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ABSTRACT 
 
The goal of this research is to establish how data made available in a connected vehicle (CV) 
environments can benefit infrastructure providers in performing safety analysis. Specifically, the 
interest is to identify safety hot spots, or locations that are experiencing unexpectedly high 
numbers of crashes, traditionally found through methods using police-reported crash data. This 
process is used to evaluate transportation network safety and plan for safety-related 
improvements. It was expected that CV technology would provide two major improvements over 
the current methods, outlined by the Highway Safety Manual (HSM): 
 

• CV has the potential to detect near-crashes (or conflicts); 
• As a result, CV also has the potential to identify hot spots more proactively than current 

crash prediction models that rely on crash reporting, due to the availability of a much 
larger set of samples 

 
The first step was to evaluate the feasibility of using existing CV datasets to identify hot spots. It 
was found that for this to process be successful in a connected vehicle environment, the 
standards must provide vehicles with a mechanism to alert infrastructure of an event that occurs 
and that vehicles themselves need to be able to recognize crash and near-crash situations using 
their on-board equipment. The focus then shifted to identifying safety-critical events, defined as 
crashes and near-crashes in this context, using data native to the CV standard Basic Safety 
Message (BSM). Three algorithms, trained using naturalistic driving study data, were proposed 
in three separate papers. The first was a pattern matching approach that calculated Euclidean 
distance between observed vehicle acceleration time series and those of some known, pre-
defined actions. The algorithm saw success on a limited data set. Similarly using the same 
dataset, a speed prediction model was used to identify discrepancies between expected speeds 
and observed speeds, flagging groups of observations that were too far off from the expected 
speed. The third and final algorithm was trained on a much larger dataset, utilizing a discrete 
fourier transform and a k-means clustering algorithm to group events into clusters. This was 
successful on a robust dataset.  
 
This compendium of work first, provides a comprehensive discussion of the findings related to 
how connected vehicle technology can benefit highway safety analyses. These findings provide a 
vision and a foundation for future methods and ideas as CV technology and implementation 
matures. Second it explores how crashes and near-crashes can be detected in connected vehicle 
environments. All of the hypothesized benefits of using connected vehicles for hot spot 
identification hinge on the ability to successfully detect crash and crash-surrogate events. As a 
result, a major focus of this research was modeling crashes and near-crashes in order to describe 
them in terms of connected vehicle data elements. Three creative methods were proposed as 
possible approaches to identifying these types of events, including a pattern matching approach, 
a speed prediction time series based approach, and a discrete fourier transform approach. Each of 
them have benefits and drawbacks in terms of both complexity and accuracy, but serve as 
excellent starting points for further research and the lessons learned are applicable and should be 
considered as additional models are proposed.	
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INTRODUCTION 
 
RESEARCH MOTIVATION AND PROBLEM DESCRIPTION 
 
The goal of this research is to establish how connected vehicle (CV) environments can benefit 
infrastructure providers in performing safety analysis. Specifically, the interest is to identify 
safety hot spots, traditionally found through police-reported crash data and used to evaluate 
transportation network safety. It was expected that CV technology would provide two major 
improvements over the current methods, outlined by the Highway Safety Manual (HSM): 
 

• CV has the ability to detect surrogate safety measures such as near-crashes; 
• As a result, CV also has the ability to identify hot spots more proactively than current 

crash prediction models, such as those outlined in the HSM. 
 
The first step was to evaluate the feasibility of using existing CV datasets to accomplish this 
goal. It was found that some preliminary research needs to be done to effectively answer the 
original research question though findings indicate it is likely possible to accomplish this goal. 
The focus then shifted to identifying safety-critical events, defined as crashes and near-crashes in 
this context, using data native to the Basic Safety Message (BSM). Current event flags native to 
BSMs and similar applications use simple acceleration thresholds to flag potential events. Like 
all decision boundaries, these thresholds come with a trade-off between recall, the percentage of 
true events that get flagged, and precision, the percentage of flagged events that are true. 
Namely, lower thresholds have high recall and low precision and vice versa for high thresholds. 
As a result, a simple threshold was deemed unusable in a CV application and more robust 
models were required that considered how the vehicle dynamics changed over short periods of 
time. Successive papers were written exploring this issue in-depth. 
 
DETECTION OF SURROGATE SAFETY MEASURES 
 
Typically, safety is quantified using crashes as the primary metric. This is because data is readily 
available and there is no debate that these are events that are dangerous and should be reduced. 
However, a challenge with crashes is that numerous factors frequently go into these events and 
they often have an element of randomness or (bad) luck. This makes studying causal factors and 
trends difficult, both in a mathematical modeling sense, and in the sense that it takes time to 
build confidence in the numbers that are observed. It is also highly reactive since people need to 
get into crashes before they can be studied. 
 
Crash surrogates are measurable events that can be collected and are theoretically, proportional 
to the number of crashes at a site. Commonly proposed crash surrogates include near-crashes and 
traffic conflicts. Historically, the trouble with these is that actually collecting data on these 
events as they occur is exceedingly difficult or expensive. But, connected vehicle technology 
perhaps offers a means to reliably collect data on surrogate events in the form of data projected 
in the BSM. The objectives of this research were first, to raise awareness that this is a research 
need, and second to begin modeling crashes and near-crashes that have been observed in other 
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studies in terms of data elements native to the BSM. The modeling process was carried out using 
data sets from the Naturalistic Driving Study.  
 
USING CONNECTED VEHICLES TO IDENTIFY HOT SPOTS 
 
Hot Spot Identification is a key responsibility of infrastructure providers (like state DOTs). The 
process involves collecting crash data and building predictive models that estimate expected 
crash counts based on a mixture of roadway features and the number of crashes observed 
historically over a recent time period. The expected crash count is treated as a measurement of 
crash risk and sites with exceedingly high crash risk relative to an expected value are flagged as 
hot spots. This is a process that traditionally uses crash data as an input and requires three to five 
years’ of data to have statistical confidence in the trends that are being observed. 
 
Since connected vehicle technology is likely to be able to pick up crash surrogates on a network 
scale, there is reason to believe that data can be utilized to carry out the hot spot identification 
process once the technology is widely deployed. This should provide infrastructure providers 
with a more complete picture of what is occurring at specific locations. For example, if a site 
experiences exceedingly high numbers of near-crashes over a six-month period but only a 
modest number of crashes, that may still indicate that the site has a high risk for crashes in the 
long term. The expectation is that connected vehicle systems will allow for infrastructure 
providers to more proactively identify hot spots, rather than waiting for people to get into a 
critical number of crashes before realizing there is an issue. 
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OVERVIEW OF CONTENTS 
 
Before proceeding to the research papers included in this compendium, it is necessary to discuss 
the importance of this research and the approaches that were taken. The papers are centered 
specifically on the approach and result of the individual method chosen but doesn’t include some 
of the reasons those approaches were necessary. This will provide an overall discussion of the 
problem as well as how each research paper falls into the overall framework of the compendium. 
 
The first paper in this compendium, titled “A Case for using Connected Vehicle Data to Support 
Improved Infrastructure Safety Hot Spot Identification”, discusses why there is a need for 
improving the hot spot identification process and how this emerging technology can address the 
present issues with existing methods. It also highlights additional research needs before a method 
using connected vehicles can be fully implemented. This paper is under review for presentation 
and publication at Transportation Research Board for the annual meeting in 2017. 
 
One of the conclusions from the first paper was that methods to identify safety-critical events in 
connected vehicle environments were critical to successfully implementing a hot spot 
identification process and many other CV safety applications. The following three papers 
explored approaches to modeling crash and near-crash events by using longitudinal acceleration, 
a data element native to the BSM. 
 
The second paper, “Pattern Matching Longitudinal Acceleration in Time Series Data to Identify 
Crashes in Naturalistic Driving Data,” employs a time series filter that identifies portions of the 
longitudinal acceleration time series that do not fit into a set of expected actions. This approach 
is novel and was successful on a limited data sample but perhaps the most impactful finding from 
this was the approach: to classify known or expected actions or behavior and search for sections 
that did not align with expected actions to flag potential crashes. A variety of potential further 
direction will be discussed in the paper along with a complete description of the approach. 
 
The third paper, “Identification of Safety-Critical Events in a Connected Vehicle Environment,” 
uses a physical model to predict a vehicle’s speed over a short time period using an observed 
speed and acceleration. If the predicted speed deviated too much from the observed speed, the 
location was flagged for further analysis. Then, using characteristics of the deviations, including 
magnitude of deviation and length of deviation, a logistic regression model predicted the 
probability that a deviation was a crash. Since additional data arrived after this document was 
submitted for publication, there is a supplemental attachment, briefly describing this algorithm’s 
performance on a more robust data set is provided immediately after the document. 
 
