
4/23/2019 Thesis/Dissertation Cover and Approval Pages

https://seas.virginia.edu/forms/thesis-cover-approval.php 1/2

UNIVERSITY OF VIRGINIA

Towards an End-to-End System for Threat

Detection on Enterprise Networks

Author:

Brendan ABRAHAM

Advisors:

Dr. Don BROWN

Dr. Malathi Veeraraghavan

A thesis submitted in fulfillment of the requirements

for the degree of Master of Science

in the

Department or Systems and Information Engineering

April 23, 2019

i

Abstract

Cybercrime has become one of the most pressing issues of the digital age. Cyber-

attacks cost businesses on average $11 million annually and there are no signs of

slowing down, as the amount of attacks has doubled in the last five years [13]. More-

over, attackers are employing increasingly sophisticated methods, targeting govern-

ment, business, and academic institutions alike. The traditional defense against cy-

bercrime is an Intrusion Detection System (IDS) which examines network traffic for

malicious or anomalous behavior. In most cases, these systems use signature-based

detection, relying on pre-defined rules and attack signatures to detect intrusions.

This strategy is woefully inadequate in an age where cyber-attacks are constantly

evolving. A more promising approach is anomaly detection, which models host or

endpoint behavior on a network in order to detect malicious traffic. In these systems,

predictive models are trained to learn behavioral patterns from the data, as opposed

to being told exactly what to look for.

In this thesis, we lay the groundwork for an end-to-end, anomaly-based Intru-

sion Detection System for UVA network traffic. Our work consists of three com-

ponents. First, we demonstrate through a pilot study that machine learning tech-

niques can be extremely effective at isolating botnet traffic and potentially detecting

zero-day attacks. We present a novel evaluation cross-validation technique called

Leave-One-Bot-Out CV (LOBO-CV) which effectively measures a model’s ability to

generalize to traffic from a new, unseen botnet. Second, we present a high-speed

traffic capturing pipeline and apply it to our own network data. Finally, we present

a traffic labeling pipeline leveraging blacklist, whitelist, and honeypot feeds to label

our network traffic on a daily basis. Experimental results suggest that the labels pro-

duced by this pipeline are legitimate and that malicious traffic can be isolated from

whitelisted traffic if the right features and model are used.

ii

Acknowledgements
I would like to take this opportunity to acknowledge and thank the people that

helped me and worked with me throughout my graduate school career. Without

their support, this thesis would not have been possible.

I would like to thank my Systems advisor, Professor Don Brown. His insights,

support, and guidance were extremely helpful in not only crafting my thesis, but

also helping me get through graduate school. It was simultaneously humbling and

a pleasure to work for someone as accomplished and knowledgeable in Data Science

as he is.

I would also like to thank Professor Malathi Veeraraghavan, my co-advisor from

the Electrical and Computer Engineering department. She taught me everything

I know about computer networks and many important lessons ranging from how

to diagnose a bug in C code to how to write an effective email. Most of all, she

taught me the importance of developing a deep understanding of the problem at

hand before delving into solutions. I’d also like to thank her for her guidance in my

research and feedback on my thesis.

Additionally, I would like to thank Professor Gerber for his invaluable feedback

on my thesis and defense presentation.

The work presented in this thesis was highly collaborative. As such, I’d like

to take this time to thank all the people who worked with me on each project and

acknowledge their contributions.

First, I’d like to thank Rohan Bapat, Abhijith Mandya and Fatma Al-Ali for their

contributions to the botnet detection study. Abhijith wrote code for many of the

individual models, which I simply executed and extended to build the remaining

models. Rohan was instrumental in implementing our ’Leave-One-Bot-Out’ cross-

validation scheme. Last, but certainly not least, Fatma pointed us to the dataset

we used for this project in the first place. Without her research and assistance, the

project would not have been possible.

Additionally, I’d like to thank the people involved in building our traffic collec-

tion pipeline. First, I’d like to thank Jeff Collyer for configuring the Gigamon and

for all his help with debugging packet loss issues. Second, I’d like to thank Sourav

iii

Maji for all his guidance and assistance in setting up the pipeline. His help was in-

valuable in configuring Ivy Bulwark’s environment to work with Bro and some of

the key optimizations presented herein were originally his ideas (noted in chapter

4). Third, I’d like to thank Jack Morris for his help debugging issues with Bro and

for building a performance dashboard. Fourth, I’d like to thank Curtis Kahn for au-

tomating data transfer in the pipeline and for setting up log anonymization. Finally,

I’d like to thank Alex Ptak and Michelle Co for their help with administrative issues

on Ivy Bulwark. Without the contributions of these people, completing this project

alone would have been next to impossible.

Moreover, I’d like to thank the people that worked with me on building the traffic

labeling system. This includes Yizhe Zhang for developing many of the blacklist

crawlers, Alastair Nottingham for helping me design the initial database schema,

and Will Hawkins for his feedback on my code. Additionally, I’d like to thank the

2018 MSDS Cyber Capstone team, namely Rakesh Ravi, Boda Ye, and David Roden,

for their work on clustering labeled traffic. While reproduced on a different sample,

the results presented in 5.3 are based off of their methods.

Finally, I would like to thank my parents for their moral support throughout

graduate school.

It was a pleasure working with everyone over the last two years. Together, we

accomplished significantly more than I could have possibly done on my own.

This research was funded by SEAS RIA and the DARPA PCORE project.

iv

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Introduction . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Thesis Organization . 2

2 Background & Related Work 3

2.1 Networking Concepts & Terminology 3

2.2 Intrusion Detection Systems . 5

2.3 Machine Learning Approaches to Threat Detection 5

2.4 High Speed Packet Capture Solutions 7

2.5 Approaches to Labeling Network Traffic 8

3 Evaluating Machine Learning Approaches for Botnet Detection 11

3.1 Introduction . 11

3.2 Background . 12

3.3 Objectives . 13

3.4 Data Description . 13

3.5 Data Processing . 14

3.6 Feature Engineering . 16

3.7 Modeling Overview . 17

3.8 Modeling Techniques . 18

3.8.1 Logistic Regression . 18

v

3.8.2 Naive Bayes . 19

3.8.3 Support Vector Machines (Radial) 19

3.8.4 Random Forest . 20

3.8.5 Fully-Connected Neural Network 20

3.9 Evaluation and Results . 21

3.9.1 K-fold CV . 21

3.9.2 LOBO CV . 22

3.9.3 Ensemble Results . 23

3.10 Conclusions and Applications to UVA Data 24

4 UVA Traffic Processing Pipeline 26

4.1 System Overview . 27

4.2 Packet Forwarding with the Gigamon 28

4.3 Packet Processing . 28

4.3.1 Processing Steps . 29

4.3.2 Processing Challenges . 29

4.3.3 Metrics . 30

Packet Loss (Packet Drop Rate) 30

CaptureLoss . 30

Link Utilization . 31

4.3.4 Optimizations . 31

Increasing the Buffer Size (NIC) 32

Load Balancing (Bro) . 32

Minimal Log Writing (Bro) . 34

Subnet Filtering (Gigamon) . 34

Avoiding Memory Leaks with Daily Restarts (Bro) 35

Disabling RX/TX Offloading (NIC) 37

Disabling Checksum Validation (Bro) 37

4.3.5 Summary . 38

4.4 Log Anonymization . 39

4.5 Conclusion . 39

vi

5 UVA Traffic Labeling Pipeline 41

5.1 Labeling System Architecture . 41

5.1.1 Design Considerations . 47

5.2 Implementing the System for Our Research 48

5.2.1 Categories . 48

Honeypots . 48

Blacklists . 49

Whitelists . 49

5.2.2 Feeds . 49

5.3 Exploratory Analysis . 50

5.3.1 Cluster Analysis . 51

5.3.2 Port Analysis . 52

5.3.3 Geolocation Analysis . 52

5.3.4 Conclusions . 53

5.4 Future Improvements . 53

6 Conclusions and Future Work 54

6.1 Conclusions . 54

6.2 Limitations and Future Work . 56

Bibliography 58

vii

List of Figures

2.1 An illustration of different traces. Graphic courtesy of Botfinder [22] . 4

3.1 An illustration of our neural network. 16

3.2 An illustration of our neural network. 21

3.3 Mean Gini Decrease when each variable is left out of the Random For-

est Model . 23

4.1 A visual of UVA’s network topology and our data collection pipeline. . 27

4.2 The components of our traffic processing pipeline. 28

4.3 Visualization of load balancing in Bro. 32

4.4 A configuration file for Bro that load balances traffic across 9 workers . 33

4.5 Packet Drop Rate and Link Utilization After Applying Load Balancing

and Log Reduction . 35

4.6 Packet Drop Rate and Link Utilization After applying Subnet Filtering 36

4.7 Performance spirals out of control over time 36

4.8 CaptureLoss Before and After Turning Off Offloading and Checksums 38

4.9 Summary of All Optimizations . 38

5.1 An overview of the labeling pipeline . 42

5.2 Samples of Abuse Ransomware Feed and routeviews file from Apr

10th, 2019 . 43

5.3 Converting Entities between URLs, Domain Names, IP Addresses,

ASNs and Subnets in Python . 44

5.4 Example of parsing process for a url from the Abuse-URL feed 44

5.5 Schema for the Labeling Database . 45

5.6 Algorithm for propogating new record information into database . . . 45

viii

5.7 Process for labeling a connection with a database containing blacklist,

whitelist, and honeypot data . 46

5.8 Sample honeypot data in CIF log from Mar 28, 2019 48

ix

List of Tables

3.1 Malware Description . 14

3.2 Traffic Type Distribution in Dataset . 14

3.3 Samples Used in Dataset . 15

3.4 Evaluation Metrics . 21

3.5 LOBO-CV F1 score . 23

3.6 LOBO-CV F1 Score for Ensemble Model 24

4.1 Minimal Set of Logs for Traffic Capture 34

4.2 Subnets Used in Traffic Filter . 35

5.1 Feeds Collected for Labeling Database 50

5.2 Label Mappings . 51

5.3 Portion of Connections from the US By Class 53

x

List of Abbreviations

ACK Acknowledgement Flag (TCP)
ASN Autonomous System Number
AUC Area Under the Curve
C&C Command and Control
CDN Content Delivery Network
CV Cross Validation
FFT Fast Fourier Transform
FTP File Transfer Protocol
FPR False Positive Rate
HAR High Access Rate
HTTP Hypertext Transfer Protocol
ICMP Internet Control Message Protocol
IDS Intrusion Detection System
LOBO-CV Leave One Bot Out Cross Validation
LR Logistic Regression
NB Naive Bayes
NIC Network Interface Card
NN Neural Network
pcap packet capture
RELU Rectified Linear Unit
RF Random Forest
ROC Receiver Operating Characteristic
SBB Symbiotic Bid-Based Model
SSL Secure Socket Layer
SYN Synchronization Flag (TCP)
SVM Support Vector Machine
TCP Transmission Control Protocol
UDP User Datagram Protocol
UVA University of Virginia
VM Virtual Machine

1

Chapter 1

Introduction

1.1 Introduction

Cybercrime has become one of the most pressing issues of our time. Cyber-attacks

cost businesses on average $11 million annually and there are no signs of slowing

down, as the amount of attacks has doubled in the last 5 years [13]. Moreover, at-

tackers are employing increasingly sophisticated methods, targeting government,

business, and academic institutions alike. In particular, UVA has been the target of

many notable attacks in the last decade. In 2007, hackers from China infiltrated UVA

IT systems and stole over 5400 social security numbers of students and faculty. [14]

In 2015, attackers hacked into UVA mail servers and compromised the mail accounts

of multiple university employees. Universities across the country are subject to at-

tacks like these on a regular basis, so it’s essential to develop techniques to detect

and neutralize these threats.

The traditional defense against cybercrime is an Intrusion Detection System (IDS),

which examines network traffic for malicious or anomalous behavior. In most cases,

these systems use signature-based detection, relying on pre-defined rules and attack

signatures to detect intrusions. This strategy is woefully inadequate in an age where

cyber-attacks are constantly evolving. A more promising approach is anomaly de-

tection, which models host or endpoint behavior on a network in order to detect

malicious traffic. In these systems, predictive models are trained to learn behavioral

patterns from the data, as opposed to being told exactly what to look for.

Chapter 1. Introduction 2

1.2 Objectives

The objective of this thesis is to lay the foundation for an end-to-end, anomaly-based

Intrusion Detection System for enterprise networks. This objective is contingent on

developing a strong data pipeline that captures, pre-processes and labels network

traffic on a continuous basis. We build such a pipeline for UVA network traffic.

While constructing this pipeline, we set out to evaluate multiple machine learning

approaches for anomaly detection on open-source datasets. In short, our goals are:

• Build an end-to-end Intrusion Detection System for enterprise networks

– Build a robust pipeline to process and label UVA network traffic

– Concurrently develop threat detection methodology on open-source data

1.3 Contributions

The contributions of this thesis are as follows: (i) A pre-processing pipeline that con-

tinuously collects, anonymizes, and labels network traffic; (ii) A scalable labeling

system that can be used for any IP-based labeling task; (iii) a methodology for train-

ing and evaluating models for botnet detection. This thesis will hopefully pave the

way for real-time anomaly detection for the UVA network as well as other enterprise

networks.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 explains important net-

working concepts relevant for understanding the thesis and surveys related work.

