

	 i	

Abstract

 The Levy model is a neural network model of the CA3 region of the

hippocampus. Previous work with the Levy model has shown success in modeling such

hippocampally dependent tasks as trace conditioning, configural learning, spatial

navigation, and sequence learning. Learning these tasks require network-scale behavior

over simulated time-scales of minutes or longer. Most simulations of the model use

simple McCulloch-Pitts neurons operating at time-scales of 15-30 ms.

 Replacing the McCulloch-Pitts neurons with Izhikevich neurons allows the model

to demonstrate biologically plausible neuron-scale behavior over time-scales of 1 ms and

shorter. However, reproducing the network-scale behavior shown using the simpler

McCulloch-Pitts neurons becomes more complicated due to the increased number of

interacting parameters.

 A genetic algorithm is used to explore these interacting parameters. Since the

fitness function requires running a simulation of the CA3 region of the hippocampus, a

proxy fitness function is used that simulates less than one second of time in the

hippocampal model rather than a complete multi-minute simulation. The full fitness

function only needs to be evaluated for parameter settings that pass a threshold value for

the proxy function. Using a proxy-oriented genetic algorithm, settings were for the

extended Levy model so that it can operate at millisecond time scales, demonstrate

neuron-scale plausible behavior, while still demonstrating trace conditioning acquisition.

	 ii	

Table of Contents

ABSTRACT ...I	

TABLE	 OF	 CONTENTS... II	

LIST	 OF	 FIGURES... IV	

LIST	 OF	 TABLES ...VII	

LIST	 OF	 SYMBOLS..VIII	

OVERVIEW..1	

NEURAL	 NETWORKS	 AND	 THE	 LEVY	 MODEL	 OF	 THE	 HIPPOCAMPUS..1	

The	 Levy	 Model	 of	 the	 Hippocampus..3	

Demonstrating	 that	 the	 Levy	 Model	 Computes	 Conditional	 Probabilities7	

The	 Izhikevich	 Neuron...12	

Gamma	 and	 Theta	 Oscillations..13	

Trace	 Conditioning..14	

EXTENDING	 THE	 LEVY	 MODEL	 TO	 THE	 1	 MS	 TIME-‐SCALE ...18	

GENETIC	 ALGORITHMS ..21	

METHODOLOGIES ... 22	

MEASURING	 GAMMA	 OSCILLATIONS..22	

MEASURING	 THETA	 MODULATED	 GAMMA	 OSCILLATIONS...23	

GENETIC	 ALGORITHM	 EXPLORATION ..24	

Primary	 Fitness	 Function	 (F1) ..30	

Short-Circuit	 Fitness	 Function	 (F3) ..31	

Determining	 the	 existence	 of	 parameter	 settings	 for	 acquiring	 trace	 conditioning............31	

	 iii	

Proxy	 effectiveness ..32	

Evaluation	 efficiency ..32	

Trajectory	 efficiency ...33	

NAÏVE	 EXPLORATION ...33	

RESULTS ... 35	

IMPROVEMENT	 IN	 BIOLOGICAL	 PLAUSIBILITY ...35	

GAMMA	 OSCILLATIONS..36	

THETA	 MODULATED	 GAMMA	 OSCILLATIONS..42	

EXISTENCE	 OF	 SETTINGS	 FOR	 TRACE	 CONDITIONING	 ACQUISITION ..45	

PROXY	 EFFECTIVENESS..47	

EVALUATION	 EFFICIENCY..51	

TRAJECTORY	 EFFICIENCY ..56	

CONCLUSIONS... 57	

CONTRIBUTIONS ...57	

Extension	 to	 Levy	 Model	 and	 Existence	 Proof	 of	 Viable	 Parameters ..57	

Effective	 and	 Efficient	 Technique	 for	 Discovery...58	

FUTURE	 WORK..60	

APPENDIX .. 67	

ALTERNATE	 RANDOM	 SEEDS	 FOR	 TRACE	 CONDITIONING	 EXAMPLE..67	

ALL	 GENERATIONS	 OF	 PROXY	 COMPUTATIONAL	 SPEED	 UP...74	

SAMPLE	 TRACE	 CONDITIONING	 SCRIPT...75	

	 iv	

List of Figures

Figure	 1.	 Feedforward	 neural	 network.. 1	

Figure	 2.	 Sparsely	 connected	 neural	 network .. 2	

Figure	 3.	 Fully	 connected	 neural	 network.. 2	

Figure	 4:	 Number	 of	 neurons	 expected	 to	 fire	 per	 millisecond	 over	 time	 for	 different	

neuron	 categories	 and	 different	 trials ... 17	

Figure	 5.	 Periodic	 function	 used	 to	 modulate	 input .. 24	

Figure	 6.	 Membrane	 potential	 of	 a	 neuron	 during	 the	 first	 training	 trial	 of	 trace	

conditioning. ... 35	

Figure	 7.	 External	 input.	 A	 sequence	 of	 32	 patterns	 of	 externally	 activated	 neurons	 is	

presented	 repeatedly	 to	 a	 simulated	 neural	 network. ... 37	

Figure	 8.	 A	 gamma	 oscillation	 appears	 in	 the	 macroscopic	 activity	 of	 the	 network	

simulation	 is	 obtained .. 38	

Figure	 9.	 Power	 spectrum	 for	 simulations	 with	 an	 input	 of	 a	 repeating	 sequence	

(top),	 with	 random	 input	 (middle),	 and	 with	 no	 external	 input	 (bottom) 39	

Figure	 10.	 Power	 spectrum	 for	 simulations	 with	 an	 average	 firing	 rate	 of	 2	 Hz	 (top),	

4	 Hz	 (middle),	 and	 8	 Hz	 (bottom).. 40	

Figure	 11.	 (A)	 A	 reordered	 firing	 diagram	 for	 a	 simulation	 run	 at	 2	 Hz.	 (B)	 A	

reordered	 firing	 diagram	 for	 a	 simulation	 run	 at	 8	 Hz.. 	 41	

Figure	 12.	 Power	 spectrum	 of	 a	 simulation	 in	 the	 absence	 of	 any	 external	 input	

demonstrating	 emergent	 gamma	 oscillations.. 42	

	 v	

Figure	 13.	 Power	 spectrum	 in	 a	 simulation	 without	 external	 input	 after	 training	 on	

theta-‐modulated	 input.. 43	

Figure	 14.	 Power	 spectrum	 for	 simulations	 in	 the	 presence	 of	 a	 theta-‐modulated	

input.. 44	

Figure	 15.	 Trace	 conditioning	 acquisition. .. 45	

Figure	 16.	 Across	 trial	 activity	 for	 an	 individual	 simulation	 that	 demonstrated	 trace	

conditioning	 acquisition. ... 46	

Figure	 17.	 Trace	 conditioning	 acquisition	 for	 an	 individual	 using	 parameter	 settings	

discovered	 during	 a	 genetic	 algorithm	 experiment,	 but	 with	 a	 different	 random	

seed	 than	 was	 used	 during	 that	 experiment... 47	

Figure	 18.	 In	 a	 genetic	 algorithm	 using	 the	 short	 circuit	 fitness	 function,	 false	

positives	 as	 a	 function	 of	 the	 proxy	 threshold	 value,	 τ... 48	

Figure	 19.	 In	 a	 genetic	 algorithm	 using	 the	 short	 circuit	 fitness	 function,	 false	

negatives	 as	 a	 function	 of	 the	 proxy	 threshold	 value,	 τ.. 49	

Figure	 20.	 In	 a	 genetic	 algorithm	 using	 the	 short	 circuit	 fitness	 function,	 false	

negatives	 (left)	 and	 false	 positives	 (right)	 as	 a	 function	 of	 the	 proxy	 value's	

relative	 position... 49	

Figure	 21.	 In	 a	 genetic	 algorithm	 using	 only	 the	 primary	 fitness	 function,	 false	

positives	 as	 a	 function	 of	 the	 proxy	 threshold	 value,	 τ... 50	

Figure	 22.	 Speedup	 of	 simulation	 calculating	 only	 proxy	 fitness	 function	 over	

simulation	 calculating	 primary	 fitness	 function	 for	 individuals	 in	 generation	 for	

genetic	 algorithms	 using	 the	 short	 circuit	 fitness	 function .. 51	

	 vi	

Figure	 23.	 Speedup	 of	 simulation	 calculating	 only	 proxy	 fitness	 function	 over	

simulation	 calculating	 primary	 fitness	 function	 for	 individuals	 in	 generation	 for	

genetic	 algorithms	 using	 only	 the	 primary	 fitness	 function. 53	

Figure	 24.	 In	 a	 genetic	 algorithm	 using	 the	 short	 circuit	 fitness	 function,	 the	 fraction	

of	 simulations	 that	 did	 not	 require	 evaluating	 the	 primary	 fitness	 function 54	

Figure	 25.	 In	 a	 genetic	 algorithm	 using	 only	 the	 primary	 fitness	 function,	 the	 fraction	

of	 simulations	 that	 did	 not	 require	 evaluating	 the	 primary	 fitness	 function 55	

	 Figure	 26.	 In	 a	 genetic	 algorithm	 using	 the	 short	 circuit	 fitness	 function,	 the	 fraction	

of	 simulations	 that	 did	 not	 require	 evaluating	 the	 primary	 fitness	 function 56	

	 vii	

List of Tables

Table	 1.	 Properties	 of	 the	 Levy	 minimal	 model	 of	 the	 CA3	 region	 of	 the	

hippocampus.. 4	

Table 2. Typical formulae governing the Levy model.. 6	

Table 3. Some terms used in describing time in the Levy model. .. 7	

Table	 4.	 Extension	 of	 the	 Levy	 Model	 to	 the	 1	 ms	 timescale ... 20	

Table 5. Important behaviors in trace conditioning .. 26	

Table	 6.	 List	 of	 evaluating	 equations	 for	 a	 trace	 conditioning	 episode........................... 27	

Table	 7.	 A	 summary	 of	 parameters	 describing	 the	 genetic	 algorithm	 used	 in	 this	

research... 28	

Table	 8.	 Fitness	 functions	 and	 their	 mathematical	 description ... 29	

	 viii	

List of Symbols

€

nt ,

€

np Number of tone (t) or puff (p) neurons

a, b, c, d, g Izhikevich parameter (real valued)

A(t1, t2) Average activity between times t1 and t2

ad Desired activity fraction

aij Axonal delay from neuron i to neuron j (integer)

B1, B2, B3 Behavior

c Connectivity percent

cij Connectivity (binary 0,1)

D(t1, t2) Squared deviation from desired activity between times t1 and t2

F1, F2, F3 Fitness function

f Synaptic failure rate

IFF, IFB Interneuron activation (real valued)

Ij Somatic current injection (real valued)

K0, KFF, KFB Inhibition constants

kcollapse, kpreblink,

kblink, kbridge

Constants describing desirability of puff neuron activity during pre-

defined intervals

M1, M2, M3, … Measure

me Number of externally activated neurons

n Number of neurons

N(t1, t2, s) Number of neurons from set s firing between times t1 and t2

nt, np, nA Set of tone (t), puff (p), or all (A) neurons

	 ix	

P(t1, t2) Fraction of activity due to puff neurons between times t1 and t2

pa Percentage of neurons firing per second

pe Percentage of activity due to external activation

thw Dendritic filter half width (integer)

tI Axonal delay from interneuron to pyramidal neuron (real valued)

uj Secondary Izhikevich somatic variable (real valued)

vj Somatic voltage (primary Izhikevich somatic variable, real valued)

wij Synaptic weight from neuron i to neuron j (real valued)

xi External activation of neuron i (binary 0, 1)

yi Dendritic input (real valued)

zi Axonal output (binary 0,1)

α NMDA off-rate decay (real valued)

Δt Time step (real valued)

Δwij Change in synaptic weight (real valued)

λ Inhibitory decay rate (real valued)

µ Synaptic modification rate (real valued)

σd Desired standard deviation of activity

σs Sample standard deviation of activity

τon NMDA on-rate time constant (real valued)

Φ() Synaptic failure channel (binary 0,1 output)

Ψi The time when neuron i last fired (real valued)

	 1	

Overview

Neural Networks and the Levy Model of the Hippocampus

The term “artificial neural network” is used to describe a variety of systems of simulated

neurons that differ in both topology and detail of simulated neurons. What these systems

have in common is multiple simulated neurons with some of the neurons receiving

information from others.

 Three broad types of topology include feed-forward (Figure 1), fully connected

(Figure 2), and sparsely connected (Figure 3). The hippocampus has a sparsely connected

topology, so it is used for this research.

Figure	 1.	 Feedforward	 neural	 network.	 Neurons	 can	 be	 ordered	 such	 that	 signals	 always	 travel	 from	

top	 to	 bottom.	 No	 cycles	 exist.	

	 2	

 Simulated neurons vary from the trivially simple to incredibly complex. Among

the simplest simulated neuron is the McCulloch-Pitts neuron. McCulloch-Pitts neurons

take input from other neurons, multiply them by a weight and sum those weighted values.

The neuron fires only if that sum exceeds a specific threshold. [1] There is no time-scale

or memory built in to McCulloch-Pitts neurons, although for topologies analogous to

biological neural networks a time-scale can be inferred from the mean activity of the

Figure	 2.	 Fully	 connected	 neural	 network.	 Every	 neuron	 is	 connected	 to	 every	 other	 neuron.	 The	

number	 of	 connections	 necessarily	 scales	 as	 n2.	

Figure	 3.	 Sparsely	 connected	 neural	 network.	 Each	 neuron	 is	 connected	 to	 multiple	 other	 neurons,	

and	 cycles	 will	 exist.	 In	 this	 example,	 each	 neuron	 is	 connected	 to	 20%	 of	 the	 neurons	 in	 the	 network.	

If	 the	 relationship	 of	 being	 connected	 to	 a	 fixed	 percentage	 of	 other	 neurons	 holds,	 then	 the	 number	

of	 connections	 would	 scale	 as	 n2.	 Alternatively,	 each	 neuron	 might	 be	 connected	 to	 a	 fixed	 number	 of	

other	 neurons,	 in	 which	 case	 the	 number	 of	 connections	 scales	 linearly	 with	 n.	

	

	 3	

neurons in the network.

