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Abstract 

 The Levy model is a neural network model of the CA3 region of the 

hippocampus. Previous work with the Levy model has shown success in modeling such 

hippocampally dependent tasks as trace conditioning, configural learning, spatial 

navigation, and sequence learning. Learning these tasks require network-scale behavior 

over simulated time-scales of minutes or longer. Most simulations of the model use 

simple McCulloch-Pitts neurons operating at time-scales of 15-30 ms. 

 Replacing the McCulloch-Pitts neurons with Izhikevich neurons allows the model 

to demonstrate biologically plausible neuron-scale behavior over time-scales of 1 ms and 

shorter. However, reproducing the network-scale behavior shown using the simpler 

McCulloch-Pitts neurons becomes more complicated due to the increased number of 

interacting parameters. 

 A genetic algorithm is used to explore these interacting parameters. Since the 

fitness function requires running a simulation of the CA3 region of the hippocampus, a 

proxy fitness function is used that simulates less than one second of time in the 

hippocampal model rather than a complete multi-minute simulation. The full fitness 

function only needs to be evaluated for parameter settings that pass a threshold value for 

the proxy function. Using a proxy-oriented genetic algorithm, settings were for the 

extended Levy model so that it can operate at millisecond time scales, demonstrate 

neuron-scale plausible behavior, while still demonstrating trace conditioning acquisition.  
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Overview 

Neural Networks and the Levy Model of the Hippocampus 

The term “artificial neural network” is used to describe a variety of systems of simulated 

neurons that differ in both topology and detail of simulated neurons. What these systems 

have in common is multiple simulated neurons with some of the neurons receiving 

information from others. 

 Three broad types of topology include feed-forward (Figure 1), fully connected 

(Figure 2), and sparsely connected (Figure 3). The hippocampus has a sparsely connected 

topology, so it is used for this research. 

 

Figure	  1.	  Feedforward	  neural	  network.	  Neurons	  can	  be	  ordered	  such	  that	  signals	  always	  travel	  from	  

top	  to	  bottom.	  No	  cycles	  exist.	  
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 Simulated neurons vary from the trivially simple to incredibly complex. Among 

the simplest simulated neuron is the McCulloch-Pitts neuron. McCulloch-Pitts neurons 

take input from other neurons, multiply them by a weight and sum those weighted values. 

The neuron fires only if that sum exceeds a specific threshold. [1] There is no time-scale 

or memory built in to McCulloch-Pitts neurons, although for topologies analogous to 

biological neural networks a time-scale can be inferred from the mean activity of the 

Figure	  2.	  Fully	  connected	  neural	  network.	  Every	  neuron	  is	  connected	  to	  every	  other	  neuron.	  The	  

number	  of	  connections	  necessarily	  scales	  as	  n2.	  

Figure	  3.	  Sparsely	  connected	  neural	  network.	  Each	  neuron	  is	  connected	  to	  multiple	  other	  neurons,	  

and	  cycles	  will	  exist.	  In	  this	  example,	  each	  neuron	  is	  connected	  to	  20%	  of	  the	  neurons	  in	  the	  network.	  

If	  the	  relationship	  of	  being	  connected	  to	  a	  fixed	  percentage	  of	  other	  neurons	  holds,	  then	  the	  number	  

of	  connections	  would	  scale	  as	  n2.	  Alternatively,	  each	  neuron	  might	  be	  connected	  to	  a	  fixed	  number	  of	  

other	  neurons,	  in	  which	  case	  the	  number	  of	  connections	  scales	  linearly	  with	  n.	  
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neurons in the network. 

 Slightly more complex is a leaky integrate-and-fire neuron. In integrate-and-fire 

neurons a potential is maintained from one time-step to the next, with the weighted sum 

of the neuron’s inputs for each time-step being added to that potential. If the potential 

exceeds a threshold, then the neuron fires, and the potential is reset. For leaky integrate-

and-fire, the potential is reduced by a fractional amount from one time-step to the next. 

How much this potential reduces over a time-step can be used to infer a time-scale by 

comparison to a biological neuron. 

 Very complex simulated neurons may include details such as chemical diffusion, 

ion flow, dendritic structure, and more. A moderately complex simulated neuron model is 

the Hodgkin-Huxley model, which simulates action potentials and their proposed ionic 

mechanisms. [2] Two simplified versions of this model that capture most of its behavior 

while requiring fewer computations is the FitzHugh-Nagumo model [3, 4] and the 

Izhikevich model [5]. The Izhikevich neuron is of special interest as it is “as biologically 

plausible as the Hodgkin-Huxley model” [5], but requires only about 1% as much 

processor time (13 FLOPs per neuron per time step versus about 1200 FLOPS per neuron 

per time step). [6] 

The Levy Model of the Hippocampus 

The Levy model of the hippocampus is not a neural network model per se. It is a 

statement of hippocampal purpose, a description of hippocampal architecture, a 

prescription for providing inputs and interpreting outputs (Table 1), and a set of formulae 

governing how neurons respond to their inputs (Table 2)[1]. More specifically, the model 

holds that the hippocampus is a sparsely connected sequence learning device that gathers 
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and randomly mixes, or recodes, inputs from sensory cortices. From the Levy model arise 

a suite of neural network models that have these features in common. 

1. Neurons are thresholded—when inputs (integrated or instantaneous) exceed a 

threshold, they produce a spike 

2. Neurons produce binary output—a spike when threshold is exceeded, and no 

spike when it threshold has not been exceeded 

3. The majority of connections are excitatory 

4. Synapses use a Hebbian learning rule to strengthen connections when the pre-

synaptic neuron fires shortly before the post-synaptic neuron, or to weaken 

connections when it does not 

5. Recurrent connectivity is sparse and random 

6. The majority of neural inputs are recurrent 

7. Randomization processes exist 

8. Inhibitory interneurons approximate control activity 

9. Activity is low, but not too low 

Table	  1.	  Properties	  of	  the	  Levy	  minimal	  model	  of	  the	  CA3	  region	  of	  the	  hippocampus. 

 Typically the Levy model uses McCulloch-Pitts neurons, with the time step of the 

simulations between 10 and 30 ms. In this scenario, the time step determines both the 

updating of the internal excitation and the axonal communication lag. For simulations 

using integrate-and-fire neurons (or Izhikevich neurons, to be discussed later), the time 

step of the simulations can be taken down below 10 ms, and axonal lag can be modeled 

more explicitly. 

 Although the neural network model primarily models the CA3 region of the 
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hippocampus, the Levy model has the external inputs to the neural network model 

representing a mixture of the entorhinal cortex (EC) and dentate gyrus (DG) inputs, and 

the outputs of the model are understood to be interpreted by the CA1 region of the 

hippocampus. The neural network model primarily models the pyramidal (excitatory) 

neurons in the CA3 region, along with two interneurons (inhibitory neurons), one for 

modulating the feed-forward inhibition (i.e., the DC/EG inputs), and one for modulating 

the feed-back inhibition. Inhibition is implemented via division rather than subtraction, 

thus inputs are always non-negative. 

 The topology of the CA3 neural network is modeled as a randomly and sparsely 

connected network. Each neuron receives inputs from approximately n•c other neurons in 

the network and similarly provides outputs to approximately n•c other neurons in the 

network, where n is the number of neurons in the network and c is the connectivity. For 

networks on the order 100,000 neurons or fewer, c is usually set to 0.1. 

 Synaptic modification is Hebbian: “neurons that fire together, wire together.” The 

last equation in Table 1 gives the most common form of synaptic modification, but 

variants of this rule replace the 

€ 

z j t −1( ) with 

€ 

ˆ z j t −1( ), where the latter takes into account 

activity beyond just the last time step [7]. Simulations using the Levy model use synaptic 

modification during training trials, but not during testing trials. (See also Table 3.) 

 Synaptic failures are included in the model via the synaptic failure channel (Φ). 

The synaptic failure channel is a unary function that takes a binary argument (zero or 

one) and produces a binary output. If the input value is zero, then the output is also zero. 

However, if the input value is one, then the output value has a probability of f of being 

zero and a probability of (1 - f) of being one. Thus, the synaptic failure channel can be 
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considered a Bernoulli random variable (with success probability of 1 - f) multiplied by 

its input. Including synaptic failures in the model improves performance for larger 

networks with lower activity levels. [8] 

 Another important feature of the Levy model is activity control. The equations in 

Table 1 give one example of how activity control is maintained through shunting, 

feedback, and feed-forward inhibition. A simpler method, competitive activity control, 

fires neurons with the highest somato-dendritic excitation. [9] 

Somato-dendritic excitation/inhibition: 

 

(Eq. 1) 

Output:

 

 

(Eq. 2) 

Synaptic modification: 

(Eq. 3) 

Table 2. Typical formulae governing the Levy model. wij is the weight from neuron i to j; cij is a {0,1} 

value defining whether there is a connection from neuron i to j;Φ  is a {0, 1} synaptic failure channel 

(see text for more details); zi is a {0, 1} value based on whether neuron i fires, nA is the set of all 

neurons, K0 is a resting shunting inhibition constant; KFF is a feed-forward inhibition constant; xi is a 

{0,1} value based on whether neuron i was driven externally; KFB is a feedback inhibition constant; 

and µ is the synaptic modification rate.[1] Variants of the model might use different rules for 

synaptic modification [7] or for determining which neurons fire[9]. 

€ 

yj t( ) =
wij

i∈nA
∑ cijΦ zi t −1( )( )

wij
i∈nA
∑ cijΦ zi t −1( )( )+ K0 + KFF xi

i∈nA
∑ t −1( )+ KFB zi

i∈nA
∑ t −1( )

€ 

zj t( ) = 1 if yj t( ) ≥1/ 2∨ xj t( ) =1

0 otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

€ 

Δwij t( ) =µzj t( ) zi t −1( ) − wij t −1( )( )
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Term Definition 

Time step 

(Δt) 

The smallest unit of time in a neural network model that does not use continuous 

time. 

Interval Time frame (composed of multiple time steps) over which a stimulus (or lack of 

stimulus) is active. 

Trial A trial is composed of several time steps (anywhere from 3 to a thousand). 

Training trial Trial during which a sequence of external neuronal patterns are presented to the 

simulated hippocampus and synaptic modification occurs. 

Testing trial Trial during which a portion of a training sequence is presented to the simulated 

hippocampus and measurements are made to determine how well the correct 

sequence is recalled. Synaptic modification is disabled during testing. 

Episode Multiple training trials and one or more testing trials usually representing an 

experiment performed on a lab animal. 

Table 3. Some terms used in describing time in the Levy model. 

Demonstrating that the Levy Model Computes Conditional Probabilities 

In understanding how the Levy model provides sequence prediction functionality, I 

demonstrate that the equations in table 1 can be shown to compute conditional 

probabilities. In the conditional probability based model for the hippocampus, the CA3 

region generates the probability that a particular event will occur in the immediate future, 

given that a particular sequence of events has just occurred. The firing pattern of the CA3 

encodes this probability, based on external input from the entorhinal cortex and dentate 
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gyrus, as well as recurrent input from within the CA3 itself, which provide information 

regarding previous events. One method of decoding a CA3 forecast [1] assumes that a 

CA3 pyramidal neuron that fires when an event occurs also fires as a signal that the same 

event is expected to occur. 

 Mathematically, the necessary forecasting calculation for the idealized CA3 

neuron is 

€ 

P Z j t( ) =1Z t − Δt( ) = z( ) , where Zj(t) is the contribution of neuron j to 

determining whether or not an event is expected to occur, and 

€ 

Z t − Δt( )  is recurrent input 

to the CA3. For this to be a forecasting calculation, the event 

€ 

Z t − Δt( ) = z  must precede 

the event Zj(t) =1. We will use this time ordering of events for the remainder of this 

discussion, so the implicit term t will be dropped from our equations. 

 For a single pyramidal neuron in the mammalian CA3, the number of afferent 

neurons in 

€ 

Z  is on the order of 104, so even if the individual components of 

€ 

Z  are 

constrained to be binary, there are 210,000 possible values that 

€ 

Z  can attain. Therefore, 

most values of 

€ 

Z  will never be experienced, so 

€ 

P Z j =1Z = z( ) will not be calculable 

simply by examining prior history. However, according to Bayes’ Theorem, 

  

(Eq. 4) 

This can be combined with an assumption of approximate conditional independence: 

  

(Eq. 5) 

where 

€ 

P* Z = z Z j =1( )  indicates the approximation that the components of 

€ 

Z  are 

independent of one another given the output of neuron j. 