Chapter 3 details our methodology for building and evaluating supervised learning

models for botnet detection. Chapter 4 explains our UVA network traffic process-

ing pipeline, and details all the optimizations we had to make to achieve successful

high-speed packet capture. Chapter 5 describes a fully autonomous IP-based traffic

labeling pipeline that we use to label our UVA network traffic for supervised learn-

ing. Finally, Chapter 6 concludes the thesis and proposes avenues for future work.

3

Chapter 2

Background & Related Work

This chapter provides a cursory background of networking concepts necessary to

understand this thesis and presents a literature review of related work in the field.

The chapter is organized as follows: Section 4.1 explains fundamental networking

concepts and terminology; Section 4.2 describes Intrusion Detection Systems; Sec-

tion 4.3 describes machine learning approaches to anomaly detection; Section 4.4

describes high-speed packet capture solutions used to pre-process network traffic;

Section 4.5 describes approaches to labeling network traffic for supervised learning.

2.1 Networking Concepts & Terminology

I refer to many networking concepts throughout this thesis assuming the reader un-

derstands them. Thus, I will briefly the most salient networking concepts that are

referred to in later sections. If you are already familiar with networks, feel free to

skip to section 2.2.

In every network connection, there is a source S (usually a client) and a des-

tination D (often a server). Collectively, they are known as endpoints. Endpoints

communicate back and forth by sending digital chunks of information to each other.

These chunks are known as packets, which are the smallest unit of data that can be

sent across a network. Each packet contains a header, which specifies S and Ds’ IP

addresses and a payload containing all the data to be sent to the destination. Each

packet is associated with a certain protocol, or communication standard. In some pro-

tocols such as Transmission Control Protocol (TCP), hosts send flags to each other,

which act as formal keywords marking different stages of the connection.

Chapter 2. Background & Related Work 4

During the connection, data is sent between two ports: A source port at S and

a destination port at D. A port identifies a server or client process to which the

TCP/UDP or other protocols send packets. While a server such as a web server

can have thousands of ports, some ports are commonly associated with specific ser-

vices. For example, HTTP uses port 80, HTTPS uses port 443, and SSH uses port 22.

As such, server ports often indicate the activity associated with a connection.

FIGURE 2.1: An illustration of different traces. Graphic courtesy of
Botfinder [22]

Packet traffic can be recorded in pcap (packet-capture) files and directly analyzed

with open-source software. While pcap data provides highly granular information

for forensic analysis, it accumulates quickly and requires significant storage space.

An alternative to pcap data is flow data, which contains aggregate level statistics

about the packets exchanged between a source and destination over a certain time

interval [22]. Since they are summary statistics, they require significantly less space

than pcap data, but they lack the detailed information contained in packet payloads.

Each flow is identified by a five-tuple, i.e. source IP, destination IP, source port, des-

tination port, and protocol. In client-initiated flows, the client is the source and the

server is the destination. Conversely, for flows from server to client, the server is the

source and client the destination. For this reason, we often use client/server termi-

nology instead of source/destination. Client ports are usually ephemeral, meaning

they change with time. Thus, flows are often identified in practice by a four-tuple

consisting of its client IP, server IP, server port, and protocol [22].

Finally, flows can be further aggregated by four tuple into traces, which repre-

sent all traffic between S and D associated with the same server port and proto-

col. (See Fig. 2.1). Analyzing traffic at the trace level facilitates the computation

Chapter 2. Background & Related Work 5

of highly useful metrics for anomaly-based detection because we can analyze be-

havior across connections flows. In our work, we extract time-based, volume-based

and flag-based features from traces between endpoints in order to detect malicious

traffic.

2.2 Intrusion Detection Systems

Intrusion Detection Systems (IDSes) play a crucial role in keeping enterprise net-

works safe. Their primary objective is to monitor live network traffic and report any

anomalous or suspicious behavior to network administrators. However, some ID-

Ses possess the ability to react to certain threats based on pre-defined rules [5]. Often

times, they collect useful traffic logs that can be used by experts after an attack to de-

termine the root cause. Most existing IDSes are signature-based i.e. they depend on

pre-defined rules to detect cyber threats. However, many attackers have learned to

circumvent these rules, and as such, signature-based systems often miss zero day at-

tacks. A more promising approach as of late has been to build anomaly-based IDSes,

which leverage statistical models and real network data to derive threat detection

rules. While they are often more difficult to deploy, anomaly-based systems tend

to outperform signature-based IDSes because they learn new patterns from the data

that can generalize to new attack types. This thesis presents the foundation for such

an IDS that leverages supervised learning models for malicious threat detection.

2.3 Machine Learning Approaches to Threat Detection

As cyber attacks become increasingly more sophisticated, intrusion detection com-

panies are turning more and more to machine learning to build their systems. Ac-

cording to P&S market research, cyber companies will spend more than $6 billion

on Artificial Intelligence by 2023. [39]. Academic research in this area has exploded

too, focusing mainly on building attack detection models [11]. While there are many

different types of cyber attacks, most of them depend on having a strong botnet, or

network of infected machines, to succeed. Thus, detecting botnet traffic can help

mitigate a variety of security threats.

Chapter 2. Background & Related Work 6

A considerable number of studies have been conducted to create machine learn-

ing models based on a limited number of botnet families. In these studies, a separate

model is often created for each family, or one model is created for 2-3 botnet fami-

lies. For example, Hadaddi et al. [25] developed C4.5 and Naive Bayes models to

detect HTTP-based botnets using two families: Zeus and Citadel. Eslahi et al. [16]

proposed the use of HAR (High Access Rate) and LAR (Low Access Rate) filters,

which are designed to provide upper and lower bounds on suspicious periodicity.

The model was based on two botnet families: BlackEnergy and Bobax. Wang et al.

[45] created three clustering models for Kraken, BlackEnergy and Zeus. Lu et al. [33]

combined network traffic analysis with hidden Markov models to differentiate the

behavior of Zeus C&C communication from normal traffic. Torres et al. [44] trained

a threat detection model on open-source data from two botnet families: (DonBot

and Neris). Finally, the authors of Botfinder [22] proposed a machine learning based

system that calculates statistical features similar to the features we use in our Botnet

study.

Some botnet detection models require inspecting packet payloads to extract the

required information for detection [17, 31, 24, 12]. For example, Etemad et al. [18]

proposed a method to separate IRC traffic from HTTP traffic by light payload in-

spection. Most feature extraction algorithms regard malware detection as a regular

machine learning problem and mainly aim at improving the final detection perfor-

mance. Our models, however, are based on trace level information that does not

require payload inspection. Soniya et al. [42] trained a neural network classifier by

running 120 botnet malware samples including Pushdo, Banbra, BlackEnergy, Sas-

fis, Bifrose, Dedler, and Zeus. Their model achieved a false positive rate (FPR) of

2.5%. Bilge et al. [30] proposed a botnet detection system called DISCLOSURE that

extracts three types of features from Netflow: size, host access pattern, and tempo-

ral behavior. The features are based on their hypothesis that C&C communication

happens in predictable patterns that can be identified with behavioral and temporal

metrics. However, while their final model achieved a false positive rate less than 1%,

its accuracy was less than 65%. Finally, Haddadi et al. [19] analyzed Netflow data

from three Botnets – Zeus, Conficker and Torpig. Flow features such as duration,

Chapter 2. Background & Related Work 7

number of packets, number of bytes, flows and bits per second were used to clas-

sify malicious traffic. A C4.5 Decision tree model and a Symbiotic Bid-Based (SBB)

model were trained and tested where the false positive rates were on average 5-10%,

depending on the botnet family. In Chapter 3, we demonstrate that our best model

can achieve a FPR of less than 1% on similar traffic.

2.4 High Speed Packet Capture Solutions

While plenty of studies deal with applying machine learning to network data, few

explain how the data was actually collected. In most cases, they either were pro-

vided the dataset by an enterprise [36, 30] or used open source datasets [19]. Those

who collect their own traffic have historically narrowed the scope of analysis to

single-link traffic which can easily be managed with standard packet capturing tools

[15]. In contrast, building a threat detection model at the enterprise level requires a

custom, air-tight traffic capturing solution across multiple links with minimal packet

loss at high speeds.

While there are some notable commercial products for high speed packet cap-

ture, they are often expensive and/or difficult to deploy. However, some papers

have shown that lossless high-speed packet capture is possible by leveraging open

source software. Sandia Labs compare the performance of four low-budget solutions

(PF_Ring, PF_Ring Zero Copy (ZC), Sniffer10G, and NetMap) for traffic capture at

varying speeds and flow sizes. They found that PF_Ring ZC and sniffer 10G could

keep up with traffic speeds up to 10 Gbps without dropping any packets [8]. Gallen-

muller et al. evaluate PF_Ring, netmap and DPDK’s packet capturing ability under

varying CPU loads and buffer size, and found that PF_Ring outperformed the other

commercial software alternatives. [23]. Purzynski et al demonstrate it is possible to

capture traffic at speeds up to 10 Gbps using Suricata and AF_Packet [37]. Finally,

Stofer et al show that network intrusion detection with Bro (now Zeek) is possible

at speeds up to 100 Gbps if the traffic is load balanced across a cluster of high per-

formance hosts. [29]. We have also deployed Bro in our pipeline but are currently

performing load-balancing on a single host. Despite this limitation, we are still able

to process all incoming traffic from our 10 Gig network tap.

Chapter 2. Background & Related Work 8

2.5 Approaches to Labeling Network Traffic

To build supervised threat detection models, we need to obtain examples of both ma-

licious and benign behavior for training. There are primarily three approaches for

obtaining malicious traffic samples. The first is attack simulation. In this approach,

a group of attackers attempts to compromise a fake target, and all network traffic is

recorded. Subsequently, all traces associated with the attackers are labeled as mali-

cious and are intermixed with benign traffic samples. While attack simulation has

been used extensively in the cyber literature [28, 21, 32], it suffers from a few key

drawbacks. First, the efficacy of a model built on this data is highly dependent on

the quality and fidelity of the simulations. This can be problematic because there is

often a difference between the way researchers expect an attack to occur and the way

it actual occurs in the wild. The best way to mitigate this bias is to deploy existing

malware for the attack simulation. However, even if the simulations are authentic,

they are still based on previously well-known and documented attacks, so a model

built on this data will likely fail to detect zero-day attacks.

Another frequently used method to record malicious traffic is deploying a hon-

eypot server. Formally, A honeypot is defined as a decoy computer resource whose

value lies in being probed, attacked, or compromised [35]. A honeypot emulates a

common service or application such as HTTP, SSH, FTP, HTML or a MYSQL database

and is usually deployed in an isolated environment independent of the central net-

work. Upon successful login, all the attacker’s actions are recorded and written to

log files. However, since these machines merely mimic real services, attackers are

unable to do any damage to the machine or the network.

Honeypots have been used to generate ground truth in many notable attack de-

tection papers. Antonakis et al used honeypots to capture malware samples in a

controlled environment and calculated features from this traffic for their DNS rep-

utation system [6]. Daniel Zammit built a network of honeypots that continuously

collected attack data and used it to train a machine learning model for attack detec-

tion [47]. Finally, Song et al built an attack detection dataset on over three years of

honeypot data and used this data to evaluate an IDS [41]. In our research, we use

Chapter 2. Background & Related Work 9

honeypots for IP-based labeling. The idea is that if an IP address is observed at-

tacking the honeypot, we can confidently label its traffic as malicious (or at the very

least suspicious) if it appears elsewhere on the network around that time. While

this implicitly assumes all honeypot traffic is malicious, the assumption is fairly safe

because properly configured honeypot servers are run in isolated networks undis-

closed to normal network users [35]. While honeypots are advantageous in many

ways, one drawback is that sophisticated malware packages are often programmed

to detect and ignore them.

The third and simplest way to obtain labeled malicious traffic is by blacklisting.

Blacklisting is a technique to protect the network by filtering network traffic by IP

address. In production, they are used as a filter to block traffic to and from black-

listed IP addresses. However, in academia, they tend to be used retrospectively

to label threats in recorded traffic. These lists are often painstakingly curated and

maintained by cybersecurity experts or researchers. As such, the threats on these

lists are usually legitimate. However, they suffer from a few notable drawbacks.

First, there is little consensus between blacklists. According to a meta-study of over

80 blacklists, the lists had little to no overlap, even though many of them track the

same malicious activities [34]. This means the scope of malicious activity, recency

and quality of each blacklist differs drastically from list to list. Second, IP addresses

are dynamic; they are leased to a host for a fixed amount of time, but after the lease

expires, they can be allotted to an entirely different host. This causes most blacklists

to suffer from a high false positive rate [43]. Finally, malicious websites are usu-

ally dealt with quickly after they’ve been publicly blacklisted. As such, a blacklist

can grow stale over time and is therefore only truly effective if used to label traf-

fic around the time that the incidents were reported. In our system, blacklists are

downloaded on a daily basis and are only used to label the concurrent day’s net-

work traffic. In the rare case that an IP attacks the network and it is added to a

blacklist later that day, the connection would still be flagged as malicious because

labeling is performed retrospectively at the end of the day.

Similarly, the most common approach to obtaining benign samples is whitelist-

ing. Related to, albeit distinct from blacklists, whitelists in industry are used to ex-

clude all traffic except that from sources which are known to be secure. In effect,

Chapter 2. Background & Related Work 10

they act in the opposite way as blacklists; the default behavior is to exclude traffic

unless it is to or from a known, safe source. True whitelisting requires manually

verifying that a website is legitimate. However, since the majority of active websites

are benign, and there are nearly 200 million active websites on the web, this proves

to be a challenging task [20]. Instead, most researchers use website visitation as a

proxy, assuming that the most popular websites are benign [43]. This assumption

turns out to hold for most consistently popular websites. However, malicious sites

can sometimes temporarily surge in popularity and as such be falsely whitelisted.