 Slightly more complex is a leaky integrate-and-fire neuron. In integrate-and-fire

neurons a potential is maintained from one time-step to the next, with the weighted sum

of the neuron’s inputs for each time-step being added to that potential. If the potential

exceeds a threshold, then the neuron fires, and the potential is reset. For leaky integrate-

and-fire, the potential is reduced by a fractional amount from one time-step to the next.

How much this potential reduces over a time-step can be used to infer a time-scale by

comparison to a biological neuron.

 Very complex simulated neurons may include details such as chemical diffusion,

ion flow, dendritic structure, and more. A moderately complex simulated neuron model is

the Hodgkin-Huxley model, which simulates action potentials and their proposed ionic

mechanisms. [2] Two simplified versions of this model that capture most of its behavior

while requiring fewer computations is the FitzHugh-Nagumo model [3, 4] and the

Izhikevich model [5]. The Izhikevich neuron is of special interest as it is “as biologically

plausible as the Hodgkin-Huxley model” [5], but requires only about 1% as much

processor time (13 FLOPs per neuron per time step versus about 1200 FLOPS per neuron

per time step). [6]

The Levy Model of the Hippocampus

The Levy model of the hippocampus is not a neural network model per se. It is a

statement of hippocampal purpose, a description of hippocampal architecture, a

prescription for providing inputs and interpreting outputs (Table 1), and a set of formulae

governing how neurons respond to their inputs (Table 2)[1]. More specifically, the model

holds that the hippocampus is a sparsely connected sequence learning device that gathers

	 4	

and randomly mixes, or recodes, inputs from sensory cortices. From the Levy model arise

a suite of neural network models that have these features in common.

1. Neurons are thresholded—when inputs (integrated or instantaneous) exceed a

threshold, they produce a spike

2. Neurons produce binary output—a spike when threshold is exceeded, and no

spike when it threshold has not been exceeded

3. The majority of connections are excitatory

4. Synapses use a Hebbian learning rule to strengthen connections when the pre-

synaptic neuron fires shortly before the post-synaptic neuron, or to weaken

connections when it does not

5. Recurrent connectivity is sparse and random

6. The majority of neural inputs are recurrent

7. Randomization processes exist

8. Inhibitory interneurons approximate control activity

9. Activity is low, but not too low

Table	 1.	 Properties	 of	 the	 Levy	 minimal	 model	 of	 the	 CA3	 region	 of	 the	 hippocampus.

 Typically the Levy model uses McCulloch-Pitts neurons, with the time step of the

simulations between 10 and 30 ms. In this scenario, the time step determines both the

updating of the internal excitation and the axonal communication lag. For simulations

using integrate-and-fire neurons (or Izhikevich neurons, to be discussed later), the time

step of the simulations can be taken down below 10 ms, and axonal lag can be modeled

more explicitly.

 Although the neural network model primarily models the CA3 region of the

	 5	

hippocampus, the Levy model has the external inputs to the neural network model

representing a mixture of the entorhinal cortex (EC) and dentate gyrus (DG) inputs, and

the outputs of the model are understood to be interpreted by the CA1 region of the

hippocampus. The neural network model primarily models the pyramidal (excitatory)

neurons in the CA3 region, along with two interneurons (inhibitory neurons), one for

modulating the feed-forward inhibition (i.e., the DC/EG inputs), and one for modulating

the feed-back inhibition. Inhibition is implemented via division rather than subtraction,

thus inputs are always non-negative.

 The topology of the CA3 neural network is modeled as a randomly and sparsely

connected network. Each neuron receives inputs from approximately n•c other neurons in

the network and similarly provides outputs to approximately n•c other neurons in the

network, where n is the number of neurons in the network and c is the connectivity. For

networks on the order 100,000 neurons or fewer, c is usually set to 0.1.

 Synaptic modification is Hebbian: “neurons that fire together, wire together.” The

last equation in Table 1 gives the most common form of synaptic modification, but

variants of this rule replace the

€

z j t −1() with

€

ˆ z j t −1(), where the latter takes into account

activity beyond just the last time step [7]. Simulations using the Levy model use synaptic

modification during training trials, but not during testing trials. (See also Table 3.)

 Synaptic failures are included in the model via the synaptic failure channel (Φ).

The synaptic failure channel is a unary function that takes a binary argument (zero or

one) and produces a binary output. If the input value is zero, then the output is also zero.

However, if the input value is one, then the output value has a probability of f of being

zero and a probability of (1 - f) of being one. Thus, the synaptic failure channel can be

	 6	

considered a Bernoulli random variable (with success probability of 1 - f) multiplied by

its input. Including synaptic failures in the model improves performance for larger

networks with lower activity levels. [8]

 Another important feature of the Levy model is activity control. The equations in

Table 1 give one example of how activity control is maintained through shunting,

feedback, and feed-forward inhibition. A simpler method, competitive activity control,

fires neurons with the highest somato-dendritic excitation. [9]

Somato-dendritic excitation/inhibition:

(Eq. 1)

Output:

(Eq. 2)

Synaptic modification:

(Eq. 3)

Table 2. Typical formulae governing the Levy model. wij is the weight from neuron i to j; cij is a {0,1}

value defining whether there is a connection from neuron i to j;Φ is a {0, 1} synaptic failure channel

(see text for more details); zi is a {0, 1} value based on whether neuron i fires, nA is the set of all

neurons, K0 is a resting shunting inhibition constant; KFF is a feed-forward inhibition constant; xi is a

{0,1} value based on whether neuron i was driven externally; KFB is a feedback inhibition constant;

and µ is the synaptic modification rate.[1] Variants of the model might use different rules for

synaptic modification [7] or for determining which neurons fire[9].

€

yj t() =
wij

i∈nA
∑ cijΦ zi t −1()()

wij
i∈nA
∑ cijΦ zi t −1()()+ K0 + KFF xi

i∈nA
∑ t −1()+ KFB zi

i∈nA
∑ t −1()

€

zj t() = 1 if yj t() ≥1/ 2∨ xj t() =1

0 otherwise

⎧
⎨
⎪

⎩ ⎪

€

Δwij t() =µzj t() zi t −1() − wij t −1()()

	 7	

	
Term Definition

Time step

(Δt)

The smallest unit of time in a neural network model that does not use continuous

time.

Interval Time frame (composed of multiple time steps) over which a stimulus (or lack of

stimulus) is active.

Trial A trial is composed of several time steps (anywhere from 3 to a thousand).

Training trial Trial during which a sequence of external neuronal patterns are presented to the

simulated hippocampus and synaptic modification occurs.

Testing trial Trial during which a portion of a training sequence is presented to the simulated

hippocampus and measurements are made to determine how well the correct

sequence is recalled. Synaptic modification is disabled during testing.

Episode Multiple training trials and one or more testing trials usually representing an

experiment performed on a lab animal.

Table 3. Some terms used in describing time in the Levy model.

Demonstrating that the Levy Model Computes Conditional Probabilities

In understanding how the Levy model provides sequence prediction functionality, I

demonstrate that the equations in table 1 can be shown to compute conditional

probabilities. In the conditional probability based model for the hippocampus, the CA3

region generates the probability that a particular event will occur in the immediate future,

given that a particular sequence of events has just occurred. The firing pattern of the CA3

encodes this probability, based on external input from the entorhinal cortex and dentate

	 8	

gyrus, as well as recurrent input from within the CA3 itself, which provide information

regarding previous events. One method of decoding a CA3 forecast [1] assumes that a

CA3 pyramidal neuron that fires when an event occurs also fires as a signal that the same

event is expected to occur.

 Mathematically, the necessary forecasting calculation for the idealized CA3

neuron is

€

P Z j t() =1Z t − Δt() = z() , where Zj(t) is the contribution of neuron j to

determining whether or not an event is expected to occur, and

€

Z t − Δt() is recurrent input

to the CA3. For this to be a forecasting calculation, the event

€

Z t − Δt() = z must precede

the event Zj(t) =1. We will use this time ordering of events for the remainder of this

discussion, so the implicit term t will be dropped from our equations.

 For a single pyramidal neuron in the mammalian CA3, the number of afferent

neurons in

€

Z is on the order of 104, so even if the individual components of

€

Z are

constrained to be binary, there are 210,000 possible values that

€

Z can attain. Therefore,

most values of

€

Z will never be experienced, so

€

P Z j =1Z = z() will not be calculable

simply by examining prior history. However, according to Bayes’ Theorem,

(Eq. 4)

This can be combined with an assumption of approximate conditional independence:

(Eq. 5)

where

€

P* Z = z Z j =1() indicates the approximation that the components of

€

Z are

independent of one another given the output of neuron j.

€

P Z j =1Z = z() =
P Z = z Z j =1()P Z j =1()

P Z = z Z j = 0()P Z j = 0() + P Z = z Z j =1()P Z j =1()

€

P* Z = z Z j =1() = P Zi = zi Z j =1()
i=1

n

∏

	 9	

 The individual probabilities

€

P Zi = zi Z j =1() can be estimated by the observed

average value of Zi, prior to neuron j firing (that is, prior by Δt) since the values it can

take on are only zero and one. Specifically,

(Eq. 6)

where

(Eq. 7)

It is important to note that there is no direct relationship between statistics

€

ˆ Z ij 1() and

€

ˆ Z ij 0().

Similarly,

€

P Z j =1() = ˆ Z j where

€

ˆ Z j =
def

E Z j[] . Since the zi terms are binary, the preceding

equations can be combined as:

(Eq. 8)

This equation now similar to Eq. 1, except that it uses products instead of summations.

Logarithmic manipulation changes the products into summations.

Dividing the numerator into the denominator gives:

(Eq. 9)

Replacing the probability calculation with an odds calculation yields:

(Eq. 10)

€

P Zi =1Z j =1() = ˆ Z ij 1(), P Zi = 0 Z j =1() =1− ˆ Z ij 1(),

P Zi =1Z j = 0() = ˆ Z ij 0(), and P Zi = 0 Z j = 0() =1− ˆ Z ij 0(),

€

ˆ Z ij 1() =
def

E Zi Z j =1[] and ˆ Z ij 0() =
def

E Zi Z j = 0[] .

€

€

P* Z j =1Z = z() =
ˆ Z j Zij 1()

zi 1− ˆ Z ij 1()()i=1

n
∏

1−zi

ˆ Z j Zij 1()
zi 1− ˆ Z ij 1()()i=1

n
∏

1−zi

+ 1− ˆ Z j() Zij 0()
zi 1− ˆ Z ij 0()()i=1

n
∏

1−zi
.

€

P* Z j =1Z = z() = 1+
1− ˆ Z j()

ˆ Z j

Zij 0()
zi 1− ˆ Z ij 0()()

1−zi

Zij 1()
zi 1− ˆ Z ij 1()()

1−zii=1

n
∏

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

−1

.

€

P* Z j =1

Z = z ()

P* Z j = 0

Z = z ()

=
ˆ Z j

1− ˆ Z j

1− ˆ Z ij 1()

1− ˆ Z ij 0()

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

ˆ Z ij 1()
zi 1− ˆ Z ij 0()()

ˆ Z ij 0()
zi 1− ˆ Z ij 1()()

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ i=1

n
∏

zi

	 10	

To satisfy its role of calculating conditional probability, the neuron fires if the odds

exceed some threshold (φ), where φ=1 is a logical but non-mandatory choice. This

requirement can be written as:

(Eq. 11)

Taking the natural logarithm of both sides and using the substitutions

€

vij =
def

ln ˆ Z ij 1() 1− ˆ Z ij 0()() ˆ Z ij 0() 1− ˆ Z ij 1()()(),

€

K0 =
def
lnϕ ,

€

K1 j() =
def

ln 1− ˆ Z j() ˆ Z j() , and

€

K2 j() =
def

ln 1− ˆ Z ij 0()() 1− ˆ Z ij 1()()()i=1

n
∑ , simplifies Eq. 11 to:

(Eq. 12)

which can trivially be rewritten as:

(Eq. 13)

where the explicit dependence on time has been reintroduced for clarity. Equation 13 now

closely resembles Eq. 1 and 2.

 Therefore, the only information required for a neuron to create reasonable

forecasts of the future are the state of its afferent neurons (zi(t−Δt), transmitted through

synapses), the expectation of the neuron itself firing (

€

ˆ Z j) in a computational interval, the

expectation of its afferent neurons firing when the neuron fires (

€

ˆ Z ij 1()), and the

€

ˆ Z j
1− ˆ Z j

1− ˆ Z ij 1()

1− ˆ Z ij 0()

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

ˆ Z ij 1() 1− ˆ Z ij 0()()
ˆ Z ij 0() 1− ˆ Z ij 1()()

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

z j

i=1

n
∏ >ϕ.

€

vijzi > K0 +K1 j() +K2 j()
i=1

n

∑ ,

€

2 vijzi > vijzi
i=1

n

∑ +K0 +K1 j() +K2 j()
i=1

n

∑ , or

yj t() =
def

vijzi t − Δt()
i=1

n

∑

vijzi t − Δt()
i=1

n

∑ +K0 t − Δt() +K1 j() t − Δt() +K2 j() t − Δt()
>

1
2

,

	 11	

expectation of its afferent neurons firing when the neuron is quiescent . Mechanisms exist

for the neuron to generate approximations for each piece of necessary information.

 A neuron's post-synaptic excitability encodes the expectation of its own firing.

That is, lower expectation of firing leads to lower excitability. This naturally arises out of

the role that K1(j) plays in Eq. (13). Specifically, decreasing the value of

€

ˆ Z j increases the

value of K1(j), which decreases the value of yj.

 The expectation of an afferent neuron recently firing given that this neuron is

firing (

€

ˆ Z ij 1()) is the statistical correlate of the post-synaptic modification rule described in

Eq. 3 and elsewhere. This post-synaptic modification rule only modifies the synaptic

weights when the post-synaptic neuron (Zj) fires. When the post-synaptic neuron fires,

the weight is strengthened if the pre-synaptic (afferent) neuron fired in the preceding

interval, and weakened if the pre-synaptic neuron was quiescent. Furthermore, Levy et al.

[10], demonstrate that the modification rule:

(Eq. 14)

under assumptions of stationarity and ergodicity leads to

€

wij → ˆ Z ij 1() as

€

t →∞ .

