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Abstract 

Despite the colossal growth in computation power fueled by digital computers, there exist 

many computational problems that are still considered intractable to solve using such 

computing platforms. As a case in point, many problems in combinatorial optimization 

belong to the NP-hard (non-deterministic polynomial-time hard) computational complexity 

class and computing their solutions on digital computers typically requires exponentially 

increasing resources (computing time and memory) with increasing problem size. 

Consequently, solving even problems of moderate size can become unmanageable. This 

motivates the exploration of alternative computing models that can be more efficient in 

solving such problems.  

Analog dynamical systems as well as computational models inspired by such platforms 

offer a promising alternative for solving such problems. For example, Ising machines 

realized using coupled oscillators have been extensively investigated for accelerating 

hard combinatorial optimization problems. While Ising machines help showcase the 

potential of the dynamical system-based approach, they are constrained in their 

capabilities. Specifically, an Ising ‘spin’ only allows two states and the traditional Ising 

model can only capture quadratic interactions. However, many practical combinatorial 

optimization problems entail more than two states as well as higher order (>2) interactions 

- demands that are typically accomplished using extensive computationally intensive pre-

processing, resulting in an expansion in problem size. 

Therefore, in this dissertation, new coupled oscillator-inspired computational models are 

formulated that not only allow variables with more than two values (commonly termed as 
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the Potts model) but also capture higher order interactions. This work advances the 

capabilities of the analog approach by largely circumventing the need for pre-processing 

required with Ising machines. Complementing this effort, the properties of such non-linear 

dynamical systems are analyzed from a control-theoretic viewpoint, allowing critical 

insights into the design and optimization of the computational properties of such systems. 

Finally, to test the potential performance benefits of the models developed in this work, a 

3- and 4-state Potts machine designed to solve the Max-K-Cut problem (K=3,4) is 

implemented on an FPGA. Evaluations performed on graphs with up to 10,000 nodes 

from the G-Set dataset reveal that the new models combined with the inherent parallelism 

incorporated in the FPGA architecture can provide a ~390x speedup over the state-of-

the-art GPU-based simulated bifurcation machine. 

In summary, this dissertation contributes to advancing the design and computational 

capabilities of analog dynamical systems as an approach for accelerating a class of 

computationally intractable problems. 
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Chapter 1 

1. Introduction 

1.1. Background 

 Modern information processing has largely relied on digital computers based on 

the Von-Neumann architecture. Problems are solved by creating their Boolean 

abstractions which are then systematically processed using a suite of logic circuits 

(arithmetic logic unit) and memory that are realized using Silicon CMOS-based digital 

switches. There is a well-established mapping between the Boolean computing paradigm 

and the underlying hardware that supports digital computation. Moreover, the driving 

force behind the proliferation of digital computing has been the economics of Moore’s law 

[1]. Traditionally, this has made computing exponentially more energy efficient (Koomey’s 

law [2]) as well as cost efficient (quantified using Floating Point Operations Per Second 

(FLOPS)/$), facilitating an exponential reduction in $/bit. However, with the slowing of 

Moore’s law and the cost of manufacturing evermore complex transistor architectures no 

longer reducing, the energy and cost efficiency have plateaued. The impact of this is felt 

most acutely when solving computationally intractable problems such as those in 

combinatorial optimization (e.g., MaxCut, Boolean Satisfiability, graph coloring) that 

require exponentially increasing computational resources (computation time, memory) 

with increasing problem size [3]. The inability for continued improvement of the hardware 

efficiency in conjunction with the exponentially large number of computations required for 

solving such problems means that even problems of moderate size become 

unmanageable.  
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Furthermore, such problems find utility across a broad set of industrial and 

scientific applications. For example, many tasks in operations research [4], artificial 

intelligence [5], communication networks [6], security [7], software engineering [8], data 

mining [9], computational and molecular biology [10], biocomplexity [11], molecular 

chemistry [12],[13], and scientific discovery [14], etc., can be expressed as combinatorial 

optimization problems (COPs). Consequently, this motivates the search for alternative 

computing approaches that could offer improved computational efficiency in solving such 

problems.  

 

1.2. Alternative computing approaches to solving combinatorial optimization: 

prior work 

Various alternative computing methods spanning the quantum mechanical and 

classical domains are being actively investigated 

for accelerating the computation of hard 

combinatorial optimization problems. Quantum 

computing aims to exploit collective quantum 

physical properties i.e., superposition and 

entanglement properties of qubits to perform 

computation. Though a quantum computer (QC) 

possesses the same computability as a classical 

digital computer, it has the potential to provide 

exponential speedup in solving hard problems (this speedup is known as quantum 

supremacy [15]). Recently, several forms of QCs have been physically implemented. For 

 

Figure 1.1. Schematic depiction of the 
evolution of a dynamical system; 
objective function of an optimization 
problem is mapped onto the energy of 

the system.   
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instance, IBM recently unveiled their quantum gates-based (cloud accessible) QC [16] 

while D-wave has implemented quantum annealers [17]. Such quantum annealers are 

designed to solve optimization problems [18],[19], specifically quadratic optimization 

problems in QUBO (quadratic unconstrained binary optimization) format [20],[21]. Despite 

the promise of quantum computers, their physical implementation remains a major 

challenge; cryogenic cooling to ~mK temperatures [22] required for qubits entails a 

significant energy cost as well as creates challenges for their scalability. Additionally, 

quantum computers are prone to error [23] resulting in implementation challenges. Such 

challenges inspire us to keep the door open for other approaches to emerging computing.  

Classical dynamical systems have recently been shown as a promising approach 

to solving intractable COPs [24],[25]. The underlying dynamics governed by energy 

minimization in dynamical systems can find an elegant equivalence in the minimization of 

multi-dimensional objective functions that define COPs as depicted in Fig. 1.1 [26]-[28]. 

The high-level motivation behind exploring this paradigm is that unlike digital solvers that 

typically rely on batch, discrete time, iterative updates (lacking temporal locality) and 

shared states (lacking spatial locality), continuous-time dynamical systems exhibit rich 

spatio-temporal properties that inherently offer a highly parallelized approach for 

searching the high dimensional combinatorial space. Physical manifestations of this 

approach include probabilistic computing [29],[30], optical computing [31],[32], in-memory 

computing [33]-[36] and coupled oscillator-based computing [37] among others. 

Additionally, Physics-inspired algorithms such as simulated annealing [38] and simulated 

bifurcation [39] have been widely studied to solve COPs. Their implementations on 



 

10 
 

hardware accelerators like GPUs [40],[41], FPGAs [42],[43] as well as ASIC 

implementations [44]-[46] have shown promising results in solving COPs.  

 

Since electronic oscillators possess rich spatiotemporal phase dynamics, they 

have recently received significant attention. There are active research efforts that are 

dedicated to investigating the promise associated with electronic oscillators for designing 

computing systems to solve hard COPs. Some key motivations behind oscillator-based 

computing are that they are compatible with existing technology, compact, operable at 

room temperature, capable of mass production, and they demand low power. The table 

in Fig. 1.2 summarizes the key attributes of different emerging computing approaches. 

 

Figure 1.2. Table summarizing different approaches for alternative computing platforms to solve hard 

combinatorial optimization problems. 

Operating 

Temperature

Underlying 

Physics

Building BlockSystem

15 mKQuantum 

tunneling

QubitD-Wave Annealer 

[22],[47]

300 KOptical coherenceOptical parametric 

oscillators

Coherent Ising Machines 

[48]

300 KGradient descentAnalog inverter and 

integrator

Analog SAT Solver [49]

300 KGradient descentElectronic oscillatorsOscillator Ising Machine 

[50],[51]

300 KBoltzmann 

sampling

Low barrier magnetsBinary Stochastic Neuron 

(P-Bit) [52]

300 KSimulated 

annealing

SRAMCMOS Annealer [53]
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1.3 History of solving combinatorial optimization with synchronized oscillators 

1.3.a. Synchronization of coupled oscillators 

Oscillators are ubiquitous in nature. Synchronization of oscillators is observed in 

many natural biological and ecological systems. For instance, the chirping of crickets, the 

flashing of fireflies, and cardiac cells in mammals [54] exhibit synchronization 

phenomena. Besides natural systems, synchronization of oscillators was also envisioned 

for designing computing systems in the mid twentieth century. In fact, von Neumann 

proposed an oscillator-based logic platform based on sub-harmonic injection locking. 

Eiichi Goto in Japan developed an oscillator-based parametron [55]. Despite these early 

innovations, oscillator-based digital computing did not receive much focus due to their 

implementation challenges and the emergence of CMOS-based digital systems.  

However, in the recent years, there has been increasing interest in designing 

oscillator-based computing, specifically for solving hard combinatorial optimization 

problems (COPs). Many COPs are conveniently 

represented by graphs (Fig. 1.3). Such graphs can 

be mapped on topologically equivalent coupled 

oscillator networks where nodes (vertices) and 

edges correspond to oscillators and coupling 

elements, respectively (shown in Fig. 1.3). The 

Kuramoto model [56] is a landmark development in 

that field that helped analyze the synchronization 

behavior in oscillators. According to this model, the 
 

Figure 1.3. Mapping of a graph 

network onto a coupled oscillator. 

system. 
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phase dynamics of the ith oscillator in a system of N-coupled sinusoidal oscillators can be 

written as, 

d𝜙𝑖

d𝑡
= 𝜔𝑖 + 𝑘 ∑ 𝑤𝑖𝑗 sin(𝜙𝑗 − 𝜙𝑖)

𝑁

𝑗=1,𝑖≠𝑗

 (1.1) 

where, 𝜙𝑖 and 𝜔𝑖 are the phase and frequency of the ith oscillator, respectively; 𝑘 is the 

constant coupling strength; 𝑤𝑖𝑗 is the weight between the ith and jth nodes. This model can 

provide a theoretical limit of the coupling strength known as the critical coupling strength 

(𝑘𝑐) below which oscillators in a system lose synchronization. Further details about the 

Kuramoto model can be found in the reviews by Rodrigues et al. [57], and Acebrón et al. 

[58].  

Wu et al. [59] proposed a solution to the graph coloring problem using the 

Kuramoto model. The graph coloring problem is defined as the problem of assigning 

colors to the nodes of a graph in such a way that two connected nodes cannot have the 

same color. While using coupled Kuramoto oscillators, graph coloring is achieved by 

grouping the oscillators based on their phase sequences. Subsequently, Lee et al. [60] 

proposed a heuristic algorithm based on the Kuramoto model, and Wu et al. [61] proposed 

a method with adaptive coupling in the Kuramoto model to solve the graph coloring 

problem. Furthermore, several works demonstrated the solution to the graph coloring and 

the maximum independent set (MIS) problem with coupled oscillator hardware. MIS 

problem deals with finding a color group with the possible maximum number of nodes. 

Parihar et al. [62] experimentally demonstrated the solution to the graph coloring problem 

and we showcased the solution to the MIS problem [63] (with simulation) with capacitively 

coupled Vanadium dioxide (VO2) relaxation oscillators. Mallick et al. demonstrated the 
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solution to the graph coloring problem [64], MIS problem [65] with a chip of fully 

reconfigurable 30 capacitively coupled Schmitt trigger oscillators. Among various 

approaches to oscillator-based computing, researchers have largely focused on 

designing oscillator based Ising machines. In the next section, we will describe the 

oscillator Ising machine (OIM). 

1.3.b. Coupled oscillators under external injection: the oscillator Ising machine 

(OIM) 

Theoretical framework. An Ising machine can minimize the Ising Hamiltonian defined 

by the following equation: 

𝐻 = − ∑ 𝐽𝑖𝑗𝑠𝑖𝑠𝑗

𝑁

𝑖,𝑗=1,𝑖<𝑗

 (1.2) 

Where, 𝑠𝑖 represents Ising spin (𝑠𝑖 ∈ {−1,+1}), 𝐽𝑖𝑗 represents the interaction coefficient 

between ith and jth spins. The Zeeman term is neglected here. The MaxCut problem of a 

graph, which is a well-known COP, can be directly represented by the Ising Hamiltonian 

shown in Eq. (1.2). The MaxCut problem is defined as the problem of dividing the nodes 

of a graph into two sets so that the sum of the weights of the common edges maximizes. 

The objective function of the MaxCut problem can be represented by an Ising Hamiltonian 

where spin −1 represents one node set and +1 represents the other set (Fig. 1.4), 𝐽𝑖𝑗 =

−𝑤𝑖𝑗 (𝑤𝑖𝑗: weight of the edge between the ith and jth nodes). Thus, the minimization of the 

Ising Hamiltonian maximizes the cut in the corresponding graph. Wang et al. [66] first 

demonstrated an oscillator Ising machine (OIM). The theory of OIM is derived from the 

generalized Adler’s equation (shown below) [67],[68] which describes the phase 

dynamics of an oscillator under a perturbation. 
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d𝜙𝑜𝑠𝑐

d𝑡
= 𝜔𝑜𝑠𝑐 − 𝜔𝑝𝑏 + 𝜔𝑜𝑠𝑐 𝜇(𝜙𝑜𝑠𝑐(𝑡) − 𝜙𝑝𝑏(𝑡)) (1.3) 

where, 𝜙𝑜𝑠𝑐, 𝜙𝑝𝑏, 𝜔𝑜𝑠𝑐, 𝜔𝑝𝑏 are oscillator phase, perturbation phase, oscillator frequency, 

and perturbation frequency, respectively. 𝜇 is the perturbation projection vector (PPV) 

that quantifies the phase response of the oscillator in presence of a perturbation. Now, 

for the ith oscillator in a system of N-coupled oscillators, Eq. (1.3) can be written as,  

d𝜙𝑖

d𝑡
= 𝜔𝑖 − 𝜔𝑛𝑎𝑡 + 𝜔𝑖 ∑ 𝜇𝑖𝑗(𝜙𝑖(𝑡) − 𝜙𝑗(𝑡))

𝑁

𝑗=1,𝑗≠𝑖

  (1.4) 

where, 𝜔𝑛𝑎𝑡 is the natural frequency of the oscillators. For a sinusoidal oscillator, PPV is 

also sinusoidal. Hence, considering 𝜔𝑖 = 𝜔𝑛𝑎𝑡, for sinusoidal oscillators, Eq. (1.4) can be 

modified to, 

d𝜙𝑖

d𝑡
= −𝑘 ∑ 𝐽𝑖𝑗sin(𝜙𝑖(𝑡) − 𝜙𝑗(𝑡))

𝑁

𝑗=1,𝑗≠𝑖

  (1.5) 

where 𝑘 is the constant coupling strength. Eq. (1.5) is nothing, but the Kuramoto model 

shown in Eq. (1.1). In the presence of a second harmonic injection signal, Eq. (1.5) can 

be written as, 

d𝜙𝑖

d𝑡
= −𝑘 ∑ 𝐽𝑖𝑗sin (𝜙𝑖(𝑡) − 𝜙𝑗(𝑡))

𝑁

𝑗=1,𝑗≠𝑖

− 𝑘𝑠sin(2𝜙𝑖(𝑡))  
(1.6) 

where 𝑘𝑠 is the injection strength. Eq. (1.6) shows the dynamics of an OIM. Now, an 

energy function 𝐸 is defined in a way so that, −𝛼(∇𝐸)𝑖 =
d𝜙𝑖

d𝑡
, 𝛼 > 0 (here, 𝛼 =

1

2
). It 

ensures that 
d𝐸

d𝑡
≤ 0 which means the energy function is nonincreasing and the system 
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exhibits gradient descent in the energy domain. The following function is such an energy 

function, 

𝐸 = −𝑘 ∑ 𝐽𝑖𝑗cos (𝜙𝑖(𝑡) − 𝜙𝑗(𝑡))

𝑁

𝑖,𝑗=1,𝑖≠𝑗

− 𝑘𝑠 ∑cos(2𝜙𝑖(𝑡))

𝑁

𝑖=1

  (1.7) 

Here, the second harmonic 

injection with sufficient strength 

discretizes the oscillator phases 

to {0, 𝜋}. Hence, cos (𝜙𝑖(𝑡) −

𝜙𝑗(𝑡)) maps 𝑠𝑖𝑠𝑗 and 

−∑ 𝐽𝑖𝑗cos (𝜙𝑖(𝑡) − 𝜙𝑗(𝑡))
𝑁
𝑖,𝑗=1,𝑖≠𝑗  

maps the Ising Hamiltonian 𝐻 

shown in Eq. (1.2). Thus, the 

minimization of 𝐸 directly maps 

the minimization of 𝐻 (since 𝑘 and 

𝑘𝑠 are nonnegative). For Eq. (1.7) 

it can be derived that 
d𝐸

d𝑡
=

−2∑ (
d𝜙𝑖

d𝑡
)
2

𝑁
𝑖=1 i.e., 

d𝐸

d𝑡
≤ 0. Hence 

the system evolves towards lower energy unless it gets stuck in a local minimum. Wang 

et al. [67] referred to this as a Lyapunov function. Thus, OIM performs a gradient descent 

on an energy function that corresponds to the Ising Hamiltonian.  

Figure 1.4 shows the computation of an Ising problem (i.e., minimization of Ising 

Hamiltonian) using an oscillator based Ising machine [69]. The network to be analyzed is 

 

Figure 1.4. (a) A representative network of spins and their 
interactions along with the corresponding topologically 
equivalent coupled oscillator network. (b) Experimentally 
measured time-domain output of the oscillators in the 
network under second harmonic injection. (c) 
Corresponding phase plot of the oscillators showing a 
phase bipartition with each set corresponding to a spin 
state (±1). The oscillators (spin) aim to achieve a 
configuration that minimizes the Ising Hamiltonian 𝑯. 
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mapped to the oscillator hardware by creating a topologically equivalent oscillator circuit 

using the following relationship: spin ≡ oscillator, and spin interaction ≡ coupling capacitor 

(only binary interaction considered here), as shown in the example in Fig. 1.4(a). The 

corresponding waveform (Fig. 1.4b) of the coupled oscillators under the influence of the 

externally applied second harmonic signal, and the resulting phase plot (Fig. 1.4c) clearly 

shows a phase bipartition corresponding to the two spin states. The resulting spin 

assignment that gives rise to the minimum value of 𝐻 (= −3, here) is  (1, 3) ↑; (2, 4) ↓. 

OIM hardware. Many OIM hardware have been proposed with varied electronic 

oscillators which include both CMOS oscillators and emerging device-based oscillators. 

While emerging technology-based oscillators possess the promise of compact design and 

power efficiency, large-scale designs are still dependent on CMOS technology. Wang et 

al. [70] demonstrated a discrete OIM, implemented with 240 LC oscillators on PCBs 

where the coupling network has a chimera architecture. A weighted OIM was 

demonstrated by Chou et al. [71] with 4 discrete LC oscillators. Our previous work [51] 

presented the first all-to-all connected OIM chip with 30 capacitively coupled Schmitt 

trigger-based oscillators. It was then scaled to 600 oscillators, coupled in a tiled 

architecture [50]. A hybrid approach was proposed for obtaining high-quality MaxCut 

solution using the 600-oscillator OIM, since solution quality degrades with the increase in 

problem / hardware size. Research efforts were also employed to explore the design of 

OIM using emerging technology-based devices. For instance, Dutta et al. experimentally 

demonstrated an OIM with 8 discrete coupled VO2 nano oscillators [72]. Additionally, a 

ring oscillator based probabilistic OIM was proposed [73],[74]. Apart from these electronic 

oscillators, several other types of oscillators have been investigated to design Ising 
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machines. Spin Hall nano-oscillator [75], spin-torque nano-oscillators (STNOs) [76] (using 

simulation), and Kerr nonlinear parametric oscillator [77] are some of the candidates that 

can be put in this list.  

Though many research efforts have investigated OIM, specifically the design of 

OIM hardware, theoretical analysis to understand the dynamical properties of such 

systems remain sparsely explored. Such analysis can help optimize the design of OIM 

for better performance. Therefore, this dissertation introduces a control theoretic analysis 

of OIM.  

 

1.4. Motivation of the dissertation 

Challenges with Ising machines. An Ising machine can directly map COPs whose 

inherent mathematical formulations consist of only pairwise interaction of 2-state 

variables since the Ising Hamiltonian 𝐻 = ∑ 𝐽𝑖𝑗𝑠𝑖𝑠𝑗
𝑁
𝑖≠𝑗  comprises of pairwise interactions 

(𝑠𝑖𝑠𝑗) of 2-state Ising spins (𝑠𝑖 ∈ {−1,+1}). However, many COPs like the Max-K-Cut 

(K>2) problem need multi-state variable representation (shown in Fig. 1.5a). Furthermore, 

many COPs such as the hypergraph MaxCut are inherently associated with hypergraphs 

where a hyperedge can connect more than two nodes (shown in Fig. 1.5b). Their natural 

objective functions need higher order interactions among variables / spins, e.g., 𝑠𝑖𝑠𝑗𝑠𝑘. 

Thus, we can classify COPs in the context of dynamical systems. Fig. 1.5c summarizes 

this classification in a table. It can be observed that Ising machines only can directly map 

the binary quadratic (pairwise interaction-based) COPs. 

An Ising machine still can solve COPs whose inherent representations need multi-

state variables, higher order interaction, or both. For instance, the Max-K-Cut problem 
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can be solved using Ising machines by converting the input problem using the following 

method:  

Max-K-Cut to Ising problem. Let’s consider an N-node graph 𝐺(𝑉, 𝐸) where 𝑉 is the set 

of vertices and 𝐸 is the set of edges. Now, if we want to solve a problem that aims to 

divide the node set into K sets so that the number of edges connecting more than one set 

maximizes, we can consider the following Ising Hamiltonian (details are shown in [78]), 

 

Figure 1.5. Classification of COPs in the context of dynamical system-based computing. Binary and 

multi-level partitioning in (a) graphs, (b) hypergraphs. (c) Table summarizing the COP classification. 
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𝐻𝐾−𝐶𝑢𝑡 = 𝐶1 ∑(1 − ∑
1 + 𝑠𝑖,𝑟

2

𝐾

𝑟=1

)

2𝑁

𝑖=1

+ 𝐶2 ∑ ∑
(1 + 𝑠𝑖,𝑟)(1 + 𝑠𝑗,𝑟)

4

𝐾

𝑟=1(𝑖,𝑗)∈𝐸

 
(1.8) 

Here, 𝐶1 and 𝐶2 are constants, 𝑠𝑖,𝑟 = +1 denotes that the ith node is placed at rth set and 

𝑠𝑖,𝑟 = −1 denotes it is not placed in the rth set. The first term in 𝐻𝐾−𝐶𝑢𝑡 ensures that a node 

is placed only in one set. The second term ensures the maximization of cuts, i.e., the 

number of edges connecting more than one set. Eq. (1.8) can be solved using an Ising 

machine, i.e., it is now an Ising problem. However, the problem size has now increased 

to 𝐾𝑁. Figure 1.6 shows the size of a converted Ising problem as a function of the original 

problem size (nodes and edges) while solving Max-K-Cut using the Ising machine. It can 

be observed that the problem size increases significantly (K times) if we want to solve the 

Max-K-Cut problem with an Ising machine.  

 

Figure 1.6. The variation in (a) the number of nodes and (b) the number of edges of the graph required 

to solve the Max-K-Cut problem, as a function of the corresponding quantities in the original input 

graph.  
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Higher order COPs to Ising problems. We can illustrate the conversion of a higher 

order COP to the Ising problem with the Boolean satisfiability (SAT) problem. Let’s 

consider the following CNF (conjunctive normal form) formula,  

                                            𝑦 = (𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4)                                                       (1.9) 

The formula in Eq. (1.9) comprises two conjunctive (logical and) Boolean terms and each 

of them contains a disjunction (logical OR) of some variables enclosed by parenthesis. 

Such terms are known as clauses. To solve the decision version of the SAT problem, we 

need to determine if there exists an assignment of the Boolean variables in Eq. (1.9) that 

will satisfy the formula 𝑦. The optimization version of the SAT, known as the MaxSAT 

(maximum satisfiability) problem can be solved by finding an assignment of the 

corresponding variables so that it satisfies the possible maximum number of clauses (in 

Eq. (1.9), both clauses). For instance, an assignment of 𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 0, 𝑥4 = 0, 

will satisfy both clauses in the above formula (𝑦).  Using binary variables (𝑥𝑖{0,1}), this 

problem can be formulated by the following objective function (details are shown in [79]): 

                                          𝑓 = 1 − 𝑥1 − 𝑥2 + 𝑥1𝑥2 + 𝑥2𝑥3𝑥4                                                 (1.10) 

Further, Eq. (1.10) can be translated to an Ising Hamiltonian shown in Eq. (1.11) by using 

𝑥𝑖 =
𝑠𝑖+1

2
.  

𝐻𝑆𝐴𝑇 =
3 − 2𝑠1 − 𝑠2 + 𝑠3 + 𝑠4 + 2𝑠1𝑠2 + 𝑠2𝑠3 + 𝑠2𝑠4 + 𝑠3𝑠4 + 𝑠2𝑠3𝑠4

8
  (1.11) 

Eq. (1.11) is to be minimized to maximize the number of satisfied clauses in 𝑦. Unlike the 

Ising Hamiltonian formulation (∑ 𝐽𝑖𝑗𝑠𝑖𝑠𝑗
𝑁
𝑖≠𝑗 ), Eq. (1.11) is non-quadratic since it comprises 

a third order interaction term (𝑠2𝑠3𝑠4). The degree of such an equation will increase with 

the increase of clause size, i.e., the number of literals (variable in normal or inverted form) 

in a clause [79].   



 

21 
 

Now, we will see how to convert the SAT Hamiltonian shown in Eq. (1.11). The 

process of converting a higher order interaction term to a second order interaction term 

is known as quadratization. To quadratize the term 𝑠2𝑠3𝑠4, we can introduce an ancillary 

(or auxiliary) variable 𝑠𝑎1 so that 𝑠𝑎1 = 𝑠3𝑠4. Hence, the Hamiltonian becomes, 

𝐻𝑆𝐴𝑇 =
3 − 2𝑠1 − 𝑠2 + 𝑠3 + 𝑠4 + 2𝑠1𝑠2 + 𝑠2𝑠3 + 𝑠2𝑠4 + 𝑠𝑎1 + 𝑠2𝑠𝑎1

8
 (1.12) 

Eq. (1.12) is a quadratic function i.e., it is an Ising problem now. However, to ensure that 

𝑠𝑎1 = 𝑠3𝑠4, we need to add a constraint as follows, 

𝐻𝑆𝐴𝑇 =
1

8
[3 − 2𝑠1 − 𝑠2 + 𝑠3 + 𝑠4 + 2𝑠1𝑠2 + 𝑠2𝑠3 + 𝑠2𝑠4 + 𝑠𝑎1 + 𝑠2𝑠𝑎1

+ 𝑃(4 + 𝑠3 + 𝑠4 − 𝑠𝑎1 − 2𝑠𝑏1 + 𝑠3𝑠4 − 𝑠3𝑠𝑎1 − 𝑠4𝑠𝑎1 − 2𝑠3𝑠𝑏1

− 2𝑠4𝑠𝑏1 + 2𝑠𝑎1𝑠𝑏1)] 

 

(1.13) 

Here, 𝑃 is a large penalty. The term (4 + 𝑠3 + 𝑠4 − 𝑠𝑎1 − 2𝑠𝑏1 + 𝑠3𝑠4 − 𝑠3𝑠𝑎1 − 𝑠4𝑠𝑎1 −

2𝑠3𝑠𝑏1 − 2𝑠4𝑠𝑏1 + 2𝑠𝑎1𝑠𝑏1) ensures (along with a large penalty) 𝑠𝑎1 = 𝑠3𝑠4 [80]. To reduce 

the degree of a higher order term by 1, we need to add 2 ancillary / auxiliary Ising spin-

based variables. Hence, to quadratize 𝑚 higher order terms, we need up to 

∑ 2(𝑑𝑖 − 2)𝑚
𝑖=1, 
𝑑𝑖>2

 auxiliary variables where, 𝑑𝑖 is the degree of the ith term. Thus, 

quadratization of the objective function of a higher order COP necessitates the 

introduction of additional variables (auxiliary variables) and increases the problem size 

significantly.  

The main motivation behind the tremendous efforts being employed to design an 

efficient and scaled Ising machine is that any NP problem can be solved using an Ising 

machine by converting them into Ising problems and then solving that problem. However, 

such conversion to Ising problems adds significant computation overhead, expands the 
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problem size multiple times, and reduces the possibility of obtaining valid solutions due 

to the imposition of additional constraints [78]. Consequently, solving such COPs using 

Ising machines needs more computing resources (hardware size and time), and solution 

quality declines since expanded problems must be solved by the Ising machine. These 

issues motivate the search for designing domain-specific dynamical systems that will be 

able to directly map and solve a wide range of COPs irrespective of their inherent nature. 

Therefore, the goal of this dissertation is to formulate oscillator-based dynamical 

systems for solving hard combinatorial optimization problems directly (i.e., without the 

need for conversion to the Ising problem) and to incorporate theoretical methods for 

analyzing the dynamical properties of coupled oscillator-based computing systems that 

regulates their computational performance.  

 

1.5. Contributions  

The key contributions of this dissertation can be summarized with the following points: 

1. A novel coupled oscillator-based Potts machine has been formulated with a phase 

sensitive coupling scheme. The formulated Potts machine-based computational 

models have been utilized to directly map and solve several COPs that need multi-

state variable representations. One of the oscillator Potts machine-based 

computational models has been implemented on an FPGA accelerator to solve the 

Max-K-Cut problem. The FPGA implementation has showcased up to 390x 

speedup over a state-of-the-art Ising machine, in solving the Max-K-Cut solution 

for up to 10,000 node benchmarking graphs, while maintaining similar solution 

quality. 
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2. Dynamical systems have been formulated to map and solve multiple higher order 

COPs including the Boolean satisfiability (SAT) problem. 

3. A first of its kind oscillator-based higher order Ising machine has been formulated 

to directly map and solve higher order COPs whose objective functions are 

represented with Ising spins. 

4. Control theoretic methods have been employed to analyze the dynamics of 

oscillator-based computing systems. Such analysis can be utilized to optimize the 

system parameters of these computing systems for improving computational 

performance. 

 

1.6. Dissertation organization 

The dissertation is organized as follows: 

Chapter 1 has discussed the background and prior related works of this 

dissertation. The synchronization of coupled oscillators and their direct use in solving 

combinatorial optimization are briefly discussed in Chapter 1. Here, the theoretical 

framework for the oscillator Ising machine along with the previous work on its hardware 

implementations is discussed. Subsequently, the limitations of Ising machines in solving 

COPs are discussed to frame the motivation behind this research. 

The first section of Chapter 2 discusses the theoretical formulation of oscillator-

based Potts machines with phase sensitive coupling function. The coupling function and 

its modification to map several COPs is described briefly. In the second section of Chapter 

2, an FPGA implementation of the oscillator Potts machine-based Max-K-Cut solving 
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algorithm is described. Subsequently, benchmarking of the results obtained from this 

FPGA implementation is also presented in Chapter 2.     