The final paper, “Identification of Safety-Critical Events in Connected Vehicle Environments 
using a Discrete Fourier Transform (DFT),” takes a similar approach as the pattern recognition 
methodology with a few key improvements. The first improvement is that a Discrete Fourier 
Transform is executed on the subsequences of longitudinal accelerations, which is a common 
approach in pattern recognition. It also applies an unsupervised K-means clustering algorithm to 
flag events. This resulted in fewer engineering judgment decisions and required less background 
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work into establishing normally expected patterns as the algorithms were able to decide what 
was normal and expected.  
 
Finally, a discussion of some lessons learned throughout the extent of the research will be 
provided along with a discussion of the contributions to general knowledge made by the 
research. Suggestions for further direction in both the event detection work, and the hot spot 
identification work are described in detail. Both topics can be researched extensively and there is 
potential that methods could replace current safety analyses in the future once connected vehicle 
technology becomes more widely deployed and additional findings are made. Finally, some 
concluding remarks will be made.  
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CLASSIFICATION OF CRASH EVENTS FROM KINEMATIC 
VEHICLE DATA 
 
In connected vehicle environments kinematic vehicle data will be collected in high volumes at 
high frequencies. To maximize the usefulness of this data, it is critical to be able to understand 
what is happening as data is observed. In other words, translating what is being seen in the data 
into something that practitioners can use to understand what is actually happening is one of the 
things that could make this data so valuable. One of the more interesting problems is having the 
ability to identify unsafe actions including crashes and near-crashes. In the case of crashes, these 
events are rare and frequently underreported while for near-crashes the events are not even 
recorded.  
 
Both crashes and near-crashes can likely be used in varying capacities to evaluate safety at sites 
and connected vehicles offer an opportunity to address some of the issues regarding the lack of 
data. However, for the technology to be successfully used to evaluate safety, it is important to 
know when a crash actually occurred through the technology. Three algorithms were developed, 
utilizing kinematic data native to the Basic Safety Message, to identify crashes and near-crashes. 
This chapter will outline the approach and the lessons learned when developing those algorithms. 
Included will be a discussion of characteristics of the data and the impacts they had on algorithm 
design, data processing techniques that were used to counteract issues that were faced, and the 
classification techniques tested. The algorithms themselves and how this work falls into the 
larger overall framework is discussed in the following chapters. 
 
DATA CHARACTERISTICS 
 
The purpose of this section is to discuss the characteristics of the crash data received from the 
Naturalistic Driving Study. NDS data was in two groups. Both times data was acquired, an 
“event” set was acquired and a test set was acquired. The event set was where the crashes and 
near-crashes were, while the test set was simply driving that had no events occur. This was used 
for false positive testing to determine how frequently the model or algorithm was triggered.  
 
The first set of data was received in complete trips. That is, the thirteen crash events received, 
were trips that culminated in a crash after some period of time, ranging from 2 minutes to 45 
minutes. This set was used to train the data, with the baseline negative values being the time the 
subject vehicle spent driving before it entered the crash situation. Similarly, the normal driving 
received consisted of trips ranging from 35 to 75 minutes during which no events occurred. This 
was used for false positive testing after the algorithm was trained. Crashes were not held back in 
the test set due to a lack of data. There were only 13 crash events and many of them were 
different in nature. 
 
The second set of data was slightly more robust featuring 92 events, this time consisting of both 
crashes and near-crashes. It was also requested that a variety of crash types and speeds were used 
to best capture as many situations that may occur as possible. These events were delivered in 30-
second epochs as were 50 30-second baseline epochs. These were used as a training set. 50 
additional hours’ worth of normal driving was held back for the false positive testing. 
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The data was delivered in a .csv format with a file for each trip. Each entry was an observation of 
kinematic data elements from the DAS device. The frequency of observations was 10 Hz (ten 
times per second) though there were some fields that were collected at slower frequencies. For 
example, one of the speed fields was acquired from the vehicle network which may have only be 
providing data to the DAS at a frequency of 5 Hz.  
 
DEFINITION OF SUCCESS IN CLASSIFICATION OF EVENTS 
 
For typical classification models, metrics like precision and recall are commonly presented to 
show quality of classification. For this application, there are some issues with those metrics 
though. This requires a further look at the four possible ways to classify an observation or 
window – those would be, true positive, true negative, false positive (Type I Error), and false 
negative (Type II Error).  
A positive event in this case is a crash or near-crash. A true positive is a model-classification of a 
crash or near-crash when a crash occurs. A false negative is a model classification of no-crash 
when indeed there was a crash occurring during the observation. The issue here is that a crash 
isn’t always going to occur in a single observation or window. A crash could easily span two 
windows but the model may only classify a single one of them correctly as a crash. While 
normally the window that it didn’t flag would be considered a false negative, the model was 
successful at finding the event and therefore should not be penalized for not flagging the entire 
event. This issue is illustrated in Figure 1 where the blue arrows represent a window the 
longitudinal acceleration time-series could be broken into and the red portion represents the 
crash event.  
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Figure 1. Crash Classification 

 
Changing the definition of a crash event to the point of impact, reverses the problem where 
perhaps a crash is classified into two windows but the model sees one as a false positive. At the 
very least this disparity needs to be kept in mind when evaluating a method’s performance, but in 
reality, this can be solved through some post-processing and heuristic indicators. For example, 
instead of defining classification success in terms of total windows, just define it in terms of 
crashes. So if there were 13 crash events and 12 were correctly identified in some capacity, – i.e. 
at least one of the windows spanning the crash were flagged by the model, then the recall is 
12/13. Measures taken for each model will be described in detail where appropriate. 
 
The negative values had their own issues. Negatives could either be correctly classified as true 
negatives or incorrectly classified as false positives. First of all, it is unclear what the number of 
true negatives even is for the continuous data, which is included in the denominator of metrics 
like specificity. So for a 20-minute trip with no events, how many true negatives are in the time 
series? Is it the 1200 observations that occur?... The 120 ten-second windows?... Or something 
else? This decision impacts the presented error rates and doesn’t really make sense for the 
continuous data anyways. It was decided that false positives should be classified per unit of time 
(i.e. 1 false positive per 10 hours of driving).  
 
Additionally, false positives needed to be grouped if they were related to one another. Two 
windows in a row getting flagged should be treated as a single false positive since they are likely 
related and could just be an artifact of how the window was divided. Again, some sort of 
heuristic or correlation analysis needs to be applied in order to determine if two flagged windows 
are related to one another.  
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It was found that limiting the rate at which false positives is extremely important. This is a 
simple matter of exposure. Crashes and near-crashes are highly infrequent relative to the amount 
of time people spend driving normally. For example, if, hypothetically, an algorithm was to have 
1 false positive for every 10 hours of driving and crashes and near-crashes were to occur every 
100 hours of driving, there would still be 10 false positives for every true positive the algorithm 
flags.  
 
CLASSIFICATION 
 
Many current methods used to detect crashes and near-crashes from kinematic data use a single 
observation to flag potential events. Current NDS flags as well as the BSM part II vehicle safety 
extension use an acceleration threshold as one of the flags for the purposes of flagging potential 
events. The trade-off between sensitivity and severity for a single variable threshold, like 
longitudinal acceleration is easy to see – as the threshold goes up, the recall of events goes down 
while the severity of the events found go up. For a threshold to be sufficiently high to limit the 
number of false positives, the added benefit of using this method over crash data for network 
screening is diminished. Alternatively, if the threshold is sufficiently low, false positives would 
dominate the flagged events since the amount of time drivers are exposed to normal driving is 
substantially larger than the amount of time drivers spend engaging in crashes, near-crashes, and 
other unsafe behaviors. 
 
Additionally, an issue that may be solvable but nonetheless is present is the fact that it can be 
difficult to determine if multiple flags are part of the same event overarching event. So, if 3 
observations are classified as an event over a 1 second period they are probably all from the 
same occurrence and should be grouped into a single event flag. Rules need to be developed to 
determine the acceptable length of time for multiple flagged observations to be grouped and 
classified as a single event.  
 