 Similarly, the expectation of an afferent neuron recently firing when this neuron is

quiescent (

€

ˆ Z ij 0()) is the equivalent of habituation. The synapse becomes habituated to

afferent input if it is not followed by a post-synaptic spike, and this habituation decays in

the absence of afferent input [10]. The synaptic modification equation of this habituation-

like process is:

€

Δwij t() = µz j t() zi t − Δt() − wij t()()

	 12	

(Eq. 15)

which leads to

€

wij
− → ˆ Z ij 0() under the same assumptions as those made for Eq. 14.

The Izhikevich Neuron

The Izhikevich neuron model is a variant of the FitzHugh-Nagumo model, altered to

match the behavior of many different types of neurons though the adjustment of six

parameters, several of which are tightly coupled. The Izhikevich equations are:

(Eq. 16)

In the paper where he introduces his new neuron model [5], he uses f=5 and g=140,

which were obtained by fitting the membrane voltage dynamics to that of a cortical

neuron, but when modeling his integrator neuron (which has strong similarities to the

pyramidal neuron in the hippocampus), he uses f=4.1 and g=108. Unless specified

otherwise, the latter values are the values used in the current research.

 What is most significant about the Izhikevich neuron is that it is as biologically

plausible as the Hodgkin-Huxley model, while being approximately as computationally

efficient as an integrate-and-fire model. [5] In the Izhikevich equations, v corresponds to

the membrane potential of the neuron (which have been recorded for many different

types of neurons), and u acts as a membrane recovery variable. This membrane recovery

variable does not correspond to a single measurable phenomenon but is intended to

represent the activation of potassium ionic currents and the inactivation of sodium ionic

currents. [5]

€

Δwij
− t() = µ 1− z j t()() zi t − Δt() − wij

− t()()

€

dv
dt

= 0.04v 2 + fv + g − u + I, du
dt

= a bv − u()

if v ≥ 30 mV, then
v = c

u = u + d
⎧
⎨
⎩

	 13	

Gamma and Theta Oscillations

With the introduction of representative neuron spiking behavior to the Levy model, the

study of gamma and theta oscillations as they relate to that model becomes possible.

 Gamma oscillations are cycles in neural activity that occur at intervals of 25-100

Hz [11], and researchers have investigated their connection to consciousness [12, 13].

The magnitude of gamma oscillations are typically much smaller than the magnitude of

theta oscillations.

 Gamma oscillations are present in a sparsely connected random neural network

containing only 1,000 neurons (800 excitatory and 200 inhibitory), when the excitatory

neurons mimic cortical neurons. These gamma oscillations are an emergent property of

his neural network, in that there is no component driving the neurons with a gamma-like

frequency [5]. A research question is whether gamma oscillations are also present in my

modified version of the Levy model that uses the Izhikevich integrator neuron.

 Theta oscillations in the hippocampus are cycles in neural activity that occur at

intervals of 4-10 Hz [14]. They have been observed to occur in rats while active [15] and

in humans during REM sleep and from the transition from sleep to waking [16].

	 14	

Trace Conditioning

In humans, trace conditioning experiments involve sounding a tone, a brief delay, and

then a mild electric shock. Human subjects are said to have acquired trace conditioning

when a galvanic skin response is detectable prior to the delivery of the shock. In rabbits,

trace conditioning experiments involve a tone, a brief delay, and then a puff of air to the

eye. Rabbits are said to have acquired trace conditioning when they blink immediately

prior to the air puff. (More precisely, the rabbit closes its nictitating membrane, which is

essentially a translucent inner eyelid and serves the same purpose as a blink would for

humans.) More generally, trace conditioning involves the pairing of a conditioned

stimulus (tone) with an unconditioned stimulus (air puff), resulting in a response (blink),

with the two stimuli separated by a trace interval (on the order of 500 ms). Trace

conditioning is acquired when a response (blink) begins just before the end of the trace

interval (regardless of the occurrence of the unconditioned stimulus). Technically, the

“blink” due to the unconditioned stimulus is known as an unconditioned response and the

blink due to the conditioned stimulus is known as a conditioned response.

 In neural network computer simulations, trace conditioning is modeled by

identifying a subset of all hippocampally modeled neurons (nA) to be tone neurons (nt)

and another subset to be puff neurons (np) (approximately 2-5% of all neurons make up

each subset). During the tone interval (the first 150 ms of a trial), the tone neurons are

quasi-randomly activated such that their activation accounts for 20-50% of the overall

network activity (ad|nA|). Thus, during the tone interval the tone neurons fire at about 10

times the average firing rate. Similarly, during the puff interval (the last 100 ms of each

trial), the puff neurons fire at about 10 times the average firing rate. After 200 training

	 15	

trials, a testing trial is initiated during which only the tone neurons are activated

externally (and only during the tone interval), and the resultant activity is recorded to

determine the fraction of puff neurons that are activated at relevant time intervals as

defined in Table 3. The normal functioning of the network involves synaptic

modification; however, synaptic modification does not occur during the testing trial.

 Among the hippocampally dependent tasks the Levy model has been successful

with, trace conditioning is the only one with a time component to its measure of success.

[7] However, although the original Levy model (Table 1) has been used at timescales

below 10 ms, it has demonstrated success with trace conditioning only at scales longer

than 20 ms [1].

 An episode exhibits the target behavior (B1) when the activity of the puff neurons

during the blink interval of a test trial is more than one third the external activation

percentage of the puff neurons during the puff interval of a training trial. For example, in

Figure 1c the activity of the puff neurons averaged over the blink is more than half the

external activation percentage during the puff interval. Two forms of near-target behavior

are known as a bridge, when the puff neurons are activated at a reasonably high level, but

not until the puff interval; and a collapse, when the puff neurons are activated at a

reasonably high level, but too early. Poor performance is when they are never sufficiently

activated.

 In addition to the number of puff neurons that are activated during particular

intervals, it is also instructive to examine the total number of neurons that fire at each

time step. The average number of times all neurons fire per simulated second is measured

in Hertz (Hz), with the desired value varying from 0.5 Hz to 2.5 Hz. The instantaneous

	 16	

firing rate is found by taking the number of neurons firing in a time-step divided by the

total number of neurons times the number of time-steps in a second. Good activity (B3) is

activity that stays close to the desired activity rate. A summary of these behaviors can be

found in Table 5.

 Several factors determine the computational requirements of an episode, but the

primary factors are the number of neurons in the model (|nA|), the fraction of neurons

firing in a simulated second (pa), the number of simulated seconds in a trial (tt), the

number of trials in an episode (mt), and the connectivity of the network (c). Of these

factors, tt and mt are defined by the task being studied (trace conditioning here). The

remaining factors are constrained by the biology being simulated. For most animals, the

local connectivity of the hippocampus is approximately 10%, and the average firing rate

for each neuron is about 0.5 to 2.5 Hz, yielding c ≈ 0.1 and pa ≈ 50 to 250%.

 The number of neurons, |nA|, varies significantly from one species to another. In

mammals typically used in hippocampal studies, the number of neurons in the CA3

region of the hippocampus varies from about 150 to 220 thousand in the mouse [17] to

about 2 to 3 million for humans [18], suggesting a lower bound for |nA| of 1.5 x 105. Most

calculations in the model depend linearly on the number of active neurons (|nA|pattmt) in

an episode, with the dominant computational requirements being from those calculations

that depend linearly on the number of active synapses (|nA|2cpattmt), where the additional

factor of |nA|c defines the number of synapse per neuron. Thus, simulating the entire CA3

region of the hippocampus is presently infeasible when running thousands of episodes.

	 17	

 The neural network model being studied here has 2,048 neurons (using fewer

neurons results in too little recurrent activity) with each neuron connected to 205 other

neurons (c ≈ 0.1). Of the 2,048 neurons, between 41 and 102 (depending on the value of

Figure	 2:	 Number	 of	 neurons	 expected	 to	 fire	 per	 millisecond	 over	 time	 for	 different	 neuron	

categories	 and	 different	 trials.	 The	 top	 graph	 (a)	 represents	 the	 number	 of	 tone	 neurons	 expected	 to	

fire	 on	 the	 first	 training	 trial.	 The	 middle	 graph	 (b)	 represents	 the	 number	 of	 puff	 neurons	 expected	

to	 fire	 on	 the	 first	 training	 trial.	 The	 last	 graph	 (c)	 represents	 the	 number	 of	 puff	 neurons	 expected	 to	

fire	 on	 the	 last	 training	 trial	 after	 trace	 conditioning	 has	 been	 acquired.	

	 18	

pe – see Table 6) are selected as the tone neurons and a disjoint set of neurons of the same

size are selected as the puff neurons.

Extending the Levy Model to the 1 ms Time-Scale

 Several attempts have been made to extend the Levy model below 15 ms. These

extensions begin to break down, however, as the time scale approaches 1 ms [16D 19].

The first problem one sees in extending the model to shorter time scales is that to capture

the biological reality of neurons firing approximately only every 500 ms (on average),

there are too few neurons firing in a single time-step to provide reliable inputs for the

next time-step. For example, with 2,000 neurons with an average firing rate of 2.5 Hz in a

simulation running at 1 ms, only 5 neurons are firing per time-step on average. With each

neuron receiving input from only 10% of the other neurons, there are many times when

no neuron would receive input from more than one other neuron, but if inhibition is

lowered enough to allow a single input to cause another neuron to fire, there would be

insufficient inhibition to prevent run away activity.

 Early approaches to solve this problem relied upon leaky integrate-and-fire

neurons so neurons would be able to integrate input over several time-steps. This

approach worked in simulations requiring no concrete representation of time, but in

simulations where time was an important component such as with trace conditioning

(discussed later), time was not adequately modeled. Specifically, the learnable trace

interval in the trace conditioning task did not agree with experimental results.

 As a means of addressing this issue, I replaced the leaky integrate-and-fire neuron

used in previous attempts with a neuronal model created by Izhikevich. (See

http://github.com/BenHocking/NeuroJet for the source code for the neural network.) The

	 19	

Izhikevich neuron is “as biologically plausible as the Hodgkin-Huxley model”[5], but

requires only about 1% as much processor time (13 FLOPs per neuron per time step

versus about 1200 FLOPS per neuron per time step[6]). Adding the Izhikevich neuron

requires six (6) new parameters. However, the Izhikevich model of the neuron is really

more a model of the soma, as it provides no details about synaptic, axonal, or dendritic

functionality. The additional synaptic details include the NMDA-R on-rate and off-rate

time constants (2 new parameters). The additional axonal details include the axonal delay

from pyramidal neuron (excitatory) to interneuron (inhibitory) as well as the lower and

upper bounds for the axonal delay from pyramidal to pyramidal neuron (3 new

parameters). A dendritic filter was added which could require a large number of free

parameters, but in practice only added one (1) new parameter: dendritic filter width.

Furthermore, the interneuron model was updated, but not to use Izhikevich neurons, but

rather with two (2) new parameters for excitation decay and for pyramidal-interneuron

synaptic modification. All combined this resulted in 14 new parameters (while one

parameter, α, is deprecated). Discovering viable settings for these parameters has

demonstrated that the Levy model with these extensions is sufficient to operate

neurophysiologically at timescales as short as 1 ms [20, 21]. The new equations are

shown in Table 4.

	

	 20	

Synaptic current injection:

Dendritic current injection:	

Somatic current injection:	

Somatic differential equations:

Somatic firing:

€

v j t()= c;u j t()= u j t − Δt()+d;z j t()=1 if v j t()> 30∨ x j t()=1

z j t()= 0 otherwise

Interneuron activation:

Synaptic modification:

€

Δwij t() = µz j t() ˆ z j t − Δt() − wij t()()

Pre-synaptic time-averaging:

Table	 4.	 Extension	 of	 the	 Levy	 Model	 to	 the	 1	 ms	 timescale.	 Parameters	 not	 discussed	 in	 Table	

1	 are	 the	 dendritic	 filter	 half-width	 (thw),	 the	 Izhikevich	 parameters	 (a-d,	 g),	 interneuron	

decay	 rate	 (λ),	 axonal	 delays	 (aij,	 tI),	 on-rate	 time	 constant	 (τon),	 off-rate	 decay	 rate	 (α),	 and	 Ψi,	

the	 time	 when	 neuron	 i	 last	 fired.	 For	 summations,	 the	 index	 i	 is	 over	 all	 neurons,	 and	 t	 is	 over	

time-steps.	

	

	

€

IFF t()= λIFF t − Δt()+ 1− λ() xi
i∈nA

∑ t − tI()

IFB t()= λIFB t − Δt()+ 1− λ() zi
i∈nA

∑ t − tI()

€

ˆ z j t() = t −Ψi /τon if τ i ≤ τon

αˆ z j t − Δt() otherwise

⎧
⎨
⎪

⎩ ⎪

!

s j t()= wij
i
" cij# zi t $ aij()()

!

I j t()= 1
td=1

thw
" # e# thwtd /5s j t # td()+ thw

td=thw+1

2
" e

thw td # thw() /5s j t # td()

!

y j t()=
I j t()

I j t()+K0 +KFFIFF +KFBIFB

€

dv j

dt
= 0.04v j

2 t() + 4.1v j t() +108 − u j t() + gy j t();
du j

dt
= a bv j t() − u j t()()

	 21	

Genetic Algorithms

Genetic algorithms (GAs) are a form of evolutionary algorithms that are modeled after

biological evolutionary genetic processes. They include features such as selection of the

fittest individuals, reproduction, cross-over, and mutation. GAs are a form of heuristic

search that do not require that the objective function have a known derivative (unlike

gradient descent) and that can have multiple permutations evaluated in parallel (unlike

traditional implementations of simulated annealing). The objective function in genetic

algorithms is referred to as its fitness function. In the work done here, the fitness function

will always be defined such that maximal values of the fitness function are considered

optimal.

	 22	

Methodologies

Measuring gamma oscillations

Simulations designed to analyze gamma and theta oscillations used a time step resolution

of 3.575 ms, between 4,000 and 6,000 neurons, and adjusted inhibition parameters so that

average activity was approximately 2 Hz.