Chapter 3 describes the formulation of several dynamical systems to solve several 

higher order COPs including the Boolean SAT and its derivative- the NAE-SAT problem. 

Subsequently, Chapter 3 delves into the formulation of an extended oscillator Ising 

machine which can directly map higher order interaction among Ising spins and thus solve 

higher order COPs. Subsequently, a method to incorporate higher order interaction in 

oscillator Potts machines is discussed in Chapter 3. Additionally, an alternative 

formulation to express higher order Ising spin interactions with second order interactions 

are shown in Chapter 3. 

Chapter 4 discusses the stability analysis of the fixed points of oscillator-based 

dynamical systems (here OIM) and its possible utilization in optimizing system 

parameters for enhanced computational performance. Additionally, a method to analyze 

the stability of fixed points of oscillator Ising machines directly from the energy landscape 

is described at the end of Chapter 4. 

Chapter 5 describes the potential application of oscillator-based dynamical 

systems to perform statistical sampling such as Gibbs sampling. Thus, this Chapter 

discusses the prospective future directions of coupled oscillator-based computing.  

Finally, the dissertation is summarized in the conclusion section to highlight the 

key findings and future directions. 
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Chapter 2 

2. Coupled Oscillator-based Potts Machine   

This chapter focuses on the formulation and evaluation (with FPGA) of novel oscillator-

based computational models that can directly map COPs with multi-state variables. 

The Potts model [81] also known as the clock model is a general form of the Ising 

model as it deals with K-state variables / spins (K≥2), while Ising spins have 2-state. K-

state Potts spins can be represented by K uniformly spaced angles on a circle 

(0, 1.
2𝜋

𝐾
, 2.

2𝜋

𝐾
, … , (𝐾 − 1).

2𝜋

𝐾
). Many COPs such as the Max-K-Cut problem, graph coloring 

problem, and Hamiltonian cycle problem (HCP) inherently need K-state variable 

representation and hence can be represented with the Potts model. A dynamical system 

that is designed to minimize Hamiltonians associated with the Potts model is known as 

the Potts machine. In this effort, oscillator Potts machines are formulated to directly solve 

multiple COPs. The oscillator Potts machine utilizes a Kth harmonic injection as well as a 

phase sensitive coupling function. This phase sensitive coupling function can be modified 

to map a wide range of COPs. The model will be briefly described below: 

 

2.1. Theoretical framework of oscillator Potts machine 

We will first discuss the formulation of a coupled oscillator Potts machine that can 

minimize a K-state Potts Hamiltonian associated with the Max-K-Cut problem. The Max-

K-Cut problem is defined as the problem of dividing the vertices of a graph into K sets so 

that the weight sum of the edges connecting more than one set maximizes. Potts spin 
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can have K values associated with oscillator phase 𝜙𝑖 = 𝑘
2𝜋

𝐾
, 𝑘 ∈ {0,1,2, … , (𝐾 − 1)}. 

Hence, a Potts spin can be represented by the complex quantity 𝑠𝑖 = 𝑒i𝜙𝑖. Here, i denotes 

the imaginary unit and 𝑖 denotes index. we can write the Potts Hamiltonian as, 

𝐻𝐾−𝐶𝑢𝑡 = − ∑ 𝐽𝑖𝑗. Re (𝑒if𝐾−𝐶𝑢𝑡(𝛥𝜙𝑖𝑗)𝑠𝑖𝑠𝑗
∗)

𝑁

𝑖,𝑗,𝑖<𝑗

 (2.1) 

where, 𝛥𝜙
𝑖𝑗

= 𝜙
𝑖
− 𝜙

𝑗
, Re denotes real values; 𝐽𝑖𝑗 is the interaction coefficient between 

spin i and j. For a graph, 𝐽𝑖𝑗 = −𝑤𝑖𝑗, 𝑤𝑖𝑗: edge weight. The phase sensitive coupling 

function f𝐾−𝐶𝑢𝑡(. ) is defined as, 

f𝐾−𝐶𝑢𝑡(𝛥𝜙𝑖𝑗) =  lim
𝜎→0

∑

(

 
 
 
 
 

((2𝑘 − 1)𝜋 −
2𝑘𝜋

𝐾
) . 𝑒

−(
(∆𝜙𝑖𝑗 −

2𝑘𝜋
𝐾

)
2

2𝜎2 )
𝐾 − 1

𝑘=1

+ (
2𝑘𝜋

𝐾
− (2𝑘 − 1)𝜋) . 𝑒

−(
(∆𝜙𝑖𝑗 +

2𝑘𝜋
𝐾 )

2

2𝜎2 )

)

 
 
 
 
 

 

 

(2.2) 

We will denote the general form of this function with f𝐾(. ). Figure 2.1 shows spin 

assignments and f𝐾−𝐶𝑢𝑡(. ) for different values of K. 

Now, using Eq. (2.2), Eq. (2.1) can be written as,  

𝐻𝐾−𝐶𝑢𝑡 = − ∑ 𝐽𝑖𝑗cos (𝛥𝜙𝑖𝑗 + f𝐾−𝐶𝑢𝑡(𝛥𝜙𝑖𝑗))

𝑁

𝑖,𝑗,𝑖<𝑗

 (2.3) 
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Like OIM, oscillators map nodes and coupling elements map edges in this oscillator Potts 

machine. Furthermore, each Potts spin value represents a node set / partition. In Eq. 

(2.3), −𝐽𝑖𝑗cos (𝛥𝜙𝑖𝑗 + f𝐾−𝐶𝑢𝑡(𝛥𝜙𝑖𝑗)) = −1, only if two spins / nodes are separated by 𝑚
2𝜋

𝐾
 

where 𝑚 = 1,2,… , (𝐾 − 1). So, the Hamiltonian will get a maximum reduction if two 

connected nodes are placed in two different partitions. Thus, minimization of 𝐻𝐾−𝐶𝑢𝑡 will 

maximize the sum of the edge weights that connect two different partitions, i.e., the 

 

Figure 2.1. Spin assignments and f𝐾−𝐶𝑢𝑡(. ) for various K values. 
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ground state of 𝐻𝐾−𝐶𝑢𝑡 maps the optimal Max-K-Cut. Now, the corresponding system 

dynamics and the energy function can be respectively written as,  

d𝜙𝑖(𝑡)

d𝑡
= −𝐶 ∑ 𝐽𝑖𝑗 sin (∆𝜙𝑖𝑗 + f𝐾−𝐶𝑢𝑡(𝛥𝜙𝑖𝑗)) − ∑𝐶𝑠sin(𝐾𝜙𝑖(𝑡))

𝑁

𝑖=1

𝑁

𝑗=1,   𝑗≠𝑖

 (2.4) 

𝐸(𝜙(𝑡)) = −
𝐾𝐶

2
∑ 𝐽𝑖𝑗 cos (∆𝜙𝑖𝑗 + f𝐾−𝐶𝑢𝑡(𝛥𝜃𝑖𝑗)) − ∑𝐶𝑠cos(𝐾𝜙𝑖(𝑡))

𝑁

𝑖=1

𝑁

𝑖,𝑗, 𝑗≠𝑖

 (2.5) 

While deriving Eq. (2.5), we used the relationship −
1

𝐾
(∇𝐸)𝑖 =

d𝜙𝑖

d𝑡
 to ensure a gradient 

descent in the energy domain, i.e., 
d𝐸(𝜙(𝑡)) 

d𝑡
≤ 0. Details can be found [82]. Fig. 2.2 shows

 

the Max-K-Cut solution of a representative graph, obtained by simulating the oscillator 

Potts machine.  

 

Figure 2.2. Illustration of the computation of Max-K-Cut (K=2,3,4) for a representative 100-node graph 

by simulating the oscillator Potts machine. 
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To map other COPs, Eq. (2.4) can be modified by tailoring the f𝐾(. ) function. Table 2.1 

lists the f𝐾(. ) function that can be used for solving multiple other COPs.  

COP 𝐟𝑲(. ) 

Max-K-Cut,  

Graph Coloring, 

Maximum 

Independent 

Set (MIS) 

f𝐾−𝐶𝑢𝑡(𝛥𝜙𝑖𝑗) =  lim
𝜎→0

∑

(

 
 
 
 
 

((2𝑘 − 1)𝜋 −
2𝑘𝜋

𝐾
) . 𝑒

−(
(∆𝜙𝑖𝑗 −

2𝑘𝜋
𝐾

)
2

2𝜎2 )
𝐾 − 1

𝑘=1

+ (
2𝑘𝜋

𝐾
− (2𝑘 − 1)𝜋) . 𝑒

−(
(∆𝜙𝑖𝑗 +

2𝑘𝜋
𝐾

)
2

2𝜎2 )

)

 
 
 
 
 

 

Traveling 

Salesman 

Problem (TSP) 

f𝑇𝑆𝑃(𝛥𝜙𝑖𝑗) = lim
𝜎→0

− ∑

(

 
 
 
 
 

2𝛾𝜋

𝑁
. 𝑒

−(
(∆𝜙𝑖𝑗 −

2𝛾𝜋
𝑁

)
2

2𝜎2 )

+ (−
2𝛾𝜋

𝑁
) . 𝑒

−(
(∆𝜙𝑖𝑗 +

2𝛾𝜋
𝑁

)
2

2𝜎2 )

)

 
 
 
 
 

𝛾=1,𝑁−1

 

+lim
𝜎→0

∑

(

 
 
 
 
 

(𝜋 −
2𝑘𝜋

𝑁
) 𝑒

−(
(∆𝜙𝑖𝑗 −

2𝑘𝜋
𝑁

)
2

2𝜎2 )

+ (
2𝑘𝜋

𝑁
− 𝜋) . 𝑒

−(
(∆𝜙𝑖𝑗 +

2𝑘𝜋
𝑁

)
2

2𝜎2 )

)

 
 
 
 
 𝑁

𝑘=2,𝑘≠𝑁−1

 

Hamiltonian 

Cycle Problem 

(HCP) 

f𝐻𝐶(𝛥𝜙𝑖𝑗) =  lim
𝜎→0

− ∑

(

 
 
 
 
 

(𝜋 −
2𝛾𝜋

𝑁
) . 𝑒

−(
(∆𝜙𝑖𝑗 −

2𝛾𝜋
𝑁

)
2

2𝜎2 )

+ (
2𝛾𝜋

𝑁
− 𝜋) . 𝑒

−(
(∆𝜙𝑖𝑗 +

2𝛾𝜋
𝑁

)
2

2𝜎2 )

)

 
 
 
 
 

𝛾=1,𝑁−1

 

+lim
𝜎→0

∑

(

 
 
 
 
 

(
𝜋

2
−

2𝜋𝑘

𝑁
)𝑒

−(
(∆𝜙𝑖𝑗 −

2𝑘𝜋
𝑁

)
2

2𝜎2 )

+ (
2𝜋𝑘

𝑁
−

𝜋

2
) . 𝑒

−(
(∆𝜙𝑖𝑗 +

2𝑘𝜋
𝑁

)
2

2𝜎2 )

)

 
 
 
 
 𝑁

𝑘=2,𝑘≠𝑁−1

 

Table 2.1. 𝑓𝐾(. ) function for a few COPs. 

Details of these formulations and results obtained from these models can be found in [82]. 
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2.2. FPGA implementation of oscillator Potts machine 

The oscillator Potts machine-based computational model to solve the Max-K-Cut 

problem is implemented as an algorithm on an FPGA accelerator [83]. In such an 

implementation, FPGA numerically solves the corresponding dynamics. We implement it 

on an AWS F1 instance. It leverages design techniques such as sparse matrix random 

access parallelization and uses an efficient dataflow architecture to accelerate the 

solution to the Max-K-Cut problem. By leveraging the inherent parallelism in the 

computational models and the FPGA implementation, we demonstrate the solutions to 

the Max-K-Cut problem (K=2,3,4) on graphs up to 10,000 nodes with speedups ranging 

from 17× - 390× over a state-of-the-art Ising machine-based accelerator, while 

maintaining similar solution quality.  

2.2.a. Computational model implemented on FPGA 

The computational model (i.e., the dynamics), shown in Eq. (2.4), is solved using 

a stochastic differential equation (SDE) solver developed on an FPGA platform. Here, 

SDE is used so that noise can be introduced into the system. Such noise helps escape 

local minima that result in suboptimal solutions. The dynamics that are solved, can be 

written as,  

d𝜙𝑖(𝑡)

d𝑡
= −𝐶 ∑ 𝐽𝑖𝑗 tanh (𝑘 sin (∆𝜙𝑖𝑗 + f𝐾−𝐶𝑢𝑡(𝛥𝜙𝑖𝑗))) − ∑𝐶𝑠sin(𝐾𝜙𝑖(𝑡))

𝑁

𝑖=1

𝑁

𝑗=1,   𝑗≠𝑖

+ 𝐴𝑛d𝑤𝑡 

(2.6) 

where, 𝜙 represents oscillator phases, 𝐴𝑛 is noise amplitude, d𝑤𝑡 is a Weiner process 

[84] which adds stochasticity to the system. We have also used tanh(.) in the dynamics 
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so that it augments the phase dynamics as demonstrated in other works [85], [86]. A 

simple trapezoidal integration technique [87] is used to numerically solve the differential 

equation (Eq. (2.6)). After solving the dynamics, the evolution of oscillator phases (𝜙) is 

obtained. Steady-state oscillator phases create K partitions encoding the K sets of the 

Max-K-Cut solution. Figure 2.3 illustrates the Max-K-Cut solutions of a 200-node 

representative graph, for K=2,3, and 4, obtained using the FPGA-based Potts machine. 

2.2.b. Architecture of the Potts machine-based FPGA accelerator 

While designing the FPGA accelerator, the following objectives are prioritized: 1) 

leveraging a maximum level of parallelism; 2) consuming a reasonable amount of 

 

Figure 2.3. Illustrative example showing the Max-K-Cut solution obtained using the oscillator Potts 

machine-based FPGA accelerator for a 200-node graph. The solutions are calculated for K=2, K=3, 

and K=4. 
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hardware resources; 3) ensuring flexibility so that it supports the general case of the Max-

K-Cut for any graph of arbitrary size without FPGA reconfiguration. The key components 

of the FPGA system design are described below:  

Figure 2.4 shows the high-level block diagram of the FPGA accelerator. The Potts 

machine algorithm is implemented on the FPGA using two major kernels: (a) Graph 

Initializer; and (b) Kuramoto Kernel. The graph adjacency matrix in CSR (compressed 

row storage) format, is stored in the host DRAM. Subsequently, they are transferred to 

the FPGA DRAM through a PCIe. A set of control registers can communicate with the 

FPGA through the AXI-lite kernel interface that allows dynamical modification of the 

essential parameters such as the graph size, K (in Max-K-Cut), number of iterations 

without the need for reconfiguring the FPGA platform each time. At first, the graph 

adjacency is transferred to the FPGA, and then the Graph Initializer kernel transfers it to 

the high-bandwidth on-chip Block RAMs (BRAMs). BRAMs allow parallel access. Hence, 

the off-chip DRAM is only read once. After initialization, the Kuramoto Kernel performs 

the computation. Table 2.2 lists key parameters used in the design. 

 
Figure 2.4. Block diagram depicting the architecture of the proposed FPGA-based Max-K-Cut solver. 
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Parameters Definition Parameter values used in the evaluation 

N Size of the graph Input problem dependent (up to 10,000) 

K 

(Max-K-Cut) 

Number of partitions required 

from the Cut 

Input problem dependent (2, 3, 4) 

X Size of each segment in Block 

RAM 

80 

 

n 

Number of bits used to represent 

the fractional part in standard 

fixed-point format 

19 bits 

(Fractional part) 

Table 2.2. Parameters used in the FPGA implementation. 

Details of the design can be found in [83]. The key features include a sparse matrix 

parallel access technique that parallelizes the computation of 𝜙 values in each iteration. 

LUTs are used for the sinusoidal function which significantly reduces the use of hardware 

resources and computation time. LUTs are also used for implementing the f𝐾−𝐶𝑢𝑡(. ) 

function. If the 𝐾 value is changed, the only operational change that is required is to 

change the LUT segment for the f𝐾−𝐶𝑢𝑡(. ) function. Additionally, to generate noise, 

random numbers are generated using a standard Box-Muller Random Generator [88].   

2.2.c. Results 

2.2.c.1. Max-K-Cut solution 

We evaluate the performance of our implementation using instances from the G-

Set benchmark database. The database contains hard non-planar random graphs with a 

broad size range allowing us to solve graphs with sizes ranging from 800 to 10,000 nodes 

(specified in Fig. 2.5a). The oscillator dynamics are evaluated for 4000 iterations 

(epochs). During evaluation, we set the FPGA frequency to 100 MHz. We first compare 

our results (mean computation time) for the MaxCut case with two other GPU-based 

implementations, namely the MARS (Mean-field Annealing from a Random State) 
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algorithm [89] and PBBM (Population Based Boltzmann Machine) algorithm [90] that have 

also evaluated problems from the G-Set database. Furthermore, the FPGA-based 

implementations for solving MaxCut demonstrated in [91] and [92] have only focused on 

simpler planar and toroidal graphs. Additionally, they do not address the general case of 

the Max-K-Cut problem for K>2 cases. Hence, we have not included these results in the 

benchmarking. From Fig. 2.5, it can be observed that our approach provides 18× and 2× 

mean speedup, respectively, compared to the MARS and the PBBM approach, while 

 

providing similar solution quality (>98.5 %); here, solution quality is defined as the ratio of 

the obtained solution to the best-known cut [93]. We note that none of the GPU, FPGA, 

and ASIC-based annealing approaches reported direct implementation (i.e., without 

preprocessing and auxiliary variables) of the broader Max-K-Cut (K≥2) problem. Current 

methods have to rely on transforming the Max-K-Cut problem to a binary optimization 

form (QUBO: quadratic unconstrained binary optimization) entailing additional nodes 

(axillary variables) so that it can be mapped to an Ising machine. We now compare our 

direct implementation (using the new models) with the Ising machine implementation for 

 
Figure 2.5. Comparison of our approach for the baseline MaxCut (K=2) with prior works. (a) Graph 

instances from the G-Set database used for benchmarking. (b) Comparison of the mean computation 

time for the GPU-based MARS algorithm and the GPU-based PBBM algorithm. Our approach exhibits 

solution quality comparable to that of the MARS approach. PPBM did not report average solution quality. 
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the Max-K-Cut (after the problem transformation). We use the GPU-based simulated 

bifurcation (Ising) machine (SBM; from Toshiba and available on AWS [41]) for this 

comparison. While we experimentally evaluate the Max-3-Cut and Max-4-Cut solutions 

on the SBM, we use the SBM-based results reported for the MaxCut (K=2) [93]. 

 

Fig. 2.6a presents a comparison of the cumulative computation time between our 

approach and the state-of-the-art GPU-based SBM approach [93] for solving the 

 

Figure 2.6. Cumulative time-to-compute for solving the (a) Max-2-Cut, (b) Max-3-Cut, (c) Max-4-Cut 

on the G-set graph instances and their comparison with state-of-the art SBM approach. In all cases, 

we maintain a high mean accuracy exceeding >95% of the best-known solution. 
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archetypal Max-2-Cut problem over the G-set graphs (Fig. 2.5a). While for smaller 

graphs, computation time from our approach is comparable with the SBM approach, it 

provides a 20x speedup over the SBM for graphs exceeding 5000 nodes. We obtain 

>98.5% average solution quality for all the Max-2-Cut instances tested, while SBM 

showcased >99.9% solution quality. Next, we evaluate the computation time for the Max3-

Cut and Max-4-Cut problems. The comparison of computation times for Max-3-Cut and 

Max-4-Cut are presented in Fig. 2.6b and Fig. 2.6c, respectively. It can be observed that 

our method achieves a remarkable ~510x and ~270x mean speedup compared to the 

SBM in solving the Max-3-Cut and Max-4-Cut problems, respectively (~390x average 

speedup for the Max-3-Cut and Max-4-Cut combinedly), while maintaining similar solution 

quality. In our approach, the time-to-compute primarily consists of the Kuramoto Kernel 

computation time, which accounts for most of the overall time-to-solution. We calculate 

the K-Cut values in the host system using the Kernel results obtained from the FPGA. 

Similarly, the SBM computation time consists of only the Ising problem computing time; 

the pre-processing (conversion to Ising problem) and post-processing (finding K-Cut 

solution from Ising solution) are performed in the host and their computation time is not 

added in the overall computation time presented here. Also, we are unable to solve the 

Max-3-Cut and Max-4-Cut for some of the larger graphs (here, 5000 to 10000 node 

graphs) using SBM since after converting them to Ising problems, their size exceeds 

10,000 nodes that is the maximum limit for the SBM available on AWS. 

 We also analyze how time-to-compute scales with problem size and the value of 

K. Figure 2.7 presents the average time-to-compute as a function of graph size. It can be 

observed that as the number of nodes increases, the computation time scales linearly, 
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which can be attributed to the parallel access of each graph rows by the FPGA platform 

(i.e., row-wise parallelization). Most importantly, the computation time does not change 

with the value of K, unlike prior designs and implementations. It can be attributed to the 

computational model that facilitates the solution of the Max-K-Cut without increasing the 

problem size. Furthermore, if the K value changes, the only operational change that the 

FPGA system needs to make is switching the LUT for the fK-Cut(.) function. Hence, the 

computation time remains the same regardless of the value of K for a particular graph. 

2.2.c.2. Resource utilization and energy benchmark 

Resource  Xilinx VU9P FPGA Resource  Xilinx VU9P FPGA 

Kernel Frequency 100 MHz DSP 2.7K (38%) 

Block RAMs 1.3K (30%) Flip Flops 470K (19%) 

Ultra RAMs 0.5K (50%) Logic Slices 518K (43%) 

Table 2.3. Overall resource utilization. 

Table 2.3 presents a detailed overview of the resource utilization in the FPGA 

implementation. Table 2.4 compares the energy consumption between our FPGA 

implementation (collected using the AWS ‘FPGA image describe’ command) and the 

 
Figure 2.7. Mean time-to-compute as a function of graph size. 
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SBM implementation used for benchmarking in this work. While the SBM energy data for 

the Max-2-Cut has been reported, the energy numbers for K=3, 4 are projected since the 

SBM energy data (on AWS) is unavailable. It can be observed that our approach not only 

offers better computational capability but also enables over 8x improvement in the energy 

consumption / iteration. 

Approach Platform Problem Solved Energy (mJ) / Iteration (2000 node) 

Max-2-Cut  Max-3-Cut  Max-4-Cut  

SBM [43] GPU MaxCut 3.44   

(reported) 

10.32 

(projected) 

13.76 

(projected) 

This Work  FPGA Max-K-Cut & 

MaxCut 

0.4225 

(measured) 

0.4225 

(measured) 

0.4225 

(measured) 

Table 2.4. Comparison with other approaches. 
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Chapter 3 

3. Coupled Oscillators for Solving COPs with Higher Order 

Interaction   

This chapter focuses on the formulation of novel oscillator-based computational models 

that can directly map COPs with higher order interaction. 

3.1. Dynamical systems to solve COPs with higher order interaction 

Ising machines can directly map COPs that can be represented by quadratic 

objective functions (H = −∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗
𝑁
𝑖,𝑗 ). However, there is a larger class of problems such 

as Boolean satisfiability and integer factorization among others wherein the objective 

functions have a degree greater than two. Such problems entail the use of hypergraphs 

for their representation and analysis (Fig. 1.5). A hypergraph can be considered as a 

generalization of graphical data structures wherein an edge (known as a hyperedge) can 

connect any number of vertices; this is in contrast to a graph where an edge can join a 

maximum of two vertices. Analog models for solving combinatorial problems in 

hypergraphs have been relatively less explored [94]-[96]. We note that such problems 

can, in theory, be reduced to problems that have objective functions with quadratic 

degrees [97], [98]. However, this typically involves the introduction of additional ancillary 

variables (additional nodes/variables) which can effectively increase the size of the 

(quadratic degree) combinatorial problem that must then be solved [99], [78]. Therefore, 

in this research, the goal is to formulate analog computational models for solving such 

problems without introducing ancillary / auxiliary variables [86], [100].  

The developed approach builds on the foundational work performed by Ercsey-
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Ravasz et al. [94], wherein the authors proposed an approach for solving the Boolean 

Satisfiability (SAT) problem using continuous (analog) variables. The SAT problem is 

defined as the challenge of evaluating a Boolean assignment (1 or 0) that will satisfy a 

Boolean formula expressed in the conjunctive normal form (CNF); 𝑌 = 𝐶1 ∧ 𝐶2 ∧ …𝐶𝑀. A 

SAT problem with N variables and M clauses can be represented by a hypergraph of N 

nodes and M hyperedges where the hyperedge ‘connects’ all the nodes in a clause. 

The decision version of the problem evaluates if such an assignment exists. We formulate 

a new dynamical system to solve the SAT problem. Subsequently, building on the method 

developed by Ercsey-Ravasz et al. [94], computational models are formulated for: (a) the 

NAE (Not-All-Equal) SAT problem, which is an NP-complete variant of the SAT problem. 

Besides finding an assignment for the Boolean variables such that every clause is 

satisfied, the NAE-SAT problem also requires that at least one literal in every clause is 

false. Further, the computational model for the NAE-SAT problem can be extended to the 

Set Splitting problem, which evaluates if there is exists a partition that splits a finite set 

into two parts such that all the subsets of the finite set are split by the partition. The Set 

Splitting problem is a special case of the NAE-SAT problem wherein all the variables in 

the normal form (positive NAE-SAT); (b) Integer factorization problem, considered here 

as the problem of dividing a number into two integer factors; we note that directly 

representing the above problems entails the use of hypergraphs; (c) The Graph 

Isomorphism problem, which evaluates if two graphs with the same number of edges and 

vertices (non-trivial case) have the same edge connectivity. (d) Finally, we show that the 

proposed approach can be used to minimize the Ising Hamiltonian (quadratic optimization 

problem), and in fact, provides an alternate dynamical system formulation to the well-
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known oscillator-based dynamical system proposed earlier [85]. Subsequently, using this 

formulation, we show its application in solving the archetypal Maximum Cut (MaxCut) 

problem, defined as the challenge of dividing the nodes of a graph into two sets such that 

the number of shared edges (among the two sets) is maximized.  

3.1.a. Boolean SAT  

We first consider the Boolean SAT problem where we represent each variable 𝑥𝑖 

in the Boolean expression by 𝛾𝑖 ≡
1+𝑐𝑜𝑠(𝛼𝑖)

2
, where 𝛼𝑖 is an analog variable. The 𝑐𝑜𝑠(. ) 

function sets the bounds of 𝛾𝑖 to [0,1], and ensures that the Boolean variable and its 

analog counterpart have the same value at the maxima and the minima of the analog 

variable function. We note that while the above formulation resembles a (level-shifted) 

oscillator described by the general form 𝛾𝑖 ≡
1+𝑐𝑜𝑠(𝜔𝑡+𝛼𝑖)

2
, the two are not exactly 

equivalent since the ‘ωt’ term (oscillating term) is not considered here; with the ‘ωt’ term, 

the dynamics of the system do not directly map to the objective function of the SAT 

problem (instead they can be mapped to the dynamics of the NAE-SAT (not-all-equal 

SAT) problem as shown in [100]). Nevertheless, we will refer to 𝛼 as a ‘phase’ for 

simplicity. For each clause 𝐶𝑚, we define 𝐾𝑚(𝛼) = ∏ (1 − (
1+𝑐𝑚𝑖 𝑐𝑜𝑠(𝛼𝑖)

2
))𝑁

𝑖=1 . 𝑐𝑚𝑖 = 1(−1), 

if 𝑥𝑖 in the 𝑚𝑡ℎ clause appears in the normal (negated) form, respectively; 𝑐𝑚𝑖 = 0, if 𝑥𝑖 is 

absent from the  𝑚𝑡ℎ clause. 𝐾𝑚(𝛼) can be considered as an analog equivalent of 1 − 𝐶𝑚, 

and exhibits the property that 𝐾𝑚 = 0 if and only if the clause is satisfied (𝐶𝑚 = 1), i.e., at 

least one variable is TRUE. We define a continuous time dynamical system given by 
d𝛼

d𝑡
=

𝐹 = (−∇𝛼𝑉), which has an energy function given by: 
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𝑉 = ∑ 𝐴(𝐾𝑚(𝛼))
2

𝑀

𝑚=1

 (3.1) 

where 𝐴 (> 0) is a constant. It can be observed from Eq. (3.1) that 𝑉 is minimized by 

maximizing the number of satisfied clauses. Further, 𝑉 = 0 is the global minima of the 

function and is attained when all the clauses are satisfied i.e., 𝐾𝑚 = 0 for m =1, 2,…, M.  