One way to mitigate this issue is to filter the whitelists to only include domains that

have been on the list for a substantial period of time. We employ this technique with

our whitelist, and it has proven to drastically reduce the false positive rate.

11

Chapter 3

Evaluating Machine Learning

Approaches for Botnet Detection

3.1 Introduction

Since we didn’t have a traffic processing pipeline last year, we decided to conduct a

pilot study on building threat detection models using third party data. We focused

specifically on botnet detection, as botnets are leveraged for many different types of

cyber attacks. We pulled the data from the website for the Czech Technical Univer-

sity’s (CTU) Stratosphere project. Overall, we compiled over 40 samples of malicious

and benign traffic. The malicious samples spanned eight different botnet families

and were created by researchers downloading and executing real malware in an iso-

lated environment. The whitelist samples were mostly normal traffic recordings of

the researchers. The goal of this study was to build classifiers that could distinguish

between benign and malicious traffic samples and detect novel botnet attacks using

temporal, volume-based, and TCP flag-based features.

We compared the performance of five different algorithms: Random Forest, Lo-

gistic Regression, Naive Bayes, SVM and a feed-forward Neural Network. Of these,

Random Forest performed far and away the best, achieving both an F1 score and

AUC of .99 when evaluated using k-fold cross validation. However, since we were

interested in measuring the model’s ability to detect zero-day attacks, we designed

a custom cross-validation technique called Leave One Bot Out (LOBO) CV, which

measures the botnet’s ability to detect traffic from a botnet family it hasn’t seen be-

fore. Although Random Forest performed admirably, it struggled to detect certain

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 12

botnet families that other models performed better on. As such, we ensembled the

predictions of the two best models (Random Forest and Logistic Regression) in a

weighted fashion to produce ensemble predictions. The ensembe model was able

to pick up on the strengths of each individual model and in some cases, even im-

prove on the best individual model. Overall, the ensemble model achieved an F1

score of .99 or higher on all but two families (.95 for Zeus and .90 for Bunitu). The

results suggest ensembling approach like this could potentially be highly effective

at detecting new botnets in the wild.

This chapter is laid out as follows: Section 4.1 provides necessary background

and motivates the problem; Section 4.3 states the specific objectives of the project;

Section 4.4 describes the data we used in detail; Section 4.5 describes our data pro-

cessing pipeline; Section 4.6 describes the features we used for our models; Sections

4.7-4.8 describes our models; Section 4.9 contains the results of model evaluation,

and finally Section 4.10 concludes the chapter and suggests avenues of future work.

I worked extensively with Rohan Bapat and Abhijith Mandya on this project, and

all coding was done in Python and R. Our code, data and results are accessible via

Github. 1

3.2 Background

An important source of cyber-attacks is malware, or malicious software that infects

and compromises a host machine. Malware proliferates in different forms, one of

them being botnets, which are groups of remotely controlled, compromised ma-

chines. These compromised machines, called bots, connect to a central server op-

erated by a botmaster that gives them instructions to execute. The bots periodically

communicate with the botmaster to receive new instructions. This back and forth be-

tween bots and botmaster is known as Command and Control CommunicationC&C.

A botnet can be leveraged to perform a variety of deadly tasks, such as DDoS (Dis-

tributed Denial of Service) attacks, APT (Advanced Persistent Threats) attacks, or

phishing attacks[7]. Since they are a necessary tool for many different attacks, stop-

ping them is a top priority from a security standpoint.

1https://github.com/am6ku/Anomaly-based-Intrusion-Detection-System/

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 13

3.3 Objectives

Our objectives for this research are as follows:

1. Evaluate multiple machine learning approaches for botnet traffic detection

2. Accurately identify botnet traffic while maintaining a low false positive rate

3. Create a detection system that is light-weight, scalable and generalizable to

new, unseen attacks

3.4 Data Description

Our data consisted of traffic from eight different bot families. We have used data

released by the Malware Capture Facility Project under Stratosphere IPS Project [1].

The researchers used a testbed network topology consisting of a set of virtualized

computers to create malicious and normal network traffic [40]. The repository con-

tains over 150 botnet traffic samples and dozens of normal traffic samples.

Traffic that came to or from any of the known infected IP addresses was labeled

as malicious data. The researchers who generated this traffic used open source code

specific to eight different families of botnets. In this way, they produced malicious

traffic from each of these families with correct, ground truth labels for each bot.

Traffic from the known and controlled computers in the network, such as routers,

proxies, or switches, was labelled as normal data.

The traffic was captured in different formats including pcap (packet capture),

Netflow and Bro logs. For our analysis, we used conn logs, which contain flow-level

data and are generated by the network monitoring framework Bro. Overall, our

dataset contained over 22,000 traces and around 1.6 million flows.

The specific samples we used are included in Table 3.3. In total, we pulled 36

samples with malicious traffic from eight botnet families and used multiple nor-

mal samples. The indices shown in the table are abbreviated versions of the di-

rectory names on the website. Malicious traffic directories follow the naming con-

vention CTU-Malware-Capture-Botnet_f_index, while Normal directories are named

CTU-Normal_f_index.

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 14

Table 3.1 details the different botnet families present in our dataset, while Table

3.2 details the distribution of traces of these botnet families in our dataset.

TABLE 3.1: Malware Description

Family Malware Description Year Botnet
Size

Zeus First widespread banking trojan - used to
steal banking information.

2007 3.6M

Conficker Worm used to infect Windows systems -
Has infected computers in over 190 coun-
tries

2008 200k

Dridex Another banking trojan that targeted
large American corporations from 2012-
2015

2011 100k-
500k

Necurs Massive botnet used to launch ran-
somware attacks and banking trojans.

2012 6M

Miuref Trojan that facilitates click fraud and
downloads malicious content.

2014 100k

Bunitu VPN scam that uses infected hosts as a
proxy for remote clients.

2014 100k-
500k

Upatre Malware downloader that downloads
and executes Dyre Banking trojan

2014 100k-
500k

Trickbot Trojan that leverages HTML and
Javascript injections to steal banking
information

2016 100k

TABLE 3.2: Traffic Type Distribution in Dataset

Traffic description Number of traces % of overall

Normal traffic 13,514 48%

Bunitu 6,761 24%

Necurs 3,975 14%

Miuref 1,532 6%

Zeus 711 3%

Other malware 1,379 5%

3.5 Data Processing

Figure 3.1 shows our end-to-end pipeline from data collection to modeling. Data

processing consisted of four steps. First, each malicious and benign traffic sample

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 15

TABLE 3.3: Samples Used in Dataset

File Index Type File Index Type

140-1 Bunitu 238-1 Trickbot

140-2 Bunitu 239-1 Trickbot

141-1 Bunitu 240-1 Trickbot

141-2 Bunitu 241-1 Trickbot

153-1 Dridex 242-1 Trickbot

227-1 Dridex 243-1 Trickbot

228-1 Dridex 244-1 Trickbot

246-1 Dridex 247-1 Trickbot

248-1 Dridex 176-1 Necurs

249-1 Dridex 7 Normal

128-1 Miuref 12 Normal

128-2 Miuref 2 Normal

169-1 Miuref 21 Normal

169-2 Miuref 22 Normal

169-3 Miuref 23 Normal

143-1 Upatre 78-1 Zeus

162-1 Upatre 78-2 Zeus

162-2 Upatre 91 Conficker

obtained form CTU’s repository was parsed, filtered, and cleaned so the connec-

tions were grouped into traces. Next, feature extraction was performed on each

trace to obtain statistics describing flow-level and trace-level behavior. At this point,

each feature vector was assigned the label of its parent sample (i.e. benign or mali-

cious). Third, all feature vectors and labels were collapsed across samples to form

our modeling dataset. Finally, this data was partitioned into training and test sets,

which were used to train and evaluate a host of supervised learning algorithms.

The following sections describe the feature engineering process and the modeling

techniques we used in detail.

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 16

FIGURE 3.1: An illustration of our neural network.

3.6 Feature Engineering

As stated above, the connections within each traffic sample were grouped into traces

containing all flows associated with the same four-tuple, or same (source IP, desti-

nation IP, destination port, and protocol). We excluded source ports when defining

traces because they are ephemeral, meaning they can change throughout the course

of a trace. Each trace was collapsed down to a single record containing statistics

characterizing the typical behavior between each source and destination on the net-

work. The features we calculated can be generalized to three groups. The first set of

features relates to the volume of the communication, or the average number of pack-

ets and amount of data sent in a typical flow. The second set of features pertains to

the timing of communication, or the average flow duration and average time inter-

val between successive flows. The final set of features pertains to the state history of

connections in the form of flag counts. These counts were obtained by parsing the

state_history field in the conn logs, which contains a string of successive flags sent

throughout the connection. Capital flags were sent from the source, while lower-

case flags were sent from the destination. We kept separate counts of source flags

and destination flags with the hops of discovering some asymmetries in malicious

communication. The features we used were as follows:

1. Average time interval between two consecutive flows in a trace

2. Average Number of source packets and destination packets

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 17

3. Average flow duration within a trace

4. Total flag counts (a/c/d/f/h/r/s/t) - Records the state history of connections

as a string of letters. The definitions of these flags are as follows –

(a) a - pure ACK, or Acknowledgement flag

(b) c - packet with invalid checksum

(c) d - packet with payload data

(d) f - packet with the FIN flag set, terminating the connection

(e) h - SYN+ACK (“handshake”) which is standard protocol for establishing

a TCP connection

(f) r - packet with RST bit set which resets the connection

(g) s - SYN without the ACK bit set (or an open-ended handshake)

We used the mean and standard deviation of the first three metrics - Time interval

between start times, number of source and destination packet and flow duration - as

features for the training and testing datasets.

3.7 Modeling Overview

We used the training dataset to create five binary classifiers that predict whether a

given set of traffic was benign or malicious. We first attempted to create a base-

line for classification performance by using a light-weight logistic regression model.

We then added Naive Bayes, Support Vector Machine, Random Forest and Neural

Network to our umbrella of supervised learning algorithms. In the next section, we

explore our modelling process in detail and explain our model-of-choice. We further

tested the generalization capability of these models across unseen botnet families in

a process which we have termed as Leave-One-Bot-Out cross validation (LOBO-CV).

In this scheme, models are trained on all but one family, and the unseen bot is used

as a test set. The same performance metrics are used as measurement. Finally, using

the best performing models, we devised an ensemble to create a unified model that

achieves a strong performance across all families.

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 18

3.8 Modeling Techniques

We used five different supervised learning techniques to classify network data and

measured their performance. These classifiers were chosen since they represent the

most widely used supervised learning models today. Performance of each one varies

widely and depends upon the complexity of the given dataset. Since this is a classi-

fication problem, prediction accuracy (percentage of correct predictions divided by

the total number of predictions), as well as False Positive Rate, were used for evalu-

ation. This evaluation was carried out in two stages. First, the dataset was split into

a training set which contained two-thirds of the traces, while the rest was used as

the test set. The supervised learning models were trained on the training data and

then cross-validated for model selection and model performance assessment. Next,

the models were tested using the test dataset. The predictions on test data were used

to arrive at the performance metrics for model comparison. All models were trained

and cross validated using the Caret package in R[26].

3.8.1 Logistic Regression

Logistic regression (LR) is a widely used classification technique in which the proba-

bility of the outcome (trace maliciousness) is related to a series of potential predictor

variables by an equation of the form

log[
p

1 � p
] = b0 + b1X1 + b2X2 + + biXi

where p is the probability of the maliciousness, b0 is an intercept term, b1.....bi are

coefficients associated with each variable X1.....Xi. This model assumes that all pre-

dictors are related in a linear manner to the log odds of the outcome, or in our case,

maliciousness of the trace. To achieve these linear relationships, we performed log

transformations on the predictors before modeling. This learning technique has been

the method of choice till very recently and still affirms a baseline for statistical mod-

elling. Although it is easy to implement, easy to interpret, and has low computa-

tional requirements, it is increasingly seen to be inferior to more recent and complex

machine learning algorithms.

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 19

3.8.2 Naive Bayes

Naive Bayes (NB) is a widely used framework in statistical modeling using Bayes

Theorem. Naive Bayes is the simplest form of a Bayesian network, in which all

attributes are independent given the value of the class variable.

fnb(E) =
p(C = +)
p(C = �)

n

’
i=1

p(xi | C = +)
p(xi | C = �)

where C is the label of maliciousness and x are the predictor variables. This is called

conditional independence. However, this assumption is rarely true in most real-

world applications. Naive Bayes owes its good performance to the zero-one loss

function. This function defines the error as the number of incorrect classifications.

Unlike other loss functions, such as the squared error, the zero-one loss function

does not penalize inaccurate probability estimation if the maximum probability is

assigned to the correct class. This means that naive Bayes may change the posterior

probabilities of each class, but the class with the maximum posterior probability is

often unchanged. Thus, the classification is still correct, although the probability

estimation is poor.