 A fast Fourier transform is used to generate a power spectrum of the total network

activity,

€

zi t()
i=1

n
∑ , with a brick wall filter due to the resolution, or time-step size, of the

simulation. For example, if the time step size is 3.575 ms, the brick wall filter is, as a

result of this time step size, approximately 280 Hz. Results for the power spectrum are

therefore only shown up to 140 Hz. The result of the fast Fourier transform is multiplied

by its complex conjugate and divided by the sample size to achieve the power spectrum

across frequencies. The resulting power spectrum is then collected into bins of width 0.1

Hz. Results of the fast Fourier transform are shown in linear scale, and are also shown in

logarithmic scale as the gamma oscillation becomes less prominent.

 The first experiment performed to measure gamma oscillations was to train the

neural network on a simple repeating sequence of 32 patterns of externally activated

neurons (see Fig. 5 for details). Each pattern was presented to the network for 143 ms, so

that one sequence of 32 patterns required a total simulated time of 4.576 seconds. After

the network learns the sequence, synaptic modification is turned off, and the network is

driven for another 500 trials, during which the activity of the network during each time-

step (3.575 ms) is measured.

	 23	

 The second and third experiments to perform to measure gamma oscillations use

the trained neural network from the first experiment. In the second experiment, the

repeating sequence is replaced with random noise, and in the third experiment no external

input is provided, so that all activity is recurrent.

 In the fourth set of experiments performed to measure gamma oscillations the

strength of the divisive inhibition is reduced so that the network will have a higher

average firing rate. Whereas the first three experiments all have an average firing rate of

2 Hz, in the fourth set of experiments 4 and 8 Hz scenarios are examined.

Measuring theta modulated gamma oscillations

Theta-modulated input was presented using several different techniques. In all cases, the

input was modulated by the changing the probability a neuron would be externally

activated. The simplest technique involved using a sine wave such that the probability a

neuron would be externally activated is

(Eq.	 17)	

where

€

ωθ ≈ 43.91 Hz corresponding with a theta frequency of approximately 7 Hz. B

was set to one-half of A such that the maximum probability of being externally activated

was three times the minimum probability. To achieve some asymmetry in the theta

oscillations, a second periodic function, shown in Fig. 1, was also used, although only for

the last simulation. This periodic function, S(x), is given by

(Eq.	 18)	

As with the sine wave, simulations using this periodic function would have neurons

€

pe = A + Bsin ωθ t(),

€

S =
0, 5π 3 < x < 2π

−1 + x0.4ex 1.8 , 0 < x < 5π 3
⎧
⎨
⎩

	 24	

externally activated with a probability

(Eq.	 19)	

 The frequency at which the input was modulated was fixed for some simulations

and allowed to randomly vary (from cycle to cycle) in other simulations. The period of

modulation would be 143 ms when fixed and between 133 and 153 ms when allowed to

vary.

Genetic algorithm exploration

The basic structure of the genetic algorithm used for this research will remain constant.

(See http://github.com/BenHocking/ShortCircuitGA for the genetic algorithm source

code.) The population size is 100, with 10 elites that are automatically propagated to the

next generation without modification. Each genotype consists of 21 genes residing on the

[0, 1) interval, with each gene being mapped to the minimum and maximum values

€

pe = A + B⋅ S ωθ t −π 3()

Figure	 3.	 Periodic	 function	 used	 to	 modulate	 input.	 This	 periodic	 function	 (Eq.	 (18))	 is	 designed	 to	

crudely	 approximate	 the	 reaction	 of	 neurons	 in	 the	 presence	 of	 changing	 stimuli.	

	 25	

allowed by the parameter it represents.

 The mutation probability for each gene is 0.03, with a mutation being generated

on the [0, 1) value using a truncated normal distribution with a mean equal to the prior

value of the gene, a standard deviation of 0.2, and bounds of [0, 1). The approach used

here is that when a gene is mutated to generate the new value from a normal distribution

with a mean given by the unmutated value of the gene and a standard deviation of 0.2.

All genes reside on the [0, 1) number line and are mapped to a given minimum/maximum

value using the formula

€

x max−min() +min for continuous parameters and

€

x max−min+1()⎣ ⎦+min for discrete parameters.

 Crossover is uniform, the probability that crossover will happen in a genome is

0.6, and the probability a particular gene will crossover (given that any crossovers

happen) is 0.25. In the model used here, the location of a gene in the genotype bears no

significance, so a uniform crossover scheme is employed. In this scheme (and with the

given choices of selection and mating algorithm), an individual crossover probability of

0.25 is effectively the same as an individual crossover probability of 0.75.

 The selection method used is fitness proportionate selection with an elitist group.

The genes for the genotypes of the first population are all chosen using a truncated

normal distribution with µ = 0.5, σ = 0.2, and bounds of [0, 1).

 The genetic algorithm is run until a genotype in the population achieves target

performance (see Table 5) or 100 generations are produced. A summary of the genetic

algorithm is in Table 7.

	 26	

Label Name Description

B1 Target

performance

€

P 601,650() ≥ 1
3

me

ad ⋅ nA| |

B2 Poor performance

€

∀t P(t, t +49) < 1
6

me

ad ⋅ nA| |

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

B3 Good activity

€

F2 ≥τ (See Table 8)

Table 5. Important behaviors in trace conditioning. Target performance is performance good enough

to declare that the neural network has “acquired” trace conditioning. Poor performance describes

neural networks that have not demonstrated movement towards acquiring trace conditioning, or

possibly the network acquired trace conditioning previously and then lost it by trial 150. The

term is significant because it is approximately

€

E P 651,750()[]during training trials. B1 and

B2 are calculated only on the last training trial, while B3 is calculated on the first training trial and

the first testing trial. B2 trivially implies ¬B1 (consider when t = 601). Determining good values for τ is

a goal of this research. Cf. Table 6.

	 27	

	
Desired activity rate (per ms):

€

ad ∈ 0.0005,0.0025[)(or from 0.5 Hz to 2.5 Hz)

Percentage of neurons firing per second:

€

pa =
ad

Δt in seconds()
(50 to 250%)

Percentage of activity due to external activation:

€

pe ∈ 0.2,0.5[)

Number of externally activated neurons per time-step:

€

me = pe nA| |

Size of the set of tone and puff neurons:

€

nt| |=10me and

€

np| |=10me

Number of neurons from set s firing between times t1 and t2:

€

N t1,t2,s()= zi
i∈s
∑

t=t1

t2
∑ t()

Fraction of neuronal activity due to puff neurons:

€

P t1,t2()=
N t1,t2,np()
N t1,t2,nA()

Average activity between times t1 and t2:

€

A t1,t2()=
N t1,t2,nA()

nA| |⋅ t2 − t1+1()

Squared deviation from desired activity:

€

D t1,t2()= (A t1,t2() − ad)2

Sample standard deviation of activity:

€

σs =
1
749

A t, t() − A 1,750()()2
t=1

750

∑

Desired standard deviation of activity:

€

σd = 0.015

Table	 6.	 List	 of	 evaluating	 equations	 for	 a	 trace	 conditioning	 episode.	 nt	 refers	 to	 the	 set	 of	

tone	 neurons,	 np	 refers	 to	 puff	 neurons,	 nA	 refers	 to	 all	 neurons,	 me	 is	 the	 number	 of	 externally	

activated	 neurons	 in	 a	 time	 step,	 and	 ad	 is	 the	 desired	 fractional	 activity.	 Cf.	 Tables	 4,	 5,	 and	 8.	

	 28	

	
Genetic Algorithm Parameter Value

Number of generations Until target performance (see Table 5) or 50 generations

Population size 100

Number of elites 10

Gene type Continuous on [0, 1)

Mutation probability 0.3

Mutation standard deviation 0.2

Total crossover probability 0.6

Crossover method Uniform

Individual crossover probability 0.25

Table	 7.	 A	 summary	 of	 parameters	 describing	 the	 genetic	 algorithm	 used	 in	 this	 research.	

	 29	

	
Fitness

Function

Description

F1: Original

€

kcollapseP 251,450()+kpreblinkP 451,550()+kblinkP 551,650()+kbridgeP 651,750()

F2: Proxy

€

100

D
c=0

9

∑ 75c+1,75 c +1()()
⎛

⎝
⎜

⎞

⎠
⎟

+ a2

σd
2 −σs

2| |

F3: Short-

circuit

€

F2 if F2 < τ2

τ2 +F1 otherwise

⎧
⎨
⎪

⎩ ⎪

Table	 8.	 Fitness	 functions	 and	 their	 mathematical	 description.	 F1	 is	 the	 desired	 puff-neuron	

activity	 after	 200	 trials,	 while	 F2	 measures	 general	 network	 activity	 after	 the	 first	 trial.	 See	

Table	 5	 for	 additional	 explanation	 of	 performance	 and	 activity	 measurements.	 All	 fitness	

functions	 are	 non-negative	 over	 their	 domains.	 For	 F1,	 kcollapse	 =	 0.5,	 kpreblink	 =	 0.8,	 kblink	 =	 1,	 and	

kbridge	 =	 0.5.	

 Using this genetic algorithm configuration and the full fitness function F1 (see

Table 8), on the neural network described in the previous section, running to find a

feasible parameter setting is prohibitively expensive. For example, a typical run required

several days on a cluster of 30 computers. Although this is feasible if the sole purpose of

the research is to find a single viable parameter setting, the time required for a single

genetic algorithm to complete precludes a thorough exploration of the parameter space

and examination of the robustness of the solution. Thus, in order to achieve those goals,

the further research proposed here will focus on a more efficient fitness function.

 One method for improving the efficiency of a genetic algorithm is through the use

of a proxy [22]. One form of proxy used in genetic algorithms is an approximation, where

	 30	

an expensive fitness function is replaced with a less expensive fitness function known to

approximate the original [22, 23]. No known approximation exists for the problem being

studied here, but there is a function that has an implicative relationship with the desired

fitness function. Specifically, in the experiments I ran, I never saw good performance if

activity was not good on the first training and testing trial. This can be restated as the

implicative relationship that if there is not good activity on the first trials then there will

be poor performance on the last trial (referred to as ¬B3⇒B2 in Table 5).

 Because determining whether good activity has occurred after one training trial

only requires two trials to be run (one training and one testing), it is much less

computationally expensive than determining whether good performance will occur,

which requires 151 trials (150 training trials and a testing trial). To take advantage of this

significantly faster proxy function, I use a short-circuit fitness function (F3) that combines

a proxy function (F2) with the full desired fitness function (F1). See Table 8 for a rigorous

definition of these fitness functions.

Primary Fitness Function (F1)

Any run of a genetic algorithm will involve a sampling of the parameter space. We call

that sequence of samples the genetic algorithm trajectory. This experiment is intended to

measure the evaluation efficiency along the genetic algorithm trajectory guided by the

original fitness function (F1). In this experiment the genetic algorithm is modified to

calculate both F1 and F2 for all sampled parameter settings (i.e., genotypes). For each run,

hA(τ, Si) is computed for τ between 5 x 103 to 5 x 107 (as before), where Si is the set of

parameter settings for generation i. The genetic algorithm will be run at least seven times

(with up to 4,510 fitness evaluations per run) to determine the confidence of this

	 31	

measurement.

Short-Circuit Fitness Function (F3)

When the genetic algorithm uses the short-circuit evaluation, the genetic algorithm

trajectory will be different than when using the primary fitness function alone. This

experiment is intended to measure the evaluation efficiency along the genetic algorithm

trajectory guided by F3. Since F3 depends on selected values of τ, we cannot use the full

range of τ. As with the previous experiment, both F1 and F2 are calculated for all

genotypes. The genetic algorithm will be run at least five times each for five different

values of τ (based on interesting values of τ found in IIA.2), for a total of 25 different

runs.

Determining the existence of parameter settings for acquiring trace conditioning

Determining whether a particular choice of parameter settings reliably acquires trace

conditioning requires demonstrating several behaviors. First, the simulation must have

activity of the puff neurons during the blink interval of at least one third that of the

activity displayed during the puff interval of the prior training session. Second, the

simulation must have less than half that activity during the collapse interval (the interval

immediately after the tone interval). Third, the simulation must not show a collapse of

activity during prior training intervals, as this would correspond to the individual

experiencing brain death or a coma — something that does not happen in laboratory

experiments that the simulations are intended to recreate. Finally, most simulations using

the same settings but different random seeds should also satisfy the prior three conditions.

	 32	

Proxy effectiveness

Calculating the fraction of episodes for which ¬B3⇒B2 is true is intended to measure the

proxy function's effectiveness. Currently, a value of 5 x 105 is being used for the threshold

τ in evaluating B3. If we define gB(τ, s) as 1 when F2(s) ≥ τ or B2 (equivalent to ¬B3⇒B2),

and 0 otherwise, then effectiveness hB(τ, S) is

€

gB
s∈S
∑ τ, s() /S| |, where S is the set of

parameter settings being evaluated.

 The short-circuiting component of F3 is most important for its “decision”: do you

run the more computationally expensive objective function or not? As such, it suffers

from the same problems as any inexact boolean test: false positives and false negatives.

In this case, false positives result in us potentially missing useful parameter settings, and

false negatives result in us wasting computational resources exploring useless parameter

settings. Thus, in addition to demonstrating that the proxy has improved the efficiency of

the genetic algorithm, the effectiveness of the proxy must be shown.

 Measuring proxy robustness will help answer the question: can the genetic

algorithm become even more efficient without becoming less effective? Examining ranges

of τ from 5 x 103 to 5 x 107, while measuring effectiveness will answer this question.

Evaluation efficiency

Evaluating the proxy fitness function requires only a single training trial instead of the

150 training trials required to evaluate the primary fitness function, so it will trivially

require less computational time. Measuring this efficiency accurately requires calculating

the computational time required to calculate the primary fitness function and the

computational time required to calculate the proxy fitness function on the same computer.

	 33	

Because most of the experiments are run on a grid computing system, this requires

obtaining a representative sample and re-running them on a single computer.

Trajectory efficiency

To measure the trajectory efficiency, the ratio of the number of generations required to

achieve B1 along a genetic algorithm trajectory guided by F3 to the number of generations

required along a genetic algorithm trajectory guided by F1 will be calculated. Trajectory

efficiency is defined as 1 minus this ratio. Values less than zero demonstrate trajectory

inefficiency. Initial experiments suggest that the proxy function provides a more

productive fitness landscape in regions where B3 is false resulting in fewer generations

until target performance is achieved. One explanation for this improved fitness landscape

is that for significantly poor activity control, the F1 is zero (plus the addition of random

noise), whereas F2 is not constant, thus providing feedback for which parameter settings

are better than others in episodes where the performance information is essentially

useless.