€ 

P Z j =1Z = z( ) =
P Z = z Z j =1( )P Z j =1( )

P Z = z Z j = 0( )P Z j = 0( ) + P Z = z Z j =1( )P Z j =1( )

€ 

P* Z = z Z j =1( ) = P Zi = zi Z j =1( )
i=1

n

∏
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 The individual probabilities 

€ 

P Zi = zi Z j =1( )  can be estimated by the observed 

average value of Zi, prior to neuron j firing (that is, prior by Δt) since the values it can 

take on are only zero and one. Specifically, 

  

(Eq. 6) 

where 

(Eq. 7) 

It is important to note that there is no direct relationship between statistics 

€ 

ˆ Z ij 1( )  and 

€ 

ˆ Z ij 0( ). 

Similarly, 

€ 

P Z j =1( ) = ˆ Z j  where 

€ 

ˆ Z j =
def

E Z j[ ] . Since the zi terms are binary, the preceding 

equations can be combined as: 

(Eq. 8) 

 

This equation now similar to Eq. 1, except that it uses products instead of summations. 

Logarithmic manipulation changes the products into summations.  

Dividing the numerator into the denominator gives: 

 

(Eq. 9) 

Replacing the probability calculation with an odds calculation yields: 

 

(Eq. 10) 

€ 

P Zi =1Z j =1( ) = ˆ Z ij 1( ), P Zi = 0 Z j =1( ) =1− ˆ Z ij 1( ),

P Zi =1Z j = 0( ) = ˆ Z ij 0( ), and P Zi = 0 Z j = 0( ) =1− ˆ Z ij 0( ),

€ 

ˆ Z ij 1( ) =
def

E Zi Z j =1[ ] and ˆ Z ij 0( ) =
def

E Zi Z j = 0[ ] .

€ 

€ 

P* Z j =1Z = z( ) =
ˆ Z j Zij 1( )

zi 1− ˆ Z ij 1( )( )i=1

n
∏

1−zi

ˆ Z j Zij 1( )
zi 1− ˆ Z ij 1( )( )i=1

n
∏

1−zi

+ 1− ˆ Z j( ) Zij 0( )
zi 1− ˆ Z ij 0( )( )i=1

n
∏

1−zi
.

€ 

P* Z j =1Z = z( ) = 1+
1− ˆ Z j( )

ˆ Z j

Zij 0( )
zi 1− ˆ Z ij 0( )( )

1−zi

Zij 1( )
zi 1− ˆ Z ij 1( )( )

1−zii=1

n
∏

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

−1

.

  

€ 

P* Z j =1
 
Z =  z ( )

P* Z j = 0
 
Z =  z ( )

=
ˆ Z j

1− ˆ Z j

1− ˆ Z ij 1( )

1− ˆ Z ij 0( )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

ˆ Z ij 1( )
zi 1− ˆ Z ij 0( )( )

ˆ Z ij 0( )
zi 1− ˆ Z ij 1( )( )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ i=1

n
∏

zi
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To satisfy its role of calculating conditional probability, the neuron fires if the odds 

exceed some threshold (φ), where φ=1 is a logical but non-mandatory choice. This 

requirement can be written as: 

 

(Eq. 11) 

Taking the natural logarithm of both sides and using the substitutions 

€ 

vij =
def

ln ˆ Z ij 1( ) 1− ˆ Z ij 0( )( ) ˆ Z ij 0( ) 1− ˆ Z ij 1( )( )( ), 

€ 

K0 =
def
lnϕ , 

€ 

K1 j( ) =
def

ln 1− ˆ Z j( ) ˆ Z j( ) , and 

€ 

K2 j( ) =
def

ln 1− ˆ Z ij 0( )( ) 1− ˆ Z ij 1( )( )( )i=1

n
∑ , simplifies Eq. 11 to: 

 

(Eq. 12) 

which can trivially be rewritten as: 

 

(Eq. 13) 

 

 

where the explicit dependence on time has been reintroduced for clarity. Equation 13 now 

closely resembles Eq. 1 and 2. 

 Therefore, the only information required for a neuron to create reasonable 

forecasts of the future are the state of its afferent neurons (zi(t−Δt), transmitted through 

synapses), the expectation of the neuron itself firing (

€ 

ˆ Z j ) in a computational interval, the 

expectation of its afferent neurons firing when the neuron fires (

€ 

ˆ Z ij 1( ) ), and the 

€ 

ˆ Z j
1− ˆ Z j

1− ˆ Z ij 1( )

1− ˆ Z ij 0( )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

ˆ Z ij 1( ) 1− ˆ Z ij 0( )( )
ˆ Z ij 0( ) 1− ˆ Z ij 1( )( )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

z j

i=1

n
∏ >ϕ.

€ 

vijzi > K0 +K1 j( ) +K2 j( )
i=1

n

∑ ,

€ 

2 vijzi > vijzi
i=1

n

∑ +K0 +K1 j( ) +K2 j( )
i=1

n

∑ ,  or

yj t( ) =
def

vijzi t − Δt( )
i=1

n

∑

vijzi t − Δt( )
i=1

n

∑ +K0 t − Δt( ) +K1 j( ) t − Δt( ) +K2 j( ) t − Δt( )
>

1
2

,
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expectation of its afferent neurons firing when the neuron is quiescent . Mechanisms exist 

for the neuron to generate approximations for each piece of necessary information. 

 A neuron's post-synaptic excitability encodes the expectation of its own firing. 

That is, lower expectation of firing leads to lower excitability. This naturally arises out of 

the role that K1(j) plays in Eq. (13). Specifically, decreasing the value of 

€ 

ˆ Z j  increases the 

value of K1(j), which decreases the value of yj. 

 The expectation of an afferent neuron recently firing given that this neuron is 

firing (

€ 

ˆ Z ij 1( )) is the statistical correlate of the post-synaptic modification rule described in 

Eq. 3 and elsewhere. This post-synaptic modification rule only modifies the synaptic 

weights when the post-synaptic neuron (Zj) fires. When the post-synaptic neuron fires, 

the weight is strengthened if the pre-synaptic (afferent) neuron fired in the preceding 

interval, and weakened if the pre-synaptic neuron was quiescent. Furthermore, Levy et al. 

[10], demonstrate that the modification rule: 

 

(Eq. 14) 

under assumptions of stationarity and ergodicity leads to 

€ 

wij → ˆ Z ij 1( )  as 

€ 

t →∞ . 

 Similarly, the expectation of an afferent neuron recently firing when this neuron is 

quiescent (

€ 

ˆ Z ij 0( )) is the equivalent of habituation. The synapse becomes habituated to 

afferent input if it is not followed by a post-synaptic spike, and this habituation decays in 

the absence of afferent input [10]. The synaptic modification equation of this habituation-

like process is: 

€ 

Δwij t( ) = µz j t( ) zi t − Δt( ) − wij t( )( )
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(Eq. 15) 

which leads to 

€ 

wij
− → ˆ Z ij 0( ) under the same assumptions as those made for Eq. 14. 

The Izhikevich Neuron 

The Izhikevich neuron model is a variant of the FitzHugh-Nagumo model, altered to 

match the behavior of many different types of neurons though the adjustment of six 

parameters, several of which are tightly coupled. The Izhikevich equations are: 

 

(Eq. 16) 

In the paper where he introduces his new neuron model [5], he uses f=5 and g=140, 

which were obtained by fitting the membrane voltage dynamics to that of a cortical 

neuron, but when modeling his integrator neuron (which has strong similarities to the 

pyramidal neuron in the hippocampus), he uses f=4.1 and g=108. Unless specified 

otherwise, the latter values are the values used in the current research. 

 What is most significant about the Izhikevich neuron is that it is as biologically 

plausible as the Hodgkin-Huxley model, while being approximately as computationally 

efficient as an integrate-and-fire model. [5] In the Izhikevich equations, v corresponds to 

the membrane potential of the neuron (which have been recorded for many different 

types of neurons), and u acts as a membrane recovery variable. This membrane recovery 

variable does not correspond to a single measurable phenomenon but is intended to 

represent the activation of potassium ionic currents and the inactivation of sodium ionic 

currents. [5] 

€ 

Δwij
− t( ) = µ 1− z j t( )( ) zi t − Δt( ) − wij

− t( )( )

€ 

dv
dt

= 0.04v 2 + fv + g − u + I, du
dt

= a bv − u( )

if v ≥ 30 mV, then
v = c

u = u + d
⎧ 
⎨ 
⎩ 
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Gamma and Theta Oscillations 

With the introduction of representative neuron spiking behavior to the Levy model, the 

study of gamma and theta oscillations as they relate to that model becomes possible.  

 Gamma oscillations are cycles in neural activity that occur at intervals of 25-100 

Hz [11], and researchers have investigated their connection to consciousness [12, 13]. 

The magnitude of gamma oscillations are typically much smaller than the magnitude of 

theta oscillations. 

 Gamma oscillations are present in a sparsely connected random neural network 

containing only 1,000 neurons (800 excitatory and 200 inhibitory), when the excitatory 

neurons mimic cortical neurons. These gamma oscillations are an emergent property of 

his neural network, in that there is no component driving the neurons with a gamma-like 

frequency [5]. A research question is whether gamma oscillations are also present in my 

modified version of the Levy model that uses the Izhikevich integrator neuron. 

 Theta oscillations in the hippocampus are cycles in neural activity that occur at 

intervals of 4-10 Hz [14]. They have been observed to occur in rats while active [15] and 

in humans during REM sleep and from the transition from sleep to waking [16]. 
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Trace Conditioning 

In humans, trace conditioning experiments involve sounding a tone, a brief delay, and 

then a mild electric shock. Human subjects are said to have acquired trace conditioning 

when a galvanic skin response is detectable prior to the delivery of the shock. In rabbits, 

trace conditioning experiments involve a tone, a brief delay, and then a puff of air to the 

eye. Rabbits are said to have acquired trace conditioning when they blink immediately 

prior to the air puff. (More precisely, the rabbit closes its nictitating membrane, which is 

essentially a translucent inner eyelid and serves the same purpose as a blink would for 

humans.) More generally, trace conditioning involves the pairing of a conditioned 

stimulus (tone) with an unconditioned stimulus (air puff), resulting in a response (blink), 

with the two stimuli separated by a trace interval (on the order of 500 ms). Trace 

conditioning is acquired when a response (blink) begins just before the end of the trace 

interval (regardless of the occurrence of the unconditioned stimulus). Technically, the 

“blink” due to the unconditioned stimulus is known as an unconditioned response and the 

blink due to the conditioned stimulus is known as a conditioned response. 

 In neural network computer simulations, trace conditioning is modeled by 

identifying a subset of all hippocampally modeled neurons (nA) to be tone neurons (nt) 

and another subset to be puff neurons (np) (approximately 2-5% of all neurons make up 

each subset). During the tone interval (the first 150 ms of a trial), the tone neurons are 

quasi-randomly activated such that their activation accounts for 20-50% of the overall 

network activity (ad|nA|). Thus, during the tone interval the tone neurons fire at about 10 

times the average firing rate. Similarly, during the puff interval (the last 100 ms of each 

trial), the puff neurons fire at about 10 times the average firing rate. After 200 training 
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trials, a testing trial is initiated during which only the tone neurons are activated 

externally (and only during the tone interval), and the resultant activity is recorded to 

determine the fraction of puff neurons that are activated at relevant time intervals as 

defined in Table 3. The normal functioning of the network involves synaptic 

modification; however, synaptic modification does not occur during the testing trial. 

 Among the hippocampally dependent tasks the Levy model has been successful 

with, trace conditioning is the only one with a time component to its measure of success. 

[7] However, although the original Levy model (Table 1) has been used at timescales 

below 10 ms, it has demonstrated success with trace conditioning only at scales longer 

than 20 ms [1]. 

 An episode exhibits the target behavior (B1) when the activity of the puff neurons 

during the blink interval of a test trial is more than one third the external activation 

percentage of the puff neurons during the puff interval of a training trial. For example, in 

Figure 1c the activity of the puff neurons averaged over the blink is more than half the 

external activation percentage during the puff interval. Two forms of near-target behavior 

are known as a bridge, when the puff neurons are activated at a reasonably high level, but 

not until the puff interval; and a collapse, when the puff neurons are activated at a 

reasonably high level, but too early. Poor performance is when they are never sufficiently 

activated. 