Evaluating observations individually ignores the fact that the data in Basic Safety Messages are 
time-series in nature. In other words, the context in which an acceleration is observed should be 
taken into account. A jump in acceleration from -0.3 g to 0.3 g is not the same as a jump from 
0.2 g to 0.3 g over the same period of time. This suggested that pattern recognition 
methodologies or time-series regression models, such as an ARIMA model, may be more 
appropriate. 
 
Pattern recognition approaches, demonstrated in the proposed pattern matching algorithm and the 
Discrete Fourier Transform algorithm follow similar processes. First, each time series is broken 
into windows of pre-defined lengths. For the pattern matching approach, a filtering technique 
was applied to remove any window that appeared normal, which was defined using accelerations 
during known actions. For the DFT method, a clustering technique was used to sort between 
normal driving and the windows with events between them. 
 
Other models were also tested after breaking the time series into windows. Features were 
extracted, such as maximum/minimum acceleration in the window, and predictive modeling 
approaches were taken including a model using Classification and Regression Trees (CART) and 
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logistic regression. Neither model performed well enough to use such a simple technique which 
indicated that the additional processing conducted was warranted. These modeling approaches 
are clearly better from an implementation perspective so any improvements to these would 
constitute a substantial benefit to the field. 
 
The speed Prediction followed an approach more similar to forecasting looking at the time-series 
while considering autoregressive factors. Specifically, an ARIMA model was tested and for the 
resulting coefficient on the acceleration at time t-1 was close enough to 0.1 s (the time between 
observations) that a physical model using 0.1 s was used instead due to transparency and general 
benefits to conceptual understanding. 
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ABSTRACT 
 
Transportation infrastructure providers are responsible for supporting the safety of road users. 
Part of this responsibility is a process called network screening, in which potentially unsafe 
locations are flagged for additional analysis. Current network screening methodologies are very 
reactive and rely on crash databases that are incomplete and contain invalid entries. Connected 
vehicle technology is an emerging technology that is likely to change the way the network 
screening process is carried out. With vehicles broadcasting second-by-second kinematic data to 
roadside equipment, infrastructure providers can identify crashes quickly and more accurately, 
while also providing the ability to identify less severe events such as near-crashes and evasive 
maneuvers. Discussed is a high-level overview of how connected vehicle technology will impact 
and benefit the network screening process, as well as additional research needs arising from this 
topic. While this technology will be beneficial to safety screening processes, it will introduce 
new challenges and is likely completely change the way the way the process is carried out. With 
the vast amount of data being generated on a second-by-second basis, mining the data for crashes 
and near-crashes becomes a relevant topic to explore while there are evident trade-offs between 
how to collect the data and whether or not to store the data.  
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INTRODUCTION 
 
Infrastructure providers, such as state and local Departments of Transportation (DOTs), are 
responsible for ensuring the safety of their constituents who use their facilities. A key component 
of this responsibility is network screening, a process outlined by the Highway Safety Manual (1) 
that identifies hot spots, or sites that are experiencing an unusually high number of crashes, often 
pointing to an infrastructure deficiency at the site. 
 
Connected Vehicle (CV) technology has the ability to significantly improve the network 
screening process to evaluate the safety of road networks. In a CV environment, vehicles will be 
broadcasting enormous amounts of data to other vehicles as well as to roadside infrastructure 
controlled by the Department of Transportation. This data describing the experience of each 
individual vehicle could give infrastructure providers the ability to identify hot spots much faster 
than is possible using current network screening methods. 
  
The purpose of this paper is to first, outline drawbacks of current methods, second, describe how 
a CV environment will provide a richer set of data that will be able to address some of these 
issues, and third, discuss some of the barriers and new issues that arise when implementing and 
managing a system like this in a CV environment. Finally data from the Safety Pilot Model 
Deployment (SPMD) CV testbed in Ann Arbor, MI (2) is used to provide an example case of 
network screening using vehicular data under a CV environment. 
 
NETWORK SCREENING 
 
Network screening is a procedure outlined by the Highway Safety Manual (HSM) as part of the 
Roadway Safety Management Process (RSMP), to identify potential hot spots. The purpose is 
simply to identify sites that are experiencing more crashes than expected for further analysis. 
Later parts of the RSMP are meant to diagnose the issues, and develop alternatives that are likely 
to reduce the number of crashes a site experiences (1). 
 
Data Input 
 
There are two sets of data used to conduct network screening: crash data and roadway inventory 
data. Crash data is a database of crashes populated by police crash reports. The data schema will 
vary by agency, but will generally include crash location, type, and severity. Roadway inventory 
data is a database of roadway features, including elements such as lane width and Annual 
Average Daily Traffic (AADT). 
  
The chain of custody of crash data varies greatly between states and jurisdictions. When the 
police are called to respond to a crash, they are responsible for filing a crash report either on 
paper or digitally through a laptop or tablet. These reports will consist of data describing crash 
time, location, type, and severity as well as a verbal account from the parties involved, when 
available. Crash location will sometimes be provided in GPS coordinates and sometimes be 
provided using reference points (e.g. "Route 29 Southbound: Milepost 43"). For crash type and 
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severity fields, the officer is responsible for selecting an option from a predefined set of choices 
listed in the report. There is also usually a box where the officer can write notes and additional 
descriptions that may be necessary. If the crash reports are digital, they are often uploaded 
directly to a database system, but if the reports are paper, they must be manually entered into a 
database. 
 
Network Screening In Practice 
 
Methods 
 
The HSM outlines a variety of methods for network screening, but considers the most robust 
method to be the Excess Expected Average Crash Frequency method with the Empirical Bayes 
(EB) Adjustment, referred to from here on as the EB Method, because it accounts for regression-
to-the-mean (RTM) and identifies a threshold indicating sites experiencing more crashes than 
expected. 
 
The listed data needs from the HSM for this method are: 
 

• Historical Crash Data by Location by year 
• Traffic Volume by year 
• Basic Site Characteristics 
• Safety Performance Functions (SPFs) 

 
The first three items listed are included in the Crash and Roadway Inventory Databases. The 
SPFs are predictive models used to predict the number of crashes at a site based on specific 
characteristics. Traditionally these are calculated using negative binomial regression, however a 
variety of additional methods to predict crash frequency at sites have been tested including 
artificial neural networks, support vector machines, and Bayesian networks, among others (3–7). 
An example of an SPF is shown in equation 1. The SPF is applicable for estimating all multi-
vehicle collisions at a 3-leg, urban, stop-controlled intersection with a major AADT of less than 
45,700 vehicles, and minor AADT of 9,300 vehicles. Each NB regression model has an 
overdispersion parameter, 𝑘. 
 

 𝑁#$%� = 𝑒()*.*,-).))×//0123456-7.)8×//0129:56 (1) 
 
SPFs are very specific to specific regions and are rarely transferable to other regions. Many 
states make their own SPFs (8–10) while others have the option to develop a calibration factor to 
apply to the existing HSM SPFs. 
  
Using the SPF, and traffic volume data, the predicted crash frequency, 𝑁#$%; at the site is 
calculated. These predictions can be modified using Crash Modification Factors (CMFs) to 
account for additional roadway features not captured by the SPF's prediction (e.g. red light 
cameras at an intersection) Next, a correction factor, 𝐶=, is calculated for each year of crash data 
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being used, which is the ratio of  crashes predicted by the SPF in year 1 to the prediction in year 
n. 
 
The EB weight factor, 𝑤, is then calculated in equation 2. 
 

 𝑤 =	
1

𝑘 𝑁#$%;_=C
=D)

 (2) 

 
The excess expected crash frequency at the site is then calculated by taking the difference 
between the expected and the observed number of crashes at a specific site. Sites are then 
prioritized for further evaluation by using their expected excess crash frequencies (1, 11). 
 
Disadvantages 
 
In its current state, there are variety of drawbacks to the network screening process. Many of 
them stem from the data source, but some are also inherent to the methodologies used. This 
section will describe these issues in more detail. 
 
The chain of custody of crash data is the source of a substantial number of errors in both the 
quality and completeness of the crash database. For a crash to enter the database it must first be 
reported to the police. Drivers may have numerous reasons for not reporting crashes. If they were 
doing something illegal (driving on a suspended license, impaired driving, etc.) they may choose 
to leave the scene out of fear of consequences. If it is a single-vehicle collision or a minor multi-
vehicle collision, drivers will often handle the incident through insurance (or not at all) rather 
than involving the police. Additionally, in the event that the police are called, entry to the 
database may be withheld due to a reporting threshold. The threshold varies by jurisdiction, but 
the responding officer is responsible for estimating the dollar value of damage and deciding 
whether or not it exceeds the state or locality's threshold. All of these factors combine to make 
crash databases biased toward more severe events. While there may be an argument to be made 
for a heightened interest in severe crashes, it is likely that some of the crashes that are not getting 
reported to the database may have similar causal factors to the severe crashes. 
 