Naïve exploration

Using a random sampling approach is intended to investigate evaluation efficiency over

the parameter space without the biases introduced by the trajectory of a genetic

algorithm. A straight-forward random sampling approach would be uniform sampling of

each parameter in its [0,1) mapped space. This has the disadvantage of disproportionately

choosing samples far from the center of the domain space. Specifically, more than half of

samples so chosen from a 21-dimensional space will be in either the [0,0.02) or [0.98,1)

portion of the number-line for at least one parameter. Consider the unit square and unit

hypercube. A square of one-half its area would have its sides equal to the square root of

	 34	

one-half, or approximately 0.7071. Similarly, a 21-dimensional hypercube of one-half the

hypervolume of a unit hypercube would have its edges equal to the 21st root of one half,

or approximately 0.9675. Conversely, a square with side one-half is one-fourth the

volume of the unit square, whereas a 21-dimensional hypercube of edge one-half is one-

half to the 21st power, or approximately 4.768 x 10-7 the volume of the unit hypercube.

 A way to address this is to instead represent points in the parameter space by a

hyperball with random variables (ρ, φ1…φ20) with ρ on the interval [0,1), φ1 on the

interval [0,2π), and φ2…φ20 on the interval [0,π); and then mapping the unit hyperball to

the unit hypercube. The center of the hyperball will be mapped to an average over the

location of target parameter settings (i.e., parameter settings meeting target performance)

and the radius and directional vector of the point on the hyperball will map to the line

segment connecting this point and where the directional vector would intersect with the

boundary of the hypercube. One can imagine statistical biases introduced by this

hyperball-to-hypercube mapping, so part of the research will involve either calculating

the extent of these biases or finding yet a better sampling approach.

 Each parameter setting sampling first shuffles the parameters so as to avoid bias

among parameters. 15,000 parameter-setting samples will be generated by both

approaches (uniform and hyperball), resulting in 3 x 104 random parameter setting

samples.

	 35	

Results

Improvement in biological plausibility

With the new extensions to the Levy model, we can directly map quantities in the model

to neuron-level measurables. Specifically, for any neuron (or all neurons) we can

determine what the membrane potential the model assigns to it at a millisecond

resolution. Figure 5 gives an example of membrane potential versus time for a single

neuron during the first training trial of trace conditioning. With McCulloch-Pitts neurons

or even integrate-and-fire, there is no concrete neurophysiological meaning of the

somato-‐dendritic	 excitation.

	

Figure	 4.	 Membrane	 potential	 of	 a	 neuron	 during	 the	 first	 training	 trial	 of	 trace	 conditioning.

	 36	

Gamma Oscillations

For the first gamma oscillation experiment, ach pattern was presented to the network for

143 ms, so that one sequence of 32 patterns required a total simulated time of 4.576

seconds. After the network learns the sequence, synaptic modification is turned off, and

the network is driven for another 500 trials, during which the activity of the network

during each time-step (3.575 ms) is measured.

 A portion of this activity is shown in Fig. 7A and B shows the resulting power

spectrum. The lowest frequency spectral peak is 0.2 Hz. This maximum corresponds to

the 4.576 s required to complete one iteration of the repeating sequence. Also visible are

harmonics of this frequency, including the 32nd harmonic (7.0 Hz), which also

corresponds to the pattern duration of 143 ms. Most importantly, there is a substantial

increase in power distributed around 38.2 Hz, i.e. frequencies associated with gamma

oscillations, which are present in the CA3–CA1 regions of the hippocampus (for

example, [1]). Analogously, we will refer to power distributions near this frequency as

gamma oscillations. These gamma oscillations differ from the other spectral peaks in the

breadth of their distribution.

	 37	

 When the repeating sequences of externally activated neurons are replaced with

random input activation, the low frequency-oscillations associated with the length of the

sequence disappear, but the gamma oscillations are still present with approximately the

same center frequency (compare the top of Fig. 8 to the middle of Fig. 8). Finally, if all

external input is removed and inhibition is adjusted to maintain the same 2 Hz average

firing rate, the same results are produced—the center frequency of the gamma

oscillations remains near 40 Hz (Fig. 8, bottom).

Figure	 5.	 External	 input.	 A	 sequence	 of	 32	 patterns	 of	 externally	 activated	 neurons	 is	 presented	

repeatedly	 to	 a	 simulated	 neural	 network.	 Here	 two	 such	 presentations	 are	 shown.	 Each	 pattern	

consists	 of	 160	 externally	 activated	 neurons	 and	 has	 a	 duration	 of	 143	 ms.	 Successive	 patterns	 share	

80	 neurons.	 Only	 the	 first	 2400	 out	 of	 the	 entire	 6000	 neurons	 are	 part	 of	 the	 externally	 activated	

sequence.

	

	 38	

Figure	 6.	 A	 gamma	 oscillation	 appears	 in	 the	 macroscopic	 activity	 of	 the	 network.	 The	 instantaneous	

firing	 rate	 shown	 here	 is	 calculated	 by	 dividing	 the	 number	 of	 neurons	 that	 fire	 in	 each	 time-step	 by	

the	 size	 of	 the	 time-step	 (3.575	 ms).	 The	 12	 major	 cycles	 during	 this	 300	 ms	 window	 leads	 to	 a	 rough	

estimate	 of	 25	 ms	 per	 oscillation,	 or	 a	 frequency	 of	 approximately	 40	 Hz.	 (B)	 Power	 spectrum	 of	

instantaneous	 firing	 rates	 (see	 A)	 after	 training,	 averaged	 over	 500	 trials,	 with	 each	 trial	 lasting	 4.576	

simulated	 seconds.	 The	 network	 is	 trained	 on	 a	 repeating	 sequence	 until	 the	 sequence	 is	 learned.	

Then,	 the	 sequence	 is	 driven	 with	 this	 same	 sequence	 for	 500	 trials	 with	 no	 synaptic	 modification,	

and	 the	 power	 spectrum	 of	 the	 total	 network	 activity	 for	 each	 time-step	 of	 the	 simulation	 is	 obtained.	

The	 data	 set	 used	 to	 generate	 the	 power	 spectrum	 consists	 of	 640,000	 values.

	

	 39	

 Figure 9 shows the results of changing average firing rates of neurons across a

range, from 2 up to 8 Hz. As can be seen from Figure 9, the network experiences a

continuous-phase transition near 4 Hz as the gamma oscillations are replaced with

harmonics of the average firing rate. For example, for simulations with an average firing

rate of 8 Hz, the lowest peak in the power spectrum is 8 Hz, and the remaining peaks are

harmonics of 8 Hz.

Figure	 7.	 Power	 spectrum	 for	 simulations	 with	 an	 input	 of	 a	 repeating	 sequence	 (top),	 with	 random	

input	 (middle),	 and	 with	 no	 external	 input	 (bottom).	 Note	 that	 the	 vertical	 scale	 on	 the	 bottom	 figure	

is	 twice	 that	 of	 the	 other	 two	 figures.	

	 40	

Fig. 10A and B show reordered firing diagrams for the networks corresponding to the top

and bottom graphs in Fig. 4, respectively. When a simulation runs at 2 Hz, the average

network activity (for an untrained network) shows little evidence of synchronized firing.

This lack of synchrony is one feature that sets it apart from models such as the one used

in Kopell et al. [3]—none of the neurons in the network are firing at the gamma

frequency, the gamma oscillations only exist in the network as an ensemble. However,

for simulations run at 8 Hz, the networks do show significant, albeit approximate,

synchrony. In Fig. 10, the gamma frequency is visible in the reordered firing diagram.

This change in the tendency to synchronize firing demonstrates behavior similar to a

Figure	 8.	 Power	 spectrum	 for	 simulations	 with	 an	 average	 firing	 rate	 of	 2	 Hz	 (top),	 4	 Hz	 (middle),	 and	

8	 Hz	 (bottom).	 At	 2	 Hz,	 the	 gamma	 oscillations	 are	 prominent,	 but	 at	 4	 Hz,	 their	 power	 is	 much	

weaker.	 At	 8	 Hz,	 the	 gamma	 oscillations	 are	 lost,	 replaced	 with	 a	 spectral	 peak	 at	 8	 Hz	 and	 its	

harmonics.	 Interestingly,	 the	 harmonics	 are	 not	 monotonically	 decreasing	 in	 peak	 power;	 note	 the	 dip	

in	 the	 harmonics	 near	 40	 Hz.	

	 41	

continuous phase transition and this occurs at around an average firing rate of 4–5 Hz in

these simulations.

Figure	 9.	 (A)	 A	 reordered	 firing	 diagram	 for	 a	 simulation	 run	 at	 2	 Hz.	 The	 neurons	 are	 reordered	

based	 on	 when	 they	 first	 fire.	 At	 2	 Hz	 there	 is	 not	 a	 significant	 amount	 of	 synchronous	 behavior	

present,	 although	 macroscopic	 gamma	 oscillations	 exist.	 (B)	 A	 reordered	 firing	 diagram	 for	 a	

simulation	 run	 at	 8	 Hz.	 This	 firing	 diagram	 is	 reordered	 in	 the	 same	 manner	 as	 in	 Fig.	 5A.	 In	 this	

diagram,	 neurons	 demonstrate	 synchronous	 behavior.	 The	 apparent	 shift	 across	 time	 from	 very	

ordered	 firing	 to	 less	 ordered	 firing	 is	 due	 to	 the	 method	 used	 for	 reordering.	 	

	 42	

Theta Modulated Gamma Oscillations

In the absence of any theta-modulation, gamma oscillations were quite strong and

centered around 50 Hz. Fig. 12a shows the FFT of the net activity , and Fig. 12b shows

the log of the FFT converted to dB, i.e., multiplied by 10.

Figure	 10.	 Power	 spectrum	 of	 a	 simulation	 in	 the	 absence	 of	 any	 external	 input	 demonstrating	

emergent	 gamma	 oscillations.	 When	 the	 network	 is	 allowed	 to	 run	 without	 any	 input,	 a	 very	 sharp	

gamma	 oscillation	 is	 present,	 as	 is	 its	 harmonic.	 A	 low-powered	 oscillation	 is	 also	 visible	 at	

approximately	 3–4	 Hz,	 which	 is	 more	 noticeable	 in	 Fig.	 B.	 In	 both	 figures,	 the	 absolute	 power	 in	 the	

FFT	 is	 normalized	 to	 1.	

	 43	

When this same network is trained on theta-modulated external input and then allowed to

run in the absence of any input, a very low-power oscillation in the theta band is now

visible (Fig. 13). Additionally, the central frequency of the gamma oscillation has shifted

from 50 Hz to approximately 64 Hz, and the gamma frequency oscillation is more spread.

 If instead, the network is driven at theta-modulated input, the gamma oscillations

become much less powerful. Although not visible on a linear scale, Fig. 14a, the log of

Figure	 11.	 Power	 spectrum	 in	 a	 simulation	 without	 external	 input	 after	 training	 on	 theta-modulated	

input.	 The	 FFT	 shown	 here	 is	 for	 the	 same	 network	 as	 in	 Fig.	 12,	 but	 after	 training	 the	 network	 using	

theta-modulated	 input.	 In	 both	 figures,	 the	 absolute	 power	 in	 the	 FFT	 is	 normalized	 to	 1.	

	 44	

the FFT reveals that the gamma oscillations are still present, but are several orders of

magnitude weaker than in the absence of theta-modulated input (Fig. 14b).

Figure	 12.	 Power	 spectrum	 for	 simulations	 in	 the	 presence	 of	 a	 theta-modulated	 input.	 The	 log	 of	 the	

FFT	 reveals	 that	 gamma	 still	 exists	 but	 is	 more	 than	 100	 times	 weaker	 than	 in	 the	 absence	 of	 theta-

modulated	 input.	 In	 both	 figures,	 the	 absolute	 power	 in	 the	 FFT	 is	 normalized	 to	 1.	

	 45	

Existence of Settings for Trace Conditioning Acquisition

Multiple settings were found that allowed simulations to acquire trace conditioning

without activity collapse for any training trials and for multiple random seeds. An

example of trace conditioning acquisition can be seen in Figure 15. Activity of the

neurons encoding the puff/blink response goes up prior to the interval when the puff had

been delivered during training, giving the individual sufficient time to blink.

	

Figure	 13.	 Trace	 conditioning	 acquisition.

 If we examine across trial activity over the entire range of training (Fig. 16), then

we see that although activity decreases, it never collapses. Similarly, examining within

trial activity for individual trials shows an activity decrease during the trace interval, but

no collapse.

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

Ac
tiv

ity
 (H

z)

Time (ms)

1580

Trial 145
Trial 146
Trial 147
Trial 148
Trial 149
Trial 150

	 46	

Figure	 14.	 Across	 trial	 activity	 for	 an	 individual	 simulation	 that	 demonstrated	 trace	

conditioning	 acquisition.	

 Finally, we examine the same settings but for multiple random seeds. Figure 17

shows trace conditioning acquisition when the random seed is set to 1, and other random

seed settings can be found in the appendix.

0

1

2

3

4

5

20 40 60 80 100 120 140

Ac
tiv

ity
 (H

z)

Trial

1580

	 47	

Figure	 15.	 Trace	 conditioning	 acquisition	 for	 an	 individual	 using	 parameter	 settings	

discovered	 during	 a	 genetic	 algorithm	 experiment,	 but	 with	 a	 different	 random	 seed	 than	 was	

used	 during	 that	 experiment.	

Proxy effectiveness

One measure of proxy effectiveness is shown in Figure 18 as a plot of proxy threshold

(the value used to compare against the proxy fitness function to determine whether

evaluation of the primary fitness function is required) versus false negatives to determine

how reliable is the proxy threshold at predicting an implicative relationship between the

proxy fitness function and the primary fitness function.

 A secondary measure of proxy effectiveness is shown in Figure 19 (see also Fig.