 In addition to the number of puff neurons that are activated during particular 

intervals, it is also instructive to examine the total number of neurons that fire at each 

time step. The average number of times all neurons fire per simulated second is measured 

in Hertz (Hz), with the desired value varying from 0.5 Hz to 2.5 Hz. The instantaneous 
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firing rate is found by taking the number of neurons firing in a time-step divided by the 

total number of neurons times the number of time-steps in a second. Good activity (B3) is 

activity that stays close to the desired activity rate. A summary of these behaviors can be 

found in Table 5. 

 Several factors determine the computational requirements of an episode, but the 

primary factors are the number of neurons in the model (|nA|), the fraction of neurons 

firing in a simulated second (pa), the number of simulated seconds in a trial (tt), the 

number of trials in an episode (mt), and the connectivity of the network (c). Of these 

factors, tt and mt are defined by the task being studied (trace conditioning here). The 

remaining factors are constrained by the biology being simulated. For most animals, the 

local connectivity of the hippocampus is approximately 10%, and the average firing rate 

for each neuron is about 0.5 to 2.5 Hz, yielding c ≈ 0.1 and pa ≈ 50 to 250%. 

 The number of neurons, |nA|, varies significantly from one species to another. In 

mammals typically used in hippocampal studies, the number of neurons in the CA3 

region of the hippocampus varies from about 150 to 220 thousand in the mouse [17] to 

about 2 to 3 million for humans [18], suggesting a lower bound for |nA| of 1.5 x 105. Most 

calculations in the model depend linearly on the number of active neurons (|nA|pattmt) in 

an episode, with the dominant computational requirements being from those calculations 

that depend linearly on the number of active synapses (|nA|2cpattmt), where the additional 

factor of |nA|c defines the number of synapse per neuron. Thus, simulating the entire CA3 

region of the hippocampus is presently infeasible when running thousands of episodes. 
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 The neural network model being studied here has 2,048 neurons (using fewer 

neurons results in too little recurrent activity) with each neuron connected to 205 other 

neurons (c ≈ 0.1). Of the 2,048 neurons, between 41 and 102 (depending on the value of 

Figure	  2:	  Number	  of	  neurons	  expected	  to	  fire	  per	  millisecond	  over	  time	  for	  different	  neuron	  

categories	  and	  different	  trials.	  The	  top	  graph	  (a)	  represents	  the	  number	  of	  tone	  neurons	  expected	  to	  

fire	  on	  the	  first	  training	  trial.	  The	  middle	  graph	  (b)	  represents	  the	  number	  of	  puff	  neurons	  expected	  

to	  fire	  on	  the	  first	  training	  trial.	  The	  last	  graph	  (c)	  represents	  the	  number	  of	  puff	  neurons	  expected	  to	  

fire	  on	  the	  last	  training	  trial	  after	  trace	  conditioning	  has	  been	  acquired.	  



	  18	  

pe – see Table 6) are selected as the tone neurons and a disjoint set of neurons of the same 

size are selected as the puff neurons. 

Extending the Levy Model to the 1 ms Time-Scale 

 Several attempts have been made to extend the Levy model below 15 ms. These 

extensions begin to break down, however, as the time scale approaches 1 ms [16D 19]. 

The first problem one sees in extending the model to shorter time scales is that to capture 

the biological reality of neurons firing approximately only every 500 ms (on average), 

there are too few neurons firing in a single time-step to provide reliable inputs for the 

next time-step. For example, with 2,000 neurons with an average firing rate of 2.5 Hz in a 

simulation running at 1 ms, only 5 neurons are firing per time-step on average. With each 

neuron receiving input from only 10% of the other neurons, there are many times when 

no neuron would receive input from more than one other neuron, but if inhibition is 

lowered enough to allow a single input to cause another neuron to fire, there would be 

insufficient inhibition to prevent run away activity. 

 Early approaches to solve this problem relied upon leaky integrate-and-fire 

neurons so neurons would be able to integrate input over several time-steps. This 

approach worked in simulations requiring no concrete representation of time, but in 

simulations where time was an important component such as with trace conditioning 

(discussed later), time was not adequately modeled. Specifically, the learnable trace 

interval in the trace conditioning task did not agree with experimental results. 

 As a means of addressing this issue, I replaced the leaky integrate-and-fire neuron 

used in previous attempts with a neuronal model created by Izhikevich. (See 

http://github.com/BenHocking/NeuroJet for the source code for the neural network.) The 
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Izhikevich neuron is “as biologically plausible as the Hodgkin-Huxley model”[5], but 

requires only about 1% as much processor time (13 FLOPs per neuron per time step 

versus about 1200 FLOPS per neuron per time step[6]). Adding the Izhikevich neuron 

requires six (6) new parameters. However, the Izhikevich model of the neuron is really 

more a model of the soma, as it provides no details about synaptic, axonal, or dendritic 

functionality. The additional synaptic details include the NMDA-R on-rate and off-rate 

time constants (2 new parameters). The additional axonal details include the axonal delay 

from pyramidal neuron (excitatory) to interneuron (inhibitory) as well as the lower and 

upper bounds for the axonal delay from pyramidal to pyramidal neuron (3 new 

parameters). A dendritic filter was added which could require a large number of free 

parameters, but in practice only added one (1) new parameter: dendritic filter width. 

Furthermore, the interneuron model was updated, but not to use Izhikevich neurons, but 

rather with two (2) new parameters for excitation decay and for pyramidal-interneuron 

synaptic modification. All combined this resulted in 14 new parameters (while one 

parameter, α, is deprecated). Discovering viable settings for these parameters has 

demonstrated that the Levy model with these extensions is sufficient to operate 

neurophysiologically at timescales as short as 1 ms [20, 21]. The new equations are 

shown in Table 4. 
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Synaptic current injection:  

 

Dendritic current injection:	   

 

Somatic current injection:	   

 

Somatic differential equations:  

 

 

Somatic firing:

€ 

v j t( )= c;u j t( )= u j t − Δt( )+d;z j t( )=1 if v j t( )> 30∨ x j t( )=1

z j t( )= 0 otherwise

 

Interneuron activation: 

 

 

 

Synaptic modification:

€ 

Δwij t( ) = µz j t( ) ˆ z j t − Δt( ) − wij t( )( )  

Pre-synaptic time-averaging: 

 

Table	  4.	  Extension	  of	  the	  Levy	  Model	  to	  the	  1	  ms	  timescale.	  Parameters	  not	  discussed	  in	  Table	  

1	  are	  the	  dendritic	  filter	  half-width	  (thw),	  the	  Izhikevich	  parameters	  (a-d,	  g),	  interneuron	  

decay	  rate	  (λ),	  axonal	  delays	  (aij,	  tI),	  on-rate	  time	  constant	  (τon),	  off-rate	  decay	  rate	  (α),	  and	  Ψi,	  

the	  time	  when	  neuron	  i	  last	  fired.	  For	  summations,	  the	  index	  i	  is	  over	  all	  neurons,	  and	  t	  is	  over	  

time-steps.	  

	  

	  

€ 

IFF t( )= λIFF t − Δt( )+ 1− λ( ) xi
i∈nA

∑ t − tI( )

IFB t( )= λIFB t − Δt( )+ 1− λ( ) zi
i∈nA

∑ t − tI( )

€ 

ˆ z j t( ) = t −Ψi /τon if τ i ≤ τon

αˆ z j t − Δt( ) otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

! 

s j t( )= wij
i
" cij# zi t $ aij( )( )

! 

I j t( )= 1
td=1

thw
" # e# thwtd /5s j t # td( )+ thw

td=thw+1

2
" e

# thw td # thw( ) /5s j t # td( )

! 

y j t( )=
I j t( )

I j t( )+K0 +KFFIFF +KFBIFB

€ 

dv j

dt
= 0.04v j

2 t( ) + 4.1v j t( ) +108 − u j t( ) + gy j t( ); 
du j

dt
= a bv j t( ) − u j t( )( )
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Genetic Algorithms 

Genetic algorithms (GAs) are a form of evolutionary algorithms that are modeled after 

biological evolutionary genetic processes. They include features such as selection of the 

fittest individuals, reproduction, cross-over, and mutation. GAs are a form of heuristic 

search that do not require that the objective function have a known derivative (unlike 

gradient descent) and that can have multiple permutations evaluated in parallel (unlike 

traditional implementations of simulated annealing). The objective function in genetic 

algorithms is referred to as its fitness function. In the work done here, the fitness function 

will always be defined such that maximal values of the fitness function are considered 

optimal. 
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Methodologies 

Measuring gamma oscillations 

Simulations designed to analyze gamma and theta oscillations used a time step resolution 

of 3.575 ms, between 4,000 and 6,000 neurons, and adjusted inhibition parameters so that 

average activity was approximately 2 Hz. 

 A fast Fourier transform is used to generate a power spectrum of the total network 

activity, 

€ 

zi t( )
i=1

n
∑ , with a brick wall filter due to the resolution, or time-step size, of the 

simulation. For example, if the time step size is 3.575 ms, the brick wall filter is, as a 

result of this time step size, approximately 280 Hz. Results for the power spectrum are 

therefore only shown up to 140 Hz. The result of the fast Fourier transform is multiplied 

by its complex conjugate and divided by the sample size to achieve the power spectrum 

across frequencies. The resulting power spectrum is then collected into bins of width 0.1 

Hz. Results of the fast Fourier transform are shown in linear scale, and are also shown in 

logarithmic scale as the gamma oscillation becomes less prominent. 

 The first experiment performed to measure gamma oscillations was to train the 

neural network on a simple repeating sequence of 32 patterns of externally activated 

neurons (see Fig. 5 for details). Each pattern was presented to the network for 143 ms, so 

that one sequence of 32 patterns required a total simulated time of 4.576 seconds. After 

the network learns the sequence, synaptic modification is turned off, and the network is 

driven for another 500 trials, during which the activity of the network during each time-

step (3.575 ms) is measured. 
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 The second and third experiments to perform to measure gamma oscillations use 

the trained neural network from the first experiment. In the second experiment, the 

repeating sequence is replaced with random noise, and in the third experiment no external 

input is provided, so that all activity is recurrent. 

 In the fourth set of experiments performed to measure gamma oscillations the 

strength of the divisive inhibition is reduced so that the network will have a higher 

average firing rate. Whereas the first three experiments all have an average firing rate of 

2 Hz, in the fourth set of experiments 4 and 8 Hz scenarios are examined. 

Measuring theta modulated gamma oscillations 

Theta-modulated input was presented using several different techniques. In all cases, the 

input was modulated by the changing the probability a neuron would be externally 

activated. The simplest technique involved using a sine wave such that the probability a 

neuron would be externally activated is 

(Eq.	  17)	  

where 

€ 

ωθ ≈ 43.91 Hz  corresponding with a theta frequency of approximately 7 Hz. B 

was set to one-half of A such that the maximum probability of being externally activated 

was three times the minimum probability. To achieve some asymmetry in the theta 

oscillations, a second periodic function, shown in Fig. 1, was also used, although only for 

the last simulation. This periodic function, S(x), is given by 

 

(Eq.	  18)	  

 

As with the sine wave, simulations using this periodic function would have neurons 

€ 

pe = A + Bsin ωθ t( ),

€ 

S =
0, 5π 3 < x < 2π

−1 + x0.4ex 1.8 , 0 < x < 5π 3
⎧ 
⎨ 
⎩ 
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externally activated with a probability 

 

(Eq.	  19)	  

 The frequency at which the input was modulated was fixed for some simulations 

and allowed to randomly vary (from cycle to cycle) in other simulations. The period of 

modulation would be 143 ms when fixed and between 133 and 153 ms when allowed to 

vary. 

 

Genetic algorithm exploration 

The basic structure of the genetic algorithm used for this research will remain constant. 

