, this is written as

𝑣+ ⊗ 𝑤+ ↦→ 𝑣+ 𝑣+ ⊗ 𝑤− ↦→ 0

𝑣− ⊗ 𝑤+ ↦→ 𝑣− 𝑣− ⊗ 𝑤− ↦→ 0

These can be deduced from Boerner’s relation (Figure 2-14) and the fact that the two

standard generators of a trivial circle are picked out by an undotted cup and a once dotted
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cup.

Example 3.2.8. For the saddle

we have the formulas

which, algebraically, can be written as

𝑣+ ↦→ 𝑣+ ⊗ 𝑤− 𝑣− ↦→ 𝑣− ⊗ 𝑤−

This can be deduced by cutting the neck along the trivial circle which splits off as a result

of the saddle, and then applying Boerner’s relation.

The next two examples are also discussed in [11, Section 6.4].

Example 3.2.9. Let 𝑆 denote the following saddle

Let 𝐶 denote the trivial circle on the right-hand side above. Since 𝐶 is not standard, we

need to pick an isotopy to specify its generators. For the sake of calculation, we pick the

following isotopy

which specifies generators, represented diagrammatically, as

79



These generators are the images of 1 ∈ k under the undotted and dotted cup cobordisms on

𝐶, respectively. Since the cup cobordism on 𝐶 intersects the membrane, the placement of

the dot is relevant, and the diagram shows where the dot is placed.

Now, let Σ denote the undotted cap cobordism on 𝐶, and let Σ′ denote the dotted cap

cobordism on 𝐶, with the dot placed as in the generator 𝑤−. Using the relations in ℬ𝒩 q(A),

we obtain

Σ(𝑤+) = 0 Σ(𝑤−) = q−1

Σ′(𝑤+) = q−1 Σ′(𝑤−) = 0

Composing with the saddle 𝑆, observe that Σ𝑆 = 𝑆1×∩ in ℬℬ𝒩 q(A), and that Σ′𝑆 = 0 by

Boerner’s relation. We can now write down formulas for 𝑆. For example, we may write

𝑆(𝑣+ ⊗ 𝑣−) = 𝛼𝑤+ + 𝛽𝑤− (3.3)

for some 𝛼, 𝛽 ∈ k. Applying Σ to the above equality, we obtain

Σ𝑆(𝑣+ ⊗ 𝑣−) = q−1𝛽.

Theorem 2.4.13 implies that Σ𝑆(𝑣+ ⊗ 𝑣−) = 𝑒𝑣(𝑣+ ⊗ 𝑣−) = q, so 𝛽 = q2. By applying Σ′ to

both sides of (3.3), we obtain 𝛼 = 0. A similar argument for the other generators yields the

full table of formulas for 𝑆:
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Equivalently,

𝑆(𝑣+ ⊗ 𝑣−) = q2𝑤− 𝑆(𝑣+ ⊗ 𝑣+) = 0

𝑆(𝑣− ⊗ 𝑣+) = q𝑤− 𝑆(𝑣− ⊗ 𝑣−) = 0

Example 3.2.10. Let 𝑆 denote the following saddle.

Pick generators 𝑤+ and 𝑤− for the left-hand trivial circle 𝐶 as in Example 3.2.9. Let Σ and

Σ′ be the undotted and dotted cups on 𝐶, so that 𝑤+ = Σ(1) and 𝑤− = Σ′(1). Observe that

𝑆Σ′ = 0 by Boerner’s relation, so

𝑆(𝑤−) = 0

Finally, note that 𝑆Σ = 𝑆1 × ∪. By Theorem 2.4.13, we obtain

𝑆(𝑤+) = 𝑣+ ⊗ 𝑣− + q−1𝑣− ⊗ 𝑣+.

Diagrammatically, the formulas for 𝑆 are

Saddle maps for various topological types of configurations, including the result of calcu-

lations in examples 3.2.7 - 3.2.10, are summarized in Figure 3-5. The next example details

the calculation of a saddle map in which the configurations intersect the seam in four points.

Example 3.2.11. Here is a slightly more involved version of Example 3.2.9. Consider the

configurations C1 and C2, and the saddle 𝑆 : C1 → C2 as shown in Figure 3-6.
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Figure 3-5: Surgery formulas in quantum annular Khovanov homology for curves with minimal
intersections with the seam.

82



Figure 3-6

Fix generators for C1 and C2 using the isotopies 𝑆1 and 𝑆2 depicted in Figure 3-7 and Figure

3-8.

Figure 3-7: An isotopy 𝑆1 : C ∘
1 → C1.

Figure 3-8: An isotopy 𝑆2 : C ∘
2 → C2.

Since generators of C2 are the images of the standard generators of C ∘
2 under the isomor-

phism 𝑆2 : C ∘
2 → C2, it suffices to write down formulas for the composition

C ∘
1

𝑆1−→ C1
𝑆−→ C2

𝑆−1
2−−→ C ∘

2 (3.4)

Note that 𝑆−1
2 = q3𝑆2 (see Lemma 3.2.2). Let Φ denote the composition (3.4).

Let Σ and Σ′ be the undotted and dotted cap cobordisms, respectively, on the trivial

circle C ∘
2 . Note that Σ′Φ = 0 by Boerner’s relation. Applying a trace move from Figure 2-16
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to the part of the cobordism depicted in (3.5), we see that

Σ𝑆2𝑆𝑆1

is equal to q−1(𝑆1 × ∩), so that

ΣΦ = q2(𝑆1 × ∩)

Arguing as in Example 3.2.9, we obtain

𝑆(𝑣+ ⊗ 𝑣−) = q3𝑤− 𝑆(𝑣+ ⊗ 𝑣+) = 0

𝑆(𝑣− ⊗ 𝑣+) = q2𝑤− 𝑆(𝑣− ⊗ 𝑣−) = 0

(3.5)

Remark 3.2.12. Here is a slightly different way to finish the computation in Example 3.2.11,

which will be used in Proposition 3.2.13. In the morphism Φ : C ∘
1 → C ∘

2 , we may cut the neck

along a small push-off of the trivial circle C ∘
2 to write Φ as a sum of two dotted cobordisms.

One of the summands is 0 by Boerner’s relation, and the other is isotopic to a disjoint union

of

𝑆1 × ∩

and a dotted cup cobordism on C ∘
2 , which is denoted Σ′ using the notation of Example

3.2.11. Then, using the trace relations in ℬ𝒩 q(A), we see that

Φ = q2(𝑆1 × ∩) ⊔ Σ′,

and the formulas in Example 3.2.11 follow.

Example 3.2.11 shows that there is considerable complexity in computing the saddle
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map when curves have multiple intersections with the seam. The next proposition extends

Examples 3.2.9 - 3.2.11 to the case of arbitrary configurations. It will be important for

the analysis in Section 3.2.2. Recall the numbering of circles discussed in the paragraph

preceding (3.2).

Proposition 3.2.13. Let C be a configuration with a surgery arc 𝐴. Let 𝑆 : C → 𝑠(C )

denote the saddle.

(1) Suppose both endpoints of 𝐴 are on a trivial circle 𝐶, and that surgery along 𝐴 splits 𝐶

into two essential circles. Assume 𝐶 is first in the ordering on trivial circles of C , and

it splits into the 𝑖-th and (𝑖+1)-th essential circles in 𝑠(C ). Let 𝑥 = 𝑣ℐ′⊗𝑣ℐ′′⊗𝑤+⊗𝑤𝒥

be a generator of C in which 𝐶 is undotted, where ℐ ′ labels the first 𝑖 − 1 essential

circles. Then

𝑆(𝑥) = q𝑎𝑣ℐ′ ⊗ 𝑣+ ⊗ 𝑣− ⊗ 𝑣ℐ′′ ⊗ 𝑤𝒥 + q𝑎−1𝑣ℐ′ ⊗ 𝑣− ⊗ 𝑣+ ⊗ 𝑣ℐ′′ ⊗ 𝑤𝒥

for some 𝑎 ∈ Z.

(2) Suppose the endpoints of 𝐴 are on the 𝑖-th and (𝑖+1)-th essential circles of C . Consider

the generators

𝑦1 = 𝑣ℐ′ ⊗ 𝑣+ ⊗ 𝑣− ⊗ 𝑣ℐ′′ ⊗ 𝑤𝒥

𝑦2 = 𝑣ℐ′ ⊗ 𝑣− ⊗ 𝑣+ ⊗ 𝑣ℐ′′ ⊗ 𝑤𝒥

of C , where ℐ ′ labels the first 𝑖− 1 essential circles. Then

𝑆(𝑦1) = q𝑏+1𝑣ℐ′ ⊗ 𝑣ℐ′′ ⊗ 𝑤− ⊗ 𝑤𝒥

𝑆(𝑦2) = q𝑏𝑣ℐ′ ⊗ 𝑣ℐ′′ ⊗ 𝑤− ⊗ 𝑤𝒥

for some 𝑏 ∈ Z.

Proof. For both (1) and (2), it is enough to show that the result holds after applying 𝑠(C )→

𝑠(C )∘.
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(1). The generator 𝑥 is the image of 𝑣ℐ′ ⊗ 𝑣ℐ′′ under the composition C ∘
𝐸

Σ𝒥−−→ C ∘ → C ,

where Σ𝒥 is a cup cobordism on trivial circles in C ∘, with the cups dotted according to 𝒥 .

Note that the cup on 𝐶 is undotted. Let Ψ denote the composition

C ∘
𝐸

Σ𝒥−−→ C ∘ → C
𝑆−→ 𝑠(C )→ 𝑠(C )∘

The cobordism Ψ is isotopic to a disjoint union of

𝑆1 × · · · · · · (3.6)

and cup cobordisms on each trivial circle in 𝑠(C )∘, with dots placed according to 𝒥 . By

Theorem 2.4.13, the cobordism (3.6) induces the map

𝑣ℐ′ ⊗ 𝑣ℐ′′ ↦→ 𝑣ℐ′ ⊗ 𝑣+ ⊗ 𝑣− ⊗ 𝑣ℐ′′ + q−1𝑣ℐ′ ⊗ 𝑣− ⊗ 𝑣+ ⊗ 𝑣ℐ′′

and the result follows.

(2). The generators 𝑦1 and 𝑦2 are the images of 𝑣ℐ′⊗𝑣+⊗𝑣−⊗𝑣ℐ′′ and 𝑣ℐ′⊗𝑣−⊗𝑣+⊗𝑣ℐ′′ ,

respectively, under the cobordism

C ∘
𝐸

Σ𝒥−−→ C ∘ → C

where Σ𝒥 is a cup cobordism on trivial circles with dots placed according to 𝒥 . Let Φ denote

the composition

C ∘
𝐸

Σ𝒥−−→ C ∘ → C
𝑆−→ 𝑠(C )→ 𝑠(C )∘

Let 𝐶 ⊂ 𝑠(C ) denote the trivial circle obtained by surgery along 𝐴, and let 𝐶 ′ ⊂ 𝑠(C )∘

denote the corresponding circle. In the cobordism Φ, we may cut the neck along 𝐶 ′ to write

Φ as a sum of two cobordisms. One of the summands is 0 by Boerner’s relation, and the

other is isotopic to the disjoint union of

𝑆1 × · · · · · · (3.7)
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and cup cobordisms on each trivial circle. Note also that the the cup cobordism on 𝐶 ′,

resulting from neck-cutting, is dotted. Finally, Theorem 2.4.13 implies that the cobordism

(3.7) induces the map

𝑣ℐ′ ⊗ 𝑣+ ⊗ 𝑣− ⊗ 𝑣ℐ′′ ↦→ q𝑣ℐ′ ⊗ 𝑣ℐ′′

𝑣ℐ′ ⊗ 𝑣− ⊗ 𝑣+ ⊗ 𝑣ℐ′′ ↦→ 𝑣ℐ′ ⊗ 𝑣ℐ′′ ,

and the desired result follows.

We end this subsection with a discussion about recovering classical annular homology.

Consider the map k → Z which is the identity on Z ⊂ k and sends q to 1. It induces a

functor (−)⊗k Z : k− gmod→ Z− gmod. Thus one can consider the composition

ℬℬ𝒩 q(A)
ℱAq−−→ k− gmod→ Z− gmod

which we denote ℱAq ⊗k Z. Tensoring with Z forgets the action of q, in the sense that

isotopic cobordisms induce equal maps under ℱAq ⊗k Z even when the isotopy does not fix

the membrane. Let C be a configuration with 𝑒 essential and 𝑡 trivial circles. By Lemma

3.2.4, there is a canonical isomorphism

ℱAq(C )⊗k Z ∼= 𝑉 ⊗𝑒
A ⊗Z (Z𝑤− ⊕ Z𝑤+)

⊗𝑡 = ℱA(C )

obtained by picking any isotopy C ∘ → C . It is implicit in [11] that ℱAq ⊗k Z is the classical

annular functor ℱA; indeed this is straightforward to verify by using the relations in ℬℬ𝒩 q(A)

and Theorem 2.4.13, as in the proof of Proposition 3.2.13.

Lemma 3.2.14. Let C be a configuration with a single surgery arc, and let 𝑆 : C → 𝑠(C )

denote the saddle. Let 𝑥 ∈ C be a generator. Then

𝑆(𝑥) =
∑︁

𝜀𝑦𝑦

where the sum is over generators of 𝑠(C ) and each 𝜀𝑦 is either 0 or a power of q. Moreover,

𝜀𝑦 ̸= 0 if and only if 𝑦 appears in ℱA(𝑆)(𝑥), where ℱA is the classical (unquantized) annular
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(a) (b) (c)

Figure 3-9: The three ladybug configurations in the annulus.

TQFT.

Proof. There are six types of saddles to check, corresponding to merges and splits between

various combinations of essential and trivial circles as in Figure 3-2. The first part of the

lemma was verified for two of these types of saddles in Proposition 3.2.13. It is straightfor-

ward to verify the lemma for the other four using similar arguments. The second statement

follows from the discussion preceding the lemma.

3.2.2 Ladybug configurations

In this subsection, we analyze the ladybug configuration, which was recalled in Definition

2.6.15 (see in particular Figure 2-29). Examining ladybug configurations is crucial in the

construction of Khovanov homotopy types in various contexts. We start with a discussion

of ladybug configurations in classical annular homology. We will then examine a particular

type of ladybug configuration in quantum annular homology, and we will indicate how the

analysis differs from that in classical annular homology.

Let us briefly recall the notion of a ladybug configuration. A circle 𝐶 ⊂ A with two

surgery arcs forms a ladybug configuration if the endpoints of the two arcs alternate around

𝐶. We will say a configuration C with surgery arcs has a ladybug configuration if a circle 𝐶

in C and two of the surgery arcs forms a ladybug configuration.

First, consider ladybug configurations in classical annular homology. Let 𝐶 ⊂ A be a

circle carrying two surgery arcs 𝐴1 and 𝐴2 which form a ladybug configuration. Figure 3-9

illustrates the three possibilities in the annulus.

For 𝑖 = 1, 2, denote by C𝑖 the configuration obtained by performing surgery on 𝐶 along

𝐴𝑖, and let 𝑑𝑖 : ℱA(𝐶)→ ℱA(C𝑖) denote the maps assigned to the saddles in classical annular

Khovanov homology. Let C ′ denote the final configuration, obtained by performing surgery
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on 𝐶 along both 𝐴1 and 𝐴2. When 𝐶 is essential, as in Figure 3-9a, the formulas in Figure

3-2 show that composing two saddle maps yields 0. Now consider the cases where 𝐶 is trivial,

as in Figure 3-9b and Figure 3-9c. The dotted generator 𝑤− is sent to 0 by the composition

of two saddle maps. On the other hand, the two summands appearing in each of 𝑑1(𝑤+) and

𝑑2(𝑤+) are mapped to the same element in the final configuration C ′. The case of Figure

3-9c is illustrated in Figure 3-10.

Figure 3-10

When constructing stable homotopy refinements framework, it is crucial to have a bijec-

tion between these intermediate generators which appear in 𝑑1(𝑤+) and 𝑑2(𝑤+), such that

these bijections are coherent, in the sense of Lemma 2.6.9. The bijections are the ladybug

matchings defined in [57, Section 5.4] and recalled in Definition 2.6.15 in the non-annular

setting.

In the case of Figure 3-9b, the annulus and seam play no role, and the usual ladybug

matching can be used without significant alteration for both classical and quantum annular

homology. The remainder of this subsection examines the ladybug configuration of the type

in Figure 3-9c in quantum annular homology.

Let C be a configuration with two surgery arcs 𝐴𝑇 and 𝐴𝐸, both having endpoints on a

trivial circle 𝐶 in C , such that surgery along 𝐴𝑇 splits 𝐶 into two trivial circles and surgery

along 𝐴𝐸 splits 𝐶 into two essential circles, cf. Figure 3-11. Let 𝑠𝑇 (C ) and 𝑠𝐸(C ) denote the

configurations obtained by surgery along 𝐴𝑇 and 𝐴𝐸 respectively. Let C ′ denote the final

configuration, obtained by surgery along both arcs. Let 𝐶 ′ ∈ C ′ denote the circle obtained
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Figure 3-12: The ordering convention on 𝐶1 and 𝐶2.

by both surgeries. We have the commutative square.

𝑠𝑇 (C )

C C ′

𝑠𝐸(C )

𝑚𝑇Δ𝑇

Δ𝐸 𝑚𝐸

(3.8)

Figure 3 − 11 exhibits the specific instance of this set-up corresponding directly to the

configuration in Figure 3-9c, but there are many such cases depending on how 𝐶 intersects

the seam. As usual, we will not distinguish between cobordisms and their induced maps.

Figure 3-11

Recall that, for computational purposes, trivial circles in configurations are ordered in

some way. We assume that 𝐶 occurs first in the ordering on trivial circles in C . Surgery

along 𝐴𝑇 splits 𝐶 into two trivial circles in 𝑠𝑇 (C ), which we assume are the first two trivial

circles in 𝑠𝑇 (C ). Finally, we order these first two circles as follows. Orient the arc 𝐴𝑇 such

that it points from the outer essential circle in 𝑠𝐸(C ) to the inner one. Declare that the

first circle 𝐶1 is to the left of 𝐴𝑇 and the second 𝐶2 is to the right of 𝐴𝑇 . This ordering

convention is illustrated in Figure 3-12.

Let 𝑥 = 𝑣ℐ ⊗ 𝑤+ ⊗ 𝑤𝒥 ∈ C be a generator in which 𝐶 is undotted. By Lemma 3.2.14,
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we obtain

Δ𝑇 (𝑥) = q𝑘𝑣ℐ ⊗ 𝑤− ⊗ 𝑤+ ⊗ 𝑤𝒥 + qℓ𝑣ℐ ⊗ 𝑤+ ⊗ 𝑤− ⊗ 𝑤𝒥

for some 𝑘, ℓ ∈ Z.

The following corollary implies that, in the quantum annular setting, there is no need

for a ladybug matching for this ladybug configuration because intermediate generators are

mapped to different elements in the final configuration.

Corollary 3.2.15. With the notation established above,

𝑚𝐸(Δ𝐸(𝑥)) = q𝑚𝑣ℐ ⊗ 𝑤− ⊗ 𝑤𝒥 + q𝑚+2𝑣ℐ ⊗ 𝑤− ⊗ 𝑤𝒥 ,

for some 𝑚 ∈ Z. Moreover, one of 𝑚𝑇 (q
𝑘𝑣ℐ ⊗𝑤−⊗𝑤+⊗𝑤𝒥 ) or 𝑚𝑇 (q

ℓ𝑣ℐ ⊗𝑤+⊗𝑤−⊗𝑤𝒥 )

is equal to q𝑚𝑣ℐ ⊗ 𝑤− ⊗ 𝑤𝒥 , and the other is equal to q𝑚+2𝑣ℐ ⊗ 𝑤− ⊗ 𝑤𝒥 .

Proof. If whole configuration 𝒞 consists of just the circle 𝐶 intersecting the seam in two

points as in Figure 3-11, then the first statement can be readily checked using the formulas

in Figure 3-5. (Also see figure 3-15 below.) In full generality the first statement follows from

Proposition 3.2.13. The second statement is a direct consequence of the commutativity of

the square (3.8).

Remark 3.2.16. Note that generators for each configuration depend, up to a power of q, on

a choice of a cobordism: see Definition 3.2.6 and discussion following it. The exponents 𝑘, ℓ,

and 𝑚 of q above are determined by the cobordisms chosen for the different configurations.

It will be crucial for Section 3.8 to know which of 𝑚𝑇 (q
𝑘𝑣ℐ⊗𝑤−⊗𝑤+⊗𝑤𝒥 ) or 𝑚𝑇 (q

ℓ𝑣ℐ⊗

𝑤+ ⊗𝑤− ⊗𝑤𝒥 ) is equal to q𝑚𝑣ℐ ⊗𝑤− ⊗𝑤𝒥 . This is addressed in the following proposition.

Proposition 3.2.17. With the above notation,

𝑚𝑇 (q
𝑘𝑣ℐ ⊗ 𝑤− ⊗ 𝑤+ ⊗ 𝑤𝒥 ) = q𝑚𝑣ℐ ⊗ 𝑤− ⊗ 𝑤𝒥

𝑚𝑇 (q
ℓ𝑣ℐ ⊗ 𝑤+ ⊗ 𝑤− ⊗ 𝑤𝒥 ) = q𝑚+2𝑣ℐ ⊗ 𝑤− ⊗ 𝑤𝒥

Proof. The generator 𝑥 = 𝑣ℐ ⊗ 𝑤+ ⊗ 𝑤𝒥 is the image of 𝑣ℐ under C ∘
𝐸

Σ𝒥−−→ C ∘ 𝑆−→ C . Here

Σ𝒥 is the usual disjoint union of the identity cobordism on the essential part together with
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an undotted cup corresponding to 𝑤+ on 𝐶 and various other cups dotted according to 𝒥 ,

while 𝑆 is some chosen cobordism from the standard C ∘ to C , used to fix generators. The

resulting disk in 𝑆Σ𝒥 bounding 𝐶 may be isotoped to a cup cobordism on 𝐶, yielding a new

cobordism Σ′ : C ∘
𝐸 → C , so that 𝑆Σ𝒥 = q𝑐Σ′ for some 𝑐 ∈ Z.

The trivial circle 𝐶 bounds a disk 𝐷 in the annulus. Note that 𝐴𝑇 lies inside 𝐷, so we

may push it into the cup cobordism on 𝐶 in Σ′ to obtain an arc 𝐴. We may also pull 𝐴𝑇

onto the saddle Δ𝑇 to obtain another arc 𝐴′. Performing neck-cutting on the circle 𝐴 ∪ 𝐴′

on 𝑆Σ′ yields

Δ𝑇Σ
′ = 𝑆1 + 𝑆2

where 𝑆1 and 𝑆2 are labelled such that 𝑆1 is dotted on 𝐶1 and 𝑆2 is dotted on 𝐶2. Figure

3-13 shows the local picture near 𝐴𝑇 ; the surgery arc 𝐴𝑇 is decorated by an arrowhead.

Figure 3-13

This yields

Δ𝑇 (𝑥) = Δ𝑇𝑆Σ𝒥 (𝑣ℐ) = q𝑐Δ𝑇Σ
′(𝑣ℐ) = q𝑐𝑆1(𝑣ℐ) + q𝑐𝑆2(𝑣ℐ),

and it follows that

q𝑐𝑆1(𝑣ℐ) = q𝑘𝑣ℐ ⊗ 𝑤− ⊗ 𝑤+ ⊗ 𝑤𝒥

q𝑐𝑆2(𝑣ℐ) = qℓ𝑣ℐ ⊗ 𝑤+ ⊗ 𝑤− ⊗ 𝑤𝒥 .

The relation2

2This is a planar depiction of the dot-sliding relation in Figure 2-16.
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implies that q𝑑𝑚𝑇𝑆1 = 𝑚𝑇𝑆2 for some 𝑑 ∈ Z. To compute q𝑑, we need to move the dot on

𝑆2 along the circle 𝐶 ′ until it is in the same position as the dot on 𝑆1, and count (with sign)

the number of times the dot intersects the membrane during this process. This signed count

is the same as the signed intersection between the seam and one of the essential circles in

𝑠𝐸(C ) obtained by surgery on 𝐶. The situation is depicted below in (3.9); the dot on the

right diagram needs to be moved along the circle to the other side of the surgery arc, without

intersecting the surgery arc in the process.

(3.9)

Our convention of ordering 𝐶1 and 𝐶2 (see Figure 3-12) guarantees that the dot is moved

counter-clockwise along an essential circle in 𝑠𝐸(C ), so that 𝑚𝑇𝑆2 = q2𝑚𝑇𝑆1. Therefore

q2𝑚𝑇 (q
𝑘𝑣ℐ ⊗ 𝑤− ⊗ 𝑤+ ⊗ 𝑤𝒥 ) = 𝑚𝑇 (q

ℓ𝑣ℐ ⊗ 𝑤+ ⊗ 𝑤− ⊗ 𝑤𝒥 ),

and the statement of the proposition follows.

Recall from Definition 2.6.15 that there is always a global “right” or “left” choice which

is made at the very beginning of defining the ladybug matching (see Figure 2-29). Consider

the classical annular differential for the ladybug configuration of Figure 3-10. The ladybug

matching made with the left choice identifies the circles in the middle smoothings as shown

in Figure 3-14a. Then the ladybug matching pairs up the intermediate generators appearing

in Δ𝑇 (𝑤+) and Δ𝐸(𝑤+) as shown in Figure 3-14b.

Now consider the quantum annular surgery formulas for the same configuration (Figure

3-11) which are detailed in Figure 3-15.
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(a) (b)

Figure 3-14: The ladybug matching in classical annular homology for the configuration in Figure
3-10, made with the left pair.

Figure 3-15: Note that the term with coefficient q2 on bottom right matches the term directly above
it, because dragging the dot across the seam amounts to multiplication by q2.
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We see that the intermediate generators are paired up as in (3.10).

(3.10)

Algebraically, the matching is

𝑤+ ⊗ 𝑤− ←→ 𝑣+ ⊗ 𝑣−

𝑤− ⊗ 𝑤+ ←→ q−1𝑣− ⊗ 𝑣+

where the ordering on trivial circles follows the convention illustrated in Figure 3-12. After

forgetting powers of q, the matching in (3.10) is consistent with the matching in Figure

3-14. Our remaining goal in this section is to show that the matching forced by powers of q

(Corollary 3.2.15 and Proposition 3.2.17) agrees with the ladybug matching made with the

left pair, as stated in Proposition 3.2.18.

We will use the notation and conventions established in this section. By Proposition

3.2.13 (1), we can write

Δ𝐸(𝑥) = q𝑎𝑣ℐ′ ⊗ 𝑣+ ⊗ 𝑣− ⊗ 𝑣ℐ′′ ⊗ 𝑤𝒥 + q𝑎−1𝑣ℐ′ ⊗ 𝑣− ⊗ 𝑣+ ⊗ 𝑣ℐ′′ ⊗ 𝑤𝒥

for some 𝑎 ∈ Z. Proposition 3.2.13 (2), Corollary 3.2.15 , and Proposition 3.2.17 imply that

in the quantum setting, the pairing on intermediate generators is forced to be

qℓ𝑣ℐ ⊗ 𝑤+ ⊗ 𝑤− ⊗ 𝑤𝒥 ←→ q𝑎𝑣ℐ′ ⊗ 𝑣+ ⊗ 𝑣− ⊗ 𝑣ℐ′′ ⊗ 𝑤𝒥

q𝑘𝑣ℐ ⊗ 𝑤− ⊗ 𝑤+ ⊗ 𝑤𝒥 ←→ q𝑎−1𝑣ℐ′ ⊗ 𝑣− ⊗ 𝑣+ ⊗ 𝑣ℐ′′ ⊗ 𝑤𝒥 .
(3.11)

Proposition 3.2.18. Given a ladybug configuration (𝐶,𝐴𝑇 , 𝐴𝐸) of the type described in

the paragraph preceding Equation (3.8), the matching in Equation (3.11) is the same as the

ladybug matching made with the left pair.

95



Proof. A look at the surgery arc 𝐴𝑇 shows that the left choice makes the following identifi-

cation on circles in 𝑠𝐸(C ) and 𝑠𝑇 (C ).

(3.12)

Therefore the ladybug matching makes the following identification on generators

(3.13)

Comparing with our ordering convention on the circles in 𝑠𝑇 (C ) in Figure 3-12, we see that

this is consistent with the matching in (3.11).

3.3 The equivariant Burnside category

Let 𝐺 be a finite group. The 𝐺-equivariant Burnside category, denoted B𝐺, is an equiv-

ariant analogue of B. Objects of B𝐺 are finite free 𝐺-sets. A 1-morphism from 𝑋 to

𝑌 is a triple (𝐴, 𝑠, 𝑡) where 𝐴 is another finite free 𝐺-set, and 𝑠 : 𝐴 → 𝑋, 𝑡 : 𝐴 → 𝑌

are 𝐺-equivariant maps. We will call such a triple (𝐴, 𝑠, 𝑡) an equivariant correspondence.

Given equivariant correspondences 𝑋 𝑠𝐴←− 𝐴
𝑡𝐴−→ 𝑌 and 𝑌

𝑠𝐵←− 𝐵
𝑡𝐵−→ 𝑍, the composition

(𝐵, 𝑠𝐵, 𝑡𝐵) ∘ (𝐴, 𝑠𝐴, 𝑡𝐴) is the same as in B. The 𝐺-action on 𝐵 ×𝑌 𝐴 is inherited from

the diagonal 𝐺-action on 𝐵 × 𝐴; that is, 𝑔(𝑏, 𝑎) = (𝑔𝑏, 𝑔𝑎). The additional requirement on

2-morphisms between correspondences is that they be 𝐺-equivariant.

The equivariant Burnside category is discussed in [78, Section 3.3] in the case 𝐺 = Z2.

Lemma 3.2 in [78] (our Lemma 2.6.9) gives sufficient conditions for defining a functor 𝐹 :

2𝑛 → BZ2 , and the same conditions clearly work for general 𝐺. The modification to the

data of Lemma 2.6.9 is that all sets should be finite free 𝐺-sets and all set maps should be

equivariant. Note that if 𝐺 = {1}, then B{1} = B, so everything stated about B𝐺 in the

following sections holds just as well for B.
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We will later be interested in the quotient functor (−)/𝐺 : B𝐺 → B, which simply takes

the quotient of all sets and set maps. Explicitly, the quotient functor sends a 𝐺-set 𝑋 to the

set of orbits 𝑋/𝐺 = 𝑋/(𝑥 ∼ 𝑔𝑥). For 𝐺-sets 𝑋 and 𝑌 and an equivariant map 𝑓 : 𝑋 → 𝑌 ,

there is an induced map 𝑓/𝐺 : 𝑋/𝐺 → 𝑌/𝐺, given by (𝑓/𝐺)([𝑥]) = [𝑓(𝑥)]. The quotient

functor sends an equivariant correspondence 𝑋 𝑠←− 𝐴
𝑡−→ 𝑌 to the correspondence 𝑋/𝐺

𝑠/𝐺←−−

𝐴/𝐺
𝑡/𝐺−−→ 𝑌/𝐺. Likewise, a 2-morphism 𝑓 : 𝐴→ 𝐵 is assigned 𝑓/𝐺 : 𝐴/𝐺→ 𝐵/𝐺.

Recall totalizations of Burnside functors from Section 2.6.2. If 𝐹 is an equivariant Burn-

side functor taking values in B𝐺, we may consider it as taking values in B by forgetting the

group action, and construct the chain complex Tot(𝐹 ). Note that, if 𝑋 is a 𝐺-set, then 𝒜(𝑋)

is naturally a Z[𝐺]-module. Moreover, If 𝑋 𝑠←− 𝐴
𝑡−→ 𝑌 is an equivariant correspondence,

then the map 𝒜(𝐴) is Z[𝐺]-linear. Thus if 𝐹 : 2𝑛 → B is an equivariant Burnside functor,

then Tot(𝐹 ) is a complex of Z[𝐺]-modules.

3.4 A Strategy for constructing natural isomorphisms

As in Definition 2.6.11, given equivariant Burnside functors 𝐹1, 𝐹0 : 2
𝑛 → B𝐺, a natural

transformation from 𝐹1 to 𝐹0 is an equivariant Burnside functor 𝜂 : 2𝑛+1 such that the

restriction of 𝜂 to {𝑖} × 2𝑛 is equal to 𝐹𝑖. We say 𝜂 is a natural isomorphism if 𝜂(𝑒𝑢) :

𝐹1(𝑢)→ 𝐹0(𝑢) is an isomorphism in B𝐺 for each vertex 𝑢.

We will have several occasions to show that two equivariant Burnside functors are iso-

morphic (Propositions 3.5.3, 3.5.4, and 3.8.1). The general strategy is the same in all these

cases, so we outline it here.

Note that a correspondence 𝑋
𝑠←− 𝐴

𝑡−→ 𝑌 , thought of as a morphism in B𝐺, is an

isomorphism if and only if 𝑠 and 𝑡 are bijective. In particular, given an equivariant bijection

𝑡 : 𝑋 → 𝑌 , the correspondence 𝑋
id←− 𝑋

𝑡−→ 𝑌 is an isomorphism in B𝐺, with inverse

𝑌
𝑡←− 𝑋

id−→ 𝑋 (up to a canonical identification of a set with the diagonal in its cartesian

square).

Suppose we are given two functors 𝐹1, 𝐹0 : 2𝑛 → B𝐺 and equivariant bijections 𝜓𝑢 :
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𝐹1(𝑢)→ 𝐹0(𝑢) for each vertex 𝑢 ∈ 2𝑛. For 𝑢 ≥1 𝑣, let

𝐹𝑖(𝑢)
𝑠𝑖𝑢,𝑣←−− 𝐴𝑖𝑢,𝑣

𝑡𝑖𝑢,𝑣−−→ 𝐹𝑖(𝑣)

be the correspondence assigned to the edge 𝜙𝑢,𝑣 : 𝑢 → 𝑣 by 𝐹𝑖, for 𝑖 = 0, 1. Suppose also

that for each 𝑢 ≥1 𝑣, the following conditions hold.

(NI 1) 𝐴𝑖𝑢,𝑣 ⊂ 𝐹𝑖(𝑢) × 𝐹𝑖(𝑣), and the 𝐺-action on 𝐴𝑖𝑢,𝑣 is inherited from the diagonal 𝐺-

action on 𝐹𝑖(𝑢)× 𝐹𝑖(𝑣) (i.e., 𝑔(𝑥, 𝑦) = (𝑔𝑥, 𝑔𝑦) for 𝑔 ∈ 𝐺, (𝑥, 𝑦) ∈ 𝐹𝑖(𝑢)× 𝐹𝑖(𝑣)).

(NI 2) The map 𝐹1(𝑢) × 𝐹1(𝑣)
𝜓𝑢×𝜓𝑣−−−−→ 𝐹0(𝑢) × 𝐹0(𝑣) restricts to an bijection 𝐴1

𝑢,𝑣 → 𝐴0
𝑢,𝑣,

denoted 𝜓𝑢,𝑣.

(NI 3) The source and target maps, 𝑠𝑖𝑢,𝑣 and 𝑡𝑖𝑢,𝑣, are restrictions of the projections 𝐹𝑖(𝑢) ↞

𝐹𝑖(𝑢)× 𝐹𝑖(𝑣) ↠ 𝐹𝑖(𝑣).

In this situation, we have a systematic method for building a natural isomorphism 𝜂 :

𝐹1 → 𝐹0 using Lemma 2.6.9 as follows. Define 𝜂 on objects by

𝜂(𝑖, 𝑢) := 𝐹𝑖(𝑢)

for 𝑖 ∈ {0, 1} and 𝑢 ∈ {0, 1}𝑛. We then define 𝜂 on each vertical edge 𝑒𝑢 : (1, 𝑢)→ (0, 𝑢) by

𝜂(𝑒𝑢) =
(︁
𝐹1(𝑢)

id←− 𝐹1(𝑢)
𝜓𝑢−→ 𝐹0(𝑢)

)︁
,

That is, the underlying set of the correspondence 𝜂(𝑒𝑢) is simply 𝐹1(𝑢), the source map is

the identity, and the target map is the given equivariant bijection 𝜓𝑢.

We have now specified 𝜂 on objects and edges. It remains to define the 2-morphisms for

each square face of 2𝑛+1. Since 𝜂 must restrict to 𝐹𝑖 on {𝑖} × 2𝑛, we need only to specify a

2-morphism

𝜂𝑢,𝑣 : 𝐹1(𝑣)×𝐹1(𝑣) 𝐴
1
𝑢,𝑣 → 𝐴0

𝑢,𝑣 ×𝐹0(𝑢) 𝐹1(𝑢).

corresponding to the vertical square faces (2.21) of 2× 2𝑛.

The situation is illustrated in Figure 3-16. Note that every element of 𝐹1(𝑣) ×𝐹1(𝑣) 𝐴
1
𝑢,𝑣

is of the form (𝑦, 𝑥, 𝑦), where (𝑥, 𝑦) ∈ 𝐴1
𝑢,𝑣 ⊂ 𝐹1(𝑢) × 𝐹1(𝑣). Likewise, an element of
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𝐹1(𝑢)

𝐹0(𝑢)

𝐹1(𝑣)

𝐹0(𝑣)

𝐴1
𝑢,𝑣

𝜋 𝜋

𝐹1(𝑢)

id

𝜓𝑢

𝐴0
𝑢,𝑣

𝜋 𝜋

𝐹1(𝑣)

id

𝜓𝑣

(𝑥, 𝑦)

∈

𝑦

∋

𝑦∋

𝜓𝑣(𝑦)

∋

(𝜓𝑢(𝑥), 𝜓𝑣(𝑦))

∈𝜓𝑢(𝑥)
∈

𝑥 ∈

𝑥
∈

𝜂𝑢,𝑣

Figure 3-16: We draw the square diagram required for building our natural isomorphism 𝜂 : 𝐹1 → 𝐹0.
The correspondences are indicated along each edge together with their source and target maps,
drawn as curved arrows. Specific elements are also indicated, showing how the 2-morphism 𝜂𝑢,𝑣
(indicated by the double arrow) should be defined such that the entire diagram is consistent.

𝐴0
𝑢,𝑣×𝐹0(𝑢) 𝐹1(𝑢) is of the form (𝑎, 𝑏, 𝜓−1

𝑢 (𝑎)), where (𝑎, 𝑏) ∈ 𝐴0
𝑢,𝑣 ⊂ 𝐹0(𝑢)×𝐹0(𝑣). Condition

(NI 1) ensures that the bijections

𝐹1(𝑣)×𝐹1(𝑣) 𝐴
1
𝑢,𝑣 → 𝐴1

𝑢,𝑣 𝐴0
𝑢,𝑣 → 𝐴0

𝑢,𝑣 ×𝐹0(𝑢) 𝐹1(𝑢)

(𝑦, 𝑥, 𝑦) ↦→ (𝑥, 𝑦) (𝑎, 𝑏) ↦→ (𝑎, 𝑏, 𝜓−1
𝑢 (𝑎))

are equivariant. Then the composition

𝐹1(𝑣)×𝐹1(𝑣) 𝐴
1
𝑢,𝑣 → 𝐴1

𝑢,𝑣

𝜓𝑢,𝑣−−→ 𝐴0
𝑢,𝑣 → 𝐴0

𝑢,𝑣 ×𝐹0(𝑢) 𝐹1(𝑢) (3.14)

is given by (𝑦, 𝑥, 𝑦) ↦→ (𝜓𝑢(𝑥), 𝜓𝑣(𝑦), 𝑥), and condition (NI 2) guarantees that it is also an

equivariant bijection. Moreover, condition (NI 3) ensures that this composition commutes

with the source and target maps. Therefore, we may define the 2-morphism 𝜂𝑢,𝑣 to be the

composition (3.14).

To extend 𝜂 to a natural transformation, one still needs to check the hexagon relation

of Lemma 2.6.9. We need only to verify commutativity of the hexagon coming from a three

dimensional cube of the form
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(1, 𝑣′) (1, 𝑤)

(1, 𝑢) (1, 𝑣)

(0, 𝑣′) (0, 𝑤)

(0, 𝑢) (0, 𝑣)

Let

𝜑𝑖𝑢,𝑣,𝑣′,𝑤 : 𝐴𝑖𝑣,𝑤 ×𝐹𝑖(𝑣) 𝐴
𝑖
𝑢,𝑣 → 𝐴𝑖𝑣′,𝑤 ×𝐹𝑖(𝑣′) 𝐴

𝑖
𝑢,𝑣′

be the 2-morphism assigned by the functor 𝐹𝑖 corresponding to the horizontal square face

(𝑖, 𝑣′) (𝑖, 𝑤)

(𝑖, 𝑢) (𝑖, 𝑣)

𝜙𝑖
𝑣′,𝑤

𝜙𝑖
𝑢,𝑣

𝜙𝑖
𝑢,𝑣′

𝜙𝑖
𝑣,𝑤

of 2 × 2𝑛. In this situation, checking that the hexagon of Lemma 2.6.9 commutes comes

down to verifying commutativity of the diagram in (3.15) below.

𝐴1
𝑣,𝑤 ×𝐹1(𝑣) 𝐴

1
𝑢,𝑣 𝐴1

𝑣′,𝑤 ×𝐹1(𝑣′) 𝐴
1
𝑢,𝑣′

𝐴0
𝑣,𝑤 ×𝐹0(𝑣) 𝐴

0
𝑢,𝑣 𝐴0

𝑣′,𝑤 ×𝐹0(𝑣′) 𝐴
0
𝑢,𝑣′

𝜓𝑣,𝑤×𝜓𝑢,𝑣

𝜑1
𝑢,𝑣,𝑣′,𝑤

𝜓𝑣′,𝑤×𝜓𝑢,𝑣′

𝜑0
𝑢,𝑣,𝑣′,𝑤

(3.15)

If the diagram (3.15) commutes, then 𝜂 extends to a natural transformation 𝜂 : 𝐹1 →

𝐹0. Moreover, since each 𝜂(𝑒𝑢) : 𝐹1(𝑢) → 𝐹0(𝑢) is an isomorphism in B𝐺, the natural

transformation 𝜂 is a natural isomorphism of Burnside functors.

