
Automating Security Checks Using Cloud Tools Through Additions to an API

A Technical Report submitted to the Department of Computer Scinece

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jihong Min

Spring, 2022.

Technical Project Team Members

Kyle Mikolajczyk

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Daniel Graham, Department of Computer Science

James Cohoon, Department of Computer Science

Automating Security Checks Using Cloud Tools Through Additions to an API

Jihong Min

 Computer Science

 University of Virginia

 Charlottesville, Virginia USA

 jjm4vf@virginia.edu

ABSTRACT

Viasat, a satellite internet company, tasked its cloud engineering

team, VICE, with managing and providing cloud services for the

company. The main mission of VICE is to build services and

platforms to provide a variety of operational and development

services to teams throughout the company, primarily using Amazon

Web Services (AWS). As a software engineer intern in VICE,

teaming with one other intern, I made additions to the Viasat.io API

in order to automate certain security checks with AWS accounts

and audit AWS logs. Our changes provided the engineers with

more tools for managing their resources in the cloud, making it

easier for them to keep track of their AWS accounts and providing

additional safeguards against fraudulent activity to improve the

security of VICE’s services.

KEYWORDS

Amazon Web Services (AWS), Security Automation, API

ACM Reference format:

Jihong Min. 2021. Automating Security Checks Using Cloud Tools

Through Additions to an API.

1 Introduction

Checking for any vulnerabilities is crucial in maintaining the

security of a system. In a team that is responsible for management

of all the company’s cloud accounts, efficient tools are needed to

keep track of all the data. As VICE creates cloud tools for the

engineers in the company, they are also figuring out the best way

to make the experience reliable. As all cloud providers do, AWS

has an extensive set of tools to make sure that accounts and the

resources in those accounts are secure. However, there are some

checks that are still insufficient and not fully personalized to

VICE’s use cases. Therefore, VICE elevates security through

additions to the Viasat.io API. This API, a tool used by our

customers, Viasat Engineers who build infrastructure and software,

is one of the main parts of the team. By making additions to this

API utilizing tools provided by AWS, VICE enhances the security

of Viasat Cloud.

2 Background

As mentioned, the primary focus of the work was making additions

to VICE’s Viasat.io API. As working in the cloud can incur a lot of

costs, the team wanted to create solutions that could reduce the

amount of reliance on the cloud provider’s tools, while also

maximizing security. The goal was to expand upon existing set of

cloud services, to create a cloud experience that would better fit the

needs of Viasat.

3 Related Work

Salah’s article, “Using Cloud Computing to Implement a Security

Overlay Network” (2013), discussed ways to use these networks

to provide services like intrusion detection systems, antivirus and

antispam software, and distributed denial-of-service prevention

[1]. Although we didn’t implement a security overlay network, it

was similar to our work in that it utilized cloud tools to provide

additional security to different systems.

4 Project Design

VICE provided us with was a list of security checks they wanted

implemented, and one API call that could be useful. The list

included checking for account activity in the master and root,

problematic resource configurations, and modifications of

resources. The API call provided scraped every Viasat AWS

accounts’ AWS Config data into a Postgres database.

4.1 Using AWS Config to Implement Security Checks

Config is a tool that records all the resource configurations in an

account. As a lot of the security checks on the list were checks on

specific resources, this data was crucial for us to implement our

additions. To be able to effectively make additions to the API, we

needed to understand the code base, and how the different parts

were connected. This involved reviewing already implemented

API calls and specifically looking carefully at the Config data

scraper provided.

Once the addition process was better understood, we needed to

find out what the Config data provided us with to know what kind

of function we wanted to write. This involved shelling into

Postgres and trying different queries to see what information was

returned and what was available. Based on what was gathered, we

decided the best solution would be to write a call that would

return any changes in a resource’s configuration between two

days.

4.1.1 Account Changes Call

The account changes call was implemented by querying all

Config data separated into two arrays by day. Then, the two arrays

were compared to see what changes were made between the two

days. The main challenge was sorting the changes into resource

deletions, additions, and modifications. And within modifications,

there are instances where a specific component of a resource is

removed, added, or modified. Once all the changes were sorted, it

Automating Security Checks Using Cloud Tools Through

Additions to an API

was just a matter of formatting the output in a way that the user

could understand it, which we did by utilizing json objects.

To use the call, one must provide just the account ID, which

would provide the changes that occurred between the two days.

For additional customization, we allowed the option to provide

two dates that the user wanted to compare, and also a specific

resource type they wanted to check for changes to. In the output,

the resource ID, resource type, and change type are provided in

human readable JSON format. In the case where the change type

is a modification, the type of modification, path to the changed

key, and new value are provided.