(See http://github.com/BenHocking/ShortCircuitGA for the genetic algorithm source 

code.) The population size is 100, with 10 elites that are automatically propagated to the 

next generation without modification. Each genotype consists of 21 genes residing on the 

[0, 1) interval, with each gene being mapped to the minimum and maximum values 

€ 

pe = A + B⋅ S ωθ t −π 3( )

Figure	  3.	  Periodic	  function	  used	  to	  modulate	  input.	  This	  periodic	  function	  (Eq.	  (18))	  is	  designed	  to	  

crudely	  approximate	  the	  reaction	  of	  neurons	  in	  the	  presence	  of	  changing	  stimuli.	  
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allowed by the parameter it represents. 

 The mutation probability for each gene is 0.03, with a mutation being generated 

on the [0, 1) value using a truncated normal distribution with a mean equal to the prior 

value of the gene, a standard deviation of 0.2, and bounds of [0, 1). The approach used 

here is that when a gene is mutated to generate the new value from a normal distribution 

with a mean given by the unmutated value of the gene and a standard deviation of 0.2. 

All genes reside on the [0, 1) number line and are mapped to a given minimum/maximum 

value using the formula 

€ 

x max−min( ) +min  for continuous parameters and 

€ 

x max−min+1( )⎣ ⎦+min  for discrete parameters. 

 Crossover is uniform, the probability that crossover will happen in a genome is 

0.6, and the probability a particular gene will crossover (given that any crossovers 

happen) is 0.25. In the model used here, the location of a gene in the genotype bears no 

significance, so a uniform crossover scheme is employed. In this scheme (and with the 

given choices of selection and mating algorithm), an individual crossover probability of 

0.25 is effectively the same as an individual crossover probability of 0.75. 

 The selection method used is fitness proportionate selection with an elitist group. 

The genes for the genotypes of the first population are all chosen using a truncated 

normal distribution with µ = 0.5, σ = 0.2, and bounds of [0, 1). 

 The genetic algorithm is run until a genotype in the population achieves target 

performance (see Table 5) or 100 generations are produced. A summary of the genetic 

algorithm is in Table 7. 
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Label Name Description 

B1 Target 

performance 

€ 

P 601,650( ) ≥ 1
3

me

ad ⋅ nA| |
 

B2 Poor performance 

€ 

∀t P(t, t +49) < 1
6

me

ad ⋅ nA| |

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

B3 Good activity 

€ 

F2 ≥τ (See Table 8) 

Table 5. Important behaviors in trace conditioning. Target performance is performance good enough 

to declare that the neural network has “acquired” trace conditioning. Poor performance describes 

neural networks that have not demonstrated movement towards acquiring trace conditioning, or 

possibly the network acquired trace conditioning previously and then lost it by trial 150. The 

term is significant because it is approximately

€ 

E P 651,750( )[ ]during training trials. B1 and 

B2 are calculated only on the last training trial, while B3 is calculated on the first training trial and 

the first testing trial. B2 trivially implies ¬B1 (consider when t = 601). Determining good values for τ is 

a goal of this research. Cf. Table 6. 
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Desired activity rate (per ms): 

€ 

ad ∈ 0.0005,0.0025[ )(or from 0.5 Hz to 2.5 Hz) 

Percentage of neurons firing per second: 

€ 

pa =
ad

Δt in seconds( )
(50 to 250%) 

Percentage of activity due to external activation: 

€ 

pe ∈ 0.2,0.5[ )  

Number of externally activated neurons per time-step: 

€ 

me = pe nA| | 

Size of the set of tone and puff neurons:

€ 

nt| |=10me  and 

€ 

np| |=10me   

Number of neurons from set s firing between times t1 and t2:

€ 

N t1,t2,s( )= zi
i∈s
∑

t=t1

t2
∑ t( ) 

Fraction of neuronal activity due to puff neurons:

€ 

P t1,t2( )=
N t1,t2,np( )
N t1,t2,nA( )

 

Average activity between times t1 and t2: 

€ 

A t1,t2( )=
N t1,t2,nA( )

nA| |⋅ t2 − t1+1( )
 

Squared deviation from desired activity:

€ 

D t1,t2( )= (A t1,t2( ) − ad )2  

Sample standard deviation of activity: 

€ 

σs =
1
749

A t, t( ) − A 1,750( )( )2
t=1

750

∑  

Desired standard deviation of activity: 

€ 

σd = 0.015  

Table	  6.	  List	  of	  evaluating	  equations	  for	  a	  trace	  conditioning	  episode.	  nt	  refers	  to	  the	  set	  of	  

tone	  neurons,	  np	  refers	  to	  puff	  neurons,	  nA	  refers	  to	  all	  neurons,	  me	  is	  the	  number	  of	  externally	  

activated	  neurons	  in	  a	  time	  step,	  and	  ad	  is	  the	  desired	  fractional	  activity.	  Cf.	  Tables	  4,	  5,	  and	  8.	  
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Genetic Algorithm Parameter Value 

Number of generations Until target performance (see Table 5) or 50 generations 

Population size 100 

Number of elites 10 

Gene type Continuous on [0, 1) 

Mutation probability 0.3 

Mutation standard deviation 0.2 

Total crossover probability 0.6 

Crossover method Uniform 

Individual crossover probability 0.25 

Table	  7.	  A	  summary	  of	  parameters	  describing	  the	  genetic	  algorithm	  used	  in	  this	  research.	  
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Fitness 

Function 

Description 

F1: Original 

€ 

kcollapseP 251,450( )+kpreblinkP 451,550( )+kblinkP 551,650( )+kbridgeP 651,750( )  

F2: Proxy 

€ 

100

D
c=0

9

∑ 75c+1,75 c +1( )( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

+ a2

σd
2 −σs

2| |
 

F3: Short-

circuit 

€ 

F2 if F2 < τ2

τ2 +F1 otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

 

Table	  8.	  Fitness	  functions	  and	  their	  mathematical	  description.	  F1	  is	  the	  desired	  puff-neuron	  

activity	  after	  200	  trials,	  while	  F2	  measures	  general	  network	  activity	  after	  the	  first	  trial.	  See	  

Table	  5	  for	  additional	  explanation	  of	  performance	  and	  activity	  measurements.	  All	  fitness	  

functions	  are	  non-negative	  over	  their	  domains.	  For	  F1,	  kcollapse	  =	  0.5,	  kpreblink	  =	  0.8,	  kblink	  =	  1,	  and	  

kbridge	  =	  0.5.	  

 Using this genetic algorithm configuration and the full fitness function F1 (see 

Table 8), on the neural network described in the previous section, running to find a 

feasible parameter setting is prohibitively expensive. For example, a typical run required 

several days on a cluster of 30 computers. Although this is feasible if the sole purpose of 

the research is to find a single viable parameter setting, the time required for a single 

genetic algorithm to complete precludes a thorough exploration of the parameter space 

and examination of the robustness of the solution. Thus, in order to achieve those goals, 

the further research proposed here will focus on a more efficient fitness function. 

 One method for improving the efficiency of a genetic algorithm is through the use 

of a proxy [22]. One form of proxy used in genetic algorithms is an approximation, where 
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an expensive fitness function is replaced with a less expensive fitness function known to 

approximate the original [22, 23]. No known approximation exists for the problem being 

studied here, but there is a function that has an implicative relationship with the desired 

fitness function. Specifically, in the experiments I ran, I never saw good performance if 

activity was not good on the first training and testing trial. This can be restated as the 

implicative relationship that if there is not good activity on the first trials then there will 

be poor performance on the last trial (referred to as ¬B3⇒B2 in Table 5). 

 Because determining whether good activity has occurred after one training trial 

only requires two trials to be run (one training and one testing), it is much less 

computationally expensive than determining whether good performance will occur, 

which requires 151 trials (150 training trials and a testing trial). To take advantage of this 

significantly faster proxy function, I use a short-circuit fitness function (F3) that combines 

a proxy function (F2) with the full desired fitness function (F1). See Table 8 for a rigorous 

definition of these fitness functions. 

Primary Fitness Function (F1)  

Any run of a genetic algorithm will involve a sampling of the parameter space. We call 

that sequence of samples the genetic algorithm trajectory. This experiment is intended to 

measure the evaluation efficiency along the genetic algorithm trajectory guided by the 

original fitness function (F1). In this experiment the genetic algorithm is modified to 

calculate both F1 and F2 for all sampled parameter settings (i.e., genotypes). For each run, 

hA(τ, Si) is computed for τ between 5 x 103 to  5 x 107 (as before), where Si is the set of 

parameter settings for generation i. The genetic algorithm will be run at least seven times 

(with up to 4,510 fitness evaluations per run) to determine the confidence of this 
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measurement. 

Short-Circuit Fitness Function (F3) 

When the genetic algorithm uses the short-circuit evaluation, the genetic algorithm 

trajectory will be different than when using the primary fitness function alone. This 

experiment is intended to measure the evaluation efficiency along the genetic algorithm 

trajectory guided by F3. Since F3 depends on selected values of τ, we cannot use the full 

range of τ. As with the previous experiment, both F1 and F2 are calculated for all 

genotypes. The genetic algorithm will be run at least five times each for five different 

values of τ (based on interesting values of τ found in IIA.2), for a total of 25 different 

runs. 

Determining the existence of parameter settings for acquiring trace conditioning 

Determining whether a particular choice of parameter settings reliably acquires trace 

conditioning requires demonstrating several behaviors. First, the simulation must have 

activity of the puff neurons during the blink interval of at least one third that of the 

activity displayed during the puff interval of the prior training session. Second, the 

simulation must have less than half that activity during the collapse interval (the interval 

immediately after the tone interval). Third, the simulation must not show a collapse of 

activity during prior training intervals, as this would correspond to the individual 

experiencing brain death or a coma — something that does not happen in laboratory 

experiments that the simulations are intended to recreate. Finally, most simulations using 

the same settings but different random seeds should also satisfy the prior three conditions. 
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Proxy effectiveness 

Calculating the fraction of episodes for which ¬B3⇒B2 is true is intended to measure the 

proxy function's effectiveness. Currently, a value of 5 x 105 is being used for the threshold 

τ in evaluating B3. If we define gB(τ, s) as 1 when F2(s) ≥ τ or B2 (equivalent to ¬B3⇒B2), 

and 0 otherwise, then effectiveness hB(τ, S) is

€ 

gB
s∈S
∑ τ, s( ) /S| |, where S is the set of 

parameter settings being evaluated. 

 The short-circuiting component of F3 is most important for its “decision”: do you 

run the more computationally expensive objective function or not? As such, it suffers 

from the same problems as any inexact boolean test: false positives and false negatives. 

In this case, false positives result in us potentially missing useful parameter settings, and 

false negatives result in us wasting computational resources exploring useless parameter 

settings. Thus, in addition to demonstrating that the proxy has improved the efficiency of 

the genetic algorithm, the effectiveness of the proxy must be shown. 

 Measuring proxy robustness will help answer the question: can the genetic 

algorithm become even more efficient without becoming less effective? Examining ranges 

of τ from 5 x 103 to 5 x 107, while measuring effectiveness will answer this question.  

Evaluation efficiency 

Evaluating the proxy fitness function requires only a single training trial instead of the 

150 training trials required to evaluate the primary fitness function, so it will trivially 

require less computational time. Measuring this efficiency accurately requires calculating 

the computational time required to calculate the primary fitness function and the 

computational time required to calculate the proxy fitness function on the same computer. 
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Because most of the experiments are run on a grid computing system, this requires 

obtaining a representative sample and re-running them on a single computer. 

Trajectory efficiency 

To measure the trajectory efficiency, the ratio of the number of generations required to 

achieve B1 along a genetic algorithm trajectory guided by F3 to the number of generations 

required along a genetic algorithm trajectory guided by F1 will be calculated. Trajectory 

efficiency is defined as 1 minus this ratio. Values less than zero demonstrate trajectory 

inefficiency. Initial experiments suggest that the proxy function provides a more 

productive fitness landscape in regions where B3 is false resulting in fewer generations 

until target performance is achieved. One explanation for this improved fitness landscape 

is that for significantly poor activity control, the F1 is zero (plus the addition of random 

noise), whereas F2 is not constant, thus providing feedback for which parameter settings 

are better than others in episodes where the performance information is essentially 

useless. 