3.5 The quantum annular Burnside functor

In this section, we construct the quantum annular Burnside functor corresponding to an

annular link diagram 𝐷. Before giving the outline of the section, we emphasize one small

but important caveat. In the quantum annular theory over the base ring k = Z[q, q−1], every

configuration is assigned a module which has infinite rank over Z, with generators of the
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form q𝑘𝑥 for 𝑘 ∈ Z. In our set-up, this would correspond to assigning an infinite set to each

vertex in the cube of resolutions. This would require considering spaces of infinitely many

boxes in Section 3.6, and also of CW-complexes with a Z-action. Although we believe that

such a version of the theory could be worked out, in the present paper we stay in the context

of finite cyclic group actions. This is motivated in part by the fact that a substantial part

of equivariant homotopy theory is formulated for compact group actions. To this end, we

make the following modification to the quantum annular complex.

For 𝑟 > 0, set k𝑟 := k/(q𝑟 − 1). Let ℱ 𝑟Aq
denote the composition

ℬℬ𝒩 q(A)
ℱAq−−→ k− gmod

(−)⊗kk𝑟−−−−−→ k𝑟− gmod . (3.16)

We can define a modified quantum annular homology by applying ℱ 𝑟Aq
to each vertex in

the cube of resolutions of an annular link diagram 𝐷. The result is the same as applying

(−)⊗k k𝑟 to the quantum annular chain complex 𝐶𝐾ℎAq(𝐷). Every vertex is assigned a free

k𝑟-module, and the formulas in Section 2.4.2 remain true, modulo the additional relation

q𝑟 = 1. At 𝑟 = 1 we obtain the classical annular TQFT ℱA.

With this modification in place, we proceed as follows. Given an annular link diagram 𝐷

with 𝑛 crossings, we will define the quantum annular Burnside functor 𝐹q : 2
𝑛 → B𝐺, where

𝐺 = ⟨q | q𝑟 = 1⟩

is the finite cyclic group of order 𝑟 with distinguished generator q. Note that there is a natural

ring isomorphism Z[𝐺] ∼= k𝑟, so that it is possible to compare the cellular cohomology of

the stable homotopy type, which is a Z[𝐺]-module, with the modified quantum annular

homology, which is a k𝑟-module. The dependence on 𝑟 will be omitted from the group 𝐺

and the Burnside functor 𝐹q in order to simplify the notation.

The totalization Tot(𝐹q) should recover the quantum annular complex

𝐶𝐾ℎAq(𝐷)⊗k k𝑟,

so we already know what 𝐹q should assign to vertices and edges of 2𝑛. The subtlety is that
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generators are defined only up to a power of q, and the formulas for the differential depend

non-trivially on the configuration, so the full extent of the analysis in Sections 3.2, 3.2.1

is used here. Once 𝐹q is determined on vertices and edges, it remains to assign specific

bijections to the (identity) 2-morphisms in 2𝑛 and check the hexagon relation of Lemma

2.6.9. This will be done in Section 3.5.1 for the case 𝑟 > 2; this restriction is to guarantee

that q2 ̸= 1, allowing the use of Corollary 3.2.15 to simplify the analysis. We will show in

Proposition 3.5.3 that the Burnside functor 𝐹q is independent of the choice of generators

for each vertex, and in Section 3.5.2 we will show that planar isotopies of the link diagram

induce natural isomorphisms of the corresponding Burnside functors. Finally in Section 3.5.3

we will address the cases 𝑟 = 1, 2.

3.5.1 The quantum annular Burnside functor for a link diagram

Let 𝐷 be a diagram for an annular link with 𝑛 crossings, which are assumed to be disjoint

from the seam. For each 𝑢 ∈ {0, 1}𝑛, let 𝐷𝑢 denote the smoothing of 𝐷 corresponding to

𝑢. Fix 𝑟 > 2, and set 𝐺 = ⟨q | q𝑟 = 1⟩. We will specify the data of the quantum annular

Burnside functor 𝐹q : 2
𝑛 → B𝐺.

For each vertex 𝑢 ∈ {0, 1}𝑛, pick a set of generators Γ(𝑢) of 𝐷𝑢, following Section 3.2.

Define 𝐹q on vertices by

𝐹q(𝑢) = 𝐺× Γ(𝑢). (3.17)

The 𝐺-action on 𝐹q(𝑢) is on the first factor: q𝑘 · (qℓ, 𝑥) = (q𝑘+ℓ, 𝑥). We will write elements

of 𝐹q(𝑢) as q𝑘𝑥 instead of (q𝑘, 𝑥).

For 𝑢 ≥1 𝑣, let 𝑑𝑣,𝑢 denote the map assigned to the edge 𝑣 → 𝑢 by the modified quantum

annular functor ℱ 𝑟Aq
. Recall from Lemma 3.2.14 that for each 𝑥 ∈ Γ(𝑣),

𝑑𝑣,𝑢(𝑥) =
∑︁
𝑦∈Γ(𝑢)

𝜀𝑦𝑦

where each coefficient 𝜀𝑦 is either 0 or q𝑘 for some 𝑘 ∈ Z. We will say that q𝑘𝑦 appears in

𝑑𝑣,𝑢(q
ℓ𝑥) if in the equation

𝑑𝑣,𝑢(q
ℓ𝑥) =

∑︁
𝑦∈Γ(𝑢)

𝜀𝑦𝑦,
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the coefficient 𝜀𝑦 is equal to q𝑘. For 𝑢 ≥1 𝑣, define the correspondence 𝐴𝑢,𝑣 ⊂ 𝐹q(𝑢)× 𝐹q(𝑣)

from 𝐹q(𝑢) to 𝐹q(𝑣) by

𝐴𝑢,𝑣 = {(q𝑘𝑦, qℓ𝑥) ∈ 𝐹q(𝑢)× 𝐹q(𝑣) | q𝑘𝑦 appears in 𝑑𝑣,𝑢(qℓ𝑥)} (3.18)

The source and target maps of 𝐴𝑢,𝑣 are the projections to 𝐹q(𝑢) and 𝐹q(𝑣), respectively.

Note that 𝐴𝑢,𝑣 is a sub 𝐺-set of 𝐹q(𝑢)× 𝐹q(𝑣) since 𝑑𝑣,𝑢(q𝑥) = q𝑑𝑣,𝑢(𝑥).

We will show that the above data extends to a Burnside functor 𝐹𝑞 : 2𝑛 → B𝐺. The

following lemma will be useful in our analysis of the hexagon relation.

Lemma 3.5.1. Let C be a configuration with three surgery arcs 𝐴1, 𝐴2, and 𝐴3. Let C ′

denote the circles in C containing the endpoints of the surgery arcs. Assume there is a circle

𝐶 in C ′ such that 𝐶 ∪ 𝐴1 ∪ 𝐴2 forms a ladybug configuration. Then one of the following

holds.

(1) The diagram C ′ ∪𝐴1 ∪𝐴2 ∪𝐴3 is trivial in the annulus; i.e. C ′ and the three surgery

arcs lie in a disk in A.

(2) The composition of three edge maps is 0.

(3) The 3-dimensional cube is simple (see the discussion in Remark 2.6.10).

(4) 𝐶 ∪ 𝐴1 ∪ 𝐴2 is trivial in the annulus and disjoint from 𝐴3.

Proof. If 𝐶 is essential in the annulus, then (2) follows from the neck-cutting and Boerner’s

relations (see Figures 2-4, 2-14). We may therefore assume that 𝐶 is trivial. Let 𝐶 ′ denote

the (necessarily trivial) circle obtained by performing surgery along both 𝐴1 and 𝐴2. Note

that the result of composing the two saddle maps corresponding to 𝐴1 and 𝐴2 will send any

generator of C in which 𝐶 is undotted to a sum of elements in which 𝐶 ′ is dotted, and will

send any generator which is dotted on 𝐶 to 0. It therefore suffices to consider the effect of

surgery along 𝐴3 on a dotted 𝐶 ′.

First, assume that 𝐶 ∪𝐴1 ∪𝐴2 is trivial but C ′ ∪𝐴1 ∪𝐴2 ∪𝐴3 is not. There are several

cases to consider. If neither endpoint of 𝐴3 is on 𝐶, then (4) holds. If precisely one endpoint

of 𝐴3 is on 𝐶, then the other endpoint must be on another circle 𝐶, as in Figure 3-17a. In
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this situation, Boerner’s relation implies that (2) holds. Finally, suppose both endpoints of

𝐴3 are on 𝐶, as in Figure 3-17b. Then surgery along 𝐴3 must split 𝐶 ′ into two essential

circles. In this situation, (2) holds again, since a dotted trivial circle splitting into two

essential circles is sent to 0.

(a) One endpoint of 𝐴3 is on 𝐶 (b) Both endpoints of 𝐴3 are on 𝐶

Figure 3-17: The two cases where 𝐶 ∪ 𝐴1 ∪ 𝐴2 is trivial. Note that these are only schematic
depictions, since the interaction of the curves with the seam could be complicated.

Now suppose that the diagram 𝐶 ∪ 𝐴1 ∪ 𝐴2 is non-trivial. Then we are in the situation

of Section 3.2.2 (see Figure 3-11 for example) where Corollary 3.2.15 shows we have a sum

of terms 𝑦 + q2𝑦 in which 𝐶 ′ is dotted. If surgery along 𝐴3 either splits off a trivial circle

from 𝐶 ′ or merges 𝐶 ′ with another trivial circle, then (3) holds since the two terms retain

distinct powers of q (see Figure 3-5). If surgery along 𝐴3 splits 𝐶 ′ into two essential circles

or merges 𝐶 ′ with an essential circle, then (2) holds as above.

Theorem 3.5.2. There is a functor 𝐹q : 2
𝑛 → B𝐺 which extends the data (3.17) and (3.18).

Proof. Following Lemma 2.6.9, it remains to define the 2-morphisms

𝜑𝑢,𝑣,𝑣′,𝑤 : 𝐴𝑣,𝑤 ×𝐹q(𝑣) 𝐴𝑢,𝑣 → 𝐴𝑣′,𝑤 ×𝐹q(𝑣′) 𝐴𝑢,𝑣′

for each square face of 2𝑛 with vertices 𝑢 ≥1 𝑣, 𝑣
′ ≥1 𝑤, and to verify the hexagon relation.

For all cases except the ladybug configuration, the 2-morphism 𝜑𝑢,𝑣,𝑣′,𝑤 is uniquely de-

termined by the property that it commutes with the source and target maps. Therefore

we need to consider only the ladybug configurations. Assume a circle 𝐶 in 𝐷𝑤 carries two

surgery arcs as in the ladybug configuration. We distinguish three cases, as in Figure 3-9.

(a) 𝐶 is essential.

(b) 𝐶 is trivial, and surgery along both arcs results in trivial circles.
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(c) 𝐶 is trivial, surgery along one arc produces two trivial circles, and surgery along the

other arc produces two essential circles.

For (a), the composition of two edge maps is 0. Therefore

𝐴𝑣,𝑤 ×𝐹q(𝑣) 𝐴𝑢,𝑣 = ∅ = 𝐴𝑣′,𝑤 ×𝐹q(𝑣′) 𝐴𝑢,𝑣′ ,

and there is no 2-morphism to specify. For (b), we rely on the ladybug matching made with

the left pair (see [57, Section 5.4]). Finally, for (c), note that generators dotted on 𝐶 are sent

to 0 by the composition of two edges. For generators undotted on 𝐶, Corollary 3.2.15 implies

that 𝜑𝑢,𝑣,𝑣′,𝑤 is uniquely determined by the property that it commutes with the source and

target maps.

It remains to verify the hexagon relation. Let C denote a configuration with three surgery

arcs. We may assume that two of the three surgery arcs form a ladybug configuration, since

otherwise the 3-dimensional cube is simple. Then the analysis consists of the four cases

in Lemma 3.5.1. In case (1), the verification reduces to classical Khovanov homology (see,

for example, [51, Proposition 6.1]). For case (2), the composition of three correspondences

coming from any three edge maps is empty, so there is nothing to check. Similarly, In case

(3), the hexagon relation follows from the discussion in Remark 2.6.10. Finally, case (4) is

straightforward to check by hand since the disjoint arc 𝐴3 cannot interfere with the classical

Khovanov ladybug matching used on 𝐶 ∪ 𝐴1 ∪ 𝐴2.

Proposition 3.5.3. Up to natural isomorphism, 𝐹q is independent of the choices of gener-

ators Γ(𝑢).

Proof. For each 𝑢 ∈ {0, 1}𝑛, let Γ(𝑢), Γ′(𝑢) be two sets of generators of 𝐷𝑢, obtained by

picking different isotopies 𝑆, 𝑆 ′ from standard configurations 𝐷∘
𝑢, 𝐷

∘
𝑢
′ to 𝐷𝑢. The natural

isomorphism is straightforward to construct when 𝑆 ′ = 𝑆𝑆 ′′ where 𝑆 ′′ : 𝐷∘
𝑢
′ → 𝐷∘

𝑢 is a planar

isotopy of standard configurations, similar to the usual reindexing of circles in Khovanov

homology under planar isotopy of a link diagram. Thus it is enough to consider the case

when 𝐷∘
𝑢
′ = 𝐷∘

𝑢 and 𝑆, 𝑆 ′ : 𝐷∘
𝑢 → 𝐷𝑢 induce the same correspondence on components.

Let 𝐹q, 𝐹
′
q : 2𝑛 → B𝐺 denote the corresponding functors, and let 𝐴𝑢,𝑣, 𝐴′

𝑢,𝑣 denote the
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correspondences assigned to edges by 𝐹q and 𝐹 ′
q respectively. We will use the strategy of

Section 3.4 to build a natural isomorphism 𝐹q → 𝐹 ′
q.

There is a clear bijection Γ(𝑢) → Γ′(𝑢), denoted 𝑥 ↦→ 𝑥′. Lemma 3.2.4 says that for

any 𝑥 ∈ Γ(𝑢), there exists 𝑚𝑥 ∈ Z such that 𝑥 = q𝑚𝑥𝑥′. Consider the equivariant bijection

𝜓𝑢 : 𝐹q(𝑢) → 𝐹 ′
q(𝑢) defined by 𝜓𝑢(q𝑘𝑥) = q𝑘+𝑚𝑥𝑥′. Observe that conditions (NI 1) and (NI

3) in Section 3.4 hold by definition of 𝐹q and 𝐹 ′
q. Condition (NI 2) holds since 𝑥 = q𝑚𝑥𝑥′. To

complete the proof, observe that the diagram (3.15) commutes, since the vertical maps act

on generators by multiplication by powers of q, and thus do not interfere with the ladybug

matchings.

3.5.2 Isotoping the link diagram

In this section we show that a planar isotopy of link diagrams induces a natural isomor-

phism between the corresponding quantum annular Burnside functors. Elementary isotopies

away from the seam are readily dealt with, but isotopies which involve intersections with

the seam need more care. These results will also be used to show Reidemeister invariance

for the stable homotopy type in Section 3.6.5.

Proposition 3.5.4. Let 𝐷 be a link diagram with 𝑛 crossings, and let 𝐷′ be a link diagram

obtained from 𝐷 by one of the following moves.

(1) Moving an arc (as in the 𝑃±1 and 𝑁±1 moves of Figure 3− 4) across the seam.

(2) Moving a crossing across the seam (see Figure (3.19))

Let 𝐹q and 𝐹 ′
q be Burnside functors for 𝐷 and 𝐷′ respectively. Then 𝐹q is naturally isomor-

phic to 𝐹 ′
q.

Proof. We will again follow the strategy of Section 3.4. By Proposition 3.5.3, we are free to

choose generators for each configuration 𝐷𝑢 using any isotopy 𝐷∘
𝑢 → 𝐷𝑢, and likewise for

𝐷′
𝑢. For each 𝑢 ∈ 2𝑛, let 𝑆𝑢 : 𝐷∘

𝑢 → 𝐷𝑢 be the cobordism formed by a fixed choice of isotopy

from 𝐷∘
𝑢 to 𝐷𝑢. There is also an obvious isotopy 𝑅𝑢 : 𝐷𝑢 → 𝐷′

𝑢, corresponding to the moves

in the statement of the proposition. Since 𝐷∘
𝑢 = 𝐷′∘

𝑢 , we can choose generators for 𝐷′
𝑢 using
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the cobordism 𝑅𝑢𝑆𝑢. For 𝑢, 𝑣 ∈ 2𝑛 with 𝑢 ≥1 𝑣, let 𝑑𝑣,𝑢 and 𝑑′𝑣,𝑢 denote the maps assigned

to the edge 𝑣 → 𝑢 in [[𝐷]] and [[𝐷′]], respectively.

Suppose we are in the situation (1). We have equivariant bijections 𝜓𝑢 : 𝐹q(𝑢) → 𝐹 ′
q(𝑢)

for each 𝑢, given by 𝜓𝑣(q𝑘𝑥) = q𝑘𝑅𝑢(𝑥) (as usual, we do not distinguish between a cobordism

and its induced map). Conditions (NI 1) and (NI 3) are satisfied by definition. For each

𝑢, 𝑣 ∈ 2𝑛 with 𝑢 ≥1 𝑣, we have

𝑅𝑢𝑑𝑣,𝑢 = 𝑑′𝑣,𝑢𝑅𝑣.

It follows that, for q𝑘𝑦 ∈ 𝐹q(𝑢) and qℓ𝑥 ∈ 𝐹q(𝑣), q𝑘𝑦 appears in 𝑑𝑣,𝑢(qℓ𝑥) if and only if

q𝑘𝑅𝑢(𝑦) appears in 𝑑′𝑣,𝑢(q
𝑘𝑅𝑣(𝑥)). Therefore condition (NI 2) is satisfied as well. Observe

that the diagram (3.15) commutes since we do not interfere with any potential ladybug

matchings.

For case (2), the maps 𝜓𝑢 need to be modified slightly in order to satisfy (NI 2). We

illustrate one case in detail. Suppose 𝐷 and 𝐷′ are as shown in (3.19). Assume also that

the crossing shown is first in the ordering of crossings.

(3.19)

Let 𝑢 ∈ 2𝑛. If 𝑢1 = 0, define 𝜓𝑢 : 𝐹q(𝑢)→ 𝐹 ′
q(𝑢) as in case (1). If 𝑢1 = 1, then define 𝜓𝑢 by

𝜓𝑢(q
𝑘𝑥) = q𝑘+1𝑅𝑢(𝑥)

We will now verify that condition (NI 2) holds for this choice of equivariant bijections

{𝜓𝑢}𝑢∈2𝑛 . Let 𝑢, 𝑣 ∈ 2𝑛 with 𝑢 ≥1 𝑣. If 𝑢1 = 𝑣1, then the edge maps 𝑑𝑣,𝑢 and 𝑑′𝑣,𝑢 are induced

by changing the smoothing at a crossing away from the one shown in (3.19). As in case (1)

above, we have

𝑅𝑢𝑑𝑣,𝑢 = 𝑑′𝑣,𝑢𝑅𝑣,
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so condition (NI 2) holds. Suppose now that 𝑢1 = 1 and 𝑣1 = 0. Then

𝑑′𝑣,𝑢𝑅𝑣 = q𝑅𝑢𝑑𝑣,𝑢, (3.20)

where the factor of q comes from moving a saddle across the membrane (see Figure 2-16).

The situation is depicted in the (noncommutative!) diagram (3.21).

(3.21)

Let q𝑘𝑦 ∈ 𝐹q(𝑢) and qℓ𝑥 ∈ 𝐹q(𝑣). It follows from (3.20) that q𝑘𝑦 appears in 𝑑𝑣,𝑢(q
ℓ𝑥)

if and only if q𝑘+1𝑅𝑢(𝑦) appears in 𝑑′𝑣,𝑢(q
ℓ𝑅𝑣(𝑥)). Therefore condition (NI 2) is satisfied.

Again, the hexagon relation is satisfied because the 2-morphisms do not interfere with the

ladybug matching.

3.5.3 The cases 𝑟 = 1, 2 and the classical annular homotopy type

Our proof of Theorem 3.5.2 relies on 𝑟 > 2. In this section we address the cases 𝑟 = 1, 2

in that order.

Let 𝐷 be a diagram for an annular link with 𝑛 crossings. When 𝑟 = 1, the modified

quantum annular chain complex

𝐶𝐾ℎAq(𝐷)⊗k k/(q− 1)

is just the classical annular chain complex 𝐶𝐾ℎA(𝐷) (see the discussion preceding Lemma

3.2.14). We sketch how to define the annular Burnside functor, denoted 𝐹1, for the classi-
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cal annular Khovanov chain complex below. An alternative construction, using topological

Hochschild homology of Chen-Khovanov spectra for tangles, was introduced in [53].

Let 𝐹𝐾ℎ : 2𝑛 → B denote the usual Khovanov Burnside functor (see definition 2.6.15)

where the ladybug matching is made with the left pair. For 𝑢 ≥1 𝑣, let

𝑑A𝑣,𝑢 : ℱA(𝐷𝑣)→ ℱA(𝐷𝑢)

denote the classical annular differential, and let 𝑑𝐾ℎ𝑣,𝑢 denote the usual Khovanov differential.

We have that 𝑑𝐾ℎ𝑣,𝑢 = 𝑑A𝑣,𝑢 + 𝑑′𝑣,𝑢 (see Lemma 2.4.1 and Definition 2.4.2).

Recall that annular Khovanov generators may be taken to be the usual Khovanov gener-

ators (where the annular link diagram is considered as a planar diagram under the inclusion

A ⊂ R2), so set 𝐹1(𝑢) = 𝐹𝐾ℎ(𝑢) for each 𝑢 ∈ 2𝑛. For 𝑢 ≥1 𝑣, let 𝐴𝐾ℎ𝑢,𝑣 denote the correspon-

dence assigned by 𝐹𝐾ℎ to the edge 𝜙𝑢,𝑣 : 𝑢→ 𝑣. Define the correspondence 𝐴A
𝑢,𝑣 from 𝐹1(𝑢)

to 𝐹1(𝑣) by

𝐴A
𝑢,𝑣 := {(𝑦, 𝑥) ∈ 𝐹1(𝑢)× 𝐹1(𝑣) | 𝑦 appears in 𝑑A𝑣,𝑢(𝑥)},

with the obvious source and target maps, and set 𝐹1(𝜙𝑢,𝑣) = 𝐴A
𝑢,𝑣. Note that 𝐴A

𝑢,𝑣 ⊂ 𝐴𝐾ℎ𝑢,𝑣 .

Let 𝜑𝐾ℎ𝑢,𝑣,𝑣′,𝑤 be the 2-morphism assigned by 𝐹𝐾ℎ to the square face with vertices 𝑢 ≥1

𝑣, 𝑣′ ≥1 𝑤. One can check that 𝜑𝐾ℎ𝑢,𝑣,𝑣′,𝑤 restricts to

𝜑A
𝑢,𝑣,𝑣′,𝑤 : 𝐴A

𝑣,𝑤 ×𝐹1(𝑣) 𝐴
A
𝑢,𝑣 → 𝐴A

𝑣′,𝑤 ×𝐹1(𝑣′) 𝐴
A
𝑢,𝑣′ .

Taking 𝜑A
𝑢,𝑣,𝑣′,𝑤 to be the 2-morphisms assigned to square faces by 𝐹1, the conditions of

Lemma 2.6.9 are satisfied as a consequence of the construction of 𝐹𝐾ℎ.

When 𝑟 = 2, Lemma 3.5.1 and the ensuing analysis in case (c) of the proof of Theorem

3.5.2 do not hold, since q2 = 1. Instead, we rely on the ladybug matching made with the left

pair to define the 2-morphism in case (c) of Theorem 3.5.2. Let us verify the hexagon relation,

using the formulation in Remark 2.6.10. Start with an element 𝑥 = (q𝑖𝑎, q𝑗𝑏, q𝑘𝑐, qℓ𝑑) in the

correspondence obtained as the composition of correspondences for three consecutive edge

maps. Going around the six faces of the cube, the 2-morphisms send 𝑥 to an element

𝑥′ = (q𝑖𝑎, q𝑗
′
𝑏′, q𝑘

′
𝑐′, qℓ𝑑) in the same correspondence. It follows from classical annular case,
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where powers of q are disregarded, that labels on the circles in the generators 𝑏 and 𝑐 match

the labels on the circles in the generators 𝑏′ and 𝑐′, respectively. Then 𝑏 = 𝑏′, and since both

q𝑗𝑏 and q𝑗
′
𝑏′ = q𝑗

′
𝑏 appear in the image of q𝑖𝑎 under a saddle map, Lemma 3.2.14 implies

that q𝑗 = q𝑗
′ . Likewise, q𝑘𝑐 = q𝑘

′
𝑐′, and we conclude that the hexagon relation is satisfied.

3.6 From Burnside functors to stable homotopy types

This section describes a general framework for obtaining a spectrum from a Burnside

functor. This general construction is then applied to the case of the quantum annular

Burnside functor, establishing the main result of the paper, Theorem 3.0.1. In more detail

in Section 3.6.1 we recall box maps and their required properties for the non-equivariant case

as in [52, Section 5]. Then in Section 3.6.2 we discuss 𝐺-equivariant box maps via a slight

generalization of the ideas established in [78], ensuring that the required properties are still

satisfied. Sections 3.6.3 and 3.6.4 describe how to use box maps to pass from an equivariant

Burnside functor 𝐹 to a 𝐺-CW complex realizing 𝐹 , following [78, Section 4], by taking the

homotopy colimit (see [85]) of an appropriate diagram. Finally in Section 3.6.5 we apply this

theory to the quantum annular Burnside functor of Section 3.5.1 to define the equivariant

spectrum 𝒳 𝑟
Aq
(𝐿) and check that it is well-defined, proving Theorem 3.0.1.

We emphasize some differences and similarities between the constructions presented in

this chapter and those appearing elsewhere in the literature. Note that there is no group

action on the we consider, so our box maps and homotopy coherent refinements are different

from those in [15, 66, 80]. Functors 2𝑛 → BZ/2Z are considered in [78], and there the authors

introduce actions of Z/2Z and Z/2Z×Z/2Z, which involve an internal action on boxes. We

are however interested in an external 𝐺-action, given by permuting boxes.

3.6.1 Box maps

We begin by reviewing a key part of the non-equivariant case allowing us to set some

notation following [52, Section 5.1].

A 𝑘-dimensional box is
∏︀𝑘

𝑖=1[𝑎𝑖, 𝑏𝑖] ⊂ R𝑘. For two 𝑘-dimensional boxes 𝐵 and 𝐵′, there

is a canonical homeomorphism 𝐵
∼−→ 𝐵′, obtained by scaling and translating the ambient
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space R𝑘. Fix an identification 𝑆𝑘 = [0, 1]𝑘/𝜕([0, 1]𝑘), so that for any 𝑘-dimensional box 𝐵,

𝐵/𝜕𝐵 is canonically identified with 𝑆𝑘.

Suppose we have a correspondence 𝑋 𝑠←− 𝐴
𝑡−→ 𝑌 . Pick disjoint 𝑘-dimensional boxes

{𝐵𝑥}𝑥∈𝑋 . Following [52], let

𝐸({𝐵𝑥}, 𝑠)

denote the space of all collections {𝐵𝑎}𝑎∈𝐴 of disjoint 𝑘-dimensional boxes such that 𝐵𝑎 ⊂

𝐵𝑠(𝑎). A point 𝑒 = {𝐵𝑎} ∈ 𝐸({𝐵𝑥}, 𝑠) determines a map

Φ(𝑒, 𝐴) :
⋁︁
𝑥∈𝑋

𝑆𝑘𝑥 →
⋁︁
𝑦∈𝑌

𝑆𝑘𝑦 (3.22)

defined as follows. On each wedge summand, Φ(𝑒, 𝐴) is the composition

𝑆𝑘𝑥 = 𝐵𝑥/𝜕𝐵𝑥 → 𝐵𝑥/(𝐵𝑥 ∖
⋃︁

𝑎∈𝑠−1(𝑥)

𝐵int
𝑎 ) =

⋁︁
𝑎∈𝑠−1(𝑥)

𝐵𝑎/𝜕𝐵𝑎
𝑡−→
⋁︁
𝑦∈𝑌

𝑆𝑘𝑦 (3.23)

where the first map is a quotient and the last map sends the sphere 𝐵𝑎/𝜕𝐵𝑎 to 𝐵𝑡(𝑎)/𝜕𝐵𝑡(𝑎) =

𝑆𝑘𝑡(𝑎) via the canonical homeomorphism 𝐵𝑎
∼= 𝐵𝑡(𝑎). A map of this form is said to refine the

correspondence 𝑋
𝑠←− 𝐴

𝑡−→ 𝑌 .

Suppose we have correspondences 𝑋 𝑠𝐴←− 𝐴
𝑡𝐴−→ 𝑌 and 𝑌 𝑠𝐵←− 𝐵

𝑡𝐵−→ 𝑍 with boxes {𝐵𝑥}𝑥∈𝑋
and {𝐵𝑦}𝑦∈𝑌 . Given 𝑒 ∈ 𝐸({𝐵𝑥}𝑥∈𝑋 , 𝑠𝐴) and 𝑒′ ∈ 𝐸({𝐵𝑦}𝑦∈𝑌 , 𝑠𝐵), we can consider the

preimage of the boxes in 𝑒′ under the map Φ(𝑒, 𝐴). An important point in the proof of

existence and uniqueness of spatial refinements is that Φ(𝑒, 𝐴)−1(𝑒′) is a collection of little

boxes in {𝐵𝑥}𝑥∈𝑋 labelled by the composition 𝐶 := 𝐵 ×𝑌 𝐴; that is,

Φ(𝑒, 𝐴)−1(𝑒′) ∈ 𝐸({𝐵𝑥}𝑥∈𝑋 , 𝑠𝐶)

where 𝑠𝐶 : 𝐶 → 𝑋 is the source map of the composition. This is explained in Figure 3-18.

3.6.2 Equivariant box maps

Throughout this section, we will continue to use 𝐺 to denote a finite cyclic group, but all

of the statements below generalize to more general finite groups acting freely on finite sets.
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Figure 3-18: Fix two collections of subboxes 𝑒 ∈ 𝐸({𝐵𝑥}𝑥∈𝑋 , 𝑠𝐴) 𝑒′ ∈ 𝐸({𝐵𝑦}𝑦∈𝑌 , 𝑠𝐵) and an
element (𝑏, 𝑎) in the composition correspondence 𝐶 = 𝐵 ×𝑌 𝐴. Then by definition 𝑒′ gives us a
box 𝐵𝑏 ⊂ 𝑆𝑘𝑦 (in black on the right) where 𝑦 = 𝑠𝐵(𝑏) = 𝑡𝐴(𝑎) and 𝑒 gives us a box 𝐵𝑎 ⊂ 𝑆𝑘𝑥 where
𝑥 = 𝑠𝐴(𝑎) (in gray on the left). The maps in the figure are those appearing in (3.23), composing
to give Φ(𝑒,𝐴). If we pull back the box 𝐵𝑏 under this map (restricted to 𝑆𝑘𝑥), we obtain a smaller
subbox 𝐵(𝑏,𝑎) ⊂ 𝐵𝑎 ⊂ 𝑆𝑘𝑥 for any such pair (𝑏, 𝑎) ∈ 𝐶. Taking the collection of such boxes and
preimages together, we see that Φ(𝑒,𝐴)−1(𝑒′) ∈ 𝐸({𝐵𝑥}𝑥∈𝑋 , 𝑠𝐶).

Consider a 𝐺-equivariant correspondence 𝑋
𝑠←− 𝐴

𝑡−→ 𝑌 . Then the spaces
⋁︀
𝑥∈𝑋 𝑆

𝑘
𝑥

and
⋁︀
𝑦∈𝑌 𝑆

𝑘
𝑦 inherit a 𝐺-action via the canonical homeomorphism 𝐵𝑥

∼= 𝐵𝑔𝑥. In terms of

the wedge summands, this 𝐺-action permutes the copies of 𝑆𝑘. However, to obtain a 𝐺-

equivariant refinement
⋁︀
𝑥∈𝑋 𝑆

𝑘
𝑥 →

⋁︀
𝑦∈𝑌 𝑆

𝑘
𝑦 , a second condition needs to be imposed on the

sub-boxes {𝐵𝑎} ∈ 𝐸({𝐵𝑥}, 𝑠).

Definition 3.6.1. Let 𝐸𝐺({𝐵𝑥}, 𝑠) denote the subset of 𝐸({𝐵𝑥}, 𝑠) consisting of the little

boxes {𝐵𝑎} satisfying the following property: for each 𝑔 ∈ 𝐺, 𝑥 ∈ 𝑋, and 𝑎 ∈ 𝑠−1(𝑥), the

canonical homeomorphism 𝐵𝑥 → 𝐵𝑔𝑥 restricts to a homeomorphism 𝐵𝑎 → 𝐵𝑔𝑎.

Note that with the above condition in place, the restricted homeomorphism 𝐵𝑎 → 𝐵𝑔𝑎

is also the canonical one. In particular, if we identify all boxes 𝐵𝑔𝑥 canonically with [0, 1]𝑘,

then the subboxes 𝐵𝑔𝑎 ⊂ 𝐵𝑔𝑥 for various 𝑔 all have the same image in [0, 1]𝑘.

Lemma 3.6.2. Let 𝑋 𝑠←− 𝐴
𝑡−→ 𝐵 be an equivariant correspondence. If 𝑒 ∈ 𝐸𝐺({𝐵𝑥}, 𝑠),

then the induced box map Φ(𝑒, 𝐴) is 𝐺-equivariant.
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Proof. Let 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋. We need to verify commutativity of the following diagram

𝑆𝑘𝑥
⋁︁

𝑎∈𝑠−1(𝑥)

𝐵𝑎/𝜕𝐵𝑎

⋁︁
𝑦∈𝑌

𝑆𝑘𝑦

𝑆𝑘𝑔𝑥
⋁︁

𝑎∈𝑠−1(𝑥)

𝐵𝑔𝑎/𝜕𝐵𝑔𝑎

⋁︁
𝑦∈𝑌

𝑆𝑘𝑦

𝑔 ∼= 𝑔

where the horizontal maps are those of (3.23) and the vertical maps are induced by canonical

homeomorphisms between boxes. The left square commutes since 𝑒 ∈ 𝐸𝐺({𝐵𝑥}, 𝑠), and the

right square commutes because all the maps there are induced by canonical homeomorphisms

of boxes.

In the construction of stable homotopy refinements, it is crucial that the space of little

boxes is highly connected and that boxes pull back to boxes. The remainder of this subsection

is devoted to verifying these properties for 𝐸𝐺({𝐵𝑥}, 𝑠). For the following statement, recall

the notation for the quotient functor, introduced in Section 3.3.

Lemma 3.6.3. Let 𝑋 𝑠←− 𝐴
𝑡−→ 𝑌 be a correspondence of 𝐺-sets and equivariant maps

between them. Then we have the following homeomorphism of spaces of sub-boxes:

𝐸𝐺({𝐵𝑥}𝑥∈𝑋 , 𝑠) ∼= 𝐸({𝐵[𝑥]}[𝑥]∈𝑋/𝐺, 𝑠/𝐺).

Proof. For a fixed 𝑥 ∈ 𝑋, a sub-collection of little boxes {𝐵𝑎}𝑎∈𝑠−1(𝑥) in 𝐵𝑥 determines the

little boxes {𝐵𝑐}𝑐∈𝑠−1(𝑔𝑥) in 𝐵𝑔𝑥 for all 𝑔 ∈ 𝐺. Explicitly, for each 𝑎 ∈ 𝑠−1(𝑥) and 𝑔 ∈ 𝐺,

𝐵𝑔𝑎 ⊂ 𝐵𝑔𝑥 is the image of 𝐵𝑎 under the canonical homeomorphism 𝐵𝑥 → 𝐵𝑔𝑥, and since 𝑠

is a 𝐺-equivariant map, 𝑐 ∈ 𝑠−1(𝑔𝑥) if and only if 𝑐 = 𝑔𝑎 for some 𝑎 ∈ 𝑠−1(𝑥).

Thus a collection of equivariant boxes in 𝐸𝐺({𝐵𝑥}, 𝑠) is equivalent to a (non-equivariant)

choice of boxes in each 𝐺-orbit of 𝑋 for each 𝐺-orbit of 𝐴, which is the meaning of

𝐸({𝐵[𝑥]}[𝑥]∈𝑋/𝐺, 𝑠/𝐺).

Corollary 3.6.4. 𝐸𝐺({𝐵𝑥}, 𝑠) is (𝑘 − 2)-connected.

Proof. This follows from Lemma 3.6.3 together with the connectivity for spaces of (non-

equivariant) sub-boxes shown in [52, Lemma 5.18].
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Lemma 3.6.5. Let 𝑋 𝑠𝐴←− 𝐴
𝑡𝐴−→ 𝑌 and 𝑌

𝑠𝐵←− 𝐵
𝑡𝐵−→ 𝑍 be equivariant correspondences.

Let {𝐵𝑥}𝑥∈𝑋 and {𝐵𝑦}𝑦∈𝑌 be collections of 𝑘-dimensional boxes, and let 𝑒 ∈ 𝐸𝐺({𝐵𝑥}, 𝑠𝐴),

𝑒′ ∈ 𝐸𝐺({𝐵𝑦}, 𝑠𝐵). Then Φ(𝑒, 𝐴)−1(𝑒′) ∈ 𝐸𝐺({𝐵𝑥}𝑥∈𝑋 , 𝑠𝐶).

Proof. Fix 𝑔 ∈ 𝐺. Let 𝐵(𝑏,𝑎) ∈ Φ(𝑒, 𝐴)−1(𝑒′) and set 𝑦 = 𝑠𝐵(𝑏) and 𝑥 = 𝑠𝐴(𝑎) as in

Figure 3-18. We need to show that the canonical homeomorphism 𝐵𝑥 → 𝐵𝑔𝑥 sends 𝐵(𝑏,𝑎) to

𝐵(𝑔𝑏,𝑔𝑎). By construction, Φ(𝑒, 𝐴)(𝐵(𝑏,𝑎)) = 𝐵𝑏. Since 𝑒 ∈ 𝐸𝐺({𝐵𝑥}𝑥∈𝑋 , 𝑠𝐴), we also know

that 𝑔𝐵𝑏 = 𝐵𝑔𝑏. Recall from Lemma 3.6.2 that Φ(𝑒, 𝐴) is 𝐺-equivariant. It follows that

𝐵𝑔𝑏 = 𝑔
(︀
Φ(𝑒, 𝐴)(𝐵(𝑏,𝑎))

)︀
= Φ(𝑒, 𝐴)

(︀
𝑔𝐵(𝑏,𝑎)

)︀
.

Since 𝑒′ ∈ 𝐸𝐺({𝐵𝑦}𝑦∈𝑌 , 𝑠𝐵) and 𝐵(𝑏,𝑎) ⊂ 𝐵𝑎, we have that 𝑔𝐵(𝑏,𝑎) ⊂ 𝑔𝐵𝑎 = 𝐵𝑔𝑎. Then 𝑔𝐵(𝑏,𝑎)

is a box contained in 𝐵𝑔𝑎, which is sent to 𝐵𝑔𝑏 by Φ(𝑒, 𝐴). It follows that 𝑔𝐵(𝑏,𝑎) = 𝐵(𝑔𝑏,𝑔𝑎),

which completes the proof.

3.6.3 From Burnside functors to spatial refinements

In this section we describe how to use box maps to transform a Burnside functor 𝐹 :

2𝑛 → B𝐺 into a certain homotopy coherent diagram of spaces, called a spatial refinement of

𝐹 , in an equivariant manner.

Let Top𝐺* denote the category of based 𝐺-spaces. We refer the reader to [78, Section 4.2]

for the definition and discussion of homotopy coherent diagrams and homotopy colimits in

the equivariant setting, parallel to the non-equivariant treatment in [52, Section 4.2]. The

following is an equivariant analogue of [52, Definition 5.21] and [52, Proposition 5.22] (and

extends [78, Definition 4.11] and [78, Proposition 4.12] from Z/2Z to general finite groups

𝐺).

Definition 3.6.6. Fix a small category C and a strictly unitary lax 2-functor 𝐹 : C → B𝐺.

A 𝑘-dimensional spatial refinement of 𝐹 is a homotopy coherent diagram ̃︀𝐹𝑘 : C → Top𝐺*

satisfying
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(1) For any 𝑢 ∈ C , ̃︀𝐹𝑘(𝑢) = ⋁︀
𝑥∈𝐹 (𝑢)

𝑆𝑘.

(2) For any sequence 𝑢0
𝑓1−→ · · · 𝑓𝑚−→ 𝑢𝑚 of morphisms in C and 𝑡 ∈ 𝐼𝑚−1, the map

̃︀𝐹𝑘(𝑓𝑚, . . . , 𝑓1)(𝑡) : ⋁︁
𝑥∈𝐹 (𝑢0)

𝑆𝑘 →
⋁︁

𝑦∈𝐹 (𝑢𝑚)

𝑆𝑘

is a box map which refines the correspondence 𝐹 (𝑓𝑚∘· · ·∘𝑓1). Note that, by assumption,

the diagram lands in Top𝐺* , so that the map in (2) is also 𝐺-equivariant.

Proposition 3.6.7. Let C be a small category in which every sequence of composable non-

identity morphisms has length at most 𝑛, and let 𝐹 : C → B𝐺 be a strictly unitary lax

2-functor.

(1) If 𝑘 ≥ 𝑛, there is a 𝑘-dimensional spatial refinement of 𝐹 .

(2) If 𝑘 ≥ 𝑛 + 1, then any two 𝑘-dimensional spatial refinements of 𝐹 are equivariantly

weakly equivalent (see [78, Section 4.2] for a detailed discussion of weak equivalences

between spatial refinements).

(3) If ̃︀𝐹𝑘 is a 𝑘-dimensional spatial refinement of 𝐹 , then the (reduced) suspension of each̃︀𝐹𝑘(𝑢) and of each ̃︀𝐹𝑘(𝑓𝑚, . . . , 𝑓1)(𝑡) gives a (𝑘 + 1)-dimensional spatial refinement of

𝐹 .

Proof. This is completely parallel to the proofs of [52, Proposition 5.22] and [78, Proposition

4.12]. The modification is that the maps

𝑒𝑓𝑚,...,𝑓1 : 𝐼
𝑚−1 → 𝐸({𝐵𝑥}, 𝑠𝑓𝑚∘···∘𝑓1)

should land in 𝐸𝐺({𝐵𝑥}, 𝑠𝑓𝑚∘···∘𝑓1), which is still highly connected by Corollary 3.6.4. We

have also verified that equivariant boxes pull back to equivariant boxes in Lemma 3.6.5.

Note that suspension respects the group action, which permutes spheres.