By providing the option of specifying the resource type when

using the call, we were able to check off a majority of the items

on the list.

4.1.2 Region Check Call

Another call that was implemented using Config data was a region

check. Setting up resources on AWS can be a complicated process

as there are often many steps involved. Engineers are bound to

make a mistake in the process at some point. For example, VICE

has specific AWS regions that they primarily create their

resources in. So, if a resource was mistakenly configured in an

unwanted region, there was no good way to know, and the

resource would continue to incur extra unwanted costs. For this

purpose, we created a call that when given a list of expected

regions, would return all the resources in a region that is not in

that expected list.

4.1.3 Find Resource by IP Address Call

The last call we added using Config data was one that could find a

resource, when given an IP address. According to many members

of VICE, one of the most common questions from other Viasat

engineers are about problematic IP addresses. These addresses are

either causing issues, and usually they don’t know where the issue

is coming from or who owns it. At the time, VICE didn’t have an

effective way of dealing with these questions and requests.

While studying all the Config data when implementing the

account changes call, we came across an IP address key value in

one of the resource configurations. We didn’t think much of it at

the time, but we later received a request from one of the VICE

engineers asking if it was possible to find IP information in the

Config data. So, using the knowledge we gained, we were able to

add this call so given an IP address, it would return the account

ID, resource ID, and resource type that the IP is associated with.

Using this tool, VICE could quickly find out whom to contact and

fix any issues.

4.1.4 Automating AWS Config API Calls

These calls, especially the account changes and region check,

aren’t particularly useful unless they are automated. It wouldn’t be

practical to have an engineer manually call the API to check for

issues every day. For automation, the main tool used was AWS

Lambda, a function that runs in the cloud.

As working with Lambda required learning how to navigate a

completely different code base from the API calls, it took some

time to get it all done. The main goal of automating our calls was

to check for suspicious activity in the AWS master account. This

account normally shouldn’t see any changes, so it was important

to have some sort of alert.

We had the Lambda function run our account changes and region

check calls with preset parameters on the master account. In

addition, we set up a cron job so that it would run every morning,

and send an email alert to VICE with details of changes in the

case there are any. This gives the team the ability to quickly find

out about any issues and address them as needed.

4.1.5 Adding Calls to the Viasat.io Portal

Making these calls available to all of Viasat’s engineers was also

a goal. Although this can be easily done by editing the

permissions in the API, running them through a command line

interface is not very attractive to users. To accomplish this, we

added the ability for our calls to be used on the Viasat.io Portal.

The portal, created by my manager, is the web interface for the

API that makes various tasks easier and more approachable for

users. On the portal, we created a new tab for using all of our

Config API calls. With our addition, users would only have to

type in the required parameters for each call to get their results.

For example, for the account changes, users can just type in their

account ID to check for changes in their accounts. This addition

gave VICE a good place to point users to if their problems were

easily fixable by using one of our API calls.

4.2 Using AWS CloudTrail to Implement Security Checks

As we got done with the Config API calls about midway through

the internship, we were looking for new ways to expand upon the

security checks. As Config is only able to obtain snapshots of

resource configurations in an account, we needed a way to

account logs with information about log in and various actions

taken by a user, which were items on the checklist.

The AWS tool we found that had this ability was CloudTrail.
AWS CloudTrail is a service that helps enable governance,

compliance, and operational and risk auditing of your AWS

account. Actions taken by a user, role, or an AWS service are

recorded as events in CloudTrail. These events include actions

taken in the Management Console, Command Line Interface,

SDKs and APIs [2]. To obtain this data, we found that AWS has a

tool called Athena, which is a database where CloudTrail logs can

be stored to be queried. Once a query is submitted to Athena, the

results are stored in AWS S3 buckets.

4.2.1 Setting Up an Athena Table with CloudTrail Logs

Setting up the Athena table was also a challenging process. We

needed to make sure the table was created with the proper

partitioning to make sure each query would not take too long and

incur high costs. Also, many permissions needed to be granted to

make sure each role had access to the proper resources. Luckily,

AWS has extensive documentation that explains this process in

detail. Completing this process, we gained an insight on how to

Automating Security Checks Using Cloud Tools Through

Additions to an API

create a database table more efficiently, and create an IAM policy

to grant permissions.

4.2.2 CloudTrail API Calls

Once everything was set up, we implemented a process of three

API calls to get a user the results of specific events that occurred

in an account. The first call requires two dates for the range of

data to look for events, and then a list of CloudTrail events. This

call submits a query to Athena and outputs a query ID. Using this

query ID, the user would get the status of the query through the

second API call. Once they know the query finished successfully,

the third call takes the same query ID, and outputs the result of the

query, with information regarding the events the user asked for.