20) as a plot of proxy threshold versus false positives to determine how valuable the

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

Ac
tiv

ity
 (H

z)

Time (ms)

1580, seed 1

Trial 145
Trial 146
Trial 147
Trial 148
Trial 149
Trial 150

	 48	

proxy threshold is at eliminating unnecessary evaluations of the primary fitness function.

As with all false positive and false negative measures, these two measures trend in

opposite directions. The false negative measure is strictly non-decreasing whereas the

false positive measure is strictly non-increasing.

	

Figure	 16.	 In	 a	 genetic	 algorithm	 using	 the	 short	 circuit	 fitness	 function,	 false	 positives	 as	 a	

function	 of	 the	 proxy	 threshold	 value,	 τ .	 As	 τ 	 increases,	 more	 simulations	 fail	 to	 reach	 the	

threshold	 so	 that	 fewer	 evaluations	 of	 the	 primary	 fitness	 function	 are	 required.	 Since	 most	 of	

the	 simulations	 do	 not	 acquire	 trace	 conditioning,	 increasing	 τ 	 usually	 decreases	 the	 false	

positives.	 	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5000 10000 15000 20000 25000 30000

 F
al

se
 p

os
iti

ve
 p

er
ce

nt
ag

e

 Proxy value

	 49	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10000 20000 30000 40000 50000 60000 70000

 F
al

se
 p

os
iti

ve
 p

er
ce

nt
ag

e

 Proxy value location

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10000 20000 30000 40000 50000 60000 70000

 F
al

se
 n

eg
at

iv
e

pe
rc

en
ta

ge

 Proxy value location

Figure	 17.	 In	 a	 genetic	 algorithm	 using	 the	 short	 circuit	 fitness	 function,	 false	 negatives	 as	 a	 function	

of	 the	 proxy	 threshold	 value,	 τ .	 As	 τ 	 increases,	 more	 simulations	 fail	 to	 reach	 the	 threshold	 so	 that	

fewer	 evaluations	 of	 the	 primary	 fitness	 function	 are	 required.	 Eventually,	 individuals	 that	 would	

have	 acquired	 trace	 conditioning	 are	 not	 considered,	 increasing	 the	 false	 negative	 rate.

	

Figure	 18.	 In	 a	 genetic	 algorithm	 using	 the	 short	 circuit	 fitness	 function,	 false	 negatives	 (left)	 and	 false	

positives	 (right)	 as	 a	 function	 of	 the	 proxy	 value's	 relative	 position.	 	

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5000 10000 15000 20000 25000 30000

 F
al

se
 n

eg
at

iv
e

pe
rc

en
ta

ge

 Proxy value

	 50	

 Because there are far fewer simulations that demonstrate target behavior (i.e.,

trace acquisition) than merely non-poor behavior (i.e., learning to activate the puff

neurons at some point after the tone neurons are activated), I also analyze how well the

proxy fitness function predicts non-poor behavior. Figures 20 and 21 show these results.

	

Figure	 19.	 In	 a	 genetic	 algorithm	 using	 only	 the	 primary	 fitness	 function,	 false	 positives	 as	 a	

function	 of	 the	 proxy	 threshold	 value,	 τ .	 As	 τ 	 increases,	 more	 simulations	 fail	 to	 reach	 the	

threshold	 so	 that	 fewer	 evaluations	 of	 the	 primary	 fitness	 function	 are	 required.	 Since	 most	 of	

the	 simulations	 do	 not	 acquire	 trace	 conditioning,	 increasing	 τ 	 usually	 decreases	 the	 false	

positives.

	 51	

Figure	 20.	 In	 a	 genetic	 algorithm	 using	 only	 the	 primary	 fitness	 function,	 false	 negatives	 as	 a	

function	 of	 the	 proxy	 threshold	 value,	 τ .	 As	 τ 	 increases,	 more	 simulations	 fail	 to	 reach	 the	

threshold	 so	 that	 fewer	 evaluations	 of	 the	 primary	 fitness	 function	 are	 required.	 Eventually,	

individuals	 that	 would	 have	 acquired	 trace	 conditioning	 are	 not	 considered,	 increasing	 the	

false	 negative	 rate.	

Evaluation efficiency

Evaluation efficiency of the short circuit fitness function is a combination of two factors:

what fraction of the time does the proxy fitness function take to compute relative to the

primary fitness function, and what fraction of the evaluations does the proxy fitness

function identify as not requiring the primary fitness function to be calculated.

 The first factor can be expected to be fairly constant, as regardless of the proxy

threshold the number of trials required to calculate the proxy fitness function is always

	 52	

one, and the number of trials required to calculate the primary fitness function is 150.

However, there is a non-trivial set-up cost dominated by the amount of time required to

construct the random topology of the simulation that is incurred regardless of the number

of training and testing trials that will be run in the simulation. This set-up computational

cost is independent of neural activity (i.e., how many neurons fire per time step), but the

computational cost of each trial is not. When activity control is good (which is what the

proxy fitness function is a measure of), one can expect a relatively constant speedup of

the proxy fitness evaluation over the primary fitness function. However, when activity is

much lower than desired, the speedup of the proxy fitness evaluation will be markedly

less because each trial will require less time while the setup cost will remain

approximately constant, and conversely when activity is much higher than desired, the

speedup of the proxy fitness evaluation will be markedly higher because each trial will

require more computational time. Figure 22 shows that during the first generation of the

genetic algorithm using the short-circuit evaluation the speedup is much greater than

during subsequent generations, when activity control is better. Thus, the higher activity

simulations have more of a speedup increase than the lower activity simulations have of a

speedup decrease (relative to the steady-state speedup). This is not surprising because the

desired activity is to have only 0.2% of the neurons firing on every time step—there is

much more opportunity for neurons to fire more frequently than this target than there is

for neurons to fire less frequently. Figure 23 shows the same data for genetic algorithm

runs using only the primary fitness function. Activity control is not part of the primary

fitness function, and this is reflected in the theoretical speedup being much higher for

many generations. In this scenario, a higher speedup reflects a negative situation—the

	 53	

primary fitness function takes much longer to calculate because of neural activity that is

much higher than desired.

	

Figure	 21.	 Speedup	 of	 simulation	 calculating	 only	 proxy	 fitness	 function	 over	 simulation	

calculating	 primary	 fitness	 function	 for	 individuals	 in	 generation	 for	 genetic	 algorithms	 using	

the	 short	 circuit	 fitness	 function.	 See	 text	 for	 discussion	 of	 why	 the	 speedup	 is	 higher	 in	 the	

first	 generation	 than	 in	 subsequent	 generations.	 Only	 the	 first	 15	 generations	 are	 shown.	 The	

full	 100	 generations	 can	 be	 seen	 in	 the	 appendix.

	 54	

	

Figure	 22.	 Speedup	 of	 simulation	 calculating	 only	 proxy	 fitness	 function	 over	 simulation	

calculating	 primary	 fitness	 function	 for	 individuals	 in	 generation	 for	 genetic	 algorithms	 using	

only	 the	 primary	 fitness	 function.

 The second factor is shown in Figure 24 where the fraction of simulations that did

not require computation of the primary fitness function is plotted per generation,

averaged over all genetic algorithms using the short-circuit evaluation approach. Figure

25 evaluates the fraction of simulations that theoretically would not have required

computation of the primary fitness function for genetic algorithms that used only the

primate fitness function. However, as Figure 24 demonstrates, using a fitness function

that rewards having to calculate the primary fitness function predictably leads to fewer

simulations that do not need to calculate the primary fitness function. Thus, after multiple

	 55	

generations, the evaluation efficiency of the short-circuit genetic algorithm is

significantly reduced.

	

Figure	 23.	 In	 a	 genetic	 algorithm	 using	 the	 short	 circuit	 fitness	 function,	 the	 fraction	 of	

simulations	 that	 did	 not	 require	 evaluating	 the	 primary	 fitness	 function.	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

 P
ro

xy
 F

ra
ct

io
n

 Generation

	 56	

	

Figure	 24.	 In	 a	 genetic	 algorithm	 using	 only	 the	 primary	 fitness	 function,	 the	 fraction	 of	

simulations	 that	 did	 not	 require	 evaluating	 the	 primary	 fitness	 function.	

Trajectory efficiency

Genetic algorithms using the short-circuit fitness function discovered simulations

acquiring trace conditioning behavior in far fewer generations than genetic algorithms

using only the primary fitness function. Three of the seven genetic algorithms that were

run using only the primary fitness function never found simulations that acquired trace

conditioning, and the other four took an average of 67.5 generations before a simulation

was discovered meeting the necessary criteria. By comparison, genetic algorithms using

the short-circuit genetic algorithm found simulations acquiring trace conditioning within

25.3 generations on average, with one genetic algorithm run requiring only 9. If we

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20

 P
ro

xy
 F

ra
ct

io
n

 Generation

	 57	

eliminate the one outlier requiring only 9 generations, the remaining 6 genetic algorithm

runs required an average of 28 generations. Even discarding the three genetic algorithms

running only the primary fitness function that never found a solution, the short circuit

genetic algorithms demonstrate a trajectory efficiency of 58.5%. If we assume that the

three discarded genetic algorithm runs would have found a solution on the 101st

generation (increasing the 67.5 average up to 81.9), and do not eliminate the short circuit

genetic algorithm outlier that found a solution in only 9 generations, then the trajectory

efficiency is 69.1%.

Conclusions

Contributions

Extension to Levy Model and Existence Proof of Viable Parameters

The potential benefits of the Levy model are that it can aide both in understanding the

mammalian hippocampus as well as in providing inspiration for new approaches in

artificial intelligence. This model will be able to improve our understanding of the

mammalian hippocampus by forming a bridge across temporal timescales between the

research already done with the Levy model for multiple behavioral and training tasks[7]

and research done with more realistic models of pyramidal neurons. As a proof of

concept, the extended model has been demonstrated to work on a simple network at the

nanosecond timescale (i.e., at timescales shorter than previous research by a factor of

over 10 million). This was a toy problem and was not intended to demonstrate the

feasibility of running large networks at nanosecond timescales, but rather to demonstrate

	 58	

that the simulations were robust with respect to changing the size of the time step. This

was not true of previous versions of the Levy model. Some of the specific neurological

benefits that this model could contribute are the screening of existing neurotropic drugs,

the design of new neurotropic drugs, and possibly new non-drug related treatments of

brain disorders involving the hippocampus, such as post-traumatic stress

disorder[LDA03]. A model of the hippocampus that can accurately model the

hippocampus across multiple timescales and with multiple levels of detail could be a

starting point from which to alter parameters according to how an existing neurotropic

drug is thought to act, either through the use of a domain expert, or through the use of

further metaheuristics. Alternatively, if a particular system-level change in the

hippocampus is desired, the model might be able to provide insight into what lower-level

changes are required, as well as what possible side-effects might accompany that change.

Such knowledge would be an asset in designing new drugs.

 In addition to the benefits of understanding the mammalian brain, discoveries

made using the Levy model can provide inspiration for new approaches in artificial

intelligence. For example, simulations of the Levy model incorporating synaptic failures

demonstrated that these failures improved simulations' performance on the transverse

patterning task, and that the optimal amount of failure increased with larger neural

networks. [8]

Effective and Efficient Technique for Discovery

 Although using a proxy to increase the efficiency of genetic algorithms is not

novel [22, 23], this research shows the utility of using implicative relationships to craft

proxy functions in the absence of an approximating fitness function. The proxy technique

	 59	

here differs from other approaches in that the proxy function is not intended to

approximate the value of the expensive fitness function it is a proxy for, but rather is

intended to predict whether that expensive fitness function will exceed a certain

minimum threshold. The differences between using non-approximating proxy functions

and more traditional proxy functions provide both advantages and disadvantages, but the

similarities are arguably more significant than the differences.

 The primary difference between non-approximating proxy fitness functions and

approximation fitness functions is that non-approximating fitness functions are not

required to provide a reasonable approximation that would be returned by the fitness

function they are a proxy for. This has the disadvantage of limiting the proxy use of the

non-approximating function to only a portion of the domain space spanned by the

function being optimized, but it has the advantage of allowing the use of a proxy function

in cases where there is no known valid approximation.

 The primary similarity between non-approximating and approximation fitness

functions is that they both act as a proxy, thus allowing a less expensive calculation to

stand in for its more expensive counterpart. The advantage of such proxies is clear: given

a fixed set of resources, the problem domain can be explored more quickly and/or more

thoroughly. A secondary similarity between non-approximating proxy fitness functions

and approximation fitness functions is that a domain expert might sometimes be required

to help identify where, how, and which such proxies can be used. Alternatively,

techniques used to automatically find approximation fitness functions [22] could be

adapted to find non-approximating proxy fitness functions.

	 60	

Future Work

Several	 interesting	 questions	 arise	 as	 part	 of	 this	 work:	

1. What	 changes	 can	 be	 made	 to	 the	 hippocampal	 model	 to	 make	 it	 even	 more	

neurophysiological	 without	 adding	 too	 much	 complexity	 or	 computational	

cost?	

2. Can	 the	 same	 approach	 be	 used	 to	 find	 parameter	 settings	 that	 reproduce	

configural	 learning?	

3. Can	 the	 genetic	 algorithm	 be	 improved	 to	 counteract	 premature	

convergence?	

4. Are	 there	 ways	 that	 the	 genetic	 algorithm	 analysis	 can	 be	 applied	 to	 other	

non-‐related	 research	 topics?	

In	 looking	 to	 make	 the	 model	 even	 more	 neurophysiological,	 there	 are	 simple	

changes	 that	 add	 significant	 computational	 cost,	 and	 computationally	 inexpensive	

changes	 that	 might	 add	 significant	 complexity.	 In	 the	 former	 category,	 a	 simple	

change	 that	 might	 be	 desired	 is	 the	 use	 of	 more	 realistic	 theta	 oscillations	 as	

described	 in	 the	 section	 on	 theta-‐modulated	 gamma	 oscillations.	 The	 reason	 these	

are	 currently	 computationally	 expensive	 is	 that	 the	 theta	 modulation	 is	 done	

through	 the	 NeuroJet	 scripting	 language	 (see	 the	 appendix	 for	 a	 sample	 script).	 If	

the	 NeuroJet	 executable	 were	 enhanced	 to	 allow	 for	 the	 script	 to	 select	 the	 more	

realistic	 theta	 modulation,	 then	 much	 of	 the	 computational	 overhead	 would	 be	

avoided.	 Another	 simple	 change	 that	 is	 computationally	 expensive	 is	 to	 pre-‐train	 the	

neural	 networks	 on	 other	 non-‐related	 stimuli	 prior	 to	 training	 on	 trace	 conditioning.	