3.8.3 Support Vector Machines (Radial)

Support Vector Machines (SVM) separate a given set of binary labeled training data

with a hyper-plane that is maximally distant from these binary classes (known as

‘the maximal margin hyper-plane’). For our case, where a non-linear separation is

possible, they work in combination with a radial kernel, that automatically realizes a

non-linear mapping to a feature space. The hyper-plane found by the SVM in feature

space corresponds to a non-linear decision boundary in the input space.

g = miniyi

n

⌦

w, f(xi)
↵

� b
o

where the margin g is maximized, the hyperplane (w, b) with input data xi with

the corresponding label yi. The quantity (w, f(xi)
↵

� b) corresponds to the distance

between xi and the decision boundary.

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 20

3.8.4 Random Forest

Random Forest (RF) is an ensemble of decision trees where the features of each tree

are chosen by a random vector sampled independently and with the same distribu-

tion for all trees in the forest. The error rate for forests converges to a limit as the trees

grow asymptotically. Every classification tree in the forest casts a vote for the sample

after which the majority vote determines the class of the sample. The strength of the

individual trees in the forest and the correlation between them determine error for

random forest classifiers [9]. Internal estimates monitor error, strength, and corre-

lation, which are used to measure variable importance. It also holds better sway in

terms of identifying underlying variable interactions.

3.8.5 Fully-Connected Neural Network

In a fully-connected, feed-forward neural network (NN), the input data is sent through

a series of fully-connected layers of neurons that ultimately produce a continuous

output between zero and one. Each connection has an associated weight that repre-

sents the strength of the connection. The higher the weight, the stronger the connec-

tion. In the brain, a neuron "fires" if the combined input received from surrounding

neurons exceeds an activation threshold. Similarly, in a NN, a neuron in one layer

will send a strong signal if the weighted sum of the input it receives from the pre-

vious layer exceeds a certain threshold. The strength of this signal is determined by

an activation function which can take many forms. Original neural networks used

Haveside step functions, but most networks nowadays use Sigmoid (logistic) or Rec-

tified Linear Unit (RELU) which is a piecewise-linear activation function. We used

Sigmoid activation functions for all neurons in our network. Our network architec-

ture is shown in Figure 3.2.

As shown in Figure 3.2, there are three types of layers: an input layer, two hidden

layers, and an output layer. The two hidden layers have 10 and 5 neurons respec-

tively. The input layer feeds the raw data to the nodes in the first hidden layer. Each

node H1,j computes a weighted sum of its received inputs:

H1,j =
n

Â
i=1

w1ixi + b

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 21

FIGURE 3.2: An illustration of our neural network.

where b is a bias term. The result is passed to a sigmoid function that converts it to

a 0-1 scale:

H0
1,j =

1
1 + e�H1,j

This process is repeated for the second hidden layer. Finally, a weighted sum of the

second hidden layer’s output is computed which assigns the malicious and benign

probabilities. We trained the neural network with standard back-propagation and

Stochastic Gradient Descent.

3.9 Evaluation and Results

3.9.1 K-fold CV

TABLE 3.4: Evaluation Metrics

Model L.R. N.B. SVM R.F. N.N.

F1 Score 0.96 0.73 0.86 0.99 0.77

AUC 0.90 0.60 0.99 0.99 0.89

We first evaluated our models with a traditional k-fold cross validation scheme.

As shown in Table 3.4, Random Forest was the best performing model, proving to

be competitive with results obtained by other detection systems such as Disclosure

or Botfinder. It achieved the highest F1 Score across every fold and dominated all

other models at every classification threshold, as shown in the ROC plot. SVM was

comparable to Random Forest in terms of AUC but had an F1 score of 0.86. The next

tier of models included Logistic Regression and the neural network, which achieved

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 22

scores of 0.96 and 0.77 respectively. We believe the neural net’s performance would

have improved if we had more data and trained it for more epochs. However, in

both cases, the models missed a significant portion of malicious traffic, rendering

them ineffective for real world anomaly detection.

While Random Forest was clearly the best performing model, it remains to be

seen which variables are driving this success. Figure 3.3 shows a variable impor-

tance plot generated by the Random Forest model. This plot measures the mean

accuracy decrease when each feature is left out of the random forest model. The

plot suggests that mean_src_pkts is the most important feature for Random Forest

in discriminating between malicious and benign traffic. Additionally, certain met-

rics such as mean_intvl and stdev_intvl bear substantial importance in the Random

Forest’s decision making process.

3.9.2 LOBO CV

While the previous results are promising, they assume that we have access to sam-

ples from every botnet family a priori. However, malware is constantly changing,

so our system will likely encounter novel botnet variants absent from the training

data. Thus, it’s imperative to understand how well our models classify traffic from

an unseen bot. To measure this, we implemented a validation scheme called Leave-

One-Bot-Out Cross-Validation (LOBO-CV). In contrast to traditional cross validation

where the models have seen traffic from all botnets, each model in the LOBO-CV is

trained on seven bot families, and the eighth unseen bot is used as a test set. Un-

surprisingly, all our models suffered performance-wise. Naive Bayes was the worst

performing model while the Neural Network and Radial Kernel SVM performed

comparably. SVM’s score is notably lower than traditional cross-validation, sug-

gesting it over-fit the data. Finally, Logistic Regression and Random Forest were the

top performers. While the Random Forest scored greater than 0.99 on all but one bot

family - Zeus. In contrast, Logistic Regression had its best F1 score of 0.95 on Zeus.

This suggests that the algorithms were picking up on inherently different patterns

in the data. This led us to believe that creating an ensemble of Random Forest and

Logistic regression could improve overall performance.

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 23

TABLE 3.5: LOBO-CV F1 score

Family LR NB SVM RF NN Family Average

Miuref 0.84 0.51 0.71 0.99 0.79 .82

Bunitu 0.81 0.47 0.72 0.81 0.71 .74

Upatre 0.94 0.57 0.90 1.00 0.95 .92

Dridex 0.84 0.53 0.85 1.00 0.81 .87

Necurs 0.82 0.48 0.91 0.99 0.82 .88

Trickbot 0.82 0.55 0.87 1.00 0.83 .88

Conficker 0.81 0.48 0.83 1.00 0.78 .85

Zeus 0.95 0.59 0.77 0.68 0.80 .74

FIGURE 3.3: Mean Gini Decrease when each variable is left out of the
Random Forest Model

3.9.3 Ensemble Results

Based on the Leave-One-Bot-Out results, we decided to use ensemble modeling to

improve the Random Forest’s overall performance. To do this, we combined Lo-

gistic Regression and Random Forest predictions in a weighted fashion to produce

ensemble probabilities. The predictions took the form

yENS = a ⇤ yRF + (1 � a)yLR

where a is a tunable weight parameter between 0 and 1, and yRF and yLR are ran-

dom forest and logistic regression predictions respectively. These probabilities were

converted to class labels (malicious or benign) via a cut-off threshold. Both a and

the cut-off threshold were learned by using grid search to find the combination that

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 24

yielded the highest F1-Score. Table 3.6 compares the ensemble’s leave-one-out per-

formance to that of Random Forest and Logistic Regression.

TABLE 3.6: LOBO-CV F1 Score for Ensemble Model

Family Ensemble RF LR

Miuref 0.99 0.99 0.84

Bunitu 0.90 0.81 0.81

Upatre 0.99 0.99 0.94

Dridex 1.00 1.00 0.84

Necurs 0.99 0.99 0.82

Trickbot 0.99 0.99 0.82

Conficker 1.00 0.99 0.81

Zeus 0.95 0.67 0.95

As seen in Table 3.6, Bunitu’s F1 score rose from 0.81 to 0.89, while all other

scores were the same. It seems the ensemble was able to use the best aspects of

both models to increase or maintain detection performance across all unseen botnet

families. Since Bunitu formed the largest part of our data, we feel this ensemble has

the potential to improve our predictive power when we encounter a larger, more

variable dataset with unknown bot families.

3.10 Conclusions and Applications to UVA Data

We achieved two main objectives through our work - first, we identified useful fea-

tures to classify malicious traffic, and second, we compared the performance of five

different supervised learning models. We found that mean_src_pkts, mean_interval,

and std_interval play the most significant role in discerning malicious traffic.

Our results showed that Random Forest was the superior model with an F1 Score

of 0.99. Random Forest also proved to be more robust than the other models, as

the LOBO-CV results demonstrated it could generalize to most unseen bots. This

is an important finding because it suggests our model is robust enough to detect

zero-day attacks, which often challenging to detect. Our Logistic Regression model

performed comparably to, and in some cases better than, Random Forest, suggesting

it could be a strong light-weight substitute in real-world applications. The results

Chapter 3. Evaluating Machine Learning Approaches for Botnet Detection 25

from the Neural Network were slightly underwhelming but we hypothesize that

a larger training set, better topology, and increased training epochs would greatly

improve the model. We also ensembled the Random Forest and Logistic Regression

models to produce overall performance that beat any singular model for all families.

While our results are encouraging, they might not generalize well on real net-

work traffic, as our datasets had a balanced distribution of malicious and benign

traffic. In the wild, malicious traffic usually constitutes a small fraction of the entire

dataset. Class imbalance such as this poses a significant problem for standard ma-

chine learning algorithms. When the class distribution is heavily skewed, the model

often fails to detect any positive instances because it can achieve high accuracy by

predicting the majority class every time.

While there are many ways to combat this problem, the most common solutions

fall into three categories. The first involves balancing the class distribution by ei-

ther oversampling the minority class, under-sampling the majority class, or both.

However, this fundamentally alters the class distribution of the training data to fa-

cilitate learning while leaving the test set distribution unchanged. This phenomenon

is called "Dataset Shift" and often leads to a drop in test performance [27]. An alter-

native approach is to do cost-sensitive learning, where each error type has a different

cost and the goal is to minimize a weighted sum of the error costs. This allows one

to train on a realistically balanced dataset while improving the true positive rate.

However, this approach only works when costs of each error type can be quanti-

fied and when the costs are significantly different. The third solution is to add more

features. If the right features are added, a class boundary could emerge where it

previously didn’t exist which could drastically improve performance. For botnet

detection, there is evidence that temporal metrics like host access patterns and Fast

Fourier Transforms (FFT) can further improve our attack detection [22]. While time-

consuming, this is a safe approach with little down side.

In future work, we plan to extend this approach to identify botnet traffic across

a large network like the University of Virginia. Additionally, we plan to tackle the

imbalance problem by adding more features, experimenting with different sampling

rates, and potentially adding error costs if we can find a way to quantify the cost of

type 1 and type 2 errors for botnet detection.

26

Chapter 4

UVA Traffic Processing Pipeline

In contrast to many network-based tasks, anomaly detection only truly works if the

observer has access to all the data. This is because malicious traffic constitutes such

a small minority of overall traffic that even a small loss can possibly result in threats

slipping through the network undetected. Therefore, to perform anomaly detection

on enterprise-level network traffic, one needs a traffic collection pipeline that drops

little to no traffic. In an ideal world, this capturing pipeline would be lossless (i.e.

zero packet drops). In practice, however, truly lossless packet capture at 10 Gbps

is practically infeasible. Thus, the pipeline should yield accurate data while drop-

ping as close to zero packets as possible. The next two sections present the foun-

dations for such a pipeline. The system is end-to-end in the sense that it captures,

pre-processes, then labels network traffic for supervised learning, all while achieving

minimal packet loss. The pipeline is broken down into two steps: traffic processing

and traffic labeling. The end result is a system that produces labeled network data

for supervised learning. This chapter explains packet capturing and pre-processing,

while Chapter 5 explains traffic labeling.

This chapter is organized as follows. Section 4.1 gives a high level overview

of the end-to-end traffic collection system. Section 4.2 describes packet forwarding

with the Gigamon, the first step of the pipeline. Section 4.3 describes packet pro-

cessing, the next and most intensive step of the pipeline. This section contains four

parts; Sections 4.3.1 describes each component of the packet processing system, and

introduces Bro, the IDS we use to process packet data; Section 4.3.2 considers the

challenges of high-speed packet capture; Section 4.3.3 defines the loss and utiliza-

tion metrics used to evaluate system performance; finally, Section 4.3.4 explains the

Chapter 4. UVA Traffic Processing Pipeline 27

optimizations we made to overcome the challenges of high-speed packet capture

and contains our most significant contributions to the field. Section 4.4 describes

traffic anonymization, the final step of the processing pipeline. Lastly, Section 4.5

concludes the chapter and sets the stage for Chapter 5 (traffic labeling).

Code for most of these optimizations including shell scripts, Bro scripts, and

config files can be found on the UVA High Speeds Network repo 1.

4.1 System Overview

Figure 4.1 contains an overview of our network configuration and data collection

pipeline. First, UVA traffic is mirrored from two edge routers to the Gigamon. This

device then combines and forwards all traffic to a machine called Ivy bulwark. At

Ivy Bulwark, packets are fed into a network monitoring platform called Bro (now

known as Zeek), which parses the raw packet data to produce a variety of traffic

logs. These logs are transferred to a separate machine on the Ivy network where

they are anomymized with a program called CryptoPan. Finally, the anonymized

logs are sent to the Rivanna High Performance Cluster (HPC) where they are labeled

via blacklist, whitelist, and honeypot feeds for supervised learning. What follows is

a detailed explanation of each component of the traffic collection system and the

challenges we had to overcome to successfully perform high-speed packet capture.

FIGURE 4.1: A visual of UVA’s network topology and our data collec-
tion pipeline.