To show that the energy function defined in Eq. (3.1) decreases with time i.e., 
d𝑉

d𝑡
≤ 0.  

d𝑉

d𝑡
= (2𝐴 ∑ 𝐾𝑚(𝛼). [

𝑐𝑚𝑖𝐾𝑚(𝛼)

1 − 𝑐𝑚𝑖 𝑐𝑜𝑠(𝛼𝑖)
] sin(𝛼𝑖)

𝑀

𝑚=1

) . (
d𝛼𝑖

d𝑡
) (3.2) 

Further, 

d𝑉

d𝛼𝑖
= 2𝐴 ∑ 𝐾𝑚(𝛼) [

𝑐𝑚𝑖𝐾𝑚(𝛼)

1 − 𝑐𝑚𝑖 𝑐𝑜𝑠(𝛼𝑖)
]

𝑀

𝑚=1

sin(𝛼𝑖) (3.3) 

It can be observed from Eq. (3.2) and (3.3) that the term in the first bracket on the 

righthand side of Eq. (3.2) is equal to 
d𝑉

d𝛼𝑖
. Further, 

d𝑉

d𝛼𝑖
= −

d𝛼𝑖

d𝑡
. Substituting these terms 

into Eq. (3.2), 
d𝑉

d𝑡
 can be expressed as  

d𝑉

d𝑡
= −(

d𝛼𝑖

d𝑡
)
2

≤ 0 (3.4) 

Eq. (3.4) shows that 
d𝑉

d𝑡
≤ 0, that implies that the system always evolves to minimize 𝑉 

(energy), or in other words, maximize the number of satisfied clauses. The corresponding 

dynamics can be computed as: 

d𝛼𝑖

d𝑡
= (−∇𝛼𝑉)𝑖 = sin(𝛼𝑖) . (− ∑ [2𝐴𝐾𝑚(𝛼) [

𝑐𝑚𝑖𝐾𝑚(𝛼)

1 − 𝑐𝑚𝑖 cos(𝛼𝑖)
]]

𝑀

𝑚=1

) (3.5) 

Figures 3.1(a),(b) show a representative Boolean SAT problem with 6 variables and 10 
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clauses solved using the above computational model. It can be observed that the system 

minimizes 𝐾𝑚(𝛼) which subsequently maximizes the number of clauses satisfied. We 

once again acknowledge that this formulation derives strong inspiration from the elegant 

analog dynamics formulated by Ercsey-Ravasz et al. [94]. We formulate an alternative 

dynamical system to solve the SAT problem which is described below: 

 
Figure 3.1. (a) Evolution of the phases (𝛼𝑖), (b) the number of satisfied clauses and ∑ 𝐾𝑚

𝑀
𝑚=1 , 

respectively, as a function of time for a Boolean SAT problem. Since numerical methods are used for 

solving the dynamics, a threshold value of 𝐾𝑚 < 4 × 10−4 was used for a clause to be considered as 

TRUE (satisfied). The Boolean expression considered in this illustrative example consists of 6 variables 

and 10 clauses (𝑌 =  (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x6) ∧ (x2 ∨ x5) ∧ (𝑥2 ∨ x6) ∧ (x1 ∨ 𝑥6) ∧
(x2 ∨ x5̅̅̅ ∨ x6) ∧ (x1 ∨ x4) ∧ (x4 ∨ x6) ∧ (x5 ∨ 𝑥6)). 
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Alternative dynamical system to solve SAT. To formulate an alternative dynamical 

system [100], we represent every variable 𝑥𝑖 in the Boolean expression using an analog 

variable 𝜙𝑖 (similar to oscillator phase), where  𝑥𝑖 =
1+cos(𝑡+𝜙𝑖)

2
, which can be considered 

as a level-shifted oscillator with an angular frequency 𝜔, that is assumed to be 𝜔 = 1 in 

this theoretical analysis. The relationship between 𝑥𝑖 and 𝛼𝑖  (𝑥𝑖 =
1+cos(𝑡+𝜙𝑖)

2
) is defined 

such that the maximum (or minimum) value of the analog variable equals the Boolean 

assignment for 𝑥𝑖  ∈ {0,1}, respectively. For each clause 𝐶𝑚, we define 𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝛼) =

∏ (1 − (
1+𝑐𝑚𝑖 cos(𝑡+𝜙𝑖)

2
))𝑁

𝑖=1 , where 𝑐𝑚𝑖 = 1(−1), if the 𝑖𝑡ℎ variable appears in the 𝑚𝑡ℎ 

clause in the normal (negated) form; 𝑐𝑚𝑖 = 0, if the variable is absent from the 𝑚𝑡ℎ clause; 

𝜙 = [𝜙1 𝜙2 …𝜙𝑁]; 𝑁 is the number of variables in the SAT problem. It can be observed 

that 𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙) = 0, if and only if the clause is satisfied. We define the dynamical system: 

(−∇𝜙𝑉)
𝑖
= 1 +

𝑑𝜙𝑖

𝑑𝑡
. The energy function for the system is defined as: 

𝑉 = ∑ 𝐴 (𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙))
2

𝑀

𝑚=1

 (3.6) 

Here, 𝑀 is the total number of clauses in the problem. 𝑉 = 0 when all the clauses are 

satisfied, and consequently, corresponds to the solution of the SAT problem (if the 

problem is satisfiable). To evaluate the temporal evolution of the system energy, we 

calculate 
𝑑𝑉

𝑑𝑡
, which is given by: 

d𝑉

d𝑡
= ∑(

𝜕𝑉

𝜕𝜙𝑖
) (

d𝜙𝑖

d𝑡
)

𝑁

𝑖=1

+
𝜕𝑉

𝜕𝑡
 (3.7) 

Using Eq. (3.6) and the definition of 𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙), we can calculate 
𝜕𝑉

𝜕𝑡
 as, 
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𝜕𝑉

𝜕𝑡
= ∑ (2𝐴𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙) 

𝜕 (𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙))

𝜕𝑡
)

𝑀

𝑚=1

= ∑ (2𝐴𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙)  (∑
𝑐𝑚𝑖𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙)

1 − 𝑐𝑚𝑖 cos(𝑡 + 𝜙𝑖)
sin(𝑡 + 𝜙𝑖)

𝑁

𝑖=1

))

𝑀

𝑚=1

= ∑ ∑ (2𝐴𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙) 
𝑐𝑚𝑖𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙)

1 − 𝑐𝑚𝑖 cos(𝑡 + 𝜙𝑖)
sin(𝑡 + 𝜙𝑖) )

𝑀

𝑚=1

𝑁

𝑖=1

 

 

 

(3.8) 

Further, 
𝜕𝑉

𝜕𝜙𝑖
 can be calculated as, 

𝜕𝑉

𝜕𝜙𝑖
= ∑ (2𝐴𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙) 

𝜕 (𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙))

𝜕𝜙𝑖
)

𝑀

𝑚=1

= ∑ (2𝐴𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙) 
𝑐𝑚𝑖𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙)

1 − 𝑐𝑚𝑖 cos(𝑡 + 𝜙𝑖)
sin(𝑡 + 𝜙𝑖) )

𝑀

𝑚=1

 

 

(3.9) 

Substituting Eq. (3.9) into Eq. (3.8), 
𝜕𝑉

𝜕𝑡
 can be expressed as, 

𝜕𝑉

𝜕𝑡
= ∑

𝜕𝑉

𝜕𝜙𝑖

𝑁

𝑖=1

 (3.10) 

By substituting the expression for 
𝜕𝑉

𝜕𝑡
 from Eq. (3.10) into Eq. (3.7), 

d𝑉

d𝑡
 can be calculated 

as, 

d𝑉

d𝑡
= ∑(

𝜕𝑉

𝜕𝜙𝑖

) (
d𝜙𝑖

d𝑡
)

𝑁

𝑖=1

+
𝜕𝑉

𝜕𝑡
= ∑(

𝜕𝑉

𝜕𝜙𝑖

) (
d𝜙𝑖

d𝑡
)

𝑁

𝑖=1

+ ∑
𝜕𝑉

𝜕𝜙𝑖

𝑁

𝑖=1

   = ∑(
𝜕𝑉

𝜕𝜙𝑖

) (1 +
d𝜙𝑖

d𝑡
)

𝑁

𝑖=1

 (3.11a) 

Further, utilizing the system dynamics (−∇𝜙𝑉)
𝑖
= 1 +

𝑑𝜙𝑖

𝑑𝑡
 (defined above), Eq. (3.11a) 

can be expressed as, 
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d𝑉

d𝑡
= ∑(

𝜕𝑉

𝜕𝜙𝑖
) (1 +

d𝜙𝑖

d𝑡
)

𝑁

𝑖=1

= −∑(1 +
d𝜙𝑖

d𝑡
) (1 +

d𝜙𝑖

d𝑡
)

𝑁

𝑖=1

= −∑(1 +
d𝜙𝑖

d𝑡
)
2𝑁

𝑖=1

 (3.11b) 

It can be observed from Eq. 3.11(b) that 𝑉 is a decreasing function with time since 
d𝑉

d𝑡
≤ 0. 

Consequently, this implies that the corresponding system dynamics will evolve to reduce 

system energy (𝑉).  

In order to formulate the system dynamics 
d𝜙𝑖

d𝑡
, we express 

d𝑉

d𝑡
 as, 

d𝑉

d𝑡
= ∑ (2𝐴𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙)

d (𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙))

d𝑡
)

𝑀

𝑚=1

 (3.12a) 

d𝑉

d𝑡
= ∑ (2𝐴𝐾𝑚,𝑜𝑠𝑐  ∑(𝑐𝑚𝑖

𝐾𝑚,𝑜𝑠𝑐

1 − 𝑐𝑚𝑖cos(𝑡 + 𝜙𝑖)
 sin(𝑡 + 𝜙𝑖) (1 +

d𝜙𝑖

d𝑡
))

𝑁

𝑖=1

)

𝑀

𝑚=1

 (3.12b) 

d𝑉

d𝑡
= ∑(∑ (2𝐴𝐾𝑚,𝑜𝑠𝑐𝑐𝑚𝑖

𝐾𝑚,𝑜𝑠𝑐

1 − 𝑐𝑚𝑖cos(𝑡 + 𝜙𝑖)
 )

𝑀

𝑚=1

)

𝑁

𝑖=1

sin(𝑡 + 𝜙𝑖) (1 +
d𝜙𝑖

d𝑡
) (3.12c) 

Equating (3.11b) and (3.12c), we get 

−(1 +
d𝜙𝑖

d𝑡
) = ∑ (2𝐴𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙) 

𝑐𝑚𝑖𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙)

1 − 𝑐𝑚𝑖 cos(𝑡 + 𝜙𝑖)
 sin(𝑡 + 𝜙𝑖))

𝑀

𝑚=1

 
(3.13a) 

Eq. (3.13a) can be rewritten as, 

d𝜙𝑖

d𝑡
= −(∑ (2𝐴𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙)

𝑐𝑚𝑖𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙)

1 − 𝑐𝑚𝑖 cos(𝑡 + 𝜙𝑖)
 sin(𝑡 + 𝜙𝑖))

𝑀

𝑚=1

+ 1) 
(3.13b) 

Eq. (3.13b) describes the phase dynamics of the system which computes the SAT 

solutions. The first term on the RHS in Eq. (3.13b) represents the dissipative component 
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of the system dynamics. The right-hand side in Eq. (3.13b) is 2π periodic in time. At 

steady state, 𝑉 = 0; 
𝑑𝜙𝑖

𝑑𝑡
= −1, which implies that 𝜙𝑖 = −𝑡 + 𝑐𝑖, with 𝑐𝑖 being a constant 

offset in the time varying phase that assumes a value in {0, 𝜋} in a way that minimizes the 

total system energy, and solves the SAT problem. A node i (defined by 
1+cos (𝑡+𝜙𝑖)

2
) will 

 

Figure 3.2. Evolution of (a) 𝑉, (b) 𝑥𝑖, (c) 𝑘𝑚, and (d) No. of clauses satisfied with time for an illustrative 

3-SAT problem with 6-variables and 10-clauses that is computed using the alternative dynamical system 

to solve the SAT. Here, 𝜔 = 2𝜋 is used such that 𝑇 = 1. The simulation is performed using a stochastic 

differential equation framework. 
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eventually settle to 1 (when 𝑐𝑖 = 0) or 0 (when 𝑐𝑖 = 𝜋). Thus, the system is designed such 

that the out-of-phase feedback essentially ‘cancels’ out the oscillations when the system 

achieves the ground state energy. This corresponds to all the clauses being satisfied (if 

the problem is satisfiable). Figure 3.2 illustrates the evolution of the system dynamics and 

the corresponding solution for a representative SAT problem. Details of the simulation 

framework will be discussed at the end of Section 3.2. 

3.1. b. Boolean NAE-SAT 

The NAE-SAT problem is an NP-complete variant of the SAT problem with the 

added constraint that every clause must contain a literal that is true and false. To evaluate 

the NAE-SAT problem for a Boolean expression 𝑌 = 𝐶1 ∧ 𝐶2 ∧ …𝐶𝑀, each clause 𝐶𝑖 =

(𝑥1 ∨ 𝑥2̅̅ ̅ ∨ 𝑥3 ∨ …∨ 𝑥𝑁)  in the original expression can be modified to  𝐶𝑁𝐴𝐸,𝑖 =

(𝑥1 ∨ 𝑥2̅̅ ̅ ∨ 𝑥3 ∨ …∨ 𝑥𝑁). (𝑥1 ∧ 𝑥2̅̅ ̅ ∧ 𝑥3 ∧ …∧ 𝑥𝑁
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)≡ 𝐶𝑖.𝑆𝑖, where 𝑆𝑖 is the negation of the 

conjunction of all the literals in that clause. While 𝐶𝑖 imposes the condition that at least 

one literal must be true, 𝑆𝑖 imposes the added constraint that at least one literal must be 

false in order that 𝐶𝑁𝐴𝐸,𝑖 = 1 (TRUE); an example of this is shown below (Table 3.1):  

x1 x2 x3 x4 Ci (SAT) Si CNAE-SAT=Ci.Si (NAE-SAT) 

0 0 0 0 1 1 1 

0 0 0 1 1 1 1 

0 0 1 0 1 1 1 

0 0 1 1 0 1 0 

0 1 0 0 1 1 1 

0 1 0 1 1 1 1 

0 1 1 0 1 1 1 

0 1 1 1 1 1 1 

1 0 0 0 1 1 1 

1 0 0 1 1 1 1 

1 0 1 0 1 1 1 

1 0 1 1 1 1 1 

 

1 

 

1 

 

0 

 

0 

 

1 

 

0 

0 

(Additional constraint imposed by 

NAE-SAT) 

1 1 0 1 1 1 1 
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1 1 1 0 1 1 1 

1 1 1 1 1 1 1 

Table 3.1. Illustrative example showing the reformulation of the clause 𝐶𝑖 = (x1 ∨ x2 ∨ x3̅ ∨ x4̅) for NAE-SAT. 

Thus, the NAE-SAT problem can be expressed as evaluating if the expression 𝑌𝑁𝐴𝐸 =

𝐶𝑁𝐴𝐸,1 ∧ 𝐶𝑁𝐴𝐸,2 ∧ …𝐶𝑁𝐴𝐸,𝑀 can be made TRUE. To define the computational model for this 

problem, we again define an energy function with an analog variable 𝛼 (similar to that of 

the SAT problem): 

𝑉 = ∑ 𝐴

𝑀

𝑚=1

(𝐾𝑚,𝑁𝐴𝐸(𝛼))
2

 (3.14) 

albeit with a different analog formulation for each clause. 𝐾𝑚,𝑁𝐴𝐸(𝛼) is now defined as: 

𝐾𝑚,𝑁𝐴𝐸(𝛼) = [∏(1 − (
1 + 𝑐𝑚𝑖 cos(𝛼𝑖)

2
))

𝑁

𝑖=1

] + [∏(
1 + 𝑐𝑚𝑖 cos(𝛼𝑖)

2
)

𝑁

𝑖=1

] (3.15a) 

𝐾𝑚,𝑁𝐴𝐸(𝛼) = 𝐾𝑚
1 (𝛼) + 𝐾𝑚

2 (𝛼) 
(3.15b) 

Here, 𝐾𝑚
1 (𝛼) is similar to the 𝐾𝑚(𝛼) defined for the SAT problem, and essentially captures 

the constraint that the contribution of that clause to the energy function is zero when the 

clause is satisfied. 𝐾𝑚
2 (𝛼) is formulated to define the additional constraint for the NAE-

SAT problem entailing that all the literals cannot be equal to each other. Together, the 

formulation of 𝐾𝑚,𝑁𝐴𝐸(𝛼) for the NAE SAT clause ensures that it’s contribution to the 

energy function is zero only when the clause is satisfied i.e., at least one literal is true, 

and all the literals are not equal to each other. The latter condition essentially ensures 

that at least one literal must be false. The corresponding system dynamics can be defined 

by: 
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d𝛼𝑖

d𝑡
= (−∇𝛼𝑉(𝛼))

𝑖
= − ∑ 2𝐴

𝑀

𝑚=1

𝐾𝑚,𝑁𝐴𝐸(𝛼)(
𝑑𝐾𝑚,𝑁𝐴𝐸(𝛼)

𝑑𝛼𝑖
) (3.16a) 

where 

d𝐾𝑚(𝛼𝑖)

d𝛼𝑖
=

−𝑐𝑚𝑖𝐾𝑚
1 (𝛼)

1 − 𝑐𝑚𝑖 cos(𝛼𝑖)
. (−sin(𝛼𝑖)) +

𝑐𝑚𝑖𝐾𝑚
2 (𝛼)

1 + 𝑐𝑚𝑖 cos(𝛼𝑖)
. (−sin(𝛼𝑖)) (3.16b) 

 
Figure 3.3. (a) Evolution of the phases (𝛼𝑖), (b) the number of satisfied clauses and ∑ 𝐾𝑚,𝑁𝐴𝐸

𝑀
𝑚=1 , 

respectively, as a function of time for a Boolean NAE-SAT problem. Since numerical methods are used 

for solving the dynamics, a threshold value of 𝐾𝑚,𝑁𝐴𝐸 < 4 × 10−4 was used for a clause to be considered 

as TRUE (satisfied). The Boolean expression considered in this illustrative example consists of 6 

variables and 10 clauses (𝑌 =  (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x6) ∧ (x2 ∨ x5) ∧ (𝑥2 ∨ x6) ∧
(x1 ∨ 𝑥6) ∧ (x2 ∨ x5̅̅̅ ∨ x6) ∧ (x1 ∨ x4) ∧ (x4 ∨ x6) ∧ (x5 ∨ 𝑥6)). 
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= [
−𝑐𝑚𝑖𝐾𝑚

1 (𝛼)

1 − 𝑐𝑚𝑖 cos(𝛼𝑖)
+

𝑐𝑚𝑖𝐾𝑚
2 (𝛼)

1 + 𝑐𝑚𝑖 cos(𝛼𝑖)
] . (−sin(𝛼𝑖)) (3.16c) 

d𝛼𝑖

d𝑡
= sin(𝛼𝑖) (− ∑ 2𝐴

𝑀

𝑚=1

𝐾𝑚(𝛼) [
𝑐𝑚𝑖𝐾𝑚

1 (𝛼)

1 − 𝑐𝑚𝑖 cos(𝑡 + 𝛼𝑖)
−

𝑐𝑚𝑖𝐾𝑚
2 (𝛼)

1 + 𝑐𝑚𝑖 cos(𝑡 + 𝛼𝑖)
]) (3.16d) 

Figures 3.3(a),(b) show a representative example of an NAE-SAT expression (with 6 

variables and 10 clauses) solved using the above computing model. 

3.1.c. Set splitting 

Given a finite set S, where S1, S2… SN are the subsets, the objective of the Set 

Splitting problem is to evaluate if there exists a partition that divides all the subsets into 

two parts. This problem is equivalent to computing the solution of the positive NAE-SAT 

i.e., with only normal variables. To establish the relationship between the Set Splitting 

problem and the NAE-SAT problem, each element in the set can be represented by a 

variable 𝑥𝑖; 𝑥𝑖 = 1(0), if 𝑥𝑖 lies in Set I (II) (or vice-versa). We note that only variables in 

the normal form are needed. Subsequently, each subset 𝑆𝑖 of the finite set can be mapped 

to 𝐶𝑁𝐴𝐸,𝑖. It can be observed that only if the set is split (i.e., some nodes of 𝑆𝑖 lie in Set I 

and II each) by the partition, 𝐶𝑁𝐴𝐸,𝑖 evaluates to 1; if the nodes of a subset 𝑆𝑖 lie entirely 

in Set I or II, 𝐶𝑁𝐴𝐸,𝑖 = 0. A partition that splits all the subsets exists when all 𝐶𝑁𝐴𝐸 are 

satisfied, i.e., 𝑉 = 0. 

3.1.d. Integer factorization 

The integer factorization problem is an NP complete problem that entails finding 

the integer factors of a number. Here, we consider the challenge of dividing a number 𝐹 

into two factors 𝑋 and 𝑌 such that 𝑋𝑌 = 𝐹, or in other words, 𝑋𝑌 − 𝐹 = 0. Expressing the 



 

52 
 

factors 𝑋 and 𝑌 in binary form, this relationship can be used to formulate an energy 

function: 

𝑉 = 𝐴 ([∑2𝑖−1 (
1 + tanh(𝑘 cos(𝛼𝑖))

2
)

𝑁

𝑖=1

] [ ∑ 2𝑗−𝑁−1

2𝑁

𝑗=𝑁+1

(
1 + tanh(𝑘 cos(𝛼𝑗))

2
)] − 𝐹)

2

 (3.17) 

where each binary bit in 𝑋 and 𝑌 is represented by (
1+tanh(𝑘 cos(𝛼𝑖,𝑗))

2
); 𝐹 is the integer 

number to be factorized (𝐹 = ∑ 2𝑖−1𝐹𝑖
𝑁
𝑖=1 ), 𝛼𝑖 and 𝛼𝑗 are used to represent the bits in 𝑋 

and 𝑌, respectively, and 𝑘 essentially decides the ‘steepness’ of the tanh(. ) function. This 

formulation of the energy function is inspired from that adopted by Borders et al. [101] 

and it can be observed that the energy function is expressed as a ‘product of sums’, 

instead of the ‘sum of products’ used in the formulation for the SAT and the NAE-SAT 

problems. The corresponding system dynamics are given by: 

d𝛼𝑖

d𝑡
= (−∇𝛼𝑉(𝛼))

𝑖

= sin(𝛼𝑖)  2𝐴([∑2𝑗−1 (
1 + tanh(𝑘 cos(𝛼𝑗))

2
)

𝑁

𝑗=1

] [ ∑ 2𝑚−𝑁−1 (
1 + tanh(𝑘 cos(𝛼𝑚))

2
)

2𝑁

𝑚=𝑁+1

]

− 𝐹)( ∑ 2𝑛−𝑁−1

2𝑁

𝑛=𝑁+1

(
1 + tanh(𝑘cos(𝛼𝑛))

2
))2𝑖−2𝑘 sech2(𝑘cos(𝛼𝑖)) 

 

(3.18a) 

d𝛼𝑗

d𝑡
= (−∇𝛼𝑉(𝛼))

𝑗

= sin(𝛼𝑗)  2𝐴([∑2𝑖−1 (
1 + tanh(𝑘 cos(𝛼𝑖))

2
)

𝑁

𝑖=1

] [ ∑ 2𝑚−𝑁−1 (
1 + tanh(𝑘 cos(𝛼𝑚))

2
)

2𝑁

𝑚=𝑁+1

]

− 𝐹)(∑ 2𝑛−1

𝑁

𝑛=1

(
1 + tanh(𝑘cos(𝛼𝑛))

2
)) . 2𝑗−𝑁−2𝑘 sech2 (𝑘cos(𝛼𝑗)) 

 

(3.18b) 
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Figure 3.4 presents an illustrative example showing the integer factorization of 899 

performed using the above model. We note that the tanh(. ) function used in the analog 

formulation of the bits of the factors 𝑋 and 𝑌 helps to effectively ‘binarize’ the output of 

the cos(. ) function. This is because the energy function (without the tanh(. ) function) may 

not always converge to integer factors of  𝑍, i.e., 𝑉 = 0, may also be achieved when 

cos(𝛼𝑖,𝑗) ≠ 1 or −1, resulting in non-integer factors. The tanh(. ) function helps drive the 

phases towards 0 (cos(𝛼𝑖,𝑗) = 1) or π (cos(𝛼𝑖,𝑗) = −1). This can be understood by 

considering the 𝑠𝑒𝑐ℎ2(. ) function (arising from the tanh(. ) term in the energy function) in 

 

Figure 3.4. Integer factorization of 899. Temporal evolution of: (a) (b) the variables corresponding to 

bits in the integer factors X and Y, respectively; (c) Energy (V). (d) Integer factors X and Y computed by 

the system expressed in binary and decimal form. 
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the resulting dynamical system (Eq. (3.18b)) − the sech2(. ) function achieves a maximum 

(=1) when the (resulting) input to the function is zero (i.e., cos(𝛼𝑖,𝑗) = 0; 𝛼𝑖,𝑗 = ±
𝜋

2
 , and 

the corresponding ‘bit’ achieves a value of 0.5), and decays asymptotically towards zero 

as the input deviates from zero (i.e., sech2(. ) reduces as 𝛼𝑖,𝑗 → 0 (cos(𝛼𝑖,𝑗) → 1) and 

𝛼𝑖,𝑗 → 𝜋 (cos(𝛼𝑖,𝑗) → −1). This implies that the function selectively reduces the 

perturbation as phases settle towards 𝛼𝑖,𝑗 = 0 and π. This impact of using the tanh(. ) 

function is illustrated below: 

Integer Factorization without 𝑡𝑎𝑛ℎ(. ) in the dynamics: 

Here, we evaluate the system dynamics for computing the integer factors of 899 

without considering the tanh(.) function in the description of the system energy (Eq. 

(3.17)). The resulting dynamics (without the tanh(.) function) are: 

d𝛼𝑖

d𝑡
= (−∇𝛼𝑉(𝛼))

𝑖
= 

sin(𝛼𝑖)

(

 
 

2𝐴

(

 
 

(∑2𝑗−1

𝑁

𝑗=1

(
1 + cos(𝛼𝑗)

2
))( ∑ 2𝑚−𝑁−1

2𝑁

𝑚=𝑁+1

(
1 + cos(𝛼𝑚)

2
))

− 𝐹

)

 
 

( ∑ 2𝑛−𝑁−1

2𝑁

𝑛=𝑁+1

(
1 + cos(𝛼𝑛)

2
)) . 2𝑖−2.

)

 
 

  

 

 

 

(3.19) 
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d𝛼𝑗

d𝑡
= (−∇𝛼𝑉(𝛼))

𝑗
= 

sin(𝛼𝑗)(2𝐴 ((∑2𝑖−1

𝑁

𝑖=1

(
1 + cos(𝛼𝑖)

2
))( ∑ 2𝑚−𝑁−1

2𝑁

𝑚=𝑁+1

(
1 + cos(𝛼𝑚)

2
))

− 𝐹)(∑ 2𝑛−1

𝑁

𝑛=1

(
1 + cos(𝛼𝑛)

2
)) . 2𝑗−𝑁−2)  

 

 

(3.20) 

Figure 3.5 shows the resulting dynamics of the system when computing the integer 

factors of the number 899. It can be observed that without the tanh(. ) function, the system 

can get stabilized when cos(𝛼) ≠ ±1, resulting in non-integer solutions. 

 

 
Figure 3.5. Integer factorization of 899 without using tanh(. ) in the energy formulation. Temporal 

evolution of: (a) (b) the variables representing bits in the integer factors X and Y, respectively; (c) Energy 

V. (d) Factors X and Y computed by the system. It can be observed that the system settles to non-

integer values. 
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3.1.e. Graph isomorphism 

This problem is defined as the challenge of evaluating if two graphs are equivalent. 

The non-trivial case entails evaluating if two graphs with equal number of vertices and 

edges have the same edge connectivity, i.e., adjacency matrices. Mathematically this 

problem can be expressed as: Given two graphs with adjacency matrices defined by 𝐴 

and 𝐵, is there a permutation matrix  𝑃 such that 𝐴𝑃 = 𝑃𝐵? [102] To formulate the 

computational model for this problem, we represent each element in 𝑃 as 𝑃𝑖𝑗 =

(
1+tanh(𝑘 cos(𝛼𝑖𝑗))

2
), and formulate the energy function as: 

𝑉 = ∑ ∑ 𝐴(𝐾𝑚𝑛(𝛼))
2

𝑁

𝑛=1

𝑁

𝑚=1

 (3.21) 

Here, 𝑁 × 𝑁 is the size of the matrices 𝐴 and 𝐵. 𝐾𝑚𝑛 is defined as: 

𝐾𝑚𝑛 =
1

𝑁
(∑ 𝑎𝑚𝑟 (

1 + tanh(𝑘 cos(𝛼𝑟𝑛))

2
) −

𝑁

𝑟=1

∑(
1 + tanh(𝑘 cos(𝛼𝑚𝑠))

2
) 𝑏𝑠𝑛

𝑁

𝑠=1

) (3.22) 

and represents the element-wise difference between the products of 𝐴𝑃 and 𝑃𝐵 i.e., 𝐴𝑃 −

𝑃𝐵. 

Derivation of 𝑲𝒎𝒏 used in the dynamics of graph isomorphism 

Here, we now derive the expression for 𝐾𝑚𝑛 defined in Eq. (3.22).  

𝐾𝑚𝑛 =
1

𝑁
([𝐴][𝑃] − [𝑃][𝐵]) (3.23) 
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The ijth elements in [𝐴], [𝐵] and [𝑃] are addressed as 𝑎𝑖𝑗 , 𝑏𝑖𝑗 and 𝑝𝑖𝑗 = (
1+tanh(𝑘 cos(𝛼𝑖𝑗))

2
), 

respectively. Thus, the mnth element in [𝑋] = [𝐴][𝑃] and [𝑌] = [𝑃][𝐵] can be calculated 

as: 

𝑥𝑚𝑛 = ∑𝑎𝑚𝑟 .  𝑝𝑟𝑛

𝑁

𝑟=1

= ∑𝑎𝑚𝑟 (
1 + tanh(𝑘 cos(𝛼𝑟𝑛))

2
)

𝑁

𝑟=1

 (3.24) 

and 

𝑦𝑚𝑛 = ∑ 𝑝𝑚𝑠 . 𝑏𝑠𝑛

𝑁

𝑠=1

= ∑(
1 + tanh(𝑘 cos(𝛼𝑚𝑠))

2
)𝑏𝑠𝑛

𝑁

𝑠=1

 (3.25) 

Subsequently, the mnth element of [𝑋] − [𝑌] can be computed as, 

([𝑋] − [𝑌])𝑚𝑛 = ∑𝑎𝑚𝑟 (
1 + tanh(𝑘 cos(𝛼𝑟𝑛))

2
)

𝑁

𝑟=1

− ∑(
1 + tanh(𝑘 cos(𝛼𝑚𝑠))

2
)𝑏𝑠𝑛

𝑁

𝑠=1

 

(3.26) 

([𝑋] − [𝑌])𝑚𝑛 is normalized to 𝑁 to calculate 𝐾𝑚𝑛 used in the energy function,  

𝐾𝑚𝑛 =
1

𝑁
(∑𝑎𝑚𝑟 (

1 + tanh(𝑘 cos(𝛼𝑟𝑛))

2
) −

𝑁

𝑟=1

∑ (
1 + tanh(𝑘 cos(𝛼𝑚𝑠))

2
)𝑏𝑠𝑛

𝑁

𝑠=1

) (3.27)  

𝐾𝑚𝑛 = 0 when the two terms are equal, and 𝑉 = 0 when all the terms (elementwise) are 

matched. We note here that the energy function has a quadratic degree. Nevertheless, 

the problem is considered since the formulation is well aligned with the dynamical system 

proposed here. The corresponding dynamics of the system can be defined by: 
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d𝛼𝑖𝑗

d𝑡
= (−∇𝛼𝑉(𝛼))

𝑖𝑗
= − ∑ ∑ 2𝐴𝐾𝑚𝑛(𝛼)

𝑁

𝑛=1

(
d𝐾𝑚𝑛(𝛼)

d𝛼𝑖𝑗
)

𝑁

𝑚=1

 (3.28a) 

where 

d𝐾𝑚𝑛(𝛼)

d𝛼𝑖𝑗
= −

1

2𝑁
sin(𝛼𝑖𝑗). 𝑘 sech2 (𝑘cos(𝛼𝑖𝑗)) . [(𝑎𝑚𝑖)𝑛=𝑗 − (𝑏𝑗𝑛)

𝑚=𝑖
] (3.28b) 

d𝛼𝑖𝑗

d𝑡
= sin(𝛼𝑖𝑗) [

𝐴

𝑁
 𝑘 sech2 (𝑘 cos(𝛼𝑖𝑗)) . (∑ 𝑎𝑚𝑖𝑘𝑚𝑗

𝑁

𝑚=1

− ∑ 𝑏𝑗𝑛𝑘𝑖𝑛

𝑁

𝑛=1

)] 
(3.28c) 

Figure 3.6 shows an illustrative example (considering two graphs of 5 nodes) for 

evaluating the isomorphism between two graphs using the model proposed above.  