Naïve exploration 

Using a random sampling approach is intended to investigate evaluation efficiency over 

the parameter space without the biases introduced by the trajectory of a genetic 

algorithm. A straight-forward random sampling approach would be uniform sampling of 

each parameter in its [0,1) mapped space. This has the disadvantage of disproportionately 

choosing samples far from the center of the domain space. Specifically, more than half of 

samples so chosen from a 21-dimensional space will be in either the [0,0.02) or [0.98,1) 

portion of the number-line for at least one parameter. Consider the unit square and unit 

hypercube. A square of one-half its area would have its sides equal to the square root of 
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one-half, or approximately 0.7071. Similarly, a 21-dimensional hypercube of one-half the 

hypervolume of a unit hypercube would have its edges equal to the 21st root of one half, 

or approximately 0.9675. Conversely, a square with side one-half is one-fourth the 

volume of the unit square, whereas a 21-dimensional hypercube of edge one-half is one-

half to the 21st power, or approximately 4.768 x 10-7 the volume of the unit hypercube.  

 A way to address this is to instead represent points in the parameter space by a 

hyperball with random variables (ρ, φ1…φ20) with ρ on the interval [0,1), φ1 on the 

interval [0,2π), and φ2…φ20 on the interval [0,π); and then mapping the unit hyperball to 

the unit hypercube. The center of the hyperball will be mapped to an average over the 

location of target parameter settings (i.e., parameter settings meeting target performance) 

and the radius and directional vector of the point on the hyperball will map to the line 

segment connecting this point and where the directional vector would intersect with the 

boundary of the hypercube. One can imagine statistical biases introduced by this 

hyperball-to-hypercube mapping, so part of the research will involve either calculating 

the extent of these biases or finding yet a better sampling approach. 

 Each parameter setting sampling first shuffles the parameters so as to avoid bias 

among parameters. 15,000 parameter-setting samples will be generated by both 

approaches (uniform and hyperball), resulting in 3 x 104 random parameter setting 

samples. 
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Results 

Improvement in biological plausibility 

With the new extensions to the Levy model, we can directly map quantities in the model 

to neuron-level measurables. Specifically, for any neuron (or all neurons) we can 

determine what the membrane potential the model assigns to it at a millisecond 

resolution. Figure 5 gives an example of membrane potential versus time for a single 

neuron during the first training trial of trace conditioning. With McCulloch-Pitts neurons 

or even integrate-and-fire, there is no concrete neurophysiological meaning of the 

somato-‐dendritic	  excitation. 

	  

Figure	  4.	  Membrane	  potential	  of	  a	  neuron	  during	  the	  first	  training	  trial	  of	  trace	  conditioning. 
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Gamma Oscillations 

For the first gamma oscillation experiment, ach pattern was presented to the network for 

143 ms, so that one sequence of 32 patterns required a total simulated time of 4.576 

seconds. After the network learns the sequence, synaptic modification is turned off, and 

the network is driven for another 500 trials, during which the activity of the network 

during each time-step (3.575 ms) is measured. 

 A portion of this activity is shown in Fig. 7A and B shows the resulting power 

spectrum. The lowest frequency spectral peak is 0.2 Hz. This maximum corresponds to 

the 4.576 s required to complete one iteration of the repeating sequence. Also visible are 

harmonics of this frequency, including the 32nd harmonic (7.0 Hz), which also 

corresponds to the pattern duration of 143 ms. Most importantly, there is a substantial 

increase in power distributed around 38.2 Hz, i.e. frequencies associated with gamma 

oscillations, which are present in the CA3–CA1 regions of the hippocampus (for 

example, [1]). Analogously, we will refer to power distributions near this frequency as 

gamma oscillations. These gamma oscillations differ from the other spectral peaks in the 

breadth of their distribution. 
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 When the repeating sequences of externally activated neurons are replaced with 

random input activation, the low frequency-oscillations associated with the length of the 

sequence disappear, but the gamma oscillations are still present with approximately the 

same center frequency (compare the top of Fig. 8 to the middle of Fig. 8). Finally, if all 

external input is removed and inhibition is adjusted to maintain the same 2 Hz average 

firing rate, the same results are produced—the center frequency of the gamma 

oscillations remains near 40 Hz (Fig. 8, bottom). 

Figure	  5.	  External	  input.	  A	  sequence	  of	  32	  patterns	  of	  externally	  activated	  neurons	  is	  presented	  

repeatedly	  to	  a	  simulated	  neural	  network.	  Here	  two	  such	  presentations	  are	  shown.	  Each	  pattern	  

consists	  of	  160	  externally	  activated	  neurons	  and	  has	  a	  duration	  of	  143	  ms.	  Successive	  patterns	  share	  

80	  neurons.	  Only	  the	  first	  2400	  out	  of	  the	  entire	  6000	  neurons	  are	  part	  of	  the	  externally	  activated	  

sequence. 
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Figure	  6.	  A	  gamma	  oscillation	  appears	  in	  the	  macroscopic	  activity	  of	  the	  network.	  The	  instantaneous	  

firing	  rate	  shown	  here	  is	  calculated	  by	  dividing	  the	  number	  of	  neurons	  that	  fire	  in	  each	  time-step	  by	  

the	  size	  of	  the	  time-step	  (3.575	  ms).	  The	  12	  major	  cycles	  during	  this	  300	  ms	  window	  leads	  to	  a	  rough	  

estimate	  of	  25	  ms	  per	  oscillation,	  or	  a	  frequency	  of	  approximately	  40	  Hz.	  (B)	  Power	  spectrum	  of	  

instantaneous	  firing	  rates	  (see	  A)	  after	  training,	  averaged	  over	  500	  trials,	  with	  each	  trial	  lasting	  4.576	  

simulated	  seconds.	  The	  network	  is	  trained	  on	  a	  repeating	  sequence	  until	  the	  sequence	  is	  learned.	  

Then,	  the	  sequence	  is	  driven	  with	  this	  same	  sequence	  for	  500	  trials	  with	  no	  synaptic	  modification,	  

and	  the	  power	  spectrum	  of	  the	  total	  network	  activity	  for	  each	  time-step	  of	  the	  simulation	  is	  obtained.	  

The	  data	  set	  used	  to	  generate	  the	  power	  spectrum	  consists	  of	  640,000	  values. 
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 Figure 9 shows the results of changing average firing rates of neurons across a 

range, from 2 up to 8 Hz. As can be seen from Figure 9, the network experiences a 

continuous-phase transition near 4 Hz as the gamma oscillations are replaced with 

harmonics of the average firing rate. For example, for simulations with an average firing 

rate of 8 Hz, the lowest peak in the power spectrum is 8 Hz, and the remaining peaks are 

harmonics of 8 Hz. 

 

 

 

 

Figure	  7.	  Power	  spectrum	  for	  simulations	  with	  an	  input	  of	  a	  repeating	  sequence	  (top),	  with	  random	  

input	  (middle),	  and	  with	  no	  external	  input	  (bottom).	  Note	  that	  the	  vertical	  scale	  on	  the	  bottom	  figure	  

is	  twice	  that	  of	  the	  other	  two	  figures.	  
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Fig. 10A and B show reordered firing diagrams for the networks corresponding to the top 

and bottom graphs in Fig. 4, respectively. When a simulation runs at 2 Hz, the average 

network activity (for an untrained network) shows little evidence of synchronized firing. 

This lack of synchrony is one feature that sets it apart from models such as the one used 

in Kopell et al. [3]—none of the neurons in the network are firing at the gamma 

frequency, the gamma oscillations only exist in the network as an ensemble. However, 

for simulations run at 8 Hz, the networks do show significant, albeit approximate, 

synchrony. In Fig. 10, the gamma frequency is visible in the reordered firing diagram. 

This change in the tendency to synchronize firing demonstrates behavior similar to a 

Figure	  8.	  Power	  spectrum	  for	  simulations	  with	  an	  average	  firing	  rate	  of	  2	  Hz	  (top),	  4	  Hz	  (middle),	  and	  

8	  Hz	  (bottom).	  At	  2	  Hz,	  the	  gamma	  oscillations	  are	  prominent,	  but	  at	  4	  Hz,	  their	  power	  is	  much	  

weaker.	  At	  8	  Hz,	  the	  gamma	  oscillations	  are	  lost,	  replaced	  with	  a	  spectral	  peak	  at	  8	  Hz	  and	  its	  

harmonics.	  Interestingly,	  the	  harmonics	  are	  not	  monotonically	  decreasing	  in	  peak	  power;	  note	  the	  dip	  

in	  the	  harmonics	  near	  40	  Hz.	  
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continuous phase transition and this occurs at around an average firing rate of 4–5 Hz in 

these simulations. 

Figure	  9.	  (A)	  A	  reordered	  firing	  diagram	  for	  a	  simulation	  run	  at	  2	  Hz.	  The	  neurons	  are	  reordered	  

based	  on	  when	  they	  first	  fire.	  At	  2	  Hz	  there	  is	  not	  a	  significant	  amount	  of	  synchronous	  behavior	  

present,	  although	  macroscopic	  gamma	  oscillations	  exist.	  (B)	  A	  reordered	  firing	  diagram	  for	  a	  

simulation	  run	  at	  8	  Hz.	  This	  firing	  diagram	  is	  reordered	  in	  the	  same	  manner	  as	  in	  Fig.	  5A.	  In	  this	  

diagram,	  neurons	  demonstrate	  synchronous	  behavior.	  The	  apparent	  shift	  across	  time	  from	  very	  

ordered	  firing	  to	  less	  ordered	  firing	  is	  due	  to	  the	  method	  used	  for	  reordering.	  	  
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Theta Modulated Gamma Oscillations 

In the absence of any theta-modulation, gamma oscillations were quite strong and 

centered around 50 Hz. Fig. 12a shows the FFT of the net activity , and Fig. 12b shows 

the log of the FFT converted to dB, i.e., multiplied by 10. 

Figure	  10.	  Power	  spectrum	  of	  a	  simulation	  in	  the	  absence	  of	  any	  external	  input	  demonstrating	  

emergent	  gamma	  oscillations.	  When	  the	  network	  is	  allowed	  to	  run	  without	  any	  input,	  a	  very	  sharp	  

gamma	  oscillation	  is	  present,	  as	  is	  its	  harmonic.	  A	  low-powered	  oscillation	  is	  also	  visible	  at	  

approximately	  3–4	  Hz,	  which	  is	  more	  noticeable	  in	  Fig.	  B.	  In	  both	  figures,	  the	  absolute	  power	  in	  the	  

FFT	  is	  normalized	  to	  1.	  
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When this same network is trained on theta-modulated external input and then allowed to 

run in the absence of any input, a very low-power oscillation in the theta band is now 

visible (Fig. 13). Additionally, the central frequency of the gamma oscillation has shifted 

from 50 Hz to approximately 64 Hz, and the gamma frequency oscillation is more spread. 

 If instead, the network is driven at theta-modulated input, the gamma oscillations 

become much less powerful. Although not visible on a linear scale, Fig. 14a, the log of 

Figure	  11.	  Power	  spectrum	  in	  a	  simulation	  without	  external	  input	  after	  training	  on	  theta-modulated	  

input.	  The	  FFT	  shown	  here	  is	  for	  the	  same	  network	  as	  in	  Fig.	  12,	  but	  after	  training	  the	  network	  using	  

theta-modulated	  input.	  In	  both	  figures,	  the	  absolute	  power	  in	  the	  FFT	  is	  normalized	  to	  1.	  
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the FFT reveals that the gamma oscillations are still present, but are several orders of 

magnitude weaker than in the absence of theta-modulated input (Fig. 14b). 

 

 

 

 

Figure	  12.	  Power	  spectrum	  for	  simulations	  in	  the	  presence	  of	  a	  theta-modulated	  input.	  The	  log	  of	  the	  

FFT	  reveals	  that	  gamma	  still	  exists	  but	  is	  more	  than	  100	  times	  weaker	  than	  in	  the	  absence	  of	  theta-

modulated	  input.	  In	  both	  figures,	  the	  absolute	  power	  in	  the	  FFT	  is	  normalized	  to	  1.	  
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Existence of Settings for Trace Conditioning Acquisition 

Multiple settings were found that allowed simulations to acquire trace conditioning 

without activity collapse for any training trials and for multiple random seeds. An 

example of trace conditioning acquisition can be seen in Figure 15. Activity of the 

neurons encoding the puff/blink response goes up prior to the interval when the puff had 

been delivered during training, giving the individual sufficient time to blink.  

	  

Figure	  13.	  Trace	  conditioning	  acquisition. 