1https://github.com/UVA-High-Speed-Networks/cyberDevelCode

Chapter 4. UVA Traffic Processing Pipeline 28

4.2 Packet Forwarding with the Gigamon

As shown in Figure 4.1, UVA is connected to the internet via two edge routers: one

at the University Data Center (UDC) and another at Carruthers. The UDC Internet

router connects to MARIA, while the Carruthers Internet router connects to Level 3

applications. Together, these routers handle all the inbound and outbound traffic on

the UVA network. This bidirectional traffic is mirrored from both routers via 10 GE

links to the Gigamon, a traffic-forwarding device. All UDC packets are mirrored to

one port on the Gigamon, while all Carruthers packets are mirrored to another. The

Gigamon then merges, filters (if nececssary), and forwards this traffic to Ivy Bulwark

via another 10 GE link.

4.3 Packet Processing

The next step of the pipeline involves processing packet data to obtain traffic logs.

This process consists of three phases, which are shown in Figure 4.2 and described

in detail below.

FIGURE 4.2: The components of our traffic processing pipeline.

Chapter 4. UVA Traffic Processing Pipeline 29

4.3.1 Processing Steps

1. Packet Capture

As stated above, the Gigamon sends traffic to Ivy Bulwark via a 10 GE link.

This link connects to a 10 Gbps interface called em1, which is bound to an Intel

X520 Network Interface Card (NIC). The NIC captures raw packet data from

the link and sends it up to the kernel where it is ultimately redistributed to

other applications.

2. Traffic Analysis

Next, the raw traffic is sent to Bro which analyzes incoming traffic for patters

and outputs a variety of useful traffic logs characterizing network behavior.

[2] (NOTE: As of Oct. 2018, Bro became known as Zeek. While the names are

interchangeable, the platform will be referred to exclusively as Bro throughout

this thesis to reduce confusion). Traffic is first received by the Bro manager,

then redistributed to Bro workers. The actual analysis is carried out by Bro

workers, which extract log-level data from incoming packets and export them

to a central logger as shown in Figure 4.2.

3. Log Exporting

Finally, the logger combines log data across workers and writes it to disk on

an hourly basis. The logger can export over 60 unique logs that can be used to

characterize network traffic and detect threats on the network. Most, but not

all, logs map one-to-one to specific protocols (e.g HTTP logs, SMTP logs, etc).

One important exception is a Connection log (Conn log), which contains data

about all TCP, UDP and ICMP connections observed on the network. While

we collect multiple logs, the processing pipeline was built primarily to handle

connection logs. However, future iterations will expand include others such as

HTTP and SSL logs.

4.3.2 Processing Challenges

Capturing and processing network traffic at speeds up to 10 Gbps with one host is

quite challenging. Even when all traffic arrives successfully to the machine, there

Chapter 4. UVA Traffic Processing Pipeline 30

are still many bottlenecks where problems can arise. The first of these is the network

interface(s). Typical network drivers are unable to keep up with high speeds, so

successful high-speed packet capture requires the use of special, properly configured

Network Interface Cards (NICs). Second, most traffic collection tools were built to

handle loads up to 1 Gbps and thus cannot keep up with higher speeds. This is

true for Bro, which is configured by default to handle all traffic serially on a single

core. Finally, the log creation process is highly taxing with respect to compute and

memory resources. These bottlenecks required us to perform significant fine-tuning

and optimizations to enable near lossless packet capture.

4.3.3 Metrics

We performed our optimizations with respect to two metrics: packet drop rate and

CaptureLoss. We also measured link utilization to understand the relationship be-

tween traffic load and the loss metrics. Each metric is explained in detail below.

Packet Loss (Packet Drop Rate)

The formula for packet loss is simply

pkts_dropped
pkts_dropped + pkts_received

It is a local measure that can be calculated at any point in the pipeline. Different tools

can be used to obtain this measurement such as if_config at the NIC, or a bro com-

mand called netstats, which queries each worker for packet drops. However, since

it is a local measure, it fails to capture losses downstream after the measurement is

taken.

CaptureLoss

Bro defines its own loss measure called CaptureLoss. In contrast to packet loss, Cap-

tureLoss is an end-to-end loss metric which measures the number of sequence gaps

in TCP traffic over the entire connection period[3]. Each time Bro receives a new

TCP packet for a certain connection, it is recorded as an event. The event is consid-

ered a gap if the packet’s ACK number is higher than expected. This indicates that

Chapter 4. UVA Traffic Processing Pipeline 31

intermediate packets with lower ACK numbers were dropped. Thus, they define

CaptureLoss as the percentage of events which are "gap" events, or

100 ⇤ num_gap_events
total_events

While it is reportedly an accurate measure of overall loss [10], it reveals nothing

about what caused the loss. While it is fundamentally different metric than packet

loss, both indicate that traffic is being dropped at some point in the pipeline. Thus,

we made our optimizations with the intent to minimize both metrics as much as

possible.

Link Utilization

Another important metric that is often correlated with packet loss is link utilization.

Link utilization is the amount of traffic passing through an interface per second. As

one would expect, packet loss is more likely to occur at high link utilization rates.

We calculate it by sampling the output of cat /proc/net/dev at two different points

in time and computing the difference. This command returns how many bytes an

interface has seen up to that point in time. So if we get the byte count to be Bt at time

t, and Bt+e at some later time t + e, then the utilization would be the change in bytes

over the change in time, or
Bt+e � Bt

e

4.3.4 Optimizations

Without any optimizations, our packet loss was anywhere from 70-90%, depending

on the traffic load. Similarly, our initial CaptureLoss readings were alarmingly high,

reaching as high as 95% during peak hours. However, each optimization incremen-

tally improved performance until we were able to reduce both packet drops and

CaptureLoss down to nearly zero.

Below are the key improvements we made to the traffic capturing system to

reduce both forms of losses. They are presented in chronological order, as each

optimization was applied sequentially. While there were no formal experiments

conducted to quantify the improvement of each optimization, many ad-hoc plots

Chapter 4. UVA Traffic Processing Pipeline 32

were made to qualitatively assess the performance impact and are shown in Fig-

ures 4.5,4.6,4.7 and 4.8. To aid the reader, the name of each optimization is followed

by the component of the pipeline which it affected. Finally, the optimizations are

summarized by group in Figure 4.9.

Increasing the Buffer Size (NIC)

The first place we were losing packets was at the NIC. This loss was detected using

ifconfig. During heavy traffic loads, the NIC buffer got overwhelmed because it

was too small, which caused packets to drop from the queue. However, this was

easily solved by increasing the NIC’s buffer size to 4096 bytes. Applying this change

reduced drops reported by ifconfig to zero. However, it had zero impact on Cap-

tureLoss.

Load Balancing (Bro)

By default, Bro is configured to process all the traffic serially with one worker (i.e. via

one CPU). However, to capture traffic at speeds above a few hundred Mbps, it must

be configured to perform load balancing. Otherwise, Bro will get overwhelmed and

drop most of the traffic (in our case, around 80%). The idea is to divide a heavy load

as evenly as possible across multiple workers in parallel so that no single CPU gets

overwhelmed.

FIGURE 4.3: Visualization of load balancing in Bro.

Figure 4.3 demonstrates how load balancing works in Bro. The interface(s) for-

ward traffic through the kernel to Bro manager. The manager then load balances

the traffic across n different worker threads, partitioning the traffic using a flow-

based hash function which sends all traffic from the same flow to the same worker.

Chapter 4. UVA Traffic Processing Pipeline 33

Bro supports many methods for load balancing, such as kernel modules PF_Ring,

DNA/Libzero (now called Zero Copy), and AF_Packet, a low-level module that cre-

ates packet sockets to read traffic off the NIC. While we experimented with different

solutions, we ultimately settled on AF_Packet, as it achieved the best performance.

The manager, logger, and worker threads are defined in a config file (called

node.cfg by default) like the one shown in Figure 4.4. In this case, each worker

is pinned to a unique CPU. We had to choose the CPUs carefully to avoid hyper-

threading (i.e. they are all on the same NUMA node). In the example below, traffic

is captured off of em2 and is partitioned across nine workers, each running on their

own CPU. AF_Packet is activated by prefixing the interface with the chosen load

balancer. The load balancing method is set to custom for AF_Packet but is set to

pf_ring if using pf_ring. AF_Packet::FANOUT_HASH tells Bro to split traffic by their

IP tuple (i.e. flow-based hash). Load balancing greatly reduced packet loss but had

no impact on CaptureLoss. Instructions for load balancing were pulled from J Gras’s

Github repo 2.

FIGURE 4.4: A configuration file for Bro that load balances traffic
across 9 workers

2https://github.com/J-Gras/bro-af_packet-plugin

Chapter 4. UVA Traffic Processing Pipeline 34

Minimal Log Writing (Bro)

Bro writes up to sixty different logs to a daily directory on an hourly basis. As stated

above, this process can be highly memory intensive resulting in loss if the logger

fails to keep up with the data it receives from the workers. To mitigate this problem,

we turned off all unnecessary log types so the logger could focus on writing out

solely the most important types for our research. This was achieved by writing a bro

script to turn off all unnecessary log streams and analyzers and invoking this script

in Bro’s init routine. Specifically, we turned off all logs except those shown in Table

4.1. The first four logs collect traffic by protocol, while stats collects performance

statistics for each bro worker, and captureLoss reports the aggregate CaptureLoss

across workers at 15 minute intervals. Credit for this optimization goes to Sourav

Maji, who initially thought of the idea and wrote the initial Bro script that we de-

ployed on Bulwark.

TABLE 4.1: Minimal Set of Logs for Traffic Capture

HTTP Conn SSL DNS SSH Stats captureLoss

Applying this optimization in tandem with load balancing and increasing the

NIC buffer size led to immediate performance improvements. Figure 4.5 shows that

after these changes, Bro could handle up to 2 Gbps without dropping any packets

for a short period of time. However, Bro’s performance began to deteriorate after

about 7-8 hours when utilization increased above 2 Gbps. Credit for this idea goes

to Sourav Maji.

Subnet Filtering (Gigamon)

To further reduce the strain on Bro, we excluded a substantial portion of incoming

traffic by applying subnet filters to the Gigamon. Specifically, filters were writtten

to instruct the Gigamon to only forward traffic if it originated from one of the sub-

networks shown in Table 4.2. These filters were written and applied to the Gigamon

by Jeff Colyer.

As shown in Figure 4.6, applying the filter led to zero packet loss for over a

day and a half, a substantial improvement over prior performance. However, it

Chapter 4. UVA Traffic Processing Pipeline 35

FIGURE 4.5: Packet Drop Rate and Link Utilization After Applying
Load Balancing and Log Reduction

TABLE 4.2: Subnets Used in Traffic Filter

Subnet (CIDR Notation)

128.143.0.0/16

137.54.0.0/18

137.54.64.0/18

137.54.128.0/17

seems that something internally with Bro went awry between the 22nd and 23rd.

During this time, Bro’s packet losses soared to nearly 30% during peak utilization

and eventually regressed to zero after utilization subsided. The fact that Bro was

able to handle a similar traffic load a day before without loss suggested there was a

time-dependent influence at play.

Avoiding Memory Leaks with Daily Restarts (Bro)

Further tests confirmed that Bro’s performance would deteriorate after 1-3 days. Ini-

tially, Bro would perform flawlessly, but overtime the packet drop rate would either

temporarily spike as in Figure 4.6, or completely spiral out of control as shown in

Figure 4.7:

In the case of Figure 4.7, the packet drop rate seems to follow a wave-like pattern,

ranging from 0 to a certain peak. However, as time progresses, the peak amplitude

increases as well, suggesting the problem worsens with time. After much research,

Chapter 4. UVA Traffic Processing Pipeline 36

FIGURE 4.6: Packet Drop Rate and Link Utilization After applying
Subnet Filtering

FIGURE 4.7: Performance spirals out of control over time

we concluded it was likely caused by a memory leak in Bro’s codebase which grad-

ually consumed more memory over time, leaving less resources for Bro to process

incoming traffic. While we unable to pinpoint the root cause, we found that restart-

ing Bro on a daily basis resolved the issue. One might argue this causes gaps in our

traffic when Bro is rebooting. However, the losses are minimal, as the rebooting pro-

cess takes less than a 30 seconds. After applying the daily restarts, we were able to

achieve minimal packet loss for weeks at a time.

Chapter 4. UVA Traffic Processing Pipeline 37

Disabling RX/TX Offloading (NIC)

At this point, by applying the above optimizations, we had successfully reduced

packet loss at all points in the pipeline to acceptable levels. However despite this,

our CaptureLoss was still alarmingly high. Together, these facts suggested that all

traffic was successfully arriving to Ivy, but Bro was still observing large gaps in the

traffic.

We eventually traced the problem to two issues. The first issue was with the

way the NIC was processing incoming packets. Specifically, it was performing seg-

mentation offloading, which reassembles incoming traffic into "super-packets" so

that fewer (albeit larger) packets are passed up to the kernel. According to Bro doc-

umentation, the creation of these super-packets introduced artificial gaps between

the packets of traffic that arrived to Bro [48]. Thus, Bro read these artificial gaps as

legitimate traffic gaps. For these reasons, we turned off all NIC offloading functions

with ethtool, which include:

tcp_segmentation offloading (TSO)

udp_fragmentation offloading (UFO)

generic segmentation (GSO)

generic receive offloading (GRO)

Disabling Checksum Validation (Bro)

The second issue had to do with the way Bro processes TCP headers. By default, Bro

validates incoming TCP checksums - if the checksum is invalid, Bro discards it from

its analysis [49]. This is problematic for analyzing locally generated traffic when

checksum validation is offloaded to the network adapter (i.e. our case). In this case,

all incoming packets have invalid checksums, as they are supposed to be calculated

at their respective destinations, not our network adapter. Consequently, Bro would

see these and get confused when reconstructing traffic traces and consequently dis-

card all packets with invalid checksums. This was solved by adding a line to one of

Bro’s configuration files (/share/site/local.bro) that turns off checksum validation.