115



3.6.4 From spatial refinements to realizations

In this section we discuss how to pass from a 𝐺-equivariant homotopy coherent spatial

refinement ̃︀𝐹𝑘 to a realization ‖𝐹‖𝑘 ∈ Top𝐺* . We also recall some of the cellular properties

of such ‖𝐹‖𝑘 and the induced maps between them.

Following [52, Definition 5.1], we begin by defining a slight enlargement of the cube

category 2𝑛, denoted 2𝑛+. The objects of 2𝑛+ are ob(2𝑛) ∪ {*}; that is, 2𝑛+ has an extra

object added. Set Hom2𝑛+
(𝑢, 𝑣) = Hom2𝑛(𝑢, 𝑣) if 𝑢, 𝑣 ∈ 2𝑛. Otherwise, for 𝑢 ∈ 2𝑛 ∖ {0},

set Hom2𝑛+
(𝑢, *) to consist of a single morphism. Finally, set Hom2𝑛+

(0, *) = Hom2𝑛+
(*, 0) =

Hom2𝑛+
(*, 𝑢) = ∅.

Let 𝐹 : 2𝑛 → B𝐺 be a Burnside functor, and let ̃︀𝐹𝑘 : 2𝑛 → Top𝐺* be a 𝑘-dimensional

spatial refinement of 𝐹 . Extend ̃︀𝐹𝑘 to a homotopy coherent diagram ̃︀𝐹+
𝑘 : 2𝑛+ → Top𝐺* by

setting ̃︀𝐹+
𝑘 (*) to be a single point. Following [78, Definition 4.9], define the space

‖𝐹‖𝑘 := hocolim ̃︀𝐹+
𝑘 , (3.24)

called a realization of 𝐹 . Since the homotopy coherent diagram ̃︀𝐹𝑘 takes values in Top𝐺* , the

space ‖𝐹‖𝑘 is again a based 𝐺-space.

There is a cell structure on ‖𝐹‖𝑘, called the coarse cell structure in Section 4.4 of [78],

with the cells of ‖𝐹‖𝑘 in bijection with
∐︀

𝑢∈2𝑛 𝐹 (𝑢). This cell structure is described in [52,

Section 6].

Lemma 3.6.8. With the above notation,

(1) The 𝐺-action on ‖𝐹‖𝑘 is cellular, and the bijection

{Cells of ‖𝐹‖𝑘} ←→
∐︁
𝑢∈2𝑛

𝐹 (𝑢)

is 𝐺-equivariant.

(2) The 𝐺-action on ‖𝐹‖𝑘 is free away from the basepoint.

(3) The weak equivalences of Proposition 3.6.7 induce equivariant homotopy equivalences

on realizations. Thus ‖𝐹𝑘‖ is well-defined and Σ‖𝐹‖𝑘 ≃ ‖𝐹‖𝑘+1.
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Proof. Statement (1) follows from inspecting the cell decomposition in [52, Proposition 6.1]

(see also the discussion in [78, Section 4.4]). Statement (2) follows from (1) and the fact that

𝐺 acts freely on the set
∐︀

𝑢∈2𝑛 𝐹 (𝑢).

For (3), we first note that (1) and (2) imply our realizations are 𝐺-CW complexes (the

action of 𝐺 is cellular and its fixed set is the basepoint, which is trivially a subcomplex).

Then as described in [78, Section 4.5], equivariant weak equivalences of homotopy coherent

diagrams induce equivariant weak equivalences on their homotopy colimits (which can be

taken to be cellular), which induce equivariant homotopy equivalences for large enough 𝑘 by

the equivariant Whitehead theorem.

Now recall from Section 3.3 that the totalization Tot(𝐹 ) of an equivariant Burnside

functor 𝐹 : 2𝑛 → B𝐺 is a complex of Z[𝐺]-modules, and that any natural transformation

𝜂 : 𝐹1 → 𝐹0 between two such functors induces a Z[𝐺]-linear chain map Tot(𝜂) : Tot(𝐹1)→

Tot(𝐹0). Also recall [78, Lemma 4.15], which in particular says that if 𝐹1, 𝐹0 : 2
𝑛 → B are

Burnside functors and 𝜂 : 𝐹1 → 𝐹0 is a natural transformation, then there is an induced

map 𝜂 : ‖𝐹1‖𝑘 → ‖𝐹0‖𝑘 for any realization. We record [78, Proposition 4.16] below relating

these notions, where the notation [𝑘] denotes an upwards homological shift by 𝑘 (that is,

𝐶𝑖[𝑘] := 𝐶𝑖−𝑘).

Proposition 3.6.9 ([78, Proposition 4.16]). Given 𝐹 : 2𝑛 → B, then its reduced shifted

cellular chain complex ̃︀𝐶𝑐𝑒𝑙𝑙
* (‖𝐹‖𝑘)[−𝑘] is isomorphic to Tot(𝐹 ), with the cells mapping to the

corresponding generators. If 𝜂 : 𝐹1 → 𝐹0 is a natural transformation of Burnside functors,

then the map ‖𝐹1‖𝑘 → ‖𝐹0‖𝑘 is cellular, and the induced cellular chain map agrees with

Tot(𝜂).

When 𝐹 takes values in B𝐺, the above discussion shows that ̃︀𝐶𝑐𝑒𝑙𝑙
* (‖𝐹‖𝑘)[−𝑘] is a Z[𝐺]-

module, and the isomorphism

̃︀𝐶𝑐𝑒𝑙𝑙
* (‖𝐹‖𝑘)[−𝑘] ∼= Tot(𝐹 )

of Proposition 3.6.9 is an isomorphism of complexes of Z[𝐺]-modules (see [78, Proposition

4.23]). Likewise, a natural transformation 𝜂 between two equivariant Burnside functors
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induces an equivariant cellular map on their realizations that recovers Tot(𝜂) on the chain

complex level.

Lemma 3.6.10. ([78, Lemma 4.17]) Let 𝐹1, 𝐹0 : 2
𝑛 → B𝐺 be equivariant Burnside functors,

and let ‖𝐹1‖𝑘, ‖𝐹0‖𝑘 be 𝑘-dimensional spatial refinements. If 𝜂 : 𝐹1 → 𝐹0 is a natural

transformation such that the induced map Tot(𝜂) : Tot(𝐹1) → Tot(𝐹0) is a chain homotopy

equivalence, then the induced map 𝜂 : ‖𝐹1‖𝑘 → ‖𝐹0‖𝑘 is an equivariant homotopy equivalence.

Proof. The argument is the same as in [78, Lemma 4.17]. The previous discussion shows

that the induced map on spaces 𝜂 : ‖𝐹1‖𝑘 → ‖𝐹0‖𝑘 is 𝐺-equivariant and cellular. We may

take 𝑘 big enough, so that the realizations are simply connected. Note that the 𝐺-action on

the realization is free away from the basepoint. Since Tot(𝜂) is a Z[𝐺]-linear isomorphism

on homology, the equivariant Whitehead theorem implies that 𝜂 : ‖𝐹1‖𝑘 → ‖𝐹0‖𝑘 is an

equivariant homotopy equivalence.

Remark 3.6.11. Although the discussion in [78, Section 4.4] actually makes use of spatial

refinements out of the category (2+)
𝑛 rather than 2𝑛+, the cellular structures described on

the realizations there induce equivalent cellular structures on our realizations via a simple

quotient within each cell. This is implicit in their reference to [52, Section 6] which builds

the coarse structure for realizations using 2𝑛+ as we are here; the alternative use of (2+)𝑛 in

[52] is denoted by 2𝑛† there.

3.6.5 The quantum annular spectrum 𝒳 𝑟
Aq
(𝐿)

Finally, we turn to defining our quantum annular spectrum and proving Theorem 3.0.1.

Let 𝐷 be a diagram for an annular link with 𝑛− negative crossings, and fix 𝐺 = Z/𝑟Z for

some 𝑟 ≥ 2. Let 𝐹q : 2
𝑛 → B𝐺 be a quantum annular Burnside functor for 𝐷 as provided by

Theorem 3.5.2. Let ̃︀𝐹+
q,𝑘 : 2

𝑛
+ → Top𝐺* be a 𝑘-dimensional spatial refinement extended to the

enlarged cube category 2𝑛+, as described in Section 3.6.3 and the beginning of Section 3.6.4.

Let ‖𝐹q‖𝑘 be the realization, as defined in (3.24).
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Definition 3.6.12. Define the quantum annular Khovanov spectrum 𝒳 𝑟
Aq
(𝐷) to be the sus-

pension spectrum of ‖𝐹q‖𝑘, desuspended 𝑘 + 𝑛− times; that is,

𝒳 𝑟
Aq
(𝐷) := Σ−𝑘−𝑛− (Σ∞‖𝐹q‖𝑘) .

By dualizing the isomorphism in Proposition 3.6.9, we obtain the following isomorphism

of Z[𝐺]-modules:

𝐶*(𝒳 𝑟
Aq
(𝐷)) ∼= 𝐶𝐾ℎ*Aq

(𝐷)⊗k k𝑟. (3.25)

Theorem 3.6.13. For a fixed annular link diagram 𝐷 and 𝑟 ≥ 2, the naive 𝐺-spectrum

𝒳 𝑟
Aq
(𝐷) is well-defined; that is, different choices during the construction yield equivariantly

stably homotopy equivalent spectra.

Proof. The construction of 𝒳 𝑟
Aq
(𝐷) requires a choice of generators at each vertex of the cube

to build 𝐹q, together with a choice of spatial refinement of 𝐹q. Proposition 3.5.3 says that

any two choices of generators give naturally isomorphic Burnside functors, which in turn

yield equivariantly stably homotopy equivalent spectra by Lemma 3.6.10. Meanwhile, as

long as 𝑘 is large enough, any two spatial refinements yield homotopy equivalent realizations

by Lemma 3.6.8, and thus equivariantly stably homotopy equivalent spectra.

Finally, we address the independence of choice of diagram with the following theorem.

Theorem 3.6.14. Let 𝐷 and 𝐷′ be two annular link diagrams for the same annular link

𝐿 ⊂ A × 𝐼. Then 𝒳 𝑟
Aq
(𝐷) is equivariantly stably homotopy equivalent to 𝒳 𝑟

Aq
(𝐷′), and as

such we may use the notation 𝒳 𝑟
Aq
(𝐿) to denote the quantum annular 𝐺-equivariant stable

homotopy type of 𝐿.

Proof. The diagrams 𝐷 and 𝐷′ are connected by a series of moves corresponding either

to the annular isotopies of Section 3.5.2 or Reidemeister moves. Isotopies were shown to

induce natural isomorphisms of Burnside functors (Proposition 3.5.4), which therefore induce

equivariant stable equivalences by Lemma 3.6.10.

With such planar equivalences at hand, we can assume that any Reidemeister move takes

place in a disk disjoint from the seam 𝜇. Such moves then induce homotopy equivalences in
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precisely the same fashion as they do for the classical Khovanov homotopy type [57, Section

6]. That is, any Reidemeister move corresponds to finding subfaces of the relevant cube

corresponding to acyclic subcomplexes (or quotient complexes) in the totalization. (These

subfaces are referred to as upwards- and downwards-closed subcategories in the original

treatment of [57].) The complements of these acyclic faces can then be included into the

large cube; the inclusion induces a map on stable homotopy types that gives an isomorphism

on homology, and therefore is a stable equivalence by Whitehead’s theorem. All of this

continues to hold in the equivariant setting so long as the group 𝐺 is finite - face inclusions

induce equivariant maps by definition.

As in [52, Section 4.7] and [78, Section 3.9], we also have a splitting of the functor 𝐹q

into a coproduct over the two gradings qdeg and adeg (see (3.1)). Thus the spectrum also

splits as a wedge sum

𝒳 𝑟
Aq
(𝐷) =

⋁︁
𝑗,𝑘

𝒳 𝑟;𝑗,𝑘
Aq

(𝐷)

where 𝑗 corresponds to qdeg and 𝑘 corresponds to adeg. As in [57, Theorem 1.1] (see also

[51, Theorem 1]), Theorems 3.6.13 and 3.6.14 respect this splitting, as does Equation (3.25)

as indicated below:

𝐶*(𝒳 𝑟;𝑗,𝑘
Aq

(𝐷)) ∼= 𝐶𝐾ℎ*,𝑗,𝑘Aq
(𝐷)⊗k k𝑟.

We end this section with some remarks about the spectrum 𝒳 𝑟
Aq
(𝐿). Although the con-

struction above was aimed at building a naive 𝐺-spectrum, one could also construct a genuine

𝐺-spectrum in a similar manner by applying the functor Σ∞
𝐺 , rather than Σ∞, to the re-

alization ‖𝐹q‖𝑘. This functor produces genuine 𝐺-spectra using smash products with all

𝐺-representation spheres, rather than using only spheres with trivial 𝐺-action as Σ∞ does.

We also note that, in general, 𝐺 acts on 𝒳 𝑟
Aq
(𝐿) in a nontrivial way. Precisely, 𝒳 𝑟

Aq
(𝐿)

does not decompose into a wedge product which is simply permuted by 𝐺. This is already

evident on homology due to the calculation in [11, Proposition 6.9] for the annular closure of

(2, 𝑛) torus links. For an appropriate 𝑛, homological degree 𝑖, and 𝑞-degree 𝑗, the quantum

annular homology is of the form 𝐾ℎ𝑖,𝑗Aq
(𝑇2,𝑛) = k𝑟/(q2 + 1).
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3.7 Maps on spectra induced by annular link cobordisms

In [58, Section 3] the authors assign to a link cobordism 𝑊 ⊂ R3 × [0, 1] between two

links 𝐿0 ⊂ R3 × {0} and 𝐿1 ⊂ R3 × {1} a map of spectra

𝜙𝑊 : 𝒳 (𝐿1)→ 𝒳 (𝐿0),

such that the induced map on cohomology

𝜙*
𝑊 : 𝐻*(𝒳 (𝐿0))→ 𝐻*(𝒳 (𝐿1))

recovers the corresponding link cobordism maps 𝑊* in Khovanov homology as studied in [33,

29, 8]. The map 𝜙𝑊 is constructed by first decomposing𝑊 into elementary cobordisms whose

planar projections correspond to either Reidemeister moves or Morse moves (births/cups,

saddles, or deaths/caps) and assigning maps to each elementary cobordism. A generically

embedded 𝑊 determines such a decomposition. It was conjectured in [58] that isotopic

cobordisms induce stably homotopic maps, and this was recently proven in [54].

Now consider a cobordism 𝑊 ⊂ (A×𝐼)×[0, 1] between two annular links 𝐿0 ⊂ A×𝐼×{0}

and 𝐿1 ⊂ A × 𝐼 × {1} that is transverse to the 3-dimensional membrane 𝜇 × 𝐼 × [0, 1]. In

[11] the authors show that there is an induced map

𝑊* : 𝐾ℎAq(𝐿0)→ 𝐾ℎAq(𝐿1)

on the quantum annular homology, defined using the general theory of twisted horizon-

tal traces and shadows established in [11, Section 3], as well as the functoriality of Chen-

Khovanov bimodules under tangle cobordisms ([19, Proposition 6]). The map induced by 𝑊

on the chain complex level can be determined by the sequence of maps given in [11, Equation

(7.2)].

By [11, Theorem B], an isotopy of 𝑊 can alter the map 𝑊* by a sign change and a

power of q; the sign ambiguity is inherited from the similar statement in the usual Khovanov

homology, while the power of q comes from the ability to isotope parts of 𝑊 through the
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membrane. If one instead demands that isotopies fix the membrane, then 𝑊* is well-defined

up to a sign.

The main goal in this section is to prove Theorem 3.7.2. We first establish some pre-

liminary results in the next section, where we compute 𝑊* explicitly for certain elementary

cobordisms; this computation is used in the proof of Theorem 3.7.2.

3.7.1 Elementary cobordisms

This section establishes a technical lemma needed for the proof of Theorem 3.7.2. We

compare two ways of constructing a map on quantum annular chain complexes for certain

elementary annular link cobordisms 𝑊 . On the one hand, 𝑊 induces a chain map 𝑊* as

defined in [11, Equation (7.2)]. On the other hand, for each type of elementary annular

link cobordism 𝑊 , we can define a second map 𝑊∙ tailored towards the maps on spectra

corresponding to the constructions in this chapter (mainly those in Sections 3.2.1 and 3.5.2).

Our goal will be to show that these two maps 𝑊*,𝑊∙ differ at most by some power of q in

all cases.

We begin by describing the general construction of the map 𝑊*. Let 𝑊 ⊂ A× 𝐼 × [0, 1]

be a corbordism between annular links 𝐿 and 𝐿′ which intersect the membrane in 𝑘 and ℓ

points respectively, and let 𝑇 , 𝑇 ′ denote the tangles obtained by cutting 𝐿 and 𝐿′ along the

membrane. Then 𝑊 intersects the 3-dimensional membrane 𝜇× 𝐼 × [0, 1] in a (𝑘, ℓ)-tangle

𝑃 . As in [11, Section 7.1], we represent 𝑊 by a tangle cobordism ̃︁𝑊 : 𝑃𝑇 → 𝑇 ′𝑃 :

𝑘 𝑘

ℓ ℓ

𝑇

𝑃 𝑃
̃︁𝑊
𝑇 ′

(3.26)

The chain map 𝑊* : 𝐶𝐾ℎAq(𝐿)→ 𝐶𝐾ℎAq(𝐿
′) is then given in each homological grading and

quantum grading by the formula (7.2) in [11].

To describe the map 𝑊∙, we distinguish four types of elementary cobordisms.

I. Reidemeister moves away from the seam.

II. Morse moves away from the seam.
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Figure 3-19

III. Moving an arc across the seam as in the 𝑃±1 and 𝑁±1 moves of Figure 3-4.

IV. Moving a crossing through the seam as in Figure 3-19.

For Type I moves, we define 𝑊∙ as in [33] and [8]; that is, a Reidemeister move is assigned

its chain homotopy equivalence.

For the remaining types of moves, let 𝐷 and 𝐷′ denote the diagrams for 𝐿 and 𝐿′ differing

locally as indicated by the elementary cobordism 𝑊 , and let 𝑛 be the number of crossings.

For each 𝑢 ∈ {0, 1}𝑛, 𝑊 induces an annular cobordism 𝑅𝑢 : 𝐷𝑢 → 𝐷′
𝑢 in A × [0, 1]. The

quantum annular TQFT ℱAq assigns a map to this cobordism; after tensoring with k𝑟, we

write this as

ℱ 𝑟Aq
(𝑅𝑢) : ℱ 𝑟Aq

(𝐷𝑢)→ ℱ 𝑟Aq
(𝐷′

𝑢).

If we pick out generators for ℱ 𝑟Aq
(𝐷𝑢) and ℱ 𝑟Aq

(𝐷′
𝑢) via cobordisms from standard configura-

tions as in Section 3.2, then the image of these generators under this map can be computed

by composing cobordisms. We will use shifted copies of this map to define the components

𝑊∙𝑢 : ℱ 𝑟Aq
(𝐷𝑢)→ ℱ 𝑟Aq

(𝐷′
𝑢) of 𝑊∙ on each smoothing individually. Note that this is precisely

how the natural isomorphisms of the quantum annular Burnside functors are determined in

Section 3.5.2 (although there we omitted the functor ℱ 𝑟Aq
from the notation).

If 𝑊 is of Type II or Type III, we define 𝑊∙𝑢 on each smoothing to be ℱ 𝑟Aq
(𝑅𝑢). Notice

that for Type II moves, this is equivalent to defining 𝑊∙ as in [33] and [8] where Morse

moves are assigned either the unit, saddle map, or counit on each smoothing, corresponding

to 0-handle, 1-handle, and 2-handle attachments respectively.

Finally, if 𝑊 is of Type IV, then there are four cases to consider depending on the type

of crossing and the direction of movement across the seam. In all of these cases, we will

define

𝑊∙𝑢 := q𝑎ℱ 𝑟Aq
(𝑅𝑢), (3.27)
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for some power 𝑎 ∈ Z which is determined by the resolution of the crossing near the seam.

If the smoothing corresponding to 𝑢 resolves this crossing into two parallel lines each inter-

secting 𝜇 once, we set 𝑎 := 0 in the formula (3.27) for 𝑊∙𝑢, so that 𝑊∙𝑢 = ℱ 𝑟Aq
(𝑅𝑢) once

again. Note that 𝑅𝑢 is just the identity cobordism in this case, so 𝑊∙𝑢 is the identity map.

Otherwise, we set 𝑎 := 1 for the moves (𝑎) and (𝑑), and 𝑎 := −1 for moves (𝑏) and (𝑐).

Note that in all cases, 𝑊∙ is a chain map; for Type I and II moves this follows from the

definitions, while for Type III and IV moves this follows from the trace relations in Figure

2-16. Note also that, for Type III and IV moves, the maps 𝑊∙ defined here are precisely the

totalizations of the natural isomorphisms built in Proposition 3.5.4.

Lemma 3.7.1. Let 𝐿 and 𝐿′ be annular links and let 𝑊 : 𝐿 → 𝐿′ be an elementary cobor-

dism.

(1) If 𝑊 is of Type I, II, or III, then 𝑊* = 𝑊∙.

(2) If 𝑊 is Type IV, then 𝑊* = q𝑚𝑊∙ for some 𝑚 which depends only on the sign of the

crossing involved in the move.

Proof. Throughout the proof, we will use 𝐶(−) to denote the Chen-Khovanov complex of

bimodules, which is denoted by 𝐶𝐶𝐾(−) in [11, Section 5.5].

The first thing to notice is that, in any case where the intersection tangle 𝑃 = 𝑊 ∩ 𝜇×

𝐼 × [0, 1] has no crossings, the formula [11, (7.2)] for 𝑊* simplifies drastically. There is no

summation over indices 𝑖′ since 𝐶(𝑃 ) has only one term. In all such cases (which include

Types I, II, and III here), one shows that 𝑊* is equal to 𝑊∙ by direct comparison.

Finally, for elementary cobordisms 𝑊 of Type IV, we focus on the case (a) from Figure

3-19. Observe that the tangle 𝑃 in this case has a single crossing, that 𝑇 and 𝑇 ′ can be

written as 𝑇 = 𝑇 ′′𝑃 and 𝑇 ′ = 𝑃𝑇 ′′, and that ̃︁𝑊 : 𝑃𝑇 → 𝑇 ′𝑃 is the identity cobordism. All

of this is illustrated in Figure 3-20.

Using ⊗ to denote the tensor product over the relevant Chen-Khovanov arc algebra, the

map ̃︁𝑊* : 𝐶𝑖(𝑇 ) ⊗ 𝐶𝑖′(𝑃 ) → 𝐶𝑖′(𝑃 ) ⊗ 𝐶𝑖(𝑇 ′) is the identity on the summand 𝐶𝑖′(𝑃 ) ⊗

𝐶𝑖−𝑖′(𝑇 ′′)⊗𝐶𝑖′(𝑃 ) which appears in both 𝐶𝑖(𝑇 )⊗𝐶𝑖′(𝑃 ) and 𝐶𝑖′(𝑃 )⊗𝐶𝑖(𝑇 ′), and ̃︁𝑊* is 0

on the other summands. In particular, there is no need for summing over various 𝑖′ in the
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Figure 3-20

formula [11, (7.2)] for 𝑊*, and the only possible difference between 𝑊* and 𝑊∙ acting on

any given generator is in the use of the third map 𝜃 in [11, (7.2)] which permutes the tensor

factors and multiplies generators 𝑥⊗ 𝑦⊗ 𝛼 by a power of q according to the grading of 𝑥 as

defined in [11, Section 5.5].

To analyze this potential difference, let 𝑃0, 𝑃1 denote the 0- and 1-resolutions of 𝑃 . When

constructing 𝑊∙ on each resolution, we view 𝑥 as living in either ℱ𝐶𝐾(𝑃0) or ℱ𝐶𝐾(𝑃1). If

𝑥 ∈ ℱ𝐶𝐾(𝑃1), there is an extra factor of q1 in our map (recall that we are considering case (a)

amongst the Type IV moves; see the paragraph following (3.27)). However, in the definition

of 𝑊*, we view 𝑥 as living in

ℱ𝐶𝐾(𝑃 ) =
[︀
ℱ𝐶𝐾(𝑃0){𝑚} → ℱ𝐶𝐾(𝑃1){𝑚+ 1}

]︀
,

where the grading shift 𝑚 depends on the sign of the crossing. And so the map 𝜃 multiplies

generators by an extra overall factor of q𝑚 when defining 𝑊* as compared to how it would

act when defining 𝑊∙, as desired.

The proof for case (𝑐) of Figure 3-19 is similar. For the cases (𝑏) and (𝑑), note that the

map 𝑊∙ is precisely the inverse of the map defined in (𝑎) and (𝑐), respectively. Moreover,

the cobordisms 𝑊 of moves (𝑏) and (𝑑) are inverses (in the category 𝐿𝑖𝑛𝑘𝑠q(A), see [11,

Proposition 6.8]) to the cobordisms of (𝑎) and (𝑐), respectively. This completes the proof.

125



3.7.2 Cobordism maps of quantum annular spectra

We are now ready to state and prove the main result in this section.

Theorem 3.7.2 ([5, Theorem 6.1]). Fix 𝑟 ∈ N. A generically embedded cobordism 𝑊 ⊂

A× 𝐼 × [0, 1] between two annular links 𝐿0 and 𝐿1 induces a map

𝜙𝑟𝑊 : 𝒳 𝑟
Aq
(𝐿1)→ 𝒳 𝑟

Aq
(𝐿0)

whose induced map on cohomology

(𝜙𝑟𝑊 )* : 𝐻*(𝒳 𝑟
Aq
(𝐿0))→ 𝐻*(𝒳 𝑟

Aq
(𝐿1))

equals the map 𝑊* on quantum annular Khovanov homology over the ring k𝑟.

Remark 3.7.3. We stress that Theorem 3.7.2 assigns a map to cobordisms 𝑊 that come

with a particular decomposition into a sequence of elementary cobordisms in the thickened

annulus with membrane. The map 𝜙𝑟𝑊 is not known to be an invariant of 𝑊 , even up to a

factor of ±q𝑘. But see Remark 3.7.4 below.

Proof of Theorem 3.7.2. A generic annular cobordism determines a sequence of elementary

cobordisms (called elementary string interactions in [8, 25]), which are either Reidemeister

moves or Morse moves. When accounting for the presence of the membrane 𝜇 × 𝐼 × [0, 1],

there are certain additional elementary isotopies of a link through the seam which must be

considered: we have the 𝑃 and 𝑁 moves of Figure 3-4, as well as pushing a crossing through

the seam, as in (3.19). Meanwhile, that 𝑊 is generic implies that all Reidemeister moves

and Morse moves occur away from the seam.

For all elementary isotopies of the link, we already have stable homotopy equivalences

via Theorem 3.6.14. As in the case for 𝑆3, we wish to use the inverses of these maps. It is

clear that such inverses induce the maps 𝑊∙ described in the Appendix, and so according

to Lemma 3.7.1, any such map will recover its corresponding 𝑊* up to some power of q.

We may thus compose any such stable homotopy equivalence with some iterate of the group

action on 𝒳 𝑟
Aq
(𝐿0) to define 𝜙𝑟𝑊 which induces precisely 𝑊*.
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Meanwhile, Morse moves induce natural transformations of Burnside functors in the same

manner as they do in 𝑆3: births induce correspondences which involve a 𝑤+ label on the

new (trivial, disjoint from the seam) circle; deaths induce correspondences which place a

𝑤− label on the dying (trivial, disjoint from the seam) circle; and saddles utilize the higher

dimensional cube which would be built if the diagram had a crossing placed at the point of

the saddle. Carrying out these constructions equivariantly does not present any new issues,

leading to constructions of maps 𝜙𝑟𝑊 via Proposition 3.6.9 which again induce the maps 𝑊∙

of the Appendix. For these moves (Type II in Lemma 3.7.1) we have 𝑊* = 𝑊∙, concluding

the proof of the Theorem.

Remark 3.7.4. Let 𝑊,𝑊 ′ be two isotopic annular link cobordisms with corresponding maps

on spectra 𝜙𝑟𝑊 , 𝜙
𝑟
𝑊 ′ via Theorem 3.7.2. Let 𝜏q denote the map on spectra determined by

the action of the distinguished generator of the group 𝐺 = Z/𝑟Z. Then it is reasonable to

conjecture that there exists some 𝑚 ∈ Z such that the maps 𝜙𝑟𝑊 and 𝜏𝑚q ∘ 𝜙𝑟𝑊 ′ are stably

homotopic.

This is based on the similar conjecture regarding homotopy functoriality in [58] for cobor-

disms in R3 × [0, 1], proven in [54]. Notice that the composition with the map 𝜏𝑚q recovers

the ambiguity in the power of q which is known to exist for the corresponding maps on the

quantum annular homology.

Let S denote the sphere spectrum and define

𝒳 𝑟
Aq
(∅) :=

⋁︁
𝐺

S (3.28)

where 𝐺 acts by permuting the wedge summands as usual. Then we have the following

corollary for closed surfaces in A×𝐷2 formed by sweeping out a link in the 𝑆1 direction. It

is a spectral analogue of [11, Theorem D].

Corollary 3.7.5. Let 𝐿 be a link in the 3-ball 𝐵3, and consider the surface ̂︁𝑊 = 𝑆1 × 𝐿 in

A×𝐷2 ∼= 𝑆1×𝐵3. Let 𝑊 denote a copy of ̂︁𝑊 perturbed to be generic, viewed as a cobordism

from ∅ to itself. Then the map

𝜙𝑟𝑊 : 𝒳Aq(∅) −→ 𝒳Aq(∅)
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induces the map on quantum annular homology

(𝜙𝑟𝑊 )* : 𝐾ℎAq(∅) = k𝑟 −→ k𝑟 = 𝐾ℎAq(∅)

which is given by multiplication by the Jones polynomial of 𝐿, considered as an element of

k𝑟, up to a sign and a power of q (where the standard basis of the groups k𝑟 ∼=
⨁︀

𝐺 Z is

written as {1, q, . . . q𝑟−1}).

Remark 3.7.6. In order to make sense of assigning a wedge of sphere spectra to the empty

diagram ∅ in terms of Burnside functors, we assign to ∅ the functor 𝐹q : 2
0 = {0} → B𝐺

defined by setting 𝐹q(0) := 𝐺 × {1}, where 1 ∈ ℱAq(∅) ⊗k k𝑟 = k𝑟 is the chosen generator.

The spatial refinement is then a wedge of 𝑟 spheres with no box maps, and in the homotopy

colimit there is nothing to identify except the basepoint of
⋁︀
𝐺 𝑆

𝑘 with the new basepoint in

20+. Thus the final space is just a wedge of 𝑟 spheres with the natural action, desuspended

𝑘 times, and its reduced cohomology is isomorphic to k𝑟 as a k𝑟-module.

Proof of Corollary 3.7.5. Theorem 3.7.2 implies that (𝜙𝑟𝑊 )* = 𝑊*, and by [11, Proposition

6.8], we also have 𝑊* = ±q𝑘̂︁𝑊* for some 𝑘 ∈ Z. Finally, [11, Theorem D] states that ̂︁𝑊*

is multiplication by the Jones polynomial of 𝐿. In fact, the more general statement about

Lefschetz traces in [11, Theorem D] also applies here.

3.8 Taking the quotient

Our goal in this section is to prove Theorem 3.0.2, stating that the quotient 𝒳 𝑟
Aq
(𝐷)/𝐺 of

the quantum annular homotopy type is stably homotopy equivalent to the classical annular

homotopy type 𝒳A(𝐷). This is accomplished in two stages.

First we show that the quotient of 𝐹q is naturally isomorphic to the classical annular

Burnside functor 𝐹1 defined in Section 3.5.3. This will follow from Proposition 3.2.18 which

establishes that the matching forced by powers of q in the quantum theory agrees with the

ladybug matching made with the left pair in the classical theory.

Next we show that taking the quotient of a spatial refinement for 𝐹𝑞 yields a spatial

refinement for 𝐹1. The result will then follow from the property that homotopy colimits
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commute with taking quotients.

Let 𝐷 be a diagram for an annular link with 𝑛 crossings. Let 𝐹1 : 2𝑛 → B denote the

classical annular Khovanov Burnside functor, where the ladybug matching is made with the

left choice. Recall the quotient functor (−)/𝐺 : B𝐺 → B from Section 3.3. We can compose

𝐹q : 2
𝑛 → B𝐺 with the quotient functor to obtain a Burnside functor 𝐹q/𝐺 : 2𝑛 → B. We

will also use (−)/𝐺 : Top𝐺* → Top* to denote the quotient functor on 𝐺-spaces. It will be

clear from context which functor is used.

Proposition 3.8.1. The functors 𝐹q/𝐺 : 2𝑛 → B and 𝐹1 : 2𝑛 → B are naturally isomor-

phic.

Proof. We will use the strategy of Section 3.4 to build a natural isomorphism 𝜂 : 𝐹q/𝐺→ 𝐹1.

For 𝑢 ∈ 2𝑛, there is a natural identification

𝐹q(𝑢)/𝐺 = (𝐺× Γ(𝑢))/𝐺 ∼= Γ(𝑢) = 𝐹1(𝑢).

Let 𝜓𝑢 : 𝐹q(𝑢)/𝐺→ 𝐹1(𝑢) be the above bijection. For 𝑢 ≥1 𝑣, let 𝐴𝑢,𝑣 denote the correspon-

dence assigned by 𝐹𝑞 to the edge 𝑢→ 𝑣, and let 𝐴′
𝑢,𝑣 denote the correspondence assigned by

𝐹1. There is an injection

𝐴𝑢,𝑣/𝐺 →˓ 𝐹q(𝑢)/𝐺× 𝐹q(𝑣)/𝐺

given by [q𝑘𝑦, qℓ𝑥] ↦→ ([𝑥], [𝑦]). We will identify 𝐴𝑢,𝑣/𝐺 with its image in 𝐹q(𝑢)/𝐺×𝐹q(𝑣)/𝐺.

By Lemma 3.2.14, the map

𝜓𝑢 × 𝜓𝑣 : 𝐹q(𝑢)/𝐺× 𝐹q(𝑣)/𝐺→ 𝐹1(𝑢)× 𝐹1(𝑣)

restricts to a bijection

𝜓𝑢 × 𝜓𝑣 : 𝐴𝑢,𝑣/𝐺→ 𝐴′
𝑢,𝑣.

Thus conditions (NI 1), (NI 2), and (NI 3) of Section 3.4 are satisfied. It remains to verify

that the diagram (3.15) commutes. Recall that we have used the ladybug matching made

with the left pair for both 𝐹q and 𝐹1. Then commutativity of (3.15) follows from Proposition

3.2.18.
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Note that any homotopy coherent diagram in Top𝐺* can be composed with the quotient

functor (−)/𝐺 : Top𝐺* → Top* to give a homotopy coherent diagram in Top* as in [78,

Section 4.2].

Proposition 3.8.2. Let ̃︁𝐹q : 2
𝑛 → Top𝐺* be a 𝑑-dimensional spatial refinement of 𝐹q. Then

the homotopy coherent diagram ̃︁𝐹q/𝐺, obtained by applying (−)/𝐺 to each ̃︁𝐹q(𝑣) and each̃︁𝐹q(𝑓𝑚, . . . , 𝑓1), is a 𝑑-dimensional spatial refinement of 𝐹q/𝐺.

Proof. On a vertex 𝑢 ∈ 2𝑛, since 𝐹q(𝑢) = 𝐺× 𝐹1(𝑢), it is again clear that the quotient

(̃︁𝐹q/𝐺)(𝑢) =̃︁𝐹q(𝑢)/𝐺 =

(︂ ⋁︁
q𝑘𝑥∈𝐹q(𝑢)

𝑆𝑑
)︂
/𝐺

is canonically identified with

𝐹q/𝐺(𝑢) =
⋁︁

𝑥∈𝐹q(𝑢)/𝐺

𝑆𝑑.

The key point is to recognize that, for any correspondence 𝐴 = 𝐹q(𝑓) assigned to some

morphism 𝑓 : 𝑢→ 𝑣 in 2𝑛 (with source and target maps 𝑠 and 𝑡, respectively), the quotient

of a box map refining 𝐴 is itself a box map which refines the quotient of 𝐴. That is to say,

given a choice of equivariant little boxes

𝑒 = {𝐵𝑎}𝑎∈𝐴 ∈ 𝐸𝐺({𝐵q𝑘𝑥}q𝑘𝑥∈𝐹q(𝑢), 𝑠)

which induces a map (︂ ⋁︁
q𝑘𝑥∈𝐹q(𝑢)

𝑆𝑑
)︂

Φ(𝑒,𝐴)−−−−→
(︂ ⋁︁

qℓ𝑦∈𝐹q(𝑣)

𝑆𝑑
)︂
,

the image of the boxes 𝑒 in the quotient gives a new collection of little boxes

𝑒/𝐺 := {𝐵𝑎/𝐺}𝑎∈𝐴 ∼= {𝐵[𝑎]}[𝑎]∈𝐴/𝐺 ∈ 𝐸({𝐵𝑥}𝑥∈𝐹q(𝑢)/𝐺, 𝑠/𝐺)
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such that the following diagram commutes:

(︂ ⋁︁
q𝑘𝑥∈𝐹q(𝑢)

𝑆𝑑
)︂
/𝐺

(︂ ⋁︁
qℓ𝑦∈𝐹q(𝑣)

𝑆𝑑
)︂
/𝐺

⋁︁
𝑥∈𝐹q(𝑢)/𝐺

𝑆𝑑
⋁︁

𝑦∈𝐹q(𝑣)/𝐺

𝑆𝑑

Φ(𝑒,𝐴)/𝐺

∼= ∼=

Φ(𝑒/𝐺,𝐴/𝐺)

.

Note that the group is simply permuting equivalent boxes, and recall that all correspon-

dences coming from edges of the cube are subsets of the products of their source and target.

Furthermore, all boxes remain distinct after taking the quotient. Thus the quotient boxes

𝑒/𝐺 fit into the commuting diagram as required, and the homotopy coherent diagram ̃︀𝐹q/𝐺

can be identified with a spatial refinement of 𝐹q/𝐺.

Recall the enlarged cube category 2𝑛+ from Section 3.6.4. Any homotopy coherent diagram

𝐷 : 2𝑛 → Top* (resp. 𝐷 : 2𝑛 → Top𝐺* ) can be extended to 𝐷+ : 2𝑛+ → Top* (resp.

𝐷+ : 2𝑛+ → Top𝐺* ) by setting 𝐷+(*) to be a single point space. Take 𝑘-dimensional spatial

refinements of 𝐹q, 𝐹1, and 𝐹q/𝐺, denoted ̃︁𝐹q, ̃︁𝐹1, and 𝐹q/𝐺 respectively (suppressing the

subscript 𝑘). Extend each of them to diagrams ̃︁𝐹q

+
, ̃︁𝐹1

+
, and 𝐹q/𝐺

+

out of 2𝑛+, and take the

corresponding homotopy colimits ‖𝐹q‖𝑘, ‖𝐹1‖𝑘, and ‖𝐹q/𝐺‖𝑘. We also have the homotopy

coherent diagram ̃︁𝐹q/𝐺; its two extensions ̃︁𝐹q

+
/𝐺 and (̃︁𝐹q/𝐺)

+ are equal.

Corollary 3.8.3. ‖𝐹1‖𝑘 ≃ (‖𝐹q‖𝑘)/𝐺.

Proof. By Proposition 3.8.1, Proposition 3.6.7, and Lemma 3.6.10, there is a homotopy

equivalence ‖𝐹1‖𝑘 ≃ ‖𝐹q/𝐺‖𝑘. By Proposition 3.8.2 and Proposition 3.6.7, there is also a

homotopy equivalence ‖𝐹q/𝐺‖𝑘 ≃ hocolim(̃︁𝐹q/𝐺)
+. Since (̃︁𝐹q/𝐺)

+ =̃︁𝐹q

+
/𝐺, we obtain

hocolim(̃︁𝐹q/𝐺)
+ = hocolim

(︁̃︁𝐹q

+
/𝐺
)︁
.

Finally, homotopy colimits commute with the quotient functor (−)/𝐺. This is clear from

the definition of homotopy colimit, but is also stated explicitly as property (ho-4) in [78,
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Section 4.2]. Therefore

hocolim
(︁̃︁𝐹q

+
/𝐺
)︁
∼= hocolim(̃︁𝐹q)/𝐺 = (‖𝐹q‖𝑘) /𝐺.

Remark 3.8.4. The techniques in this section can also be used to show that, for any subgroup

Z/𝑠Z of Z/𝑟Z, the quotient 𝒳 𝑟
Aq
(𝐷)/(Z/𝑠Z) recovers the naive (Z/𝑟Z)/(Z/𝑠Z)-spectrum

𝒳 𝑟/𝑠
Aq

(𝐷).

3.9 Towards lifting the 𝑈q(sl2) action

This section concerns lifting the 𝑈q(sl2) action on quantum annular homology, constructed

in [11, Theorem D], to the level of spectra. We start by briefly summarizing the relevant

background; see [11, Appendix A.1] for more details. Let 𝑈q(sl2) be the k-algebra generated

by 𝐸,𝐹,𝐾 and 𝐾−1 subject to the relations

𝐾𝐸 = q2𝐸𝐾

𝐾𝐹 = q−2𝐹𝐾

𝐾𝐾−1 = 1 = 𝐾−1𝐾

𝐾 −𝐾−1 = (q− q−1)(𝐸𝐹 − 𝐹𝐸)
(3.29)

Let C be a configuration consisting of 𝑒 essential circles and 𝑡 trivial circles, with corre-

sponding standard configuration C ∘. Recall from Section 2.4.2 that ℱAq(C
∘) ∼= 𝑉 ⊗𝑒

q ⊗𝑊⊗𝑡

carries an action of 𝑈q(sl2) via an identification

𝑉 ⊗𝑒
q
∼= 𝑉1 ⊗ 𝑉 *

1 ⊗ 𝑉1 ⊗ · · ·

where 𝑉1 is the fundamental representation of 𝑈q(sl2), and 𝑊 is the trivial 2-dimensional

representation. Fix an isotopy from C ∘ to C . Then ℱAq(C ) inherits a 𝑈q(sl2)-action via the

isomorphism ℱAq(C
∘) ∼= ℱAq(C ). This action descends to a 𝑈q(sl2) action on the homology

𝐾ℎAq(𝐿) for any annular link 𝐿.