 

 

Figure 3.6. (a) Two representative graphs along with their respective adjacency matrices; (b)(c) 

Evolution of the phases and the total energy as a function of time, respectively. It can be observed 

that the energy (V) reduces to 0 indicating that the graphs are isomorphic. 
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3.1.f. Minimization of the Ising Hamiltonian and MaxCut 

Next, we also illustrate how the above approach can be applied to minimizing the 

Ising Hamiltonian, and subsequently, show its application in solving the Maximum Cut 

problem- the minima of the Ising Hamiltonian −∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗
𝑁
𝑖,𝑗;𝑖<𝑗  (Zeeman term neglected 

here) corresponds to the MaxCut of the equivalent graph when an edge between the 

nodes 𝑖 and 𝑗 is represented by  𝐽𝑖𝑗 = −1. Thus, both the problems also have objective 

functions with quadratic degree. We formulate the energy function for the above problem 

as: 

𝑉 = 𝐴 ∑ 𝐽𝑖𝑗(cos(𝛼𝑖) − cos(𝛼𝑗))
2

𝑁

𝑖,𝑗;𝑖≠𝑗

 (3.29) 

where 𝐽𝑖𝑗 = −1(0), if an edge is present (absent) between the nodes 𝑖 and 𝑗, respectively. 

The energy function in Eq. (3.29) can be expressed as: 

𝑉 = 𝐴 ∑ 𝐽𝑖𝑗(cos(𝛼𝑖))
2

𝑁

𝑖,𝑗;𝑖≠𝑗

+ 𝐴 ∑ 𝐽𝑖𝑗(cos(𝛼𝑗))
2

𝑁

𝑖,𝑗;𝑖≠𝑗

− 2𝐴 ∑ 𝐽𝑖𝑗cos(𝛼𝑖) cos(𝛼𝑗)

𝑁

𝑖,𝑗;𝑖≠𝑗

 (3.30a) 

Further, 

∑ 𝐽𝑖𝑗(cos(𝛼𝑖))
2

𝑁

𝑖,𝑗;𝑖≠𝑗

= −∑∆𝑖(cos(𝛼𝑖))
2

𝑁

𝑖=1

 (3.30b) 

where 𝛥𝑖 is the degree of the 𝑖𝑡ℎ node in the graph. Therefore, Eq. (3.30a) can be 

expressed as: 

𝑉 = −2𝐴 ∑∆𝑖(cos(𝛼𝑖))
2

𝑁

𝑖=1

− 2𝐴 ∑ 𝐽𝑖𝑗cos(𝛼𝑖) cos(𝛼𝑗)

𝑁

𝑖,𝑗;𝑖≠𝑗

 (3.30c) 

Generalizing Eq. (3.30c), we have  
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𝑉 = −∑ 𝐶𝑖(cos(𝛼𝑖))
2

𝑁

𝑖=1

− 𝐶 ∑ 𝐽𝑖𝑗cos(𝛼𝑖) cos(𝛼𝑗)

𝑁

𝑖,𝑗;𝑖≠𝑗

 (3.30d) 

where 𝐶𝑖 and 𝐶  are positive constants. It can be observed from Eq. (3.30d) that 𝑉 attains 

a minimum when (𝛼𝑖, 𝛼𝑗) = (0, 𝜋) 𝑜𝑟 (𝜋, 0). At these specific phase points, Eq. (3.30d) can 

be simplified as: 

𝑉 = −∑𝐶𝑖

𝑁

𝑖=1

− 𝐶 ∑ 𝐽𝑖𝑗cos(𝛼𝑖) cos(𝛼𝑗)

𝑁

𝑖,𝑗;𝑖<𝑗

 (3.30e) 

The first term on the right-hand side is essentially a constant for a given graph. Further, 

by considering each oscillator cos(𝛼𝑖) as a spin 𝜎𝑖, Eq. (3.30e) can be recast as: 

 

𝑉 = −𝐶 ∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗

𝑁

𝑖,𝑗;𝑖<𝑗

− 𝐶𝑠 (3.30f) 

where, 𝐶 and 𝐶𝑠 are positive constants. Eq. (3.30f) is equivalent to the Ising Hamiltonian 

(the Zeeman term has been neglected here) with a constant offset.  

Using Eq. (3.30d), the corresponding system dynamics can be defined as: 

d𝛼𝑖

d𝑡
= (−∇𝛼𝑉(𝛼))

𝑖
= −2𝐶𝑖 cos(𝛼𝑖) sin(𝛼𝑖) − 𝐶 ∑ 𝐽𝑖𝑗 sin(𝛼𝑖) cos(𝛼𝑗)

𝑁

𝑗=1; 𝑗≠𝑖

 (3.31a) 

Exploiting the trigonometric relationships: 2 cos(𝛼𝑖) sin(𝛼𝑖) = sin(2𝛼𝑖), and 

2 sin(𝛼𝑖) cos(𝛼𝑗) = sin(𝛼𝑖 + 𝛼𝑗) + sin(𝛼𝑖 − 𝛼𝑗), Eq. (3.31a) can be expressed as: 
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d𝛼𝑖

d𝑡
= −𝐶𝑖 sin(2𝛼𝑖) − 𝑄 ∑ 𝐽𝑖𝑗(sin(𝛼𝑖 + 𝛼𝑗) + sin(𝛼𝑖 − 𝛼𝑗))

𝑁

𝑗=1; 𝑗≠𝑖

 (3.31b) 

where 𝑄 =
𝐶

2
. 

Eq. (3.31b) reveals the temporal dynamics of the system. In fact, as a computational 

model, Eq. (3.31) presents an alternative dynamical system to the oscillator-based 

dynamical system formulation proposed earlier [85]- the ground state energy is still 

equivalent to the global minima of Ising Hamiltonian for both the systems, but they will 

evolve with a different set of dynamics. Figure 3.7 shows the MaxCut computed on an 

illustrative 10-node graph using the proposed approach compared with the oscillator-

based model developed earlier. Optimal solutions are observed in both cases.  

 

Figure 3.7. Computing MaxCut. (a) Illustrative graph considered. Phase evolution, and the resulting 

MaxCut solution computed using (b) (c) the proposed model, and (d) (e) the model developed in [85], 

respectively. Optimal solutions are achieved using both the models. 
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3.2. Oscillator-based dynamical systems to solve COPs on hypergraph (SAT) 

In this effort, we design and analyze an oscillator-inspired dynamical system and 

show that its dynamics can be directly used to compute solutions to the Max-NAE-3-SAT 

problem. As described in the previous section, the Not-all-Equal (NAE)-SAT problem is 

an NP-complete variant of the SAT problem which imposes the additional constraint that 

every clause must contain a literal that is true and another literal that is false; the Max-

NAE-SAT problem is the optimization version of the problem where the objective is to 

maximize the number of clauses that meet this constraint. Ercsey-Ravasz. et al. [94] 

proposed an analog computational model for solving the SAT problem which was 

formulated using non-oscillating (analog) variables; further, our previous work also 

proposed computational models for many combinatorial problems (e.g., NAE-SAT, 

integer factorization among others) with non-oscillating analog variable [86]. While we 

draw many important insights from these works, our effort here is fundamentally different 

in that our dynamical systems use oscillating (analog) variables, and consequently, 

exhibit a different set of dynamics.  

For this implementation, we formulate the system dynamics as: (−∇𝜙𝐸)
𝑖
=

𝑑𝜙𝑖

𝑑𝑡
, 

where 𝐸 is the potential energy function of the system. In contrast to the prior approach, 

here, we will first define the system dynamics, and subsequently, aim to show that there 

exists a Lyapunov (energy) function which can directly be mapped to the solution to the 

Max-NAE-3-SAT problem. We consider a system whose dynamics are defined by: 
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d𝜙𝑖

d𝑡
= sin(𝑡 + 𝜙𝑖) (− ∑ (2𝐴𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙) 

𝑐𝑚𝑖𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙)

1 − 𝑐𝑚𝑖 cos(𝑡 + 𝛼𝑖)
)

𝑀

𝑚=1

)

− sin(2𝑡 + 2𝜙𝑖) 𝐴𝑠 cos(2𝑡) 

 

≡ 𝜒(𝑡 + 𝜙𝑖(𝑡)) 𝐵𝑖(𝑡) + 𝜒(2𝑡 + 2𝜙𝑖(𝑡)) 𝐵
(2)(𝑡) (3.32) 

Eq. (3.32) can be interpreted as a (sinusoidal) oscillator under perturbation (𝐵𝑖(𝑡)), and 

second harmonic signal injection 𝐵(2)(𝑡) ≡ 𝐴𝑠 cos(2𝑡) which helps binarize the phases to 

(0, π) [68],[103], as illustrated further on. 𝜒(𝑡 + 𝜙𝑖) and 𝜒(2𝑡 + 2𝜙𝑖) are the first and the 

second harmonics of the perturbation projection vectors (PPVs) of the oscillator, 

respectively. 𝐴 and 𝐴𝑠 are positive constants. It can be observed that the dynamics 

described in Eq. (3.32) are a modified version of the dynamics derived in Eq. (3.13b). 

However, it must be emphasized here that we do not use the potential energy function 𝑉 

since it does not decrease monotonically. Instead, using the dynamics described above, 

we will formulate a new energy function 𝐸 whose ground state maps to the solution to the 

Max-NAE-3-SAT problem. 

To define 𝐸, we first reformulate Eq. (3.32) in terms of the relative phase difference. 

Substituting the definition of 𝐾𝑚,𝑜𝑠𝑐(𝑡, 𝜙), Eq. (3.32) can be rewritten as, 

d𝜙𝑖

d𝑡
= −𝐴sin(𝑡 + 𝜙𝑖) ∑

(

 
 

𝑐𝑚𝑖 ( ∏ (
1 − 𝑐𝑚𝑗 cos(𝑡 + 𝜙𝑗)

2
)

𝑁

𝑗=1;𝑗≠𝑖

)

2

(
1 − 𝑐𝑚𝑖 cos(𝑡 + 𝜙𝑖)

2
)

)

 
 

𝑀

𝑚=1

− sin(2𝑡 + 2𝜙𝑖)  𝐴𝑠 cos(2𝑡) 

 

(3.33) 

Expanding Eq. (3.33), we have 
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d𝜙𝑖

d𝑡
= −

𝐴

2
(∑ (𝑐𝑚𝑖 sin(𝑡 + 𝜙𝑖) ( ∏ (

1 − 𝑐𝑚𝑗 cos(𝑡 + 𝜙𝑗)

2
)

𝑁

𝑗=1;𝑗≠𝑖

)

2

)

𝑀

𝑚=1

− ∑ (
1

2
𝑐𝑚𝑖

2 sin(2(𝑡 + 𝜙𝑖))( ∏ (
1 − 𝑐𝑚𝑗 cos(𝑡 + 𝜙𝑗)

2
)

𝑁

𝑗=1;𝑗≠𝑖

)

2

)

𝑀

𝑚=1

)

− sin(2𝑡 + 2𝜙𝑖) 𝐴𝑠 cos(2𝑡) 

 

 

(3.34) 

Further, using trigonometric identities to express all the product terms in 

(∏ (
1−𝑐𝑚𝑗 cos(𝑡+𝜙𝑗)

2
)𝑁

𝑗=1;𝑗≠𝑖 )
2

 as the sum of cos(. ) terms, we rewrite the expression as, 

∑ … ∑ ∑ 𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖
cos(( ∑ |𝑐𝑚𝑗|𝜇𝑗

𝑁

𝑗=1; 𝑗≠𝑖

) 𝑡 + ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗

𝑁

𝑗=1; 𝑗≠𝑖

)

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

 

Using the approach described by Wang et al. [85], a differential equation such as Eq. 

(3.34) can be formulated as a Multi-time Partial Differential Equation (MPDE), wherein 

the fundamental oscillation is assumed to happen in fast time t1 while the phases evolve 

in slow time t2. Subsequently, Eq. (3.34) can then be approximated as, 

d𝜙𝑖

d𝑡
= −𝐴 ∑ ( ∑ . . . ∑ ∑ 𝑐𝑚𝑖 𝑄1𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖

1 sin(𝜙𝑖

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

𝑀

𝑚=1

− ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗(𝑡)

𝑁

𝑗=1; 𝑗≠𝑖

|

𝑄1

)) 
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+ 𝐴 ∑ ( ∑ . . . ∑ ∑ 𝑐𝑚𝑖
2  𝑄2𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖

2 sin(2𝜙𝑖

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

𝑀

𝑚=1

− ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗(𝑡)

𝑁

𝑗=1; 𝑗≠𝑖

|

𝑄2

)) − 𝐴𝑠1 sin(2𝜙𝑖) 

(3.35) 

Here, 𝑄1 = 1 when ∑ |𝑐𝑚𝑗|𝜇𝑗
𝑁
𝑗=1; 𝑗≠𝑖 = 1 else 𝑄1 = 0; 𝑄2 = 1 when ∑ |𝑐𝑚𝑗|𝜇𝑗

𝑁
𝑗=1; 𝑗≠𝑖 = 2 else 

𝑄2 = 0. Additional details regarding the derivation of Eq. (3.35) can be found in Appendix 

I. Remarkably, there is a Lyapunov function 𝐸(𝜙(𝑡)) which can be defined for these 

dynamics as, 

𝐸(𝜙(𝑡)) = ∑[−𝐴 ∑ ∑ . . . ∑ ∑ 𝑐𝑚𝑖  𝑄1  𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖
1 cos(𝜙𝑖(𝑡)

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

𝑀

𝑚=1

𝑁

𝑖=1

− ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗(𝑡)

𝑁

𝑗=1; 𝑗≠𝑖

|

∑ |𝑐𝑚𝑗|𝜇𝑗=1𝑁
𝑗=1; 𝑗≠𝑖

)] 

+∑ [
𝐴

2
∑ ∑ . . . ∑ ∑ 𝑐𝑚𝑖

2  𝑄2  𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖
2 cos(2𝜙𝑖(𝑡)

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

𝑀

𝑚=1

𝑁

𝑖=1

− ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗(𝑡)

𝑁

𝑗=1; 𝑗≠𝑖

|

∑ |𝑐𝑚𝑗|𝜇𝑗=2𝑁
𝑗=1; 𝑗≠𝑖

)] −
𝐴𝑠1

2
 cos(2𝜙𝑖(𝑡)) 

 

 

(3.36) 

Unlike 𝑉 (defined for the SAT solver (in 3.1)), 𝐸(𝜙(𝑡)) is defined in terms of relative phase 

difference (and not in terms of the absolute phase). To show that 𝐸(𝜙(𝑡)) is a decreasing 

function in time i.e., 
d𝐸(𝜙(𝑡)) 

d𝑡
≤ 0, we express 

d𝐸(𝜙(𝑡)) 

d𝑡
=

d𝐸(𝜙(𝑡)) 

d𝜙𝑖(𝑡)
 
d𝜙𝑖(𝑡) 

d𝑡
, where 

d𝐸(𝜙(𝑡)) 

d𝜙𝑖(𝑡)
 can 

be calculated as, 
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𝜕𝐸(𝜙(𝑡)) 

𝜕𝜙𝑖(𝑡)
= 

𝐴 ∑ ∑ . . . ∑ ∑  𝑐𝑚𝑖 𝑄1 𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖

1 sin(𝜙𝑖 − ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗(𝑡)

𝑁

𝑗=1; 𝑗≠𝑖

|

𝑄1

)

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

𝑀

𝑚=1

 

−
2𝐴

2
∑ ∑ . . . ∑ ∑ 𝑐𝑚𝑖

2  𝑄2 𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖

2 sin(2𝜙𝑖

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

𝑀

𝑚=1

− ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗(𝑡)

𝑁

𝑗=1; 𝑗≠𝑖

|

𝑄2

) + 𝐴𝑠1 sin(2𝜙𝑖) ≡ −
d𝜙𝑖(𝑡) 

d𝑡
 

 

 

(3.37) 

 

Thus,  

𝜕𝐸(𝜙(𝑡)) 

𝜕𝜙𝑖(𝑡)
=  −

d𝜙𝑖(𝑡) 

d𝑡
 (3.38) 

It can be observed that Eq. (3.38) represents the system dynamics described earlier. 

Subsequently, 

d𝐸(𝜙(𝑡)) 

d𝑡
= ∑[(

𝜕𝐸(𝜙(𝑡)) 

𝜕𝜙𝑖(𝑡)
) (

d𝜙𝑖(𝑡) 

d𝑡
)]

𝑁

𝑖=1

 (3.39) 

      = −∑[(
d𝜙𝑖(𝑡) 

d𝑡
)

2

] ≤ 0

𝑁

𝑖=1

 (3.40) 

Eq. (3.40) reveals that 𝐸(𝜙(𝑡)) is decreasing in time.  

While Eq. (3.40) represents a general form, we will specifically define the energy 𝐸 for the 

case when each clause contains exactly 3 literals, and subsequently, show that its ground 

state can be used to find the solution of the NAE-3-SAT problem. When a clause contains 

3 literals (corresponding to variables 𝑖, 𝑗, 𝑘), 𝐸 can be expressed as, 
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𝐸(𝜙) = ∑

(

 
 

𝜋𝐴. 2−2𝑁+1 ∑ (2𝑐𝑚𝑖𝑐𝑚𝑗 (1 +
1

2
𝑐𝑚𝑘

2 ) cos(𝜙𝑖 − 𝜙𝑗)

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

𝑁

𝑖=1

+ 2𝑐𝑚𝑖𝑐𝑚𝑘 (1 +
1

2
𝑐𝑚𝑗

2 ) cos(𝜙𝑖 − 𝜙𝑘)

+
1

2
𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘

2 cos(𝜙𝑖 + 𝜙𝑗 − 2𝜙𝑘)

+
1

2
𝑐𝑚𝑖𝑐𝑚𝑘𝑐𝑚𝑗

2 cos(𝜙𝑖 + 𝜙𝑘 − 2𝜙𝑗)

+
1

8
𝑐𝑚𝑖

2 𝑐𝑚𝑘
2 (1 +

1

2
𝑐𝑚𝑗

2 ) cos(2𝜙𝑖 − 2𝜙𝑘)

+
1

2
𝑐𝑚𝑖

2 𝑐𝑚𝑗𝑐𝑚𝑘 cos(2𝜙𝑖 − 𝜙𝑗 − 𝜙𝑘)

+
1

8
𝑐𝑚𝑖

2 𝑐𝑚𝑗
2 (1 +

1

2
𝑐𝑚𝑘

2 ) cos(2𝜙𝑖 − 2𝜙𝑗))

)

 
 

− ∑
𝜋𝐴𝑠

2
cos(2𝜙𝑖)

𝑁

𝑖=1

 

 

 

 

 

(3.41) 

The details of this derivation are shown in Appendix II. The output variables are defined 

by the oscillator phases 𝜙 which settle to {0, 𝜋} owing to the second harmonic injection. 

We note that if a clause contains literals corresponding to only one or two distinct 

variables, 𝑖 ≠ 𝑗 ≠ 𝑘 constraint will not be imposed for that specific clause in Eq. (3.41). 

The specific nature of the arguments of the cos (. ) functions shown in Eq. (3.41) arise 

from the characteristics of the cross-correlation operation performed in Eq. (3.41). The 

corresponding dynamics associated with Eq. (3.41) can be defined as, 
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d𝜙𝑖

d𝑡
= 𝜋𝐴 2−2𝑁+1 ∑ (2𝑐𝑚𝑖𝑐𝑚𝑗 (1 +

1

2
𝑐𝑚𝑘

2 ) sin(𝜙𝑖 − 𝜙𝑗)

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

+ 2𝑐𝑚𝑖𝑐𝑚𝑘 (1 +
1

2
𝑐𝑚𝑗

2 ) sin(𝜙𝑖 − 𝜙𝑘)

+
1

2
𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘

2 sin(𝜙𝑖 + 𝜙𝑗 − 2𝜙𝑘)

+
1

2
𝑐𝑚𝑖𝑐𝑚𝑘𝑐𝑚𝑗

2 sin(𝜙𝑖 + 𝜙𝑘 − 2𝜙𝑗)

+
1

4
𝑐𝑚𝑖

2 𝑐𝑚𝑘
2 (1 +

1

2
𝑐𝑚𝑗

2 ) sin(2𝜙𝑖 − 2𝜙𝑘)

+
1

4
𝑐𝑚𝑖

2 𝑐𝑚𝑗
2 (1 +

1

2
𝑐𝑚𝑘

2 ) sin(2𝜙𝑖 − 2𝜙𝑗)

+ 𝑐𝑚𝑖
2 𝑐𝑚𝑗𝑐𝑚𝑘 sin(2𝜙𝑖 − 𝜙𝑗 − 𝜙𝑘))−𝜋𝐴𝑠 sin(2𝜙𝑖) 

 

 

(3.42) 

Eq. (3.42) describes the phase dynamics of the system which computes the solution to 

the 3-NAE-SAT problem. The second harmonic injection signal −∑
𝜋𝐴𝑠

2
cos(2𝜙𝑖)

𝑁
𝑖=1  (for an 

appropriate injection strength 𝐴𝑠) essentially lowers the energy of the system 

corresponding to 𝜙 ∈ {0, 𝜋}, since the minimization of −∑
𝜋𝐴𝑠

2
cos(2𝜙𝑖)

𝑁
𝑖=1  to −∑

𝜋𝐴𝑠

2

𝑁
𝑖=1  

forces the oscillators to take these binary phase values; this concept was also exploited 

in designing oscillator-based Ising machines [85]. Thus, when the system achieves 

ground state, each 2𝜙 term in Eq. (3.41) induces a phase difference of 0 or 2𝜋, and hence, 

the arguments of the corresponding cos(𝜙𝑖 + 𝜙𝑗 − 2𝜙𝑘) terms can be simplified to 

cos(𝜙𝑖 + 𝜙𝑗). Further, cos(2𝜙𝑖 − 2𝜙𝑗) will take constant values at these specific phase 

points (represented as 𝐶). Additionally, 𝑐𝑚𝑖
2 = 𝑐𝑚𝑗

2 = 𝑐𝑚𝑘
2 = 1. Thus, at these discrete 
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phase points, 𝐸(𝜙) for a problem in which each clause consists of three literals can be 

reduced to, 

𝐸(𝜙) = 𝜋𝐴 2−2𝑁+1 ∑ ∑ (3𝑐𝑚𝑖𝑐𝑚𝑗 cos(𝜙𝑖 − 𝜙𝑗)

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

𝑁

𝑖=1

+ 3𝑐𝑚𝑖𝑐𝑚𝑘 cos(𝜙𝑖 − 𝜙𝑘) +
1

2
𝑐𝑚𝑖𝑐𝑚𝑗 cos(𝜙𝑖 + 𝜙𝑗)

+
1

2
𝑐𝑚𝑖𝑐𝑚𝑘 cos(𝜙𝑖 + 𝜙𝑘) +

1

2
𝑐𝑚𝑗𝑐𝑚𝑘 cos(𝜙𝑗 + 𝜙𝑘)) + 𝐶

− ∑
𝜋𝐴𝑠

2
cos(2𝜙𝑖)

𝑁

𝑖=1

 

 

 

 

(3.43) 

Rearranging Eq. (3.43),  

𝐸(𝜙) = 𝜋𝐴 2−2𝑁+1 ∑ ∑(3𝑐𝑚𝑖𝑐𝑚𝑗 cos(𝜙𝑖 − 𝜙𝑗)

𝑁

𝑖=1

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

+ 3𝑐𝑚𝑖𝑐𝑚𝑘 cos(𝜙𝑖 − 𝜙𝑘) +
1

2
𝑐𝑚𝑖𝑐𝑚𝑗 cos(𝜙𝑖 + 𝜙𝑗)

+
1

2
𝑐𝑚𝑖𝑐𝑚𝑘 cos(𝜙𝑖 + 𝜙𝑘) +

1

2
𝑐𝑚𝑗𝑐𝑚𝑘 cos(𝜙𝑗 + 𝜙𝑘)) + 𝐶

− ∑
𝜋𝐴𝑠

2
cos(2𝜙𝑖)

𝑁

𝑖=1

 

 

 

 

= ∑ 𝛽𝑚(𝜙𝑖, 𝜙𝑗 , 𝜙𝑘)

𝑀

𝑚=1

+ 𝐶 − ∑
𝜋𝐴𝑠

2
cos(2𝜙𝑖)

𝑁

𝑖=1

= ∑ 𝛽𝑚(𝜙𝑖, 𝜙𝑗 , 𝜙𝑘)

𝑀

𝑚=1

+ 𝐶 − 𝐶𝑠 (3.44) 
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Both 𝐶 and 𝐶𝑠 (= ∑
𝜋𝐴𝑠

2
cos(2𝜙𝑖)

𝑁
𝑖=1 ) are constants at the phase points, 𝜙 ∈ {0, 𝜋}. 

Consequently, 𝐸(𝜙) is minimized when ∑ 𝛽𝑚(𝜙𝑖, 𝜙𝑗 , 𝜙𝑘)
𝑀
𝑚=1  is minimum. Now, for a single 

clause consisting of 3 literals corresponding to 3 variables 𝑥𝑖, 𝑥𝑗, 𝑥𝑘 (here, 𝑥𝑖, 𝑥𝑗, 𝑥𝑘 can 

appear in normal or negated form in the clause), 𝛽𝑚(𝜙𝑖 , 𝜙𝑗 , 𝜙𝑘) can be written as, 

 

Figure 3.8. 𝐸 (𝜙
𝑖
,𝜙

𝑗
,𝜙

𝑘
) for a single NAE-3-SAT clause computed for different combination of the 

literals. It can be observed that the energy is minimum only when the NAE-SAT clause is satisfied. Only 

selected combinations have been shown here; a detailed table considering all combinations has been 

shown in Appendix III. 

 

for a single clause NAE-SAT Clause
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𝛽𝑚(𝜙𝑖, 𝜙𝑗 , 𝜙𝑘)

= 𝜋𝐴 2−2𝑁+1 (𝑐𝑚𝑖𝑐𝑚𝑗  (6 cos(𝜙𝑖 − 𝜙𝑗) +
3

2
cos(𝜙𝑖 + 𝜙𝑗))

+ 𝑐𝑚𝑗𝑐𝑚𝑘 (6 cos(𝜙𝑗 − 𝜙𝑘) +
3

2
cos(𝜙𝑗 + 𝜙𝑘))

+ 𝑐𝑚𝑘𝑐𝑚𝑖 (6 cos(𝜙𝑘 − 𝜙𝑖) +
3

2
cos(𝜙𝑘 + 𝜙𝑖))) + 𝐶 − 𝐶𝑠 

 

 

(3.45a) 

𝛽𝑚(𝜙𝑖 , 𝜙𝑗 , 𝜙𝑘) = 𝜋𝐴 2−2𝑁+1(𝑇𝑖𝑗 + 𝑇𝑗𝑘 + 𝑇𝑘𝑖) + 𝐶 − 𝐶𝑠 (3.45b) 

where 

𝑇𝑖𝑗 = 𝑐𝑚𝑖𝑐𝑚𝑗  (6 cos(𝜙𝑖 − 𝜙𝑗) +
3

2
cos(𝜙𝑖 + 𝜙𝑗)) 

(3.46) 

Eq. (3.45b) reveals that 𝛽𝑚(𝜙𝑖 , 𝜙𝑗 , 𝜙𝑘) is minimum when 𝑇𝑖𝑗 + 𝑇𝑗𝑘 + 𝑇𝑘𝑖 is minimum. 

At the phase points 𝜙𝑖 , 𝜙𝑗 , 𝜙𝑘 ∈ {0, 𝜋}, 𝑇𝑖𝑗, 𝑇𝑗𝑘, 𝑇𝑘𝑖 and 𝑇𝑖𝑗 + 𝑇𝑗𝑘 + 𝑇𝑘𝑖 are binary in nature 

and exhibit the property that 𝑇𝑖𝑗 + 𝑇𝑗𝑘 + 𝑇𝑘𝑖, and thus 𝛽𝑚(𝜙𝑖, 𝜙𝑗 , 𝜙𝑘) is minimized when 

(𝑥𝑖⨁𝑥𝑗) ∨ (𝑥𝑗⨁𝑥𝑘) ∨ (𝑥𝑘⨁𝑥𝑖) = 1. This is illustrated in the following paragraph. 

However, first, we simplify (𝑥𝑖⨁𝑥𝑗) ∨ (𝑥𝑗⨁𝑥𝑘) ∨ (𝑥𝑘⨁𝑥𝑖) as,  

(𝑥𝑖⨁𝑥𝑗) ∨ (𝑥𝑗⨁𝑥𝑘) ∨ (𝑥𝑘⨁𝑥𝑖) = (𝑥𝑖𝑥𝑗 ∨ 𝑥𝑖𝑥𝑗) ∨ (𝑥𝑗𝑥𝑘 ∨ 𝑥𝑗𝑥𝑘) ∨ (𝑥𝑘𝑥𝑖 ∨ 𝑥𝑘𝑥𝑖)

= (𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘). (𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘) 

 

(3.47) 

Remarkably, Eq. (3.47) corresponds to a clause of the NAE-3-SAT problem. The terms 

within the first parentheses in Eq. (3.47) implement the standard SAT constraint while the 

terms in the second parentheses implement the constraint that at least one literal must 

be false. Here, we again emphasize that 𝑥𝑖 can appear in both normal or negated form; 
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for example if the clause is (𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘) the corresponding NAE-SAT clause will be 

(𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘). (𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘). 

To show that the energy corresponding to a clause, 𝑇𝑖𝑗 + 𝑇𝑗𝑘 + 𝑇𝑘𝑖, is minimized when an 

NAE-3-SAT clause is satisfied, we consider the table in Fig. 3.8. It can be observed from 

the table that an NAE-SAT clause is satisfied only when 𝑇𝑖𝑗 + 𝑇𝑗𝑘 + 𝑇𝑘𝑖 assumes the 

minimum value. Considering the inherent symmetry in the expression, only selected 

 

Figure 3.9. Evolution of (a) 𝐸, (b) 𝜔.𝜙𝑖, and (c) number of satisfied clauses with time, for an illustrative 

NAE-3-SAT problem with 6 variables and 10 clauses that is solved using the dynamics shown in Eq. 

(3.33). In this simulation, 𝜔 = 2𝜋 is used such that T=1.  
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cases have been presented here. However, the complete table has been shown in 

Appendix III. 

Consequently, as the system evolves towards the global minimum of 𝐸 =

∑ 𝛽𝑚(𝜙𝑖 , 𝜙𝑗 , 𝜙𝑘)
𝑀
𝑚=1 + 𝐶 − 𝐶𝑠, it aims to maximize the number of satisfied NAE-3-SAT 

clauses (defined by (𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘). (𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘)). In other words, it computes the solution 

to the Max-NAE-3-SAT problem. Figure 3.9 shows the solution for an illustrative NAE-3-

SAT problem having 6 variables and 10 clauses. The oscillator dynamics are simulated 

using Eq. (3.33). However, Eq. (3.42) can also be used to compute the solution, as shown 

in Appendix IV. 

Simulation method 

Here, the simulation approach used in the example problems considered in Fig. 

3.2 and Fig. 3.9 is described. We use a stochastic differential equation (SDE) solver that 

allows noise to be considered; noise can help escape local minima in the phase space. 