Disabling segmentation offloading and checksum validation led to an immediate

improvement in CaptureLoss, as shown in the Figure 4.8

Chapter 4. UVA Traffic Processing Pipeline 38

FIGURE 4.8: CaptureLoss Before and After Turning Off Offloading
and Checksums

4.3.5 Summary

All the optimizations we applied are summarized in Figure 4.9. Combined, these

optimizations led to a dramatic improvement with respect to packet capture. Before

the optimizations, Bro dropped around 80% of incoming traffic, resulting in Cap-

tureLoss rates as high as 95%. After the optimizations, Bro dropped less than 1%

of traffic. We have seen consistently strong performance since then at speeds up to

6 Gbps with CaptureLoss rates consistently less than 3-4%. This gave us the confi-

dence we needed to move forward with the rest of the pipeline.

FIGURE 4.9: Summary of All Optimizations

Chapter 4. UVA Traffic Processing Pipeline 39

4.4 Log Anonymization

When analyzing traffic at the University level, it is imperative to preserve user pri-

vacy. As such, we anonymize all UVA IP addresses using an algorithm called Ctyp-

toPAn. (As a disclaimer, I did not work on the anomyzation component personally;

this work was done by Curtis Khan, Will Hawkins and Alastair Nottingham. How-

ever, it is a crucial part of our system, so I’ve included a brief explanation of how

it works to give the reader a full picture of the pre-processing pipeline.) Developed

at Georgia Tech, CryptopAn is a prefix-preserving IP anonymization protocol. It

is strongly founded in cryptographic theory and guarantees a unique one-to-one

mapping between original and anonymized IP addresses. The proofs of this algo-

rithm are beyond the scope of this thesis, but for more information, see [46]. The

implications of these properties are two-fold: first, all behavior associated with an

anonymized IP address originates from a single IP address. Second, if two IP ad-

dresses are on the same network, their anonymized counterparts will also be on the

same network because their prefixes are preserved. Collectively, these properties

allow us carry out our analysis without infringing on user privacy.

In our pipeline, anonnymization is outsourced to a separate machine called Ivy

VM to reduce the strain on Ivy Bulwark (see Figure 4.1). After all traffic has been

transferred to this machine, the Cryptopan algorithm is invoked to anonymize all

observed UVA IP addresses in the conn logs, while all external IP addresses are pre-

served. Finally, the anonymized output is saved to a new directory and transferred

to a machine on Rivana for traffic labeling.

4.5 Conclusion

This chapter has presented the components of our traffic processing pipeline. We

have built a pipeline that captures raw traffic at speeds up to (theoretically) 10 Gbps

with minimal packet drops and CaptureLoss. Additionally, the traffic is anonymized

in such a way that we can still perform aggregations on the data while protecting

user privacy. The success of this pipeline is largely due to the optimizations we made

to the NIC, Bro, and the Ivy environment. Without them, Bro could only handle

Chapter 4. UVA Traffic Processing Pipeline 40

speeds less than 1 Gbps. We measured the impact of each optimization with respect

to packet drop rate and CaptureLoss. We reduced packet loss by load balancing

traffic, reducing log writing, applying subnet filters, and restarting Bro on a daily

basis. The key to reducing CaptureLoss turned out to be disabling RX offloading

at the NIC and checksum offloading in Bro. While many of these optimizations are

specific to Bro and our network configuration, the principles should apply to any

high speed capturing environment. Chapter 5 details the next phase of the pipeline

which involves labeling collected traffic.

41

Chapter 5

UVA Traffic Labeling Pipeline

After traffic is anonymized and pre-processed, it is sent to a machine on the Rivanna

HPC for labeling. During this process, each connection is queried against a database

containing data from a variety of feeds which are updated on a daily basis. The

connection is assigned a vector of binary labels, with 1 indicating a match for each

category in the database. In our case, each feed belonged to one of three categories:

honeypots, blacklists, or whitelists. However, the system is highly flexible and can

be configured to pull from an arbitrary number of feeds associated with arbitrarily

many categories. In this sense, the system can be configured for any task which

involves labeling IP addresses in network traffic via continuously updated feeds.

This chapter is laid out as follows. Section 5.1 describes each component of the

labeling system in detail. Section 5.2 demonstrates how the system can be used

in practice, describing the categories we use and the feeds we are pulling in our

pipeline. Section 5.3 contains experimental results evaluating the utility of the gen-

erated labels based on a sample of labeled traffic. Finally, Section 5.4 concludes the

chapter and suggests areas for future improvement.

5.1 Labeling System Architecture

Before describing each component of the system, I will formalize a few key notions.

A feed is a list of known addresses associated with a certain activity or type of traffic.

We define this activity or traffic type as the feed’s category. The addresses on the list

can take on a variety of forms, including domain names, URLs, or IP addresses. We

refer to the systems using these addresses as entities, regardless of type, as they are

Chapter 5. UVA Traffic Labeling Pipeline 42

ultimately tied to an actor or being behind a screen or server, and it is relatively easy

to switch from one representation to another.

An IP address belongs to a subnet (routing prefix), or a network containing a

range of similar IP addresses. Subnets belong to a larger group of routing prefixes

called an Autonomous System (AS), which is uniquely identified by its Autonomous

System Number (ASN). An AS is a part of the internet that is administered by a

single organization or enterprise (e.g. UVA or Google). Combined, the IP address,

Subnet and ASN provide a holistic view of how an entity uses and connects to the

internet.

FIGURE 5.1: An overview of the labeling pipeline

Figure 5.1 gives a high-level overview of the labeling system. The process can be

broken down into four steps: pull, parse, update and label. Each is described below.

1. Pull

First, the feeds are pulled from their respective sources. This is performed with

a series of shell scripts (one per feed) that download raw lists directly from the

feed websites. Additionally, the latest ASN and subnet data are downloaded

from routeviews.org, which contains snapshots of the latest subnet to ASN

mappings used across the internet. An excerpt from the Abuse Ransomware

feed and an ASN mapping file are shown in Figure 5.2.

Chapter 5. UVA Traffic Labeling Pipeline 43

FIGURE 5.2: Samples of Abuse Ransomware Feed and routeviews file
from Apr 10th, 2019

2. Parse

Next, each feed is parsed for entity information which is resolved to domain

name, IP address pairs. Parsing was done with Python, and the methods we

used to convert between URLs, domain names, and IP addresses are summa-

rized in figure 5.3. If the entity started as a URL, the tldextract library is used

to obtain the domain name. From there, the socket library is used to resolve

the domain name to an IP address. Finally, the IP address’s subnet and ASN

are found using pyasn’s lookup function. Specifically, pyasn constructs a radix

tree from the latest subnet-ASN mappings downloaded from routeview.org

and the IP is resolved to a subnet, ASN pair by traversing this tree.

Each node in the radix tree corresponds to a single subnet-ASN mapping. The

nodes are organized hierarchically so that the subnets get smaller and smaller

as one traverses the tree. The leaves are the smallest subnet-ASN mappings

without any children. [38]. Since subnets are organized hierarchically, the

traversal always results the longest prefix match. Thus, each IP gets mapped to

at most one subnet and one ASN. Since the tree is built locally (i.e. no external

dependencies) it yields much faster lookup times than online tools like whois.

After this lookup process is complete, each entity’s domain name, IP address,

subnet, and ASN are added to a list of records which are exported to a CSV.

Figure 5.4 demonstrates a real example from one of our blacklists.

It should be noted for each entity, there’s a chance it no longer resolves to an

IP address. When this is the case, the entity is discarded, as there is no way

Chapter 5. UVA Traffic Labeling Pipeline 44

to leverage it for IP-based labeling. While attrition rates vary substantially

by feed, our blacklist feeds suffered rates anywhere from 10-40%. This is not

surprising as blacklists are known to grow stale over time [43].

FIGURE 5.3: Converting Entities between URLs, Domain Names, IP
Addresses, ASNs and Subnets in Python

FIGURE 5.4: Example of parsing process for a url from the Abuse-
URL feed

3. Update

After all feeds are parsed, they are fed one-by-one into a centralized labeling

database whose schema is shown in Figure 5.5 (Shout-out to Al Nottingham

for helping with the design). The database contains a few useful constructs to

store entity information. The first is a MatchRecord, or a tuple containing an IP

address, domain name, a total hit count, and date. A MatchRecord says the IP,

domain-name pair (X, Y) was seen on date D. The second, related construct

Chapter 5. UVA Traffic Labeling Pipeline 45

is an Observation. An observation links a MatchRecord to a particular feed. In

other words, it says the IP domain-name pair (X, Y) was seen on date D in

feed F. Say we are inserting record R containing Domain name D, IP address I,

subnet S, ASN A, feed F, Category C and date DT into our database. Then the

insertion algorithm is described in Figure 5.6

FIGURE 5.5: Schema for the Labeling Database

FIGURE 5.6: Algorithm for propogating new record information into
database

Chapter 5. UVA Traffic Labeling Pipeline 46

4. Label

Once the database is fully updated with the current date’s feeds, it is used to

label the current date’s network traffic. The lookup process is summarized in

Figure 5.7.

FIGURE 5.7: Process for labeling a connection with a database con-
taining blacklist, whitelist, and honeypot data

Say we want to know about an external IP 5.6.7.8 on October 12th. First, the

database is queried for 5.6.7.8 and filtered by date. This is done by performing

an inner join across all tables and filtering by the date column in the MatchRecord

Table. If there is a match, the result of this query will be a table with IP, Sub-

net, ASN, Feed and Category information for date D. This information is then

converted into a binary label vector which has one bit for every category in the

database. For each category bit, 1 indicates a match while 0 indicates other-

wise. This vector along with the connection ID, IP address, and timestamp are

written out to a label file. After this process, each conn log for the current day

will have a corresponding label file that can be easily merged to build a labeled

dataset for supervised learning.

The above procedure works for both single IP lookups and bulk searchers.

The only difference is in the number of IPs to filter by in the initial query. In

our programs, we tend to use batch queries because each individual query is

Chapter 5. UVA Traffic Labeling Pipeline 47

expensive, requiring over five joins. It turns out if we instead load all the entity

information into memory for a batch of IPs in a single shot, the lookup process

is hundreds of times faster. In future work, we will investigate building an

in-memory data structure from the database to perform real-time labeling. We

will also investigate using HTTP host-names or SSL addresses instead of conn

log IP addresses, as they are likely more reliable identifiers in the long run.

5.1.1 Design Considerations

While the above schema and insertion algorithms may seem overly complicated,

they were deliberately designed this way to maximize flexibility while minimiz-

ing redundancy. The complexity arose from some intrinsic properties of network

traffic which we had to account for in the database design. First, IP addresses are

ephemeral. They are assigned to to an endpoint for a fixed lease, and are often al-

lotted to other entities after the lease expires. Thus, a domain name could map to

many different IP addresses throughout its lifetime, while a single IP address could

be leased to many different domains over time. We accounted for this by creating the

MatchRecord table, whose rows contain domain names, IP addresses and dates. If a

domain name later gets a new IP addresses, a new MatchRecord is created containing

the new IP-domain mapping and the future date.

Formally, the MatchRecord table serves as a bridge table between Domain Name

and IP Address tables, creating a many-to-many relationship. Second, a given IP

address can appear on multiple feeds in the same day. For this reason, we created

the Observation table. As stated above, each observation links a MatchRecord to a

particular feed. Thus, if an IP address appears on feeds A,B, and C that day, there

will be three Observations mapping back to the same MatchRecord (i.e. a many-to-

one relationship). Finally, the nature of the labeling task may change over time and

require additional categories. We allowed for this by creating a separate Category ta-

ble mapping each category to a unique ID. These IDs are auto-incremented integers,

so each new category’s ID is 1 greater than its predecessor.

The database was built using Python 2.7 and SQLite, a lightweight SQL client

that allowed us to build the database locally. Because the entire database is stored

Chapter 5. UVA Traffic Labeling Pipeline 48

in a flat-file, it can easily be transferred to a new machine and used immediately so

long as SQLite is supported.

5.2 Implementing the System for Our Research

The following sections describe how we’re using the system in our research. We’ve

populated the database with three types of feeds (categories): Honeypots, Blacklists,

and Whitelists. We pull from 11 different feeds on a daily basis and leverage this

data to label UVA network traffic. The coding for this project was mostly done in

Python, SQL, and Bash and is located on Virginia Tech’s GitLab repository 1.

5.2.1 Categories

Honeypots

As stated in Chapter 2, Honeypots serve as a simple yet effective way to detect

threats on a network. We are currently running a Cowrie honeypot that is connected

to a Community Honeypot Network (CHN) which is part of the Duke STINGAR

Project [4] (Thanks to Jeff Collyer for integrating our honeypot to the STINGAR

project). A small sample is shown in Figure 5.8. Currently, we are only leveraging

the IPAddress and report time. However, future work should be done to investigate

the utility of other fields like confidence, honeypot type, and hit count.