5 Results

5.1 Config API Calls

By the end of the internship, we were able to get the Config calls

into production, and available to all engineers in Viasat. Although

we had finished the implementation of these around halfway

through the summer, it took a bit time to get it fully finalized as

we continued testing. An obstacle we encountered was the

differing amount of data in the dev and production environments.

As production has more data, it was crucial for our complex

queries to be optimized, and outputs to be within a capacity that

could be handled.

The security checks added to the API proved to be very useful for

the team. This was clearly shown when our Lambda function

actually sent out an alert email to the team during the internship,

as there were changes in the master account. Although the alert

was only for small changes that IT was making, our team lead

complimented us for giving a heads up on the activity so they

knew the reason for the changes.

As for the effect on the rest of the engineers in Viasat, our

manager noticed a spike in users accessing the Viasat.io Portal to

use our added calls. This was probably due to the fact that VICE

was now pointing people to the portal link whenever they got

questions about problematic IP addresses.

5.2 CloudTrail API Calls

Unfortunately, we weren’t able to get the CloudTrail calls into

production by the end of the internship. Although we had finished

the implementation, we did not have enough time for testing and a

formal code review from the team leads. A major factor holding it

back was the fact that VICE only had access to CloudTrail data in

their own dev and prod accounts, and not any AWS accounts

outside of VICE, as that would require a complicated review

process with Viasat IT. Putting that aside, we left VICE with

extensive documentation of the entire Athena setup process, and

many comments in the code to explain our implementation. As the

CloudTrail logs have a lot valuable information for security,

having our calls available even for the VICE accounts would be

very helpful.

6 Conclusions

In all, the API additions were beneficial to VICE and their ability

to manage Viasat’s cloud services, and to the engineers that use

VICE’s services. As developing more tools while managing all

user accounts and maintaining security is a lot of work, the

additions provided expansion of security checks and more tools to

help in the management aspect. The Config calls provide daily

checks of resource configurations in the master account and also

provides all the engineers more tools that can help with managing

their accounts and troubleshooting any problems. Through the

deployment to production and addition to the Portal, these calls

are easily accessible by anybody at Viasat to help them manage

the security of their accounts.

The implementation and substantial documentation of the

CloudTrail calls were completed in case VICE wanted to use them

in the future. These calls provide additional security checks for

VICE’s accounts to ensure that unauthorized users are not

accessing their accounts.

One of our goals from the beginning was to make our additions

easily expandable. As VICE might later want to automate checks

for more accounts, or add more events to the list to check for,

implementations should make this a simple process. With that in

mind, our final implementation made these things possible with

just adding a line or two of code to specify the additional accounts

or events.

7 Future Work

In the future, many additional tools can be utilized to further

improve security and help VICE with the management of Viasat

Cloud. We also implemented another API call that would allow a

VICE member to edit employee emails without manually editing

LDAP (or Lightweight Directory Access Protocol) as an LDAP

super admin. LDAP is often used for authentication and storing

information about users, groups, and applications [3]. Viasat uses

this to store basic employee information. So, the API call made it

so LDAP wouldn’t have to be accessed to complete a simple task.

This eased the work of completing email change requests for on

call VICE members.

What was special about this call was that this wasn’t specifically

tasked for the interns, but we were able to pick up a normal ticket

in VICE’s workflow and turn it around quickly using the

knowledge we picked up during our time there. Implementing this

showed what future work could be wanted by VICE to continue

their responsibilities in the future.

8 UVA Computer Science Curriculum Evaluation

The UVA CS curriculum was very beneficial in preparing me for

this experience. The most helpful was the Database systems class.

As most of the API calls that were added required some sort of

querying, having a good foundation of databases really made the

whole process of figuring out the most efficient queries very fast.

Also, when creating the Athena table while implementing the

CloudTrail calls, having knowledge of partitioning allowed us to

avoid an obstacle of refactoring the table if the queries took too

long.

Automating Security Checks Using Cloud Tools Through

Additions to an API

REFERENCES
[1] K. Salah, J. M. Alcaraz Calero, S. Zeadally, S. Al-Mulla and M. Alzaabi, "Using

Cloud Computing to Implement a Security Overlay Network," in IEEE Security

& Privacy, vol. 11, no. 1, pp. 44-53, Jan.-Feb. 2013, doi: 10.1109/MSP.2012.88.

[2] Amazon Web Services, Inc. 2021. Secure Standardized Logging - AWS

CloudTrail - Amazon Web Services. [online] Available at:

<https://aws.amazon.com/cloudtrail/> [Accessed 20 October 2021].

 [3] LDAP.com. 2021. LDAP.com. [online] Available at: <https://ldap.com/>

[Accessed 20 October 2021].