For the crashes that do get reported, there are numerous points in the reporting process that can 
lead to erroneous values in the data. Most of the information the officer collects in the report is 
based on accounts of the events from those who were involved, which can easily be distorted. 
Whether the account is purposely altered or inadvertently altered because of lapses in memory or 
differences in perspective, the officer won't be able to tell what happened unless he or she was a 
witness.  
 
Other errors on the form can usually be attributed "human error", but these errors can be 
significant. Locations can be erroneous if the officer were to use unclear or incorrect reference 
markers. Even for digital forms where the GPS location can be pulled directly from the device, 
the location can be incorrect. For example, if parts of the report were not filled out at the scene of 
the crash, the GPS coordinates may not be accurate. If an officer is unclear on what a field means 
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but fills it out anyways, all of his or her crash reports can be reasonably subject to doubt. For 
paper reports, mistakes during manual entry into the database could be a significant source of 
inaccuracy. 
 
It can be difficult, if-not impossible, for a user of the data to tell if the report is valid or not 
without dedicating resources and effort to case-by-case investigations. Statistical language 
processing has been used to search for inconsistencies in crash reports between written account 
and the values recorded in the boxes (12) . Additionally, comparisons of the crash reports to 
roadway GIS databases (13, 14) and hospital records (15, 16) have been used to validate crash 
databases. While these methods may help find some inconsistencies, they do not necessarily help 
find hot spots, because they just remove data from a database that is already relatively sparse, 
rather than being able to fix and use the entries. 
 
Aside from data inaccuracies, there are also a few deficiencies inherent to the methods 
themselves. The most significant drawback is that they are reactive, requiring enough time and 
crashes to occur before being able to confidently locate a hot spot. Most of this is due to the 
RTM effect observed in yearly crash counts with few observations relative to the exposure 
(traffic volume). Regardless, they require people to drive in unsafe conditions for 3-5 years 
before the problem can even start to be addressed. While it may be difficult to get a truly 
preemptive method to identify these locations, it would clearly be beneficial to reduce this time if 
possible.  
 
Another issue inherent to the network screening process that it is calculating expected crashes 
and using the excess of the expected crash frequency to identify sites. However, expected crashes 
are the result of features present on the road. So if a feature of a site is increasing the number of 
expected crashes, that doesn't necessarily mean it will be flagged. Locations experiencing more 
crashes that cannot be explained by the model using existing features of the road are the ones 
being prioritized, but it does not identify locations with high expected crashes that are not 
exceeding the expectation in observed crashes. 
 
Crash Surrogates 
 
Safety evaluation using crash surrogates is also considered to be a promising research area. 
Crash surrogates are measurements that are correlated to the number of observed crashes and can 
therefore be used in place of crash events when performing safety assessments. Since a crash is 
considered the most severe event type, it is also the rarest event type, however many more 
events, such as near-crashes, occur that could result in a crash but do not result in a crash for a 
variety of reasons, such as the driver performing an evasive maneuver. A perfect crash surrogate 
is directly proportional to the number of crashes observed at a site and occurs more frequently 
than a crash (17). With additional observations, yearly counts are less impacted by RTM. 
 
Near-crashes and traffic conflicts are two commonly used surrogates for crashes in the safety 
community. Near-crashes are events with similar causal factors to crashes, meaning that they 
occur due to similar precipitating events but do not necessarily result in a crash due to a driver's 
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ability to react in time or some element of luck (18). Meanwhile, traffic conflicts are defined as 
"an observable situation in which two or more road users approach each other in space and time 
to such an extent that there is risk of collision if their movements remain unchanged" (19). 
 
Both of near-crashes (17, 18) and traffic conflicts (20, 21) have been shown to be useful for 
safety applications including network screening but collecting data on these on a large scale 
remains a challenge. In addition to simple human observation, computer vision techniques (22) 
and Naturalistic Driving Studies (23, 24) have been used to identify traffic conflicts and near-
crashes but the bottom line is that data on surrogate measures cannot currently be collected on a 
network-wide scale. This is a major barrier to using crash surrogates to identify hot spots. The 
authors believe that connected vehicles provide DOTs with the best opportunity to access 
surrogate safety measures on a large scale. 
 
CONNECTED VEHICLES 
 
Overview of Technology and Deployments 
 
Connected vehicles (CVs) are an emerging technology centered around providing vehicles with 
the ability to communicate with other vehicles as well as roadside infrastructure. Each vehicle 
will be equipped with on-board equipment (OBEs) which collects data from the vehicle and 
broadcasts that data to other vehicles and roadside equipment (RSEs). The OBE is also 
responsible for receiving and interpreting messages for CV applications. 
  
The primary data broadcasted is called the Basic Safety Message (BSM). This message consists 
of two parts and is broadcast by vehicles 10 times per second according to the current standard. 
Table 1 shows the data elements in Part 1 of the Basic Safety Message. 
 

Table 1 - Basic Safety Message Part 1 

Message ID Speed 
Heading Acceleration 
Latitude Longitude 

Yaw Rate Steering Wheel Angle 
 
The BSM Part II, sometimes called the Vehicle Safety Extension, is not included in every BSM. 
Part II consists of a set of event flags, and when one of these event flags is triggered, the vehicle 
immediately broadcasts a BSM with the Part II extension. The event flags listed in the standard 
are presented in Table 2. 
 
 

Table 2 - Basic Safety Message Part 2 

Active hazard lights Stop line violation 
Anti-lock brake activation Air bag deployment 
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Vehicle is an active emergency 
response vehicle 

Vehicle is known to be carrying 
hazardous material 

Stability control activation Traction control activation 
Vehicle lights change Wipers change 

Flat tire Vehicle becomes disabled 
Vehicle deceleration exceeds 

0.4g  

 
 
There are also other non-event related reasons for sending a BSM Part II, however these will not 
be elaborated on as they are less relevant to the presented work (25).  
  
There have been a variety of global efforts to research and implement this technology (26). In the 
United States, there are, have been, or will be connected vehicle test deployments in numerous 
locations focusing on different applications but maintaining interoperability among the 
environments (27, 28). 
 
The first large-scale deployment of this technology in the US was called the Safety Pilot Model 
Deployment (SPMD) and took place in Ann Arbor, Michigan. The 1-year pilot study consisted 
of more than 2000 subject vehicles equipped with some level of CV capabilities (2). There are 
other testbeds across the United States focusing specifically on different applications for 
connected vehicles and this shows a commitment by the USDOT to move forward with the 
technology. 
 
CV For Network Screening 
 
Concept and Purpose 
 
CV technology provides a unique opportunity to reevaluate the historically used methods to 
evaluate road safety. The primary benefit will be its ability to collect large-scale network-wide, 
second-by-second data on crash surrogates.  
 
It has also been shown that data elements native to the BSM can be leveraged to identify crashes 
and near-crashes (24, 29). This means that using BSMs collected by RSEs in connected 
environments, an infrastructure provider could reasonably be able to detect crash surrogates, like 
near-crashes. The purpose of an identification algorithm should not be to replicate the crash 
databases that states one, already have access to, and two, can be extremely flawed as discussed 
earlier. The purpose is to identify all events that occur and could be considered safety-critical. 
This includes crashes, near-crashes, evasive maneuvers, and traffic conflicts. 
 
CV technology can be used for identifying both short-term (e.g. debris in the road, overgrown 
tree blocking sight distance, etc.) and long-term issues (e.g. mistimed signal, poorly aligned 
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roadway, etc.) with infrastructure by searching for anomalies in the BSMs received at specific 
locations, depending on how those anomalies are distributed across time and location. 
 
The recent push to study connected vehicle environments in a variety of capacities by the 
USDOT and some states shows a commitment to implementing this technology in the near-
future. CV technology has such a wide-range of applications that the financial burden of 
implementing this technology would not fall directly on any one division of the infrastructure 
provider. 
 
How CV Technology Addresses The Disadvantages Of Current Network Screening Techniques 
 
CV Technology addresses many of the disadvantages of current network screening methods 
previously discussed, while not adding additional disadvantages other than perhaps a required 
expertise in handling big data to conduct analysis. For reference, the key disadvantages of 
current techniques that were discussed were: 
 

• Reactive method the requires a long period of data collection before hot spots can be 
identified. This is due to the tendency of observed crash frequencies to regress-to-the-
mean. 