The stable homotopy type 𝒳 𝑟
Aq
(𝐿) is constructed for the modified quantum annular func-

tor ℱ 𝑟Aq
; see the discussion in the beginning of Section 3.5. In what follows we will also
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denote by 𝑈q(sl2) the result of applying (−) ⊗k k𝑟 to the algebra defined above. It has the

same generators and relations, with the additional relation that q𝑟 = 1. It is natural to

ask if the actions of 𝐸,𝐹,𝐾±1 on 𝐾ℎAq(𝐿) can be lifted to the homotopy type. For each

𝐽 ∈ {𝐸,𝐹,𝐾,𝐾−1}, this would mean constructing an endomorphism 𝒥 : 𝒳 𝑟
Aq
(𝐿)→ 𝒳 𝑟

Aq
(𝐿)

such that the induced map on cohomology 𝒥 * is equal to the action of 𝐽 .

Conjecture 3.9.1 ([5, Conjecture 1.4]). The action of 𝑈q(sl2) on quantum annular homology

𝐾ℎAq(𝐿) can be lifted to an action on 𝒳 𝑟
Aq
(𝐿).

Aside from lifting the action of generators, the above conjecture also concerns lifting, in

an appropriate sense, the defining 𝑈q(sl2) relations. See Remark 3.9.3 for further discussion.

Let 𝐹1, 𝐹0 : 2𝑛 → B𝐺 be Burnside functors. Recall from Proposition 3.6.9 (and the

discussion following it) that a natural transformation 𝜂 : 𝐹1 → 𝐹0 induces a cellular map

‖𝐹1‖𝑘 → ‖𝐹0‖𝑘 which agrees with the map Tot(𝜂) : Tot(𝐹1)→ Tot(𝐹0).

Each of 𝐸,𝐹,𝐾 and𝐾−1 can be viewed as k-linear endomorphisms of ℱ 𝑟Aq
(C ). To address

the above conjecture, it is natural to first ask whether the generators 𝐸,𝐹,𝐾±1 lift to natural

endomorphisms of the quantum Burnside functor 𝐹q constructed in Section 3.5. Proposition

3.9.2 below answers this affirmatively for 𝐾±1; as we shall see, the situation for 𝐸 and 𝐹 is

more complicated.

Let 𝐽 denote one of 𝐸,𝐹,𝐾 or 𝐾−1. For a generator 𝑥 ∈ 𝐹Aq(C ),

𝐽𝑥 =
∑︁
𝑦

𝜀𝑦𝑦

where the sum is over generators and each 𝜀𝑦 is either 0 or of the form ±q𝑘. Note that the

appearance of negatively signed coefficients in odd Khovanov homology was dealt with by

using signed correspondences ([78, Section 3.2]) and signed box maps ([78, Section 4.1]).

Let 𝐷 be a diagram for an annular link with 𝑛 crossings, and fix a corresponding Burnside

functor 𝐹q : 2
𝑛 → B𝐺 for 𝐷. For 𝑢 ∈ 2𝑛, one can define the signed correspondence

𝐽𝑢 := {(q𝑘𝑦, qℓ𝑥) ∈ 𝐹𝑞(𝑢)× 𝐹q(𝑣) | ±q𝑘𝑦 appears in 𝐽(qℓ𝑥)} (3.30)

from 𝐹q(𝑢) to 𝐹q(𝑢), with the obvious source and target maps. The sign map 𝜎 : 𝐽𝑢 → Z2 =
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{−1, 1} returns the sign of q𝑘𝑦. Such a correspondence 𝐽𝑢 is equivariant since 𝐽 is k-linear.

In the case when 𝐽 = 𝐾±1, the signs are not needed and we have the following lifts.

Proposition 3.9.2. Let 𝐷 be a diagram for an annular link with 𝑛 crossings, and let 𝐹q :

2𝑛 → B𝐺 be a Burnside functor for 𝐷. Then there is a natural isomorphism 𝒦±1 : 𝐹q → 𝐹q

which extends the correspondences 𝐾±1
𝑢 of (3.30).

Proof. We will use the strategy of Section 3.4. For each 𝑢 ∈ 2𝑛 we define the required

equivariant bijection 𝜓±
𝑢 : 𝐹q(𝑢)→ 𝐹q(𝑢) by

𝜓±
𝑢 (q

𝑘𝑥) = q𝑘∓adeg(𝑥)𝑥

for all generators 𝑥 ∈ 𝐷𝑢. Now let 𝑢 ≥1 𝑣. The conditions (NI 1) and (NI 3) of Section 3.4

have already been checked on correspondences assigned to edges 𝜙𝑢,𝑣 : 𝑢→ 𝑣 by 𝐹q. In order

to check condition (NI 2), we let q𝑘𝑦 ∈ 𝐹q(𝑢), qℓ𝑥 ∈ 𝐹q(𝑣) be elements such that q𝑘𝑦 appears

in 𝑑𝑣,𝑢(𝑞
ℓ𝑥). Since 𝑑𝑣,𝑢 preserves annular degree, we have adeg(𝑥) = adeg(𝑦), so q𝑘∓adeg(𝑦)𝑦

appears in 𝑑𝑣,𝑢(qℓ−∓ adeg(𝑥)𝑥). This implies condition (NI 2).

Thus we can build a natural transformation 𝜂± as in Section 3.4; the diagram 3.15

commutes, since 𝜓𝑢 simply multiplies generators by powers of q. Finally, note that 𝐾±1𝑥 =

q± adeg(𝑥)𝑥, so

𝐾±
𝑢 = {(q𝑘𝑥, q𝑘∓adeg(𝑥)𝑥) | q𝑘𝑥 ∈ 𝐹q(𝑢)}

is naturally identified with 𝜂±(𝑒𝑢) via (q𝑘𝑥, q𝑘∓adeg(𝑥)𝑥) ↦→ q𝑘𝑥.

We note that when 𝐽 = 𝐸 or 𝐽 = 𝐹 , this overall strategy does not produce such a lift.

Consider the saddle 𝑆 from Example 3.2.10, thought of as the cube of resolutions for a link

diagram with one crossing. Let 𝑢 = 1 and 𝑣 = 0 denote the vertices of the cube 2, and let

𝑑 : ℱ 𝑟Aq
(𝐷𝑣) → ℱ 𝑟Aq

(𝐷𝑢) denote the differential. Let 𝐴 denote the correspondence 𝐹q(𝜙𝑢,𝑣)

from 𝐹q(𝑢) to 𝐹q(𝑣) assigned by the Burnside functor 𝐹q.
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The surgery formulas are

𝑑(𝑤−) = 0 𝑑(𝑤+) = 𝑣+ ⊗ 𝑣− + q−1𝑣− ⊗ 𝑣+,

and actions of 𝐸 and 𝐹 are given by

𝐸𝑤+ = 0 𝐸(𝑣+ ⊗ 𝑣−) = −𝑣+ ⊗ 𝑣+ 𝐸(𝑣− ⊗ 𝑣+) = q𝑣+ ⊗ 𝑣+

𝐹𝑤+ = 0 𝐹 (𝑣+ ⊗ 𝑣−) = 𝑣− ⊗ 𝑣+ 𝐹 (𝑣− ⊗ 𝑣+) = −q𝑣− ⊗ 𝑣−

The correspondence 𝐽𝑣 ×𝐹q(𝑣) 𝐴 is empty, whereas the correspondence 𝐴 ×𝐹q(𝑢) 𝐽𝑢 is non-

empty, containing two oppositely signed elements.

Remark 3.9.3. The above cancellations are already present at the classical (q = 1) level.

In joint work with Krushkal and Willis [4], a lift of the action of the standard generators

𝐸,𝐹,𝐻 of sl2 to the annular Khovanov spectrum was defined. The construction uses the

flow category formulation of Khovanov spectra in [57], and the methods do not extend

immediately to the setting of 𝒳 𝑟
Aq
(𝐿).

One may also ask for some notion of a lift of the relations (3.29), or, in the q = 1

setting, of the sl2 relations. The morphism space [𝑋, 𝑌 ] between spectra 𝑋 and 𝑌 forms an

abelian group; moreover the endomorphisms [𝑋,𝑋] are a ring under composition. The usual

commutator bracket of 𝑓, 𝑔 ∈ [𝑋,𝑋], given by 𝑓𝑔 − 𝑔𝑓 , makes [𝑋,𝑋] into a Lie algebra. A

lift of the relations means verifying whether the map sl2 → [𝒳A(𝐿),𝒳A(𝐿)] constructed in [4]

is a Lie algebra homomorphism. In the quantum annular setting, if actions of 𝐸,𝐹 ∈ 𝑈q(sl2)

are lifted to maps of spectra, one may also ask if the resulting map from the free k𝑟 algebra

on generators 𝐸,𝐹,𝐾,𝐾−1 into [𝒳 𝑟
Aq
(𝐿),𝒳 𝑟

Aq
(𝐿)] factors through the relations in (3.29). This

would produce a homotopical representation of the quantum group 𝑈q(sl2).
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Chapter 4

Equivariant annular homology

This chapter discusses constructions of equivariant Khovanov and Khovanov-Rozansky

homology for links in the thickened annulus. A unifying feature of these theories is that the

ground ring is the ring of polynomials rather than the subring of symmetric polynomials,

contrary to other constructions of equivariant link homology which can be built over the

smaller ground ring. Let us demonstrate this phenomenon in the simplest setting.

Recall the Frobenius systems ℱ𝐸 = (𝑅𝐸, 𝐴𝐸) and ℱ𝛼 = (𝑅𝛼, 𝐴𝛼) from Definition 2.3.25.

As explained in Section 2.3.4, (𝑅𝛼𝐴𝛼) is an extension of (𝑅𝐸, 𝐴𝐸) by identifying 𝐸1, 𝐸2 ∈ 𝑅𝐸

with elementary symmetric polynomials in variables 𝛼1, 𝛼2. We note an incompatibility of

annular Khovanov homology with the theory ℱ𝐸. Let 𝑀 be a free Z×Z-graded 𝑅𝐸-module

with basis 𝑚−,𝑚+ in bidegrees (−1,−1) and (1, 1), respectively, thought of as the module

assigned to a single essential circle by an annular version of ℱ𝐸. Suppose 𝑔 : 𝑀 → 𝑀 is an

𝑅𝐸-linear map of bidegree (2, 0). Then necessarily

𝑔(𝑚−) = 𝑛𝐸1𝑚− (4.1)

for some 𝑛 ∈ Z. In particular, if 𝑔 is the map assigned to the cobordism in Figure 4-1, then

the defining relation 𝑋2 − 𝐸1𝑋 + 𝐸2 = 0 of 𝐴𝐸 implies

𝑔2(𝑚−)− 𝐸1𝑔(𝑚−) + 𝐸2𝑚− = 0. (4.2)
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∙

×

×

Figure 4-1: Dotted product cobordism on an essential circle.

However, Equations (4.1) and (4.2) are incompatible.

In Section 4.1 we define an equivariant lift of annular Khovanov homology by defining a

suitable filtration on the larger theory ℱ𝛼. Some structural properties of the resulting link

homology are also discussed. The results of Section 4.1 have appeared in [2].

The remainder of this chapter develops a foam evaluation approach, in the spirit of

Robert-Wagner [73], to annular link homology. Constructions in the sl2, sl3, and the general

gl𝑁 setting are presented in Sections 4.2, 4.3, and 4.4, respectively. The results of Section

4.2 and Section 4.3 have appeared in joint work with Khovanov [3].

As discussed in Chapter 1, the main obstacle is determining how to assign an appropriate

module to a web in the annulus (equivalently, in the punctured plane). Recall from the

discussion of universal construction in Section 2.5.4 that a planar object is assigned a quotient

of the free module generated by all cobordisms bounding that object. However, a single non-

contractible circle in the annulus does not bound any surface in the thickened annulus. The

approach is to model A × 𝐼 as the complement of a distinguished line ℒ ⊂ R3. Surfaces

and foams are allowed to generically intersect ℒ, and they must carry additional decorations

at these intersection points, which contribute factors to the foam evaluation. Similar to

the earlier discussion, evaluation of these foams takes values in the ring of polynomials

rather than in its subring ring of symmetric polynomials, contrary to Robert-Wagner foam

evaluation.
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4.1 Equivariant annular sl2 link homology via filtrations

We are interested in an annular version of the equivariant link homology theory ℱ𝛼
described in Section 2.3.4. Precisely, the goal is to fill in the dashed arrow in the diagram

ℬ𝒩 𝛼(A) 𝑅𝛼− ggmod

ℬ𝒩 (A) Z− ggmod

𝒢𝛼

ℱA

where the vertical arrows are obtained by setting 𝛼1 = 𝛼2 = 0. The earlier discussion justifies

working with 𝑅𝛼 rather than the subring of symmetric polynomials 𝑅𝐸. The desired functor

𝒢𝛼 is defined in Section 4.1.1 by taking the associated graded of a suitably defined annular

degree filtration, in the spirit of the definition of ℱA given in Section 2.4.1.

We note that Boerner’s relation, Figure 2-14, does not hold in the theory 𝒢𝛼; the map

assigned to a dotted identity cobordism on a collection of essential circles is given in Equation

(4.8). Maps assigned to saddle cobordisms are recorded in Equations (4.4) – (4.7). In Section

4.1.2 we invert 𝒟 in the annular theory and show that the rank of the resulting homology

depends only on the number of components.

4.1.1 The equivariant annular TQFT 𝒢𝛼

Let 𝑍 ⊂ A be a collection of disjoint simple closed curves, and view 𝑍 as embedded

in R2. Consider ℱ𝛼(𝑍) with the following additional annular grading, denoted adeg as in

Equation (2.9). Define elements of 𝐴𝛼,

𝑣0 = 1, 𝑣1 = 𝑋 − 𝛼1,

𝑣′0 = 1, 𝑣′1 = 𝑋 − 𝛼2,

with the annular gradings

adeg(𝑣0) = adeg(𝑣′0) = −1, adeg(𝑣1) = adeg(𝑣′1) = 1. (4.3)
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qdeg
−2 −1 1 2

adeg

−1

1 𝑣1, 𝑣′1

𝑣0, 𝑣′0

𝑋1 𝛼1, 𝛼2

Figure 4-2: Bigradings, where {1, 𝑋} corresponds to trivial circles, and {𝑣0, 𝑣1}, {𝑣′0, 𝑣′1} correspond
to essential ones.

Remark 4.1.1. We note that the notation 𝑣0, 𝑣1 was used in Section 2.4.1 in the saddle

formulas for non-equivariant annular homology.

Both {𝑣0, 𝑣1} = {1, 𝑋 − 𝛼1} and {𝑣′0, 𝑣′1} = {1, 𝑋 − 𝛼2} is an 𝑅𝛼-basis for 𝐴𝛼. Together

with the quantum grading qdeg, these bases equip 𝐴𝛼 with two (isomorphic) structures of a

bigraded 𝑅𝛼-module, with the bigrading given by (qdeg, adeg). The ground ring 𝑅𝛼 lies in

annular degree 0.

Let 𝑍 ⊂ A consist of 𝑛 trivial and 𝑚 essential circles, with the essential circles ordered

from innermost (closest to the puncture ×) to outermost. Define the annular grading on

ℱ𝛼(𝑍) = 𝐴⊗𝑛
𝛼 ⊗ 𝐴⊗𝑚

𝛼

by declaring that every copy of 𝐴𝛼 corresponding to a trivial circle is concentrated in annular

degree 0 and that the copy of 𝐴𝛼 corresponding to the 𝑖-th essential circle (1 ≤ 𝑖 ≤ 𝑚) is

given the homogeneous basis

{𝑣0, 𝑣1} = {1, 𝑋 − 𝛼1}

if 𝑖 is odd and

{𝑣′0, 𝑣′1} = {1, 𝑋 − 𝛼2}

if 𝑖 is even. In other words, the essential circles are assigned one of two adeg-homogeneous

bases, {1, 𝑋 − 𝛼1} or {1, 𝑋 − 𝛼2}, in an alternating manner, with the innermost circle

assigned {1, 𝑋 − 𝛼1}. Bigradings are summarized in Figure 4-2

As in Section 2.4.1, it is convenient to distinguish the modules assigned to essential and

trivial circles. Let 𝑉𝛼 and 𝑉 ′
𝛼 denote 𝐴𝛼 with homogeneous bases {𝑣0, 𝑣1} and {𝑣′0, 𝑣′1},
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respectively. Then, for a collection of circles 𝑍 ⊂ A, the 𝑖-th essential circle in 𝑍 is assigned

𝑉𝛼 if 𝑖 is odd and 𝑉 ′
𝛼 if 𝑖 is even. We reserve the notation 𝐴𝛼 for the module assigned to a

trivial circle. Note that interchanging 𝛼1 ↔ 𝛼2 also interchanges 𝑣0 ↔ 𝑣′0 and 𝑣1 ↔ 𝑣′1.

With the above gradings at hand, we now prove the analogue of Lemma 2.4.1 in the

equivariant setting.

Lemma 4.1.2. Let 𝑆 ⊂ A × 𝐼 be an elementary cobordism. Viewing 𝑆 as a cobordism in

R2 × 𝐼, the map ℱ𝛼(𝑆) splits as a sum

ℱ𝛼(𝑆) = ℱ𝛼(𝑆)0 + ℱ𝛼(𝑆)2

where ℱ𝛼(𝑆)0 preserves adeg and ℱ𝛼(𝑆)2 increases adeg by 2.

Proof. If the saddle component of 𝑆 involves only trivial circles then the claim is immediate,

since ℱ𝛼(𝑆) = ℱ𝛼(𝑆)0 in this case. We verify the claim for the four elementary cobordisms

in Figure 2-12 by rewriting ℱ𝛼(𝑆) in terms of the bases for the circles involved. Terms where

adeg is increased by 2 are boxed.

𝑉𝛼 ⊗ 𝐴𝛼
(I)−→ 𝑉𝛼

𝑣0 ⊗ 1 ↦→ 𝑣0

𝑣1 ⊗ 1 ↦→ 𝑣1

𝑣0 ⊗𝑋 ↦→ 𝛼1𝑣0 + 𝑣1

𝑣1 ⊗𝑋 ↦→ 𝛼2𝑣1

𝑉𝛼 ⊗ 𝑉 ′
𝛼

(II)−−→ 𝐴𝛼

𝑣0 ⊗ 𝑣′0 ↦→ 1

𝑣1 ⊗ 𝑣′0 ↦→ 𝑋 − 𝛼1

𝑣0 ⊗ 𝑣′1 ↦→ 𝑋 − 𝛼2

𝑣1 ⊗ 𝑣′1 ↦→ 0

𝑉𝛼
(III)−−→ 𝑉𝛼 ⊗ 𝐴𝛼

𝑣0 ↦→ 𝑣0 ⊗𝑋 − 𝛼2𝑣0 ⊗ 1 + 𝑣1 ⊗ 1

𝑣1 ↦→ 𝑣1 ⊗𝑋 − 𝛼1𝑣1 ⊗ 1

𝐴𝛼
(IV)−−→ 𝑉𝛼 ⊗ 𝑉 ′

𝛼

1 ↦→ 𝑣0 ⊗ 𝑣′1 + 𝑣1 ⊗ 𝑣′0

𝑋 ↦→ 𝛼1𝑣0 ⊗ 𝑣′1 + 𝛼2𝑣1 ⊗ 𝑣′0 + 𝑣1 ⊗ 𝑣′1

Our assignment for essential circles depends on nesting, so strictly speaking the above

calculations do not handle all cases. However, note that for types (I) and (II), the position

of the essential circle does not change, and for types (III) and (IV), the two essential circles
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involved in the saddle must be consecutive in the ordering. Thus a full verification amounts

to interchanging 𝑣0 ↔ 𝑣′0, 𝑣1 ↔ 𝑣′1 in the input of above maps. One may check that this

amounts to interchanging 𝑣0 ↔ 𝑣′0, 𝑣1 ↔ 𝑣′1, and 𝛼1 ↔ 𝛼2 in the output.

Corollary 4.1.3. (1) Let 𝑆 ⊂ A× 𝐼 be a cobordism. Viewing 𝑆 as a cobordism in R2× 𝐼,

the map ℱA(𝑆) splits as a sum

ℱ𝛼(𝑆) = ℱ𝛼(𝑆)0 + ℱ𝛼(𝑆)+

where ℱ𝛼(𝑆)0 preserves adeg and ℱ𝛼(𝑆)+ strictly increases adeg.

(2) Let 𝑆1, 𝑆2 ⊂ A× 𝐼 be composable cobordisms. Then

ℱ𝛼(𝑆2𝑆1)0 = ℱ𝛼(𝑆2)0ℱ𝛼(𝑆1)0.

Proof. For (1), write 𝑆 as a composition 𝑆 = 𝑆𝑛 · · ·𝑆1 where each 𝑆𝑖 is an elementary

cobordism. Functoriality of ℱ𝛼 and Lemma 4.1.2 yield

ℱ𝛼(𝑆) = ℱ𝛼(𝑆𝑛) · · · ℱ𝛼(𝑆1)

= (ℱ𝛼(𝑆𝑛)0 + ℱ𝛼(𝑆𝑛)2) · · · (ℱ𝛼(𝑆1)0 + ℱ𝛼(𝑆1)2)

= ℱ𝛼(𝑆𝑛)0 · · · ℱ𝛼(𝑆1)0 + terms that increase adeg .

Therefore

ℱ𝛼(𝑆)0 = ℱ𝛼(𝑆𝑛)0 · · · ℱ𝛼(𝑆1)0

is the desired adeg-preserving part, and the remaining terms constitute ℱ𝛼(𝑆)+. Statement

(2) follows from (1) in a similar fashion.

We are now ready for the main theorem.

Theorem 4.1.4. There exists a functor 𝒢𝛼 : ℬ𝒩 𝛼(A)→ 𝑅𝛼− ggmod such that the following
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diagram commutes
ℬ𝒩 𝛼(A) 𝑅𝛼− ggmod

ℬ𝒩 (A) Z− ggmod

𝒢𝛼

ℱA

where the vertical arrows are obtained by setting 𝛼1 = 𝛼2 = 0.

Proof. For a collection of circles 𝑍 ⊂ A, set

𝒢𝛼(𝑆) := ℱ𝛼(𝑍),

with the bigrading (qdeg, adeg) as defined earlier in this section. For a cobordism 𝑆 ⊂ A×𝐼,

set

𝒢𝛼(𝑆) := ℱ𝛼(𝑆)0

as in Corollary 4.1.3 (1). That 𝒢𝛼 is well-defined on cobordisms and factors through the

relations in ℬ𝒩 𝛼(A) follows from the analogous statements for ℱA. Corollary 4.1.3 (2)

implies functoriality of 𝒢𝛼. Finally, commutativity of the diagram follows from deleting the

boxed terms and setting 𝛼1 = 𝛼2 = 0 in the maps appearing in the proof of Lemma 4.1.2,

and comparing the result with the maps (2.11)–(2.14).

Maps assigned to the four elementary saddles in Figure 2-12 are recorded below. The full

set of maps – that is, if other essential circles are present – can be obtained by interchanging

𝛼1 ↔ 𝛼2.

𝑉𝛼 ⊗ 𝐴𝛼
(I)−→ 𝑉𝛼

𝑣0 ⊗ 1 ↦→ 𝑣0

𝑣1 ⊗ 1 ↦→ 𝑣1

𝑣0 ⊗𝑋 ↦→ 𝛼1𝑣0

𝑣1 ⊗𝑋 ↦→ 𝛼2𝑣1

(4.4)

𝑉𝛼 ⊗ 𝑉 ′
𝛼

(II)−−→ 𝐴𝛼

𝑣0 ⊗ 𝑣′0 ↦→ 0

𝑣1 ⊗ 𝑣′0 ↦→ 𝑋 − 𝛼1

𝑣0 ⊗ 𝑣′1 ↦→ 𝑋 − 𝛼2

𝑣1 ⊗ 𝑣′1 ↦→ 0

(4.5)
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Figure 4-3: Product cobordism on 𝑚 > 0 essential circles, with the 𝑖-th component dotted

𝑉𝛼
(III)−−→ 𝑉𝛼 ⊗ 𝐴𝛼

𝑣0 ↦→ 𝑣0 ⊗𝑋 − 𝛼2𝑣0 ⊗ 1

𝑣1 ↦→ 𝑣1 ⊗𝑋 − 𝛼1𝑣1 ⊗ 1

(4.6)

𝐴𝛼
(IV)−−→ 𝑉𝛼 ⊗ 𝑉 ′

𝛼

1 ↦→ 𝑣0 ⊗ 𝑣′1 + 𝑣1 ⊗ 𝑣′0

𝑋 ↦→ 𝛼1𝑣0 ⊗ 𝑣′1 + 𝛼2𝑣1 ⊗ 𝑣′0

(4.7)

Let 𝑍 ⊂ A consist of 𝑚 > 0 essential circles, and let 𝐶 be the 𝑖-th essential circle in 𝑍.

Consider the cobordism 𝑆 whose underlying surface is the identity cobordism 𝑍 × 𝐼, with a

single dot on the component 𝐶 × 𝐼, as shown in Figure 4-3. Then 𝒢𝛼(𝑆) is the identity on

all tensor factors except the one corresponding to 𝐶, and on 𝐶 it is given by the left-hand

side of (4.8) if 𝑖 is odd, and the right-hand side if 𝑖 is even.

𝑉𝛼 → 𝑉𝛼

𝑣0 ↦→ 𝛼1𝑣0

𝑣1 ↦→ 𝛼2𝑣1

𝑉 ′
𝛼 → 𝑉 ′

𝛼

𝑣′0 ↦→ 𝛼2𝑣
′
0

𝑣′1 ↦→ 𝛼1𝑣
′
1

(4.8)

Observe that the functor 𝒢𝛼 is not monoidal, since the action of 𝑋 on an essential circle

depends on its nestedness.

Let 𝐿 ⊂ A× 𝐼 be an oriented link with diagram 𝐷. Let

𝐶𝐾ℎA𝛼(𝐷) := 𝒢𝛼([[𝐷]])

denote the chain complex obtained by applying 𝒢𝛼 to the formal complex [[𝐷]]. The dif-

ferential preserves bidegree, and the complex is an invariant of 𝐿 up to bidegree-preserving
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chain homotopy equivalence.

The remainder of this section discusses variants of 𝒢𝛼. Instead of setting both 𝛼1 = 𝛼2 =

0, it is possible to set only 𝛼1 = 0 and rename the remaining parameter 𝛼2 to 𝛼2 = ℎ. Denote

the resulting Frobenius pair by (𝑅ℎ, 𝐴ℎ). Explicitly,

𝑅ℎ = Z[ℎ], 𝐴ℎ = 𝑅ℎ[𝑋]/(𝑋2 − ℎ𝑋).

It may also be obtained from (𝑅𝐸, 𝐴𝐸) by setting 𝐸1 = ℎ, 𝐸2 = 0; note that the obstruction

to working with the Frobenius pair (𝑅𝐸, 𝐴𝐸) (see Equations (4.1) and (4.2)) disappears when

𝐸2 = 0. Collapsing (𝑅ℎ, 𝐴ℎ) further to characteristic 2 (that is, applying (−) ⊗𝑅ℎ
Z2[ℎ])

recovers Bar-Natan’s theory [8, Section 9.3]. We expect that the resulting annular homology

is related to [83].

Let 𝐿 ⊂ A× 𝐼 be an oriented link with diagram 𝐷. Viewing 𝐷 as a diagram in R2 and

applying ℱA to [[𝐷]] yields a chain complex 𝐶𝐾ℎ𝛼(𝐷) of bigraded 𝑅𝛼-modules. Letting 𝜕

denote the differential, Lemma 4.1.2 implies that 𝜕 splits as a sum 𝜕 = 𝜕0+𝜕2, where 𝜕0 is of

bidegree (0, 0) and 𝜕2 is of bidegree (0, 2). As in [28], we can introduce an extra parameter

𝛽 to account for 𝜕2. Let 𝑅𝛼𝛽 = 𝑅𝛼[𝛽] with 𝛽 in bidegree (0,−2), and let 𝐶𝐾ℎA𝛼𝛽(𝐷) be the

chain complex over 𝑅𝛼𝛽 obtained by extending scalars,

𝐶𝐾ℎA𝛼𝛽(𝐷) := 𝐶𝐾ℎ𝛼(𝐷)⊗𝑅𝛼 𝑅𝛼𝛽

in homological degree 𝑖 and differential 𝜕𝛽 given by

𝜕𝛽 := 𝜕0 + 𝛽𝜕2.

Note that 𝜕𝛽 preserves bidegree. Maps assigned to the four elementary saddles in Figure

2-12 are given below.
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𝑉𝛼 ⊗ 𝐴𝛼
(I)−→ 𝑉𝛼

𝑣0 ⊗ 1 ↦→ 𝑣0

𝑣1 ⊗ 1 ↦→ 𝑣1

𝑣0 ⊗𝑋 ↦→ 𝛼1𝑣0 + 𝛽𝑣1

𝑣1 ⊗𝑋 ↦→ 𝛼2𝑣1

𝑉𝛼 ⊗ 𝑉 ′
𝛼

(II)−−→ 𝐴𝛼

𝑣0 ⊗ 𝑣′0 ↦→ 𝛽

𝑣1 ⊗ 𝑣′0 ↦→ 𝑋 − 𝛼1

𝑣0 ⊗ 𝑣′1 ↦→ 𝑋 − 𝛼2

𝑣1 ⊗ 𝑣′1 ↦→ 0

𝑉𝛼
(III)−−→ 𝑉𝛼 ⊗ 𝐴𝛼

𝑣0 ↦→ 𝑣0 ⊗𝑋 − 𝛼2𝑣0 ⊗ 1 + 𝛽𝑣1 ⊗ 1

𝑣1 ↦→ 𝑣1 ⊗𝑋 − 𝛼1𝑣1 ⊗ 1

𝐴𝛼
(IV)−−→ 𝑉𝛼 ⊗ 𝑉 ′

𝛼

1 ↦→ 𝑣0 ⊗ 𝑣′1 + 𝑣1 ⊗ 𝑣′0

𝑋 ↦→ 𝛼1𝑣0 ⊗ 𝑣′1 + 𝛼2𝑣1 ⊗ 𝑣′0 + 𝛽𝑣1 ⊗ 𝑣′1

4.1.2 Inverting 𝒟 in equivariant annular homology

Recall the Frobenius pair (𝑅𝛼𝒟, 𝐴𝛼𝒟) from [40], which was reviewed in Definition 2.3.30.

Let 𝒢𝛼𝒟 denote the composition

ℬ𝒩 𝛼(A)
𝒢𝛼−→ 𝑅𝛼− ggmod→ 𝑅𝛼𝒟− ggmod

where the second functor is extension of scalars. Consider the following elements of 𝐴𝛼𝒟,

𝑣0 := 𝑣0 = 1, 𝑣1 :=
𝑣1

𝛼2 − 𝛼1

=
𝑋 − 𝛼1

𝛼2 − 𝛼1

,

𝑣′0 := 𝑣′0 = 1, 𝑣′1 :=
𝑣′1

𝛼1 − 𝛼2

=
𝑋 − 𝛼2

𝛼1 − 𝛼2

.

As in Section 4.1.1, let 𝑉𝛼𝒟 and 𝑉 ′
𝛼𝒟 denote the module 𝐴𝛼𝒟 with distinguished homo-

geneous bases {𝑣0, 𝑣1} and {𝑣′0, 𝑣′1}, respectively. For a collection of circles 𝑍 ⊂ A, the 𝑖-th

essential circle in 𝑍 is assigned 𝑉𝛼𝒟 if 𝑖 is odd and 𝑉 ′
𝛼𝒟 if 𝑖 is even. The notation 𝐴𝛼𝒟 is

reserved for trivial circles, with distinguished basis {𝑒1, 𝑒2}, see Equation (2.7). Bigradings

are summarized in Figure 4-4.

With respect to these bases, the maps assigned to the four elementary saddles in Figure
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qdeg
−1 1

adeg

−1

1𝑣1, 𝑣′1

𝑣0, 𝑣′0

𝑒1, 𝑒2

Figure 4-4: Bigradings

2-12 are recorded below.

𝑉𝛼𝒟 ⊗ 𝐴𝛼𝒟
(I)−→ 𝑉𝛼𝒟

𝑣0 ⊗ 𝑒1 ↦→ 0

𝑣1 ⊗ 𝑒1 ↦→ 𝑣1

𝑣0 ⊗ 𝑒2 ↦→ 𝑣0

𝑣1 ⊗ 𝑒2 ↦→ 0

(4.9)

𝑉𝛼𝒟 ⊗ 𝑉 ′
𝛼𝒟

(II)−−→ 𝐴𝛼𝒟

𝑣0 ⊗ 𝑣′0 ↦→ 0

𝑣1 ⊗ 𝑣′0 ↦→ 𝑒1

𝑣0 ⊗ 𝑣′1 ↦→ 𝑒2

𝑣1 ⊗ 𝑣′1 ↦→ 0

(4.10)

𝑉𝛼𝒟
(III)−−→ 𝑉𝛼𝒟 ⊗ 𝐴𝛼𝒟

𝑣0 ↦→ (𝛼1 − 𝛼2)𝑣0 ⊗ 𝑒2

𝑣1 ↦→ (𝛼2 − 𝛼1)𝑣1 ⊗ 𝑒1

(4.11)

𝐴𝛼𝒟
(IV)−−→ 𝑉𝛼𝒟 ⊗ 𝑉 ′

𝛼𝒟

𝑒1 ↦→ (𝛼2 − 𝛼1)𝑣1 ⊗ 𝑣′0

𝑒2 ↦→ (𝛼1 − 𝛼2)𝑣0 ⊗ 𝑣′1

(4.12)

To obtain the full set of maps – that is, if other essential circles are present – one interchanges

𝛼1 ↔ 𝛼2, which has the effect of interchanging 𝑣0 ↔ 𝑣′0, 𝑣1 ↔ 𝑣′1, and 𝑒1 ↔ 𝑒2. They are

recorded below for convenience.

𝑉 ′
𝛼𝒟 ⊗ 𝐴𝛼𝒟 → 𝑉 ′

𝛼𝒟

𝑣′0 ⊗ 𝑒1 ↦→ 𝑣′0

𝑣′1 ⊗ 𝑒1 ↦→ 0

𝑣′0 ⊗ 𝑒2 ↦→ 0

𝑣′1 ⊗ 𝑒2 ↦→ 𝑣′1

(4.13)

𝑉 ′
𝛼𝒟 ⊗ 𝑉𝛼𝒟 → 𝐴𝛼𝒟

𝑣′0 ⊗ 𝑣0 ↦→ 0

𝑣′1 ⊗ 𝑣0 ↦→ 𝑒2

𝑣′0 ⊗ 𝑣1 ↦→ 𝑒1

𝑣′1 ⊗ 𝑣1 ↦→ 0

(4.14)
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𝑉 ′
𝛼𝒟 → 𝑉 ′

𝛼𝒟 ⊗ 𝐴𝛼𝒟

𝑣′0 ↦→ (𝛼2 − 𝛼1)𝑣
′
0 ⊗ 𝑒1

𝑣′1 ↦→ (𝛼1 − 𝛼2)𝑣
′
1 ⊗ 𝑒2

(4.15)

𝐴𝛼𝒟 → 𝑉 ′
𝛼𝒟 ⊗ 𝑉𝛼𝒟

𝑒1 ↦→ (𝛼2 − 𝛼1)𝑣
′
0 ⊗ 𝑣1

𝑒2 ↦→ (𝛼1 − 𝛼2)𝑣
′
1 ⊗ 𝑣0

(4.16)

These maps may be written uniformly in the following way. Let 𝑍 ⊂ A be a collection

of circles, and label each circle in 𝑍 by one of the letters a or b. From such a labeling we

obtain a distinguished basis element of 𝒢𝛼𝒟(𝑍) by using the correspondence

a↔ 𝑒1, b↔ 𝑒2 (4.17)

for a trivial circle, and

a↔

⎧⎪⎨⎪⎩𝑣1 𝑖 is odd

𝑣′0 𝑖 is even
, b↔

⎧⎪⎨⎪⎩𝑣0 𝑖 is odd

𝑣′1 𝑖 is even
(4.18)

on the 𝑖-th essential circle. Then the saddle maps are

𝑉𝛼𝒟 ⊗ 𝐴𝛼𝒟
(I)−→ 𝑉𝛼𝒟

b⊗ a ↦→ 0

a⊗ a ↦→ a

b⊗ b ↦→ b

a⊗ b ↦→ 0

(4.19)

𝑉𝛼𝒟 ⊗ 𝑉 ′
𝛼𝒟

(II)−−→ 𝐴𝛼𝒟

b⊗ a ↦→ 0

a⊗ a ↦→ a

b⊗ b ↦→ b

a⊗ b ↦→ 0

(4.20)

𝑉𝛼𝒟
(III)−−→ 𝑉𝛼𝒟 ⊗ 𝐴𝛼𝒟

b ↦→ (𝛼1 − 𝛼2)b⊗ b

a ↦→ (𝛼2 − 𝛼1)a⊗ a

(4.21)

𝐴𝛼𝒟
(IV)−−→ 𝑉𝛼𝒟 ⊗ 𝑉 ′

𝛼𝒟

a ↦→ (𝛼2 − 𝛼1)a⊗ a

b ↦→ (𝛼1 − 𝛼2)b⊗ b

(4.22)

Moreover, the same formulas hold with 𝑉𝛼𝒟 and 𝑉 ′
𝛼𝒟 interchanged.
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For an annular link 𝐿 with diagram 𝐷, let

𝐶𝐾ℎA𝛼𝒟(𝐷) := 𝒢𝛼𝒟([[𝐷]])

denote the chain complex obtained by applying 𝒢𝛼𝒟 to [[𝐷]]. It is an invariant of 𝐿 up to chain

homotopy equivalence, so we may write 𝐾ℎA𝛼𝒟(𝐿) to denote the homology of 𝐶𝐾ℎA𝛼𝒟(𝐷),

for any diagram 𝐷 of 𝐿.

Theorem 4.1.5. Let 𝐿 ⊂ A× 𝐼 be a link with diagram 𝐷. Viewing 𝐿 as a link in R3, there

is a qdeg-preserving isomorphism 𝜙 : 𝐶𝐾ℎA𝛼𝒟(𝐷)
∼−→ 𝐶𝐾ℎ𝛼𝒟(𝐷).

Proof. For a smoothing 𝐷𝑢, the inclusion A →˓ R2 induces an isomorphism

𝜙𝑢 : 𝒢𝛼𝒟(𝐷𝑢)→ ℱ𝛼𝒟(𝐷𝑢),

defined in terms of the basis elements labeled by a and b by a ↦→ 𝑒1, b ↦→ 𝑒2. Compar-

ing the formulas (4.19)–(4.22) with multiplication and comultiplication in 𝐴𝛼𝒟, we see that

each of the maps 𝜙𝑢 commute with cobordism maps and thus assemble into an isomor-

phism 𝜙 : 𝐶𝐾ℎA𝛼𝒟(𝐷) → 𝐶𝐾ℎ𝛼𝒟(𝐷). It is evident from Figure 4-4 that each 𝜙𝑢 preserves

qdeg. Quantum grading shifts in both chain complexes are the same, so the isomorphism 𝜙

preserves qdeg as well.

The following is immediate from Proposition 2.3.31.

Corollary 4.1.6. For a link 𝐿 ⊂ A× 𝐼 with 𝑘 components, the homology 𝐾ℎA𝛼𝒟(𝐿) is a free

𝑅𝛼𝒟-module of rank 2𝑘.

We recall the canonical generators for Lee homology, following [55] and [69]. Let 𝐿 ⊂ A×𝐼

be a link with diagram 𝐷. Given an orientation 𝑜 on 𝐿, let 𝐷𝑜 ⊂ A denote the result of

performing the oriented resolution at each crossing,

.
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Each of the resulting circles is naturally oriented. Assign a mod 2 invariant to each circle

𝐶 as follows. First, consider the number of circles in 𝐷𝑜 separating 𝐶 from infinity, mod 2.

Add 1 if 𝐶 is counterclockwise oriented, and add 0 otherwise. Now that each circle in 𝐷𝑜 is

labeled by 0 or 1, use the correspondence 0 ↔ a, 1 ↔ b to label each circle by a or b, and

finally use (4.17) and (4.18) to obtain a generator s𝑜 in 𝐶𝐾ℎA𝛼𝒟(𝐷).

For a collection of oriented circles 𝑍 ⊂ A, let 𝑤(𝑍) denote the winding number of 𝑍.

That is, 𝑤(𝑍) equals the number of counterclockwise essential circles minus the number of

clockwise ones. If 𝐶1, . . . , 𝐶𝑚 are the essential circles in 𝑍, then

𝑤(𝑍) =
𝑚∑︁
𝑖=1

𝑤(𝐶𝑖).

Proposition 4.1.7. Let 𝐿 ⊂ A× 𝐼 be a link with diagram 𝐷, and let 𝑜 be an orientation of

𝐿. Let 𝑚 be the number of essential circles in the oriented resolution 𝐷𝑜. Then

adeg(s𝑜) = (−1)𝑚𝑤(𝐿, 𝑜)

where 𝑤(𝐿, 𝑜) is the winding number of 𝐿 with respect to the orientation 𝑜.

Proof. First note that 𝑤(𝐿, 𝑜) = 𝑤(𝐷𝑜). It is straightforward to verify that each essential

circle 𝐶 in 𝐷𝑜 contributes (−1)𝑚𝑤(𝐶) to the annular degree of s𝑜. The claim follows, since

trivial circles do not contribute to the annular degree or the winding number.

4.2 Anchored sl2 link homology

4.2.1 Anchored surfaces and their evaluations

Consider the integral polynomial ring 𝑅𝛼 = Z[𝛼1, 𝛼2] in two variables 𝛼1, 𝛼2. Define a

grading on 𝑅𝛼 by setting

deg(𝛼1) = deg(𝛼2) = 2. (4.23)

Denote by 𝜏 the nontrivial involution of {1, 2}, given by 𝜏(𝑖) = 3 − 𝑖 for 𝑖 ∈ {1, 2}. Also

denote by 𝜏 the induced involution of 𝑅𝛼 which permutes 𝛼1, 𝛼2, so that 𝜏(𝛼𝑖) = 𝛼𝜏(𝑖) = 𝛼3−𝑖.
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Let 𝑅𝐸 be the 𝜏 -invariant subring of 𝑅𝛼, which consists of symmetric polynomials in 𝛼1, 𝛼2.