FIGURE 5.8: Sample honeypot data in CIF log from Mar 28, 2019

The CHN allows multiple universities to pool resources and share threat intel-

ligence across their networks. So if a threat is detected on Duke’s honeypots, we

will get that threat intelligence in our honeypot logs and vice versa. This communal

approach dramatically increases the volume and signal-to-noise ratio of honeypot

logs. We receive threat intelligence in the form of CIF logs, where each row is an

observed threat originating from a specific public IP address. Thus, if we see any of
1https://code.vt.edu/p-core/connection-labeling

Chapter 5. UVA Traffic Labeling Pipeline 49

these IP addresses in our own network traffic, they are flagged as Honeypot traffic

on that day.

Blacklists

Our Blacklist data comes from ten feeds that capture a broad spectrum of malicious

traffic (each feed explained in detail below). Malicious feeds are pulled from the

Abuse.ch project, MalwarePatrol, RiskAnalytics, and the Apache Foundation. Most

feeds have a high degree of volatility, meaning that many entities are either added

or removed from the lists on a daily basis. Thus, we pull the feeds daily and only

use them to label traffic that occurred on the same day. However, the quality of these

blacklists is still a lingering issue that will need to be dealt with in future work.

Whitelists

Finally, we pull a daily whitelist feed of top website visitation according to Cisco

known as Cisco Umbrella. We implicitly use website popularity as a proxy for be-

nign behavior. In general, this is an accurate substitute - sites like Google and Face-

book are hard to compromise and thus genuinely indicate benign activity. However,

the list fluctuates substantially over time, and it’s possible for a malicious url to tem-

porarily make the list until it is shut down. Thus, we only keep domains that have

been on the list for at least a year. While we chose a year as a conservative estimate,

future work will need to be done to figure out the optimal overlap threshold that

maximizes coverage while minimizing false positives.

5.2.2 Feeds

Table 5.1 contains details about the feeds we’ve incorporated into the database. We

currently collect ten different blacklist feeds, varying in scope and the behavior they

track. Abuse Feodo, Abuse Zeus, MalwareDomains, and URLHaus contain IPs as-

sociated with malware, particularly C&C communication and malware distribution.

Feeds like Zeus and Feodo track specific strains of malware, while others such as

MalwareDomains and URLHaus are broader feeds, encompassing many different

types of malware. Other blacklists focus on applications of malware such as spam

Chapter 5. UVA Traffic Labeling Pipeline 50

(spamassassin, mailwasher), ransomware (Abuse RansomWare), and SSL finger-

printing (Abuse-ssl). As described above, all whitelist data comes from AWS’s Cisco

Umbrella feed, and honeypot data comes from our Cowrie honeypot linked to the

STINGAR honeypot network.

TABLE 5.1: Feeds Collected for Labeling Database

Feed Organization Category Total # of
Entities

Description

feodo Abuse.ch Blacklist 1.9k Tracks all known C&C
servers associated with the
Feodo botnet

ransomware Abuse.ch Blacklist 330 Tracks ransomware IPs used
for C&C servers, distribution
sites, as well as payload sites

malware-
domains

RiskAnalytics Blacklist 27k Tracks domains known to
propagate malware and spy-
ware

zeus Abuse.ch Blacklist 120 Tracks all known C&C
servers associated with the
Zeus botnet

ssl Abuse.ch Blacklist 110 Tracks malicious SSL certifi-
cates via sha-1 fingerprinting

url-haus Abuse.ch Blacklist 65k Tracks urls being used for
malware distribution

mailwasher MalwarePatrol Blacklist 27k blocklist used by MailWasher
Windows client to filter spam
emails

firekeeper MalwarePatrol Blacklist 1.8k Malware blocklist used by
Firekeeper, a Firefox IDS

mozilla-
adblock

MalwarePatrol Blacklist 1.3k Malware domains blocked by
Mozilla adblock

spamassassin Apache Foun-
dation

Blacklist 1.7k Tracks spam domains, scor-
ing them based on email con-
tent

umbrella Cisco Whitelist 1 mil Top 1 million domains visited
in Umbrella global network

chn-cif STINGAR Honeypot 8-10k honeypot network across
universitites with pooled
threat intelligence

5.3 Exploratory Analysis

To get a feel for the utility of these labels, we performed exploratory analysis on

a random sample of labeled traffic. (NOTE: While the results below were obtained

Chapter 5. UVA Traffic Labeling Pipeline 51

from a different dataset, the methodology was first performed by my cyber capstone

team). The traffic used for this experiment came from the UVA network on Jan 28,

2019. The labels were generated using the labeling system and procedures described

above and were joined with the connection logs by connection ID and timestamp. A

random sample of 100,000 connections was then pulled from the dataset. Each con-

nection then had a binary label vector containing honeypot, blacklist, and whitelist

flags. Since we are often interested in binary classification, these labels were simpli-

fied into malicious and benign using the rules in Table 5.2.

TABLE 5.2: Label Mappings

Whitelist Blacklist Honeypot Ensemble Label

1 0 0 Benign

0 1 0 Malicious

0 0 1 Malicious

0 1 1 Malicious

0 0 0 Unknown

1 1 0 Unknown

1 0 1 Unknown

1 1 1 Unknown

Overall, 71% of the traffic was ’Unknown’, 19% was ’Benign’, and 10% was ’Mali-

cious’. All ’Unknown’ combinations were discarded from this analysis for simplicity

and treated the final labels as cluster assignments. As a benchmark, we applied an

anomaly detection algorithm called Isolation Forest to the same samples but with-

out their labels. Connections labeled as ’anomalous’ by the isolation forest were

then assumed to be malicious, while all non-anomalous labels were assumed to be

benign.

5.3.1 Cluster Analysis

We evaluated the separation between the clusters using a distance measure called

the Silhouette Score. This score is a reliable evaluation metric that measures the

efficacy of a clustering algorithm by computing pointwise distance between the cen-

troids of each cluster. Formally, it is defined as

Chapter 5. UVA Traffic Labeling Pipeline 52

S =
a � b

max(a, b)

where a is the mean distance between a sample and all other points in the same

class and b is the mean distance between a sample and all other points in the next

nearest cluster. Possible coefficient values span -1 and 1. Scores close to zero indicate

overlapping clusters, -1 indicates incorrect clustering, and 1 indicates dense, correct

clustering. The Silhouette score of the ensemble labels was .71, while the Isolation

Forest achieved a score of only .52. This suggests that the ensemble labels create

superior clusters to those of the Isolation Forest.

5.3.2 Port Analysis

As a second experiment, we compared the port distributions of malicious and be-

nign traffic. Since ports are inherently tied to activities on the Internet, and most

benign traffic occurs on a handful of well-defined ports, we’d expect malicious and

benign traffic to have different port distributions. In order to test this hypothesis,

we performed the chi-square test on the class’s port distributions. The test yielded

a p-value of 0.0001, suggesting that the malicious and benign port counts did not

come from the same distribution. This further reinforces that the labels are picking

up on legitimate behaviors.

5.3.3 Geolocation Analysis

Finally, we compared the geolocation distributions of malicious and benign traffic.

We were particularly interested in the fraction of connections originating in the US

for each class. Intuitively, we’d expect most benign connections to an American

University to originate from the States. Conversely, we’d expect most suspicious

activity to come from abroad (i.e. Russia, China). Table 5.3 shows the portion of US

connections by class for the Ensemble labels and Isolation Forest labels. As expected,

only 8% of malicious ensemble connections come from within the US, while 85% of

benign connections originate from American soil. Interestingly, the opposite seems

apply to the Isolation Forest labels - most anomalies occurred within the US, while

most non-anomalies occurred outside the US.

Chapter 5. UVA Traffic Labeling Pipeline 53

TABLE 5.3: Portion of Connections from the US By Class

Labeling Scheme Malicious Benign

Ensemble .11 .80

Isolation Forest .86 .22

5.3.4 Conclusions

Our experimental results suggest that the labels produced by the pipeline both sta-

tistically and intuitively make sense. They produce significantly distinct clusters

(Silhouette Score of .64), the port distributions between classes are fundamentally

different (p=.0001), and the classes are geographically distributed in a way that we’d

expect. These results also suggest that unsupervised learning algorithms cannot pick

up on the inherent patterns derived from our supervised labels. Ultimately, these re-

sults give us confidence to leverage these labels for supervised learning in the future.

5.4 Future Improvements

While the system described above is by all means functional, we plan to improve

it in many ways. First, we will incorporate more blacklist and whitelist feeds into

the labeling process. Each new feed increases our labeling coverage and allow us

capitalize on new pockets of the internet we previously had no visibility into. Sec-

ond, we will start tracking how frequently each IP address in the database appears

in our traffic. This will be done by populating the total_hits field during the la-

beling process. These hit counts will tell us how ’useful’ each feed is for labeling

purposes. Finally, we plan to incorporate attack simulation data into the labeling

pipeline. We have developed the ability to perform isolated, IP-based attacks on our

network, so any flows associated with these attacks could conceivably be labeled

with our database if we know the IP addresses of those involved and the timing of

the attack.

54

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presented a network traffic processing pipeline and modeling techniques

that can be used to build an anomaly-based intrusion detection system. Before our

traffic pipeline was in place, we conducted a pilot study which explored machine

learning techniques for botnet detection on third party data. After completing this

study, we turned our attention to building out and fine-tuning our own traffic collec-

tion pipeline which required many different optimizations. Finally, we presented an

autonomous traffic labeling system that can perform IP-based traffic labeling. The

key findings and conclusions from each chapter are summarized below.

Chapter 3 presented the results of our botnet detection study. The goal of this

study was to not only to find the best algorithm botnet detection, but also to dis-

cern useful features for discriminating between malicious and benign traffic. We

found that statistics pertaining to source packet counts, time intervals, and certain

flag counts had the most predictive power. Of all tested models, Random Forest

performed the best when evaluated with traditional cross validation, achieving an

F1 score of .99. However, traditional CV fails to capture the ability to generalize to

novel botnet types. To address this, we developed a scheme called LOBO-CV, which

involves training the model on all but one family’s traffic and evaluating it’s ability

to discriminate between the left out family’s traffic and benign traffic. When eval-

uated with this scheme, all model performances dropped and varied significantly

from family to family. However, ensembling predictions from our top two models

(Random Forest and Logistic Regression) greatly improved LOBO-CV performance

Chapter 6. Conclusions and Future Work 55

and consequently the model’s ability to generalize to novel, unseen attack types.

The contributions of this study are three-fold. First, our results corroborate pre-

vious work in the field which suggests Random Forest is a strong model for anomaly

detection [19, 25, 11]. Second, we introduce LOBO-CV, a novel evaluation technique

that captures generalizability better than traditional K-fold CV. While this scheme

was built with botnet detection in mind, the principle can apply to any machine

learning problem where the target class is composed of smaller subsets that change

over time. Finally, we demonstrated that ensembling two distinct model classes

can further improve generalizability, and in some cases improve on both individual

model’s performance.

Chapter 4 detailed our traffic collection pipeline, which processes raw traffic at

speeds up to (theoretically) 10 Gbps with minimal packet drops and capture loss.

Additionally, the traffic is anonymized in such a way that we can still perform ag-

gregations on the data while protecting user privacy. The success of this pipeline

is largely due to the optimizations we made to the NIC, Bro, and the Ivy environ-

ment. The goal of these optimizations was to minimize packet drops and capture

loss as much as possible. The most effective measures to counteract packet drops

proved to be load balancing traffic, reducing log writing, applying subnet filters,

and restarting Bro on a daily basis. The keys to reducing capture loss turned out

to be disabling RX offloading at the NIC and checksum offloading in Bro. The take-

away from this process is that building an effective traffic capturing pipeline requires

a holistic approach and a nuanced understanding of the system, because there are

so many places along the way where things can go wrong.

Chapter 5 presented a system for labeling network traffic based on IP address

and time. The system consists of a centralized labeling database that pulls from

each feed on a daily basis. The system automatically configures itself to run in the

user’s environment, and as such requires minimal overhead. It is highly flexible and

works for any number of categories and any number of feeds. Consequently, it can

be extended to any IP-based traffic labeling applications.

In our research however, we tailored the pipeline to blacklist, whitelist, and hon-

eypot labeling. The database pulled from ten different blacklist feeds, a whitelist

feed, and a honeypot feed. We evaluated the utility of our labels by conducting

Chapter 6. Conclusions and Future Work 56

EDA on a sample of labeled data. Our experimental results suggest that the labels

both statistically and intuitively make sense. They produce significantly distinct

clusters (Silhouette Score of .64), the port distributions between malicious and be-

nign traffic are fundamentally different (p=.0001), and the classes are geographically

distributed in a way that we’d ’expect. In each case, the ensemble labels achieved

better results than the benchmark anomaly detection algorithm. This suggests that

unsupervised anomaly detection algorithms cannot infer the same type of cluster-

ing derived from our labels. This raises the question of whether all malicious traffic

are actually anomalies. Our results certainly suggest that the ’anomalies’ in the data

had little overlap malicious traffic. Perhaps we observe this because hackers of-

ten deliberately mimic benign traffic when designing and executing their malware.

Thus from a statistical perspective, a large portion of their traffic would look benign.

Whether or not this is true of malicious traffic on our network has yet to be deter-

mined. However, this phenomenon is well-documented in the field at large and is

one of the main reasons why attack detection is such a challenging problem.