• Quality of input data in the method is subject to human error in multiple points 
throughout the collection process. It is also difficult to validate. 

• Methods are biased toward more severe events, such as crashes where damage exceeds a 
reporting threshold or crashes with injuries/fatalities. These are unlikely to be the only 
indicators of unsafe conditions and tend to be the most infrequent events observed at 
sites. 

 
Identification of surrogate safety events through machine learning models and other creative 
algorithms will shift the errors in data collected from human error to model error and sensor 
error. While there is still error present, as the modeling techniques and sensors equipped to the 
vehicles are both improved the error rate will decrease. The error rates and model tendencies can 
also be more easily quantified and accounted for than currently possible with police-reported 
crash data. Additionally, improved models can be retroactively applied to older data to correct 
findings from previous studies. Conversely, crash data in its current capacity is unlikely to be 
adjusted, and even less likely to be accurately adjusted, once a short period of time has elapsed 
after the crash.  
 
Using CV technology also will make network screening a less reactive process. Current methods 
using police-reported crash data require a certain number of severe accidents to occur before a 
hot spot can even be identified. One key argument for the use of surrogates is that more events 
occur, which means the frequency of those observations, whether it be near-crashes, traffic 
conflicts, or another surrogate will vary less from year-to-year. By increasing the sample size of 
yearly events, the variations that do occur in observed frequency will have less impact on the 
findings and allow for more confidence in the short-term results. CV technology provides a 
resource to collect crash surrogates on a large-scale which has never been readily available in the 
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past. While this still requires some events to occur before the problem can be identified and 
action can be taken, the hope is that the amount of time that process takes is significantly 
reduced. 
 
Crashes have historically been used because they are all that has been available, but that doesn't 
necessarily mean that they are the best or only indicators of locations that are most likely to 
experience an abundance of crashes in the future. Using surrogates collected by CV technology 
will provide a different perspective on safety than crash data alone. While the primary goal of 
safety analysis is to reduce the number or injuries and fatalities on the road, there are also 
economic and operational benefits to preventing all crashes. The goal of this is not to simply 
replicate the network screening results that could already be achieved using traditional methods. 
By collecting surrogates, seemingly less severe issues can also be identified. 
 
Additional Research Needs 
 
Since CV technology is relatively new, there are a variety of research needs that must be 
addressed before it can be applied to safety screening. Some can be addressed now, while others 
may require more widespread deployment for assessment to become feasible. 
 
First, it is necessary to define crashes, near-crashes, and other surrogates in terms of the Basic 
Safety Message data elements. Understanding and modeling the patterns present in the events 
using the observed speeds, accelerations, and other kinematic data is critical to apply this 
technology for many safety applications, not just screening. Additionally differences between 
sites, vehicle types and drivers could impact how these algorithms perform and that should be 
quantified. This research is feasible to do now, using either Naturalistic Driving Studies (24, 
29)or Crash tests, in fact, doing the research in these settings would likely be preferable. This is 
because ground truth data is available and can be used to verify findings and model predictions, 
while CV environments don't have the same luxury. 
 
Second, it is important to determine how to apply algorithms that identify surrogate events in a 
live CV environment. CV environments will be producing huge amounts of data every second 
and infrastructure providers looking to carry out machine learning and other applications will 
need the appropriate computing capabilities and expertise. One alternative could be to have a 
vehicle's OBE search for events as it collects data from the vehicle network and project flags as 
part of the BSM Part II safety extension. This would offer two benefits. First each individual 
vehicle's OBE would serve as a way to carry out parallel computing in real-time rather than 
relying on the DOT to do that computing post-hoc. Second, it would help avoid some potential 
issues with the BSM standard designed to keep users' privacy. Specifically, the Message ID field 
changes frequently so vehicles cannot be tracked across the network, but this could get in the 
way of models that rely on BSMs collected in a series.  
 
Another alternative is for the DOT to carry out this work on BSMs that get stored in a database. 
This would require an abundance of computing capabilities and storage space but would also 
provide benefits of its own. The biggest benefit is that saved BSMs can be analyzed using new 
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models and algorithms as they get developed, rather than being stuck with the events provided by 
event flags in older versions of the standards. A system-level analysis of both of these 
alternatives must be carried out, because it is not clear which is the preferred alternative, 
especially once additional factors such as cost implications to a range of different stakeholders 
are considered. This research is critical to start before wide-spread implementation because it 
will be very difficult to change approaches after implementation. CV testbeds have the 
opportunity to explore this in their system designs and developers of CV standards should be 
involved as well. 
 
Third, it should be determined how to use the detected events to find hot spots, and prioritize 
them for further diagnosis and countermeasure development. The safety community needs to 
first determine if current methods can, or even should, be modified to using events found in CV 
technology. With this new information, the definition of a hot spot may be redefined to 
something more applicable or relevant, and the methods to locate them could be completely 
altered as a result. This research will likely need to wait until widespread deployments and data 
from connected vehicles is available, and will be ongoing once deployment occurs. 
 
Finally, how CVs can be used in the rest of the RSMP described by the HSM could be 
investigated. For example, if detection models are able to differentiate between crash types and 
predict severity, it is likely that the diagnosis phase, where the cause of the hot spot is 
determined, could also be augmented with these technological improvements. 
 
Sample Application 
 
An illustrative example is performed to explore the feasibility of this and explore how this topic 
can be approached in early deployments. The purpose is simply to provide some lessons learned 
when using the data and demonstrate that this data can address some of the issues discussed, 
particularly the volume of data issue. 
  
Two months (April and October) of BSM data was acquired from the Safety Pilot Model 
Deployment CV testbed in Ann Arbor, Michigan. Data was collected from vehicles through a 
variety of different sensor systems. Some vehicles were fully equipped to send and receive 
BSMs while other simply had aftermarket devices which only broadcast and saved the BSMs. 
The equipment type impacted how the kinematic data was obtained, as some of it was derived 
from GPS locations, while others were collected directly from the vehicle network. Roughly 
2,000 vehicles, or an estimated 2% of vehicles in Ann Arbor were equipped with some level of 
connected technology equipped (2). The data was collected and stored in a flat data file and had 
over half a billion BSM observations. 
 
When searching for clear outliers in kinematic data, such as acceleration during a safety-critical 
event, the type of sensor collecting the data matters. Specifically, speeds and accelerations 
derived from GPS position can be high due to GPS errors in addition to extreme events. When 
CV technology is manufactured in vehicles, this will likely no longer be an issue as this data will 
be acquired from the vehicle network. For the purposes of this exploration, BSMs observed off 
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the road were removed as well as accelerations that were equal to the artificial maximum 
enforced by the OBEs. There may still be erroneous BSMs due to smaller sensor errors that 
happened to flag locations on the roadway. While this introduces a new type of data quality 
issue, technology improvements and post-processing methods could be developed to account for 
this. 
 
Another issue with analyzing the SPMD data in a spatial manner was a spatial bias. Much of the 
recruiting took place in two locations, University of Michigan's medical center, and the 
University of Michigan Transportation Research Institute. This was done to help with recruiting 
and to maximize interactions of equipped vehicles for the purpose of testing applications. As a 
result, most locations with a high-density of events were in those areas. The spatial distribution 
of the BSMs collected are clearly not representative of the spatial distribution of traffic volumes 
in Ann Arbor's entire network, which restricts a true, network-wide analysis from being carried 
out. To counteract this issue, a single route, Washtenaw Avenue, was analyzed.  
  
Washtenaw Avenue, running diagonally in figure 1, was selected due to its relatively high 
volume of BSMs and because it is a direct route to and from the medical center, one of the 
primary points of recruitment for the study. The selected segment was six miles long and ran 
between the medical center in the northwest and ends around Hamilton street in the southeast. 
There is one interchange around mile 3 with Route 23. 
 

 
Figure 2 - Washentaw Avenue. Base map Source: Google Maps® 

 
Events were found along Washentaw Avenue by using a longitudinal acceleration threshold of 
0.6	𝑔′. This is one of the event flags published and used in the 100-Car NDS to flag potential 
events (23) . The validity of using a simple threshold is certainly debatable, as discussed in the 
research needs, however, for the purposes of this simple case that is merely meant to demonstrate 
the type of data that CV technology provides and a high-level overview of a possible use case, 
the authors believe it is acceptable. 
 