The subring 𝑅𝐸 is itself a polynomial ring, 𝑅𝐸 = Z[𝐸1, 𝐸2], where 𝐸1, 𝐸2 are elementary

symmetric polynomials in 𝛼1, 𝛼2,

𝐸1 = 𝛼1 + 𝛼2, 𝐸2 = 𝛼1𝛼2.

Degrees of 𝐸1 and 𝐸2 are 2 and 4, respectively.

Let ℒ ⊂ R3 denote the 𝑧-axis, ℒ = {(0, 0)} × R. Let 𝑆 ⊂ R3 be a closed, smoothly

embedded surface which intersects ℒ transversely. The surface 𝑆 may be decorated by dots,

disjoint from ℒ, that can otherwise float freely on components of 𝑆. The intersection points

𝑆∩ℒ are called anchor points. Fix a labeling ℓ, which is a map from the set of anchor points

to {1, 2},

ℓ : 𝑆 ∩ ℒ → {1, 2}.

Order the anchor points by 1, . . . , 2𝑘, read from bottom to top, so that the labeling ℓ consists

of a choice ℓ(𝑗) ∈ {1, 2} for each 1 ≤ 𝑗 ≤ 2𝑘. We will define an evaluation

⟨𝑆⟩ ∈ 𝑅𝛼.

for 𝑆 with the fixed labeling ℓ, which is omitted from the notation.

Let Comp(𝑆) denote the set of connected components of 𝑆. A coloring of 𝑆 is a function

𝑐 : Comp(𝑆)→ {1, 2}, and we denote by adm(𝑆) the set of colorings of 𝑆. A surface 𝑆 has

2|Comp(𝑆)| colorings. For a coloring 𝑐 and 𝑖 = 1, 2, let 𝑑𝑖(𝑐) denote the number of dots on

components colored 𝑖. Let 𝑆2 denote the union of the 2-colored components. For 1 ≤ 𝑗 ≤ 2𝑘,

let 𝑐(𝑗) denote the color of the 𝑗-th anchor point, induced by 𝑐, which may in general be

different from the fixed label ℓ(𝑗). Define

⟨𝑆, 𝑐⟩ = (−1)𝜒(𝑆2)/2
𝛼
𝑑1(𝑐)
1 𝛼

𝑑2(𝑐)
2

(︁∏︀2𝑘
𝑗=1(𝛼𝑐(𝑗) − 𝛼ℓ(𝑗))

)︁1/2
(𝛼1 − 𝛼2)𝜒(𝑆)/2

. (4.24)

Note that 𝜒(𝑆2) is even since 𝑆2 is a closed surface in R3. Let us explain the square root in

the above equation.
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Each component 𝑆 ′ of 𝑆 can be made disjoint from ℒ via a homotopy. Since the mod 2

intersection number is preserved under homotopy, it follows that 𝑆 ′ intersects ℒ at an even

number of points 𝑝1, . . . , 𝑝2𝑚, which can be ordered as encountered along ℒ, from bottom to

top. Suppose 𝑆 ′ is colored by 𝑐(𝑆 ′) = 𝑗, and moreover 𝑆 ′ contains an anchor point labeled

𝑗. Then the product
∏︀2𝑚

𝑗=1(𝛼𝑐(𝑗) − 𝛼ℓ(𝑗)) = 0, since it contains a term 𝛼𝑗 − 𝛼𝑗 = 0, and

the entire evaluation ⟨𝑆, 𝑐⟩ is then zero. Thus, the evaluation (4.24) is only nonzero when

the anchor points on a component 𝑆 ′ colored 𝑗 are all labeled by the complementary color

𝜏(𝑗). In this case, each component contributes an even number of factors of either 𝛼1 − 𝛼2

or 𝛼2−𝛼1 to the product
∏︀2𝑚

𝑗=1(𝛼𝑐(𝑗)−𝛼ℓ(𝑗)), and we define the square root to be (𝛼1−𝛼2)
𝑚

or (𝛼2 − 𝛼1)
𝑚, respectively. If 𝑆 ′ has no anchor points, this term is 1 and can be removed

from the product.

Note that the evaluation is the product of evaluations of individual components,

⟨𝑆, 𝑐⟩ =
∏︁

𝑆′∈Comp (𝑆)

⟨𝑆 ′, 𝑐(𝑆 ′)⟩ . (4.25)

Thus, if a connected component 𝑆 ′ is colored 1 by 𝑐′ = 𝑐(𝑆 ′), has 2𝑘 anchor points all labeled

2, and carries 𝑑 dots, then

⟨𝑆 ′, 𝑐′⟩ = 𝛼𝑑1(𝛼1 − 𝛼2)
𝑘−𝜒(𝑆′)/2. (4.26)

If 𝑆 ′ is colored 2 by 𝑐′ = 𝑐(𝑆 ′), has 2𝑘 anchor points all labeled 1 and carries 𝑑 dots, then

⟨𝑆 ′, 𝑐′⟩ = (−1)𝜒(𝑆′)/2+𝑘𝛼𝑑2(𝛼1 − 𝛼2)
𝑘−𝜒(𝑆′)/2 = 𝛼𝑑2(𝛼2 − 𝛼1)

𝑘−𝜒(𝑆′)/2. (4.27)

Otherwise, if one of the anchor points has the same label as the color of 𝑆 ′, the evaluation

⟨𝑆 ′, 𝑐′⟩ = 0 and ⟨𝑆, 𝑐⟩ = 0.

Define the evaluation of 𝑆 by

⟨𝑆⟩ =
∑︁
𝑐

⟨𝑆, 𝑐⟩ , (4.28)

where the sum is over all colorings of 𝑆. Note that if 𝑆 ∩ ℒ = ∅, then ⟨𝑆⟩ agrees with
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the evaluation of closed surfaces in equivariant Khovanov homology [73, 40]. Also note that

⟨𝑆⟩ = 0 if a component of 𝑆 has two anchor points with different labels 1, 2.

We have

⟨𝑆⟩ =
∏︁

𝑆′∈Comp𝑆

⟨𝑆 ′⟩ , (4.29)

that is, evaluation of 𝑆 is the product of evaluations over connected components of 𝑆.

We can rewrite ⟨𝑆⟩ as follows. First, suppose 𝑆 is connected, carrying 𝑑 dots, with 2𝑘 ≥ 0

anchor points. For 𝑖 = 1, 2, let 𝑐𝑖 denote the coloring of 𝑆 by 𝑖. Define

⟨𝑆, 𝑐1⟩ =
𝛼𝑑1((𝛼1 − 𝛼ℓ(1)) · · · (𝛼1 − 𝛼ℓ(2𝑘)))1/2

(𝛼1 − 𝛼2)𝜒(𝑆)/2
, (4.30)

⟨𝑆, 𝑐2⟩ = (−1)𝜒(𝑆)/2
𝛼𝑑2((𝛼2 − 𝛼ℓ(1)) · · · (𝛼2 − 𝛼ℓ(2𝑘)))1/2

(𝛼1 − 𝛼2)𝜒(𝑆)/2
. (4.31)

Again, square roots in the above equations are taken in the natural way. If 𝑆 has

oppositely labeled anchor points then both (4.30) and (4.31) are zero. If all anchor points

are labeled 1, then (4.30) is zero, whereas (4.31) is equal to

⟨𝑆, 𝑐2⟩ = (−1)𝜒(𝑆)/2 𝛼
𝑑
2(𝛼2 − 𝛼1)

𝑘

(𝛼1 − 𝛼2)𝜒(𝑆)/2
.

On the other hand, if all anchor points are labeled by 2 then (4.31) is zero and (4.30) equals

𝛼𝑑1(𝛼1 − 𝛼2)
𝑘

(𝛼1 − 𝛼2)𝜒(𝑆)/2
.

Then for connected 𝑆 with anchor points, we have

⟨𝑆⟩ = ⟨𝑆, 𝑐1⟩+ ⟨𝑆, 𝑐2⟩ ,

where at most one of the summands ⟨𝑆, 𝑐𝑖⟩ is nonzero.

Clearly the evaluation is multiplicative under disjoint union. That is, if 𝑆 = 𝑆1⊔· · ·⊔𝑆𝑛,

then

⟨𝑆⟩ = ⟨𝑆1⟩ · · · ⟨𝑆𝑛⟩ .

Remark 4.2.1. Unlike closed foam evaluations appearing elsewhere [73, 41, 38, 40, 75], our
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evaluation does not in general produce a symmetric polynomial. The following examples

illustrate this.

Example 4.2.2. Let 𝑆 be a sphere intersecting ℒ in two points with labels 𝑖 and 𝑗 and carrying

𝑑 dots. If 𝑖 ̸= 𝑗, then each coloring 𝑐 yields ⟨𝑆, 𝑐⟩ = 0. If both anchor points are labeled 1,

then only coloring 𝑆 by 2 contributes to the sum, and we have

⟨𝑆⟩ = ⟨𝑆, 𝑐2⟩ = −
𝛼𝑑2(𝛼2 − 𝛼1)

𝛼1 − 𝛼2

= 𝛼𝑑2.

On the other hand, if both anchor points are labeled 2, then

⟨𝑆⟩ = ⟨𝑆, 𝑐1⟩ = 𝛼𝑑1.

This is summarized pictorially in (4.32). Both signs are positive since 𝑘+𝜒(𝑆2)/2 = 1+1 = 2

is even.

∙𝑑
*

*

𝑖

𝑗

= 𝛿𝑖𝑗𝜏(𝛼𝑖)
𝑑 (4.32)

Note that these evaluations are not symmetric in 𝛼1, 𝛼2.

Example 4.2.3. More generally, let 𝑆 be a genus 𝑔 surface with 𝑑 dots and 2𝑘 anchor points.

If 𝑘 = 0 (that is, if 𝑆 is disjoint from ℒ) then the evaluation is

⟨𝑆⟩ = 𝛼𝑑1 + (−1)𝑔−1𝛼𝑑2
(𝛼1 − 𝛼2)1−𝑔

.
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On the other hand, if 𝑘 > 0, then

⟨𝑆⟩ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛼𝑑2(𝛼2 − 𝛼1)

𝑘+𝑔−1 if ℓ(1) = · · · = ℓ(2𝑘) = 1,

𝛼𝑑1(𝛼1 − 𝛼2)
𝑘+𝑔−1 if ℓ(1) = · · · = ℓ(2𝑘) = 2,

0 otherwise.

(4.33)

Proposition 4.2.4. For any anchored surface 𝑆 ⊂ R3 with 𝑑 dots and 2𝑘 anchor points, its

evaluation ⟨𝑆⟩ is a homogeneous polynomial in 𝛼1 and 𝛼2 of degree −𝜒(𝑆) + 2𝑑+ 2𝑘.

Proof. If 𝑆 does not intersect ℒ, then this follows from Example 4.2.3. Suppose that 𝑆

intersects ℒ. It suffices to verify the statement for connected surfaces. If 𝑆 intersects ℒ,

then the statement follows from (4.33), since 𝑘 > 0.

We recall the following notation from [40]. For 𝑖 = 1, 2, we allow surfaces to carry

decorations 𝑖 consisting of 𝑖 inscribed in a small circle. They must be disjoint from ℒ and

are allowed to float freely along the connected component on which they appear. We call

these shifted dots. Diagrammatically, a shifted dot 𝑖 is the difference between a dot and

𝛼𝑖,

𝑖 = −∙ 𝛼𝑖
.

(4.34)

Lemma 4.2.5. Let 𝑆 be an anchored foam and let 𝑆∪ 𝑖 denote the anchored foam obtained

by placing a shifted dot 𝑖 on some component 𝑆 ′ of 𝑆. Then

⟨︀
𝑆 ∪ 𝑖

⟩︀
=

⎧⎪⎨⎪⎩0 if 𝑆 ′ has an anchor point labeled 𝜏(𝑖)

(−1)𝑖(𝛼1 − 𝛼2) ⟨𝑆⟩ if all anchor points on 𝑆 ′ are labeled 𝑖.

Proof. This is clear from the definitions.

Lemma 4.2.5 is summarized diagrammatically in the relations (4.35).
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1 *2 2 *1= = 0

1 *1 *1= (𝛼2 − 𝛼1)

2 *2 *2= (𝛼1 − 𝛼2)

(4.35)

Alternatively, the skein relations (4.35) may written compactly as in (4.36).

∙ *𝑖 *𝑖= 𝜏(𝛼𝑖) (4.36)

Lemma 4.2.6. The local relations (4.37), (4.38), (4.39), and (4.40) hold.

∙ ∙ = 𝐸1 − 𝐸2∙ (4.37)

∙

∙
= + − 𝐸1 (4.38)

*

*

1

1

*

*

2

2
= + (4.39)
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(a) (b) (c) (d)

Figure 4-5: Local models for colorings of 𝐹 . Shaded indicates color 1 and solid white indicates color
2.

*

*

𝑖

𝑗

𝑖

= 𝛿𝑖𝑗 (4.40)

Proof. The relations (4.37) and (4.40) are straightforward. Let us now verify equation (4.38),

which is proved in the same way as for non-anchored foams, see [40, Lemma 3.5]. Let 𝑆

denote the surface on the left, and let 𝐹 denote the surface obtained by surgering 𝑆 as shown

on the right. Denote by 𝐹 𝑡 (resp. 𝐹 𝑏) the surface obtained from 𝐹 by placing an additional

dot on the top (resp. bottom) depicted disk. Note that anchor points, as well as their labels,

are the same for 𝐹 𝑡, 𝐹 𝑏, and 𝐹 . Colorings of 𝐹, 𝐹 𝑡, and 𝐹 𝑏 are in a canonical bijection.

There are four local models for a coloring of 𝐹 , illustrated in Figure 4-5.

Let 𝑐 be a coloring of 𝐹 of the type shown in Figure 4-5c, with the corresponding coloring

of 𝐹 𝑡 and 𝐹 𝑏 still denoted by 𝑐. We have

⟨︀
𝐹 𝑡, 𝑐

⟩︀
= 𝛼1 ⟨𝐹, 𝑐⟩

⟨︀
𝐹 𝑏, 𝑐

⟩︀
= 𝛼2 ⟨𝐹, 𝑐⟩ ,

hence ⟨𝐹 𝑡, 𝑐⟩+
⟨︀
𝐹 𝑏, 𝑐

⟩︀
−𝐸1 ⟨𝐹, 𝑐⟩ = 0. A similar calculation holds for a coloring 𝑐 of Figure 4-

5d type.

There is a natural bijection between colorings of 𝑆 and colorings of 𝐹 of Figures 4-5a

and 4-5b types. Let 𝑐 be a coloring of 𝐹 of Figure 4-5a type, and continue to denote by 𝑐

157



the corresponding coloring of 𝑆. Then

𝜒(𝐹 ) = 𝜒(𝑆) + 2 𝜒(𝐹2(𝑐)) = 𝜒(𝑆2(𝑐)),⟨︀
𝐹 𝑡, 𝑐

⟩︀
= 𝛼1 ⟨𝐹, 𝑐⟩

⟨︀
𝐹 𝑏, 𝑐

⟩︀
= 𝛼1 ⟨𝐹, 𝑐⟩ ,

so we have ⟨︀
𝐹 𝑡, 𝑐

⟩︀
+
⟨︀
𝐹 𝑏, 𝑐

⟩︀
− 𝐸1 ⟨𝐹, 𝑐⟩ = (𝛼1 − 𝛼2) ⟨𝐹, 𝑐⟩ = ⟨𝑆, 𝑐⟩ .

Finally, if 𝑐 is a coloring of 𝐹 of the Figure 4-5b type, then

𝜒(𝐹 ) = 𝜒(𝑆) + 2
⟨︀
𝐹 𝑡, 𝑐

⟩︀
= 𝛼2 ⟨𝐹, 𝑐⟩ ,

𝜒(𝐹2(𝑐)) = 𝜒(𝑆2(𝑐)) + 2
⟨︀
𝐹 𝑏, 𝑐

⟩︀
= 𝛼2 ⟨𝐹, 𝑐⟩ ,

which yields

⟨︀
𝐹 𝑡, 𝑐

⟩︀
+
⟨︀
𝐹 𝑏, 𝑐

⟩︀
− 𝐸1 ⟨𝐹, 𝑐⟩ = (𝛼2 − 𝛼1) ⟨𝐹, 𝑐⟩ = −(𝛼2 − 𝛼1)

⟨𝑆, 𝑐⟩
𝛼1 − 𝛼2

= ⟨𝑆, 𝑐⟩ .

We now address equation (4.39), where anchor points are present. Let 𝑆 denote the

surface on the left-hand side of the equality. Let 𝐹 1, 𝐹 2 denote the two anchored foams

obtained by surgery on 𝑆 in which the new anchor points are both labeled 1 or 2, respectively,

so that (4.39) reads ⟨𝑆⟩ = ⟨𝐹 1⟩ + ⟨𝐹 2⟩. For each 𝑖 = 1, 2 there are four local models for a

coloring of 𝐹 𝑖, shown in Figure 4-6. Colorings 𝑐 in Figure 4-6c and Figure 4-6d evaluate to

zero for both 𝑖 = 1, 2, ⟨︀
𝐹 1, 𝑐

⟩︀
=
⟨︀
𝐹 2, 𝑐

⟩︀
= 0

and they don’t correspond to any colorings of 𝑆. There is a natural bijection between

colorings of 𝑆 and colorings of 𝐹 𝑖 of the types in Figures 4-6a and 4-6b.

Let 𝑐 be a coloring of 𝑆 in which the depicted region of 𝑆 in (4.39) is colored 1, with the

corresponding colorings of 𝐹 1 and 𝐹 2 still denoted 𝑐. We have immediately that ⟨𝐹 1, 𝑐⟩ = 0.

On the other hand,

𝜒(𝐹 2) = 𝜒(𝑆) + 2, 𝜒(𝐹 2
2 (𝑐)) = 𝜒(𝑆2(𝑐)),
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*

*

𝑖

𝑖

(a)

*

*

𝑖

𝑖

(b)

*

*

𝑖

𝑖

(c)

*

*

𝑖

𝑖

(d)

Figure 4-6: Local models for colorings of 𝐹 𝑖. Shaded indicates color 1 and unshaded indicates color
2.

and 𝐹 2 has two additional anchor points compared to 𝑆, both labeled 2 and their regions

colored 1. Therefore

⟨︀
𝐹 1, 𝑐

⟩︀
+
⟨︀
𝐹 2, 𝑐

⟩︀
=
⟨︀
𝐹 2, 𝑐

⟩︀
= (𝛼1 − 𝛼2)

⟨𝑆, 𝑐⟩
𝛼1 − 𝛼2

= ⟨𝑆, 𝑐⟩ .

Now let 𝑐 be a coloring of 𝑆 in which the depicted region of (4.39) is colored 2, and

continue to denote by 𝑐 the corresponding colorings of 𝐹 1 and 𝐹 2. Then ⟨𝐹 2, 𝑐⟩ = 0. Since

𝜒(𝐹 1) = 𝜒(𝑆) + 2, 𝜒(𝐹 1
2 (𝑐)) = 𝜒(𝑆2(𝑐)) + 2,

and 𝐹 1 contains two more anchor points labeled 1 and colored 2 than 𝑆 does, we obtain

⟨︀
𝐹 1, 𝑐

⟩︀
+
⟨︀
𝐹 2, 𝑐

⟩︀
=
⟨︀
𝐹 1, 𝑐

⟩︀
= −(𝛼2 − 𝛼1)

⟨𝑆, 𝑐⟩
𝛼1 − 𝛼2

= ⟨𝑆, 𝑐⟩ .

Relation ⟨𝑆⟩ = ⟨𝐹 1⟩+ ⟨𝐹 2⟩ in Figure (4.39) follows.

Equation (4.38) can also be written using shifted dots,

1

2

2

1

= + = +

.

(4.41)
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4.2.2 State spaces

Following [13, 40], we can apply the universal construction to the evaluation described

above. Let 𝒫 = R2∖(0, 0) denote the punctured plane. Given a collection 𝐶 of disjoint simple

closed curves in 𝒫 , let Fr(𝐶) denote the free 𝑅𝛼-module with a basis consisting of properly

embedded compact surfaces 𝑆 ⊂ R2× (−∞, 0] with 𝜕𝑆 = 𝐶 and which are transverse to the

ray ℒ− := (0, 0) × (−∞, 0]. The intersection 𝑆 ∩ ℒ− is a 0-submanifold of ℒ− and consists

of finitely many points. Moreover, each such surface 𝑆 must carry a labeling, a map

ℓ = ℓ𝑆 : 𝑆 ∩ ℒ− → {1, 2}

from the set of its intersection points with the ray ℒ− (its anchor points) to {1, 2}. For a

basis element 𝑆 ∈ Fr(𝐶), let 𝑆 ⊂ R2 × [0,∞) denote its reflection through the plane R2.

Labels of anchor points do not change upon reflection. For two basis elements 𝑆, 𝑆 ′ ∈ Fr(𝐶)

denote by 𝑆𝑆 ′ the closed anchored surface obtained by gluing 𝑆 to 𝑆 ′ along their common

boundary 𝐶.

Define a bilinear form

(−,−) : Fr(𝐶)× Fr(𝐶)→ 𝑅𝛼 (4.42)

by setting (𝑆, 𝑆 ′) =
⟨︀
𝑆𝑆 ′⟩︀. A direct computation shows that the form is symmetric, since

for a closed surface 𝑇 the evaluation satisfies
⟨︀
𝑇
⟩︀
= ⟨𝑇 ⟩.

Define the state space of 𝐶, denoted ⟨𝐶⟩, to be the quotient of Fr(𝐶) by the kernel

{𝑥 ∈ Fr(𝐶) | (𝑥, 𝑦) = 0 for all 𝑦 ∈ Fr(𝐶)}

of this bilinear form. For a basis element 𝑆 ∈ Fr(𝐶), we will write [𝑆] to denote its equivalence

class in ⟨𝐶⟩.

Equip the ground ring 𝑅𝛼 with a bigrading by placing 𝛼1, 𝛼2 in bidegree (2, 0). We extend

this bigrading (qdeg, adeg) to Fr(𝐶) as follows. For a basis element 𝑆 ∈ Fr(𝐶) with 𝑑 dots

and 𝑚 anchor points, set the quantum grading qdeg(𝑆) ∈ Z to be

qdeg(𝑆) = −𝜒(𝑆) + 2𝑑+𝑚. (4.43)
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label 1 label 2
𝑖 odd 1 −1
𝑖 even −1 1

Figure 4-7: The contribution of the 𝑖-th anchor point on 𝑆 to adeg(𝑆).

×

*

*

1

1

(a) (0,0)

×

*

*

2

1

(b) (0,-2)

×

*

*

1

2

(c) (0,2)

×

*

*

2

2

(d) (0,0)

Figure 4-8: The (qdeg, adeg) bidegrees of some anchored surfaces whose boundary consists of two
non-contractible circles.

Note that if 𝑆 is a closed surface, then ⟨𝑆⟩ ∈ 𝑅𝛼 is a homogeneous polynomial of degree

qdeg(𝑆), following the degree convention (4.23).

Next, let ℓ(1), . . . , ℓ(𝑚) denote the labels of the anchor points of 𝑆, ordered from bottom

to top, and define the annular grading adeg(𝑆) ∈ Z by setting

adeg(𝑆) =
𝑚∑︁
𝑖=1

(−1)𝑖+ℓ(𝑖). (4.44)

In other words, if the 𝑖-th anchor point 𝑝𝑖 is labeled 1, then it contributes 1 to adeg if 𝑖 is

odd and −1 if 𝑖 is even. Likewise, if 𝑝𝑖 has label 2 then it contributes −1 if 𝑖 is odd and 1

if 𝑖 is even, see also Figure 4-7. Multiplication by 𝛼1, 𝛼2 increases (qdeg, adeg)-bidegree by

(2, 0).

Example 4.2.7. Let 𝐶 consist of two non-contractible circles. The bidegree (qdeg, adeg) of

the four anchored surfaces in Fr(𝐶) whose underlying surface consists of two disks each

intersecting ℒ− once are recorded in Figure 4-8.

Lemma 4.2.8. Let 𝑆 be an anchored surface. Then ⟨𝑆⟩ = 0 or adeg(𝑆) = 0.

Proof. If some component of 𝑆 has anchor points with different labels then ⟨𝑆⟩ = 0. Assume

that all anchor points on any component of 𝑆 are labeled identically. We also assume that

𝑆 intersects ℒ, otherwise adeg(𝑆) = 0 is immediate. As usual, order the anchor points
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𝑝1, . . . , 𝑝𝑚 from bottom to top.

Take a generic half-plane 𝑃 in R3 containing the anchor line ℒ, so that 𝑃 ∩ 𝑆 consists

of finitely many arcs (with boundary on ℒ) and circles (disjoint from ℒ). For any arc 𝑎 in

𝑃 ∩𝑆 with boundary 𝜕𝑎 = {𝑝𝑖, 𝑝𝑗}, necessarily 𝑖 and 𝑗 have opposite parities, and moreover

ℓ(𝑝𝑖) = ℓ(𝑝𝑗) by assumption. Therefore the total contribution of the anchor points 𝑝𝑖 and 𝑝𝑗

to adeg(𝑆) is zero. Summing over all arcs in 𝑃 ∩ 𝑆 yields the statement of the lemma.

The subspace ker((, )) ⊂ Fr(𝐶) respects this bigrading on Fr(𝐶). Consequently, the

bigrading descends to the state space ⟨𝐶⟩.

Note that the relations (4.38) and (4.39) are bi-homogeneous. Let 𝑆 ∈ Fr(𝐶) be a basis

element of the form 𝑆 = 𝑆1 ⊔ 𝑆2 where 𝑆1, 𝑆2 ∈ Fr(𝐶) are anchored surfaces with 𝑆2 closed.

Then in ⟨𝐶⟩ we have

[𝑆] = ⟨𝑆2⟩ [𝑆1], ⟨𝑆2⟩ ∈ 𝑅𝛼. (4.45)

Moreover, the relation (4.45) is bi-homogeneous. That it is homogeneous with respect to

qdeg follows from the fact that ⟨𝑆2⟩ ∈ 𝑅𝛼 is a polynomial of degree qdeg(𝑆2). Lemma 4.2.8

ensures that adeg(𝑆2) = adeg(⟨𝑆2⟩) = 0, so adeg(𝑆) = adeg(𝑆1).

Given a bigraded module 𝑀 =
⨁︀

(𝑖,𝑗)∈Z2 𝑀𝑖,𝑗 over a commutative domain such that each

𝑀𝑖,𝑗 has finite rank, define its graded rank to be

rank𝑞(𝑀) =
∑︁
𝑖,𝑗

rank(𝑀𝑖,𝑗)𝑞
𝑖𝑎𝑗.

Lemma 4.2.9. Let 𝐶 ⊂ 𝒫 be a single circle. Then the state space ⟨𝐶⟩ is a free 𝑅𝛼-module

of rank 2. Moreover, we have

rank𝑞(⟨𝐶⟩) =

⎧⎪⎨⎪⎩𝑞 + 𝑞−1 if 𝐶 is contractible

𝑎+ 𝑎−1 if 𝐶 is non-contractible.

Proof. If 𝐶 is contractible, then by applying the neck-cutting relation (4.38) near 𝐶 and

evaluating closed anchored surfaces as in equation (4.45), we see that ⟨𝐶⟩ is spanned by the

two elements 𝑆 and 𝑆∙ shown in Figures 4-9a and 4-9b. Bidegrees of 𝑆 and 𝑆∙ are (−1, 0)
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×

(a) 𝑆

×

∙

(b) 𝑆∙

×

*
1

(c) 𝑆1

×

*
2

(d) 𝑆2

Figure 4-9: Basis elements for the state space of a single circle 𝐶. The first two surfaces form a
basis if 𝐶 is contractible, and the last two form a basis if 𝐶 is non-contractible.

and (1, 0), respectively. Computing the matrix of the bilinear form (4.42) for these elements

yields ⎛⎝𝑆𝑆 𝑆𝑆∙

𝑆∙𝑆 𝑆∙𝑆∙

⎞⎠ =

⎛⎝0 1

1 𝐸1

⎞⎠ ,

which is invertible, thus 𝑆, 𝑆∙ constitute a basis for ⟨𝐶⟩.

Now suppose 𝐶 is non-contractible. Applying the neck-cutting relation (4.39) near 𝐶 and

evaluating closed anchored surfaces shows that the two elements 𝑆1, 𝑆2 depicted in Figures

4-9c and 4-9d span ⟨𝐶⟩. Bidegrees of 𝑆1 and 𝑆2 are (0, 1) and (0,−1), respectively. The

matrix of the bilinear form is ⎛⎝𝑆1𝑆1 𝑆1𝑆2

𝑆2𝑆1 𝑆2𝑆2

⎞⎠ =

⎛⎝1 0

0 1

⎞⎠ ,

hence 𝑆1, 𝑆2 are linearly independent and constitute a basis of ⟨𝐶⟩.

Theorem 4.2.10. Let 𝐶 ⊂ 𝒫 consist of 𝑛 contractible circles and 𝑚 non-contractible circles.

Then the state space ⟨𝐶⟩ is a free 𝑅𝛼-module of rank 2𝑛+𝑚. Moreover, we have

rank𝑞(⟨𝐶⟩) = (𝑞 + 𝑞−1)𝑛(𝑎+ 𝑎−1)𝑚.

Proof. Consider a 2𝑛+𝑚 element set 𝐵(𝐶) of basis vectors of Fr(𝐶) consisting of surfaces 𝑆

satisfying

• Each component of 𝑆 is a disk.

• Each disk in 𝑆 with contractible boundary is disjoint from ℒ− and carries either zero

or one dot.
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• Each disk in 𝑆 with non-contractible boundary intersects ℒ− exactly once, and its

intersection point may be labeled by either 1 or 2.

That 𝐵(𝐶) spans ⟨𝑆⟩ follows from applying the two neck-cutting relations (4.38) and (4.39)

near the circles in 𝐶 and evaluating closed anchored surfaces. Linear independence of 𝐵(𝐶)

and the statement regarding graded rank follow from the computations in Lemma 4.2.9.

Elements of the basis 𝐵(𝐶) constructed above are standard generators. For such a Σ ∈

𝐵(𝐶) with 𝑑 dots and anchor points labeled ℓ1, . . . , ℓ𝑚, we have

qdeg(Σ) = −𝑛+ 2𝑑, adeg(Σ) =
𝑚∑︁
𝑖=1

(−1)𝑖+ℓ(𝑖). (4.46)

Let 𝐶0, 𝐶1 ⊂ 𝒫 be two collections of disjoint circles in the punctured plane. An anchored

cobordism from 𝐶0 to 𝐶1 is a smoothly and properly embedded compact surface 𝑆 ⊂ R2×[0, 1]

with boundary 𝜕𝑆 = 𝐶0 ⊔ 𝐶1, such that 𝐶𝑖 ⊂ R2 × {𝑖}, 𝑖 = 0, 1. Moreover, 𝑆 is required

to intersect the arc ℒ[0,1] := (0, 0)× [0, 1] transversely and come equipped with a labeling of

these intersection points (called anchor points), which is a map

ℓ = ℓ𝑆 : 𝑆 ∩ ℒ[0,1] → {1, 2}

from the set of its anchor points to {1, 2}. Anchored cobordisms are allowed to carry dots

which can float on components but cannot jump to a different component.

We compose anchored cobordisms in the usual manner. For anchored cobordisms 𝑆1 : 𝐶0 →

𝐶1, 𝑆2 : 𝐶1 → 𝐶2, let 𝑆2𝑆1 : 𝐶0 → 𝐶2 denote the anchored cobordism obtained by gluing along

the common boundary 𝐶1 and re-scaling. Labels of anchor points of 𝑆2𝑆1 are inherited from

labels of 𝑆1 and 𝑆2.

As above, if an anchored cobordism 𝑆 from 𝐶0 to 𝐶1 has 𝑚 anchor points and carries 𝑑

dots, define

qdeg(𝑆) = −𝜒(𝑆) + 2𝑑+𝑚.

Let ℓ(1), . . . , ℓ(𝑚) denote the labels of anchor points of 𝑆, ordered from bottom to top, and
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let 𝑛 be the number of non-contractible circles in 𝐶0. Set

adeg(𝑆) = (−1)𝑛
𝑚∑︁
𝑖=1

(−1)𝑖+ℓ(𝑖).

Remark 4.2.11. If 𝐶0 = ∅, then 𝑆 is a basis element of Fr(𝐶1), and moreover the two degrees

qdeg(𝑆), adeg(𝑆) defined above for anchored cobordisms agree with the definitions in (4.43)

and (4.44) for elements of Fr(𝐶1).

An anchored cobordism 𝑆 from 𝐶0 to 𝐶1 induces an 𝑅𝛼-linear map

𝑆 : Fr(𝐶0)→ Fr(𝐶1)

defined on the basis by gluing along the common boundary 𝐶0. The definition of state spaces

via universal construction immediately implies that we have an induced map

⟨𝑆⟩ : ⟨𝐶0⟩ → ⟨𝐶1⟩ . (4.47)

Lemma 4.2.12. Let 𝑆1 : 𝐶0 → 𝐶1 and 𝑆2 : 𝐶1 → 𝐶2 be anchored cobordisms. Then

qdeg(𝑆2𝑆1) = qdeg(𝑆2) + qdeg(𝑆1), adeg(𝑆2𝑆1) = adeg(𝑆2) + adeg(𝑆1).

In particular, ⟨𝑆1⟩ : ⟨𝐶0⟩ → ⟨𝐶1⟩ is a map of bidegree (qdeg(𝑆1), adeg(𝑆1)).

Proof. The first equality involving qdeg is straightforward. Let 𝑛 and 𝑚 denote the number

of non-contractible circles in 𝐶0 and 𝐶1 respectively, and let 𝑘 denote the number of anchor

points of 𝑆1. We have

adeg(𝑆2𝑆1) = adeg(𝑆1) + (−1)𝑛+𝑚+𝑘 adeg(𝑆2).

Note 𝑛+𝑚+ 𝑘 is even, since it is equal to the number of anchor points of the closed surface

obtained by gluing disks to all boundary circles of 𝑆1.

The final statement concerning the bidegree of ⟨𝑆1⟩ follows from interpreting generators

of ⟨𝐶0⟩ as anchored cobordisms ∅→ 𝐶0, as in Remark 4.2.11.
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Definition 4.2.13. An annular cobordism is an anchored cobordism 𝑆 ⊂ R2× [0, 1] which is

disjoint from the arc ℒ[0,1] = {(0, 0)} × [0, 1]. An elementary annular cobordism is one with

a single non-degenerate critical point with respect to the height function R2× [0, 1]→ [0, 1].

Elementary annular cobordisms consist of a union of a product cobordism with a cup, cap,

or saddle. Every annular cobordism may be obtained by composing finitely many elementary

ones. Cup and cap annular cobordisms always have contractible boundary. Recall that there

are four types of elementary annular saddles involving at least one non-contractible circle,

shown in Figure 2-12. In the next four examples we write down the maps assigned to these

four cobordisms in the standard bases of state spaces, as defined in the proof of Theorem

4.2.10. We also use the notation of shifted dots from (4.34).

Example 4.2.14. Figure 2-12a map. The calculation for this map follows at once from the

skein relation (4.36).

×

*
1

×

*
1

↦−→
×

*
1

×

*
1

∙ 𝛼2↦−→

×

*
2

×

*
2

↦−→
×

*
2

×

*
2

∙ 𝛼1↦−→

(4.48)

Example 4.2.15. Figure 2-12b map. This calculation follows easily from the skein relation

(4.40).
×

*
*

1

1

×

1↦−→
×

*
*

2

1

↦−→ 0

×

*
*

2

2

×

2↦−→
×

*
*

1

2

↦−→ 0

(4.49)
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Example 4.2.16. Figure 2-12c map. A convenient way to perform this calculation is to use

neck-cutting with shifted dots (4.41) near the contractible circle and then simplify using the

relations (4.35).

×

*
1

×

*
1

1↦−→
×

*
2

×

*
2

2↦−→
(4.50)

Example 4.2.17. Figure 2-12d map. The neck-cutting relation (4.39) is helpful here. For the

dotted cup we also use (4.36) to simplify further.

× ×

*
*

1

1

×

*
*

2

2

↦−→ +

×

∙
×

*
*

1

1

×

*
*

2

2

↦−→ +𝛼2 𝛼1

(4.51)

Recall the involution 𝜏 of 𝑅𝛼 that transposes 𝛼1, 𝛼2 and extend it to an antilinear invo-

lution, also denoted 𝜏 , of the free 𝑅𝛼-module Fr(𝐶) as follows. Involution 𝜏 on Fr(𝐶) sends

a surface 𝑆 to the same surface with the labeling ℓ of anchor points reversed and acts on

linear combinations by

𝜏

(︃∑︁
𝑖

𝜆𝑖𝑆𝑖

)︃
=
∑︁
𝑖

𝜏(𝜆𝑖)𝜏(𝑆𝑖).

For a closed surface 𝑆 we have, by direct computation, ⟨𝜏(𝑆)⟩ = 𝜏(⟨𝑆⟩), showing compat-

ibility of the two involutions. If 𝑆, in addition, carries shifted dots, involution 𝜏 reverses

their labels, so that 𝜏( 1 ) = 2 and 𝜏( 2 ) = 1 . Involution 𝜏 descends to an involution, also

denoted 𝜏 , on ⟨𝐶⟩. Annular degree is negated under 𝜏 , adeg(𝜏(𝑆)) = − adeg(𝑆), for an

anchored cobordism 𝑆.
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1 𝑋 𝑣0 𝑣1 𝑣′0 𝑣′1
qdeg′ −1 1 0 0 0 0
adeg 0 0 −1 1 −1 1

Figure 4-10: The (qdeg′, adeg)-bidegrees of relevant elements, where {1, 𝑋} is a basis for a con-
tractible circle and {𝑣0, 𝑣1}, {𝑣′0, 𝑣′1} are bases for non-contractible circles.

4.2.3 Equivariant annular sl2 homology via foam evaluation

Let ACob denote the category whose objects consist of collections of finitely many

disjoint simple closed curves in the punctured plane 𝒫 . A morphism from 𝐶0 to 𝐶1 in ACob

is an anchored cobordism from 𝐶0 to 𝐶1, up to ambient isotopy fixing the boundary point-

wise and mapping ℒ[0,1] to itself. Let ACob′ denote the subcategory of ACob with the same

objects as ACob but whose morphisms are isotopy classes of annular cobordisms, disjoint

from the anchor line ℒ. The composition of annular cobordisms is again annular.

Let 𝑅𝛼− ggmod denote the category of bigraded 𝑅𝛼-modules and homogeneous maps (of

any bidegree) between them. We have a functor

⟨−⟩ : ACob→ 𝑅𝛼− ggmod

which sends a collection of circles 𝐶 ⊂ 𝒫 to the state space ⟨𝐶⟩ and sends an anchored

cobordism 𝑆 from 𝐶0 to 𝐶1 to the map ⟨𝑆⟩ : ⟨𝐶0⟩ → ⟨𝐶1⟩ as in (4.47). By Lemma 4.2.12,

⟨𝑆⟩ is a map of bidegree (qdeg(𝑆), adeg(𝑆)). We can restrict to the category of annular

cobordisms to get a functor

⟨−⟩′ : ACob′ → 𝑅𝛼− ggmod,

which assigns to an annular cobordism 𝑆 a map ⟨𝑆⟩′ = ⟨𝑆⟩ of bidegree (qdeg(𝑆), 0). The

restriction ⟨−⟩′ does not change the state space assigned to a collection of circles 𝐶 ⊂ 𝒫 .

On the other hand, a functor 𝒢𝛼 : ACob′ → 𝑅𝛼− ggmod was constructed in Theorem

4.1.4. To compare 𝒢𝛼 with ⟨−⟩′, we will use a modified quantum grading qdeg′ on 𝒢𝛼, given

by qdeg′ = qdeg− adeg and summarized in Figure 4-10.

Remark 4.2.18. The modified quantum grading qdeg′ appears elsewhere in the literature and
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is apparently more natural for annular link homology. In [25] this grading was denoted 𝑗′.

Similarly, quantum annular link homology carries the modified quantum grading, see Section

3.1.

Theorem 4.2.19. The functors ⟨−⟩′ : ACob′ → 𝑅𝛼− ggmod and 𝒢𝛼 : ACob′ → 𝑅𝛼− ggmod

are naturally isomorphic via bidegree-preserving maps.

Proof. Let 𝐶 ⊂ 𝒫 be a collection of circles. We will define an 𝑅𝛼-linear, bidegree preserv-

ing isomorphism Φ𝐶 : ⟨𝐶⟩ → 𝒢𝛼(𝐶) and show that it is natural with respect to annular

cobordisms.

Let 𝑛 and 𝑚 denote the number of contractible and non-contractible circles in 𝐶, respec-

tively. Fix an ordering 1, . . . , 𝑛 on the contractible circles in 𝐶. The 𝑅𝛼-module 𝒢𝛼(𝐶) is

free with basis given by elements of the form

𝑦1 ⊗ · · · 𝑦𝑛 ⊗ 𝑧1 ⊗ · · · ⊗ 𝑧𝑚,

where each 𝑦𝑖 is in {1, 𝑋}, specifying a basis element of the 𝑖-th contractible circle, and

each 𝑧𝑗 is in either {𝑣0, 𝑣1} or {𝑣′0, 𝑣′1}, depending on nesting, specifying basis elements of

the non-contractible circles. The ordering of factors 𝑧1 ⊗ · · · ⊗ 𝑧𝑚 corresponding to non-

contractible circles is from outermost to innermost as usual, so that the first factor 𝑧1 labels

the outermost non-contractible circle.