The SDE that is used to evaluate the time evolution of oscillators’ phases is given by, 

𝑑𝜙𝑖𝑡 = 𝑓(𝜙𝑖𝑡, 𝑡) 𝑑𝑡 + 𝑎𝑛(𝜙𝑖𝑡, 𝑡)𝑑𝑤𝑡 (3.48) 

where 𝑓(𝜙𝑖𝑡, 𝑡)  is the right-hand side of Eq. (3.13b) and the right-hand side of Eq. (3.33), 

respectively; 𝑎𝑛(𝜙𝑖𝑡, 𝑡)  is the amplitude of the noise. A time and phase independent noise 

amplitude of 5 × 10−4 is used here. 𝑤𝑡 is a Wiener process [84]. We use the Runge-Kutta 

method of order four to develop the differential equation solver [104] in MATLAB. Values 

of 𝐴 and 𝐴𝑠 used in the simulation are: 
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𝑨 𝑨𝒔 

Alternative Dynamical System to 

Solve SAT (Eq. (3.13b)) 

10

2𝜋
 N/A 

NaAE-SAT Solver (Eq. (3.33)) 
5

2𝜋
 

0.01

2𝜋
 

The illustrative 3-SAT / NAE-3-SAT problem used in all the above examples is given by:  

𝑌 =  (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x6) ∧ (x2 ∨ x5 ∨ x6) 

          ∧ (x1 ∨ 𝑥2 ∨ x6) ∧ (x1 ∨ x4 ∨ 𝑥6) ∧ (x2 ∨ x4̅̅̅ ∨ x6) ∧ (x1 ∨ x3̅̅̅ ∨ x4)

∧ (x4 ∨ x5 ∨ x6) ∧ (x3̅̅̅ ∨ x4̅̅̅ ∨ x5) 

(3.49) 

 

 

3.3. Oscillator Ising machine with higher order interaction among Ising spins 

This effort aims to develop a method so that higher order interaction among Ising 

spin can be directly mapped to oscillator-based dynamical system [105]. Such systems 

can enable the direct mapping and solving of any COPs expressed by Ising spin (not only 

SAT). Dynamical system formulations that have been used to ‘solve’ the Ising model 

typically consider only pair-wise coupling; examples include, oscillator Ising machines, 

coherent Ising machines etc. From an application standpoint, while these characteristics 

capture quadratic interactions, the dynamical systems and their supporting computational 

models cannot be applied directly to solve problems that require higher order interaction 

among the spins [79],[106]. Therefore, the objective of this work is two-fold: (1) define 

dynamical systems that model higher order (>2) interactions among the Ising spins; and 

(2) map the resulting dynamics to relevant computational problems. We consider two 
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examples: computing the solutions for the NAE-K-SAT (Not-All-Equal SAT) problem and 

the Max-K-Cut of a hypergraph. Our motivation behind selecting these two combinatorial 

optimization problems was that their objective functions directly map to the solution of the 

higher order Ising models, and therefore, help illustrate the principle of how dynamical 

systems for the higher order Ising models can be used in combinatorial optimization.  

The general form to represent higher order interactions among the Ising spins can be 

expressed as, 

𝐻 = −∑ 𝐽𝑖
(1)

𝑠𝑖
𝑖

− ∑ 𝐽𝑖𝑗
(2)

𝑠𝑖𝑠𝑗
𝑖,𝑗

− ∑ 𝐽𝑖𝑗𝑘
(3)

𝑠𝑖𝑠𝑗𝑠𝑘
𝑖,𝑗,𝑘

− ∑ 𝐽𝑖𝑗𝑘𝑙
(4)

𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙
𝑖,𝑗,𝑘,𝑙

…. (3.50) 

Where 𝐽𝑖𝑗
(2)

 represents the pairwise interaction coefficient between two Ising spins. The 

first term on the right-hand side (−∑ 𝐽𝑖𝑗
(2)

𝑠𝑖𝑠𝑗𝑖,𝑗 ) is usually considered when describing 

quadratic/pairwise interactions among Ising spins 𝑠 = {−1,1}𝑛; the Zeeman term which 

considers the interaction of spins with an external magnetic field has been neglected here. 

Considering the higher order interactions among the spins can help describe the objective 

functions of several combinatorial optimization problems (COPs) as illustrated here with 

the example of the NAE-K-SAT problem (without the need for problem decomposition). 

The NAE-K-SAT problem is a constrained version of the Boolean Satisfiability (SAT) 

problem where the objective is to find an assignment for the variables of the given 

Boolean expression (in the conjunctive normal form) such that: (a) at least one variable 

in every clause is TRUE (i.e., the clause is satisfied; standard SAT constraint); (b) at least 

one variable in every clause is FALSE [107]; the NAE-K-SAT problem is considered here 

since it directly maps to the general form of Eq. (3.50), as illustrated further on. Using an 

approach inspired by SAT, the NAE-K-SAT problem can be expressed as computing an 
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assignment for the variables such that 𝑌 (= 𝐶1. 𝑆1 ∧ 𝐶2. 𝑆2 ∧ …∧ 𝐶𝑀. 𝑆𝑀) = 1. Here, 𝐶𝑖 ≡

(𝑥1 ∨ 𝑥2 ∨ 𝑥̅3 … 𝑥̅𝑁), and 𝑆𝑖 ≡ (𝑥̅1 ∨ 𝑥̅2 ∨ 𝑥3 …𝑥𝑁) (i.e., 𝑆𝑖 and 𝐶𝑖 have the same variables 

but in opposite forms).  

3.3.a. NAE-K-SAT problem 

To illustrate how we can map the NAE-K-SAT problem to higher order interactions 

among the Ising spins, we first consider the example of the NAE-4-SAT problem where 

each clause of the NAE-4-SAT problem consists of 4 literals, expressed in the general 

form as (𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘 ∨ 𝑥𝑙). (𝑥̅𝑖 ∨ 𝑥̅𝑗 ∨ 𝑥̅𝑘 ∨ 𝑥̅𝑙) ≡ (𝑥𝑖 ⊕ 𝑥𝑗) ∨ (𝑥𝑖 ⊕ 𝑥𝑘) ∨ (𝑥𝑖 ⊕ 𝑥𝑙) ∨ (𝑥𝑗 ⊕

𝑥𝑘) ∨ (𝑥𝑗 ⊕ 𝑥𝑙) ∨ (𝑥𝑘 ⊕ 𝑥𝑙), where 𝑥 ∈ {0,1}𝑛 (𝑥 is a set of Boolean variables). K=4 is 

specifically chosen here since it is the lowest K where higher order interactions among 

the Ising spins are required to formulate the objective function for the problem (shown in 

Table 3.2). To formulate the problem in terms of Ising spins, we utilize the following 

property among the Boolean variables and the spins (𝑥𝑖 ⊕ 𝑥𝑗) ≡
1−𝑠𝑖𝑠𝑗

2
. Here, the logic 

level 0 (1) corresponds to an evaluation of -1(1) of the expression on the right-hand side, 

respectively. Furthermore, the complement of the logical OR among the XOR terms 

((𝑥𝑖 ⊕ 𝑥𝑗) ∨ (𝑥𝑖 ⊕ 𝑥𝑘) ∨ …∨ (𝑥𝑘 ⊕ 𝑥𝑙)) can be expressed as, (1 − (
1−𝑠𝑖𝑠𝑗

2
)) . (1 −

(
1−𝑠𝑖𝑠𝑘

2
))… (1 − (

1−𝑠𝑘𝑠𝑙

2
)). Simplifying the above expression yields 

(
1+𝑠𝑖𝑠𝑗

2
) (

1+𝑠𝑖𝑠𝑘

2
) (

1+𝑠𝑖𝑠𝑙

2
)… (

1+𝑠𝑘𝑠𝑙

2
) ≡

1

8
(1 + 𝑠𝑖𝑠𝑗 + 𝑠𝑖𝑠𝑘 + 𝑠𝑖𝑠𝑙 + 𝑠𝑗𝑠𝑘 + 𝑠𝑗𝑠𝑙 + 𝑠𝑘𝑠𝑙 + 𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙). 

It can be observed that besides the second order interaction terms, the resulting 

expression also contains a 4th order interaction term among the spins. Consequently, the 

objective function for the NAE-4-SAT problem, over M clauses, can be formulated as the 

minimization of 
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𝐻𝑁𝐴𝐸−4−𝑆𝐴𝑇 = −∑

(

 
 

∑(−𝑐𝑚𝑖𝑐𝑚𝑗𝑠𝑖𝑠𝑗)

𝑁

𝑖,𝑗
𝑖<𝑗

+ ∑ (−𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘𝑐𝑚𝑙𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙)

𝑁

𝑖,𝑗,𝑘,𝑙
𝑖<𝑗<𝑘<𝑙 )

 
 𝑀

𝑚=1
 

 

(3.51) 

Here, 𝑐𝑚𝑖 = 1(−1), if the 𝑖𝑡ℎ variable appears in the 𝑚𝑡ℎ clause in the normal (negated) 

form; 𝑐𝑚𝑖 = 0 if the 𝑖𝑡ℎ variable is absent from the 𝑚𝑡ℎ clause. Using the same approach, 

we derive such expressions for a few other values of K in the NAE-K-SAT problem in 

Table 3.2. Details of the derivation of the objective function for NAE-5-SAT are shown in 

Appendix V. 

K Expression for a single clause & objective function for the NAE-K-SAT 

 

 

2 

Expression for a single clause:  

(𝑥𝑖 ∨ 𝑥𝑗). (𝑥̅𝑖 ∨ 𝑥̅𝑗) ≡ 𝑠𝑖𝑠𝑗 

Objective function: 

𝐻 = − ∑ ∑ (−𝑐𝑚𝑖𝑐𝑚𝑗𝑠𝑖𝑠𝑗)

𝑁

𝑖,𝑗,𝑖<𝑗

≡

𝑀

𝑚=1

− ∑ ∑ 𝐽𝑖𝑗𝑠𝑖𝑠𝑗

𝑁

𝑖,𝑗,𝑖<𝑗

𝑀

𝑚=1

 

Where 𝐽𝑖𝑗 = −𝑐𝑚𝑖𝑐𝑚𝑗. It can be observed that when the variables appear only in the 

normal form i.e., 𝑐𝑚𝑖 ≥ 0, the expression represents the solution to the archetypal 
MaxCut problem. 

 

 

3 

Expression for a single clause: 

(𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘). (𝑥̅𝑖 ∨ 𝑥̅𝑗 ∨ 𝑥̅𝑘) ≡ 𝑠𝑖𝑠𝑗 + 𝑠𝑖𝑠𝑘 + 𝑠𝑗𝑠𝑘 

Objective function: 

𝐻 = − ∑ ∑ (−𝑐𝑚𝑖𝑐𝑚𝑗𝑠𝑖𝑠𝑗)

𝑁

𝑖,𝑗,𝑖<𝑗

𝑀

𝑚=1

 

 

 

 

4 

Expression for a single clause: 

(𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘 ∨ 𝑥𝑙). (𝑥̅𝑖 ∨ 𝑥̅𝑗 ∨ 𝑥̅𝑘 ∨ 𝑥̅𝑙)

≡ 𝑠𝑖𝑠𝑗 + 𝑠𝑖𝑠𝑘 + 𝑠𝑖𝑠𝑙 + 𝑠𝑗𝑠𝑘 + 𝑠𝑗𝑠𝑙 + 𝑠𝑘𝑠𝑙 + 𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙 

Objective function: 
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𝐻 = −∑

(

 
 

∑(−𝑐𝑚𝑖𝑐𝑚𝑗𝑠𝑖𝑠𝑗)

𝑁

𝑖,𝑗
𝑖<𝑗

+ ∑ (−𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘𝑐𝑚𝑙𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙)

𝑁

𝑖,𝑗,𝑘,𝑙
𝑖<𝑗<𝑘<𝑙 )

 
 𝑀

𝑚=1
 

 

 

5 

Expression for a single clause: 

(𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘 ∨ 𝑥𝑙 ∨ 𝑥𝑚). (𝑥̅𝑖 ∨ 𝑥̅𝑗 ∨ 𝑥̅𝑘 ∨ 𝑥̅𝑙 ∨ 𝑥̅𝑚) 

≡ 𝑠𝑖𝑠𝑗 + 𝑠𝑖𝑠𝑘 + 𝑠𝑖𝑠𝑙 + 𝑠𝑖𝑠𝑚 + 𝑠𝑗𝑠𝑘 + 𝑠𝑗𝑠𝑙 + 𝑠𝑗𝑠𝑚 + 𝑠𝑘𝑠𝑙 + 𝑠𝑘𝑠𝑚 + 𝑠𝑙𝑠𝑚 + 𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙

+ 𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑚 + 𝑠𝑖𝑠𝑗𝑠𝑙𝑠𝑚 + 𝑠𝑖𝑠𝑘𝑠𝑙𝑠𝑚 + 𝑠𝑗𝑠𝑘𝑠𝑙𝑠𝑚 

Objective function: 

𝐻 = −∑

(

 
 

∑(−𝑐𝑚𝑖𝑐𝑚𝑗𝑠𝑖𝑠𝑗)

𝑁

𝑖,𝑗
𝑖<𝑗

+ ∑ (−𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘𝑐𝑚𝑙𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙)

𝑁

𝑖,𝑗,𝑘,𝑙
𝑖<𝑗<𝑘<𝑙 )

 
 𝑀

𝑚=1
 

We note that constants and scalars have not been shown here in the expression for the 
single clause as well as for the objective function. 

Table 3.2. Objective functions for the NAE-K-SAT problem expressed using Ising spins. 

Constructing a dynamical system for the NAE-K-SAT problem. We now aim to 

formulate the dynamical system and the corresponding energy function for the NAE-K-

SAT problem. The dynamical system, defined by −(∇𝜙𝐸)
𝑖
=

𝑑𝜙𝑖

𝑑𝑡
, is designed such that 

the ground state of the ‘energy’ function (more precisely, the Lyapunov function) must 

correspond to a global optimum of the objective function. To construct this system, we 

draw inspiration from the dynamics of coupled oscillators under second harmonic injection 

which effectively forces the oscillator states to assume a binary phase value of 0 or π 

(details of the second harmonic injection can be found in work by Wang et al. [85]). 

Without loss of generality, we assume that one spin state (say, 𝑠 = +1) is represented by 

phase 0 while the other spin state (𝑠 = −1) is represented by the phase angle π. 
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Subsequently, the second order interaction terms among the Ising spins 𝑠𝑖𝑠𝑗 can be 

represented by cos (θ𝑖 − ϕ𝑗). When the spins are in opposite states i.e., 𝑠𝑖 = 1(−1); 𝑠𝑗 =

−1(1), 𝑠𝑗𝑠𝑗 ≡ cos(ϕ𝑖 − ϕ𝑗) = −1, whereas when the spins are in the same states i.e., 𝑠𝑖 =

1(−1); 𝑠𝑗 = 1(−1), 𝑠𝑗𝑠𝑗 ≡ cos(ϕ𝑖 − ϕ𝑗) = 1. Similarly, the higher order interactions can be 

modeled as shown in Table 3.3.  

Order  Ising interaction 
term 

Equivalent formulation for constructing 
dynamical system 

1 𝑠𝑖 (Single Spin) cos(𝜙𝑖) 

2 𝑠𝑖𝑠𝑗 cos(𝜙𝑖 − 𝜙𝑗) 

3 𝑠𝑖𝑠𝑗𝑠𝑘 cos(𝜙𝑖 − 𝜙𝑗 + 𝜙𝑘) 

4 𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙 cos(𝜙𝑖 − 𝜙𝑗 + 𝜙𝑘 − 𝜙𝑙) 

5 𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙𝑠𝑚 cos(𝜙𝑖 − 𝜙𝑗 + 𝜙𝑘 − 𝜙𝑙 + 𝜙𝑚) 

6 𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙𝑠𝑚𝑠𝑛 cos(𝜙𝑖 − 𝜙𝑗 + 𝜙𝑘 − 𝜙𝑙 + 𝜙𝑚 − 𝜙𝑛) 

Table 3.3. Equivalent energy function for modeling higher order interactions among Ising spins. 

The second harmonic signal included as a part of the dynamics (not shown here) helps force 𝜙 

to {0, 𝜋}. 

The equivalence between the higher order terms and the corresponding energy term is 

shown in Table 3.4. 

Second Order Interactions (𝒔𝒊. 𝒔𝒋)  

𝒔𝒊 𝒔𝒋 𝒔𝒊. 𝒔𝒋 𝝓𝒊 𝝓𝒋 𝐜𝐨𝐬(𝝓𝒊 − 𝝓𝒋) 

-1 -1 +1 𝜋 𝜋 +1 

-1 +1 -1 𝜋 0 -1 

+1 -1 -1 0 𝜋 -1 

+1 +1 +1 0 0 +1 
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Third Order Interactions (𝒔𝒊. 𝒔𝒋. 𝒔𝒌) 

𝒔𝒊 𝒔𝒋 𝒔𝒌  𝒔𝒊. 𝒔𝒋. 𝒔𝒌 𝝓𝒊 𝝓𝒋 𝝓𝒌  𝐜𝐨𝐬(𝝓𝒊 − 𝝓𝒋 + 𝝓𝒌) 

-1 -1 -1 -1 𝜋 𝜋 𝜋 -1 

-1 -1 +1 +1 𝜋 𝜋 0 +1 

-1 +1 -1 +1 𝜋 0 𝜋 +1 

-1 +1 +1 -1 𝜋 0 0 -1 

+1 -1 -1 +1 0 𝜋 𝜋 +1 

+1 -1 +1 -1 0 𝜋 0 -1 

+1 +1 -1 -1 0 0 𝜋 -1 

+1 +1 +1 +1 0 0 0 +1 

Fourth Order Interactions (𝒔𝒊. 𝒔𝒋. 𝒔𝒌. 𝒔𝒍) 

𝒔𝒊 𝒔𝒋 𝒔𝒌 𝒔𝒍 𝒔𝒊. 𝒔𝒋. 𝒔𝒌. 𝒔𝒍 𝝓𝒊 𝝓𝒋 𝝓𝒌 𝝓𝒍 𝐜𝐨𝐬(𝝓𝒊 − 𝝓𝒋 + 𝝓𝒌 − 𝝓𝒍) 

-1 -1 -1 -1 +1 𝜋 𝜋 𝜋 𝜋 +1 

-1 -1 -1 +1 -1 𝜋 𝜋 𝜋 0 -1 

-1 -1 +1 -1 -1 𝜋 𝜋 0 𝜋 -1 

-1 -1 +1 +1 +1 𝜋 𝜋 0 0 +1 

-1 +1 -1 -1 -1 𝜋 0 𝜋 𝜋 -1 

-1 +1 -1 +1 +1 𝜋 0 𝜋 0 +1 

-1 +1 +1 -1 +1 𝜋 0 0 𝜋 +1 

-1 +1 +1 +1 -1 𝜋 0 0 0 -1 

        +1 -1 -1 -1 -1 0 𝜋 𝜋 𝜋 -1 

+1 -1 -1 +1 +1 0 𝜋 𝜋 0 +1 

+1 -1 +1 -1 +1 0 𝜋 0 𝜋 +1 

+1 -1 +1 +1 -1 0 𝜋 0 0 -1 

+1 +1 -1 -1 +1 0 0 𝜋 𝜋 +1 

+1 +1 -1 +1 -1 0 0 𝜋 0 -1 

+1 +1 +1 -1 -1 0 0 0 𝜋 -1 

+1 +1 +1 +1 +1 0 0 0 0 +1 

Table 3.4. Equivalence between the higher order Ising spin interaction terms and the equivalent 
energy function.  
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Using the above relationships developed in Table 3.2, the energy functions for the NAE-

K-SAT problem can be formulated as shown in Table 3.5. The corresponding dynamics 

(
d𝜙𝑖

d𝑡
), shown in Table 3.5, can be obtained from the dynamical system equation  

d𝜙𝑖

d𝑡
=

−(∇𝜙𝐸)
𝑖
. The second harmonic term in the energy function (−

𝐶𝑠

2
∑ cos(2𝜙𝑖)

𝑁
𝑖=1 ) is added 

to ensure that the oscillator phases effectively binarize to  {0, 𝜋}. The energy contribution 

of this term is minimized (= −𝑁
𝐶𝑠

2
) at the binary phase points 𝜙 ∈  {0, 𝜋}. Consequently, 

by using the appropriate strength of the second harmonic injection (𝐶𝑠), we can ensure 

that the energy function reaches its minimum for 𝜙 ∈  {0, 𝜋}. We have borrowed this 

approach from prior work on oscillator based Ising machines (with second order 

interactions) [85].  

K Objective function, equivalent energy function, and dynamics. 

2  

&  

3 

Objective function: 

𝐻 = − ∑ ∑ (−𝑐𝑚𝑖𝑐𝑚𝑗𝑠𝑖𝑠𝑗)

𝑁

𝑖,𝑗,𝑖<𝑗

𝑀

𝑚=1

 

Energy function: 

𝐸 = 𝐶 ∑ [ ∑ 𝑐𝑚𝑖𝑐𝑚𝑗 cos(𝜙𝑖 − 𝜙𝑗)

𝑁

𝑖,𝑗,𝑖<𝑗

+ 1]

𝑀

𝑚=1

−
𝐶𝑠

2
∑cos(2𝜙𝑖)

𝑁

𝑖=1

 

Dynamics:  

d𝜙𝑖

d𝑡
= 𝐶 [∑ ∑𝑐𝑚𝑖𝑐𝑚𝑗 sin(𝜙𝑖 − 𝜙𝑗)

𝑁

𝑗=1

𝑀

𝑚=1

] − 𝐶𝑠 sin(2𝜙𝑖) 

4  

& 

5 

Objective function: 

𝐻 = −∑

(

 
 

∑(−𝑐𝑚𝑖𝑐𝑚𝑗𝑠𝑖𝑠𝑗)

𝑁

𝑖,𝑗
𝑖<𝑗

+ ∑ (−𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘𝑐𝑚𝑙𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙)

𝑁

𝑖,𝑗,𝑘,𝑙
𝑖<𝑗<𝑘<𝑙 )

 
 𝑀

𝑚=1
 

Energy function: 
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𝐸 = 𝐶 ∑

[
 
 
 
 

∑ 𝑐𝑚𝑖𝑐𝑚𝑗 cos(𝜙𝑖 − 𝜙𝑗)

𝑁

𝑖,𝑗,𝑖<𝑗

𝑀

𝑚=1

+ ∑ 𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘𝑐𝑚𝑙 cos(𝜙𝑖 − 𝜙𝑗 + 𝜙𝑘 − 𝜙𝑙)

𝑁

𝑖,𝑗,𝑘,𝑙
𝑖<𝑗<𝑘<𝑙

+ 1

]
 
 
 
 

−
𝐶𝑠

2
∑cos(2𝜙𝑖)

𝑁

𝑖=1

 

Dynamics:  

d𝜙𝑖

d𝑡
= 𝐶 ∑

[
 
 
 
 

∑𝑐𝑚𝑖𝑐𝑚𝑗 sin(𝜙𝑖 − 𝜙𝑗)

𝑁

𝑗=1

𝑀

𝑚=1

+ ∑ 𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘𝑐𝑚𝑙 sin(𝜙𝑖 − 𝜙𝑗 + 𝜙𝑘 − 𝜙𝑙)

𝑁

𝑖≠𝑗≠𝑘≠𝑙
𝑗<𝑘<𝑙 ]

 
 
 
 

− 𝐶𝑠 sin(2𝜙𝑖) 

Table 3.5. Objective functions, corresponding energy expressions, and system dynamics for 
NAE-K-SAT problems for K=2,3,4, and 5. We note that while the form of the expressions for K=2 
and K=3, as well as K=4 and K=5 are similar, the coefficients (𝑐𝑚𝑖) are different. C is the strength 

of coupling among the nodes whereas 𝐶𝑠 represents the strength of the second harmonic 

injection. 

Furthermore, using the dynamical system equation  
d𝜙𝑖

d𝑡
= −(∇𝜙𝐸)

𝑖
, we can also show 

that for the energy functions described in Table 3.5, 
d𝐸

d𝑡
≤ 0 i.e., they are Lyapunov 

functions.  

d𝐸

d𝑡
= ∑

𝜕𝐸

𝜕𝜙𝑖
.
d𝜙𝑖

d𝑡

𝑁

𝑖=1

= ∑(−
d𝜙𝑖

d𝑡
) 

d𝜙𝑖

d𝑡

𝑁

𝑖=1

= −∑(
d𝜙𝑖

d𝑡
)

2

 

𝑁

𝑖=1

 (3.52) 

Figure 3.10 shows an illustrative example of the NAE-4-SAT problem computed using the 

proposed dynamical system.  
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Simulation Method 

Values of 𝐶 and 𝐶𝑠 used in the simulation of the NAE-4-SAT are: 

 

 

Figure 3.10. Evolution of (a) phases (𝜙); (b) energy; (c) number of satisfied NAE-4-SAT clauses for an 

illustrative NAE-4-SAT problem (20 variables and 50 clauses) computed using the proposed dynamical 

system (higher order oscillator Ising machine). 
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Problem Solved 𝑪 𝑪𝒔 

NAE-4-SAT 10

8
 

5 

 

3.3.b. Max-K-Cut on a hypergraph  

In the prior section, we exploited the binary nature of the Ising spins (along with 

higher order interactions among them). We now ‘extend’ the definition of the ‘spin’ in order 

to facilitate the design of computational models for an even broader spectrum of COPs 

that would benefit from the use of >2 states for each node/spin. To facilitate this, we 

express the possible states of a spin as 𝑟𝑒𝑖𝜃𝑘, where 𝑟 = 1, and 𝜃𝑘 =
2𝜋𝑘

𝐾
; 𝑘 = 1, 2, …𝐾 −

1. When 𝐾 =  2, the possible states are within {1, -1}, which represents the traditional 

definition of an Ising spin. In contrast, when 𝐾 > 2, the ‘spin’ assumes 𝐾 configurations, 

represented as complex quantities (e.g., for 𝐾 = 3, the possible states are 1, 

𝑒𝑖
2𝜋(1)

3 , 𝑒𝑖
2𝜋(2)

3 ). While we have utilized this concept for solving combinatorial problems on 

graphs (i.e., problems with quadratic objective functions) [82], here we explore this 

concept for hypergraphs (that entail higher order interactions) by considering the example 

of solving the Max-K-Cut of a hypergraph. 

Computing the Max-K-Cut on a hypergraph is defined as the challenge of partitioning the 

nodes of a hypergraph into 𝐾 partitions in a manner that maximizes the number of 

hyperedges having nodes that lie in at least two sets created by the partitions [108]. The 

Max-K-Cut problem and its comparison with the archetypal MaxCut problem are 
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illustrated in Chapter 1, in Fig. 1.5a and Fig. 1.5b for the case of a graph and a 

hypergraph, respectively. 

To develop the objective function for the problem, each hyperedge of the graph 

can be expressed as ℎ𝑚 = ∏ ∏ (1 − 𝑐𝑚𝑖𝑐𝑚𝑗 (
1−𝑅𝑒(𝑠𝑖𝑠𝑗

∗𝑒
if𝐾(∆𝜃𝑖𝑗))

2
))𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1 , where 𝑠𝑗 = 1𝑒i𝜃𝑗;  𝜃𝑗 

can assume any of the following values from 
2𝜋𝑘

𝐾
; 𝑘 = 1, 2, …𝐾 − 1 enforced by the higher 

order harmonic injection. 𝑐𝑚𝑗 = 1(0) if the 𝑗𝑡ℎ node belongs (does not belong) to the 𝑚𝑡ℎ 

hyperedge. We note that the ′i′ represents the imaginary number √−1 whereas ′𝑖′ refers 

to the index. 

 

f𝐾(𝛥𝜃𝑖𝑗) =  𝑙𝑖𝑚
𝜎→0

∑

[
 
 
 
 
 
 

((2𝑘 − 1)𝜋 −
2𝑘𝜋

𝐾
) . 𝑒

−(
(∆𝜃𝑖𝑗 −

2𝑘𝜋
𝐾 )

2

2𝜎2 )
𝐾 − 1

𝑘=1

+ (
2𝑘𝜋

𝐾
− (2𝑘 − 1)𝜋) . 𝑒

−(
(∆𝜃𝑖𝑗 +

2𝑘𝜋
𝐾

)
2

2𝜎2 )

]
 
 
 
 
 
 

 

 

(3.53) 

f𝐾(∆𝜃𝑖𝑗) is designed such that 𝑅𝑒(𝑠𝑖𝑠𝑗
∗𝑒if𝐾(∆𝜃𝑖𝑗)) = −1(1), if the nodes 𝑖 and 𝑗 are placed in 

different (same) sets, and essentially reward (penalize) the system in terms of energy, 

respectively. Additional details about the design and properties of f𝐾(∆𝜃𝑖𝑗) have been 

presented in our prior work [82] as well as in Chapter 2 (oscillator Potts machine). 

Consequently, if the hyperedge satisfies the criterion for the Max-K-Cut i.e., that the 
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nodes that are connected by it belong to at least two sets, the corresponding ℎ𝑚 assumes 

a value of 0, else ℎ𝑚 = 1. Subsequently, the objective function for the problem, which 

entails maximizing the number of such hyperedges, can be expressed as minimizing 𝐻, 

where, 

𝐻 = ∑ ℎ𝑚

𝑀

𝑚=1

≡ ∑ ∏ ∏ (1 − 𝑐𝑚𝑖𝑐𝑚𝑗 (
1 − 𝑅𝑒(𝑠𝑖𝑠𝑗

∗𝑒if𝐾(∆𝜃𝑖𝑗))

2
))

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

𝑀

𝑚=1

 (3.54) 

As an example, considering a hypergraph where the maximum number of nodes 

connected by a hyperedge is 3, the objective function for the Max-K-Cut problem can be 

expressed as: 

𝐻 = ∑ (1 − 𝑐𝑚𝑖𝑐𝑚𝑗 (
1 − 𝑅𝑒 (𝑠𝑖𝑠𝑗

∗𝑒if𝐾(∆𝜃𝑖𝑗))

2
))(1

𝑀

𝑚=1,𝑖≠𝑗≠𝑘
𝑐𝑚𝑖,𝑐𝑚𝑗,𝑐𝑚𝑘≠0

− 𝑐𝑚𝑖𝑐𝑚𝑘 (
1 − 𝑅𝑒(𝑠𝑖𝑠𝑘

∗𝑒if𝐾(∆𝜃𝑖𝑘))

2
))(1

− 𝑐𝑚𝑗𝑐𝑚𝑘 (
1 − 𝑅𝑒(𝑠𝑗𝑠𝑘

∗𝑒if𝐾(∆𝜃𝑗𝑘))

2
)) 

(3.55) 

where,  

f𝐾(𝛥𝜃𝑖𝑗) =  𝑙𝑖𝑚
𝜎→0

∑

[
 
 
 
 
 
 

((2𝑘 − 1)𝜋 −
2𝑘𝜋

3
) . 𝑒

−(
(∆𝜃𝑖𝑗 −

2𝑘𝜋
3

)
2

2𝜎2 )
2

𝑘=1

+ (
2𝑘𝜋

3
− (2𝑘 − 1)𝜋) . 𝑒

−(
(∆𝜃𝑖𝑗 +

2𝑘𝜋
3

)
2

2𝜎2 )

]
 
 
 
 
 
 

 

 

 

(3.56) 
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For a hypergraph with hyperedges having more than 3 nodes, the objective function 

entails the use of higher order interactions among the spins. 