University	of	Michigan	
Medical	Center

Interchange	at	
MP	3

Hamilton	St
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In total 178 BSMs were flagged as possible events in just the two months with limited market 
penetration of CV technology on a restricted study area. The events were placed into 0.2 mile-
long bins along the route, and the number of events, and density of events, in each bin was then 
calculated. Figure 2, shows the density of events, calculated using a kernel density estimation 
technique, along Washentaw Avenue, with "Mile 0" being the Northwest corner in Figure 1 and 
"Mile 6" being the Southeast corner. 
 

 
Figure 3 - Location and Density of Events 

 
It can be seen that in just two months and with an estimated 2% of vehicles, peaks are starting to 
form with clusters of Event Flags. The cluster around 0.5 miles is likely due to medical center 
and University of Michigan as it is close to campus and has emergency vehicles frequently. The 
dip around 3 miles illustrates another challenge as it aligns perfectly with Route 23, which likely 
means all of the BSMs from that area were assigned to Route 23 in the database. The other peak 
around 3.6 is a segment with an abundance of driveways which may be a source of the problem. 
 
If those specific peaks persist remains to be seen as do their meaning in the context of roadway 
safety. This will become clearer as additional connected vehicle data is collected and further 
research is conducted in this area. The key takeaway with this is that with the expected vast 
amounts of data being received, it is quite conceivable that safety issues can be identified 
quickly. 
 
CONCLUSION 
 
Network screening is a process that many transportation infrastructure providers are responsible 
for carrying out. Since CV technology will most likely be implemented system-wide due to the 
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benefits it offers in all aspects of transportation, it makes sense to explore using the technology 
to carry out network screening. 
 
Established network screening practices are the way they are in order to counteract historic data 
limitations. CV technology will provide DOTs with the ability to access a more holistic data set, 
rather than relying on crash reports and the disadvantages that come along with them in terms of 
error and bias. As a result, a more complete view of network safety can be attained faster than is 
currently possible. 
 
Challenges remain before network screening can be carried out using CVs, as demonstrated by 
the Safety Pilot Model Deployment case study presented. Additional research needs to be done 
to establish details into carrying out the actual network screening methodology, and the 
technology itself needs to progress to the point that abundant, high-quality data is collected on a 
network-wide basis. Nonetheless, there is widespread commitment to CV technology in both the 
public and private sector, and research is only raising interest in implementation as further 
applications are developed and benefits are identified. 
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ABSTRACT 
This paper uses kinematic vehicle data collected from the SHRP2 naturalistic driving study to 
develop a technique for identifying crashes and safety critical events using longitudinal 
acceleration. The method treats the acceleration data as a time series, and applies pattern 
matching to classify readings into different driving activities. Groups of unclassified readings 
were considered potential crashes – or safety critical events. Thirteen crash events were acquired 
and twelve were successfully identified as crashes by using this method. Additionally there were 
three false positives, though one could be defined as a safety-critical event that did not result in a 
crash. Applications of this include data mining large datasets for abnormal driving actions and 
detecting events in real-time in a connected vehicle environment. 
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INTRODUCTION 
 
The purpose of this paper is to show that by applying a pattern matching technique to 
longitudinal vehicle acceleration data, one can detect crashes and near-crashes. The primary 
application of this algorithm would be to detect crashes and near-crashes in a connected vehicle 
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environment, where in-vehicle kinematic data would be passively collected by government-
owned roadside infrastructure. 
 
In-vehicle kinematic data (3-direction acceleration, speed, position, etc), has been limited mostly 
to a single vehicle until recently. Wireless technology has made the availability of this data a 
possibility on a larger scale, and it is expected to become even more common in the future with 
the introduction of connected vehicle technology (1). One benefit of these vehicle-based datasets 
is that we will have more insight than ever into crashes and pre-crash scenarios. This type of data 
can also provide insight into near-crashes and other safety-critical events, both of which have 
been studied as surrogate safety measures with similar causal factors as crashes (2, 3), but have 
not been well defined or detectable. 
 
Detection of crashes and near-crashes using kinematic vehicle data is a relatively new problem. 
It becomes much more relevant with both the introduction of connected vehicle technology, and 
the availability naturalistic driving data. Given that it is new, it is unclear the best approach to 
take in detecting them. 
 
 While the long-term application of detecting crashes and near-crashes is in connected vehicle 
environments, Naturalistic Driving Data is more available and is a viable substitute with a few 
applications that are also relevant to detecting crashes. The SHRP2 Naturalistic Driving Study 
conducted at Virginia Tech Transportation Institute (VTTI), is a large scale study where the 
subjects have been involved in numerous crash and near-crash events. In this study a set of 6 
different triggers were developed to flag potential crashes, two of which were related to the 
vehicles’ accelerations and one of which was yaw rate, both available in connected vehicle data. 
The other triggers were possible due to other equipment being used in the study, such as radar 
and an event button, neither of which will be available in connected vehicles. Additionally, this 
study had camera in the vehicle, for an analyst to verify that the trigger was truly a crash. The 
three triggers that could be feasible in early connected vehicle environments where some, but not 
all, vehicles are equipped with the capabilities are longitudinal acceleration, lateral acceleration, 
and yaw rate, which simply had thresholds to flag the events (2, 4). In those cases, either, there is 
a low threshold and the manpower required to process flagged events is very high incurring a 
large cost, or the threshold is too high and many events won’t be identified. Thus, there is a 
tradeoff between the desire to detect every crash or safety critical event and the desire to 
minimize false alarms. Additionally the use of a single threshold fails to account for the fact that 
acceleration readings should be treated as a time-series since there is autocorrelation present in 
the data. Other modeling and data mining techniques, such as logistic regression or classification 
trees may have potential, but cannot address the fact that this data may need to be treated as a 
time series. 
 
Other potentially relevant literature would be the development of automated crash detection 
systems, but when considering the purpose of both systems the fit is not so great. The purpose of 
automated detection systems is to alert the proper authorities upon the occurrence of an event 
without sending false alarms and calling the police and other first responders for nothing. The 
majority of the crashes that get reported to police and input into the crash database would also 
cross the thresholds used by VTTI, however the goal is to detect those in addition to near-crashes 
and the ones that do not get reported or do not cross the reporting threshold made by state police 
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(high property damage or personal injury). False alarms do not have the same drawbacks for 
hotspot detection as they do for automated detection systems. 
 
Subsequence matching is the pattern matching technique used in time series data to detect 
occurrences of a specific subsequence within a new time series or another portion of the same 
time series. Pattern matching has very rarely been applied to vehicle accelerations, and only to 
determine vehicle location and route choices (5). In this study, longitudinal acceleration readings 
for naturalistic driving trips were matched against five different normal driving patterns that 
were observed while subjects were driving. Once normal driving patterns were assigned to 
different subsections of the time series, the unassigned values were examined for crashes.  
 
Applications of detecting crashes using this data set will vary. More accurate data mining 
methods can benefit future studies where this type of data is collected, since this procedure could 
minimize the time and effort required by analysts to identify safety-critical events that occur in 
similar connected vehicle or naturalistic driving studies while only slightly increasing the 
computational cost. Additionally, emerging connected vehicle technology means this data will 
soon be available from the majority of vehicles. This means that comprehensive network 
screening methods can use locations that frequently have vehicles flagged by this technique to 
identify hot spots along the network, without relying on police crash reports.  
 
This study should be treated as a proof of concept, showing the viability of this method and that 
it is potentially better than employing a simple threshold in order to detect crashes and near-
crashes. Throughout the methodology, it will become evident that numerous decisions had to be 
made, that can be optimized in further studies. Given the data limitations when designing this 
detection algorithm, it did not make sense to spend too much time on that problem, since it was 
not likely to hold up as the optimal solution in an expanded dataset. This paper shows the 
algorithm can work, however it can also likely be improved upon with additional analysis and 
more data. 

DATA SET 
 
The Naturalistic Driving Study (NDS) is part of the Strategic Highway Research Program 
(SHRP II) and is being managed by Virginia Tech Transportation Institute (VTTI). The study 
consists of 2,300 vehicles in six locations across the United States (6). Thirteen trips with crashes 
were acquired from VTTI for use in this study. NDS data provided included two types of files. 
The first consisted of two video files, a front camera view (Figure 1a) and rear camera view 
(Figure 1b). The second part of the data was an event log with kinematic data collected at a 
frequency of 10 Hz. These were connected by a timestamp on the front camera view where 
anything that is seen in the video could be matched to a specific reading. 
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Figure 1a - Front Camera View 

 

 
Figure 1b - Rear Camera View 

 
Trip lengths varied with some being less than two minute long trips while the longest was over 
thirty minutes. Each trip concluded in the subject vehicle being involved in some type of crash, 
most frequently a rear-end collision. Crash types and distribution of conditions are shown in 
Table 1.  