 If we examine across trial activity over the entire range of training (Fig. 16), then 

we see that although activity decreases, it never collapses. Similarly, examining within 

trial activity for individual trials shows an activity decrease during the trace interval, but 

no collapse. 
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Figure	  14.	  Across	  trial	  activity	  for	  an	  individual	  simulation	  that	  demonstrated	  trace	  

conditioning	  acquisition.	  

 Finally, we examine the same settings but for multiple random seeds. Figure 17 

shows trace conditioning acquisition when the random seed is set to 1, and other random 

seed settings can be found in the appendix. 
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Figure	  15.	  Trace	  conditioning	  acquisition	  for	  an	  individual	  using	  parameter	  settings	  

discovered	  during	  a	  genetic	  algorithm	  experiment,	  but	  with	  a	  different	  random	  seed	  than	  was	  

used	  during	  that	  experiment.	  

Proxy effectiveness 

One measure of proxy effectiveness is shown in Figure 18 as a plot of proxy threshold 

(the value used to compare against the proxy fitness function to determine whether 

evaluation of the primary fitness function is required) versus false negatives to determine 

how reliable is the proxy threshold at predicting an implicative relationship between the 

proxy fitness function and the primary fitness function. 

 A secondary measure of proxy effectiveness is shown in Figure 19 (see also Fig. 

20) as a plot of proxy threshold versus false positives to determine how valuable the 
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proxy threshold is at eliminating unnecessary evaluations of the primary fitness function. 

As with all false positive and false negative measures, these two measures trend in 

opposite directions. The false negative measure is strictly non-decreasing whereas the 

false positive measure is strictly non-increasing. 

	  

Figure	  16.	  In	  a	  genetic	  algorithm	  using	  the	  short	  circuit	  fitness	  function,	  false	  positives	  as	  a	  

function	  of	  the	  proxy	  threshold	  value,	  τ .	  As	  τ 	  increases,	  more	  simulations	  fail	  to	  reach	  the	  

threshold	  so	  that	  fewer	  evaluations	  of	  the	  primary	  fitness	  function	  are	  required.	  Since	  most	  of	  

the	  simulations	  do	  not	  acquire	  trace	  conditioning,	  increasing	  τ 	  usually	  decreases	  the	  false	  

positives.	  	   
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Figure	  17.	  In	  a	  genetic	  algorithm	  using	  the	  short	  circuit	  fitness	  function,	  false	  negatives	  as	  a	  function	  

of	  the	  proxy	  threshold	  value,	  τ .	  As	  τ 	  increases,	  more	  simulations	  fail	  to	  reach	  the	  threshold	  so	  that	  

fewer	  evaluations	  of	  the	  primary	  fitness	  function	  are	  required.	  Eventually,	  individuals	  that	  would	  

have	  acquired	  trace	  conditioning	  are	  not	  considered,	  increasing	  the	  false	  negative	  rate. 

	  

Figure	  18.	  In	  a	  genetic	  algorithm	  using	  the	  short	  circuit	  fitness	  function,	  false	  negatives	  (left)	  and	  false	  

positives	  (right)	  as	  a	  function	  of	  the	  proxy	  value's	  relative	  position.	  	  
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 Because there are far fewer simulations that demonstrate target behavior (i.e., 

trace acquisition) than merely non-poor behavior (i.e., learning to activate the puff 

neurons at some point after the tone neurons are activated), I also analyze how well the 

proxy fitness function predicts non-poor behavior. Figures 20 and 21 show these results. 

	  

Figure	  19.	  In	  a	  genetic	  algorithm	  using	  only	  the	  primary	  fitness	  function,	  false	  positives	  as	  a	  

function	  of	  the	  proxy	  threshold	  value,	  τ .	  As	  τ 	  increases,	  more	  simulations	  fail	  to	  reach	  the	  

threshold	  so	  that	  fewer	  evaluations	  of	  the	  primary	  fitness	  function	  are	  required.	  Since	  most	  of	  

the	  simulations	  do	  not	  acquire	  trace	  conditioning,	  increasing	  τ 	  usually	  decreases	  the	  false	  

positives. 
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Figure	  20.	  In	  a	  genetic	  algorithm	  using	  only	  the	  primary	  fitness	  function,	  false	  negatives	  as	  a	  

function	  of	  the	  proxy	  threshold	  value,	  τ .	  As	  τ 	  increases,	  more	  simulations	  fail	  to	  reach	  the	  

threshold	  so	  that	  fewer	  evaluations	  of	  the	  primary	  fitness	  function	  are	  required.	  Eventually,	  

individuals	  that	  would	  have	  acquired	  trace	  conditioning	  are	  not	  considered,	  increasing	  the	  

false	  negative	  rate.	  

Evaluation efficiency 

Evaluation efficiency of the short circuit fitness function is a combination of two factors: 

what fraction of the time does the proxy fitness function take to compute relative to the 

primary fitness function, and what fraction of the evaluations does the proxy fitness 

function identify as not requiring the primary fitness function to be calculated. 

 The first factor can be expected to be fairly constant, as regardless of the proxy 

threshold the number of trials required to calculate the proxy fitness function is always 
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one, and the number of trials required to calculate the primary fitness function is 150. 

However, there is a non-trivial set-up cost dominated by the amount of time required to 

construct the random topology of the simulation that is incurred regardless of the number 

of training and testing trials that will be run in the simulation. This set-up computational 

cost is independent of neural activity (i.e., how many neurons fire per time step), but the 

computational cost of each trial is not. When activity control is good (which is what the 

proxy fitness function is a measure of), one can expect a relatively constant speedup of 

the proxy fitness evaluation over the primary fitness function. However, when activity is 

much lower than desired, the speedup of the proxy fitness evaluation will be markedly 

less because each trial will require less time while the setup cost will remain 

approximately constant, and conversely when activity is much higher than desired, the 

speedup of the proxy fitness evaluation will be markedly higher because each trial will 

require more computational time. Figure 22 shows that during the first generation of the 

genetic algorithm using the short-circuit evaluation the speedup is much greater than 

during subsequent generations, when activity control is better. Thus, the higher activity 

simulations have more of a speedup increase than the lower activity simulations have of a 

speedup decrease (relative to the steady-state speedup). This is not surprising because the 

desired activity is to have only 0.2% of the neurons firing on every time step—there is 

much more opportunity for neurons to fire more frequently than this target than there is 

for neurons to fire less frequently. Figure 23 shows the same data for genetic algorithm 

runs using only the primary fitness function. Activity control is not part of the primary 

fitness function, and this is reflected in the theoretical speedup being much higher for 

many generations. In this scenario, a higher speedup reflects a negative situation—the 
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primary fitness function takes much longer to calculate because of neural activity that is 

much higher than desired.  

	  

Figure	  21.	  Speedup	  of	  simulation	  calculating	  only	  proxy	  fitness	  function	  over	  simulation	  

calculating	  primary	  fitness	  function	  for	  individuals	  in	  generation	  for	  genetic	  algorithms	  using	  

the	  short	  circuit	  fitness	  function.	  See	  text	  for	  discussion	  of	  why	  the	  speedup	  is	  higher	  in	  the	  

first	  generation	  than	  in	  subsequent	  generations.	  Only	  the	  first	  15	  generations	  are	  shown.	  The	  

full	  100	  generations	  can	  be	  seen	  in	  the	  appendix. 
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Figure	  22.	  Speedup	  of	  simulation	  calculating	  only	  proxy	  fitness	  function	  over	  simulation	  

calculating	  primary	  fitness	  function	  for	  individuals	  in	  generation	  for	  genetic	  algorithms	  using	  

only	  the	  primary	  fitness	  function. 

 The second factor is shown in Figure 24 where the fraction of simulations that did 

not require computation of the primary fitness function is plotted per generation, 

averaged over all genetic algorithms using the short-circuit evaluation approach. Figure 

25 evaluates the fraction of simulations that theoretically would not have required 

computation of the primary fitness function for genetic algorithms that used only the 

primate fitness function. However, as Figure 24 demonstrates, using a fitness function 

that rewards having to calculate the primary fitness function predictably leads to fewer 

simulations that do not need to calculate the primary fitness function. Thus, after multiple 
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generations, the evaluation efficiency of the short-circuit genetic algorithm is 

significantly reduced. 

	  

Figure	  23.	  In	  a	  genetic	  algorithm	  using	  the	  short	  circuit	  fitness	  function,	  the	  fraction	  of	  

simulations	  that	  did	  not	  require	  evaluating	  the	  primary	  fitness	  function.	  
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Figure	  24.	  In	  a	  genetic	  algorithm	  using	  only	  the	  primary	  fitness	  function,	  the	  fraction	  of	  

simulations	  that	  did	  not	  require	  evaluating	  the	  primary	  fitness	  function.	  

Trajectory efficiency 

Genetic algorithms using the short-circuit fitness function discovered simulations 

acquiring trace conditioning behavior in far fewer generations than genetic algorithms 

using only the primary fitness function. Three of the seven genetic algorithms that were 

run using only the primary fitness function never found simulations that acquired trace 

conditioning, and the other four took an average of 67.5 generations before a simulation 

was discovered meeting the necessary criteria. By comparison, genetic algorithms using 

the short-circuit genetic algorithm found simulations acquiring trace conditioning within 

25.3 generations on average, with one genetic algorithm run requiring only 9. If we 
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eliminate the one outlier requiring only 9 generations, the remaining 6 genetic algorithm 

runs required an average of 28 generations. Even discarding the three genetic algorithms 

running only the primary fitness function that never found a solution, the short circuit 

genetic algorithms demonstrate a trajectory efficiency of 58.5%. If we assume that the 

three discarded genetic algorithm runs would have found a solution on the 101st 

generation (increasing the 67.5 average up to 81.9), and do not eliminate the short circuit 

genetic algorithm outlier that found a solution in only 9 generations, then the trajectory 

efficiency is 69.1%. 

Conclusions 

Contributions 

Extension to Levy Model and Existence Proof of Viable Parameters 

The potential benefits of the Levy model are that it can aide both in understanding the 

mammalian hippocampus as well as in providing inspiration for new approaches in 

artificial intelligence. This model will be able to improve our understanding of the 

mammalian hippocampus by forming a bridge across temporal timescales between the 

research already done with the Levy model for multiple behavioral and training tasks[7] 

and research done with more realistic models of pyramidal neurons. As a proof of 

concept, the extended model has been demonstrated to work on a simple network at the 

nanosecond timescale (i.e., at timescales shorter than previous research by a factor of 

over 10 million). This was a toy problem and was not intended to demonstrate the 

feasibility of running large networks at nanosecond timescales, but rather to demonstrate 
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that the simulations were robust with respect to changing the size of the time step. This 

was not true of previous versions of the Levy model. Some of the specific neurological 

benefits that this model could contribute are the screening of existing neurotropic drugs, 

the design of new neurotropic drugs, and possibly new non-drug related treatments of  

brain disorders involving the hippocampus, such as post-traumatic stress 

disorder[LDA03]. A model of the hippocampus that can accurately model the 

hippocampus across multiple timescales and with multiple levels of detail could be a 

starting point from which to alter parameters according to how an existing neurotropic 

drug is thought to act, either through the use of a domain expert, or through the use of 

further metaheuristics. Alternatively, if a particular system-level change in the 

hippocampus is desired, the model might be able to provide insight into what lower-level 

changes are required, as well as what possible side-effects might accompany that change. 

Such knowledge would be an asset in designing new drugs. 

 In addition to the benefits of understanding the mammalian brain, discoveries 

made using the Levy model can provide inspiration for new approaches in artificial 

intelligence. For example, simulations of the Levy model incorporating synaptic failures 

demonstrated that these failures improved simulations' performance on the transverse 

patterning task, and that the optimal amount of failure increased with larger neural 

networks. [8] 

Effective and Efficient Technique for Discovery 

 Although using a proxy to increase the efficiency of genetic algorithms is not 

novel [22, 23], this research shows the utility of using implicative relationships to craft 

proxy functions in the absence of an approximating fitness function. The proxy technique 



	  59	  

here differs from other approaches in that the proxy function is not intended to 

approximate the value of the expensive fitness function it is a proxy for, but rather is 

intended to predict whether that expensive fitness function will exceed a certain 

minimum threshold. The differences between using non-approximating proxy functions 

and more traditional proxy functions provide both advantages and disadvantages, but the 

similarities are arguably more significant than the differences. 