In	 lab	 experiments	 that	 are	 being	 modeled,	 the	 rabbits	 have	 had	 many	 prior	

	 61	

experiences	 before	 being	 trained	 on	 trace	 conditioning.	 An	 example	 of	 a	 complex	

change	 that	 does	 not	 require	 noticeable	 increases	 in	 computational	 time	 is	 the	 use	

of	 variations	 on	 the	 dendritic	 filter	 function	 that	 modulates	 the	 input	 from	 the	

dendrite	 to	 the	 soma.	 It	 is	 currently	 implemented	 as	 a	 look-‐up	 table	 such	 that	 any	

arbitrary	 function	 of	 time	 can	 be	 specified	 (with	 one	 entry	 per	 time	 interval),	 so	 it	

would	 require	 no	 additional	 computational	 time	 for	 other	 dendritic	 filter	 functions	

to	 be	 used.	 Determining	 which	 dendritic	 filter	 function	 to	 use,	 however,	 can	 be	 a	

complex	 proposition,	 whether	 we	 allow	 the	 genetic	 algorithm	 to	 select	 from	 a	 range	

of	 options	 or	 we	 use	 the	 medical	 literature.	

	 There	 should	 be	 no	 reason	 why	 the	 same	 approach	 cannot	 be	 used	 on	

configural	 learning	 problems	 such	 as	 transverse	 patterning	 or	 transitive	 inference.	

Ideally,	 we	 would	 like	 to	 find	 a	 single	 set	 of	 neural	 network	 parameters	 that	 allow	 a	

simulation	 to	 learn	 trace	 conditioning,	 transverse	 patterning,	 and	 transitive	

inference.	 This	 could	 be	 tried	 using	 either	 the	 extended	 model	 discussed	 here	 or	

with	 the	 simpler	 model	 used	 elsewhere.	

	 In	 the	 genetic	 algorithms	 using	 only	 the	 primary	 fitness	 function,	 3	 of	 the	 7	

genetic	 algorithm	 runs	 never	 found	 a	 solution	 that	 acquired	 trace	 conditioning.	 As	

we	 know	 from	 other	 runs	 there	 is	 a	 solution,	 these	 runs	 most	 likely	 converged	

prematurely.	 Approaches	 that	 might	 be	 used	 to	 prevent	 premature	 convergence	

include	 using	 multiple	 sub-‐populations	 and	 increasing	 the	 mutation	 rate.	

	 Perhaps	 the	 most	 important	 feature	 of	 the	 short	 circuit	 genetic	 algorithm	

was	 its	 improvement	 of	 trajectory	 efficiency.	 We	 might	 expect	 to	 find	 similar	

improvements	 in	 other	 domains	 where	 the	 solution	 space	 has	 properties	 similar	 to	

	 62	

the	 properties	 of	 the	 solution	 space	 here.	 Key	 features	 include	 parameters	 that	 are	

strongly	 connected	 and	 an	 objective	 function	 that	 is	 relatively	 flat	 when	 the	

parameters	 being	 explored	 are	 not	 near	 a	 good	 solution.	 In	 this	 case,	 we	 have	 many	

parameters	 that	 affect	 network	 activity,	 network	 activity	 is	 poor	 over	 much	 of	 the	

domain,	 and	 when	 network	 activity	 is	 poor	 we	 gain	 little	 information	 from	 the	

primary	 fitness	 function.	

	 63	

References

[1] Levy, William B (1996). A Sequence Predicting CA3 is a Flexible Associator That

Learns and Uses Context to Solve Hippocampal-like Tasks. Hippocampus, 6, 579-

590. (http://faculty.virginia.edu/levylab/Publications/script/Hippocampal/Hippo

Spatial/Levy 1996 Hippocampus.pdf)

[2] Hodgkin, A., and Huxley, A. (1952). A quantitative description of membrane current

and its application to conduction and excitation in nerve. Journal of Physiology,

117(4), 500–544. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413)

[3] FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve

membrane. Biophysical Journal, 1(6), 445-466. (http://dx.doi.org/10.1016/S0006-

3495(61)86902-6)

[4] Nagumo, J.; Arimoto, S.; Yoshizawa, S. (1962). An active pulse transmission line

simulating nerve axon. Proceedings of the Institute of Radio Engineers. 50(10), 2061–

2070. (http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4066548)

[5] Izhikevich, E.M. (2003). Simple model of spiking neurons. IEEE Transactions on

Neural Networks, 14, 1569-1572.

(http://www.nsi.edu/users/izhikevich/publications/spikes.pdf)

[6] Izhikevich, E.M. (2004). Which model to use for cortical spiking neurons? IEEE

Transactions on Neural Networks, 15, 1063-1070.

(http://www.nsi.edu/users/izhikevich/publications/whichmod.pdf)

[7] Levy, William B; Hocking, Ashlie B.; & Wu, Xiangbao. (2005). Interpreting

hippocampal function as recoding and forecasting. Neural Networks, 18(9),1242-

1264. (http://www.sciencedirect.com/science/article/pii/S0893608005001917)

	 64	

[8] Sullivan, David W. and Levy, William B (2004). Quantal synaptic failures enhance

performance in a minimal hippocampal model. Network: Computation in Neural

Systems, 15(1), 45-67.

(http://taylorandfrancis.metapress.com/link.asp?id=mm00842552040623)

[9] Levy, William B and Wu, Xiangbao (2000). Some Randomness Benefits a Model of

Hippocampal Function. In H. Liljenstrom, P. Arhem, & C. Blomberg (Eds.),

Disorder Versus Order in Brain Function, 221-237. Singapore: World Scientific

Publishing. (http://books.google.com/books?id=BX5i6B5P3QEC&pg=PA221)

[10] Levy, William B; Colbert, C. M.; Desmond, Nancy L (1990). Elemental adaptive

processes of neurons and synapsesa statistical/computational perspective. M. Gluck,

D. Rumelhart (Eds.), Neuroscience and Connectionist Theory, Lawrence Erlbaum

Associates, Hillsdale, New Jersey, 187–235 (Chapter 5).

[11] Hughes, J. R. (2008). Gamma, fast, and ultrafast waves of the brain: their

relationships with epilepsy and behavior. Epilepsy Behavior 13(1), 25–31.

[12] Vanderwolf, C.H. (2000). Are neocortical gamma waves related to consciousness?

Brain Research 855(2), 217–224.

[13] Gold, Ian (1999). Does 40-Hz oscillation play a role in visual consciousness?

Consciousness and Cognition, 8(2), 186–195.

[14] Bland, B. H.; Oddie, S. D. (2001). Theta band oscillation and synchrony in the

hippocampal formation and associated structures: the case for its role in

sensorimotor integration. Behavioral Brain Research, 127(1–2), 119–136.

[15] Whishaw, I.Q.; Vanderwolf, C. H. (1973). Hippocampal EEG and behavior:

changes in amplitude and frequency of RSA (theta rhythm) associated with

	 65	

spontaneous and learned movement patterns in rats and cats. Behavioral Biology,

8(4), 461–484.

[16] Cantero, J.L.; Atienza, M.; Stickgold, R.; Kahana, M. J.; Madsen, J. R.; Kocsis, B.

(2003). Sleep-dependent theta oscillations in the human hippocampus and neocortex.

Journal of Neuroscience, 23(34), 10897–10903.

[17] Fabricius, Katrine; Wörtwein, Gitta; Pakkenberg, Bente (2008). The Impact of

Maternal Separation on Adult Mouse Behavior and on the Total Neuron Number in

the Mouse Hippocampus, Brain Structure and Function, 212(5), 403-416.

(http://www.springerlink.com/content/r1l3706463v35457/fulltext.pdf)

[18] Harding, Antony J.; Halliday, Glenda M.; Kril, Jillian J. (1998). Variation in

Hippocampal Neuron Number with Age and Brain Volume, Cerebral Cortex, 8(8),

710-718. (http://cercor.oxfordjournals.org/cgi/reprint/8/8/710.pdf)

[19] Levy, William B (2004). Personal communication.

[20] Hocking, Ashlie B. and Levy, William B (2006). Gamma Oscillations in a Minimal

CA3 Model. Neurocomputing, 69(10-12), 1244-1248.

(http://dx.doi.org/10.1016/j.neucom.2005.12.085)

[21] Hocking, Ashlie B. and Levy, William B (2007). Theta-Modulated Input Reduces

Intrinsic Gamma Oscillations in a Hippocampal Model. Neurocomputing, 70(10-12),

2074-2078. (http://dx.doi.org/10.1016/j.neucom.2006.10.086)

[22] Jin, Yaochu (2005). A Comprehensive Survey of Fitness Approximation in

Evolutionary Computation. Soft Computing, 9(1), 3-12.

(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.8393&rep=rep1&type

=pdf)

	 66	

 [23] Fast, Ethan; Le Goues, Claire; Forrest, Stephanie; Weimer, Westley (2009).

Designing Better Fitness Functions for Automated Program Repair. Genetic and

Evolutionary Computing Conference (GECCO): 965-972.

(http://www.cs.virginia.edu/~weimer/p/weimer-gecco2010.pdf)

	 67	

Appendix

Alternate random seeds for trace conditioning example

The	 following	 figures	 show	 the	 results	 for	 the	 same	 parameters	 used	 to	 generate	

Figure	 17,	 but	 with	 random	 seeds	 2	 through	 7.	

	
Figure	 25.	 Performance	 for	 last	 few	 trials	 using	 random	 seed	 2.	

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

Ac
tiv

ity
 (H

z)

Time (ms)

1580, seed 2

Trial 145
Trial 146
Trial 147
Trial 148
Trial 149
Trial 150

	 68	

	
Figure	 26.	 Across	 trial	 activity	 using	 random	 seed	 2.	

	
Figure	 27.	 Performance	 for	 last	 few	 trials	 using	 random	 seed	 3.	

0

1

2

3

4

5

20 40 60 80 100 120 140

Ac
tiv

ity
 (H

z)

Trial

1580, seed 2

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

Ac
tiv

ity
 (H

z)

Time (ms)

1580, seed 3

Trial 145
Trial 146
Trial 147
Trial 148
Trial 149
Trial 150

	 69	

	
Figure	 28.	 Across	 trial	 activity	 using	 random	 seed	 3.	

	
Figure	 29.	 Performance	 for	 last	 few	 trials	 using	 random	 seed	 4.	

0

1

2

3

4

5

20 40 60 80 100 120 140

Ac
tiv

ity
 (H

z)

Trial

1580, seed 3

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

Ac
tiv

ity
 (H

z)

Time (ms)

1580, seed 4

Trial 145
Trial 146
Trial 147
Trial 148
Trial 149
Trial 150

	 70	

	
Figure	 30.	 Across	 trial	 activity	 using	 random	 seed	 4.	

	
Figure	 31.	 Performance	 for	 last	 few	 trials	 using	 random	 seed	 5.	

0

1

2

3

4

5

20 40 60 80 100 120 140

Ac
tiv

ity
 (H

z)

Trial

1580, seed 4

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

Ac
tiv

ity
 (H

z)

Time (ms)

1580, seed 5

Trial 145
Trial 146
Trial 147
Trial 148
Trial 149
Trial 150

	 71	

	
Figure	 32.	 Across	 trial	 activity	 using	 random	 seed	 5.	

	
Figure	 33.	 Performance	 for	 last	 few	 trials	 using	 random	 seed	 6.	

0

1

2

3

4

5

20 40 60 80 100 120 140

Ac
tiv

ity
 (H

z)

Trial

1580, seed 5

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

Ac
tiv

ity
 (H

z)

Time (ms)

1580, seed 6

Trial 145
Trial 146
Trial 147
Trial 148
Trial 149
Trial 150

	 72	

	
Figure	 34.	 Across	 trial	 activity	 using	 random	 seed	 6.	

	
Figure	 35.	 Performance	 for	 last	 few	 trials	 using	 random	 seed	 7.	

0

1

2

3

4

5

20 40 60 80 100 120 140

Ac
tiv

ity
 (H

z)

Trial

1580, seed 6

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

Ac
tiv

ity
 (H

z)

Time (ms)

1580, seed 7

Trial 145
Trial 146
Trial 147
Trial 148
Trial 149
Trial 150

	 73	

	
Figure	 36.	 Across	 trial	 activity	 using	 random	 seed	 7.	