6.2 Limitations and Future Work

There are definitely some limitations, and consequently, avenues of future work to

pursue in this thesis. The first would be improving the evaluation technique we

used in our botnet detection study. While our results are encouraging, they might

not generalize well to real network traffic, as our datasets had a balanced distribu-

tion of malicious and benign traffic in both the training and test sets. In the wild,

malicious traffic usually constitutes a small fraction of the entire dataset. This class

imbalance will prove to be a challenge for traditional supervised learning models

and will likely require a combination of cost-sensitive learning and sampling tech-

niques. We are currently struggling with this issue in a capstone project - we can

accurately detect malicious traffic in an evenly split sample, but the false positive

rate increases as we add more benign traffic.

With respect to traffic labeling, the main challenge at the moment is the lack of

coverage. Empirical data suggests we can only truly label 20% of our traffic at best

with this approach. One of the key reasons for this is because a large portion of

Chapter 6. Conclusions and Future Work 57

popular (benign) sites are hosted by Content Delivery Networks (CDNs) which ob-

fuscate the true IP address of a hosted destination. Specifically, when a user goes to

website X hosted behind a CDN, it must pass through the CDN proxy first. Con-

sequently, as the traffic leaves our network, the destination IP address points to the

CDN routers, not the website itself. Thus, we see substantial traffic to CDNs that is

likely being re-routed to popular sites. One might suggest obtaining the IP space for

these CDNs and labeling all traffic in those networks as benign. However, malicious

actors can infiltrate websites behind CDNs, so there is no way to know for sure if the

traffic is benign.

One way to improve coverage is to leverage other entity metadata, such as its

subnet or ASN. Instead of using the feeds to extract IPs, we can use them to charac-

terize behavior of subnets and ASNs. The idea to model the distribution of malicious

and benign IP addresses of an ASN or subnet across all feeds. This way, even if there

is no record of a particular IP in the database, we can still glean information about

its likelihood of being malicious from its subnet or ASN. This information is tracked

in our labeling database, but our initial results using this data have been mixed.

While these changes will greatly improve the system’s performance and utility,

the labeling process is still ultimately retrospective and performed in batches. The

long term vision for the pipeline is to label traffic real-time as it comes in off the wire.

Theoretically, this can be achieved by switching to a streaming service like Kafka. In

such an architecture, each new connection would be sent from Bro to Kafka as a

data object instead of being written to hourly flat files. These objects would then

be labeled by querying the SQL database in real time and subsequently exported

to consumers. However, this approach would require substantial retooling of our

current pipeline, and it’s gains have yet to be quantified or ascertained. Ultimately,

the added capability of streaming services will have to be weighted against the ad-

ditional complexity incurred by switching to real-time traffic labeling.

58

Bibliography

[1] URL: https://stratosphereips.org/category/dataset.html.

[2] URL: https://www.zeek.org.

[3] URL: https://www.bro.org/sphinx/scripts/policy/misc/capture-loss.

bro.html.

[4] URL: https://stingar.security.duke.edu/about-2/.

[5] 10 top network intrusion detection tools for 2018. 2019. URL: https://www.comparitech.

com/net-admin/network-intrusion-detection-tools/#Signature-based_

IDS.

[6] Manos Antonakakis et al. “Building a Dynamic Reputation System for DNS”.

In: Proceedings of the 19th USENIX Conference on Security. USENIX Security’10.

USENIX Association, 2010, pp. 18–18. ISBN: 888-7-6666-5555-4. URL: http://

dl.acm.org/citation.cfm?id=1929820.1929844.

[7] Shehar Bano. “A Study of Botnets: Systemization of Knowledge and Correlation-

based Detection”. In: (2012). URL: http://sheharbano.com/assets/publications/

ms_thesis_sheharbano.pdf.

[8] Steven Andrew Barker. “Comparison of Ring-Buffer-Based Packet Capture So-

lutions”. In: (2015). DOI: 10.2172/1225853.

[9] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

ISSN: 1573-0565. DOI: 10.1023/A:1010933404324. URL: https://doi.org/10.

1023/A:1010933404324.

[10] Bro mailing list: Question about capture loss script vs. broctl netstats. 2013. URL:

https://bro.bro-ids.narkive.com/BVEU5gCX/question-about-capture-

loss-script-vs-broctl-netstats.

BIBLIOGRAPHY 59

[11] A. L. Buczak and E. Guven. “A Survey of Data Mining and Machine Learn-

ing Methods for Cyber Security Intrusion Detection”. In: IEEE Communications

Surveys Tutorials 18.2 (2016), pp. 1153–1176. ISSN: 1553-877X. DOI: 10.1109/

COMST.2015.2494502.

[12] Tao Cai and Futai Zou. “Detecting HTTP botnet with clustering network traf-

fic”. In: Wireless Communications, Networking and Mobile Computing (WiCOM),

2012 8th International Conference on. IEEE. 2012, pp. 1–7.

[13] Cyber Crime Costs $11.7 Million Per Business Annually. URL: https : / / www .

securitymagazine.com/articles/88338-cyber-crime-costs-117-million-

per-business-annually.

[14] “Cyberattack hits UVa”. In: The Daily Progress (2015). URL: http://www.dailyprogress.

com/news/cyberattack-hits-uva/article_59b0454c-42c7-11e5-88ae-

53d47ac2265c.html.

[15] Crovella Diot and Lakhina. “Mining Anomalies Using Traffic Feature Distri-

butions”. In: (2005).

[16] Meisam Eslahi, Habibah Hashim, and NM Tahir. “An efficient false alarm re-

duction approach in HTTP-based botnet detection”. In: Computers & Informat-

ics (ISCI), 2013 IEEE Symposium on. IEEE. 2013, pp. 201–205.

[17] Meisam Eslahi et al. “Periodicity classification of HTTP traffic to detect HTTP

Botnets”. In: Computer Applications & Industrial Electronics (ISCAIE), 2015 IEEE

Symposium on. IEEE. 2015, pp. 119–123.

[18] Farhood Farid Etemad and Payam Vahdani. “Real-time botnet command and

control characterization at the host level”. In: Telecommunications (IST), 2012

Sixth International Symposium on. IEEE. 2012, pp. 1005–1009.

[19] A. Nur Zincir-Heywood Malcolm I. Heywood Fariba Haddadi Dylan Runkel.

“On Botnet Behaviour Analysis using GP and C4.5”. In: GECCO Comp ’14 Pro-

ceedings of the Companion Publication of the 2014 Annual Conference on Genetic and

Evolutionary Computation (2014), pp. 1253–1260.

[20] February 2019 Web Server Survey. 2019. URL: https://news.netcraft.com/

archives/category/web-server-survey/.

BIBLIOGRAPHY 60

[21] Pavel Filonov, Andrey Lavrentyev, and Artem Vorontsov. “Multivariate In-

dustrial Time Series with Cyber-Attack Simulation: Fault Detection Using an

LSTM-based Predictive Data Model”. In: CoRR abs/1612.06676 (2016). eprint:

1612.06676. URL: http://arxiv.org/abs/1612.06676.

[22] Giovanni Vigna Christopher Kruegel Florian Tegeler Xiaoming Fu. “BotFinder:

Finding Bots in Network Traffic Without Deep Packet Inspection”. In: CoNEXT

’12 Proceedings of the 8th international conference on Emerging networking experi-

ments and technologies (2012), pp. 349–360.

[23] S. Gallenmüller et al. “Comparison of frameworks for high-performance packet

IO”. In: 2015 ACM/IEEE Symposium on Architectures for Networking and Commu-

nications Systems (ANCS). 2015, pp. 29–38. DOI: 10.1109/ANCS.2015.7110118.

[24] Martin Grill and Martin Rehák. “Malware detection using HTTP user-agent

discrepancy identification”. In: Information Forensics and Security (WIFS), 2014

IEEE International Workshop on. IEEE. 2014, pp. 221–226.

[25] Fariba Haddadi et al. “Botnet behaviour analysis using ip flows: with http

filters using classifiers”. In: Advanced Information Networking and Applications

Workshops (WAINA), 2014 28th International Conference on. IEEE. 2014, pp. 7–12.

[26] https://cran.r-project.org/web/packages/caret/index.html.

[27] ANTON SCHWAIGHOFER NEIL D. LAWRENCE JOAQUIN QUIÑONERO-

CANDELA MASASHI SUGIYAMA. Dataset Shift in Machine Learning. Mas-

sachusetts Institute of Technology, 2009.

[28] Michael Kuhl et al. “Cyber attack modeling and simulation for network secu-

rity analysis”. In: 2008, pp. 1180–1188. ISBN: 978-1-4244-1306-5. DOI: 10.1109/

WSC.2007.4419720.

[29] Berkley Labs. “100G Intrusion Detection”. In: (2015). URL: https://www.cspi.

com/wp-content/uploads/2016/09/Berkeley-100GIntrusionDetection.

pdf.

BIBLIOGRAPHY 61

[30] William Robertson Engin Kirda Christopher Kruegel Leyla Bilge Davide Balzarotti.

“DISCLOSURE: Detecting Botnet Command and Control Servers Through Large-

Scale NetFlow Analysis”. In: ACSAC ’12 Proceedings of the 28th Annual Com-

puter Security Applications Conference (2012), pp. 129–138.

[31] Ke Li, Chaoge Liu, and Xiang Cui. “POSTER: A Lightweight Unknown HTTP

Botnets Detecting and Characterizing System”. In: Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security. ACM. 2014, pp. 1454–

1456.

[32] J. Liang, L. Sankar, and O. Kosut. “Vulnerability Analysis and Consequences

of False Data Injection Attack on Power System State Estimation”. In: IEEE

Transactions on Power Systems 31.5 (2016), pp. 3864–3872. ISSN: 0885-8950. DOI:

10.1109/TPWRS.2015.2504950.

[33] Chen Lu and Richard Brooks. “Botnet traffic detection using hidden markov

models”. In: Proceedings of the Seventh Annual Workshop on Cyber Security and

Information Intelligence Research. ACM. 2011, p. 31.

[34] Leigh Metcalf and Jonathan M. Spring. “Blacklist Ecosystem Analysis”. In:

Proceedings of the 2nd ACM Workshop on Information Sharing and Collaborative

Security - WISCS 15 (2015). DOI: 10.1145/2808128.2808129.

[35] Marcin Nawrocki, Matthias Wallhisch, and Thomas Schmidt. “A Survey on

Honeypot Software and Data Analysis”. In: (2016). DOI: 1608 . 06249. URL:

https://arxiv.org/pdf/1608.06249.pdf.

[36] A. Oprea et al. “Detection of Early-Stage Enterprise Infection by Mining Large-

Scale Log Data”. In: 2015 45th Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks. 2015, pp. 45–56. DOI: 10.1109/DSN.2015.14.

[37] Michael Purzynski and Peter Manev. Suricata Extreme Performance Tuning. 2019.

[38] pyasn Documentation. URL: https://pypi.org/project/pyasn/.

[39] P&S Marketing Research. “Artificial Intelligence (AI) in Cyber Security Market

by Service Type Demand Forecast, 2013-2023”. In: (2017). URL: https://www.

researchandmarkets.com/research/35scht/global_artificial?w=5.

BIBLIOGRAPHY 62

[40] J.Stiborek A.Zunino S.García M.Grill. “An empirical comparison of botnet de-

tection methods”. In: Computers & Security (2014), pp. 100–123.

[41] Jungsuk Song et al. “Statistical Analysis of Honeypot Data and Building of

Kyoto 2006+ Dataset for NIDS Evaluation”. In: Proceedings of the First Work-

shop on Building Analysis Datasets and Gathering Experience Returns for Security.

BADGERS ’11. ACM, 2011, pp. 29–36. ISBN: 978-1-4503-0768-0. DOI: 10.1145/

1978672.1978676. URL: http://doi.acm.org/10.1145/1978672.1978676.

[42] B Soniya and M Wilscy. “Using entropy of traffic features to identify bot in-

fected hosts”. In: Intelligent Computational Systems (RAICS), 2013 IEEE Recent

Advances in. IEEE. 2013, pp. 13–18.

[43] Matija Stevanovic et al. “On the ground truth problem of malicious DNS traffic

analysis”. In: Computers & Security 55 (2015), 142–158. DOI: 10.1016/j.cose.

2015.09.004.

[44] Pablo Torres et al. “An analysis of Recurrent Neural Networks for Botnet de-

tection behavior”. In: Biennial Congress of Argentina (ARGENCON), 2016 IEEE.

IEEE. 2016, pp. 1–6.

[45] Binbin Wang et al. “Modeling connections behavior for web-based bots detec-

tion”. In: e-Business and Information System Security (EBISS), 2010 2nd Interna-

tional Conference on. IEEE. 2010, pp. 1–4.

[46] Jun Xu et al. “Prefix-preserving IP address anonymization: measurement-based

security evaluation and a new cryptography-based scheme”. In: 10th IEEE In-

ternational Conference on Network Protocols, 2002. Proceedings. (2004). DOI: 10.

1109/icnp.2002.1181415.

[47] Daniel Zammit. “A machine learning based approach for intrusion prevention

using honeypot interaction patterns as training data”. PhD thesis. 2016. DOI:

10.13140/RG.2.1.1996.0561.

[48] Zeek Frequently Asked Questions. URL: https://www.zeek.org/documentation/

faq.html#how-can-i-reduce-the-amount-of-captureloss-or-dropped-

packets-notices.

BIBLIOGRAPHY 63

[49] Zeek Frequently Asked Questions. URL: https://www.zeek.org/documentation/

faq.html#why-isn-t-zeek-producing-the-logs-i-expect-a-note-about-

checksums.