 The primary difference between non-approximating proxy fitness functions and 

approximation fitness functions is that non-approximating fitness functions are not 

required to provide a reasonable approximation that would be returned by the fitness 

function they are a proxy for. This has the disadvantage of limiting the proxy use of the 

non-approximating function to only a portion of the domain space spanned by the 

function being optimized, but it has the advantage of allowing the use of a proxy function 

in cases where there is no known valid approximation. 

 The primary similarity between non-approximating and approximation fitness 

functions is that they both act as a proxy, thus allowing a less expensive calculation to 

stand in for its more expensive counterpart. The advantage of such proxies is clear: given 

a fixed set of resources, the problem domain can be explored more quickly and/or more 

thoroughly. A secondary similarity between non-approximating proxy fitness functions 

and approximation fitness functions is that a domain expert might sometimes be required 

to help identify where, how, and which such proxies can be used. Alternatively, 

techniques used to automatically find approximation fitness functions [22] could be 

adapted to find non-approximating proxy fitness functions. 
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Future Work 

Several	  interesting	  questions	  arise	  as	  part	  of	  this	  work:	  

1. What	  changes	  can	  be	  made	  to	  the	  hippocampal	  model	  to	  make	  it	  even	  more	  

neurophysiological	  without	  adding	  too	  much	  complexity	  or	  computational	  

cost?	  

2. Can	  the	  same	  approach	  be	  used	  to	  find	  parameter	  settings	  that	  reproduce	  

configural	  learning?	  

3. Can	  the	  genetic	  algorithm	  be	  improved	  to	  counteract	  premature	  

convergence?	  

4. Are	  there	  ways	  that	  the	  genetic	  algorithm	  analysis	  can	  be	  applied	  to	  other	  

non-‐related	  research	  topics?	  

In	  looking	  to	  make	  the	  model	  even	  more	  neurophysiological,	  there	  are	  simple	  

changes	  that	  add	  significant	  computational	  cost,	  and	  computationally	  inexpensive	  

changes	  that	  might	  add	  significant	  complexity.	  In	  the	  former	  category,	  a	  simple	  

change	  that	  might	  be	  desired	  is	  the	  use	  of	  more	  realistic	  theta	  oscillations	  as	  

described	  in	  the	  section	  on	  theta-‐modulated	  gamma	  oscillations.	  The	  reason	  these	  

are	  currently	  computationally	  expensive	  is	  that	  the	  theta	  modulation	  is	  done	  

through	  the	  NeuroJet	  scripting	  language	  (see	  the	  appendix	  for	  a	  sample	  script).	  If	  

the	  NeuroJet	  executable	  were	  enhanced	  to	  allow	  for	  the	  script	  to	  select	  the	  more	  

realistic	  theta	  modulation,	  then	  much	  of	  the	  computational	  overhead	  would	  be	  

avoided.	  Another	  simple	  change	  that	  is	  computationally	  expensive	  is	  to	  pre-‐train	  the	  

neural	  networks	  on	  other	  non-‐related	  stimuli	  prior	  to	  training	  on	  trace	  conditioning.	  

In	  lab	  experiments	  that	  are	  being	  modeled,	  the	  rabbits	  have	  had	  many	  prior	  
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experiences	  before	  being	  trained	  on	  trace	  conditioning.	  An	  example	  of	  a	  complex	  

change	  that	  does	  not	  require	  noticeable	  increases	  in	  computational	  time	  is	  the	  use	  

of	  variations	  on	  the	  dendritic	  filter	  function	  that	  modulates	  the	  input	  from	  the	  

dendrite	  to	  the	  soma.	  It	  is	  currently	  implemented	  as	  a	  look-‐up	  table	  such	  that	  any	  

arbitrary	  function	  of	  time	  can	  be	  specified	  (with	  one	  entry	  per	  time	  interval),	  so	  it	  

would	  require	  no	  additional	  computational	  time	  for	  other	  dendritic	  filter	  functions	  

to	  be	  used.	  Determining	  which	  dendritic	  filter	  function	  to	  use,	  however,	  can	  be	  a	  

complex	  proposition,	  whether	  we	  allow	  the	  genetic	  algorithm	  to	  select	  from	  a	  range	  

of	  options	  or	  we	  use	  the	  medical	  literature.	  

	   There	  should	  be	  no	  reason	  why	  the	  same	  approach	  cannot	  be	  used	  on	  

configural	  learning	  problems	  such	  as	  transverse	  patterning	  or	  transitive	  inference.	  

Ideally,	  we	  would	  like	  to	  find	  a	  single	  set	  of	  neural	  network	  parameters	  that	  allow	  a	  

simulation	  to	  learn	  trace	  conditioning,	  transverse	  patterning,	  and	  transitive	  

inference.	  This	  could	  be	  tried	  using	  either	  the	  extended	  model	  discussed	  here	  or	  

with	  the	  simpler	  model	  used	  elsewhere.	  

	   In	  the	  genetic	  algorithms	  using	  only	  the	  primary	  fitness	  function,	  3	  of	  the	  7	  

genetic	  algorithm	  runs	  never	  found	  a	  solution	  that	  acquired	  trace	  conditioning.	  As	  

we	  know	  from	  other	  runs	  there	  is	  a	  solution,	  these	  runs	  most	  likely	  converged	  

prematurely.	  Approaches	  that	  might	  be	  used	  to	  prevent	  premature	  convergence	  

include	  using	  multiple	  sub-‐populations	  and	  increasing	  the	  mutation	  rate.	  

	   Perhaps	  the	  most	  important	  feature	  of	  the	  short	  circuit	  genetic	  algorithm	  

was	  its	  improvement	  of	  trajectory	  efficiency.	  We	  might	  expect	  to	  find	  similar	  

improvements	  in	  other	  domains	  where	  the	  solution	  space	  has	  properties	  similar	  to	  
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the	  properties	  of	  the	  solution	  space	  here.	  Key	  features	  include	  parameters	  that	  are	  

strongly	  connected	  and	  an	  objective	  function	  that	  is	  relatively	  flat	  when	  the	  

parameters	  being	  explored	  are	  not	  near	  a	  good	  solution.	  In	  this	  case,	  we	  have	  many	  

parameters	  that	  affect	  network	  activity,	  network	  activity	  is	  poor	  over	  much	  of	  the	  

domain,	  and	  when	  network	  activity	  is	  poor	  we	  gain	  little	  information	  from	  the	  

primary	  fitness	  function.	  
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Appendix 

Alternate random seeds for trace conditioning example 

The	  following	  figures	  show	  the	  results	  for	  the	  same	  parameters	  used	  to	  generate	  

Figure	  17,	  but	  with	  random	  seeds	  2	  through	  7.	  

	  
Figure	  25.	  Performance	  for	  last	  few	  trials	  using	  random	  seed	  2.	  
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Figure	  26.	  Across	  trial	  activity	  using	  random	  seed	  2.	  

	  
Figure	  27.	  Performance	  for	  last	  few	  trials	  using	  random	  seed	  3.	  

0

1

2

3

4

5

20 40 60 80 100 120 140

Ac
tiv

ity
 (H

z)

Trial

1580, seed 2

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

Ac
tiv

ity
 (H

z)

Time (ms)

1580, seed 3

Trial 145
Trial 146
Trial 147
Trial 148
Trial 149
Trial 150



	  69	  

	  
Figure	  28.	  Across	  trial	  activity	  using	  random	  seed	  3.	  

	  
Figure	  29.	  Performance	  for	  last	  few	  trials	  using	  random	  seed	  4.	  
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Figure	  30.	  Across	  trial	  activity	  using	  random	  seed	  4.	  

	  
Figure	  31.	  Performance	  for	  last	  few	  trials	  using	  random	  seed	  5.	  
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Figure	  32.	  Across	  trial	  activity	  using	  random	  seed	  5.	  

	  
Figure	  33.	  Performance	  for	  last	  few	  trials	  using	  random	  seed	  6.	  
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Figure	  34.	  Across	  trial	  activity	  using	  random	  seed	  6.	  

	  
Figure	  35.	  Performance	  for	  last	  few	  trials	  using	  random	  seed	  7.	  
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Figure	  36.	  Across	  trial	  activity	  using	  random	  seed	  7.	  
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All generations of proxy computational speed up 
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Sample trace conditioning script 

@CreateVar( 

#  numTrainTrials 300 

  numTrainTrials 150 

  dwellTime 144       # ms 

  OffRate 168.69374021197876 # ms 

  OnRate 10.527192211200115           # ms 

  ActivityHz 2.8347775148279837 

  mePct 0.20021843519101787 # Percent of Activity due to me 

  PyrToInternrnWtAdjDecayRate 10 # ms 

  InternrnExcDecayRate 3.0510244761578473 # ms 

  InternrnAxonalDelay 3 #ms 

  filePostfix InsertBHere 

  mySFR 0.18825035630935036 

  KFBBase 0.11863330057732645 

  KFFBase 0.016282657407230942 

  K0Base 0.02561081172035472 

  TraceDuration 500 

  setMu 0.015414817635324376 

  setLambda 1.394322282916058 

  minAxDelay 1 

  maxAxDelay 4 

  dendFilterWidth 8 

  randomSeed 1580 

) 

 

@SetVar(deltaT 1) 
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@SetVar(Period ^Calc(round[^(dwellTime)/^(deltaT)])) 

 

@PrintVar(deltaT) 

 

#Default values 

?If(strcmp[^(InternrnExcDecayRate),Insert:A:Here]=0) { 

  @SetVar(InternrnExcDecayRate 3.5) # ms 

} 

?If(strcmp[^(filePostfix),Insert:B:Here]=0) { 

  @SetVar(filePostfix tstActWithin.dat) 

} 

?If(strcmp[^(InternrnAxonalDelay),Insert:C:Here]=0) { 

  @SetVar(InternrnAxonalDelay 2) # ms 

} 

?If(strcmp[^(dendFilterWidth),Insert:D:Here]=0) { 

  @SetVar(dendFilterWidth 7) # ms 

} 

?If(strcmp[^(minAxDelay),Insert:E:Here]=0) { 

  @SetVar(minAxDelay ^Num2Int(^Calc(round[2/^(deltaT)]))) # ms 

} 

?If(strcmp[^(maxAxDelay),Insert:F:Here]=0) { 

  @SetVar(maxAxDelay ^Num2Int(^Calc(round[2/^(deltaT)]))) # ms 

} 

?If(strcmp[^(ActivityHz),Insert:G:Here]=0) { 

  @SetVar(ActivityHz 1) 

} 

?If(strcmp[^(mySFR),Insert:H:Here]=0) { 

  @SetVar(mySFR 0) 
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} 

?If(strcmp[^(OffRate),Insert:I:Here]=0) { 

  @SetVar(OffRate 100) 

} 

?If(strcmp[^(OnRate),Insert:J:Here]=0) { 

  @SetVar(OnRate 15) 

} 

?If(strcmp[^(KFBBase),Insert:K:Here]=0) { 

  @SetVar(KFBBase 0.01903) 

} 

?If(strcmp[^(KFFBase),Insert:L:Here]=0) { 

  @SetVar(KFFBase 0.00207) 

} 

?If(strcmp[^(K0Base),Insert:M:Here]=0) { 

  @SetVar(K0Base 0.02726) 

} 

?If(strcmp[^(TraceDuration),Insert:N:Here]=0) { 

  @SetVar(TraceDuration 500) # ms 

} 

?If(strcmp[^(setMu),Insert:O:Here]=0) { 

  @SetVar(setMu 0.01) # ms 

} 

?If(strcmp[^(setLambda),Insert:P:Here]=0) { 

  @SetVar(setLambda 0.5) # ms 

} 

?If(strcmp[^(mePct),Insert:X:Here]=0) { 

  @SetVar(mePct 0.3) # ms 

} 
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@PrintVar(InternrnExcDecayRate filePostfix InternrnAxonalDelay) 

 

@CreateVar(halfWidth ^Calc(^(dendFilterWidth)/2)) 

 

@CopyData(-to DTSFiltA -from "^Fn(^(deltaT),^(halfWidth),1-exp[-

^(halfWidth)/5*^(tFn)])" -type mat -T) 

@CopyData(-to DTSFiltB -from 

"^Fn(^(halfWidth)+^(deltaT),^(dendFilterWidth),exp[-

^(halfWidth)/5*[^(tFn)-^(halfWidth)]])" -type mat -T) 