Table 1 – Crash Characteristics 
Crash Type Count Conditions Count 
Rear End 9 Day 11 
Sideswipe 1 Night 2 

Lane Departure 1 Clear 11 
Angle 2 Precipitation 2 

 
 
Kinematic data was collected using a data acquisition system installed in the vehicle. This data 
included: 

• Speed 
• x, y, z – direction acceleration 
• Latitude and Longitude 
• Heading 
• Lane position 
• Pitch, Roll, Yaw 
• Timestamp 
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Video was watched for each of the crash events acquired and the type of crash and time of crash 
was recorded and added to the event file. 
Clearly with only 13 crashes with which to design the algorithm, it is not possible to find the 
optimal solution. For this reason this should be considered a proof of concept and pending 
further testing to determine how much better the algorithm truly is over the threshold. This will 
be discussed further in the results and conclusions section.  
 
 

METHODOLOGY 
 
It makes intuitive sense that a vehicle’s current acceleration will depend on what it was in the 
immediate past, especially for normal driving tasks where actions are deliberate and repeated 
throughout a trip. Seeing an acceleration drop from -0.2g’s to -0.3g’s is very different than an 
acceleration dropping from 0.3g’s to -0.3g’s over the same time period. Using pattern 
recognition, this difference can be captured, while employing a reasonable threshold will not 
identify that.  
 
Figure 2 shows the longitudinal acceleration (g’s) for a trip that took place primarily on the 
highway. In this trip the vehicle had to stop suddenly on the freeway around time 125 seconds, 
which can be seen by the rougher acceleration pattern at that point. The vehicle then rear-ended 
the vehicle it was following at a high speed at time 170 seconds, where it can be seen that the 
acceleration dropped to -3 g’s upon impact.  

 
Figure 2 - Sample Time Series of Longitudinal Accelerations, Rear End Crash at Time 170 Seconds 
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Figure 3 shows a panel of 4 other crashes events. It can be seen that the y-axis values vary from 
crash to crash, and will depend on a combination of crash type, type of vehicle involved, and 
speed at impact. Thus, simply implementing threshold can lead to issues when trying to detect 
crashes in this dataset and similar datasets, forcing the analyst into a tradeoff of selecting a high 
threshold and missing lower severity crashes, or selecting a low threshold and having false 
positives. In the NDS setting, false crash readings can be screened by video data, but in other 
environments without corresponding video data, this will not be possible. 

 
Figure 3- Some Acceleration Profiles during Crashes 

 
 
By examining figure 2 again, it can be seen that certain patterns appear to repeat themselves 
throughout the trip. Based on that observation, it was hypothesized that if one could develop an 
algorithm to identify or filter out the normal driving actions, one would be left with less common 
driving activities such as crashes and near-crashes, which will not follow a consistent pattern. 
 
Using the video data from three different trips, five baseline time series were selected to 
represent five different common driving actions. The primary selection criterion for the baselines 
was watching different videos to find different examples of vehicles performing these actions 
and extracting that subsequence from the time series. Those actions include, accelerating from a 
stop, accelerating to adjust speed, constant speed, braking to adjust speed, and braking with the 
intent of stopping. The selected baselines are shown in figure 4. Sensitivity analysis was done, 
with different series selected as baselines, and with different numbers of baselines. Using too few 
baselines will result in numerous stretches being unable to be identified, while too many 
baselines can lead to confusion about what type of action is happening at a specific point.  
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Figure 4 - Selected Baselines 

The euclidean distance between the baseline and a portion of the time series was calculated for 
every stretch of 12 readings (~1.2 seconds) using a sliding window performing an exhaustive 
search for each subsequence along the time series. The decision to use 1.2 seconds was a 
somewhat arbitrary one that dictated many of the subsequent decisions. However that length was 
chosen because it was short enough to capture the majority of drivers’ actions, and not so long 
that it could capture many additional actions over one time series. 
 

 

d = 	 (bL-yL)P 

Where b = baseline vector 
y = test vector 

 
 
Each window was matched to a baseline that had the minimum euclidean distance, provided that 
distance was no larger than d = 0.5. If no baseline was matched with the window, the stretch was 
marked as unidentified, to be reviewed later. The baseline was settled upon after testing multiple 
candidate baselines. After no apparent difference in the results between different baselines tested, 
the candidate baseline with the closest to the chosen length of 12 readings was selected. 
 
Since a sliding window method was used, every individual point was pattern matched 12 times 
and thus, may have been associated with multiple patterns if it occurred during a transition 
between actions. The solution is to assign each individual point as part of one of the five actions 
or as unidentified, based on the results of the twelve sliding windows. If six or more of the 
windows the reading was a part of identified it as a specific action, the point was assigned to that 
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action. Otherwise, the action was listed as unidentified. Six was settled on as a threshold through 
sensitivity analysis and because it ensured that the majority of the windows indicated the point 
was a part of the action.  
 
Figure 5 shows a crash (black dots) compared to the baselines from figure 4. Just by inspection, 
it can be seen that the pattern quickly deviates from all of the baselines. Any set of points that 
had more than eight unidentified readings in a row were examined further to see what had 
occurred at those times. 

  
Figure 5 - Crash comparison (Black Dots) with baseline readings 

 
RESULTS AND CONCLUSIONS 

 
Pattern matching had very positive preliminary results identifying 12/13 crashes while producing 
only three false positives. Upon further inspection, the unidentified crash was a very low-speed, 
rear-end collision that did not exceed a deceleration of -0.3 g’s at the point of impact. 
Additionally, the false positives occurred at explainable points upon reviewing the video. The 
first occurred when a vehicle went over a speed bump and the second occurred when the vehicle 
(acceleration series shown in figure 2) was forced to stop suddenly on the freeway which could 
be defined as a safety-critical event and arguably should be detected to inspect if it is a frequent 
occurrence on that segment. The last occurred when a vehicle began accelerating from a stop and 
had to quickly stop to avoid rear-ending the lead vehicle. 
The pattern matching results were then compared to the results of using two different thresholds 
as identifiers of events. The results were favorable for the pattern matching technique. Table 2 
shows the number of events correctly identified, in addition to the number of false positives 
detected, by the pattern matching technique, in addition to thresholds of 0.6g’s and 0.4g’s.  
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Table 2 – Method Comparison 
 Pattern Matching Threshold 0.6g's Threshold 0.4g's 

Detection Rate 12/13 10/13 11/13 
False Positives 3 3 5 

 
It should be noted that pattern matching and thresholds did not always detect the same false 
positives. In general the pattern matching technique’s false positives tended to be either near-
crashes or safety conflicts, while for the thresholds, this was not necessarily the case, especially 
with the lower threshold of 0.4 g’s. Additionally, a challenge with using the thresholds was that 
since a single value had to be crossed, it was sometimes difficult to tell if two violations were 
related, while the algorithm was developed with a logical way to account for successive 
indications of crashes.  
 
At numerous points throughout the methodology sensitivity analysis was brought up as the 
justification for decisions made. A complete sensitivity analysis is necessary but it is important 
to keep in mind that the algorithm was only designed on 13 crashes, so finding the optimal 
values to use in the algorithms is not going to be possible on a general basis. That being said, 
decisions had to be made on what distance metric to use, number of baselines to use and their 
value, length of windows, and criteria for the classification of unidentified points, among a few 
other things. Sensitivity analysis was done and it was found that many of the choices made at 
different points of the algorithm have a range of acceptable decisions, but are for the most part, 
related. In other words, the selected length of the window is going to impact later steps in the 
algorithm such as the value of the Euclidean distance.  
 
In this study, only longitudinal acceleration was examined to identify crashes. However it is 
likely that other data categories collected may be able to improve the capabilities of this method 
jointly, such as lateral acceleration, vertical acceleration, or yaw rate. For example, in the case of 
the vehicle traveling over a speed bump, it is possible that an algorithm for the vertical 
acceleration could potentially detect that and prevent the false positive.  
 
While this on the surface appears to be highly successful, it is necessary to test the entire 
algorithm and process on more trips to see if the method holds. While fine-tuning of the 
algorithm is clearly necessary, this paper does show that this method can be used to detect 
crashes in an environment where acceleration data is available on a large scale. This means 
safety analysis may no longer require police crash reports, and by detecting lower severity, near-
crashes and safety-critical events, it could be possible to identify hot spots – unsafe portions of 
roadway due to infrastructure or operational issues – more quickly than waiting for crashes to 
occur and for police reports to get processed.  
 