To formulate a dynamical system for minimizing the above objective function, we express 

𝑅𝑒(𝑠𝑖𝑠𝑗
∗𝑒if𝐾(∆𝜃𝑖𝑗)) as cos (∆𝜃𝑖𝑗 + f𝐾(∆𝜃𝑖𝑗)). Furthermore, we restrict the configuration 

space of 𝜃 to 
2𝜋𝑘

𝐾
 where 𝑘 = 1, 2, …𝐾 − 1, by injecting the Kth harmonic (of sufficient 

strength) which lowers the energy at specific phase points, as described in prior work 

[82]. The resulting energy function can be described as, 

𝐸 = 𝐴 ∑ ∏ ∏ (1 − 𝑐𝑚𝑖𝑐𝑚𝑗 (
1 − cos (∆𝜙𝑖𝑗 + f𝐾(∆𝜙𝑖𝑗))

2
))

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

𝑀

𝑚=1

−
𝐴𝑠

𝐾
∑cos (𝐾𝜙𝑖)

𝑁

𝑖=1

 (3.57) 

We note that 𝜙 has been used to express the energy function for the dynamical system 

instead of 𝜃 which represents the configuration space of the ‘extended spin’. The 

corresponding dynamics for which the function in Eq. (3.57) is a Lyapunov function are 

given by: 

d𝜙𝑖

d𝑡
= −

𝜕𝐸

𝜕𝜙𝑖
 (3.58a) 

d𝜙𝑖

dt
=

𝐴

2
∑ ∑

[
 
 
 
 
 
 
 

𝑐𝑚𝑖𝑐𝑚𝑗 sin (∆𝜙𝑖𝑗 + f𝐾(∆𝜙𝑖𝑗)) 
ℎ𝑚

(1 − 𝑐𝑚𝑖𝑐𝑚𝑗 (
1 − cos (∆𝜙𝑖𝑗 + f𝐾(∆𝜙𝑖𝑗))

2
))

]
 
 
 
 
 
 
 

𝑁

𝑗=1,𝑗≠𝑖

𝑀

𝑚=1

− 𝐴𝑠sin(𝐾𝜙𝑖) 

 

 

 

(3.58b) 

In the derivation of Eq. (3.58b), we exploit the fact that 
∂𝑓(∆𝜙𝑖𝑗)

∂𝜙𝑖
= 0 [82]. Furthermore, 

using Eq. (3.58a), it can be shown that 
d𝐸

d𝑡
= −∑ (

d𝜙𝑖

d𝑡
)
2

 𝑁
𝑖=1 ≤ 0 (similar to Eq. (3.52)). 
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We now evaluate our proposed model on a representative hypergraph. We consider a 

hypergraph where each hyperedge has 3 vertices. The corresponding dynamics for this 

case can then be written as,  

d𝜙𝑖

dt
=

𝐴

2
∑ [𝑐𝑚𝑖𝑐𝑚𝑗 sin (∆𝜙𝑖𝑗 + f𝐾(∆𝜙𝑖𝑗))(1 − 𝑐𝑚𝑖𝑐𝑚𝑘 (

1 − cos(∆𝜙𝑖𝑘 + f𝐾(∆𝜙𝑖𝑘))

2
))(1

𝑀

𝑚=1

− 𝑐𝑚𝑗𝑐𝑚𝑘 (
1 − cos (∆𝜙𝑗𝑘 + f𝐾(∆𝜙𝑗𝑘))

2
)) + 𝑐𝑚𝑖𝑐𝑚𝑘sin (∆𝜙𝑖𝑘

+ f𝐾(∆𝜙𝑖𝑘)) (1 − 𝑐𝑚𝑖𝑐𝑚𝑗 (
1 − cos (∆𝜙𝑖𝑗 + f𝐾(∆𝜙𝑖𝑗))

2
)) (1

− 𝑐𝑚𝑗𝑐𝑚𝑘 (
1 − cos (∆𝜙𝑗𝑘 + f𝐾(∆𝜙𝑗𝑘))

2
))] − 𝐴𝑠sin(𝐾𝜙𝑖) 

 

 

 

 

(3.59) 

Figure 3.11 also shows the computed Max-K-Cut (for K=2, 3, and 4) for a hypergraph 

instance (with 10 nodes, and 20 hyperedges). The illustrative problem has a maximum of 

4 nodes per hyperedge.  

Simulation Method 

Here, we describe the simulation approach used to simulate the NAE-4-SAT 

problem (Fig. 3.10) and the hypergraph Max-K-Cut problem (Fig. 3.11). We solve the 

dynamics using a stochastic differential equation (SDE) solver implemented in MATLAB; 

details of its implementation have been described in our previous work [100]. The SDE 

solver incorporates noise that helps escape local minima in the phase space.  
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Values of 𝐴 and 𝐴𝑠 used in the simulation of the Max-K-Cut are: 

Problem Solved 𝑨 𝑨𝒔 

Hypergraph Max-2-Cut 15 10 

Hypergraph Max-3-Cut 15 10 

Hypergraph Max-4-Cut 10 10 

 

 

Figure 3.11. Max-K-Cut (K=2,3,4) solutions computed using the proposed dynamical system for an 

illustrative hypergraph. Evolution of phases (𝜙), energy and the Max-K-Cut solution, respectively for (a-

c) K=2; (d-f) K=3; (g-i) K=4. 
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3.4. Alternative formulations for higher order Ising spin interactions 

A general form of the Ising Hamiltonian shown in Eq. (3.50) (also shown below) 

with the second order interactions terms (𝑠𝑖𝑠𝑗) being most commonly employed.  

𝐻 = −∑ 𝐽𝑖
(1)

𝑠𝑖
𝑖

− ∑ 𝐽𝑖𝑗
(2)

𝑠𝑖𝑠𝑗
𝑖,𝑗

− ∑ 𝐽𝑖𝑗𝑘
(3)

𝑠𝑖𝑠𝑗𝑠𝑘
𝑖,𝑗,𝑘

− ∑ 𝐽𝑖𝑗𝑘
(4)

𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙
𝑖,𝑗

− ⋯  

where, 𝑠𝑖 ∈ {−1,1}, 𝐽𝑖𝑗…
(𝑛)

 represents the nth order interaction coefficient. As described in the 

introduction, such higher order interactions can be converted to second order interactions 

by adding auxiliary / ancillary variables [79].  

Here, we propose a non-linear transformation that allows many body spin interactions to 

be expressed in terms of quadratic (two-body) spin interactions without invoking auxiliary 

variables. The proposed method can express a higher order Ising spin interaction as a 

function of the nonlinear transform of the second order and first order interaction terms.  

We express the 𝑛𝑡ℎ order spin interaction term as, 

𝑆𝑛 = 𝑠1𝑠2𝑠3𝑠4 …𝑠𝑛 (3.60) 

were, 𝑠𝑖 ∈ {−1, 1}. We have formulated two different alternative expressions for even and 

odd order Ising spin interaction. They are discussed in the following subsections. 

3.4.a. Higher order interactions: even order 

When 𝑛 is an even number i.e., 𝑛 = 2𝑝, 𝑝 ∈ ℤ+,  

𝑆𝑛 = 2𝑓𝑝
2(. ) − 1 (3.61) 

where, 
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𝑓𝑝(. ) = lim
𝑘→∞

tanh

(

 
 

𝑘 ∑ ∏𝑠𝑖

𝑠𝑖∈𝑇𝑇⊆{1,2,…,𝑛}
|𝑇|=𝑝 )

 
 

 

 

(3.62) 

For instance, in the case of fourth order interactions,  

𝑆4 = lim
𝑘→∞

tanh(𝑘 ∑ 𝑠𝑖𝑠𝑗

4

𝑖,𝑗, 𝑖≠𝑗

) 

 

= lim
𝑘→∞

tanh(𝑘(𝑠1𝑠2 + 𝑠1𝑠3 + 𝑠1𝑠4 + 𝑠2𝑠3 + 𝑠2𝑠4 + 𝑠3𝑠4)) (3.63) 

For the benefit of the reader, Table 3.6 verifies Eq. (3.63) numerically although a formal 

proof for this will be presented in Appendix VI. 

𝑠1, 𝑠2, 𝑠3, 𝑠4 𝑆4

= 𝑠1𝑠2𝑠3𝑠4 ∑ 𝑠𝑖𝑠𝑗

4

𝑖,𝑗, 𝑖≠𝑗

 
𝑓2(. )

= lim
𝑘→∞

tanh(𝑘 ∑ 𝑠𝑖𝑠𝑗

4

𝑖,𝑗, 𝑖≠𝑗

) 

2𝑓2
2(. ) − 1 

-1, -1, -1, -1 1 6 1 1 

-1, -1, -1, 1 -1 0 0 -1 

-1, -1, 1, -1 -1 0 0 -1 

-1, -1, 1, 1 1 -2 -1 1 

-1, 1, -1, -1 -1 0 0 -1 

-1, 1, -1, 1 1 -2 -1 1 

-1, 1, 1, -1 1 -2 -1 1 

-1, 1, 1, 1 -1 0 0 -1 

1, -1, -1, -1 -1 0 0 -1 

1, -1, -1, 1 1 -2 -1 1 

1, -1, 1, -1 1 -2 -1 1 

1, -1, 1, 1 -1 0 0 -1 

1, 1, -1, -1 1 -2 -1 1 

1, 1, -1, 1 -1 0 0 -1 

1, 1, 1, -1 -1 0 0 -1 

1, 1, 1, 1 1 6 1 1 

Table 3.6. Original 𝑆4 and 𝑆4 obtained using the proposed method for all the possible spin 
configurations.   
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The complete alternative expression for an 8th order Ising spin interaction term is shown 

below: 

𝑆8 = 𝑠1𝑠2𝑠3𝑠4𝑠5𝑠6𝑠7𝑠8 = 2𝑓4
2 − 1 = 2. (2𝑓2

2 − 1)2 − 1 = 8𝑓2
4 − 8𝑓2

2 + 1 (3.64a) 

𝑆8 = lim
𝑘→∞

[
 
 
 

8(tanh(𝑘 ( ∑ 𝑠𝑖𝑠𝑗

8

𝑖,𝑗=1,𝑖≠𝑗

)))

4

− 8(tanh(𝑘 ( ∑ 𝑠𝑖𝑠𝑗

8

𝑖,𝑗=1,𝑖≠𝑗

)))

2

+ 1

]
 
 
 

 (3.64b) 

Eq. (3.64b) is the expression of an 8th order Ising spin interaction in terms of pairwise 

interaction. 

 

3.4.b. Higher order interactions: odd order 

When n is an odd number i.e.,  𝑛 = 2𝑞 + 1,  𝑞 ∈ ℤ+ 

𝑆𝑛 = 𝑓𝑞(. )𝑓𝑞+1(. ) (3.65) 

where 𝑓𝑞(. ) is defined in Eq. (3.62). 

For instance, in the case of fifth order interactions, 𝑆5 = 𝑓2(. )𝑓3(. ), where 

𝑓2(. ) = lim
𝑘→∞

tanh(𝑘 ∑ 𝑠𝑖𝑠𝑗
5
𝑖,𝑗, 𝑖≠𝑗 ); 𝑓3(. ) = lim

𝑘→∞
tanh(𝑘 ∑ 𝑠𝑖𝑠𝑗𝑠𝑘

5
𝑖,𝑗,𝑘, 𝑖≠𝑗≠𝑘 ). This has been 

verified in Table 3.7 below. A formal verification for this formulation will be provided in 

Appendix VII. 

𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5 𝑆5

= 𝑠1𝑠2 

× 𝑠3𝑠4𝑠5 

 

 

∑𝑠𝑖𝑠𝑗

5

𝑖,𝑗, 
𝑖≠𝑗

 
𝑓2(. ) = 

lim
𝑘→∞

tanh

(

 
 

𝑘 ∑𝑠𝑖𝑠𝑗

5

𝑖,𝑗, 
𝑖≠𝑗 )

 
 

 

∑ 𝑠𝑖𝑠𝑗𝑠𝑘

5

𝑖,𝑗,𝑘, 
𝑖≠𝑗≠𝑘

 
𝑓3(. ) = 

lim
𝑘→∞

tanh

(

 
 

𝑘 ∑ 𝑠𝑖𝑠𝑗𝑠𝑘

5

𝑖,𝑗,𝑘, 
𝑖≠𝑗≠𝑘 )

 
 

 

𝑓2(. )

× 𝑓3(. ) 

-1, -1, -1, -1, -1 -1 10 1 -10 -1 -1 

-1, -1, -1, -1, 1 1 2 1 2 1 1 
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-1, -1, -1, 1, -1 1 2 1 2 1 1 

-1, -1, -1, 1, 1 -1 -2 -1 2 1 -1 

-1, -1, 1, -1, -1 1 2 1 2 1 1 

-1, -1, 1, -1, 1 -1 -2 -1 2 1 -1 

-1, -1, 1, 1, -1 -1 -2 -1 2 1 -1 

-1, -1, 1, 1, 1 1 -2 -1 -2 -1 1 

-1, 1, -1, -1, -1 1 2 1 2 1 1 

-1, 1, -1, -1, 1 -1 -2 -1 2 1 -1 

-1, 1, -1, 1, -1 -1 -2 -1 2 1 -1 

-1, 1, -1, 1, 1 1 -2 -1 -2 -1 1 

-1, 1, 1, -1, -1 -1 -2 -1 2 1 -1 

-1, 1, 1, -1, 1 1 -2 -1 -2 -1 1 

-1, 1, 1, 1, -1 1 -2 -1 -2 -1 1 

-1, 1, 1, ,1, 1 -1 2 1 -2 -1 -1 

1, -1, -1, -1, -1 1 2 1 2 1 1 

1, -1, -1, -1, 1 -1 -2 -1 2 1 -1 

1, -1, -1, 1, -1 -1 -2 -1 2 1 -1 

1, -1, -1, 1, 1 1 -2 -1 -2 -1 1 

1, -1, 1, -1, -1 -1 -2 -1 2 1 -1 

1, -1, 1, -1, 1 1 -2 -1 -2 -1 1 

1, -1, 1, 1, -1 1 -2 -1 -2 -1 1 

1, -1, 1, 1, 1 -1 2 1 -2 -1 -1 

1, 1, -1, -1, -1 -1 -2 -1 2 1 -1 

1, 1, -1, -1, 1 1 -2 -1 -2 -1 1 

1, 1, -1, 1, -1 1 -2 -1 -2 -1 1 

1, 1, -1, 1, 1 -1 2 1 -2 -1 -1 

1, 1, 1, -1, -1 1 -2 -1 -2 -1 1 

1, 1, 1, -1, 1 -1 2 1 -2 -1 -1 

1, 1, 1, 1, -1 -1 2 1 -2 -1 -1 

1, 1, 1, 1, 1 1 10 1 10 1 1 

Table 3.7. Original 𝑆5 and 𝑆5 obtained using the proposed method for all the possible spin 
configurations.  

The complete alternative expression for a 7th order Ising spin interaction term is shown 

below: 
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𝑆8 = 𝑠1𝑠2𝑠3𝑠4𝑠5𝑠6𝑠7 = 𝑓4 𝑓3 = 𝑓1 𝑓2(2𝑓2
2 − 1) = 2𝑓1𝑓2

3 − 𝑓1 𝑓2  (3.66a) 

𝑆7 = lim
𝑘→∞

[
 
 
 

2(tanh(𝑘 (∑𝑠𝑖

7

𝑖=1

)))(tanh(𝑘 ( ∑ 𝑠𝑖𝑠𝑗

7

𝑖,𝑗=1,𝑖≠𝑗

)))

3

− (tanh(𝑘 (∑𝑠𝑖

7

𝑖=1

)))(tanh(𝑘 ( ∑ 𝑠𝑖𝑠𝑗

7

𝑖,𝑗=1,𝑖≠𝑗

)))

]
 
 
 

 

(3.66b) 

Eq. (3.66b) is the expression of a 7th order Ising spin interaction in terms of pairwise 

interaction. 
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Chapter 4 

4. Dynamical Properties of Coupled Oscillator-based 

Computing Systems 

This chapter discusses the incorporation of control theoretic approaches to analyze the 

dynamical properties of oscillator-based computing systems, that govern their 

computational performance. 

Coupled oscillator-based computing systems can be thought of as gradient 

descent systems. While such a system evolves through the high-dimensional solution 

space towards the ground state energy (corresponding to the optimal solution), it is likely 

to encounter many local minima where the system can get trapped, and subsequently, 

give rise to a sub-optimal solution. This is illustrated with the example of an oscillator 

network with 20 nodes and 114 edges (corresponding to the interactions among the 

oscillators) as shown in Fig. 4.1(a). Figure 4.1(b) shows the experimentally measured 

Ising Hamiltonian solutions (𝐻) over 100 separate trials. Experiments are done on a chip 

of 30 coupled oscillator based Ising machine [69]. Figure 4.2(c) compares the measured 

𝐻 attained by the system (and its frequency) with the entire combinatorial solution space 

i.e., 𝐻 corresponding to all the possible spin assignments (grey in Fig. 4.1(c)) for the 

problem; there are 524,288 possible spin assignments out of which only 7 correspond to 

the optimal solution (here, self-biasing of spins is not considered). It is evident from Fig. 

4.1(c) that the spin configurations measured using the system are sub-optimal with the 

best solution only equal to 92% of the optimal value. Moreover, it can also be observed 
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that the system energy (proportional to 𝐻) at which the peak of the distribution of the 

measured solutions (over the 100 trials) occurs, coincides with the 𝐻 value where the 

maximum number of local minima states occur. This indicates that in the absence of any 

external annealing, the system - despite trying to minimize its energy- gets trapped in one 

of the many local minima of the phase space, consequently, giving rise to sub-optimal 

spin assignments. Furthermore, we also compute the Hamming distance among the 

measured spin assignments (Fig. 4.1(d)) to explore if there is a correlation among the 

solutions (generated in each trial). The resulting Hamming distance exhibits a Gaussian 

distribution implying that the solutions are widely different from each other, and that the 

system gets trapped randomly in any one of the many local minima. This also indicates 

 

Figure 4.1. (a) A representative network of 20 spins with randomly generated interactions (represented 
by edges); (b) Experimentally measured 𝑯 over 100 separate trials (𝑯𝒎𝒊𝒏=minimum/optimal 𝑯); (c) 

Distribution showing occupied energy states (represented by 𝑯) and their frequency (orange) compared 
to the complete solution space (grey) of the problem (=524,288 possible states); (d) Hamming distance 
distribution (normalized) between the experimentally measured solutions over 100 runs. 
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that the trajectory of the system in the phase space likely changes from run-to-run. These 

results motivate the further exploration of the dynamical properties of oscillator Ising 

machines, specifically from theoretical standpoint. Consequently, we have incorporated 

control theoretic methods to analyze OIM. The following section discusses such an 

analysis. 

4.1. Control theoretic analysis of dynamical systems  

Empirically established annealing methods are extensively used to improve 

solution quality obtained from different oscillator-based dynamical systems. However, 

control theoretic analysis to better understand the dynamical properties of such 

computing platforms is largely unexplored. Consequently, in this effort, stability analysis 

of fixed points has been utilized to analyze the dynamics of oscillator-based computing 

systems [109]. Fixed points are defined as the points in the phase space where the time 

derivatives of all the variables become zero. A dynamical system gets stuck in a fixed 

point if it is stable. Thus, stability analysis could be helpful to choose system parameters 

so that it can avoid such fixed points by destabilizing them. This research effort is limited 

to the stability analysis of fixed points of oscillator Ising machines (OIMs). However, a 

similar analysis can be done for other oscillator-based dynamical systems described in 

Chapter 2, and 3.    

In groundbreaking work by Wang et al. [67], the authors demonstrated that a global 

minimum of the cost function (referred to as the Lyapunov function by the authors) for a 

topographically equivalent coupled oscillator network under second harmonic injection 

can be equivalent to computing a global minimum of 𝐻. While the minimization of the cost 

function in OIM [67], as well as their implementation [50],[51],[71],[110] has been explored 
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in prior work, the stability of the globally optimal and locally optimal spin (phase) 

configurations and the resulting impact on the OIM dynamics has been largely 

unexplored. The works by Erementchouk et al. [111] and Böhm et al. [112] are a few 

examples that aim to investigate the dynamics of the OIM while a few more works have 

focused on analyzing the dynamical properties in spiking neural network [113]-[116]. 

Consequently, understanding the properties of the OIM as a nonlinear dynamical system 

and elucidating their impact on the computational properties are the primary focus of this 

effort. 

4.1.a. Stability analysis of fixed points of an OIM using the linearization method   

The dynamics of the OIM are such that the oscillator phases settle to 𝜃 ∈  {0, π}, 

which subsequently, represent s = ±1 assignment to the nodes. The computational 

capability of this system arises from the fact that the resulting phase configuration of the 

oscillators will correspond to a ground state of 𝐻. The cost function 𝐸(𝜃(𝑡)) and the 

corresponding system dynamics are respectively presented as (also shown in Chapter 1) 

𝐸(𝜃(𝑡)) = −𝐾 ∑ 𝑊𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) − 𝐾s ∑cos(2𝜃𝑖(𝑡))

𝑁

𝑖=1

𝑁

𝑖,𝑗=1, 𝑗≠𝑖

 

and 

(4.1) 

d𝜃𝑖(𝑡)

d𝑡
= −𝐾 ∑ 𝑊𝑖𝑗sin(𝜃𝑖 − 𝜃𝑗)

𝑁

𝑗=1,   𝑗≠𝑖

− 𝐾ssin(2𝜃𝑖(𝑡)) (4.2) 

where [W] represents the coupling matrix between nodes, 𝐾 and 𝐾s represent the strength 

of coupling among the oscillators and the strength of the second harmonic injection signal, 

respectively. For the MaxCut problem, the weight of an edge 𝐸𝑖𝑗 in the input graph is 

related to the coupling matrix by the relation 𝑊𝑖𝑗 = −𝐸𝑖𝑗. Using equations (4.1) and (4.2), 
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it can be shown that 
d𝐸(𝜃)

d𝑡
= −2∑ (

d𝜃𝑖(𝑡)

d𝑡
)
2

𝑁
𝑖=1 ≤ 0 [67],[85], which consequently implies 

that the system will evolve towards the ground state, except when 
d𝐸(𝜃)

d𝑡
= 0 (i.e., 

d𝜃(𝑡)

d𝑡
=

0). A point in the phase space where 
d𝜃(𝑡)

d𝑡
= 0 defines a fixed point and there are multiple 

such points in the phase space. In fact, every possible spin assignment and its equivalent 

in terms of the oscillator phases {𝜃1, 𝜃2, … , 𝜃𝑁}, where 𝜃𝑖 ∈ {0, 𝜋}, can correspond to a 

fixed point. Consequently, the phase space contains 2𝑁 fixed points in the system (for 

𝜃 ∈ {0, 𝜋}); 2𝑁−1 points when symmetricity in the solutions is considered. The fixed points 

lying at the lowest energy, if stable, would correspond to an (globally) optimal solution to 

the Ising model while stable fixed points that do not lie at the lowest energy would 

correspond to locally optimal (globally sub-optimal) solutions. Furthermore, even for the 

same energy (including the ground state), some fixed points (i.e., spin configurations) 

may be stable while others may not. This implies that the system may intrinsically favor 

certain Ising solutions over others leading to a biased OIM. Consequently, engineering 

the system stability can have significant impact on the computational characteristics and 

the performance of the system.  

To elucidate our approach, we consider an illustrative randomly generated 

unweighted graph with 20 nodes and 152 edges as shown in Fig. 4.2a. Figure 4.2b shows 

a histogram for the energy (quantified using 𝐻 here) for all possible solutions. It can be 

observed in Fig. 4.2b that the graph has 22 spin configurations that yield the minimum 

energy (𝐻 = −28). However, as alluded to above, the system dynamics may not always 

be stable for all the 22 globally optimal configurations. 
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In order to investigate the stability of the globally and locally optimal phase 

configurations, we analyze the Lyapunov exponents (λ1, λ2, λ3, … , λN) for the system 

dynamics. Lyapunov exponents provide a powerful mathematical tool for analyzing the 

stability of non-linear dynamical systems [117]. Considering that dynamics are 

continuous-time, and the corresponding Jacobian matrix is symmetric [118], the 

Lyapunov exponents are the same as the eigenvalues of the Jacobian matrix.  For a 

phase configuration to be stable, all Lyapunov exponents should be negative. The 

Jacobian matrix (𝐽) for the OIM (assuming symmetric unweighted edges i.e., 𝑊𝑖𝑗 = 𝑊𝑗𝑖) 

can be defined as, 

𝐽 =

[
 
 
 
 

𝐸(1,1) −𝐾𝑊12cos (𝜃1 − 𝜃2) −𝐾𝑊13cos (𝜃1 − 𝜃3) … −𝐾𝑊1𝑁cos (𝜃1 − 𝜃𝑁)

−𝐾𝑊12cos (𝜃1 − 𝜃2)
−𝐾𝑊13cos (𝜃1 − 𝜃3)

⋮

𝐸(2,2) −𝐾𝑊23cos (𝜃2 − 𝜃3) …
−𝐾𝑊23cos (𝜃2 − 𝜃3) 𝐸(3,3) …

⋮ ⋮  

⋮

−𝐾𝑊1𝑁cos (𝜃1 − 𝜃𝑁) ⋯ 𝐸(𝑁, 𝑁) ]
 
 
 
 

 
(4.3) 

 

where 𝐸(𝑖, 𝑖) = −𝐾 ∑ 𝑊𝑖𝑗cos (𝜃𝑖 − 𝜃𝑗)
𝑁
𝑗=1,𝑗≠𝑖 − 2𝐾𝑠cos (2𝜃𝑖). The Eigenvalues of 𝐽 for a 

given point in the phase space where 
d𝜃(𝑡)

d𝑡
= 0 yield the Lyapunov exponents at that point. 

Since all the Lyapunov exponents need to be negative in order for an energy minimum to 

 

Figure 4.2. (a) An illustrative randomly generated graph with 20 nodes and 152 edges. (b) Corresponding 

histogram of energy (𝐻) for all (220) possible spin configurations. 
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be stable, we focus on the largest Lyapunov exponent (referred to here as 𝜆𝐿) since all 

other exponents will be smaller than 𝜆𝐿.  

Figure 4.3a shows the evolution of the largest Lyapunov exponent (𝜆𝐿) as a 

function of 𝐾𝑠 (𝐾 = 1) for the representative graph shown in Fig. 4.2a. All the 220 possible 

phase configurations are considered. The evolution of 𝜆𝐿 for only the globally optimal 

solutions is emphasized in Fig. 4.3b. It can be observed that the stability of a spin 

configuration is significantly impacted by the strength 𝐾𝑠 (relative to 𝐾) of the second 

harmonic injection signal. In fact, if 𝐾𝑠 is small enough (<0.5 for the graph considered 

here), then the ground states, i.e., globally optimal configurations themselves can become 

unstable. In such a scenario, the system will cease to behave as an Ising machine – the 

ground state energy of the system will then correspond to an oscillator phase 

configuration where some or all oscillator phases do not settle to 0 or 𝜋. 

 
Figure 4.3. (a) Evolution of the largest Lyapunov exponent (𝜆𝐿) as a function of 𝐾𝑠 for all spin 
configurations; (b) Evolution of 𝜆𝐿 as a function of the 𝐾𝑠 for the subset of globally optimal phase 

configurations. Note: 𝜆𝐿 > 0 implies that the particular solution is unstable. 
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Next, for different 𝐾s (𝐾 = 1), we analyze the distribution of 𝜆𝐿 for all phase 

configurations lying at a given energy (𝐻). Figs. 4.4a-c show the maximum and the 

minimum value of 𝜆𝐿 for phase configurations corresponding to a given 𝐻, computed for 

three different values of 𝐾s (0.1, 0.8, 1.5), respectively. In Fig. 4.4a, it can be observed 

that since 𝜆𝐿 for all spin configurations (including the globally optimal solutions lying at 

𝐻 = −28) are greater than zero, the ground state of the oscillator platform will not be 

achieved for 𝜃 ∈ {0, 𝜋}. Consequently, it is expected that the oscillator platform will cease 

to function as an Ising machine. When 𝐾𝑠 = 0.8 (Fig. 4.4b), it can be observed that the 

maximum and the minimum value of 𝜆𝐿 for the globally optimal solutions straddle zero, 

i.e., 𝜆𝐿 for some solutions is less than zero whereas it is greater than zero for others. This 

implies that only a fraction of the globally optimal spin configurations is stable, and 

consequently, the system dynamics will preferentially converge to the stable (globally 

optimal) solutions. This creates a biased OIM that favors the stable states over the 

unstable ones. Additionally, it is also noteworthy to point out that some of the fixed points 

corresponding to locally optimal (but globally sub-optimal) solutions lying at low energies 

 
Figure 4.4. Minimum (blue) and maximum (orange) 𝜆𝐿 for phase configurations lying at a particular 
energy (𝐻). Three values of 𝐾s are considered (a) 𝐾s = 0.1: Since all spin configurations (including the 
globally optimal solutions) are unstable, it implies that the oscillator platform will cease to behave as an 
Ising machine. (b) 𝐾s = 0.8: Some globally optimal solutions are stable while others are unstable. 

Additionally, a few locally optimal low energy solutions are also stabilized; (c) 𝐾s = 1.5: All globally 
optimal solutions are stable. The red box indicates the globally optimal solutions. 
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(𝐻 = −24,−26) are also stabilized. This indicates that the system may potentially get 

trapped in one of these states, leading to sub-optimal solutions. However, the value of 𝐾s 

is such that the solutions lying at higher energies (𝐻 > −24)  are destabilized, preventing 

the system from getting trapped in those states. Finally, when the strength of the second 

harmonic injection is increased further to 𝐾s = 1.5 (Fig. 4.4c), it can be observed that all 

the globally optimal solutions are stabilized. Additionally, increasing the strength of the 

second harmonic injection also increases the number and energy of the locally optimal 

(globally sub-optimal) solutions where the system dynamics can be stabilized. 

Consequently, this should increase the probability of the system getting trapped at a local 

minimum. Here, we only consider the fixed points associated with Ising solutions (𝜃 ∈

{0, 𝜋}). There may be other fixed points in the phase space corresponding to 

configurations where 𝜃 ∉ {0, 𝜋}. We also note that for the OIM dynamics,  the stability of 

the fixed points can also be alternatively analyzed by using the second order partial 

derivative test. 

We verify the system behavior predicted above using simulations shown in Fig. 