We now define the isomorphism Φ𝐶 : ⟨𝐶⟩ → 𝒢𝛼(𝐶). Recall the standard basis 𝐵 = 𝐵(𝐶)

for ⟨𝐶⟩ defined in the proof of Theorem 4.2.10. For Σ ∈ 𝐵 with anchor points labeled

ℓ1, . . . , ℓ𝑚, read from bottom to top, set

Φ𝐶(Σ) = 𝑦1 ⊗ · · · 𝑦𝑛 ⊗ 𝑧1 ⊗ · · · ⊗ 𝑧𝑚,

where 𝑦𝑖 = 1 if the corresponding cup in Σ is undotted and 𝑦𝑖 = 𝑋 if the corresponding cup
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×

*
*

1

1

1⊗ 𝑣1 ⊗ 𝑣′0

×

*
*

1

1

∙

𝑋 ⊗ 𝑣1 ⊗ 𝑣′0

×

*
*

2

1

1⊗ 𝑣0 ⊗ 𝑣′0

×

*
*

2

1

∙

𝑋 ⊗ 𝑣0 ⊗ 𝑣′0

×

*
*

1

2

1⊗ 𝑣1 ⊗ 𝑣′1

×

*
*

1

2

∙

𝑋 ⊗ 𝑣1 ⊗ 𝑣′1

×

*
*

2

2

1⊗ 𝑣0 ⊗ 𝑣′1

×

*
*

2

2

∙

𝑋 ⊗ 𝑣0 ⊗ 𝑣′1

Figure 4-11: An example of the isomorphism Φ𝐶 when 𝐶 consists of one contractible circle and two
non-contractible circles. Basis elements Σ of ⟨𝐶⟩ are drawn with the corresponding basis element
Φ𝐶(Σ) ∈ 𝒢𝛼(𝐶) written underneath.

in Σ is dotted. The generators 𝑧𝑗 of non-contractible circles are determined using the rule

𝑧𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣1 if 𝑗 is odd and ℓ𝑗 = 1

𝑣0 if 𝑗 is odd and ℓ𝑗 = 2

𝑣′0 if 𝑗 is even and ℓ𝑗 = 1

𝑣′1 if 𝑗 is even and ℓ𝑗 = 2

See Figure 4-11 for an example of the assignment Φ𝐶 when 𝑛 = 1, 𝑚 = 2. By comparing

the bidegree formula (4.46) for Σ with the bidegree of Φ𝐶(Σ) (see Figure 4-10), we see that

Φ𝐶 is a bidegree-preserving isomorphism. Recall that we use the modified quantum grading

qdeg′ for 𝒢𝛼(𝐶), see Figure 4-10.

Now let 𝑆 : 𝐶1 → 𝐶2 be an annular cobordism. To complete the proof, we check that the

square

⟨𝐶1⟩ 𝒢𝛼(𝐶1)

⟨𝐶2⟩ 𝒢𝛼(𝐶2)

Φ𝐶1

⟨𝑆⟩ 𝒢𝛼(𝑆)

Φ𝐶2

commutes. If all the boundary circles of 𝑆 are contractible, then commutativity of the square

170



is straightforward. Otherwise, if 𝑆 has at least one non-contractible boundary circle, it

suffices to consider the case where 𝑆 is one of the elementary annular cobordisms depicted in

Figure 2-12. Formulas for these maps were recorded in Examples 4.2.14 – 4.2.17. Comparing

with the formulas (4.4) – (4.7) completes the proof.

For an oriented link 𝐿 ⊂ A × [0, 1] in the thickened annulus, a generic projection of

𝐿 onto A × {0} yields a link diagram 𝐷 in the interior of A. Identifying the interior of

A with the punctured plane 𝒫 , we may form the cube of resolutions of 𝐷 in the usual

way, with all smoothings drawn in 𝒫 . The result is a commutative cube in the cate-

gory ACob′. Introducing signs to make the cube anti-commutative, taking direct sums

along diagonals, adding homological and quantum grading shifts, and applying the functor

⟨−⟩′ : ACob′ → 𝑅𝛼− ggmod, one obtains a chain complex 𝐶(𝐷) of bigraded 𝑅𝛼-modules.

Diagrams representing isotopic annular links are related by Reidemeister moves away from

the puncture. It follows that the chain homotopy class of 𝐶(𝐷) is an invariant of the annular

link 𝐿. We write 𝐻(𝐿) to denote the homology of 𝐶(𝐿). Theorem 4.2.19 implies that there

is an isomorphism of chain complexes 𝐶(𝐷) ∼= 𝐶𝐾ℎA𝛼(𝐷).

Example 4.2.20. As an explicit example, let 𝜎 denote the positive crossing generator of the

2-strand braid group, and let 𝐿𝑛 denote the annular link obtained as the annular closure of

𝜎−𝑛. Consider the complex 𝐶(𝑛) shown in (4.52).

𝜕−1

{𝑐0}
𝜕−2

{𝑐1}
𝜕−3

{𝑐2}· · ·
𝜕−𝑛

{𝑐𝑛}

(4.52)

The right-most term is in homological degree zero and the quantum grading shifts 𝑐𝑖 are

given by 𝑐0 = 𝑛 and 𝑐𝑖 = 𝑛 + 2𝑖 − 1 for 1 ≤ 𝑖 ≤ 𝑛. The right-most differential 𝜕−1 is the
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saddle cobordism, and for −𝑛 ≤ 𝑖 ≤ −2 the differentials are

𝜕𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∙ − ∙ if 𝑖 is even,

∙
+ ∙ − 𝐸1 if 𝑖 is odd.

The above schematic depiction of 𝜕𝑖 is interpreted as follows: each 𝜕𝑖 is an 𝑅𝛼-linear combi-

nation of surfaces, each of which is given by the product cobordism on the depicted planar

tangle, with a dot on a component of the surface if the corresponding tangle component is

dotted. Finally, we apply the functor ⟨−⟩′ : ACob′ → 𝑅𝛼− ggmod to obtain a complex of

𝑅𝛼-modules.

By induction on 𝑛 and using abstract Gaussian elimination [9, Lemma 4.2], one can show

that he chain complex 𝐶(𝐿𝑛) is chain homotopy equivalent to the annular closure of 𝐶(𝑛).

Note that the annular closure of chain groups in negative homological degree are each a

contractible circle, contributing a free module with basis 1 and𝑋 (represented by the surfaces

𝑆 and 𝑆∙ in Figure 4-9). In homological degree zero the result is two essential circles. We

also see that, upon taking the annular closure, that 𝜕𝑖 = 0 for 𝑖 even, and that 𝜕𝑖 for 𝑖 > 1

odd is given by 𝜕𝑖(1) = 2𝑋 − 𝐸1, 𝜕𝑖(𝑋) = 𝐸1𝑋 − 2𝐸2, which is injective. The differential

𝜕−1 is the map in Example 4.2.17, which is also injective. Therefore, in homological degree

𝑖 ≤ 0, the homology is

𝐻 𝑖(𝐿𝑛) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑖 is odd ,
𝑅𝛼{𝑛− 2𝑖− 2, 0} ⊕𝑅𝛼{𝑛− 2𝑖, 0}

⟨(−𝐸1, 2), (−2𝐸2, 𝐸1)⟩
if 𝑖 < 0, 𝑖 even,

𝑅𝛼{𝑛,−2} ⊕𝑅𝛼{𝑛, 2} ⊕ (𝑅𝛼{𝑛, 0}/⟨𝛼2 − 𝛼1⟩) if 𝑖 = 0,

where {𝑗, 𝑘} denotes an upwards (qdeg, adeg) shift of (𝑗, 𝑘), and the angled brackets denote

the 𝑅𝛼-submodule generated by the enclosed elements.
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4.3 Anchored sl3 link homology

In this section we recall (oriented) sl3 foams, which were introduced in [35] in the context

of sl3 link homology. An equivariant analogue was defined in [63], see also [64, 20, 61, 60, 71]

for various aspects of sl3 foams and link homology. In Section 4.3.1 we define an evaluation

of oriented sl3 foams via colorings in the style of Robert-Wagner and show in Theorem 4.3.34

that our evaluation agrees with that of [63]. In Section 4.3.2 we deform the evaluation in

the presence of the anchor line ℒ; the main result of that section, Theorem 4.3.21, shows

that our evaluation is always a polynomial rather than a rational function. Section 4.3.3

establishes key local relations, which are used in Section 4.3.4 to identify state spaces of sl3

webs in the punctured plane. Finally, in Section 4.3.5 we describe the resulting annular link

homology theory.

We establish the following notation for rings that will be used throughout this section;

they are the 𝑁 = 3 specializations of rings in Definition 2.5.15, as well as new rings which

will be needed for the anchored foam evaluation.

• 𝑅′
3 = Z[𝑥1, 𝑥2, 𝑥3] is the ring of polynomials in three variables.

• 𝑅3 = Z[𝐸1, 𝐸2, 𝐸3] the subring of𝑅′
3 that consists of symmetric polynomials in 𝑥1, 𝑥2, 𝑥3,

with generators 𝐸𝑖 being elementary symmetric polynomials:

𝐸1 = 𝑥1 + 𝑥2 + 𝑥3,

𝐸2 = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3,

𝐸3 = 𝑥1𝑥2𝑥3.

• 𝑅′′
3 = 𝑅′

3[(𝑥1− 𝑥2)−1, (𝑥2− 𝑥3)−1, (𝑥1− 𝑥3)−1] is a localization of 𝑅′
3 given by inverting

𝑥𝑖 − 𝑥𝑗, for 1 ≤ 𝑖 < 𝑗 ≤ 3.

• ̃︀𝑅′
3 = 𝑅′

3[
√
𝑥1 − 𝑥3,

√
𝑥2 − 𝑥3,

√
𝑥1 − 𝑥3] is the extension of 𝑅′

3 obtained by introducing

square roots of
√
𝑥𝑖 − 𝑥𝑗, for 1 ≤ 𝑖 < 𝑗 ≤ 3.

• ̃︀𝑅′′
3 = ̃︀𝑅′

3[(𝑥1 − 𝑥2)−1, (𝑥2 − 𝑥3)−1, (𝑥1 − 𝑥3)−1] is a suitable localization of the ring ̃︀𝑅′
3.
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All five of these rings are graded by setting deg(𝑥1) = deg(𝑥2) = deg(𝑥3) = 2. Inclusions of

the above rings are summarized in the following diagram.

̃︀𝑅′
3 ⊂ ̃︀𝑅′′

3

∪ ∪

𝑅3 ⊂ 𝑅′
3 ⊂ 𝑅′′

3

(4.53)

4.3.1 Oriented sl3 foams and their evaluations

We begin by recalling the definition of (oriented) sl3 foams from [35, Section 3.2]. The

terminology oriented is to distinguish these from the foams appearing in [41], but we will

often drop this descriptor.

Definition 4.3.1. A (closed) sl3 pre-foam 𝐹 consists of the following data.

• An orientable surface 𝐹 ′ with connected components 𝐹1, . . . , 𝐹𝑘 and a partition of the

boundary components of 𝐹 ′ into triples. The underlying CW structure of 𝐹 is obtained

by identifying the three circles in each triple. The image of the three circles in each

triple becomes a single circle in 𝐹 , called a singular circle. The image of the surfaces

𝐹𝑖 are called facets. Three facets meet at each singular circle. Let 𝑓(𝐹 ) denote the set

of facets of 𝐹 .

• For each singular circle 𝑍, we fix a cyclic ordering of the three facets meeting at 𝑍.

There are two possible choices of cyclic ordering for each 𝑍.

• Each facet may carry some number of dots, which are allowed to float freely along the

facet but cannot cross singular circles.

An sl3 foam is a pre-foam as above equipped with an embedding into R3, along with

an orientation on each facet such that any two of the three facets meeting at each singular

circle are incompatibly oriented, as shown in Figure 4-12a. Each singular circle 𝑍 acquires

an induced orientation, see Figure 4-12b. This induced orientation on 𝑍 specifies a cyclic

ordering of the three facets meeting at 𝑍 by following the left-hand rule, Figure 4-12c, and

we require this to match the cyclic ordering specified by the pre-foam 𝐹 .

174



(a) Orientations of three facets
meeting at a singular circle.

(b) The induced orientation of a
singular circle.

(c) The induced cyclic ordering.

Figure 4-12

12

3

Figure 4-13: The local model for a pre-admissible coloring near a singular circle.

For a pre-foam 𝐹 , let Θ(𝐹 ) denote the set of its singular circles and 𝜃(𝐹 ) = |Θ(𝐹 )|

the number of singular circles. Each 𝑍 ∈ Θ(𝐹 ) has a neighborhood homeomorphic to the

product of a circle 𝑆1 and the letter 𝑌 .

Definition 4.3.2. Let 𝐹 be an sl3 pre-foam. A coloring of 𝐹 is a function 𝑐 : 𝑓(𝐹 ) →

{1, 2, 3} such that the three circles meeting at each singular circles have distinct colors, as

shown in Figure 4-13.

For a coloring 𝑐 and 1 ≤ 𝑖 ̸= 𝑗 ≤ 3, let 𝐹𝑖𝑗(𝑐) denote the union of facets colored 𝑖 or 𝑗.

Note that 𝐹𝑖𝑗(𝑐) is a closed surface. We say that 𝑐 is admissible if each 𝐹𝑖𝑗(𝑐) is orientable.

Let adm(𝐹 ) denote the set of admissible colorings.

Remark 4.3.3. Note that if 𝐹 is a foam (meaning, a pre-foam embedded in R3), then each

𝐹𝑖𝑗(𝑐) is a closed surface in R3, so all colorings of 𝐹 are admissible.

Remark 4.3.4. In order to keep the notation reasonable, in this section we will often repurpose

the notation from Section 2.5.3 (for example, the bi-colored surface 𝐹𝑖𝑗(𝑐) described in the

above definition). We warn the reader to keep in mind the distinction between sl3 foams

considered here and the gl𝑁 foams from Section 2.5.3.

For 1 ≤ 𝑖 ≤ 3, let 𝐹𝑖(𝑐) be the surface consisting of all facets of 𝐹 which are colored 𝑖 by

𝑐; the surface 𝐹𝑖(𝑐) is orientable and has 𝜃(𝐹 ) boundary components. Denote by 𝐹 𝑖(𝑐) the
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closed surface obtained by gluing disks along boundary components of 𝐹𝑖(𝑐). We have

𝜒(𝐹 𝑖(𝑐)) = 𝜒(𝐹𝑖(𝑐)) + 𝜃(𝐹 ), 1 ≤ 𝑖 ≤ 3

𝜒(𝐹𝑖𝑗(𝑐)) = 𝜒(𝐹𝑖(𝑐)) + 𝜒(𝐹𝑗(𝑐)), 1 ≤ 𝑖 < 𝑗 ≤ 3.
(4.54)

The three facets meeting at each singular circle are colored by 𝑖, 𝑗, 𝑘, we use 𝑖, 𝑗, 𝑘 to

denote the three elements of {1, 2, 3}. We now define quantities 𝜃±(𝑐), 𝜃±𝑖𝑗(𝑐) associated with

the set of singular circles Θ(𝐹 ) and the admissible coloring 𝑐.

Definition 4.3.5. Let 𝐹 be a pre-foam with admissible coloring 𝑐, and let 1 ≤ 𝑖 < 𝑗 ≤ 3. A

singular circle 𝑍 ∈ Θ(𝐹 ) is positive with respect to (𝑖, 𝑗) if the cyclic ordering of the colors

of the three facets meeting at 𝑍 is (𝑖 𝑘 𝑗). If 𝐹 is a foam, then an equivalent formulation is

as follows: when looking along the orientation of 𝑍 with the facet colored 𝑘 drawn below,

the 𝑖-colored facet is to the left of the 𝑗-colored facet. Otherwise, we say 𝑍 is negative with

respect to (𝑖, 𝑗). See Figure 4-14a for a pictorial definition. Let 𝜃+𝑖𝑗(𝑐) (resp. 𝜃−𝑖𝑗(𝑐)) denote

the number of positive (resp. negative) circles with respect to (𝑖, 𝑗). We have

𝜃+𝑖𝑗(𝐹, 𝑐) + 𝜃−𝑖𝑗(𝐹, 𝑐) = 𝜃(𝐹 ).

We say that a singular circle 𝑍 is positive with respect to 𝑐 if the colors of the three facets

meeting at 𝑍 are (1 2 3) in the cyclic ordering, and otherwise 𝑍 is negative, see Figures 4-

14b and 4-14c. Let 𝜃+(𝐹, 𝑐) (resp. 𝜃−(𝐹, 𝑐)) denote the number of positive (resp. negative)

circles in 𝐹 with respect to 𝑐. We have

𝜃+(𝐹, 𝑐) + 𝜃−(𝐹, 𝑐) = 𝜃(𝐹 ). (4.55)

We will often omit 𝐹 from the notation and simply write 𝜃, 𝜃±𝑖𝑗(𝑐), and 𝜃±(𝑐).

We now define the evaluations ⟨𝐹, 𝑐⟩ and ⟨𝐹 ⟩. For a pre-foam 𝐹 , 𝑐 ∈ adm(𝐹 ), and
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𝑖 𝑗

𝑘

(a) A positive (𝑖, 𝑗)-circle, where
𝑖 < 𝑗.

1 3

2

(b) A positive singular circle.

1 2

3

(c) A negative singular circle.

Figure 4-14

1 ≤ 𝑖 ≤ 3, let 𝑑𝑖(𝑐) denote the number of dots on facets colored 𝑖. Define

𝑃 (𝐹, 𝑐) =
3∏︁
𝑖=1

𝑥
𝑑𝑖(𝑐)
𝑖 (4.56)

𝑄(𝐹, 𝑐) =
∏︁

1≤𝑖<𝑗≤3

(𝑥𝑖 − 𝑥𝑗)𝜒(𝐹𝑖𝑗(𝑐))/2 (4.57)

𝑠(𝐹, 𝑐) =
3∑︁
𝑖=1

𝑖𝜒(𝐹 𝑖(𝑐))/2 +
∑︁

1≤𝑖<𝑗≤3

𝜃+𝑖𝑗(𝑐). (4.58)

Set

⟨𝐹, 𝑐⟩ = (−1)𝑠(𝐹,𝑐)𝑃 (𝐹, 𝑐)
𝑄(𝐹, 𝑐)

, (4.59)

⟨𝐹 ⟩ =
∑︁

𝑐∈adm(𝐹 )

⟨𝐹, 𝑐⟩ . (4.60)

A priori, the evaluations ⟨𝐹, 𝑐⟩ and ⟨𝐹 ⟩ lie in the ring 𝑅′′
3 (see diagram (4.53)).

In what follows, we use the symbol ≡ to mean equality modulo 2. Note that

3∑︁
𝑖=1

𝑖𝜒(𝐹 𝑖(𝑐))/2 ≡
𝜒(𝐹 1(𝑐)) + 𝜒(𝐹 3(𝑐))

2
, (4.61)

since 𝜒(𝐹 2(𝑐)) is even. Moreover, from (4.54) we obtain

3∑︁
𝑖=1

𝑖𝜒(𝐹 𝑖(𝑐))/2 ≡ 𝜃 +
3∑︁
𝑖=1

𝑖𝜒(𝐹𝑖(𝑐))/2. (4.62)
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Lemma 4.3.6. For a pre-foam 𝐹 and 𝑐 ∈ adm(𝐹 ), we have

∑︁
1≤𝑖<𝑗≤3

𝜃+𝑖𝑗(𝑐) ≡ 𝜃+(𝑐).

It follows that

𝑠(𝐹, 𝑐) ≡
3∑︁
𝑖=1

𝑖𝜒(𝐹𝑖(𝑐))/2 + 𝜃−(𝑐). (4.63)

Proof. Let 𝑍 ∈ Θ(𝐹 ). Observe that if 𝑍 is positive with respect to 𝑐, then it contributes

only to 𝜃+13(𝑐). Likewise, if 𝑍 is negative then it contributes to both 𝜃+12(𝑐) and 𝜃+23(𝑐) but not

to 𝜃+13(𝑐), which verifies the first equality. The second equality follows from equations (4.62)

and (4.55).

Example 4.3.7. Let 𝐹 be a 2-sphere 𝑆2 with 𝑑 dots. For 1 ≤ 𝑖 ≤ 3, let 𝑐𝑖 ∈ adm(𝐹 ) color 𝐹

by 𝑖. We have

⟨𝐹 ⟩ = ⟨𝐹, 𝑐1⟩+ ⟨𝐹, 𝑐2⟩+ ⟨𝐹, 𝑐3⟩

= − 𝑥𝑑1
(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)

+
𝑥𝑑2

(𝑥1 − 𝑥2)(𝑥2 − 𝑥3)
− 𝑥𝑑3

(𝑥1 − 𝑥3)(𝑥2 − 𝑥3)

=
−𝑥𝑑1(𝑥2 − 𝑥3) + 𝑥𝑑2(𝑥1 − 𝑥3)− 𝑥𝑑3(𝑥1 − 𝑥2)

(𝑥1 − 𝑥2)(𝑥2 − 𝑥3)(𝑥1 − 𝑥3)

= −𝑠(𝑑−2,0,0)(𝑥1, 𝑥2, 𝑥3) = −ℎ𝑑−2(𝑥1, 𝑥2, 𝑥3) = −
∑︁

𝑖+𝑗+𝑘=𝑑−2

𝑥𝑖1𝑥
𝑗
2𝑥

𝑘
3,

where 𝑠(𝑑−2,0,0)(𝑥1, 𝑥2, 𝑥3) is the Schur function of the partition (𝑑−2, 0, 0), and ℎ𝑑−2(𝑥1, 𝑥2, 𝑥3)

is the complete symmetric function of degree 𝑑− 2. In particular ⟨𝐹 ⟩ = 0 if 𝑑 = 0 or 𝑑 = 1,

and ⟨𝐹 ⟩ = −1 if 𝑑 = 2.

Example 4.3.8. Let 𝐹 be the theta foam shown in (4.64).

∙

∙

∙

𝑑1

𝑑2

𝑑3

(4.64)
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Given any 𝑐 ∈ adm(𝐹 ), each capped-off surface 𝐹 𝑖(𝑐) and each bicolored surface 𝐹𝑖𝑗(𝑐)

is a 2-sphere. In particular,

𝑠(𝐹, 𝑐) ≡ 𝜃+(𝑐).

For 𝜎 ∈ 𝑆3, let 𝑐(𝜎) ∈ adm(𝐹 ) denote the coloring which colors the top facet by 𝜎(1), the

middle facet by 𝜎(2), and the bottom facet by 𝜎(3). We have

⟨𝐹 ⟩ =
∑︁
𝜎∈𝑆3

⟨𝐹, 𝑐(𝜎)⟩ =
∑︀

𝜎∈𝑆3
(−1)𝜃+(𝑐(𝜎))𝑥𝑑1𝜎(1)𝑥

𝑑2
𝜎(2)𝑥

𝑑3
𝜎(3)

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥2 − 𝑥3)
,

and moreover

𝜃+(𝑐(𝜎)) ≡ |𝜎|,

where |𝜎| is the length of 𝜎.

Therefore if 𝑑1 ≥ 𝑑2 ≥ 𝑑3, we have

⟨𝐹 ⟩ = 𝑠(𝑑1−2,𝑑2−1,𝑑3)(𝑥1, 𝑥2, 𝑥3),

the Schur function with partition (𝑑1 − 2, 𝑑2 − 1, 𝑑3). In particular, ⟨𝐹 ⟩ = 0 if 𝑑1, 𝑑2, 𝑑3 are

not distinct. If 𝑑1, 𝑑2, 𝑑3 are distinct and 𝑑1 + 𝑑2 + 𝑑3 ≤ 3, then up to cyclic permutation

there are two choices, for which the evaluation is recorded in (4.65).

∙ ∙
∙ = 1

∙
∙∙ = −1 (4.65)

The symmetric group 𝑆3 naturally acts on adm(𝐹 ) and on the five rings in the diagram

(4.53). The following lemma is analogous to [73, Lemma 2.17].

Lemma 4.3.9. Let 𝐹 be a pre-foam, 𝑐 ∈ adm(𝐹 ), and 𝜎 ∈ 𝑆3. Then

𝜎(⟨𝐹, 𝑐⟩) = ⟨𝐹, 𝜎(𝑐)⟩ .
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Proof. We may assume that 𝜎 is a transposition (𝑖 𝑖+ 1) for 𝑖 = 1, 2. We have

𝜎(𝑃 (𝐹, 𝑐)) = 𝑃 (𝐹, 𝜎(𝑐)), 𝜎(𝑄(𝐹, 𝑐)) = (−1)𝜒(𝐹𝑖(𝑖+1)(𝑐))/2𝑄(𝐹, 𝜎(𝑐)).

Let 𝑘 ∈ {1, 2, 3} ∖ {𝑖, 𝑖+ 1}. Note that a singular circle 𝑍 is positive with respect to 𝑐 if

and only if 𝑍 is negative with respect to 𝜎(𝑐), so

𝜃+(𝑐) + 𝜃+(𝜎(𝑐)) = 𝜃 = 𝜃−(𝑐) + 𝜃−(𝜎(𝑐)).

Moreover, we have

𝐹𝑖(𝑐) = 𝐹𝑖+1(𝜎(𝑐)), 𝐹𝑖+1(𝑐) = 𝐹𝑖(𝜎(𝑐)), 𝐹𝑘(𝑐) = 𝐹𝑘(𝜎(𝑐)).

Therefore

𝑠(𝐹, 𝑐)− 𝑠(𝐹, 𝜎(𝑐)) = 𝜒(𝐹𝑖+1(𝑐))− 𝜒(𝐹𝑖(𝑐))
2

+ 𝜃−(𝑐)− 𝜃−(𝜎(𝑐))

≡ 𝜒(𝐹𝑖+1(𝑐))− 𝜒(𝐹𝑖(𝑐))
2

+ 𝜃

≡ 𝜒(𝐹𝑖+1(𝑐)) + 𝜒(𝐹𝑖(𝑐))

2

≡
𝜒(𝐹𝑖(𝑖+1)(𝑐))

2
,

which completes the proof.

Corollary 4.3.10. The evaluation ⟨𝐹 ⟩ is a symmetric rational function.

Later we will prove that ⟨𝐹 ⟩ is in fact a polynomial, see Corollary 4.3.22.

Lemma 4.3.11. Let 𝑖 ∈ {1, 2}, let 𝐹 be a pre-foam, and let 𝑐 ∈ adm(𝐹 ) be an admissible

coloring. Suppose 𝑐′ ∈ adm(𝐹 ) is obtained from 𝑐 by an (1, 2)-Kempe move along a surface

Σ ⊂ 𝐹12(𝑐). Then

𝑠(𝐹, 𝑐) ≡ 𝑠(𝐹, 𝑐′) +
𝜒(Σ)

2
.

Proof. Note that this is analogous to [73, Lemma 2.20]. Letting 𝜃(Σ) denote the number of
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seam circles on Σ, we have

𝜃−(𝑐) + 𝜃−(𝑐′) ≡ 𝜃(Σ) ≡ 𝜒(𝐹1(𝑐) ∩ Σ).

Note also that

𝜒(𝐹1(𝑐))− 𝜒(𝐹1(𝑐
′)) = 𝜒(𝐹1(𝑐) ∩ Σ)− 𝜒(𝐹2(𝑐) ∩ Σ),

𝜒(𝐹2(𝑐))− 𝜒(𝐹2(𝑐
′)) = 𝜒(𝐹2(𝑐) ∩ Σ)− 𝜒(𝐹1(𝑐) ∩ Σ).

We compute:

𝑠(𝐹, 𝑐)− 𝑠(𝐹, 𝑐′) ≡ 𝜒(𝐹1(𝑐))− 𝜒(𝐹1(𝑐
′))

2
+

2(𝜒(𝐹2(𝑐))− 𝜒(𝐹2(𝑐
′)))

2
+ 𝜃(Σ)

≡ 𝜒(𝐹2(𝑐) ∩ Σ)− 𝜒(𝐹1(𝑐) ∩ Σ)

2
+ 𝜒(𝐹1(𝑐) ∩ Σ)

≡ 𝜒(Σ)

2
.

4.3.2 Anchored sl3 foams and their evaluations

In this section we introduce (oriented) anchored sl3 foams and their evaluations. Recall

the anchor line ℒ, which is the 𝑧-axis in R3.

Definition 4.3.12. An anchored sl3 foam 𝐹 consists of an sl3 foam 𝐹 ′ ⊂ R3 that may

intersect the anchor line ℒ at finitely many points away from the singular circles of 𝐹 ′, so

that each intersection point belongs to some facet of 𝐹 ′, and moreover these intersections are

required to be transverse. Denote by an(𝐹 ) = 𝐹 ′ ∩ ℒ the set of intersection points (anchor

points) of 𝐹 . The anchor points carry labels in {1, 2, 3}; that is, 𝐹 comes equipped with a

fixed map

ℓ : an(𝐹 )→ {1, 2, 3}.

Fix an anchored foam 𝐹 and an admissible coloring 𝑐 of the underlying foam 𝐹 ′. Each

anchor point 𝑝 ∈ an(𝐹 ) lying on a facet 𝑓 inherits a color 𝑐(𝑝) := 𝑐(𝑓).
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For 𝑖 ∈ {1, 2, 3}, let 𝑖′, 𝑖′′ denote the complementary elements, so that {𝑖, 𝑖′, 𝑖′′} = {1, 2, 3}.

Define the evaluation

⟨𝐹, 𝑐⟩ = (−1)𝑠(𝐹,𝑐)𝑃 (𝐹, 𝑐)
𝑄(𝐹, 𝑐)

⎛⎝ ∏︁
𝑝∈an(𝐹 )

(−1)𝑐(𝑝)−1(𝑥𝑐(𝑝) − 𝑥ℓ(𝑝)′)(𝑥𝑐(𝑝) − 𝑥ℓ(𝑝)′′)

⎞⎠1/2

, (4.66)

where 𝑃 (𝐹, 𝑐), 𝑄(𝐹, 𝑐) and 𝑠(𝐹, 𝑐) are as defined in equations (4.56), (4.57), and (4.58),

respectively.

Let us explain the square root in equation (4.66). If 𝑐(𝑝) ̸= ℓ(𝑝) for some 𝑝 ∈ an(𝐹 ), then

one of 𝑥𝑐(𝑝) − 𝑥ℓ(𝑝)′ or 𝑥𝑐(𝑝) − 𝑥ℓ(𝑝)′′ is zero, so ⟨𝐹, 𝑐⟩ = 0. Assume then that 𝑐(𝑝) = ℓ(𝑝) for

every anchor point 𝑝 ∈ an(𝐹 ). If 𝑝 is labeled 𝑖, then it contributes

(−1)𝑖−1(𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑘)

to the product under the square root. More concretely, the product of the two terms under

the square root, for a fixed anchor point 𝑝, is equal to

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3) if 𝑐(𝑝) = 1,

(𝑥1 − 𝑥2)(𝑥2 − 𝑥3) if 𝑐(𝑝) = 2,

(𝑥1 − 𝑥3)(𝑥2 − 𝑥3) if 𝑐(𝑝) = 3.

So, a priori, the evaluation ⟨𝐹, 𝑐⟩ lies in ̃︀𝑅′′
3 (see diagram (4.53) and the surrounding discussion

for notations of various rings). In light of the above discussion, we make the following

definition.

Definition 4.3.13. Given an anchored foam 𝐹 with underlying foam 𝐹 ′, we say that 𝑐 ∈

adm(𝐹 ′) is an admissible coloring of the anchored foam 𝐹 if for each 𝑝 ∈ an(𝐹 ), the color of

𝑝 equals the label of 𝑝; that is, 𝑐(𝑝) = ℓ(𝑝). Denote by adm(𝐹 ) the set of admissible colorings

of the anchored foam 𝐹 .

The following proposition says that no square roots appear in ⟨𝐹, 𝑐⟩.

Proposition 4.3.14. The evaluation ⟨𝐹, 𝑐⟩ is an element of 𝑅′′
3.
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Proof. Let an𝑖(𝐹 ) be the number of anchor points 𝑝 with 𝑐(𝑝) = 𝑖. Then for 1 ≤ 𝑖 < 𝑗 ≤ 3,

an𝑖(𝐹 )+ an𝑗(𝐹 ) is equal to the number of intersection points of 𝐹𝑖𝑗(𝑐) with ℒ, which is even

since 𝐹𝑖𝑗(𝑐) is a closed surface. On the other hand, by the above discussion of contributions

of anchor points, the exponent of 𝑥𝑖−𝑥𝑗 under the square root in equation (4.66) is precisely

an𝑖(𝐹 ) + an𝑗(𝐹 ).

If 𝑐 ∈ adm(𝐹 ), we can rewrite the square root in equation (4.66) as

̃︀𝑄(𝐹, 𝑐) :=
∏︁

1≤𝑖<𝑗≤3

(𝑥𝑖 − 𝑥𝑗)(an(𝑖)+an(𝑗))/2 (4.67)

and rewrite the evaluation ⟨𝐹, 𝑐⟩ as

⟨𝐹, 𝑐⟩ := (−1)𝑠(𝐹,𝑐)𝑃 (𝐹, 𝑐)
̃︀𝑄(𝐹, 𝑐)

𝑄(𝐹, 𝑐)

= (−1)𝑠(𝐹,𝑐)𝑃 (𝐹, 𝑐)
∏︁

1≤𝑖<𝑗≤3

(𝑥𝑖 − 𝑥𝑗)(an(𝑖)+an(𝑗)−𝜒(𝐹𝑖𝑗(𝑐)))/2.
(4.68)

Definition 4.3.15. For an anchored foam 𝐹 , define its evaluation to be

⟨𝐹 ⟩ =
∑︁

𝑐∈adm(𝐹 )

⟨𝐹, 𝑐⟩ . (4.69)

By Proposition 4.3.14, ⟨𝐹 ⟩ ∈ 𝑅′′
3. We will see in Theorem 4.3.21 that in fact no denomi-

nators appear, and that ⟨𝐹 ⟩ ∈ 𝑅′
3 = Z[𝑥1, 𝑥2, 𝑥3].

Remark 4.3.16. As in the discussion following equation (4.66), if 𝑐 is an admissible coloring

of the underlying foam 𝐹 ′ but not of the anchored foam 𝐹 , then the evaluation (4.66) is still

well-defined and equal to zero. Even if we do not restrict the notion of admissible colorings

of an anchored foam to those which color anchor points according to their labels, additional

summands in the evaluation will each be 0, and thus not contribute nothing.

Example 4.3.17. Let 𝐹 be a 2-sphere 𝑆2 carrying 𝑑 dots and intersecting ℒ twice. Then

⟨𝐹 ⟩ = 0 unless both anchor points are labeled by 𝑖 ∈ {1, 2, 3}. In this case, there is one
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admissible coloring 𝑐 which colors 𝐹 by 𝑖. We see that 𝑠(𝐹, 𝑐) ≡ 𝑖, and the evaluation is

⟨𝐹 ⟩ = (−1)𝑖𝑥𝑑𝑖 .

Example 4.3.18. Consider the theta foam 𝐹 whose facets each intersect ℒ exactly once,

shown in (4.70). There is one admissible coloring 𝑐, and we have

⟨𝐹 ⟩ = ⟨𝐹, 𝑐⟩ =

⎧⎪⎨⎪⎩𝑥
𝑑1
𝑖 𝑥

𝑑2
𝑗 𝑥

𝑑3
𝑘 if (𝑖, 𝑗, 𝑘) = (1, 3, 2) or a cyclic permutation,

−𝑥𝑑1𝑖 𝑥
𝑑2
𝑗 𝑥

𝑑3
𝑘 if (𝑖, 𝑗, 𝑘) = (1, 2, 3) or a cyclic permutation.

∙

∙

∙

𝑑1

𝑑2

𝑑3

*

*

*

𝑖

𝑗

𝑘

(4.70)

The symmetric group 𝑆3 acts on all five of the rings in diagram (4.53). Recall also that

𝑆3 acts on the set of admissible colorings of an non-anchored foam (i.e., those considered in

Section 4.3.1). However, for an anchored foam 𝐹 , 𝑐 ∈ adm(𝐹 ), and 𝜎 ∈ 𝑆3, the coloring 𝜎(𝑐)

is in general not admissible for 𝐹 .

Consider instead the anchored foam 𝜎(𝐹 ) defined as follows. The underlying foam of

𝜎(𝐹 ) agrees with the underlying foam of 𝐹 . If anchor points of 𝐹 are labeled by ℓ : an(𝐹 )→

{1, 2, 3}, then the anchor points of 𝜎(𝐹 ) are labeled by 𝜎(𝑙) : 𝑝 ↦→ 𝜎(ℓ(𝑝)). Note that 𝜎

provides a bijection adm(𝐹 ) ∼= adm(𝜎(𝐹 )) via 𝑐 ↦→ 𝜎(𝑐). The following lemma says that the

evaluations ⟨𝐹 ⟩ and ⟨𝜎(𝐹 )⟩ differ by a sign, and moreover the sign depends only on 𝜎 and

on labels of anchor points of 𝐹 .

Lemma 4.3.19. For an anchored foam 𝐹 , 𝑐 ∈ adm(𝐹 ), and 𝜎 ∈ 𝑆3, we have

𝜎 (⟨𝐹, 𝑐⟩) = (−1)𝜀(𝐹,𝜎) ⟨𝜎(𝐹 ), 𝜎(𝑐)⟩ ,
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where

𝜀(𝐹, 𝜎) =
∑︁

1≤𝑖<𝑗≤3,
𝜎(𝑖)>𝜎(𝑗)

an(𝑖) + an(𝑗)

2
. (4.71)

It follows that

𝜎 (⟨𝐹 ⟩) = (−1)𝜀(𝐹,𝜎) ⟨𝜎(𝐹 )⟩ .

Proof. By Lemma 4.3.9, we have

𝜎

(︂
(−1)𝑠(𝐹,𝑐)𝑃 (𝐹, 𝑐)

𝑄(𝐹, 𝑐)

)︂
= (−1)𝑠(𝜎(𝐹 ),𝜎(𝑐))𝑃 (𝜎(𝐹 ), 𝜎(𝑐))

𝑄(𝜎(𝐹 ), 𝜎(𝑐))
.

It is clear that

𝜎( ̃︀𝑄(𝐹 )) = (−1)𝜀(𝐹,𝜎) ̃︀𝑄(𝜎(𝐹 )),
and the first equality follows. For the second equality, we have

𝜎 (⟨𝐹 ⟩) =
∑︁

𝑐∈adm(𝐹 )

𝜎 (⟨𝐹, 𝑐⟩)

= (−1)𝜀(𝐹,𝜎)
∑︁

𝑐∈adm(𝐹 )

⟨𝜎(𝐹 ), 𝜎(𝑐)⟩

= (−1)𝜀(𝐹,𝜎) ⟨𝜎(𝐹 )⟩ .

For 1 ≤ 𝑖 ̸= 𝑗 ≤ 3, consider the ring

𝑅′′
𝑖𝑗 := 𝑅′

3[(𝑥𝑖 − 𝑥𝑘)−1, (𝑥𝑗 − 𝑥𝑘)−1].

Each 𝑅′′
𝑖𝑗 is a subring of 𝑅′′

3. A permutation 𝜎 ∈ 𝑆3 sends 𝑅′′
𝑖𝑗 isomorphically onto 𝑅′′

𝜎(𝑖)𝜎(𝑗).

We recall the following local operation on foam colorings from [73].

Definition 4.3.20. Let 𝐹 be an anchored foam, 𝑐 ∈ adm(𝐹 ), 1 ≤ 𝑖 < 𝑗 ≤ 3, and Σ ⊂ 𝐹𝑖𝑗(𝑐)

a closed sub-surface which is disjoint from ℒ. Let 𝑐′ ∈ adm(𝐹 ) denote the coloring which

swaps 𝑖 and 𝑗 colors on the facets of Σ, and leaves all other facets colored according to 𝑐.

The coloring 𝑐′ is said to obtained from 𝑐 by an (𝑖, 𝑗) Kempe move.
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We are now ready for the main result of this section.

Theorem 4.3.21. The evaluation ⟨𝐹 ⟩ of an anchored foam is an element of 𝑅′
3, the poly-

nomial ring in variables 𝑥1, 𝑥2, 𝑥3.

Proof. The proof is similar to that of [41, Theorem 2.17] and [73, Proposition 2.19]. By

Lemma 4.3.19, it suffices to show that ⟨𝐹 ⟩ ∈ 𝑅′′
12 for any anchored foam 𝐹 . This is because

we may take a permutation 𝜎 ∈ 𝑆3 sending 1 to 𝑖 and 2 to 𝑗, and consider the anchored

foam 𝜎−1(𝐹 ). Then ⟨𝜎−1(𝐹 )⟩ ∈ 𝑅′′
12 implies that

±⟨𝐹 ⟩ = ±
⟨︀
𝜎(𝜎−1(𝐹 ))

⟩︀
= ±𝜎

(︀⟨︀
𝜎−1(𝐹 )

⟩︀)︀
∈ 𝑅′′

𝑖𝑗,

where the first equality comes from Lemma 4.3.19. It will then follow that

⟨𝐹 ⟩ ∈ 𝑅′′
12 ∩𝑅′′

23 ∩𝑅′′
13 = 𝑅′

3.

Let us show that ⟨𝐹 ⟩ ∈ 𝑅′′
12. Partition adm(𝐹 ) into equivalence classes as follows. For

𝑐 ∈ adm(𝐹 ), the class 𝐶𝑐 containing 𝑐 consists of colorings obtained from 𝑐 by performing a

sequence of (1, 2) Kempe moves along surfaces in 𝐹12(𝑐) which are disjoint from ℒ. If 𝐹12(𝑐)

has 𝑛 connected components, 𝑘 ≥ 0 of which are disjoint from ℒ, then 𝐶𝑐 consists of 2𝑘

elements. We will show that ∑︁
𝑐′∈𝐶𝑐

⟨𝐹, 𝑐′⟩ ∈ 𝑅′′
12,

which will conclude the proof.

Write Σ := 𝐹12(𝑐) as a disjoint union

Σ = Σ′ ∪ Σ1 ∪ · · · ∪ Σ𝑘,

where each Σ𝑎, 𝑎 = 1, . . . , 𝑘 is connected and disjoint from ℒ, and where each component

of Σ′ intersects ℒ. For 𝑖 = 1, 2 and 𝑎 = 1, . . . , 𝑘, let 𝑡𝑖(𝑎) denote the number of dots on

𝑖-colored facets (according to 𝑐) of Σ𝑎, and let 𝑡3 denote the number of dots on 3-colored
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facets (according to 𝑐) of 𝐹 . We claim that

∑︁
𝑐′∈𝐶𝑐

⟨𝐹, 𝑐′⟩ =
𝑥𝑡33 ·

∏︀𝑘
𝑎=1

(︁
𝑥
𝑡1(𝑎)
1 𝑥

𝑡2(𝑎)
2 + (−1)𝜒(Σ𝑎)/2𝑥

𝑡1(𝑎)
2 𝑥

𝑡2(𝑎)
1

(︁
(𝑥1−𝑥3)
(𝑥2−𝑥3)

ℓΣ𝑎 (𝑐)/2
)︁)︁
· ̃︀𝑄(𝐹 )

(𝑥1 − 𝑥2)𝜒(Σ)/2(𝑥1 − 𝑥3)𝜒(𝐹13(𝑐))/2(𝑥2 − 𝑥3)𝜒(𝐹23(𝑐))/2

(4.72)

where

• ℓΣ𝑎(𝑐) ∈ 2Z is an even integer such that

𝜒(𝐹13(𝑐
′)) = 𝜒(𝐹13(𝑐))− ℓΣ𝑎(𝑐) and 𝜒(𝐹23(𝑐

′)) = 𝜒(𝐹23(𝑐)) + ℓΣ𝑎(𝑐)

for the coloring 𝑐′ ∈ 𝐶𝑐 which is obtained from 𝑐 by a (1, 2) Kempe move along Σ𝑎.