	

0

1

2

3

4

5

20 40 60 80 100 120 140

Ac
tiv

ity
 (H

z)

Trial

1580, seed 7

	 74	

All generations of proxy computational speed up

	

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14

 P
ro

xy
 S

pe
ed

 U
p

 Generation

	 75	

Sample trace conditioning script

@CreateVar(

numTrainTrials 300

 numTrainTrials 150

 dwellTime 144 # ms

 OffRate 168.69374021197876 # ms

 OnRate 10.527192211200115 # ms

 ActivityHz 2.8347775148279837

 mePct 0.20021843519101787 # Percent of Activity due to me

 PyrToInternrnWtAdjDecayRate 10 # ms

 InternrnExcDecayRate 3.0510244761578473 # ms

 InternrnAxonalDelay 3 #ms

 filePostfix InsertBHere

 mySFR 0.18825035630935036

 KFBBase 0.11863330057732645

 KFFBase 0.016282657407230942

 K0Base 0.02561081172035472

 TraceDuration 500

 setMu 0.015414817635324376

 setLambda 1.394322282916058

 minAxDelay 1

 maxAxDelay 4

 dendFilterWidth 8

 randomSeed 1580

)

@SetVar(deltaT 1)

	 76	

@SetVar(Period ^Calc(round[^(dwellTime)/^(deltaT)]))

@PrintVar(deltaT)

#Default values

?If(strcmp[^(InternrnExcDecayRate),Insert:A:Here]=0) {

 @SetVar(InternrnExcDecayRate 3.5) # ms

}

?If(strcmp[^(filePostfix),Insert:B:Here]=0) {

 @SetVar(filePostfix tstActWithin.dat)

}

?If(strcmp[^(InternrnAxonalDelay),Insert:C:Here]=0) {

 @SetVar(InternrnAxonalDelay 2) # ms

}

?If(strcmp[^(dendFilterWidth),Insert:D:Here]=0) {

 @SetVar(dendFilterWidth 7) # ms

}

?If(strcmp[^(minAxDelay),Insert:E:Here]=0) {

 @SetVar(minAxDelay ^Num2Int(^Calc(round[2/^(deltaT)]))) # ms

}

?If(strcmp[^(maxAxDelay),Insert:F:Here]=0) {

 @SetVar(maxAxDelay ^Num2Int(^Calc(round[2/^(deltaT)]))) # ms

}

?If(strcmp[^(ActivityHz),Insert:G:Here]=0) {

 @SetVar(ActivityHz 1)

}

?If(strcmp[^(mySFR),Insert:H:Here]=0) {

 @SetVar(mySFR 0)

	 77	

}

?If(strcmp[^(OffRate),Insert:I:Here]=0) {

 @SetVar(OffRate 100)

}

?If(strcmp[^(OnRate),Insert:J:Here]=0) {

 @SetVar(OnRate 15)

}

?If(strcmp[^(KFBBase),Insert:K:Here]=0) {

 @SetVar(KFBBase 0.01903)

}

?If(strcmp[^(KFFBase),Insert:L:Here]=0) {

 @SetVar(KFFBase 0.00207)

}

?If(strcmp[^(K0Base),Insert:M:Here]=0) {

 @SetVar(K0Base 0.02726)

}

?If(strcmp[^(TraceDuration),Insert:N:Here]=0) {

 @SetVar(TraceDuration 500) # ms

}

?If(strcmp[^(setMu),Insert:O:Here]=0) {

 @SetVar(setMu 0.01) # ms

}

?If(strcmp[^(setLambda),Insert:P:Here]=0) {

 @SetVar(setLambda 0.5) # ms

}

?If(strcmp[^(mePct),Insert:X:Here]=0) {

 @SetVar(mePct 0.3) # ms

}

	 78	

@PrintVar(InternrnExcDecayRate filePostfix InternrnAxonalDelay)

@CreateVar(halfWidth ^Calc(^(dendFilterWidth)/2))

@CopyData(-to DTSFiltA -from "^Fn(^(deltaT),^(halfWidth),1-exp[-

^(halfWidth)/5*^(tFn)])" -type mat -T)

@CopyData(-to DTSFiltB -from

"^Fn(^(halfWidth)+^(deltaT),^(dendFilterWidth),exp[-

^(halfWidth)/5*[^(tFn)-^(halfWidth)]])" -type mat -T)

@AppendData(-from 2 DTSFiltA DTSFiltB -to DTSFiltT -type mat)

@CopyData(-to DTSFilt -from DTSFiltT -type mat -T)

@CopyData(-to WtFilt -from "^Fn(^(deltaT),1,1)" -type mat)

@SetVar(

 title "Trace Conditioning"

 mu ^(setMu)

 Phase 0

 Activity ^Calc(^(ActivityHz) * ^(deltaT) / 1000)

 ni 2048

 DendriteToSomaFilter DTSFilt

 SynapseFilter WtFilt

 FBInternrnAxonalDelay

^Num2Int(^Calc(round[^(InternrnAxonalDelay)/^(deltaT)]))

 FFInternrnAxonalDelay 1 # to allow it to be quasi in-sync

 InternrnExcDecay ^Calc(1-exp[-^(deltaT)/^(InternrnExcDecayRate)])

 ResetPattern zeros

)

	 79	

@MakeRandSequence(-name zeros -len 1 -p 0)

@SetVar(

 ExtExc ^Calc(^(ni) * ^(Activity))

)

@MakeSequence(-name InitPtn -len 1 -non 1 -Nstart 1)

?If(exists[wNoise]) { @SetVar(wNoise ^(mySFR)) }

?If(exists[SynFailRate]) { @SetVar(SynFailRate ^(mySFR)) }

@CreateVar(

mePct varies from 0.2 to 0.5

 me ^Calc(round[^(ni) * ^(mePct) / 10]) # 10 is arbitrary

)

#@SaveData(-from me -to me.dat)

#@SaveData(-from mePct -to mePct.dat)

#@SaveData(-from ActivityHz -to ActivityHz.dat)

?If(exists[PyrToInternrnWtAdjDecay]) {

 @SetVar(PyrToInternrnWtAdjDecay ^Calc(exp[-

^(deltaT)/^(PyrToInternrnWtAdjDecayRate)]))

}

?If(exists[KdAdjDecay]) {

 @SetVar(KdAdjDecay ^Calc(exp[-

^(deltaT)/^(PyrToInternrnWtAdjDecayRate)]))

}

	 80	

@SetVar(

 NMDArise ^Calc(ceil[^(OnRate) / ^(deltaT)])

 theta 0.5

 Con 0.1

 KFF ^Calc(^(KFFBase) * ^(dendFilterWidth))

 KFB ^Calc(^(KFBBase) * ^(dendFilterWidth))

 K0 ^Calc(^(K0Base) * ^(dendFilterWidth))

 wStart ^Calc(^(ActivityHz) * ^(OffRate) * ^Calc(1-^(mySFR)) /

1000)

 Reset 0 # Circular sequence

 alpha ^Calc(exp[-^(deltaT)/^(OffRate)])

 MidPoint ^Calc(^(mePct) * ^(ni) * ^(Activity) / ^(me))

 xNoise ^Calc(^(mePct) * ^(ni) * ^(Activity) / ^(me))

 xTestingNoise ^Calc(^(mePct) * ^(ni) * ^(Activity) / ^(me))

 lambdaFB ^(setLambda)

Begin Izhikevich Block ##

Remove for Classical model #

 IzhA 0.02437434474636943

 IzhB -0.09098031934366621

 IzhC -56.084834380015565

 IzhD 5.715417424859181

 IzhvStart -64.12632551580455 # stable point

 IzhuStart ^Calc(-0.09098031934366621 * -64.12632551580455) #

stable point -60 * -0.1

 IzhIMult 11.361992401899078

End Izhikevich Block ###

)

	 81	

@MakeRandSequence(-name InitPtn -len ^Calc(100/^(deltaT)) -p

^Calc(^(Activity)/^(MidPoint)))

@CreateVar(

 startN 1

 lastN ^Calc(2 * ^(me))

 tonelen ^Num2Int(^Calc(150 / ^(deltaT)))

 pufflen ^Num2Int(^Calc(100 / ^(deltaT)))

 tracelen ^Num2Int(^Calc(^(TraceDuration) / ^(deltaT)))

)

?If(strcmp[^(randomSeed),Insert:Seed:Here]=0) {

 @SetVar(randomSeed 1)

}

@SetVar(seed ^(randomSeed))

@SeedRNG()

@CreateNetwork(-mindelay ^(minAxDelay) -maxdelay ^(maxAxDelay) -dist

uniform -low ^Calc(0.9 * ^(wStart)) -high ^Calc(1.1 * ^(wStart)))

@DeleteData(InitPtn)

@MakeRandSequence(-name InitPtn -Nend ^(ni) -len ^(Period) -p

^Calc(^(mePct)*^(Activity)/^(MidPoint)))

@MakeSequence(-name blank -len ^(tonelen) -non 0 -Nstart 1)

@MakeSequence(-name tone -len ^(tonelen) -st ^(tonelen) -non ^(me))

@MakeSequence(-name trace -len ^(tracelen) -st ^(tracelen) -non 0)

	 82	

@MakeSequence(-name puff -len ^(pufflen) -st ^(pufflen) -non ^(me) -

Nstart ^Calc(^(me)+1))

@MakeSequence(-name nopuff -len ^(pufflen) -st ^(pufflen) -non 0)

@AppendData(-to trainTraceSeq -from 3 tone trace puff)

@AppendData(-to testTraceSeq -from 3 tone trace nopuff)

@CreateVar(firstRecur ^Calc(^(lastN)+1))

@PrintVar(deltaT alpha firstRecur Activity me MidPoint)

@SetVar(seed ^(randomSeed))

@SeedRNG()

@PrintVar(deltaT alpha Activity me MidPoint)

@Test(-name testTraceSeq -time ^SequenceLength(-from testTraceSeq) -

nocomp -norecord 7 TestingThresholds TestingBusLines

TestingIntBusLines TestingKWeights TestingInhibitions

TestingFBInternrnExc TestingFFInternrnExc)

@PrintVar(AveTestAct)

@CreateVar(tempTest 0)

@CreateVar(tempData 0)

%(i 1 ^(numTrainTrials)) {

 @ResetFiring()

 @DeleteData(InitPtn)

 @MakeRandSequence(-name InitPtn -Nend ^(ni) -len ^(Period) -p

^Calc(^(mePct)*^(Activity)/^(MidPoint)))

 @Test(-name InitPtn -time ^SequenceLength(-from InitPtn) -nocomp -

norecord 7 TestingThresholds TestingBusLines TestingIntBusLines

	 83	

TestingKWeights TestingInhibitions TestingFBInternrnExc

TestingFFInternrnExc)

 @DeleteData(trace)

 @MakeRandSequence(-name trace -Nend ^(ni) -len ^(tracelen) -p

^Calc(^(mePct)*^(Activity)/^(MidPoint)))

 @AppendData(-to trainTraceSeq -from 3 tone trace puff)

 @MakeSequence(-name nopuff -len ^(pufflen) -st ^(pufflen) -non 0)

 @AppendData(-to testTraceSeq -from 3 tone trace nopuff)

 @Train(-name trainTraceSeq -trials 1 -nocomp -norecord 7

TrainingThresholds TrainingBusLines TrainingIntBusLines

TrainingKWeights TrainingInhibitions TrainingFBInternrnExc

TrainingFFInternrnExc)

 @PrintVar(AveTrainAct)

 ?If(^(i) = 1) {

 @FileReset(fit_trn_mean_act.dat fit_trn_ssd_act.dat)

 %(j 1 701 50) {

 # This is a little confusing because we're using N (neuron)

where P (timestep) makes more sense

 # That's because CopyData was designed for 0/1 patterns and

not activities

 @CopyData(-from TrainingActivity -Nstart ^(j) -Nend ^Calc(^(j)

+ 49) -to subAct -type mat)

 @SetVar(tempData ^Calc(mean[subAct]))

 @SetVar(tempData ^Calc(1000 * ^(tempData) / ^(deltaT))) #

Convert to Hz

 @SaveData(-from tempData -to fit_trn_mean_act.dat -append)

 }

 @SetVar(tempData ^Calc(sqrt[var[TrainingActivity]]))

	 84	

 @SetVar(tempData ^Calc(1000 * ^(tempData) / ^(deltaT))) #

Convert to Hz

 @SaveData(-from tempData -to fit_trn_ssd_act.dat)

 }

 @DeleteData(TrainingBuffer)

 @SetVar(tempTest 0)

 ?If(^(i) = 1) {

 @SetVar(tempTest 1)

 }

?If(^(i) = ^(numTrainTrials)) {

@SetVar(tempTest 1)

}

 ?If(^(i) % 50 = 0) {

 @SetVar(tempTest 1)

 }

 ?If(^(tempTest) = 1) {

 @ResetFiring()

 @DeleteData(InitPtn)

 @MakeRandSequence(-name InitPtn -Nend ^(ni) -len ^(Period) -p

^Calc(^(mePct)*^(Activity)/^(MidPoint)))

 @Test(-name InitPtn -time ^SequenceLength(-from InitPtn) -nocomp

-norecord 7 TestingThresholds TestingBusLines TestingIntBusLines

TestingKWeights TestingInhibitions TestingFBInternrnExc

TestingFFInternrnExc)

 @DeleteData(trace)

 @MakeRandSequence(-name trace -Nend ^(ni) -len ^(tracelen) -p

^Calc(^(mePct)*^(Activity)/^(MidPoint)))

 @DeleteData(nopuff)

	 85	

 @MakeRandSequence(-name nopuff -Nend ^(ni) -len ^(pufflen) -p

^Calc(^(mePct)*^(Activity)/^(MidPoint)))

 @AppendData(-to testTraceSeq -from 3 tone trace nopuff)

 @Test(-name testTraceSeq -time ^SequenceLength(-from

testTraceSeq) -nocomp -norecord 7 TestingThresholds TestingBusLines

TestingIntBusLines TestingKWeights TestingInhibitions

TestingFBInternrnExc TestingFFInternrnExc)

 @PrintVar(AveTestAct)

 ?If(^(i) = 1) {

 @FileReset(fit_tst_mean_act.dat fit_tst_ssd_act.dat)

 %(j 1 701 50) {

 # This is a little confusing because we're using N (neuron)

where P (timestep) makes more sense

 # That's because CopyData was designed for 0/1 patterns and

not activities

 @CopyData(-from TestingActivity -Nstart ^(j) -Nend

^Calc(^(j) + 49) -to subAct -type mat)

 @SetVar(tempData ^Calc(mean[subAct]))

 @SetVar(tempData ^Calc(1000 * ^(tempData) / ^(deltaT))) #

Convert to Hz

 @SaveData(-from tempData -to fit_tst_mean_act.dat -append)

 }

 @SetVar(tempData ^Calc(sqrt[var[TestingActivity]]))

 @SetVar(tempData ^Calc(1000 * ^(tempData) / ^(deltaT))) #

Convert to Hz

 @SaveData(-from tempData -to fit_tst_ssd_act.dat)

 @SaveData(-from tempTest -to fit_quick.ready)

 }

	 86	

 ?If(^(i) % 50 = 0) {

 @FileReset(fit2_:^(i):.dat)

 %(j 1 701 50) {

 @CopyData(-from TestingBuffer -Nstart ^Calc(^(me) + 1) -Nend

^Calc(^(me) * 2) -Pstart ^(j) -Pend ^Calc(^(j) + 49) -to subBuff -

type mat)

 @SetVar(tempData ^Calc(mean[subBuff]))

 @SaveData(-from tempData -to fit2_:^(i):.dat -append)

 }

 @SaveData(-from tempTest -to fit2_:^(i):.dat.ready)

 }

 @DeleteData(TestingBuffer)

 }

}

@DeleteData(TrainingActivity)