4.5. We consider an oscillator network that is equivalent to the graph considered in Fig. 

4.2a, and subsequently, evaluate the dynamics for different second harmonic injection 

strengths. We simulate the system dynamics (2) using MATLAB’s® SDE (stochastic 

differential equation) solver, where we consider a time and phase independent noise 

amplitude of 𝐾𝑛 = 0.005. When 𝐾s = 0.1, the oscillator phases, as expected, do not 

converge to {0, 𝜋} and the oscillator platform does not behave as an Ising machine. For 

larger injection strengths (𝐾s = 0.8, 1.5), it can be observed that the oscillator phases are 

binarized to {0, 𝜋}, validating the system’s ability to function as an Ising machine.  
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Figures 4.5d and 4.5e show a histogram of the computed 𝐻 for 𝐾s = 0.8 and 𝐾s =

1.5, respectively, over 50 trials with randomly generated initial conditions. The spin 

assignments and the solutions are not computed for 𝐾s = 0.1 since the system does not 

behave as an Ising machine. Since 𝐾s = 0.8 only stabilizes some globally optimal 

solutions and some phase configurations that lie at low energy (𝐻 = −26,−24), it can be 

observed that the system dynamics always converge to one of these states. In contrast, 

increasing the second harmonic injection strength to 𝐾s = 1.5 stabilizes all the 22 global 

solutions as well as many other phase configurations that lie at higher energies (Fig. 4.5c). 

Consequently, it can be observed in Fig. 4.5e that the system dynamics exhibit a higher 

 
Figure 4.5. Temporal evolution of the oscillator phases for (a) 𝐾𝑠 = 0.1; (b) 𝐾𝑠 = 0.8; (c) 𝐾𝑠 = 1.5, 

respectively (𝐾 = 1). The oscillator network is topologically equivalent to the graph considered in Fig. 

4.2(a). When 𝐾𝑠 = 0.1, the phases do not converge to {0, π}, and thus, the system does not behave as 

an Ising machine. Measured 𝐻 for (d) 𝐾𝑠 = 0.8. (e) 𝐾𝑠 = 1.5 over 50 trials. Since a smaller number of 

locally optimal solutions are stabilized at 𝐾𝑠 = 0.8 compared to 𝐾𝑠 = 1.5, the system yields better solution 

quality. No solution is obtained for 𝐾𝑠 = 0.1. 
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probability of getting trapped at a local minimum (sub-optimal spin configuration). In fact, 

over 50 trials, the system never converges to a globally optimal solution (𝐻 = −28). This 

indicates that the ability to engineer the stability of the local minima can significantly 

impact the computational performance of the OIM. 

 

4.1.b. Assessing the stability of fixed points of an OIM from energy landscape   

The dynamics and the corresponding cost / energy function of an OIM can be 

respectively described by (also shown in previous subsection): 

d𝜃𝑖

d𝑡
= −𝐾 ∑ 𝑊𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝐾ssin(2𝜃𝑖(𝑡))

𝑁

𝑖=1, 𝑖<𝑗

= 𝑓𝑖(𝜃) = −
1

2
(∇𝐸)𝑖 (4.4) 

𝐸(𝜃(𝑡)) = −𝐾 ∑ 𝑊𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) − 𝐾s ∑cos(2𝜃𝑖(𝑡))

𝑁

𝑖=1

𝑁

𝑖,𝑗=1, 𝑗≠𝑖

 (4.5) 

where, 𝜃 = (𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑁) represents the oscillator phases, and 𝐾 and 𝐾s are the 

coupling and second harmonic injection strength, respectively. From Eq. (4.4) and (4.5), 

it can be deduced that, 

d𝐸

d𝑡
= ∑

∂𝐸

∂𝜃𝑖

d𝜃𝑖

d𝑡

𝑁

𝑖=1

= −2∑ (
d𝜃𝑖

d𝑡
)
2𝑁

𝑖=1

≤ 0 (4.6) 

The dynamics described in Eq. (4.4) reveal that the system of equations has multiple fixed 

points, where 
d𝜃

d𝑡
= 0 (also, −(∇𝐸) = 0). In fact, every spin configuration (𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑁), 

𝜃𝑖 ∈ {0, 𝜋} is a fixed point, resulting in 2𝑁 such fixed points. We note that there might be 

other fixed points defined by (𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑁) where 𝜃𝑖 ∉ {0, 𝜋}. The fixed points 

(𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑁) with the lowest energy represent the optimal solutions to the Ising 
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Hamiltonian while the rest represent sub-optimal solutions. In the previous section, we 

analyzed the stability of the fixed points, corresponding to various spin configurations, of 

the OIM. Specifically, we showed that tuning the ratio of the coupling strength among the 

oscillators (𝐾) to the strength of the second harmonic injection (𝐾s) has a dramatic impact 

on the stability of the globally optimal and sub-optimal fixed points. This analysis was 

performed by using the linearization method, i.e., by computing the Lyapunov exponents, 

which in this case, are defined by the eigenvalues of the Jacobian matrix (𝐽). A fixed point 

(globally optimal or not) is attractive if all eigenvalues at that point are negative; and 

unstable if at least one eigenvalue is positive.  

While the Jacobian analysis essentially entails working with the first order 

derivatives, the purpose of this work is to present an alternate approach, based on the 

second order derivates test of 𝐸 (using the Hessian Matrix). This novelty of this work 

shows that the stability of the fixed points of a class of gradient systems such as oscillator 

Ising machines can be directly determined from their energy landscape. This study 

demonstrates that an oscillator Ising machine can get stabilized at any energy minima, 

i.e., all local minima in the energy function act as attractors. 

We show that for an OIM whose dynamics are of the form −𝛼(∇𝐸)𝑖 =
d𝜃𝑖

d𝑡
 (𝛼 =

1

2
  for OIM), 

the stability of the fixed points can be analyzed using the eigenvalues of the Hessian 

Matrix (𝐻𝐸) of the energy function. This is possible since for oscillator Ising machines, the 

energy function is a sum of sinusoids (shown in Eq. (4.5)). Consequently, it is continuous 

and infinitely differentiable. A fixed point is attractive if all eigenvalues of 𝐻𝐸 are positive. 

For the unstable case, if some or all of the eigenvalues are negative, then the fixed point 
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is a saddle point, or a local maximum, respectively. To prove this, we establish the 

equivalence between the two methods [119].  

The Hessian matrix for 𝐸(𝜃) can be computed as, 

𝐻𝐸 =

[
 
 
 
 
 
 
 

𝜕2𝐸

𝜕𝜃1𝜕𝜃1

𝜕2𝐸

𝜕𝜃1𝜕𝜃2
⋯

𝜕2𝐸

𝜕𝜃1𝜕𝜃𝑁

𝜕2𝐸

𝜕𝜃2𝜕𝜃1

𝜕2𝐸

𝜕𝜃2𝜕𝜃2
⋯

𝜕2𝐸

𝜕𝜃2𝜕𝜃𝑁

⋮
𝜕2𝐸

𝜕𝜃𝑁𝜕𝜃1

⋮
𝜕2𝐸

𝜕𝜃𝑁𝜕𝜃2

⋱
⋯

⋮
𝜕2𝐸

𝜕𝜃𝑁𝜕𝜃𝑁]
 
 
 
 
 
 
 

 

 

       =

[
 
 
 
 
 
 
 

𝜕2𝐸

𝜕𝜃1𝜕𝜃1

𝜕2𝐸

𝜕𝜃2𝜕𝜃1
⋯

𝜕2𝐸

𝜕𝜃𝑁𝜕𝜃1

𝜕2𝐸

𝜕𝜃1𝜕𝜃2

𝜕2𝐸

𝜕𝜃2𝜕𝜃2
⋯

𝜕2𝐸

𝜕𝜃𝑁𝜕𝜃2

⋮
𝜕2𝐸

𝜕𝜃1𝜕𝜃𝑁

⋮
𝜕2𝐸

𝜕𝜃2𝜕𝜃𝑁

⋱
⋯

⋮
𝜕2𝐸

𝜕𝜃𝑁𝜕𝜃𝑁]
 
 
 
 
 
 
 

 

 

(4.7) 

Here, the symmetricity of the second derivatives (
𝜕2𝐸

𝜕𝜃𝑖𝜕𝜃𝑗
=

𝜕2𝐸

𝜕𝜃𝑗𝜕𝜃𝑖
) is used. Using Eq. (4.4), 

d𝜃𝑖

d𝑡
= −

1

2
(∇𝐸)𝑖 = −

1

2

𝜕𝐸

𝜕𝜃𝑖
= 𝑓𝑖, Eq. (4.7) can now be expressed as: 

𝐻𝐸 =

[
 
 
 
 
 
 
 

𝜕2𝐸

𝜕𝜃1𝜕𝜃1

𝜕2𝐸

𝜕𝜃2𝜕𝜃1
⋯

𝜕2𝐸

𝜕𝜃𝑁𝜕𝜃1

𝜕2𝐸

𝜕𝜃1𝜕𝜃2

𝜕2𝐸

𝜕𝜃2𝜕𝜃2
⋯

𝜕2𝐸

𝜕𝜃𝑁𝜕𝜃2

⋮
𝜕2𝐸

𝜕𝜃1𝜕𝜃𝑁

⋮
𝜕2𝐸

𝜕𝜃2𝜕𝜃𝑁

⋱
⋯

⋮
𝜕2𝐸

𝜕𝜃𝑁𝜕𝜃𝑁]
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            =

[
 
 
 
 
 
 
 
𝜕(−2𝑓1)

𝜕𝜃1

𝜕(−2𝑓1)

𝜕𝜃2
⋯

𝜕(−2𝑓1)

𝜕𝜃𝑁

𝜕(−2𝑓2)

𝜕𝜃1

𝜕(−2𝑓2)

𝜕𝜃2
⋯

𝜕(−2𝑓2)

𝜕𝜃𝑁

⋮
𝜕(−2𝑓𝑁)

𝜕𝜃1

⋮
𝜕(−2𝑓𝑁)

𝜕𝜃2

⋱
⋯

⋮
𝜕(−2𝑓𝑁)

𝜕𝜃𝑁 ]
 
 
 
 
 
 
 

 

 

 

        = −2

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝜃1

𝜕𝑓1
𝜕𝜃2

⋯
𝜕𝑓1
𝜕𝜃𝑁

𝜕𝑓2
𝜕𝜃1

𝜕𝑓2
𝜕𝜃2

⋯
𝜕𝑓2
𝜕𝜃𝑁

⋮
𝜕𝑓𝑁
𝜕𝜃1

⋮
𝜕𝑓𝑁
𝜕𝜃2

⋱
⋯

⋮
𝜕𝑓𝑁
𝜕𝜃𝑁]

 
 
 
 
 
 
 

= −2𝐽 

 

(4.8) 

Eq. (4.8) reveals that in OIMs, the Jacobian matrix is half of the negative of the Hessian 

matrix (𝐽 = −
1

2
𝐻𝐸). Consequently, the magnitude of the eigenvalues of the Jacobian 

matrix (𝜆𝐽) will be half of the magnitude of the eigenvalues of the Hessian matrix (𝜆𝐻𝐸
) but 

with the opposite sign, i.e., 𝜆𝐽 = −
1

2
𝜆𝐻𝐸

. This implies that the condition for a fixed point to 

be attractive, when analyzing the Hessian matrix, is that all eigenvalues be positive. When 

some eigenvalues are negative, it entails that the fixed point is a saddle point; when all 

eigenvalues are negative, it can be inferred that the fixed point is a maximum. For the 

general class of gradient descent systems defined by −𝛼(∇𝐸)𝑖 =
d𝜃𝑖

d𝑡
 (𝛼 > 0), 𝜆𝐽 = −𝛼𝜆𝐻𝐸

. 
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Chapter 5 

5. Future Work 

This chapter discusses the potential of coupled oscillators in statistical sampling.  

The primary focus of this dissertation is formulating oscillator-based dynamical 

systems to directly solve many COPs and performing theoretical analysis for such 

systems. Solving COPs is associated with the ground state search process. However, the 

extensive phase space search ability of dynamical systems inspires their exploration to 

utilize them in the broader field of statistical sampling. In this effort, we have preliminary 

performed some analysis to explore if oscillator Ising machines (OIMs) can be utilized to 

perform statistical sampling. This analysis presents promising results which in turn 

provide broader directions for future work on dynamical system-based computing.    

5.1. Statistical sampling with OIM 

Statistical sampling is an essential part of machine learning. For instance, 

Boltzmann machines utilize Gibbs sampling for training [120]. Since phase spaces of 

objects like images are tremendously large, they cannot be identified deterministically, 

rather identified statistically. For that, a neural network is trained with a set of objects. The 

expectation from a training is that it will replicate the true distribution (distribution of the 

complete phase space) with high accuracy. In this dissertation, preliminary investigations 

are conducted to obtain statistical samples with OIM. In a Boltzmann machine, the energy 

function for the spin / neuronal configuration 𝜎, can be written as,  
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𝐸𝜎 = −∑𝑎𝑖𝑠𝑖

𝑛𝑣

𝑖=1

− ∑𝑏𝑗𝑠𝑗

𝑛ℎ

𝑗=1

− ∑∑𝑤𝑖𝑗𝑠𝑖𝑠𝑗

𝑛ℎ

𝑗=1

𝑛𝑣

𝑖=1

 
(5.1) 

where 𝑛𝑣 and 𝑛ℎ are the numbers of visible 

and hidden layer neurons (spins), 

respectively; 𝑎𝑖 and 𝑏𝑗 are biases to the 

visible and hidden layer neurons, 

respectively; 𝑤𝑖𝑗 is the weight between the ith 

visible layer and jth hidden layer. A schematic 

diagram of a restricted Boltzmann machine 

(RBM) [120], a specific type of Boltzmann 

machine, is shown in Fig. 5.1. 

We have described throughout the earlier chapters that coupled oscillators can 

directly map graphs. Neural networks like RBM can be represented as graphs as well. 

Hence, oscillator-based dynamical systems can be explored to perform statistical 

sampling. Here, we mainly consider OIM for performing statistical sampling. Figure 5.2 

shows an equivalence between an OIM and a statistical sampler. Oscillators can encode 

two neuronal states with their binary phases; 0 (π) phase encodes active (inactive) 

neuronal output or vice versa.  

Very few works have demonstrated the generation of statistical samples with Ising 

machines. For instance, optical oscillator based coherent Ising machines have been 

studied for performing statistical sampling and training Boltzmann machines [121],[122]. 

In these works, noise has been considered as a key control parameter while obtaining 

 
Figure 5.1. Schematic depiction of a restricted 

Boltzmann machine (RBM). 
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…
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samples. Gibbs sampling follows the Boltzmann distribution, where the probability of 

obtaining a configuration 𝜎𝑖 is computed by, 

𝑃(𝜎𝑖) =
𝑒

−
𝐸𝜎𝑖
𝐾𝐵𝑇

𝑍
=

𝑒
−

𝐸𝜎𝑖
𝐾𝐵𝑇

∑ 𝑒
−

𝐸𝜎𝑗

𝐾𝐵𝑇
𝑗

 
(5.2) 

where 𝐾𝐵 is Boltzmann constant (a parameter usually considered 1), 𝑇 is temperature, 

and the partition function 𝑍 is evaluated as the sum of the probabilities for all the possible 

configurations. Since the number of possible states grows exponentially with network 

size, it is impossible to determine 𝑍 for any reasonable network. Consequently, finding a 

finite distribution to replicate a true distribution is challenging. Gibbs sampling is an 

algorithm that is used to obtain a good-quality distribution from a finite number of samples. 

The Markov chain Monte Carlo (MCMC) algorithm (e.g., the Metropolis-Hastings (MH)) 

algorithm [123] is a widely used algorithm to obtain such samples and is therefore used 

for training neural networks [124]. These algorithms need serial updates which hinders 

 
Figure 5.2. Equivalence between an OIM and a Gibbs sampling network.  
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the training speed. This motivates the design of methods to parallelize statistical sampling 

obtaining approaches. Dynamical systems exhibit parallel updates and therefore can be 

considered as possible alternative candidates for obtaining fast samples.   

 

Here, we investigate the possibility of parallelizing Gibbs sampling with OIM. The 

OIM dynamics are shown in Eq. (1.6). With noise (Weiner process 𝑑𝑤𝑡) it can be written 

as, 

d𝜙𝑖

d𝑡
= −𝑘 ∑ 𝐽𝑖𝑗sin (𝜙𝑖(𝑡) − 𝜙𝑗(𝑡))

𝑁

𝑗=1,𝑗≠𝑖

− 𝑘𝑠sin(2𝜙𝑖(𝑡)) + 𝐴𝑛𝑑𝑤𝑡 
(5.3) 

where 𝐴𝑛 is noise amplitude. Here, we consider 𝐾 = 1 and 𝛽 =
1

𝐾𝐵𝑇
. Figure 5.3 shows the 

Gibbs sampling results for a 20-node randomly generated network, obtained by 

simulating an OIM. Figures 5.3a-d show the complete phase space distribution, phase 

 
Figure 5.3. Gibbs sampling for a randomly generated 20-node network (inset Fig. 5.3g). (a) Complete 
phase space distribution, phase space distribution obtained from (b) MH algorithm, (c) OIM with low 
noise, (d) OIM with high noise. (e)-(h) Probability distribution of the energy states for all the cases shown 
in (a)-(d).  
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space distribution obtained using the MH algorithm, phase space distribution obtained 

using an OIM with low noise (
𝐾

𝐴𝑛
= 10), and phase space distribution obtained using an 

OIM with 10 times larger noise (
𝐾

𝐴𝑛
= 1). Figures 5.3e-h present the probability distribution 

of the states for all the cases shown in Fig. 5.3a-d. It can be observed that OIM with low 

noise mainly occupies the lower energy states and hence is good for solving the Ising 

problem, i.e., solving COPs. On the contrary, when high noise is used the probability 

distribution generates the true distribution with very good matching. Thus, OIM can 

provide Gibbs samples with the help of high noise.  

 

5.2. Parallelization of statistical sampling with OIM  

Subsequently, we evaluate the possibility of obtaining OIM-based samples by running 

multiple OIMs in parallel to enhance sampling speed. Figure 5.4 shows the probability 

distribution for the 20-node network (Fig. 5.3g) obtained using 40 parallel OIM runs and 

compares it with the probability distribution obtained from a single OIM run as well as with 

the true distribution. Here, the total number of samples obtained from the parallel runs is 

 
Figure 5.4. Comparison of the probability distribution of the 20-node network (Fig. 5.3g) obtained using 
40 parallel OIM samplers with samples obtained using a single run OIM sampler and the true / target 
distribution.  
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kept the same as the number of samples obtained from the serial run. We show that 

parallel runs provide similar matching as the single (serial) run. However, parallel runs 

can accelerate the sampling significantly. For instance, if we use 𝑛 OIM hardware (or an 

𝑛-core processor), we will be able to achieve around 𝑛 times speedup while obtaining 

samples. Thus, these findings propel the exploration of oscillator-based dynamical 

systems in the field of statistical sampling and machine learning.  
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Chapter 6 

6. Conclusion 

In summary, this dissertation work expands the design methodologies and 

advances the theoretical foundation for coupled oscillator-based analog computing. Prior 

works established that emerging methods for solving combinatorial optimization mainly 

rely on Ising machines. In principle, such Ising machines are capable of solving any 

combinatorial optimization problem (COP) and are therefore envisioned as a universal 

COP-solving computer. However, in practice, Ising machines are not efficient in solving 

broader classes of COPs due to the necessity of problem size expansion through a 

preconversion to Ising problems and thus demand more computing resources while 

solving them. Being motivated by the limitations of Ising machines, in this dissertation, a 

novel approach is developed to design oscillator Potts machines with a phase sensitive 

coupling function that can be modified to map a wide range of COPs without converting 

them to other problems. To assess the efficacy of the oscillator Potts machine, the 

computational model for the Max-K-Cut is implemented as an algorithm on an FPGA. The 

FPGA implementation demonstrates up to 390x speedup in solving Max-K-Cut over a 

state-of-the-art GPU-based Ising solver for benchmarking graphs up to 10,000 nodes 

while maintaining similar solution quality. 

Another key focus of this dissertation is to map higher order interaction among 

spins / variables onto dynamical systems. With this objective, multiple dynamical systems 

are formulated to map several higher order COPs, including the Boolean SAT problem. 

In order to create a more general method, an extension of the oscillator Ising machine is 
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developed that can directly map any higher order Ising spin interaction. Leveraging 

methods from combinatorics, this dissertation also develops alternative expressions to 

represent higher order Ising spin interactions with nonlinear transforms of second order 

interactions. 

Since dynamical properties of oscillator-based dynamical systems have been 

mostly unexplored, this dissertation incorporates control theoretic tools to analyze the 

dynamical properties of such oscillator-based systems. The stability of the fixed points is 

evaluated using the linearization technique to understand the role of the system 

parameters on the computational performance. The theoretical analysis results provide 

insights into the dynamical properties of coupled oscillator-based computing systems, 

providing toolsets to improve computational performance of such approaches using 

theoretical analysis, while prior works mainly relied on empirically established methods.  

Finally, this dissertation explores the possibility of utilizing oscillator-based 

dynamical systems to perform statistical sampling such as Gibbs sampling. Such 

sampling is performed by introducing large noise in oscillator-based dynamical systems 

(e.g., Ising machines). The results motivate the further exploration of coupled oscillators 

for sampling and machine learning.  

Thus, this dissertation broadens the state-of-the-art of dynamical system-based 

computing by introducing new methods to design such systems and bringing theoretical 

toolsets to improve their computational performance. 

 

 



 

117 
 

Appendices 

Appendix I 

Details of the derivation of the dynamics of the oscillator-based NAE-SAT solver 

Here, we describe in detail the steps involved in the derivation of Eq. (3.35) 

(Chapter 3, Section 3.2). The dynamics described by Eq. (3.34) (Chapter 3, Section 3.2) 

are shown here (again) in: 

d𝜙𝑖

d𝑡
= −

𝐴

2
[∑ (𝑐𝑚𝑖 sin(𝑡 + 𝜙𝑖) ( ∏ (

1 − 𝑐𝑚𝑗 cos(𝑡 + 𝜙𝑗)

2
)

𝑁

𝑗=1;𝑗≠𝑖

)

2

)

𝑀

𝑚=1

 
 

− ∑ (
1

2
𝑐𝑚𝑖

2 sin(2(𝑡 + 𝜙𝑖))( ∏ (
1 − 𝑐𝑚𝑗 𝑐𝑜𝑠(𝑡 + 𝜙𝑗)

2
)

𝑁

𝑗=1;𝑗≠𝑖

)

2

)

𝑀

𝑚=1

] 
(A1) 

− sin(2𝑡 + 2𝜙𝑖). [𝐴𝑠 cos(2𝑡)] 
 

The cos(. ) terms in Eq. (A1) are expressed by the following equation, 

( ∏ (
1 − 𝑐𝑚𝑗 cos(𝑡 + 𝜙𝑗)

2
)

𝑁

𝑗=1;𝑗≠𝑖

)

2

           

(A2) 

= ∑ … ∑ ∑ 𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖
cos(( ∑ |𝑐𝑚𝑗|𝜇𝑗

𝑁

𝑗=1; 𝑗≠𝑖

) 𝑡 + ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗

𝑁

𝑗=1; 𝑗≠𝑖

)

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

 
 

 

Substituting (A2) in (A1), 
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d𝜙𝑖

d𝑡

= −
𝐴

2
[∑ (𝑐𝑚𝑖 ∑ … ∑ ∑ 𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖

sin(𝑡 + 𝜙𝑖) . cos(( ∑ |𝑐𝑚𝑗|𝜇𝑗

𝑁

𝑗=1; 𝑗≠𝑖

) 𝑡

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

𝑀

𝑚=1

+ ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗

𝑁

𝑗=1; 𝑗≠𝑖

))

− ∑ (
1

2
𝑐𝑚𝑖

2 ∑ … ∑ ∑ 𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖
sin(2(𝑡 + 𝜙𝑖)). cos(( ∑ |𝑐𝑚𝑗|𝜇𝑗

𝑁

𝑗=1; 𝑗≠𝑖

) 𝑡

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

𝑀

𝑚=1

+ ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗

𝑁

𝑗=1; 𝑗≠𝑖

))]− sin(2𝑡 + 2𝜙𝑖). [𝐴𝑠 cos(2𝑡)] 

 

 

 

(A3) 

Eq. (A3) can be written as, 

d𝜙𝑖

d𝑡

= −
𝐴

2
[∑ (𝑐𝑚𝑖 ∑ … ∑ ∑ 𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖 

. 𝜒(1)(𝑡, 𝜙𝑖) . 𝐵(𝑡, 𝜙)

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

)

𝑀

𝑚=1

− ∑ (
1

2
𝑐𝑚𝑖

2 ∑ … ∑ ∑ 𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖
 . 𝜒(2)(𝑡, 𝜙𝑖) . 𝐵(𝑡, 𝜙)

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

)

𝑀

𝑚=1

] 

 

(A4) 

− sin(2𝑡 + 2𝜙𝑖). [𝐴𝑠 cos(2𝑡)] 
 

where, 𝜒(1)(𝑡, 𝜙𝑖) and 𝜒(2)(𝑡, 𝜙𝑖) are the first and the second harmonics of the perturbation 

projection vector (PPV) of the oscillator, respectively; 𝐵(𝑡, 𝜙) is a perturbation which will 

have components ranging from the first harmonic to the (2∑ |𝑐𝑚𝑗|
𝑁
𝑗=1,𝑗≠𝑖 )

𝑡ℎ
 harmonic. As 
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mentioned in Chapter 3, we assume that the phase evolution happens on a much slower 

time scale than the oscillation frequency. Wang et al. [85] showed that such an equation 

(Eq. (A4) here) can be formulated as a Multi-time Partial Differential Equation (MPDE) 

and can be approximated by averaging over the fast time. The resulting approximation is 

essentially a cross-correlation of the PPV and the perturbation. Since cross correlation of 

the 𝑖𝑡ℎ harmonic of the PPV with 𝑗𝑡ℎ harmonic of the perturbation will be zero in cases 

where 𝑖 ≠ 𝑗,  Eq. (A4) reduces to, 

d𝜙𝑖

d𝑡
= −

𝐴

2
[∑ (𝑐𝑚𝑖 ∑ … ∑ ∑ 𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖 

. 𝜒(1)(𝑡, 𝜙𝑖) . 𝐵(1)(𝑡, 𝜙)

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

)

𝑀

𝑚=1

− ∑ (
1

2
𝑐𝑚𝑖

2 ∑ … ∑ ∑ 𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖
 . 𝜒(2)(𝑡, 𝜙𝑖) . 𝐵(2)(𝑡, 𝜙)

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

)

𝑀

𝑚=1

] 

 

(A5) 

− sin(2𝑡 + 2𝜙𝑖). [𝐴𝑠 cos(2𝑡)] 
 

Now, replacing 𝜒 and 𝐵 in (A5) with their original expressions from Eq. (A3), and by taking 

the average with respect to the fast time, Eq. (A5) can be rewritten as, 

d𝜙𝑖

d𝑡
= −𝐴 ∑

(

 
 

∑ . . ∑ ∑ 𝑐𝑚𝑖 𝑄1𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖
1 sin

(

 
 

(𝜙𝑖

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

𝑀

𝑚=1

− ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗(𝑡)

𝑁

𝑗=1; 𝑗≠𝑖

|

𝑄1

)

)

 
 

)

 
 

 

+ 

𝐴 ∑ ( ∑ . . ∑ ∑ 𝑐𝑚𝑖
2  𝑄2𝐶𝜇1,𝜇2…𝜇𝑁;≠𝜇𝑖

2 sin(2𝜙𝑖 − ∑ |𝑐𝑚𝑗|𝜇𝑗𝜙𝑗(𝑡)

𝑁

𝑗=1; 𝑗≠𝑖

|

𝑄2

)

2

𝜇1=−2

2

𝜇2=−2

2

𝜇𝑁=−2

)

𝑀

𝑚=1

 

 

 

(A6) 
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−𝐴𝑠1 sin(2𝜙𝑖) 
 

where, 𝑄1 = 1 when ∑ |𝑐𝑚𝑗|𝜇𝑗
𝑁
𝑗=1; 𝑗≠𝑖 = 1 else 𝑄1 = 0; 𝑄2 = 1 when ∑ |𝑐𝑚𝑗|𝜇𝑗

𝑁
𝑗=1; 𝑗≠𝑖 = 2 

else 𝑄2 = 0. Eq. (A6) is the result shown in Eq. (3.35) in Chapter 3. 
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Appendix II 

Derivation of the energy expression for a 3-SAT clause (oscillator-based NAE-SAT 

solver) 

Here, the energy expression (Eq. (3.41) in Chapter 3) for a clause containing 3 

literals is derived. We assume that the 3 literals correspond to three distinct variables (𝑥𝑖, 

𝑥𝑗, 𝑥𝑘). Thus, Eq. (3.34) from Chapter 3 can be written as, 

d𝜙𝑖

d𝑡
= −

𝐴

2
2−2𝑁+6

[
 
 
 
 

∑ (𝑐𝑚𝑖 sin(𝑡

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

+ 𝜙𝑖) (
1 − 𝑐𝑚𝑗 cos(𝑡 + 𝜙𝑗)

2
)

2

(
1 − 𝑐𝑚𝑘 cos(𝑡 + 𝜙𝑘)

2
)

2

)

− ∑ (
1

2
𝑐𝑚𝑖

2  sin(2𝑡

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

+ 2𝜙𝑖) (
1 − 𝑐𝑚𝑗 cos(𝑡 + 𝜙𝑗)

2
)

2

(
1 − 𝑐𝑚𝑘 cos(𝑡 + 𝜙𝑘)

2
)

2

)

]
 
 
 
 

− sin(2𝑡

+ 2𝜙𝑖) [𝐴𝑠 cos(2𝑡)] 

 

 

 

(A7) 

 

Eq. (A7) can be simplified to, 
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d𝜙𝑖

d𝑡
= −

𝐴

2
2−2𝑁+2

[
 
 
 
 

∑ (𝑐𝑚𝑖 sin(𝑡 + 𝜙𝑖) (1 +
1

2
𝑐𝑚𝑗

2 − 2𝑐𝑚𝑗 cos(𝑡 + 𝜙𝑗)

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

+
1

2
𝑐𝑚𝑗

2 cos(2𝑡 + 2𝜙𝑗)) (1 +
1

2
𝑐𝑚𝑘

2 − 2𝑐𝑚𝑘 cos(𝑡 + 𝜙𝑘)

+
1

2
𝑐𝑚𝑘

2 cos(2𝑡 + 2𝜙𝑘)))

− ∑ (
1

2
𝑐𝑚𝑖

2 sin(2𝑡 + 2𝜙𝑖) (1 +
1

2
𝑐𝑚𝑗

2 − 2𝑐𝑚𝑗 cos(𝑡 + 𝜙𝑗)

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

+
1

2
𝑐𝑚𝑗

2 cos(2𝑡 + 2𝜙𝑗)) (1 +
1

2
𝑐𝑚𝑘

2 − 2𝑐𝑚𝑘 cos(𝑡 + 𝜙𝑘)

+
1

2
𝑐𝑚𝑘

2 cos(2𝑡 + 2𝜙𝑘)))