See [41, Lemma 2.12 (3)] for details regarding this integer.

• ̃︀𝑄(𝐹 ) is the contribution from the anchor points of 𝐹 , equation (4.67).

To verify the claimed equality, expand the product to obtain 2𝑘 terms, each of which cor-

responds to one of the 2𝑘 colorings in 𝐶𝑐. That the sign is correct follows from Lemma

4.3.11.

Finally, we argue that (𝑥1− 𝑥2)𝜒(Σ)/2 divides the numerator of (4.72). Positive contribu-

tions to 𝜒(Σ) come from 2-sphere components of Σ. Each Σ𝑎 which is a 2-sphere contributes

one to the exponent 𝜒(Σ)/2. On the other hand, the corresponding factor in the product

in the numerator of (4.72) is divisible by 𝑥1 − 𝑥2. The remaining positive contributions to

𝜒(Σ)/2 come from 2-sphere components of Σ′. Such a component Σ0 contains at least two

anchor points, each labeled 1 or 2, so the contribution from Σ0 can be cancelled with terms

in ̃︀𝑄(𝐹 ).
Corollary 4.3.22. If 𝐹 is a pre-foam or a foam which is disjoint from ℒ, then ⟨𝐹 ⟩ ∈ 𝑅3,

the ring of symmetric polynomials in 𝑥1, 𝑥2, 𝑥3.

Proof. This follows from Lemma 4.3.19 and Theorem 4.3.21.

4.3.3 Skein relations

In this section we record several local relations involving oriented anchored sl3 foams.
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Lemma 4.3.23. The local relations (4.73), (4.74), (4.75), and (4.76) hold for anchored

foams. Seam lines are drawn in bold in relation (4.76) to clarify the picture.

∙ ∙ ∙ = 𝐸1 − 𝐸2 + 𝐸3∙ ∙ ∙ (4.73)

∙ ∙ ∙

∙ ∙ ∙
+ +

∙

∙
+= − + 𝐸1 − 𝐸2 (4.74)

∙

∙

= − (4.75)

− = + (4.76)

Proof. Proofs of these four relations are similar to Propositions 2.33, 2.22, 2.23, and 2.24

in [41], respectively, with the caveat that we must carefully keep track of the sign (4.58).

Moreover, 𝑆3 symmetry is used in [41] to simplify the calculations. For any one of the above

four relations, anchor points and their labels are the same for all the foams depicted, so

Lemma 4.3.19 implies that we may use 𝑆3 symmetry in a similar manner.

We verify relations (4.74) and (4.75), and leave the remaining two relations to the reader.

Let 𝐹 denote the foam appearing on the left-hand side of the equality. The six foams on the

right-hand side are identical except for placement of dots. We denote them by 𝐺1, . . . , 𝐺6,
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so that the relation reads

⟨𝐹 ⟩ = −
(︀⟨︀
𝐺1
⟩︀
+
⟨︀
𝐺2
⟩︀
+
⟨︀
𝐺3
⟩︀)︀

+ 𝐸1

(︀⟨︀
𝐺4
⟩︀
+
⟨︀
𝐺5
⟩︀)︀
− 𝐸2

⟨︀
𝐺6
⟩︀
.

Admissible colorings of 𝐺1, . . . , 𝐺6 are in canonical bijection. For 𝑐 ∈ adm(𝐺1), let

⟨𝐺, 𝑐⟩ := −
(︀⟨︀
𝐺1, 𝑐

⟩︀
+
⟨︀
𝐺2, 𝑐

⟩︀
+
⟨︀
𝐺3, 𝑐

⟩︀)︀
+ 𝐸1

(︀⟨︀
𝐺4, 𝑐

⟩︀
+
⟨︀
𝐺5, 𝑐

⟩︀)︀
− 𝐸2

⟨︀
𝐺6, 𝑐

⟩︀
.

There are two types of colorings of 𝐺1: those which color the two depicted disks the same,

and those which color them differently. Those of the first type are in canonical bijection

with colorings of 𝐹 .

Suppose 𝑐 ∈ adm(𝐺1) colors both disks the same color, say 𝑖, and denote by 𝑐 ∈

adm(𝐺2) ∼= · · · ∼= adm(𝐺6) and 𝑐′ ∈ adm(𝐹 ) the corresponding colorings. We will show

that ⟨𝐹, 𝑐′⟩ = ⟨𝐺, 𝑐⟩. We may assume 𝑖 = 1. Then

⟨︀
𝐺1, 𝑐

⟩︀
=
⟨︀
𝐺2, 𝑐

⟩︀
=
⟨︀
𝐺3, 𝑐

⟩︀
= 𝑥21

⟨︀
𝐺6, 𝑐

⟩︀
,
⟨︀
𝐺4, 𝑐

⟩︀
=
⟨︀
𝐺5, 𝑐

⟩︀
= 𝑥1

⟨︀
𝐺6, 𝑐

⟩︀
,

which yields

⟨𝐺, 𝑐⟩ = −3𝑥21
⟨︀
𝐺6, 𝑐

⟩︀
+ 2𝐸1𝑥1

⟨︀
𝐺6, 𝑐

⟩︀
− 𝐸2

⟨︀
𝐺6, 𝑐

⟩︀
= −(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)

⟨︀
𝐺6, 𝑐

⟩︀
.

To compare this with ⟨𝐹, 𝑐′⟩, observe that

𝜒(𝐹1(𝑐
′)) + 2 = 𝜒(𝐺6

1(𝑐)), 𝜒(𝐹2(𝑐
′)) = 𝜒(𝐺6

2(𝑐)), 𝜒(𝐹3(𝑐
′)) = 𝜒(𝐺6

3(𝑐)),

which implies 𝑠(𝐹, 𝑐′) ≡ 𝑠(𝐺, 𝑐) + 1. Moreover, we have

𝜒(𝐹12(𝑐
′)) + 2 = 𝜒(𝐺6

12(𝑐)), 𝜒(𝐹13(𝑐
′)) + 2 = 𝜒(𝐺6

13(𝑐)), 𝜒(𝐹23(𝑐
′)) = 𝜒(𝐺6

23(𝑐)).

Therefore ⟨︀
𝐺6, 𝑐

⟩︀
= − ⟨𝐹, 𝑐′⟩

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)
,
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which verifies ⟨𝐹, 𝑐′⟩ = ⟨𝐺, 𝑐⟩.

To complete the proof, suppose that 𝑐 colors the top depicted disk by 𝑖 and the bottom

disk by 𝑗, with 𝑖 ̸= 𝑗. We have

⟨︀
𝐺1, 𝑐

⟩︀
= 𝑥2𝑖

⟨︀
𝐺6, 𝑐

⟩︀
,
⟨︀
𝐺2, 𝑐

⟩︀
= 𝑥𝑖𝑥𝑗

⟨︀
𝐺6, 𝑐

⟩︀
,
⟨︀
𝐺3, 𝑐

⟩︀
= 𝑥2𝑗

⟨︀
𝐺3, 𝑐

⟩︀
,

⟨︀
𝐺4, 𝑐

⟩︀
= 𝑥𝑖

⟨︀
𝐺6, 𝑐

⟩︀
,
⟨︀
𝐺5, 𝑐

⟩︀
= 𝑥𝑗

⟨︀
𝐺6, 𝑐

⟩︀
.

Therefore ⟨𝐺, 𝑐⟩ = 0, which concludes the proof of relation (4.74).

Let us now demonstrate relation (4.75). Let 𝐹 denote the foam on the left-hand side, and

𝐺𝑡, 𝐺𝑏 the two foams on the right-hand side, so that the relation reads ⟨𝐹 ⟩ = ⟨𝐺𝑡⟩ −
⟨︀
𝐺𝑏
⟩︀
.

There are two types of colorings of 𝐺𝑡 (and of 𝐺𝑏). Let adm0(𝐺
𝑡) denote the colorings

where the two front half-cups are colored the same, and so are the two back half-cups. Let

adm1(𝐺
𝑡) denote the colorings where the two front half-cups are colored differently (and,

consequently, so are the two back half-cups). Likewise, decompose adm(𝐺𝑏) as a disjoint

union of adm0(𝐺
𝑡) and adm1(𝐺

𝑡). There is a natural bijection

adm(𝐹 ) ∼= adm0(𝐺
𝑡) ∼= adm0(𝐺

𝑏).

For 𝑐 ∈ adm(𝐹 ), let 𝑐𝑡 ∈ adm0(𝐺
𝑡) and 𝑐𝑏 ∈ adm0(𝐺

𝑏) denote the corresponding colorings.

There is also a natural bijection adm1(𝐺
𝑡) ∼= adm1(𝐺

𝑏); given 𝑑 ∈ adm1(𝐺
𝑡), let 𝑑′ ∈

adm1(𝐺
𝑏) denot the corresponding coloring. We will show that

⟨𝐹, 𝑐⟩ =
⟨︀
𝐺𝑡, 𝑐𝑡

⟩︀
−
⟨︀
𝐺𝑏, 𝑐𝑏

⟩︀
, (4.77)

0 =
⟨︀
𝐺𝑡, 𝑑

⟩︀
−
⟨︀
𝐺𝑏, 𝑑′

⟩︀
, (4.78)

for all 𝑐 ∈ adm(𝐹 ) and all 𝑑 ∈ adm1(𝐺
𝑡), from which the desired relation follows.

By Lemma 4.3.19, it suffices to verify (4.77) when 𝑐 ∈ adm(𝐹 ) colors the two side facets

190



by 1, the back facet 2, and the front facet 3. We have

𝜒(𝐹12(𝑐)) = 𝜒(𝐺𝑡
12(𝑐

𝑡)) = 𝜒(𝐺𝑏
12(𝑐

𝑏)),

𝜒(𝐹13(𝑐)) = 𝜒(𝐺𝑡
13(𝑐

𝑡)) = 𝜒(𝐺𝑏
13(𝑐

𝑏)),

𝜒(𝐹23(𝑐)) + 2 = 𝜒(𝐺𝑡
23(𝑐

𝑡)) = 𝜒(𝐺𝑏
23(𝑐

𝑏)).

On the other hand, 𝑃 (𝐺𝑡, 𝑐𝑡) = 𝑥2𝑃 (𝐹, 𝑐), 𝑃 (𝐺𝑏, 𝑐𝑏) = 𝑥3𝑃 (𝐹, 𝑐). Labels of anchor points

for all three foams are the same, so equation (4.77) follows if we show that signs for all three

foams are equal. We have

𝜒(𝐹1(𝑐)) = 𝜒(𝐺𝑡
1(𝑐

𝑡)) + 1 = 𝜒(𝐺𝑏
1(𝑐

𝑏)) + 1,

𝜒(𝐹2(𝑐)) = 𝜒(𝐺𝑡
2(𝑐

𝑡))− 1 = 𝜒(𝐺𝑏
2𝑐
𝑏))− 1,

𝜒(𝐹3(𝑐)) = 𝜒(𝐺𝑡
3(𝑐

𝑡))− 1 = 𝜒(𝐺𝑏
3𝑐
𝑏))− 1.

The singular intervals depicted in the relation are all part of positive circles, so 𝜃−(𝐹, 𝑐) =

𝜃−(𝐺𝑡, 𝑐𝑡) = 𝜃−(𝐺𝑏, 𝑐𝑏). Therefore 𝑠(𝐹, 𝑐) = 𝑠(𝐺𝑡, 𝑐𝑡) = 𝑠(𝐺𝑏, 𝑐𝑏), verifying equation (4.77).

Let us now prove equation (4.78). For any 𝑑 ∈ adm1(𝐺
𝑡), it is straightforward to verify the

equalities 𝑃 (𝐺𝑡, 𝑑) = 𝑃 (𝐺𝑏, 𝑑′), 𝑄(𝐺𝑡, 𝑑) = 𝑄(𝐺𝑏, 𝑑′), ̃︀𝑄(𝐺𝑡, 𝑑) = ̃︀𝑄(𝐺𝑏, 𝑑′), and 𝑠(𝐺𝑡, 𝑑) =

𝑠(𝐺𝑏, 𝑑′), which finishes the proof.

Lemma 4.3.24. Let 𝐹 be an anchored foam. Denote by 𝐹𝑛,𝑚 the anchored foam obtained

from 𝐹 by adding a bubble (disjoint from ℒ) to some facet in 𝐹 , with the two new facets

carrying 𝑛 and 𝑚 dots respectively, such that the facet with 𝑛 dots directly precedes the facet

with 𝑚 dots in the cyclic ordering. Let 𝐹𝑛 denote the foam obtained from 𝐹 by adding 𝑛 dots

to the same facet. This is shown in (4.79). Then

⟨𝐹𝑛,𝑛⟩ = 0,

⟨𝐹1,0⟩ = −⟨𝐹0,1⟩ = ⟨𝐹 ⟩ ,

⟨𝐹2,0⟩ = −⟨𝐹0,2⟩ = 𝐸1 ⟨𝐹 ⟩ − ⟨𝐹1⟩ .
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∙ 𝑛

∙𝑚

∙𝑛

𝐹𝑛 𝐹𝑛,𝑚

(4.79)

Remark 4.3.25. The relations in Lemmas 4.3.23 and 4.3.24 also hold for pre-foams.

Similar to the sl2 setting, for anchored sl3 foams we allow shifted dots 𝑖 = ∙ − 𝑥𝑖

(1 ≤ 𝑖 ≤ 3) on a facet.

𝑖 = − 𝑥𝑖∙

They must be disjoint from ℒ and are allowed to float freely on their facets but cannot cross

seam lines.

Lemma 4.3.26. The local relations shown in (4.80), (4.81), (4.82) , and (4.83) hold.

*

*

1

1
−

*

*

2

2

*

*

3

3
= + − (4.80)

*

*

𝑖

𝑖

𝑗

𝑘= (−1)𝑖−1 (4.81)

∙ *𝑖 *𝑖= 𝑥𝑖 (4.82)
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(𝑥𝑗 − 𝑥𝑘)
*
𝑖

*

*

𝑘

𝑗

*

*

𝑗

𝑘

= + (4.83)

In the last equation we assume 𝑗 < 𝑘.

Proof. We verify equation (4.80); the other relations are easier and left to the reader. Let

𝐹 denote the foam on the left-hand side, and let 𝐺1, 𝐺2, 𝐺3 denote the three foams on the

right-hand side, with superscript corresponding to labels of the anchor points. For 1 ≤ 𝑖 ≤ 3,

let adm𝑖(𝐹 ) consist of all admissible colorings of 𝐹 which color the depicted tube by 𝑖. There

is a natural bijection adm𝑖(𝐹 ) ∼= adm(𝐺𝑖).

Given 𝑐 ∈ adm𝑖(𝐹 ), let 𝑐′ ∈ adm(𝐺𝑖) denote the corresponding coloring. Clearly

𝑃 (𝐺𝑖, 𝑐′) = 𝑃 (𝐹, 𝑐). Let 𝑗, 𝑘 denote the two elements in {1, 2, 3} ∖ {𝑖}. To compare the

denominators 𝑄(𝐺𝑖, 𝑐′) and 𝑄(𝐹, 𝑐), we have

𝜒(𝐺𝑖
𝑖𝑗(𝑐

′)) = 𝜒(𝐹𝑖𝑗(𝑐)) + 2, 𝜒(𝐺𝑖
𝑖𝑘(𝑐

′)) = 𝜒(𝐹𝑖𝑘(𝑐)) + 2, 𝜒(𝐺𝑖
𝑗𝑘(𝑐

′)) = 𝜒(𝐹𝑗𝑘(𝑐)),

so 𝑄(𝐺𝑖, 𝑐′) = ±(𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑘)𝑄(𝐹, 𝑐) (the sign is there only to account for the ordering

of subscripts). Note that the additional factor ±(𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑘) precisely cancels with

contributions from the two depicted anchor points of 𝐺𝑖. Therefore

⟨𝐹, 𝑐⟩ = ±
⟨︀
𝐺𝑖, 𝑐′

⟩︀
.

It remains to show that the above sign is equal to (−1)𝑖. We have

𝜒(𝐹𝑗(𝑐)) = 𝜒(𝐺𝑖
𝑗(𝑐

′)), 𝜒(𝐹𝑘(𝑐)) = 𝜒(𝐺𝑗
𝑘(𝑐

′)), 𝜒(𝐹𝑖(𝑐)) = 𝜒(𝐺𝑖
𝑖(𝑐

′))−2, 𝜃±(𝐹, 𝑐) = 𝜃±(𝐺𝑖, 𝑐′),

so 𝑠(𝐹, 𝑐) ≡ 𝑠(𝐺𝑖, 𝑐′) + 𝑖 as needed.
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Figure 4-15: Our convention for the induced orientation on the webs 𝜕0𝑉 (bottom) and 𝜕1𝑉 (top).

4.3.4 State spaces

In this section we define state spaces via the usual recipe applied to anchored foam

evaluation. Recall from Definition 2.5.2 the notion of an sl3 web.

Definition 4.3.27. An annular sl3 web is an sl3 web embedded in the punctured plane 𝒫 .

A anchored sl3 foam with boundary 𝑉 is the intersection of a closed anchored sl3 foam

𝐹 ⊂ R3 with a R2× [0, 1] such that 𝐹 ∩(𝒫×{𝑖}), 𝑖 = 0, 1 is a web (in particular, 𝐹 is disjoint

from the two points (0, 0, 0) and (0, 0, 1)), and dots of 𝐹 are disjoint from R2×{𝑖} and from

ℒ. Foams with boundary are considered up to ambient isotopy of R2 × [0, 1] which fixes the

boundary of R2 × [0, 1] point-wise and maps the line segment ℒ[0,1] := {(0, 0)} × [0, 1] to

itself.

For a foam with boundary 𝑉 , let an(𝑉 ) = 𝑉 ∩ ℒ[0,1] denote its intersection points with

the anchor line, called anchor points. Each anchor point 𝑝 is required to carry a label

ℓ(𝑝) ∈ {1, 2, 3}.

The orientation of facets of 𝑉 induces an orientation on the boundary webs 𝜕0𝑉 :=

𝑉 ∩ (R2×{0}) and 𝜕1𝑉 := 𝑉 ∩ (R2×{1}) via the convention in Figure 4-15. We view 𝑉 as

a cobordism from the web 𝜕0𝑉 to the web 𝜕1𝑉 . A closed anchored foam is then a cobordism

from the empty web to itself. In this section, we will often refer to anchored sl3 foams with

boundary simply as foams when the meaning is clear from context. Composition 𝑊𝑉 of

foams 𝑉,𝑊 with 𝜕1𝑉 = 𝜕0𝑊 is defined in the natural way. We obtain a category AFoam

of sl3 webs and anchored sl3 foams.

Given a foam cobordism 𝑉 , let |𝑑(𝑉 )| the number of dots on 𝑉 . The quantum grading
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qdeg(𝑉 ) of 𝑉 is defined to be

qdeg(𝑉 ) = 2 (|𝑑(𝑉 )|+ |an(𝑉 )| − 𝜒(𝑉 )) + 𝜒(𝜕𝑉 ). (4.84)

Lemma 4.3.28. If 𝑉 and 𝑊 are composable foam cobordisms, then qdeg(𝑊𝑉 ) = qdeg(𝑊 )+

qdeg(𝑉 ). If 𝐹 is a closed anchored foam, then qdeg(𝐹 ) = deg(⟨𝐹 ⟩).

Proof. This is clear from the definitions.

As in Definition 4.2.13, by an annular foam we mean a foam (with boundary) which is

disjoint from ℒ. The composition of two annular foams is again annular.

There is an involution 𝜔 defined by reflecting a foam with boundary through R2×{1/2}.

We have 𝜕1𝑉 = 𝜕0(𝜔(𝑉 )) and 𝜕0𝑉 = 𝜕1(𝜔(𝑉 )) for any foam with boundary 𝑉 . Given a web

Γ ⊂ 𝒫 , let Fr(Γ) denote the free 𝑅′
3-module generated by foams with boundary 𝑉 from the

empty web to Γ (that is, 𝜕0𝑉 = ∅, 𝜕1𝑉 = Γ). Define a bilinear form

(−,−) : Fr(Γ)× Fr(Γ)→ 𝑅′
3

by (𝑉,𝑊 ) = 𝜔(𝑉 )𝑊 . This bilinear form is symmetric since ⟨𝐹 ⟩ = ⟨𝜔(𝐹 )⟩ for any closed

foam 𝐹 . The state space ⟨Γ⟩ is the quotient of Fr(Γ) by the kernel

ker((−,−)) = {𝑥 ∈ Fr(Γ) | (𝑥, 𝑦) = 0 for all 𝑦 ∈ Fr(Γ)}

of the bilinear form,

⟨Γ⟩ := Fr(Γ)/ ker((−,−)).

The state space ⟨Γ⟩ inherits the grading from Fr(Γ) since (−,−) is degree-preserving. A

foam with boundary 𝑉 from Γ0 to Γ1 naturally induces a map

⟨𝑉 ⟩ : ⟨Γ0⟩ → ⟨Γ1⟩

of degree qdeg(𝑉 ), defined by sending the equivalence class of a basis element 𝑈 ∈ Fr(Γ0)

to the equivalence class of 𝑉 𝑈 ∈ Fr(Γ1). This assignment is functorial with respect to
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∼= ∅{2} ⊕∅⊕∅{−2}

(a) A contractible circle.

∼= ⊕

(b) A square face.

{1} {−1}∼= ⊕

(c) A bigon face.

Figure 4-16: Local relations for state spaces of oriented sl3 webs, where the depicted regions do not
contain the puncture.

composition of foams, ⟨𝑊𝑉 ⟩ = ⟨𝑊 ⟩ ⟨𝑉 ⟩ for composable 𝑉,𝑊 .

Lemma 4.3.29. The three local isomorphisms shown in Figure 4-16 hold.

Proof. The arguments for relations (a), (b), and (c) of the figure are analogous to Proposi-

tions 7, 9, and 8, respectively, of [35]. The relevant relations are given in Lemma 4.3.23 and

Lemma 4.3.24.

Proposition 4.3.30. Let Γ ⊂ 𝒫 be a web with a non-contractible circle 𝐶 which bounds a

disk in R2 ∖ Γ, and let Γ′ = Γ ∖ 𝐶 be the web obtained by removing 𝐶. Then there is an

isomorphism

⟨Γ⟩ ∼= ⟨Γ′⟩ ⊕ ⟨Γ′⟩ ⊕ ⟨Γ′⟩

given by the maps shown in (4.85) (orientation of the circle is omitted).
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×

×

×

×

⊕

⊕

×

*3
−

×

*2
×

*1
−

×

*
1

×

*
2

×

*
3

(4.85)

Proof. This follows from Example 4.3.17 and the neck-cutting relation (4.80).

Lemma 4.3.31. Any sl3 web Γ ⊂ R2 has at least two bounded faces with at most four edges

each.

Proof. We may assume that Γ is connected. Let 𝑣, 𝑒, 𝑓 denote the number of vertices, edges,

and faces (including the unbounded face) of Γ, respectively. Label the faces 1, . . . , 𝑓 , and for

1 ≤ 𝑖 ≤ 𝑓 , let 𝑟𝑖 denote the number of edges comprising the boundary of the 𝑖-th face. We

have
𝑓∑︁
𝑖=1

𝑟𝑖 = 2𝑒 = 3𝑣, (4.86)

where the second equality holds since Γ is trivalent. The underlying graph of Γ is bipartite,

so each 𝑟𝑖 is even. Suppose for the sake of contradiction that at most one bounded face of Γ

has four or fewer edges. Then equation (4.86) implies

𝑓∑︁
𝑖=1

𝑟𝑖 > 6(𝑓 − 2),

so 12 > 6𝑓 − 3𝑣. On the other hand, an Euler characteristic computation gives

12 = 6(𝑓 − 𝑒+ 𝑣) = 6𝑓 − 3𝑣,
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which is a contradiction.

For a (non-annular) sl3 web, recall the Kuperberg polynomial from Section 2.5.1. Recall

also that a Tait coloring of a trivalent graph is an edge coloring by three colors such that

the three edges meeting at every trivalent vertex have distinct colors.

Theorem 4.3.32. For any web Γ ⊂ 𝒫, the state space ⟨Γ⟩ is a free graded 𝑅′
3-module of

rank equal to the number of Tait colorings of Γ. Moreover, if Γ is contractible, then the

graded rank of ⟨Γ⟩ equals the Kuperberg polynomial of Γ, viewed as a web in R2.

Proof. Lemma 4.3.31 (1) guarantees that we can reduce ⟨Γ⟩ to a direct sum of empty webs

by recursively applying the local isomorphisms in Lemma 4.3.29 and Proposition 4.3.30. It

is then clear that the rank equals the number of Tait colorings, since each relation respects

the number of Tait colorings upon decategorifying.

If Γ is contractible then ⟨Γ⟩ can be simplified using only the isomorphisms in Lemma

4.3.29. Upon taking graded ranks, these isomorphisms recover the recursive relations for

computing the Kuperberg polynomial.

Theorem 4.3.32 does not address the graded rank of state spaces of non-contractible webs.

These may be computed recursively. As a special case, if Γ consists of 𝑛 contractible and 𝑚

non-contractible circles, then ⟨Γ⟩ is free of graded rank 3𝑚(𝑞2 + 1 + 𝑞−2)𝑛.

Given a web Γ ⊂ 𝒫 , we can forget the puncture and the anchor line ℒ and apply the

universal construction to the evaluation (4.60). Precisely, let Fr(Γ)forget denote the free 𝑅3-

module generated by all foams with boundary Γ (forgetting the anchor line). By Corollary

4.3.22, we can define the bilinear form (−,−) : Fr(Γ)forget × Fr(Γ)forget → 𝑅3 and the cor-

responding state space ⟨Γ⟩forget in the usual way. Thus we obtain state spaces for webs in

R2, functorial with respect to foams in R2 × [0, 1]. These state spaces and maps induced by

foams are graded via equation (4.84), where |an(𝑉 )| = 0.

Proposition 4.3.33. For a contractible web Γ ⊂ 𝒫, there is a degree-preserving isomorphism

⟨Γ⟩ ∼= ⟨Γ⟩forget ,
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natural with respect to foams with contractible boundary and which are disjoint from ℒ.

Proof. This follows from Theorem 4.3.32.

On the other hand, Mackaay-Vaz [63] define an evaluation ⟨−⟩MV for oriented sl3 pre-

foams and use it to define an equivariant (also called universal) version of the sl3 link

homology introduced in [35]. They work over the ground ring Z[𝑎, 𝑏, 𝑐] and associate a

state space ⟨Γ⟩MV to each web Γ ⊂ R2 via the universal construction applied to their pre-

foam evaluation ⟨−⟩MV. To compare with our situation, identify Z[𝑎, 𝑏, 𝑐] with the ring

𝑅3 = Z[𝐸1, 𝐸2, 𝐸3] of symmetric functions in 𝑥1, 𝑥2, 𝑥3 via a ring isomorphism 𝜙 defined by

𝜙(𝑎) = 𝐸1, 𝜙(𝑏) = −𝐸2, 𝜙(𝑐) = 𝐸3.

Theorem 4.3.34. For any closed pre-foam 𝐹 , we have

⟨𝐹 ⟩ = 𝜙 (⟨𝐹 ⟩MV) .

It follows that there are isomorphisms ⟨Γ⟩forget ∼= ⟨Γ⟩MV ⊗Z[𝑎,𝑏,𝑐] 𝑅3 for any web Γ ⊂ R2,

natural with respect to maps induced by foams with boundary.

Proof. The evaluation ⟨−⟩MV is defined by applying the local relations (3D), (CN), (S), and

(Θ) in [63, Section 2.1] to reduce any foam to an element of Z[𝑎, 𝑏, 𝑐]. Under the change of

variables 𝑎 ↦→ 𝐸1, 𝑏 ↦→ −𝐸2, 𝑐 ↦→ 𝐸3, these four relations hold for our evaluation ⟨−⟩ by

relation (4.73), relation (4.74), Example 4.3.7, and Example 4.3.8. The statement follows.

As in the sl2 setting considered in Section 4.2, we can define an additional grading on

oriented sl3 foams and state spaces. Define the abelian group

Λ = Z𝑤1 ⊕ Z𝑤2 ⊕ Z𝑤3/(𝑤1 + 𝑤2 + 𝑤3), (4.87)

on three generators and one relation. Λ is a free abelian group of rank two.

Orient the anchor line ℒ from bottom to top. For an anchored foam 𝑉 with boundary

and 𝑝 ∈ an(𝑉 ) an anchor point lying on some facet 𝑓 , let 𝑠(𝑝) ∈ {±1} denote the oriented

intersection number between 𝑓 and ℒ (𝑠(𝑝) does not depend on the label of 𝑝), see Figure
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*𝑖

(a) 𝑠(𝑝) = 1

*𝑖

(b) 𝑠(𝑝) = −1

Figure 4-17: The oriented intersection number between a facet and ℒ.

4-17 for the convention. Define the annular degree of 𝑉 to be

adeg(𝑉 ) =
∑︁

𝑝∈an(𝑉 )

𝑠(𝑝)𝑤ℓ(𝑝) ∈ Λ. (4.88)

Proposition 4.3.35. If 𝐹 is a closed anchored foam with an admissible coloring 𝑐, then

adeg(𝐹 ) = 0.

Proof. The intersection of 𝐹 with a generic half-plane that bounds ℒ is an oriented web Γ

with boundary points on ℒ. An admissible coloring 𝑐 of 𝐹 induces a Tait coloring of Γ. The

boundary points (one-valent vertices) of Γ are colored according to their label. The sum in

(4.88) may be rewritten as the sum of terms ±(𝑤1 +𝑤2 +𝑤3) = 0 over all trivalent vertices

of Γ, where the sign is +1 if all edges are incoming and −1 if all edges are outgoing. Each

𝑖-colored inner edge 𝑒 of Γ bounds two trivalent vertices and contributes ±(𝑤𝑖−𝑤𝑖) = 0 since

𝑒 is oriented towards one of its boundary vertices and away from the other. The remaining

edges, with one or both endpoints on ℒ, contribute precisely adeg(𝐹 ).

Let Γ ⊂ 𝒫 be an (annular oriented) sl3 web. An anchored foam 𝐹 ⊂ R2 × (−∞, 0]

with 𝜕𝐹 = Γ has a well-defined degree adeg(𝐹 ) ∈ Λ via (4.88). Furthermore, we equip

the coefficient ring 𝑅′
3 with a Λ-grading by setting all elements to be degree 0. This makes

the free 𝑅′
3-module Fr(Γ) into an Λ-graded module, and Proposition 4.3.35 implies that

the kernel of the bilinear form on Fr(Γ) is Λ-graded as well. Consequently, the grading

descends to a Λ-grading on the state space ⟨Γ⟩. A foam 𝑉 with boundary induces a map

⟨𝑉 ⟩ : ⟨−𝜕0Γ⟩ → ⟨𝜕1Γ⟩ which changes adeg by adeg(𝑉 ). If 𝑉 has no anchor points, it induces

an annular degree zero map between the state spaces of its boundaries. The state space of

a contractible web is concentrated in annular degree zero.
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Remark 4.3.36. The Λ-grading on ⟨Γ⟩ is the analogue of grading on finite-dimensional sl3

representations by the weight lattice. In fact, in the non-equivariant version of our construc-

tion, where all 𝑥𝑖’s are set to 0 upon closed foam evaluation (and state spaces are defined

accordingly, over a ground field rather than the ring 𝑅′
3), the state space ⟨Γ⟩ is naturally

an sl3-representation. We also refer the reader to Queffelec-Rose [68] for the construction of

sutured annular sl𝑛-homology, with state spaces of annular webs carrying an sl𝑛-action. In

the equivariant case, it is not clear how to define an sl3-action or what is the substitute for

it.

Recall that AFoam denotes the category of sl3 webs in 𝒫 and anchored cobordisms

between them. Morphism spaces in this category are triply graded via (qdeg, adeg). The

state space construction assembles into a functor

⟨−⟩ : AFoam→ 𝑅′
3− g3mod

landing in the category of triply-graded 𝑅′
3-modules.

This functor respects the trigradings on the hom spaces in the two categories. Restricting

to the subcategory of annular cobordisms and their linear combinations, the induced maps

have annular degree 0.

4.3.5 Annular sl3 link homology

We now explain how to obtain annular link homology. Let 𝐿 ⊂ A× [0, 1] be an oriented

annular link. Projecting onto A× {0} = A and identifying the interior of A with the punc-

tured plane 𝒫 , we obtain a link diagram 𝐷 ⊂ 𝒫 . Following the construction of Khovanov’s

sl3 complex [35, Section 4], which was recalled in Section 2.5.1, form the sl3 cube of resolu-

tions of 𝐷, with each resolution web 𝐷𝑢 drawn in the punctured plane 𝒫 . Edges in the cube

are decorated by either the zip or unzip foam shown in Figure 4-18. Applying the functor

⟨−⟩ : AFoam → 𝑅′
3− g3mod yields a commutative cube of free Z⊕ Λ-graded 𝑅′

3-modules.

Collapse the cube into a chain complex and introduce homological and quantum grading

shifts exactly as in Equation (2.17), where the degree shifts {−} are replaced by bidegree

shifts {−, 0}. Denote the resulting chain complex by 𝐶(𝐷).
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Figure 4-18: The zip (left) and unzip (right) foams decorating the edges in the sl3 cube of resolutions.

Diagrams in 𝒫 representing isotopic annular links are related by Reidemeister moves

away from the puncture. Proofs of Reidemeister invariance in [63] are local, and all local

relations (away from ℒ) on foams in [63] also hold for our evaluation ⟨−⟩ by (4.74), Example

4.3.7, and Example 4.3.8. It follows that the chain homotopy class of 𝐶(𝐷) is an invariant

of the annular link 𝐿. We define equivariant annular sl3 homology as cohomology groups

𝐻(𝐶(𝐷)). Foams between webs appearing in the cube of resolutions are disjoint from ℒ, so

the differential preserves annular degree throughout the complex. Consequently, equivariant

annular sl3 link homology carries a homological grading as well as an internal Z⊕Λ-grading

(deg, adeg). Cohomology groups 𝐻(𝐶(𝐷)) are triply graded 𝑅′
𝑥-modules.

We conclude this section with an explicit calculation. Let 𝜎 denote the positive crossing

generator of the 2-strand braid group, let 𝐿𝑛 denote the annular link diagram obtained as

the annular closure of 𝜎𝑛, and let 𝐶(𝐿𝑛) denote the corresponding chain complex. Consider

the complex 𝐶(𝑛) shown in (4.89).

𝜕−1

{𝑐0}
𝜕−2

{𝑐1}
𝜕−3

{𝑐2}· · ·{𝑐𝑛}
𝜕−𝑛

(4.89)

The right-most term is in homological degree zero and the quantum grading shifts 𝑐𝑖 are

𝑐0 = 2𝑛 and 𝑐𝑖 = 2𝑛 + 2𝑖 − 1 for 1 ≤ 𝑖 ≤ 𝑛. The right-most differential 𝜕−1 is the unzip
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cobordism, and for −𝑛 ≤ 𝑖 ≤ −2 the differentials are

𝜕𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∙
−

∙
if 𝑖 is even,

∙
−
∙

if 𝑖 is odd.

As in Example 4.2.20, in the above schematic depiction of the differential, each web corre-

sponds to an identity foam in which a facet carries a dot if the corresponding edge of the

web is dotted. By induction and Gaussian elimination [9, Lemma 4.2], one can show that

the chain complex 𝐶(𝐿𝑛) is chain homotopy equivalent to the annular closure of 𝐶(𝑛).

Upon taking annular closures, the differential 𝜕𝑖 for even 𝑖 is zero. Consider the annular

closure Γ of the web appearing in negative homological degree. By Theorem 4.3.32, the state

space of Γ is a free 𝑅′
𝑁 -module of rank six, and we choose a basis {𝑢1, 𝑑1, 𝑢2, 𝑑2, 𝑢3, 𝑑3} shown

in (4.90).

×

*
𝑖

𝑢𝑖

×

*
𝑖

∙

𝑑𝑖

(4.90)

Quantum and annular bidegrees of 𝑢𝑖 and 𝑑𝑖 are (−1,−𝑤𝑖) and (1,−𝑤𝑖), respectively (not

accounting for grading shifts).

After taking the annular closure, the differential 𝜕𝑖, for 𝑖 ≤ −3 odd, is given as the

difference of foams 𝐹 −𝐺, where 𝐹 puts a dot on the right-most facet and 𝐺 puts a dot on

the middle facet. We have

𝐹 (𝑢𝑖) = (𝑥𝑗 + 𝑥𝑘)𝑢𝑖 − 𝑑𝑖 𝐹 (𝑑𝑖) = 𝑥𝑗𝑥𝑘𝑢𝑖

𝐺(𝑢𝑖) = 𝑑𝑖 𝐺(𝑑𝑖) = (𝑥𝑗 + 𝑥𝑘)𝑑𝑖 − 𝑥𝑗𝑥𝑘𝑢𝑖.
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In particular, 𝜕𝑖 for 𝑖 ≤ −3 odd is injective.

Let us now compute the right-most differential 𝜕−1. Let Γ0 denote the web consisting of

two essential counterclockwise oriented circles, which is the annular closure of the term in

homological degree zero in 𝐶(𝑛). For 1 ≤ 𝑖, 𝑗 ≤ 3, let 𝑔𝑖𝑗 : ∅ → Γ0 be the foam consisting

of two cups, each intersecting ℒ once, with the anchor point of the inner cup labeled 𝑖 and

the anchor point of the outer cup labeled 𝑗. By Proposition 4.3.30, {𝑔𝑖𝑗}1≤𝑖,𝑗≤3 is a basis for

⟨Γ0⟩. The generator 𝑔𝑖𝑗 is in quantum degree 2𝑛 and in annular degree 𝑤𝑖 + 𝑤𝑗 = −𝑤𝑘. Let

𝑍 : Γ → Γ0 denote the unzip cobordism. By applying the neck-cutting relation, Equation

(4.80), near the two circles comprising Γ0, we write 𝑍𝑢𝑖 as a sum

𝑍𝑢𝑖 =
∑︁

1≤𝑠,𝑡≤3

(−1)𝑠+𝑡𝑔𝑠𝑡 ⊔ 𝜏𝑠𝑡,

where 𝜏𝑠𝑡 is a theta foam as in Example 4.3.18, with no dots, and anchor points labeled 𝑖, 𝑠, 𝑡

read from bottom to top. These theta foams evaluate to zero unless {𝑖, 𝑠, 𝑡} = {1, 2, 3}, and

otherwise they evaluate to ±1. Moreover, ⟨𝜏𝑠𝑡⟩ = −⟨𝜏𝑡𝑠⟩. Therefore we have

𝑍𝑢𝑖 = ±(𝑔𝑗𝑘 − 𝑔𝑘𝑗)

A similar procedure yields 𝑍𝑑𝑖 = ±(𝑥𝑗𝑔𝑗𝑘 − 𝑥𝑘𝑔𝑘𝑗).

Therefore, in homological degree 𝑠 ≤ 0 and annular degree −𝑤𝑖, the homology of 𝐿𝑛 is

given by

𝐻𝑠,−𝑤𝑖(𝐿𝑛) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑠 is odd,
𝑅′
𝑁{2𝑛− 2𝑠− 2} ⊕𝑅′

𝑁{2𝑛− 2𝑠}
⟨(𝑥𝑗 + 𝑥𝑘,−2), (2𝑥𝑗𝑥𝑘, 𝑥𝑗 + 𝑥𝑘)⟩

if 𝑠 < 0, 𝑠 is even,

(𝑅′
𝑁/(𝑥𝑗 − 𝑥𝑘)) {2𝑛} if 𝑠 = 0.

4.4 Anchored gl𝑁 link homology

Throughout this section, a positive integer 𝑁 will be fixed, and all link components are

colored by an integer in {0, . . . , 𝑁}. Recall the rings 𝑅𝑁 , 𝑅
′
𝑁 , 𝑅

′′
𝑁 from Definition 2.5.15. We

introduce the following additional notation.
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• ̃︁𝑅𝑁

′
= 𝑅′

𝑁 [
√
𝑥𝑖 − 𝑥𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 ] the extension of 𝑅′

𝑁 obtained by introducing

square roots of 𝑥𝑖 − 𝑥𝑗 for 𝑖 < 𝑗.

• ̃︁𝑅𝑁

′′
= ̃︁𝑅𝑁

′
[(𝑥𝑖 − 𝑥𝑗)−1 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 ] the ring obtained by inverting 𝑥𝑖 − 𝑥𝑗, 𝑖 < 𝑗,

in 𝑅′′
𝑥.

The rings ̃︁𝑅𝑁

′
, ̃︁𝑅𝑁

′′
are graded by setting variables 𝑥𝑖 to be degree two. Inclusions between

these rings is summarized in the diagram (4.91).

̃︁𝑅𝑁

′
⊂ ̃︁𝑅𝑁

′′

∪ ∪

𝑅𝑁 ⊂ 𝑅′
𝑁 ⊂ 𝑅′′

𝑁

(4.91)

4.4.1 Anchored gl𝑁 foams and their evaluations

In this section we extend the Robert-Wagner foam evaluation from Section 2.5.3 to the

annular setting.

Definition 4.4.1. An anchored gl𝑁 foam is a gl𝑁 foam 𝐹 such that intersections of 𝐹 with

ℒ occur transversely in the interior of facets of 𝐹 . An intersection point of 𝐹 with ℒ is called

an anchor point, and we let an(𝐹 ) = 𝐹 ∩ ℒ denote the set of anchor points. For 𝑝 ∈ an(𝐹 )

lying on a facet 𝑓 , we define its thickness th(𝑝) to be the thickness of 𝑓 .

Anchored foams must also come equipped with a label of each anchor point 𝑝, which

consists of a subset ℓ(𝑝) ⊂ [𝑁 ] = {1, . . . , 𝑁} of cardinality equal to the thickness of the label

on which 𝑝 lies.