@AppendData(-from 2 DTSFiltA DTSFiltB -to DTSFiltT -type mat) 

@CopyData(-to DTSFilt -from DTSFiltT -type mat -T) 

@CopyData(-to WtFilt -from "^Fn(^(deltaT),1,1)" -type mat) 

 

@SetVar( 

  title "Trace Conditioning" 

  mu ^(setMu) 

  Phase 0 

  Activity ^Calc(^(ActivityHz) * ^(deltaT) / 1000) 

  ni 2048 

  DendriteToSomaFilter DTSFilt 

  SynapseFilter WtFilt 

  FBInternrnAxonalDelay 

^Num2Int(^Calc(round[^(InternrnAxonalDelay)/^(deltaT)])) 

  FFInternrnAxonalDelay 1 # to allow it to be quasi in-sync 

  InternrnExcDecay ^Calc(1-exp[-^(deltaT)/^(InternrnExcDecayRate)]) 

  ResetPattern zeros 

) 
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@MakeRandSequence(-name zeros -len 1 -p 0) 

 

@SetVar( 

  ExtExc ^Calc(^(ni) * ^(Activity)) 

) 

@MakeSequence(-name InitPtn -len 1 -non 1 -Nstart 1) 

 

?If(exists[wNoise]) { @SetVar(wNoise ^(mySFR)) } 

?If(exists[SynFailRate]) { @SetVar(SynFailRate ^(mySFR)) } 

 

@CreateVar( 

# mePct varies from 0.2 to 0.5 

  me ^Calc(round[^(ni) * ^(mePct) / 10]) # 10 is arbitrary 

) 

#@SaveData(-from me -to me.dat) 

#@SaveData(-from mePct -to mePct.dat) 

#@SaveData(-from ActivityHz -to ActivityHz.dat) 

 

?If(exists[PyrToInternrnWtAdjDecay]) { 

  @SetVar(PyrToInternrnWtAdjDecay ^Calc(exp[-

^(deltaT)/^(PyrToInternrnWtAdjDecayRate)])) 

} 

?If(exists[KdAdjDecay]) { 

  @SetVar(KdAdjDecay ^Calc(exp[-

^(deltaT)/^(PyrToInternrnWtAdjDecayRate)])) 

} 
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@SetVar( 

  NMDArise ^Calc(ceil[^(OnRate) / ^(deltaT)]) 

  theta 0.5 

  Con 0.1 

  KFF ^Calc(^(KFFBase) * ^(dendFilterWidth)) 

  KFB ^Calc(^(KFBBase) * ^(dendFilterWidth)) 

  K0 ^Calc(^(K0Base) * ^(dendFilterWidth)) 

  wStart ^Calc(^(ActivityHz) * ^(OffRate) * ^Calc(1-^(mySFR)) / 

1000) 

  Reset 0 # Circular sequence 

  alpha ^Calc(exp[-^(deltaT)/^(OffRate)]) 

  MidPoint ^Calc(^(mePct) * ^(ni) * ^(Activity) / ^(me)) 

  xNoise ^Calc(^(mePct) * ^(ni) * ^(Activity) / ^(me)) 

  xTestingNoise ^Calc(^(mePct) * ^(ni) * ^(Activity) / ^(me)) 

  lambdaFB ^(setLambda) 

##  Begin Izhikevich Block  ##  

# Remove for Classical model # 

    IzhA 0.02437434474636943 

    IzhB -0.09098031934366621 

    IzhC -56.084834380015565 

    IzhD 5.715417424859181 

    IzhvStart -64.12632551580455   # stable point 

    IzhuStart ^Calc(-0.09098031934366621 * -64.12632551580455)     # 

stable point -60 * -0.1 

    IzhIMult 11.361992401899078 

###  End Izhikevich Block  ###  

) 
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@MakeRandSequence(-name InitPtn -len ^Calc(100/^(deltaT)) -p 

^Calc(^(Activity)/^(MidPoint))) 

 

@CreateVar( 

  startN 1 

  lastN ^Calc(2 * ^(me)) 

  tonelen ^Num2Int(^Calc(150 / ^(deltaT))) 

  pufflen ^Num2Int(^Calc(100 / ^(deltaT))) 

  tracelen ^Num2Int(^Calc(^(TraceDuration) / ^(deltaT))) 

) 

 

?If(strcmp[^(randomSeed),Insert:Seed:Here]=0) { 

  @SetVar(randomSeed 1) 

} 

@SetVar(seed ^(randomSeed)) 

@SeedRNG() 

@CreateNetwork(-mindelay ^(minAxDelay) -maxdelay ^(maxAxDelay) -dist 

uniform -low ^Calc(0.9 * ^(wStart)) -high ^Calc(1.1 * ^(wStart))) 

 

@DeleteData(InitPtn) 

@MakeRandSequence(-name InitPtn -Nend ^(ni) -len ^(Period) -p 

^Calc(^(mePct)*^(Activity)/^(MidPoint))) 

 

@MakeSequence(-name blank -len ^(tonelen) -non 0 -Nstart 1) 

 

@MakeSequence(-name tone -len ^(tonelen) -st ^(tonelen) -non ^(me)) 

@MakeSequence(-name trace -len ^(tracelen) -st ^(tracelen) -non 0) 
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@MakeSequence(-name puff -len ^(pufflen) -st ^(pufflen) -non ^(me) -

Nstart ^Calc(^(me)+1)) 

@MakeSequence(-name nopuff -len ^(pufflen) -st ^(pufflen) -non 0) 

@AppendData(-to trainTraceSeq -from 3 tone trace puff) 

@AppendData(-to testTraceSeq -from 3 tone trace nopuff) 

@CreateVar(firstRecur ^Calc(^(lastN)+1)) 

@PrintVar(deltaT alpha firstRecur Activity me MidPoint) 

 

@SetVar(seed ^(randomSeed)) 

@SeedRNG() 

 

@PrintVar(deltaT alpha Activity me MidPoint) 

 

@Test(-name testTraceSeq -time ^SequenceLength(-from testTraceSeq) -

nocomp -norecord 7 TestingThresholds TestingBusLines 

TestingIntBusLines TestingKWeights TestingInhibitions 

TestingFBInternrnExc TestingFFInternrnExc) 

@PrintVar(AveTestAct) 

@CreateVar(tempTest 0) 

@CreateVar(tempData 0) 

%(i 1 ^(numTrainTrials)) { 

  @ResetFiring() 

  @DeleteData(InitPtn) 

  @MakeRandSequence(-name InitPtn -Nend ^(ni) -len ^(Period) -p 

^Calc(^(mePct)*^(Activity)/^(MidPoint))) 

  @Test(-name InitPtn -time ^SequenceLength(-from InitPtn) -nocomp -

norecord 7 TestingThresholds TestingBusLines TestingIntBusLines 
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TestingKWeights TestingInhibitions TestingFBInternrnExc 

TestingFFInternrnExc) 

  @DeleteData(trace) 

  @MakeRandSequence(-name trace -Nend ^(ni) -len ^(tracelen) -p 

^Calc(^(mePct)*^(Activity)/^(MidPoint))) 

  @AppendData(-to trainTraceSeq -from 3 tone trace puff) 

  @MakeSequence(-name nopuff -len ^(pufflen) -st ^(pufflen) -non 0) 

  @AppendData(-to testTraceSeq -from 3 tone trace nopuff) 

  @Train(-name trainTraceSeq -trials 1 -nocomp -norecord 7 

TrainingThresholds TrainingBusLines TrainingIntBusLines 

TrainingKWeights TrainingInhibitions TrainingFBInternrnExc 

TrainingFFInternrnExc) 

  @PrintVar(AveTrainAct) 

  ?If(^(i) = 1) { 

    @FileReset(fit_trn_mean_act.dat fit_trn_ssd_act.dat) 

    %(j 1 701 50) { 

      # This is a little confusing because we're using N (neuron) 

where P (timestep) makes more sense 

      # That's because CopyData was designed for 0/1 patterns and 

not activities 

      @CopyData(-from TrainingActivity -Nstart ^(j) -Nend ^Calc(^(j) 

+ 49) -to subAct -type mat) 

      @SetVar(tempData ^Calc(mean[subAct])) 

      @SetVar(tempData ^Calc(1000 * ^(tempData) / ^(deltaT))) # 

Convert to Hz 

      @SaveData(-from tempData -to fit_trn_mean_act.dat -append) 

    } 

    @SetVar(tempData ^Calc(sqrt[var[TrainingActivity]])) 
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    @SetVar(tempData ^Calc(1000 * ^(tempData) / ^(deltaT))) # 

Convert to Hz 

    @SaveData(-from tempData -to fit_trn_ssd_act.dat) 

  } 

  @DeleteData(TrainingBuffer) 

  @SetVar(tempTest 0) 

  ?If(^(i) = 1) { 

    @SetVar(tempTest 1) 

  }   

#  ?If(^(i) = ^(numTrainTrials)) { 

#    @SetVar(tempTest 1) 

#  } 

  ?If(^(i) % 50 = 0) { 

    @SetVar(tempTest 1) 

  } 

  ?If(^(tempTest) = 1) { 

    @ResetFiring() 

    @DeleteData(InitPtn) 

    @MakeRandSequence(-name InitPtn -Nend ^(ni) -len ^(Period) -p 

^Calc(^(mePct)*^(Activity)/^(MidPoint))) 

    @Test(-name InitPtn -time ^SequenceLength(-from InitPtn) -nocomp 

-norecord 7 TestingThresholds TestingBusLines TestingIntBusLines 

TestingKWeights TestingInhibitions TestingFBInternrnExc 

TestingFFInternrnExc) 

    @DeleteData(trace) 

    @MakeRandSequence(-name trace -Nend ^(ni) -len ^(tracelen) -p 

^Calc(^(mePct)*^(Activity)/^(MidPoint))) 

    @DeleteData(nopuff) 
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    @MakeRandSequence(-name nopuff -Nend ^(ni) -len ^(pufflen) -p 

^Calc(^(mePct)*^(Activity)/^(MidPoint))) 

    @AppendData(-to testTraceSeq -from 3 tone trace nopuff) 

    @Test(-name testTraceSeq -time ^SequenceLength(-from 

testTraceSeq) -nocomp -norecord 7 TestingThresholds TestingBusLines 

TestingIntBusLines TestingKWeights TestingInhibitions 

TestingFBInternrnExc TestingFFInternrnExc) 

    @PrintVar(AveTestAct) 

      ?If(^(i) = 1) { 

      @FileReset(fit_tst_mean_act.dat fit_tst_ssd_act.dat) 

      %(j 1 701 50) { 

        # This is a little confusing because we're using N (neuron) 

where P (timestep) makes more sense 

        # That's because CopyData was designed for 0/1 patterns and 

not activities 

        @CopyData(-from TestingActivity -Nstart ^(j) -Nend 

^Calc(^(j) + 49) -to subAct -type mat) 

        @SetVar(tempData ^Calc(mean[subAct])) 

        @SetVar(tempData ^Calc(1000 * ^(tempData) / ^(deltaT))) # 

Convert to Hz 

        @SaveData(-from tempData -to fit_tst_mean_act.dat -append) 

      } 

      @SetVar(tempData ^Calc(sqrt[var[TestingActivity]])) 

      @SetVar(tempData ^Calc(1000 * ^(tempData) / ^(deltaT))) # 

Convert to Hz 

      @SaveData(-from tempData -to fit_tst_ssd_act.dat) 

      @SaveData(-from tempTest -to fit_quick.ready) 

    } 
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    ?If(^(i) % 50 = 0) { 

      @FileReset(fit2_:^(i):.dat) 

      %(j 1 701 50) { 

        @CopyData(-from TestingBuffer -Nstart ^Calc(^(me) + 1) -Nend 

^Calc(^(me) * 2) -Pstart ^(j) -Pend ^Calc(^(j) + 49) -to subBuff -

type mat) 

        @SetVar(tempData ^Calc(mean[subBuff])) 

        @SaveData(-from tempData -to fit2_:^(i):.dat -append) 

      } 

      @SaveData(-from tempTest -to fit2_:^(i):.dat.ready) 

    } 

    @DeleteData(TestingBuffer) 

  } 

} 

@DeleteData(TrainingActivity) 

 