]
 
 
 
 

− sin(2𝑡 + 2𝜙𝑖). [𝐴𝑠 cos(2𝑡)] 

 

 

 

(A8) 

After subsequent simplification of the terms and averaging over the fast time, Eq. (A8) 

can be expressed as, 

d𝜙𝑖

d𝑡
= −

𝜋𝐴

2
2−2𝑁+2 ∑ [−2𝑐𝑚𝑖𝑐𝑚𝑗 (1 +

1

2
𝑐𝑚𝑘

2 ) sin(𝜙𝑖 − 𝜙𝑗)

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

− 2𝑐𝑚𝑖𝑐𝑚𝑘 (1 +
1

2
𝑐𝑗

2) sin(𝜙𝑖 − 𝜙𝑘) −
1

2
𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘

2 sin(𝜙𝑖 + 𝜙𝑗 − 2𝜙𝑘)

−
1

2
𝑐𝑚𝑖𝑐𝑚𝑘𝑐𝑚𝑗

2 sin(𝜙𝑖 + 𝜙𝑘 − 2𝜙𝑗)]

+
𝜋𝐴

2
2−2𝑁+2 ∑ [

1

4
𝑐𝑚𝑖

2 𝑐𝑚𝑘
2 (1 +

1

2
𝑐𝑚𝑗

2 ) sin(2𝜙𝑖 − 2𝜙𝑘)

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

+
1

4
𝑐𝑚𝑖

2 𝑐𝑚𝑗
2 (1 +

1

2
𝑐𝑚𝑘

2 ) sin(2𝜙𝑖 − 2𝜙𝑗)

+ 𝑐𝑚𝑖
2 𝑐𝑚𝑗𝑐𝑚𝑘 sin(2𝜙𝑖 − 𝜙𝑗 − 𝜙𝑘)]−𝜋𝐴𝑠 sin(2𝜙𝑖) 

 

 

 

(A9) 

Eq. (A9) can be further simplified as, 
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d𝜙𝑖

d𝑡
=

𝜋𝐴

2
2−2𝑁+2 ∑ [2𝑐𝑚𝑖𝑐𝑚𝑗 (1 +

1

2
𝑐𝑚𝑘

2 ) sin(𝜙𝑖 − 𝜙𝑗)

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

+ 2𝑐𝑚𝑖𝑐𝑚𝑘 (1 +
1

2
𝑐𝑚𝑗

2 ) sin(𝜙𝑖 − 𝜙𝑘)

+
1

2
𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘

2 sin(𝜙𝑖 + 𝜙𝑗 − 2𝜙𝑘)

+
1

2
𝑐𝑚𝑖𝑐𝑚𝑘𝑐𝑚𝑗

2 sin(𝜙𝑖 + 𝜙𝑘 − 2𝜙𝑗)

+
1

4
𝑐𝑚𝑖

2 𝑐𝑚𝑘
2 (1 +

1

2
𝑐𝑚𝑗

2 ) sin(2𝜙𝑖 − 2𝜙𝑘)

+
1

4
𝑐𝑚𝑖

2 𝑐𝑚𝑗
2 (1 +

1

2
𝑐𝑚𝑘

2 ) sin(2𝜙𝑖 − 2𝜙𝑗)

+ 𝑐𝑚𝑖
2 𝑐𝑚𝑗𝑐𝑚𝑘 sin(2𝜙𝑖 − 𝜙𝑗 − 𝜙𝑘)]−𝜋𝐴𝑠  sin(2𝜙𝑖) 

 

 

(A10) 

Using Eq. (3.38) from Chapter 3, the Lyapunov function for the above dynamics can be 

defined as, 

𝐸(𝜙) = 𝜋𝐴. 2−2𝑁+1 ∑ ∑ [2𝑐𝑚𝑖𝑐𝑚𝑗 (1 +
1

2
𝑐𝑚𝑘

2 ) cos(𝜙𝑖 − 𝜙𝑗)

𝑀

𝑚=1;𝑖≠𝑗≠𝑘;𝑐𝑚𝑖≠0
𝑐𝑚𝑗≠0,𝑐𝑚𝑘≠0

𝑁

𝑖=1

+ 2𝑐𝑚𝑖𝑐𝑚𝑘 (1 +
1

2
𝑐𝑚𝑗

2 ) cos(𝜙𝑖 − 𝜙𝑘) +
1

2
𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘

2 cos(𝜙𝑖 + 𝜙𝑗 − 2𝜙𝑘)

+
1

2
𝑐𝑚𝑖𝑐𝑚𝑘𝑐𝑚𝑗

2 cos(𝜙𝑖 + 𝜙𝑘 − 2𝜙𝑗)

+
1

8
𝑐𝑚𝑖

2 𝑐𝑚𝑘
2 (1 +

1

2
𝑐𝑚𝑗

2 ) cos(2𝜙𝑖 − 2𝜙𝑘)

+
1

8
𝑐𝑚𝑖

2 𝑐𝑚𝑗
2 (1 +

1

2
𝑐𝑚𝑘

2 ) cos(2𝜙𝑖 − 2𝜙𝑗)

+
1

2
𝑐𝑚𝑖

2 𝑐𝑚𝑗𝑐𝑚𝑘 cos(2𝜙𝑖 − 𝜙𝑗 − 𝜙𝑘)] − ∑
𝜋𝐴𝑠

2
cos(2𝜙𝑖)

𝑁

𝑖=1

 

 

 

(A11) 
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Eq. (A11) expresses the energy function for the NAE-3-SAT problem. Eq. (A11) is the 

same as the result shown in Eq. (3.41). 

 

 

Appendix III 

Energy vs clause status for an NAE-3-SAT clause (oscillator-based NAE-SAT 

solver) 

Here, we show that an NAE-3-SAT clause is satisfied only when the corresponding 

energy term associated with the clause is minimized (for all cases). 

It can be observed from the table in Fig. A1 that an NAE-3-SAT clause is satisfied only 

when the corresponding energy term associated with the clause is minimized. 

Consequently, the decreasing nature of the energy function ensures that the system 

evolves towards a state that maximizes the number of satisfied NAE-3-SAT clauses. 
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Figure A1. 𝐸 (𝜙
𝑖
,𝜙

𝑗
,𝜙

𝑘
) corresponding to a single NAE-3-SAT clause computed for all the possible 

combinations of the literals and phases. Here, 𝐸1 > 𝐸2. 

for a single clause NAE-SAT Clause
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Appendix IV 

NAE-SAT solution with relative phase-based dynamics (oscillator-based NAE-SAT 

solver) 

We show in Fig. A2 that the NAE-3-SAT solution can also be computed using Eq. (3.42) 

from Chapter 3.  

 

 

 

 

Figure A2. Evolution of (a) oscillator phases, calculated using Eq. (3.42); and (b) No. of satisfied 

clauses, with time. 𝜔 = 2𝜋 is used such that 𝑇 = 1. The problem considered here is the same as that 

considered in Fig. 3.9. 
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Appendix V 

Dynamical system for the NAE-5-SAT problem (higher order Ising machine) 

Here, we develop the formulation of the objective function and the corresponding 

dynamical system for the NAE-5-SAT (K is an odd number) problem. An NAE-5-SAT 

clause can be represented as, 

𝐶 = (𝑥𝑖 ⊕ 𝑥𝑗) ∨ (𝑥𝑖 ⊕ 𝑥𝑘) ∨ (𝑥𝑖 ⊕ 𝑥𝑙) ∨ (𝑥𝑖 ⊕ 𝑥𝑚) ∨ (𝑥𝑗 ⊕ 𝑥𝑘) ∨ (𝑥𝑗 ⊕ 𝑥𝑙)

∨ (𝑥𝑗 ⊕ 𝑥𝑚) ∨ (𝑥𝑘 ⊕ 𝑥𝑙) ∨ (𝑥𝑘 ⊕ 𝑥𝑚) ∨ (𝑥𝑙 ⊕ 𝑥𝑚) 

 

(A12) 

In terms of Ising spins, the complement of 𝐶 can be written as, 

(
1 + 𝑠𝑖𝑠𝑗

2
) (

1 + 𝑠𝑖𝑠𝑘

2
) (

1 + 𝑠𝑖𝑠𝑙

2
) (

1 + 𝑠𝑖𝑠𝑚

2
) (

1 + 𝑠𝑗𝑠𝑘

2
)(

1 + 𝑠𝑗𝑠𝑙

2
) (

1 + 𝑠𝑗𝑠𝑚

2
) 

(
1 + 𝑠𝑘𝑠𝑙

2
) (

1 + 𝑠𝑘𝑠𝑚

2
)(

1 + 𝑠𝑙𝑠𝑚

2
)

=
1

24
(1 + 𝑠𝑖𝑠𝑗 + 𝑠𝑖𝑠𝑘 + 𝑠𝑖𝑠𝑙 + 𝑠𝑖𝑠𝑚 + 𝑠𝑗𝑠𝑘 + 𝑠𝑗𝑠𝑙 + 𝑠𝑗𝑠𝑚 + 𝑠𝑘𝑠𝑙 + 𝑠𝑘𝑠𝑚

+ 𝑠𝑙𝑠𝑚 + 𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙 + 𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑚 + 𝑠𝑖𝑠𝑗𝑠𝑙𝑠𝑚 + 𝑠𝑖𝑠𝑘𝑠𝑙𝑠𝑚 + 𝑠𝑗𝑠𝑘𝑠𝑙𝑠𝑚) 

 

 

 

(A13) 

Thus, the objective function for an NAE-5-SAT problem with M clauses can be written 

as, 

𝐻 = −∑

(

 
 

∑(−𝑐𝑚𝑖𝑐𝑚𝑗𝑠𝑖𝑠𝑗)

𝑁

𝑖,𝑗
𝑖<𝑗

+ ∑ (−𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘𝑐𝑚𝑙𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙)

𝑁

𝑖,𝑗,𝑘,𝑙
𝑖<𝑗<𝑘<𝑙 )

 
 𝑀

𝑚=1
 

 

(A14) 

where 𝑐𝑚𝑖 = −1 (+1) if the ith variable appears in inverted (normal) form in the mth clause; 

𝑐𝑚𝑖 = 0 if the ith variable is absent in the mth clause.   

Using the approach described in Chapter 3 (3.3), the corresponding Lyapunov function 

and the system dynamics can be formulated as, 
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Energy: 

𝐸 = 𝐶 ∑

[
 
 
 
 

∑ 𝑐𝑚𝑖𝑐𝑚𝑗 cos(𝜙𝑖 − 𝜙𝑗)

𝑁

𝑖,𝑗,𝑖<𝑗

𝑀

𝑚=1

+ ∑ 𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘𝑐𝑚𝑙 cos(𝜙𝑖 − 𝜙𝑗 + 𝜙𝑘 − 𝜙𝑙)

𝑁

𝑖,𝑗,𝑘,𝑙
𝑖<𝑗<𝑘<𝑙

+ 1

]
 
 
 
 

−
𝐶𝑠

2
∑cos(2𝜙𝑖)

𝑁

𝑖=1

 

 

 

 

 

(A15) 

Dynamics: 

d𝜙𝑖

d𝑡
= 𝐶 ∑

[
 
 
 
 

∑𝑐𝑚𝑖𝑐𝑚𝑗 sin(𝜙𝑖 − 𝜙𝑗)

𝑁

𝑗=1

𝑀

𝑚=1

+ ∑ 𝑐𝑚𝑖𝑐𝑚𝑗𝑐𝑚𝑘𝑐𝑚𝑙 sin(𝜙𝑖 − 𝜙𝑗 + 𝜙𝑘 − 𝜙𝑙)

𝑁

𝑖≠𝑗≠𝑘≠𝑙
𝑗<𝑘<𝑙 ]

 
 
 
 

− 𝐶𝑠 sin(2𝜙𝑖) 

 

(A16) 

Equations (A14), (A15), and (A16) are also shown in Table 3.5. 
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Appendix VI 

Verification of the expression for even order interaction (Alternative formulation of 

higher order Ising spin interaction) 

We first numerically verify the formulation shown in Eq. (3.61), for all the possible 

spin configurations for even order interaction up to 20. Figure A3(a) shows the number of 

possible spin configurations for different even order interactions. Figure A3(b) shows the 

errors between the interactions obtained using the proposed formulation and the original 

interactions. For all the cases, the proposed transformation provides the exact spin 

interaction. 

 

Now we will analytically verify the formulation in Eq. (3.61). An Ising spin interaction term 

becomes minimum (= −1) when an odd number of spins in it are −1. With the 2𝑞 spins 

(𝑠1, … , 𝑠2𝑞) of 𝑆2𝑞, (2𝑞
𝑞
) number of 𝑞-order interaction terms (∏ 𝑠𝑖𝑇⊆{1,2,…,𝑛}

|𝑇|=𝑞
𝑠𝑖∈𝑇

) can be 

 

Figure A3. Numerical verification of the proposed formulation for even order spin interactions (4-20). 

(a) Number of possible spin configurations. (b) Sum of absolute errors over all the possible spin 

configurations indicating exact match. 
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produced. Here, (2𝑞
𝑞
) is an even number. We will prove that if any odd number of spins 

among the 2𝑞 spins are −1, i.e., if 𝑆2𝑞 = −1, 
1

2
(2𝑞

𝑞
) number of 𝑞-order terms will be -1. 

Hence, ∑ ∏ 𝑠𝑖𝑠𝑖∈𝑇𝑇⊆{1,2,…,𝑛}

|𝑇|=𝑞

= 0, which will then lead to 𝑓𝑞(. ) = 0. This way, 𝑆2𝑞 = 2𝑓𝑞
2(. ) −

1 = −1 holds. On the contrary, if 𝑆2𝑞 = 1, then ∑ ∏ 𝑠𝑖𝑠𝑖∈𝑇𝑇⊆{1,2,…,𝑛}

|𝑇|=𝑞

≠ 0. In this case, 𝑓𝑞(. ) =

1. Again 𝑆2𝑞 = 2𝑓𝑞
2(. ) − 1 = 1 holds. These 2 conditions can be proved by establishing 

the following identities:  

Identity I: 

∑(
2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 − 2𝑦 − 1

𝑥 − 2𝑟 − 1
) =

1

2
(
2𝑥

𝑥
) 

(A17) 

where 𝑥 ∈ ℤ+; 𝑦, 𝑟 ∈ ℤ0
+; 𝑥 > 𝑦 ≥ 𝑟. 

Identity II: 

∑ (
2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟 − 1
) ≠

1

2
(
2𝑥

𝑥
) 

(A18) 

where 𝑥, 𝑦 ∈ ℤ+; 𝑟 ∈ ℤ0
+; 𝑥 ≥ 𝑦 > 𝑟. 

 

To prove Identity I, we can consider the Vandermonde’s Identity [125] shown below: 
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(
2𝑥

𝑥
) = ∑ (

2𝑦 + 1

𝑟
) (

2𝑥 − 2𝑦 − 1

𝑥 − 𝑟
)

2𝑦+1

𝑟=0

= (
2𝑦 + 1

0
) (

2𝑥 − 2𝑦 − 1

𝑥 − 0
) + (

2𝑦 + 1

1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 1
)

+ (
2𝑦 + 1

2
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2
) + (

2𝑦 + 1

3
) (

2𝑥 − 2𝑦 − 1

𝑥 − 3
) + ⋯

+ (
2𝑦 + 1

2𝑦 − 2
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦 + 2
) + (

2𝑦 + 1

2𝑦 − 1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦 + 1
)

+ (
2𝑦 + 1

2𝑦
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦
) + (

2𝑦 + 1

2𝑦 + 1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦 − 1
) 

 

 

 

(A19) 

where 𝑥 ∈ ℤ+; 𝑦, 𝑟 ∈ ℤ0
+; 𝑥 > 𝑦. This expansion has an even number of terms (= 2𝑦 + 2). 

It can be shown that: 

(
2𝑦 + 1

2𝑦 + 1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦 − 1
) = (

2𝑦 + 1

0
) (

2𝑥 − 2𝑦 − 1

𝑥 − 0
) (A20a) 

(
2𝑦 + 1

2𝑦
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦
) = (

2𝑦 + 1

1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 1
) (A20b) 

(
2𝑦 + 1

2𝑦 − 1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦 + 1
) = (

2𝑦 + 1

2
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2
) (A20c) 

(
2𝑦 + 1

2𝑦 − 2
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦 + 2
) = (

2𝑦 + 1

3
) (

2𝑥 − 2𝑦 − 1

𝑥 − 3
) (A20d) 

Hence, for the series in Eq. (A19), each even entry corresponds to an odd entry over 𝑟. 

Thus, Eq. (A19) can be written as, 

(
2𝑥

𝑥
) = 2 (

2𝑦 + 1

1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 1
) + 2 (

2𝑦 + 1

3
) (

2𝑥 − 2𝑦 − 1

𝑥 − 3
) + ⋯

+ 2(
2𝑦 + 1

2𝑦 − 1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦 + 1
) + 2 (

2𝑦 + 1

2𝑦 + 1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦 − 1
) 

 

(A21) 

Subsequently, 
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(
2𝑦 + 1

1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 1
) + (

2𝑦 + 1

3
) (

2𝑥 − 2𝑦 − 1

𝑥 − 3
) + ⋯

+ (
2𝑦 + 1

2𝑦 − 1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦 + 1
) + (

2𝑦 + 1

2𝑦 + 1
) (

2𝑥 − 2𝑦 − 1

𝑥 − 2𝑦 − 1
) =

1

2
(
2𝑥

𝑥
) 

 

(A22a) 

∑(
2𝑦 + 1

2r + 1
)

y

r=0

(
2𝑥 − 2𝑦 − 1

𝑥 − 2r − 1
) =

1

2
(
2𝑥

𝑥
) 

(A22b) 

where 𝑥 ∈ ℤ+; 𝑦, 𝑟 ∈ ℤ0
+ and 𝑥 > 𝑦. 

Eq. (A22b) is the Identity I.  

 

We will now verify Identity II. Using binomial algebra, we can write: 

∑ (
2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟 − 1
) = ∑ (

2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

[𝑧𝑥−2𝑟−1](1 + 𝑧)2𝑥−2𝑦

= [𝑧𝑥](1 + 𝑧)2𝑥−2𝑦 ∑ (
2𝑦

2𝑟 + 1
) 𝑧2𝑟+1

𝑦−1

𝑟=0

= [𝑧𝑥](1 + 𝑧)2𝑥−2𝑦
1

2
((1 + 𝑧)2𝑦 − (1 − 𝑧)2𝑦)

=
1

2
[𝑧𝑥]((1 + 𝑧)2𝑥 − (1 + 𝑧)2𝑥−2𝑦(1 − 𝑧)2𝑦)

=
1

2
[𝑧𝑥](1 + 𝑧)2𝑥 −

1

2
[𝑧𝑥]((1 + 𝑧)2𝑥−2𝑦(1 − 𝑧)2𝑦) 

 

 

 

 

(A23) 

Eq. (A23) can be written as, 

∑ (
2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟 − 1
) =

1

2
(
2𝑥

𝑥
) −

1

2
∑(−1)𝑟 (

2𝑦

𝑟
)

𝑥

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 𝑟
) 

(A24) 

Now we can consider the following relationship, 
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∑(−1)𝑟 (
2𝑦

𝑟
)

𝑥

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 𝑟
) ≠ 0 

(A25) 

where 𝑥, 𝑦 ∈ ℤ+; 𝑥 ≥ 𝑦. 

Thus, 

∑ (
2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟 − 1
) ≠

1

2
(
2𝑥

𝑥
) 

(A26) 

where 𝑥, 𝑦 ∈ ℤ+; 𝑟 ∈ ℤ0
+ and 𝑥 ≥ 𝑦. 

Eq. (A26) is Identity II.  

 

 

 

 

 

 

 

 

 

 

 



 

134 
 

Appendix VII 

Verification of the expression for odd order interactions (Alternative formulation of 

higher order Ising spin interaction) 

We first numerically verify the transformation shown in Eq. (3.65), for all the 

possible spin configurations for odd order interaction up to 20. Figure A4(a) shows the 

number of possible spin configurations for different odd order interactions. Figure A4(b) 

shows the errors between the interactions obtained using the proposed formulation and 

the original interactions. For all the cases, the proposed formulation provides the exact 

spin interaction. 

 

Now we will analytically verify the formulation in Eq. (3.65). As we discussed earlier, an 

Ising spin interaction term becomes minimum (= −1) when an odd number of spins in it 

are −1. From the 2𝑞 + 1 spins (𝑠1, … , 𝑠2𝑞+1) of 𝑆2𝑞+1, (
2𝑞+1

𝑞
) number of 𝑞-order interaction 

 

Figure A4. Numerical verification of the proposed formulation for odd order spin interactions (3-19). (a) 

Number of possible spin configurations. (b) Sum of absolute errors over all the possible spin 

configurations indicating exact match. 
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terms (∏ 𝑠𝑖𝑇⊆{1,2,…,𝑛}

|𝑇|=𝑞
𝑠𝑖∈𝑇

) and (2𝑞+1
𝑞+1

) number of (𝑞 + 1)-order interaction term (∏ 𝑠𝑖𝑇⊆{1,2,…,𝑛}

|𝑇|=𝑞+1
𝑠𝑖∈𝑇

)  

can be made. We will prove that if 𝑆2𝑞+1 = −1, sum of the 𝑞-order interaction terms will 

have the opposite sign of the sum of the (𝑞 + 1)-order interaction terms. In this way, at a 

minimum 𝑓𝑞(. ) and 𝑓𝑞+1(. ) will have opposite signs and thus 𝑓𝑞(. ) × 𝑓𝑞+1(. )   will map 

𝑆2𝑞+1. In any other cases, they will have the same sign and consequently result 1. These 

2 conditions can be proved by establishing the following identities:  

Identity III: 

[
1

2
(
2𝑥 + 1

𝑥
) − (∑(

2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟 − 1
))]

× [
1

2
(
2𝑥 + 1

𝑥 + 1
) − (∑(

2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟
))] < 0 

 

 

(A27) 

where, 𝑥 ∈ ℤ+; 𝑦, 𝑟 ∈ ℤ0
+ and 𝑥 > 𝑦 ≥ 𝑟. 

Identity IV: 

[
1

2
(
2𝑥 + 1

𝑥
) − (∑ (

2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 − 2𝑦 + 1

𝑥 − 2𝑟 − 1
))]

× [
1

2
(
2𝑥 + 1

𝑥 + 1
) − (∑ (

2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 − 2𝑦 + 1

𝑥 − 2𝑟
))] ≥ 0 

 

 

(A28) 

where, 𝑥, 𝑦 ∈ ℤ+; 𝑟 ∈ ℤ0
+ and 𝑥 ≥ 𝑦 > 𝑟. 

To verify Identity III, using binomial series-based algebra we can write, 
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∑(
2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟 − 1
) = ∑(

2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

[𝑧𝑥−2𝑟−1](1 + 𝑧)2𝑥−2𝑦

= ∑(
2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

[𝑧𝑥]𝑧2𝑟+1(1 + 𝑧)2𝑥−2𝑦

= [𝑧𝑥](1 + 𝑧)2𝑥−2𝑦 ∑(
2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

𝑧2𝑟+1

= [𝑧𝑥](1 + 𝑧)2𝑥−2𝑦
1

2
{(1 + 𝑧)2𝑦+1 − (1 − 𝑧)2𝑦+1}

=
1

2
[𝑧𝑥](1 + 𝑧)2𝑥+1 −

1

2
[𝑧𝑥](1 + 𝑧)2𝑥−2𝑦(1 − 𝑧)2𝑦+1

=
1

2
(
2𝑥 + 1

𝑥
) −

1

2
[𝑧𝑥](1 + 𝑧)2𝑥−2𝑦(1 − 𝑧)2𝑦+1 

 

 

 

 

(A29) 

Similarly, we can write, 

∑(
2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟
) =

1

2
(
2𝑥 + 1

𝑥 + 1
) −

1

2
[𝑧𝑥+1](1 + 𝑧)2𝑥−2𝑦(1 − 𝑧)2𝑦+1 

(A30) 

Thus, 

[
1

2
(
2𝑥 + 1

𝑥
) − (∑(

2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟 − 1
))]

× [
1

2
(
2𝑥 + 1

𝑥 + 1
) − (∑(

2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟
))]

=
1

2
[𝑧𝑥](1 + 𝑧)2𝑥−2𝑦(1 − 𝑧)2𝑦+1 ×

1

2
[𝑧𝑥+1](1 + 𝑧)2𝑥−2𝑦(1 − 𝑧)2𝑦+1

=
1

4
([𝑧𝑥](1 + 𝑧)2𝑥−2𝑦(1 − 𝑧)2𝑦+1) × ([𝑧𝑥+1](1 + 𝑧)2𝑥−2𝑦(1 − 𝑧)2𝑦+1) 

 

 

 

(A31) 

Using combinatorics Eq. (A31) can be written as, 
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[
1

2
(
2𝑥 + 1

𝑥
) − (∑(

2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟 − 1
))]

× [
1

2
(
2𝑥 + 1

𝑥 + 1
) − (∑(

2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟
))]

=
1

4
(∑(−1)𝑟 (

2𝑦 + 1

𝑟
) (

2𝑥 − 2𝑦

𝑥 − 𝑟
)

𝑥

𝑟=0

)(∑(−1)𝑟 (
2𝑦 + 1

𝑟
) (

2𝑥 − 2𝑦

𝑥 + 1 − 𝑟
)

𝑥+1

𝑟=0

) 

 

 

(A32) 

where 𝑥 ∈ ℤ+; 𝑦, 𝑟 ∈ ℤ0
+ and 𝑥 > 𝑦. 

Now we can use the following relationship, 

(∑(−1)𝑟 (
2𝑦 + 1

𝑟
) (

2𝑥 − 2𝑦

𝑥 − 𝑟
)

𝑥

𝑟=0

)(∑(−1)𝑟 (
2𝑦 + 1

𝑟
) (

2𝑥 − 2𝑦

𝑥 + 1 − 𝑟
)

𝑥+1

𝑟=0

) < 0 
(A33) 

Thus, combining Eq. (A32) and Eq. (A33) we can write that, 

[
1

2
(
2𝑥 + 1

𝑥
) − (∑(

2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟 − 1
))]

× [
1

2
(
2𝑥 + 1

𝑥 + 1
) − (∑(

2𝑦 + 1

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 − 2𝑦

𝑥 − 2𝑟
))] < 0 

 

(A34) 

where 𝑥 ∈ ℤ+; 𝑦, 𝑟 ∈ ℤ0
+ and 𝑥 > 𝑦. 

Eq. (A34) is Identity III. 

 

To verify Identity IV, using binomial series-based algebra we can write, 
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∑ (
2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 + 1 − 2𝑦

𝑥 − 2𝑟 − 1
) = ∑ (

2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

[𝑧𝑥−2𝑟−1](1 + 𝑧)2𝑥+1−2𝑦

= ∑ (
2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

[𝑧𝑥]𝑧2𝑟+1(1 + 𝑧)2𝑥+1−2𝑦

= [𝑧𝑥](1 + 𝑧)2𝑥+1−2𝑦 ∑ (
2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

𝑧2𝑟+1

= [𝑧𝑥](1 + 𝑧)2𝑥+1−2𝑦
1

2
{(1 + 𝑧)2𝑦 − (1 − 𝑧)2𝑦}

=
1

2
[𝑧𝑥](1 + 𝑧)2𝑥+1 −

1

2
[𝑧𝑥](1 + 𝑧)2𝑥+1−2𝑦(1 − 𝑧)2𝑦

=
1

2
(
2𝑥 + 1

𝑥
) −

1

2
[𝑧𝑥](1 + 𝑧)2𝑥+1−2𝑦(1 − 𝑧)2𝑦 

 

 

 

 

(A35) 

Similarly, we can write, 

∑ (
2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 + 1 − 2𝑦

𝑥 − 2𝑟
) =

1

2
(
2𝑥 + 1

𝑥 + 1
) −

1

2
[𝑧𝑥+1](1 + 𝑧)2𝑥+1−2𝑦(1 − 𝑧)2𝑦 

(A36) 

Thus, 

[
1

2
(
2𝑥 + 1

𝑥
) − (∑ (

2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 + 1 − 2𝑦

𝑥 − 2𝑟 − 1
))]

× [
1

2
(
2𝑥 + 1

𝑥 + 1
) − (∑ (

2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 + 1 − 2𝑦

𝑥 − 2𝑟
))]

=
1

2
[𝑧𝑥](1 + 𝑧)2𝑥+1−2𝑦(1 − 𝑧)2𝑦 ×

1

2
[𝑧𝑥+1](1 + 𝑧)2𝑥+1−2𝑦(1 − 𝑧)2𝑦

=
1

4
([𝑧𝑥](1 + 𝑧)2𝑥+1−2𝑦(1 − 𝑧)2𝑦) × ([𝑧𝑥+1](1 + 𝑧)2𝑥+1−2𝑦(1 − 𝑧)2𝑦) 

 

 

 

(A37) 

Using combinatorics Eq. (A37) can be written as, 
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[
1

2
(
2𝑥 + 1

𝑥
) − (∑ (

2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 + 1 − 2𝑦

𝑥 − 2𝑟 − 1
))]

× [
1

2
(
2𝑥 + 1

𝑥 + 1
) − (∑ (

2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 + 1 − 2𝑦

𝑥 − 2𝑟
))]

=
1

4
(∑(−1)𝑟 (

2𝑦

𝑟
) (

2𝑥 + 1 − 2𝑦

𝑥 − 𝑟
)

𝑥

𝑟=0

)(∑(−1)𝑟 (
2𝑦

𝑟
) (

2𝑥 + 1 − 2𝑦

𝑥 + 1 − 𝑟
)

𝑥+1

𝑟=0

) 

 

 

(A38) 

where 𝑥 ∈ ℤ+; 𝑦, 𝑟 ∈ ℤ0
+ and 𝑥 ≥ 𝑦. 

Now we will use the following relationship, 

(∑(−1)𝑟 (
2𝑦

𝑟
) (

2𝑥 + 1 − 2𝑦

𝑥 − 𝑟
)

𝑥

𝑟=0

)(∑(−1)𝑟 (
2𝑦

𝑟
) (

2𝑥 + 1 − 2𝑦

𝑥 + 1 − 𝑟
)

𝑥+1

𝑟=0

) ≥ 0 
(A39) 

Combining Eq. (A38) and Eq. (A39) we can write that, 

[
1

2
(
2𝑥 + 1

𝑥
) − (∑ (

2𝑦

2𝑟 + 1
)

𝑦−1

𝑟=0

(
2𝑥 + 1 − 2𝑦

𝑥 − 2𝑟 − 1
))]

× [
1

2
(
2𝑥 + 1

𝑥 + 1
) − (∑(

2𝑦

2𝑟 + 1
)

𝑦

𝑟=0

(
2𝑥 + 1 − 2𝑦

𝑥 − 2𝑟
))] ≥ 0 

 

(A40) 

where 𝑥 ∈ ℤ+; 𝑦, 𝑟 ∈ ℤ0
+ and 𝑥 ≥ 𝑦. 

Eq. (A40) is Identity IV. 
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