The underlying foam of 𝐹 is the gl𝑁 foam obtained by forgetting anchor points and their

labels.

A coloring of an anchored foam means a coloring, in the sense of Definition 2.5.14, of the

underlying foam. Let 𝐹 be an anchored foam and 𝑐 a coloring of 𝐹 . For an anchor point

𝑝 ∈ an(𝐹 ) lying on a facet 𝑓 ∈ 𝑓(𝐹 ), its color 𝑐(𝑝) is defined to be the color of the facet,

𝑐(𝑝) := 𝑐(𝑓).

We establish some notation before introducing anchored foam evaluation.
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• For 𝐴 ⊂ [𝑁 ], let #𝐴 denote the cardinality of 𝐴.

• For 𝐴 ⊂ [𝑁 ], let 𝐴 = [𝑁 ] ∖ 𝐴 denote its complement.

• For 𝐴,𝐵 ⊂ [𝑁 ], let [𝐴 ≤ 𝐵] denote the subset of 𝐴× 𝐵 consisting of pairs (𝑖, 𝑗) with

𝑖 ≤ 𝑗. Likewise, let [𝐴 < 𝐵] denote the subset of 𝐴× 𝐵 consisting of pairs (𝑖, 𝑗) with

𝑖 < 𝑗.

• For 𝐴,𝐵 ⊂ [𝑁 ], set

Π(𝐴,𝐵) :=
∏︁

(𝑖,𝑗)∈[𝐴≤𝐵]

(𝑥𝑖 − 𝑥𝑗)
∏︁

(𝑖,𝑗)∈[𝐵≤𝐴]

(𝑥𝑖 − 𝑥𝑗).

Lemma 4.4.2. For 𝐴,𝐵,𝐶 ⊂ [𝑁 ], we have

1. Π(𝐴,𝐵) = 0 if and only if 𝐴 ∩𝐵 ̸= ∅.

2. Π(𝐴,𝐵) = (−1)#[𝐵≤𝐴]∏︀
(𝑖,𝑗)∈𝐴×𝐵(𝑥𝑖 − 𝑥𝑗).

3. Π(𝐴,𝐵) = Π(𝐵,𝐴).

4. If 𝐵 ∩ 𝐶 = ∅, then Π(𝐴,𝐵 ∪ 𝐶) = Π(𝐴,𝐵)Π(𝐴,𝐶).

Proof. All statements are immediate from the definition.

Definition 4.4.3. Let 𝐹 be an anchored foam and 𝑐 a coloring of 𝐹 . For 𝑝 ∈ an(𝐹 ), definẽ︀𝑄(𝐹, 𝑐, 𝑝) = Π
(︁
𝑐(𝑝), ℓ(𝑝)

)︁
, and set

̃︀𝑄(𝐹, 𝑐) =
⎛⎝ ∏︁
𝑝∈an(𝐹 )

̃︀𝑄(𝐹, 𝑐, 𝑝)
⎞⎠1/2

, (4.92)

⟨𝐹, 𝑐⟩ = (−1)𝑠(𝐹,𝑐)𝑃 (𝐹, 𝑐)
𝑄(𝐹, 𝑐)

· ̃︀𝑄(𝐹, 𝑐), (4.93)

where 𝑠(𝐹, 𝑐), 𝑃 (𝐹, 𝑐), and 𝑄(𝐹, 𝑐) are as in Definition 2.5.16.

Let us pause to comment on the above definition. As in Definition 2.5.16, the evaluation

⟨𝐹 ⟩ of an anchored foam 𝐹 will be the sum of ⟨𝐹, 𝑐⟩ over all colorings. Note that if 𝑐(𝑝) ̸= ℓ(𝑝)
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for some 𝑝 ∈ an(𝐹 ) then ̃︀𝑄(𝐹, 𝑐, 𝑝) = ̃︀𝑄(𝐹, 𝑐) = ⟨𝐹, 𝑐⟩ = 0. In light of this, we restrict the

set of admissible colorings as follows.

Definition 4.4.4. For an anchored foam 𝐹 , let adm(𝐹 ) denote the set of colorings 𝑐 of 𝐹

such that 𝑐(𝑝) = ℓ(𝑝) for each 𝑝 ∈ an(𝐹 ). Define

⟨𝐹 ⟩ =
∑︁

𝑐∈adm(𝐹 )

⟨𝐹, 𝑐⟩ .

Due to the presence of the square root in ̃︀𝑄(𝐹, 𝑐), a priori we have ⟨𝐹, 𝑐⟩ ∈ ̃︁𝑅𝑁

′′
(see the

diagram (4.91) and the discussion above it for definitions of various rings). The following

lemma is analogous to Proposition 4.3.14 and shows that no square roots appear.

Lemma 4.4.5. For an anchored foam 𝐹 and 𝑐 ∈ adm(𝐹 ), we have ⟨𝐹, 𝑐⟩ ∈ 𝑅′′
𝑁 .

Proof. For 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 , a factor of 𝑥𝑖−𝑥𝑗 appears under the square root in the definition of̃︀𝑄(𝐹, 𝑐) when either 𝑖 ∈ ℓ(𝑝) = 𝑐(𝑝), 𝑗 ̸∈ ℓ(𝑝) = 𝑐(𝑝) or 𝑗 ∈ ℓ(𝑝) = 𝑐(𝑝), 𝑖 ̸∈ ℓ(𝑝) = 𝑐(𝑝). Thus

the power of 𝑥𝑖 − 𝑥𝑗 appearing under the square root is equal to the number of intersection

points between 𝐹𝑖𝑗(𝑐) and ℒ, which is even since 𝐹𝑖𝑗(𝑐) is a closed surface in R3.

Remark 4.4.6. In view of the proof of Lemma 4.4.5, we may write

̃︀𝑄(𝐹, 𝑐) = ∏︁
1≤𝑖<𝑗≤𝑁

(𝑥𝑖 − 𝑥𝑗)#(𝐹𝑖𝑗(𝑐)∩ℒ)/2.

Letting an(𝑖, 𝑗) be the number of anchor points of 𝐹 which contain exactly one of 𝑖 or 𝑗

in their labels, we have #(𝐹𝑖𝑗(𝑐) ∩ ℒ) = an(𝑖, 𝑗), so that the above expression of ̃︀𝑄(𝐹, 𝑐) is

independent of the admissible coloring 𝑐. Compare with Equation (4.67).

The remainder of this subsection is devoted to proving Proposition 4.4.8, which states

that no denominators appear in ⟨𝐹 ⟩. Fix an anchored foam 𝐹 and a permutation 𝜎 ∈ 𝑆𝑁 .

Let 𝜎(𝐹 ) be the anchored foam whose underlying foam is the same as 𝐹 but the label of

each anchor point 𝑝 is permuted by 𝜎: if ℓ𝐹 (𝑝) denotes the label according to 𝐹 , then the

label ℓ𝜎(𝐹 )(𝑝) according to 𝜎(𝐹 ) is given by ℓ𝜎(𝐹 )(𝑝) = 𝜎(ℓ(𝑝)). Likewise, if 𝑐 ∈ adm(𝐹 ) is

admissible, then 𝜎(𝑐) ∈ adm(𝜎(𝐹 )) denotes the coloring which colors a facet 𝑓 by 𝜎(𝑐(𝑓)).

Note that 𝑆𝑁 acts on the rings in diagram (4.91) by permuting the indices of variables.
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Define

𝜀(𝐹, 𝜎) =
∑︁

1≤𝑖<𝑗≤𝑁,
𝜎(𝑖)>𝜎(𝑗)

an(𝑖, 𝑗)/2.

The following lemma is a gl𝑁 analogue of Lemma 4.3.19.

Lemma 4.4.7. With the notation established above, we have

𝜎 (⟨𝐹, 𝑐⟩) = (−1)𝜀(𝐹,𝜎) ⟨𝜎(𝐹 ), 𝜎(𝑐)⟩ .

In particular, ⟨𝜎(𝐹 )⟩ = ±⟨𝐹 ⟩, where the sign depends only on labels of anchor points of 𝐹

and on 𝜎.

Proof. By [73, Lemma 2.17], we have

𝜎

(︂
(−1)𝑠(𝐹,𝑐) 𝑃 (𝐹, 𝑐)

𝑄(𝐹, 𝑐))

)︂
= (−1)𝑠(𝜎(𝐹 ),𝜎(𝑐))𝑃 (𝜎(𝐹 ), 𝜎(𝑐))

𝑄(𝜎(𝐹 ), 𝜎(𝑐))
.

Using the reformulation of ̃︀𝑄(𝐹, 𝑐) in Remark 4.4.6, we see that 𝜎( ̃︀𝑄(𝐹, 𝑐)) = (−1)𝜀(𝐹,𝜎) ̃︀𝑄(𝜎(𝐹 ), 𝜎(𝑐)),
which completes the proof.

For 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 , consider the subring

𝑅′
𝑖𝑗 = 𝑅′

𝑁 [(𝑥𝑘 − 𝑥ℓ)−1 | 1 ≤ 𝑘 < ℓ ≤ 𝑁, (𝑘, ℓ) ̸= (𝑖, 𝑗)]

of 𝑅′′
𝑁 . We have 𝑅′

𝑖𝑗 = 𝑅′
𝑗𝑖, ⋂︁

1≤𝑖<𝑗≤𝑁

𝑅′
𝑖𝑗 = 𝑅′

𝑁 ,

and 𝜎 ∈ 𝑆𝑁 sends 𝑅′
𝑖𝑗 isomorphically onto 𝑅′

𝜎(𝑖),𝜎(𝑗).

We recall the following local operation on colors from [73], called a Kempe move. Let 𝐹

be an anchored foam, 𝑐 ∈ adm(𝐹 ) a coloring, and Σ ⊂ 𝐹𝑖𝑗(𝑐) a (not necessarily connected)

sub-surface which is disjoint from ℒ. Let 𝑐′ ∈ adm(𝐹 ) which agrees with 𝑐 on facets not in

Σ, and in which 𝑖 and 𝑗 have been exchanged for facets in Σ.

Proposition 4.4.8. For any anchored foam 𝐹 , we have ⟨𝐹 ⟩ ∈ 𝑅′
𝑁 .

208



Proof. The argument is similar to that of [73, Proposition 2.19]. First note that it suffices

to show ⟨𝐹 ⟩ ∈ 𝑅′
12. To see this, let 𝑖 < 𝑗 and take 𝜎 ∈ 𝑆𝑁 with 𝜎(1) = 𝑖, 𝜎(2) = 𝑗. If

⟨𝐹 ⟩ ∈ 𝑅′
12 for any anchored foam 𝐹 , then by Lemma 4.4.7 we have

𝜎
(︀⟨︀
𝜎−1(𝐹 )

⟩︀)︀
= ±⟨𝐹 ⟩ ∈ 𝑅′

𝑖𝑗,

which implies ⟨𝐹 ⟩ ∈ 𝑅′
𝑁 .

Let us now show that ⟨𝐹 ⟩ ∈ 𝑅′
12. Partition adm(𝐹 ) as follows: the equivalence class

𝐶𝑐 of 𝑐 ∈ adm(𝐹 ) is the set of colorings obtained by (1, 2)-Kempe moves on components of

𝐹12(𝑐) which are disjoint from ℒ. We will show that

∑︁
𝑐′∈𝐶𝑐

⟨𝐹, 𝑐⟩ = 𝐴

𝐵

where 𝐴,𝐵 ∈ 𝑅′
𝑁 are polynomials and 𝐵 is not divisible by 𝑥1 − 𝑥2.

Write 𝐹12(𝑐) = Σan ⊔ Σ1 ⊔ · · · ⊔ Σ𝑟, where Σ1, . . . ,Σ𝑟 are connected and disjoint from

ℒ, and each component of Σan intersects ℒ. Let 𝜎 ∈ 𝑆𝑁 denote the transposition (1 2).

Introduce the following notation

𝑃𝑠(𝐹, 𝑐) =
∏︁

𝑓 a facet in Σ𝑠

𝑃 (𝑐(𝑓))

𝑃 ′(𝐹, 𝑐) =
∏︁

𝑓 not a facet in ∪𝑟
𝑠=1Σ𝑠

𝑃 (𝑐(𝑓))

̂︀𝑄(𝐹, 𝑐) = 𝑄(𝐹, 𝑐)
∏︀
𝑘≥3,𝑠

(𝑥1 − 𝑥𝑘)ℓΣ𝑠 (𝑐,𝑘)/2

(𝑥1 − 𝑥2)𝜒(𝐹12(𝑐))/2̂︀𝑃𝑠(𝐹, 𝑐) = 𝑃𝑠(𝐹, 𝑐)
∏︁
𝑘≥3

(𝑥1 − 𝑥𝑘)ℓΣ𝑠 (𝑐,𝑘)/2

𝑇𝑠(𝐹, 𝑐) = ̂︀𝑃𝑠(𝐹, 𝑐) + (−1)𝜒(Σ𝑠)/2𝜎
(︁ ̂︀𝑃𝑠(𝐹, 𝑐))︁ ,

where ℓΣ𝑠(𝑐, 𝑘) is the (even) integer defined in [73, Lemma 2.10].
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Arguing as in the proof of [73, Proposition 2.19], we have

∑︁
𝑐′∈𝐶𝑐

⟨𝐹, 𝑐⟩ = (−1)𝑠(𝐹,𝑐)𝑃
′(𝐹, 𝑐)̂︀𝑄(𝐹, 𝑐)

(︃
𝑟∏︁
𝑠=1

(𝑥1 − 𝑥2)−𝜒(Σ𝑠)/2𝑇𝑠(𝐹, 𝑐)

)︃ ̃︀𝑄(𝐹, 𝑐)
(𝑥1 − 𝑥2)𝜒(Σan)/2

.

The term ̂︀𝑄(𝐹, 𝑐) is not divisible by (𝑥1 − 𝑥2). Therefore denominators of the form 𝑥1 − 𝑥2
can appear in one of the two following ways. The first is when some Σ𝑠 is a 2-sphere. In

this case 𝑇𝑠(𝐹, 𝑐) is antisymmetric in 𝑥1, 𝑥2 and hence divisible by 𝑥1−𝑥2, allowing to cancel

this factor of 𝑥1 − 𝑥2 in the denominator. The second is when some component Σ′ ⊂ Σan is

a 2-sphere. In this case Σ′ contains at least two anchor points 𝑝1, 𝑝2, each containing either

1 or 2 in their labels. Thus their contribution

√︁̃︀𝑄(𝐹, 𝑐, 𝑝1) ̃︀𝑄(𝐹, 𝑐, 𝑝2)
to ̃︀𝑄(𝐹, 𝑐) is divisible by 𝑥1 − 𝑥2, allowing to cancel with this contribution of 𝑥1 − 𝑥2 to the

denominator.

Closed anchored foams carry two types of gradings, which will induce gradings on state

spaces.

Definition 4.4.9. The quantum grading, denoted qdeg, of an anchored foam 𝐹 is defined as

qdeg(𝐹 ) = deg(𝐹 un) +
∑︁

𝑝∈an(𝐹 )

th(𝑝)(𝑁 − th(𝑝)),

where 𝐹 un is the underlying foam and deg(𝐹 un) is as in Definition 2.5.13.

Anchored foams carry an additional Z𝑁 -grading, called the annular degree. Let 𝑤1, . . . , 𝑤𝑁

denote the standard basis of Z𝑁 . Given 𝐴 ⊂ [𝑁 ], let 𝑤𝐴 =
∑︀

𝑖∈𝐴𝑤𝑖. For an anchored foam

𝐹 , we define adeg(𝐹 ) ∈ Z𝑁 as follows. Orient the anchor line ℒ from bottom to top. For an

anchor point 𝑝 ∈ an(𝐹 ) lying on a facet 𝑓 , denote by 𝑠(𝑝) ∈ {±1} the oriented intersection

number of 𝑓 and ℒ at 𝑝 (see Figure 4-19). Set

adeg(𝐹 ) =
∑︁

𝑝∈an(𝐹 )

𝑠(𝑝)𝑤ℓ(𝑝).
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*𝐴

(a) 𝑠(𝑝) = 1

*𝐴

(b) 𝑠(𝑝) = −1

Figure 4-19: The oriented intersection number between a facet and ℒ.

The ground ring 𝑅′
𝑁 is Z ⊕ Z𝑁 -graded by setting qdeg(𝑥𝑖) = 2 and adeg(𝑥𝑖) = 0 for

1 ≤ 𝑖 ≤ 𝑁 . The following lemma says that anchored gl𝑁 foam evaluation respects degrees.

Lemma 4.4.10. If 𝐹 is a closed anchored foam with an admissible coloring, then qdeg(𝐹 ) =

qdeg(⟨𝐹 ⟩) and adeg(𝐹 ) = adeg(⟨𝐹 ⟩) = 0.

Proof. The first statement is clear from the formula for ⟨𝐹, 𝑐⟩, equation (4.93). The argu-

ment for the second statement is similar to the proof of Proposition 4.3.35. Consider the

intersection of 𝐹 with a generic half-plane containing ℒ, resulting in a web Γ with boundary

on ℒ. Each edge 𝑒 in Γ is the intersection of the half-plane with a facet 𝑓 of 𝐹 , and we set

𝑐(𝑒) := 𝑐(𝑓). For each internal vertex 𝑣 of Γ, with edges 𝑒1, 𝑒2, 𝑒3 incident to 𝑣, let

𝑤(𝑣) := 𝜀1
∑︁
𝑖∈𝑐(𝑒1)

𝑤𝑖 + 𝜀2
∑︁
𝑖∈𝑐(𝑒2)

𝑤𝑖 + 𝜀3
∑︁
𝑖∈𝑐(𝑒3)

𝑤𝑖,

where 𝜀𝑗 = 1 if 𝑒𝑗 is oriented towards 𝑣 and 𝜀𝑗 = −1 if 𝑒𝑗 is oriented away from 𝑣. Each

𝑤(𝑣) = 0 since 𝑐 is a coloring of 𝐹 , so

∑︁
𝑣 a vertex of Γ

𝑤(𝑣) = 0. (4.94)

On the other hand, adeg(𝐹 ) is equal to the above sum. Indeed, each internal edge, with

both endpoints disjoint from ℒ, contributes the same quantity with opposite signs. Thus

the above sum can be written as a contribution over edges with one or both endpoints on

ℒ, which is precisely adeg(𝐹 ).

4.4.2 Local relations

This section establishes local relations satisfied by anchored gl𝑁 foam evaluation.
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Lemma 4.4.11. The local relation (4.95) holds.

𝑃 *𝐴 *𝐴= 𝑃 (𝐴) (4.95)

Proof. This is immediate from the definition.

Lemma 4.4.12. Consider the foam 𝐹 shown in (4.96).

𝑏

𝑎+ 𝑏

𝑎

*

*

*

𝐵

𝐶

𝐴

𝑃2

𝑃3

𝑃1

(4.96)

Then

⟨𝐹 ⟩ =

⎧⎪⎨⎪⎩(−1)
#[𝐵<𝐴]+

∑︀
𝑖∈𝐶

𝑖

𝑃1(𝐴)𝑃2(𝐵)𝑃3(𝐶) if 𝐴 ∪𝐵 = 𝐶,

0 otherwise.

Proof. If 𝐶 ̸= 𝐴 ∪ 𝐵 then 𝐹 has no admissible colorings. Suppose then that 𝐶 = 𝐴 ∪ 𝐵,

in which case 𝐴 and 𝐵 are disjoint, and there is a single admissible coloring 𝑐. We have

𝑃 (𝐹, 𝑐) = 𝑃1(𝐴)𝑃2(𝐵)𝑃3(𝐴 ∪ 𝐵). For 𝑖 < 𝑗, the bicolored surface 𝐹𝑖𝑗(𝑐) is either empty or

a 2-sphere. The latter occurs in two cases: first, when (𝑖, 𝑗) or (𝑗, 𝑖) is in 𝐴× 𝐵, where the

2-sphere is the union of the thickness 𝑎 and 𝑏 facets. The second case when (𝑖, 𝑗) or (𝑗, 𝑖) is

in 𝐶×𝐶, where the 2-sphere is the union of the thickness 𝑎+𝑏 facet and either the thickness

𝑎 or the thickness 𝑏 facet. Thus

𝑄(𝐹, 𝑐) = Π(𝐴,𝐵)Π(𝐶,𝐶).
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Contributions from anchor points also equal the above term:

̃︀𝑄(𝐹, 𝑐) = (︀Π(𝐴,𝐴) · Π(𝐵,𝐵) · Π(𝐶,𝐶)
)︀1/2

=
(︀
Π(𝐴,𝐶) · Π(𝐴,𝐵) · Π(𝐵,𝐶) · Π(𝐵,𝐴) · Π(𝐶,𝐶)

)︀1/2
= Π(𝐴,𝐵)Π(𝐶,𝐶).

It remains to compute the sign. For 𝑖 ∈ [𝑁 ], the monochrome surface 𝐹𝑖(𝑐) is empty

whenever 𝑖 ̸∈ 𝐾, and otherwise for 𝑖 ∈ 𝐶, 𝐹𝑖(𝑐) is a 2-sphere. Letting 𝑍 denote the depicted

singular circle and fixing 𝑖 < 𝑗, we see that 𝑍 is positive with respect to (𝑖, 𝑗) if and only if

𝑖 ∈ 𝐵, 𝑗 ∈ 𝐴. So we obtain

𝑠(𝐹, 𝑐) =
∑︁
𝑖∈𝐶

𝑖+#[𝐵 < 𝐴].

The following lemmas will be crucial for identifying state spaces assigned to annular webs.

Lemma 4.4.13. Consider the foam 𝐹 shown in (4.97), consisting of a thickness 𝑎 sphere

decorated by the symmetric polynomial 𝑃 and which intersects ℒ twice, with anchor points

labeled 𝐴 and 𝐵.

𝑃 𝑎

*

*

𝐴

𝐵

(4.97)

Then

⟨𝐹 ⟩ =

⎧⎪⎨⎪⎩(−1)
∑︀
𝑖∈𝐴

𝑖

𝑃 (𝐴) if 𝐴 = 𝐵,

0 otherwise.

Proof. There is one admissible coloring 𝑐 which colors 𝐹 by 𝐴. We have 𝑠(𝐹, 𝑐) =
∑︀

𝑖∈𝐴 𝑖,

𝑃 (𝐹, 𝑐) = 𝑃 (𝐴), and 𝑄(𝐹, 𝑐) = Π(𝐴,𝐴) = ̃︀𝑄(𝐹, 𝑐).
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Lemma 4.4.14. The local relation (4.98) holds.

𝑎

*

*

𝐴

𝐴

𝑎

𝑎

=
∑︁
𝐴⊂[𝑁 ]
#𝐴=𝑎

(−1)
∑︀
𝑖∈𝐴

𝑖

(4.98)

Proof. Denote by 𝐹 the foam on the left-hand side on the equality. For each 𝐴 ⊂ [𝑁 ] of

order 𝑎, denote by adm𝐴(𝐹 ) the admissible colorings of 𝐹 in which the depicted annulus

is colored by 𝐴, and let 𝐺𝐴 be the foam summand on the right-hand side of the equality

whose top anchor point is labeled 𝐴. There is a natural bijection adm𝐴(𝐹 ) ∼= adm(𝐺𝐴). For

𝑐 ∈ adm𝐴(𝐹 ) with corresponding coloring 𝑐′ ∈ adm(𝐺𝐴), we will show that

⟨𝐹, 𝑐⟩ = (−1)
∑︀

𝑖∈𝐴 𝑖
⟨︀
𝐺𝐴, 𝑐′

⟩︀
,

from which relation (4.98) follows.

For 1 ≤ 𝑖 ≤ 𝑁 , we have

𝜒(𝐺𝐴
𝑖 (𝑐

′)) =

⎧⎪⎨⎪⎩𝜒(𝐹𝑖(𝑐)) + 2 if 𝑖 ∈ 𝐴,

𝜒(𝐹𝑖(𝑐)) if 𝑖 ̸∈ 𝐴.

It follows that 𝑠(𝐹, 𝑐) = 𝑠(𝐺𝐴, 𝑐′) +
∑︀

𝑖∈𝐴 𝑖.

Next, we have 𝑃 (𝐺𝐴, 𝑐′) = 𝑃 (𝐹, 𝑐). For 𝑖 < 𝑗, we have

𝜒(𝐺𝐴
𝑖𝑗(𝑐

′)) =

⎧⎪⎨⎪⎩𝜒(𝐹𝑖𝑗(𝑐)) if 𝑖, 𝑗 ∈ 𝐴 or 𝑖 ̸∈ 𝐴, 𝑗 ̸∈ 𝐴

𝜒(𝐹𝑖𝑗(𝑐)) + 2 if exactly one of 𝑖, 𝑗 is in 𝐴

so

𝑄(𝐺𝐴, 𝑐′) = 𝑄(𝐹, 𝑐) · Π(𝐴,𝐴).
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On the other hand, we have

̃︀𝑄(𝐺𝐴, 𝑐′) = ̃︀𝑄(𝐹, 𝑐) · Π(𝐴,𝐴),
which verifies ⟨𝐹, 𝑐⟩ =

⟨︀
𝐺𝐴, 𝑐′

⟩︀
and completes the proof of the lemma.

4.4.3 State spaces of annular gl𝑁 webs

In this section we define state spaces for annular gl𝑁 webs using universal construction

applied to anchored foam evaluation. The main result is Theorem 4.4.21, which identifies

state spaces.

Definition 4.4.15. An annular gl𝑁 web is a gl𝑁 web embedded in the punctured plane 𝒫 .

Annular webs are considered up to ambient isotopy of 𝒫 . In this section, we will say annular

web rather than annular gl𝑁 web.

Let Γ0,Γ1 be annular webs. A anchored cobordism from Γ0 to Γ1 is a gl𝑁 foam with

boundary 𝐹 ⊂ R2 × 𝐼 (see Definition 2.5.18) from Γ0 to Γ1 (viewing Γ0,Γ1 ⊂ R2) such that

𝐹 intersects the segment ℒ[0,1] = {(0, 0)} × 𝐼 in the interior of its facets, these intersection

points are transverse, and each intersection point 𝑝 is labeled by a subset ℓ(𝑝) ⊂ [𝑁 ] of

cardinality equal to the thickness of the facet on which 𝑝 lies. As for closed anchored foams,

we let an(𝐹 ) = 𝐹 ∩ ℒ denote the anchor points.

Anchored cobordisms are considered up to ambient isotopy of R2×𝐼 which is the identity

near 𝜕(R2 × 𝐼) and maps ℒ[0,1] to itself. Define qdeg(𝐹 ) and adeg(𝐹 ) for an anchored

cobordism 𝐹 as in Definition 4.4.9.

Let AFoam𝑁 denote the category of anchored cobordisms. It is straightforward to see

that bidegrees qdeg and adeg are additive under composition of anchored cobordisms.

We define the state space of an annular web Γ in the usual way. Let Fr(Γ) denote the

free 𝑅′
𝑁 -module generated by all anchored cobordisms from the empty web to Γ, and let ⟨Γ⟩

denote the kernel of Fr(Γ) by the kernel of the symmetric bilinear form

⟨−,−⟩ : Fr(Γ)× Fr(Γ)→ 𝑅′
𝑁 , ⟨𝐹,𝐺⟩ =

⟨︀
𝐹𝐺
⟩︀
.
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Lemma 4.4.10 implies that qdeg and adeg descend to gradings on ⟨Γ⟩, so ⟨Γ⟩ is Z⊕ Z𝑁 -

graded. It follows immediately from definition that an anchored cobordism 𝐹 : Γ0 → Γ1

induces a map ⟨𝐹 ⟩ : ⟨Γ0⟩ → ⟨Γ1⟩ of degree (qdeg(𝐹 ), adeg(𝐹 )). Thus we obtain a functor

⟨−⟩ : AFoam𝑁 → 𝑅′
𝑁− g𝑁+1 mod,

where 𝑅′
𝑁− g𝑁+1mod is the category of Z⊕ Z𝑁 -graded 𝑅′

𝑁 -modules.

For a Z⊕Z𝑁 -graded𝑅′
𝑁 -module𝑀 , we will write grading shifts as {(𝑖, 𝑗)} where 𝑖 ∈ Z and

𝑗 = (𝑗1, . . . , 𝑗𝑁) ∈ Z𝑁 . Given 𝑓 ∈ Z≥0[𝑞
±1, 𝑎±1

1 , . . . , 𝑎±1
𝑁 ], write 𝑓 =

∑︀
𝐼=(𝑖,𝑗1,...,𝑗𝑁 )∈Z𝑁+1

𝑚𝐼𝑞
𝑖𝑎𝑗11 · · · 𝑎

𝑗𝑁
𝑁 ,

and set

𝑀{𝑓} :=
⨁︁

𝐼=(𝑖,𝑗1,...,𝑗𝑁 )∈Z𝑁+1

𝑀⊕𝑚𝐼{(𝑖, 𝑗1, . . . , 𝑗𝑁)}.

A free graded 𝑅𝑁 -module is of the form 𝑅𝑁{𝑓}, and we define its graded rank to be 𝑓 . By

definition the graded rank of 𝑀{𝑓} is equal to 𝑓 times the graded rank of 𝑀 .

We establish the following sequence of lemmas before proving Theorem 4.4.21.

Lemma 4.4.16. Let Γ be an annular web, and let Γ′ be the annular web obtained from Γ

by deleting all the edges of thickness zero. Then there is an isomorphism of state spaces

⟨Γ⟩ ∼= ⟨Γ′⟩.

Proof. The argument is the same as in [73, Claim 3.33].

Definition 4.4.17 ([73, Notation 3.6, Definition 3.7]). Let 𝐶 be an oriented cycle in an

annular web Γ, and let Γ′ be the annular web obtained from Γ by reversing the orientation

of each edge in 𝐶 and replacing its thickness 𝑖 by 𝑁 − 𝑖. The web Γ′ is said to be obtained

by a cycle move along 𝐶. The cycle 𝐶 is face-like if it bounds a disk in R2 ∖ Γ.

Note that face-like cycles are allowed to bound a disk which contains the puncture.

Lemma 4.4.18. If Γ′ is obtained from Γ by a cycle move, then ⟨Γ′⟩ ∼= ⟨Γ⟩.

Proof. By [73, Lemma 3.9], it suffices to prove the claim when 𝐶 is face-like. If 𝐶 bounds

a disk which does not contain the puncture, then the isomorphism can be taken to be the

same one as in [73, Claim 3.34]. Suppose that 𝐶 bounds a disk which contains the puncture.

We claim that the relation (4.99) holds, where:
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• the shaded facets have thickness 𝑁 ,

• the bold dashed arrows are not seam lines indicating a meeting of facets, but rather

the orientation on the edges of the web that would be created if the foam were sliced

horizontally,

• the relation holds not only for squares but for any face-like cycle, which is why most

orientations and thicknesses are omitted.

*

*

*

*

= (4.99)

Since anchor points on thickness 𝑁 facets do not contribute to the evaluation, the identity

4.99 follows from the proof of [73, Lemma 3.21]. Therefore a modification of the foams

witnessing the isomorphism in [73, Claim 3.34], given by passing the anchor line through

the thicknesses 𝑁 facets, yields the desired isomorphism in the case where 𝐶 bounds a disk

containing the puncture.

Recall that 𝑤1, . . . , 𝑤𝑁 denote the standard basis vectors of Z𝑁 , and that 𝑤𝐴 =
∑︀

𝑖∈𝐴𝑤𝑖,

for 𝐴 ⊂ [𝑁 ].

Theorem 4.4.19. Let Γ be an annular web containing a non-contractible clockwise oriented

circle 𝑍 of thickness 𝑎 which bounds a disk in R2 ∖Γ. Let Γ′ = Γ ∖𝑍 denote the annular web

obtained by removing 𝑍 from Γ. There is an isomorphism ⟨Γ⟩ ∼=
⨁︀

𝐴⊂[𝑁 ]
#𝐴=𝑎

⟨Γ′⟩ {(0,−𝑤𝐴)}. This
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×

×

*𝐴

𝑎

(a) The anchored cobordism 𝐹𝐴 : Γ→ Γ′.

×

×

*
𝐴

𝑎

(b) The anchored cobordism 𝐺𝐴 : Γ′ → Γ.

Figure 4-20: The foams 𝐹𝐴 and 𝐺𝐴 in the proof of Theorem 4.4.19

is depicted in (4.100).

⟨
× 𝑎

⟩
∼=

⨁︁
𝐴⊂{1,...,𝑁}

#𝐴=𝑎

⟨∅⟩ {(0,−𝑤𝐴)} (4.100)

Moreover, reversing the orientation negates the degree shifts.

Proof. For 𝐴 ⊂ [𝑁 ] with #𝐴 = 𝑎, let 𝐹𝐴 : Γ→ Γ′ denote the anchored cobordism depicted

in Figure 4-20a, and let 𝐺𝐴 : Γ′ → Γ denote the anchored cobordism depicted in Figure

4-20b (only the relevant part of the foams are shown - outside of the depicted region they

are the identity on Γ′). It is straightforward to verify that qdeg(𝐹𝐴) = qdeg(𝐺𝐴) = 0,

adeg(𝐹𝐴) = 𝑤𝐴, and adeg(𝐺𝐴) = −𝑤𝐴.

Define Φ : ⟨Γ⟩ → ⟨Γ′⟩ to be the
(︀
𝑁
𝑎

)︀
× 1 matrix of foams with entries

(−1)
∑︀

𝑖∈𝐴 𝑖
⟨︀
𝐹𝐴
⟩︀
,

and Ψ : ⟨Γ′⟩ → ⟨Γ⟩ to be the 1×
(︀
𝑁
𝑎

)︀
matrix of foams with entries

⟨︀
𝐺𝐴
⟩︀
. Lemma 4.4.14 and

Lemma 4.4.13 imply, respectively, that ΨΦ = id and ΦΨ = id.

Consider any one of MOY relations in Figure 2-24, where the depicted relations are

contained in disks disjoint from the puncture, and write it in the form Γ =
∑︀

𝑖 𝑞
𝑛𝑖Γ𝑖. By a

categorified MOY relation we mean an isomorphism of state spaces ⟨Γ⟩ =
⨁︀

𝑖 ⟨Γ𝑖⟩ {(𝑛𝑖, 0)}.

Lemma 4.4.20. All the categorified MOY relations hold for anchored gl𝑁 state spaces.
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Proof. Robert-Wagner show that there is an isomorphism of state spaces

⟨Γ⟩RW =
⨁︁
𝑖

⟨Γ𝑖⟩RW {𝑛𝑖}.

For most of the relations, these isomorphisms are realized explicitly via maps induced by

foams: categorified versions of Figures 2-24a, 2-24b, 2-24c, 2-24d, and 2-24g follow from

the relations [73, Equation (10), Claim 3.35, Equation (12), Equation (13), Claim 3.36],

respectively. The remaining relations are Figures 2-24e and 2-24f. These too can be realized

via foams. As noted in [72, Lemma 4.2], the relation Figure 2-24e is a special case of Figure

2-24g. Figure 2-24f is a combination of specializing Figure 2-24g and applying a cycle move,

and cycle moves can be realized by anchored foams which induce isomorphism of state spaces

by Lemma 4.4.18. The arguments in [73] establishing foam relations are completely local

and apply unchanged in the annular setting when all the local foam relations are disjoint

from ℒ.

Theorem 4.4.21. Let Γ be an annular web. Then ⟨Γ⟩ is a free 𝑅′
𝑁 -module. Its graded rank

can be computed by applying the MOY relations in Figure 2-24 (where the local pictures are

all disjoint from the puncture) and the additional relations shown in (4.101).

× 𝑎 =
∑︁
𝐴⊂[𝑁 ]
#𝐴=𝑎

∏︁
𝑖∈𝐴

𝑎𝑖 × 𝑎 =
∑︁
𝐴⊂[𝑁 ]
#𝐴=𝑎

∏︁
𝑖∈𝐴

𝑎−1
𝑖 (4.101)

Proof. By Lemma 4.4.16, we may assume that Γ has no edges of thickness zero. Suppose

that all edges of Γ are of thickness 1 or 2. In this case the underling graph of Γ, not including

closed loops, is bipartite. By Lemma 4.3.31, Γ contains either a closed loop, bigon, or square

region. Every closed innermost1 loop can be removed by using either the categorified MOY

relation Figure 2-24a or Theorem 4.4.19. There are two types of bigon faces in this case,

which can be removed using the categorified MOY relations Figure 2-24c and Figure 2-24d.

Finally, for this step, consider a square face of Γ. Up to rotation and reflection, there are

1Innermost means that the loop bounds a disk in R2 ∖ Γ (the disk may contain the puncture).
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three types of square faces:

1
2

1

1

2

1

1 1

1
2

1

1

1

1

2 2

2
1

2

1

1

1

2 2

(4.102)

The left square can be simplified using the relation Figure 2-24e. The other two are obtained

from this one by a cycle move, so by Lemma 4.4.18 all square faces can be simplified.

Applying these reductions and removing closed innermost loops as necessary, we reduce ⟨Γ⟩

to a direct sum of empty webs.

The rest of the argument follows as in the proof of [90, Theorem 2.4], keeping in mind

that all closed innermost loops can be removed.

4.4.4 Equivariant annular Khovanov-Rozansky homology

In this section we define the chain complex associated to a colored, oriented annular link

𝐿 with diagram 𝐷, following [24, Definition 3.3].

Definition 4.4.22. To a positive crossing with overstrand colored 𝑖 and understrand colored

𝑗, with 𝑖 ≥ 𝑗 (Figure 4-21a) assign the complex

⟨Γ⟩0 {(𝑐0, 0)} → ⟨Γ1⟩ {(𝑐1, 0)} → · · · → ⟨Γ𝑗⟩ {(𝑐𝑗, 0)},

where Γ0 is in homological degree zero, the grading shifts are given by 𝑐𝑘 = −𝑘 − 𝑗(𝑁 − 𝑗)

(applied only to the quantum grading), the webs Γ𝑘 are shown in Figure 4-21b, and the maps

are induced by a single foam, shown in Figure 4-21c.

If 𝑖 < 𝑗 or the crossing is negative, then the complex assigned to the crossing is obtained

from the one above in the manner described in [24, Definition 3.3].

Finally, the chain complex 𝐶𝑁(𝐷) of an annular link diagram 𝐷 is obtained by replac-

ing each crossing with the corresponding complex and tensoring them together in a planar
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𝑖𝑗

(a) A positive crossing, with 𝑖 ≥ 𝑗.

𝑗
𝑖−𝑗+𝑘

𝑖

𝑖+𝑘

𝑘

𝑗−𝑘

𝑖 𝑗

(b) The web Γ𝑘, 0 ≤ 𝑘 ≤ 𝑗, appearing in
homological degree 𝑘.

Γ𝑘

Γ𝑘+1

1

(c) The foam cobordism Γ𝑘 → Γ𝑘+1 inducing the differential. The shaded facet has thickness 1. Thicknesses
and orientations of facets are determined by Γ𝑘 and Γ𝑘+1.

Figure 4-21

algebra fashion.

The differential is induced by foams which are disjoint from ℒ and hence preserves annular

degree. Chain groups in 𝐶𝑁(𝐷) and homology groups 𝐻𝑁(𝐷) are Z ⊕ Z𝑁 -graded 𝑅′
𝑁 -

modules.

Proposition 4.4.23. If 𝐷′ is an annular link diagram obtained from 𝐷 by a Reidemeister

move, then 𝐶𝑁(𝐷) and 𝐶𝑁(𝐷′) are chain homotopy equivalent. Consequently, the Z⊕ Z𝑁 -

graded homology 𝐻𝑁(𝐷) is an invariant of 𝐿 up to isomorphism.

Proof. Ehrig-Tubbenhauer-Wedrich establish local invariance of colored gl𝑁 homology [24,

Theorem 3.5]. Since Reidemeister moves occur away from the puncture, it follows that

𝐶𝑁(𝐷) and 𝐶𝑁(𝐷′) are chain homotopy equivalent.

Consider colored annular link diagrams 𝐷0 and 𝐷1 where 𝐷1 is obtained from 𝐷0 by a

Reidemeister move or a Morse move (cup, cap, or saddle); saddles must involve strands of the

same color. There is an induced chain map 𝐶𝑁(𝐷0) → 𝐶𝑁(𝐷1), given by the natural foam
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map for handle attachments and otherwise given by chain homotopy equivalences realizing

Reidemeister moves. This map has bidegree (𝑑, 0), where 𝑑 = 0 for Reidemeister moves,

𝑑 = −𝑖(𝑁 − 𝑖) for a cup or a cap involving a circle of color 𝑖, and 𝑑 = 𝑖(𝑁 − 𝑖) for a saddle

involving strands of color 𝑖.

A colored cobordism is a link cobordism 𝑆 ⊂ R3 × 𝐼 in which each component is labeled

by an element of {0, . . . , 𝑁}. The boundary links 𝑆 ∩ R3 × {0} and 𝑆 ∩ R3 × {1} are

then naturally colored. Any colored link cobordism can be represented as a sequence of

the elementary Reidemeister or Morse cobordisms described above. A cobordism between

colored links 𝐿,𝐿′ is a colored cobordism 𝑆 such that the induced coloring on the boundary

of 𝑆 agrees with the coloring of 𝐿 and 𝐿′. These notions extend in a straightforward manner

to cobordisms in A× 𝐼 × 𝐼 between annular links.

Theorem 4.4.24. Let 𝑆 ⊂ A × 𝐼 × 𝐼 be a colored cobordism between annular links 𝐿 and

𝐿′. Write 𝑆 as a composition of elementary cobordisms 𝐷0
𝑆0−→ 𝐷1

𝑆1−→ · · · 𝑆𝑘−1−−−→ 𝐷𝑘, where

𝐷0 and 𝐷𝑘 are diagrams for 𝐿 and 𝐿′. Up to chain homotopy equivalence, the induced chain

map 𝑆𝑘−1 ∘ · · · ∘ 𝑆0 : 𝐶𝑁(𝐷0)→ 𝐶𝑁(𝐷𝑘) is independent of the choice of decomposition of 𝑆

into elementary pieces. Denote the map on homology by 𝑆*. Then the assignment 𝑆 ↦→ 𝑆*

is functorial with respect to composition of cobordisms: 𝑆 ′
*𝑆* ≃ (𝑆 ′𝑆)* for any cobordism

𝑆 ′ : 𝐿′ → 𝐿′′.

Proof. This follows from [24, Theorem 4.5].
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