It is currently not possible to say if there are certain situations where this algorithm will fail or 
certain situations where the algorithm majorly outperforms another method. For example, there 
were only two trips where the subject vehicle ever entered any sort of heavy traffic congestion 
and those were both for short periods of time during which the subjects both crashed. Basically, 
the algorithm may not be possible to completely fine tune until connected vehicle is available on 
a large scale. 
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Overall, the results of this indicate that pattern matching longitudinal acceleration data can 
potentially be an improvement over simple acceleration thresholds when detecting crashes, near-
crashes, and other safety critical events. Further research must be done to locate patterns within 
the lateral and vertical accelerations readings to determine if the combined results could improve 
the accuracy of this technique. Additionally more computationally efficient pattern matching 
techniques must be explored if this were to be implemented on a large scale and further 
sensitivity analysis needs to be done. 
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ABSTRACT 
 
 Presented in this paper is a 5-step heuristic algorithm that can identify safety-critical 
events, such as crashes, near-crashes, and other safety related events, using kinematic data of a 
single vehicle. This kinematic data contains only data elements outlined in the connected vehicle 
standards.  Naturalistic driving study data was used as a surrogate for connected vehicle data to 
design the algorithm. The algorithm first estimates speed at a future time using speed and 
acceleration at a previous time. If this is done across a very short time-span, major discrepancies 
between the predicted speed and the actual speed could indicate a safety-critical event occurred. 
Events with such discrepancies are flagged. A logistic regression model was then constructed to 
predict the probability of a flagged event being a crash or near-crash. The algorithm showed 
promising results on a limited data set and should be treated as a proof-of-concept until further 
validation can take place.  
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INTRODUCTION 
 
 High resolution, kinematic vehicle data (second-by-second speed, acceleration, yaw, etc.) 
is becoming more available than ever to transportation researchers, engineers and policy makers. 
With this influx of data, there are a considerable number of potential benefits to a wide range of 
safety applications, such as real-time emergency response or screening the network for safety hot 
spots. However, for these benefits to be realized, there is a need to first be able to mine the 
kinematic data to identify when and where crashes and near-crashes have occurred.  

The motivation behind this paper was to develop ways to identify safety-critical events, 
defined in this context as crashes, near-crashes, and other unsafe vehicle maneuvers, in a 
partially-saturated connected vehicle environment. In a partially saturated environment, only a 
small subset of the entire active vehicle fleet will be broadcasting and receiving kinematic data, 
in the form of a standardized, Basic Safety Message (BSM) [1]. The primary effect of the 
constraint imposed by a partially saturated environment (which is expected to exist for many 
years following a potential mandate of vehicular on-board equipment by NHTSA), in this 
application, is that time-to-collision (TTC) and other metrics describing the interaction between a 
lead and a following vehicle cannot be applied.  

A heuristic algorithm has been designed to detect safety-critical events in a simple and 
efficient manner. The algorithm focuses purely on speed and acceleration values of a single 
vehicle, collected in time-series, both elements included in the BSM broadcast by connected 
vehicles [1]. The benefit to focusing on a single vehicle is that this algorithm can be deployed 
without relying on a wide deployment of connected vehicle technology.  The output provides a 
set of potential safety-critical events with an associated probability that the identified event is 
safety-critical.   

It should be emphasized that this paper is a proof-of-concept meant to show that a.) there 
is merit to being able to identify safety-critical events using kinematic vehicle data of a single 
vehicle, and b.) it can be done by creatively processing the time series information projected 
based on the BSM of an individual vehicle. Given that there is only a limited sample size of such 
data currently available, the authors do not intend to find the optimal solution. Rather, the goal is 
to show that there is potential even with a limited data set without any capabilities for validation. 
Thorough validation with a larger data set and expansion of this methodology will be designated 
to a future paper when more data becomes available. 

In this paper, first, background information relevant to connected vehicles and the 
identification of crashes and near-crashes, will be outlined. Next the algorithm steps will be 
presented and their intended purpose will be detailed. The algorithm’s performance will then be 
reported using an example, safety-related application. Finally, limitations and future direction 
will be discussed.  
 
BACKGROUND 
 
Kinematic Data Sources 
 
 Connected vehicle technology is an emerging vehicle technology that will allow 
equipped vehicles to communicate with other equipped vehicles and roadside infrastructure. This 
communication comes in the form of standardized messages, one of which is called the Basic 
Safety Message (BSM), which is projected at 10 Hz and contains the kinematic data necessary to 
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detect the occurrence of a safety-critical event [1]. Testbeds for connected vehicles exist in 
multiple locations both within the US [2,3] and around the rest of the world [4]. This technology 
is currently in a prototype development and implementation phase, but is likely to penetrate the 
commercial market in the future. Early estimates have projected that as many as 75% of new cars 
could be equipped with connected vehicle technology by 2020 [6].  
 Another source of kinematic data are naturalistic driving studies (NDS)[7,8], in which 
subjects’ vehicles were retrofitted with data-acquisition systems, radar, and video cameras. 
While these studies are not connected vehicle studies, they collect similar data at the same 
frequency, and they still consist of real data, collected in a naturalistic setting, rather than a 
controlled experiment. In naturalistic settings, crashes, near-crashes, and other safety-critical 
events can (and do) occur. The presence of a large number of test subjects and video data make 
these studies advantageous for training a classification model, because there are numerous events 
that occurred, and they could be validated using the videos. 
 
Identification of Crashes and Near-Crashes 
 
 The goal of this algorithm is to identify safety-critical events that occur in partially 
saturated connected vehicle environments where only a single vehicle data would be available 
rather than a data set for a pair of adjacent vehicles. So, for example, in the connected vehicle 
testbed in Ann Arbor, MI, only an estimated 2% of the vehicle fleet has the technology equipped 
[2]. Additionally, it is not anticipated that radar will be a standard piece of equipment in a 
connected vehicle. Consequently, relying on the communication capabilities or radar to derive 
TTC is not going to be feasible. This has not been reflected in previously published methods for 
identifying crashes and/or near-crashes.  
 The 100-Car Naturalistic driving study was one of the first settings where a method to 
identify crashes and near-crashes was necessary. Table 1 shows the triggers Virginia Tech 
Transportation Institute (VTTI) used to identify potential events that occurred in the 100-Car 
Study, as well as the expanded follow-up study, the SHRP II Naturalistic Driving Study. The 
percent of valid events identified is the percentage of true positives that the trigger was able to 
account for, while the percent of identified events that were invalid was the percent of events 
identified by the trigger that were not crashes or near-crashes. The unit “g” stands for 
gravitational acceleration. 

While these triggers are very suitable for the NDS purposes, they have limitations that 
prevent their application in a connected vehicle setting. First the TTC thresholds, as well as the 
event button (which was a button that allowed users to manually alert VTTI to the occurrence of 
a crash or near-crash) cannot be used in a partially saturated connected vehicle setting. Second, 
these triggers are very conservative because this specific study had video recordings of its 
subjects. This means that any event that the trigger specifies can be validated, or invalidated, by 
reviewing a corresponding video. As stated in Table 1, 66.4% of the time when the Longitudinal 
Acceleration threshold was exceeded, it was a false positive. Similarly there was no crash or 
near-crash 91.3% of the time when the Lateral Acceleration threshold was exceeded. Meanwhile, 
those two thresholds combined detected less than 50% of all crashes experienced in the 100-Car 
study. The prediction accuracy experienced here would be similar when applying those two 
thresholds to a connected vehicle study, but the high false alarm rate seen in the NDS 
implementations was only acceptable because there is video to validate any events flagged by the 
triggers. 
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Table 1 - VTTI Event Triggers and Corresponding Performance, (6) 

Trigger Description 

Percent of 
Valid Events 

Identified 
(Recall) 

Percent of 
Identified 

Events that 
were Invalid 
(1-Precision) 

Lateral 
Acceleration 

Lateral Motion equal to or greater than 0.7 g. 3.5 91.3 

Longitudinal 
Acceleration 

Acceleration or Deceleration equal to or greater than 0.6 
g. 
Acceleration or deceleration equal to or greater than 0.5 g 
coupled with a forward TTC of 4 s or less. 
All longitudinal decelerations between 0.4 g and 0.5 g 
coupled with a forward TTC ≤ 4 s, and with a 
corresponding forward range value at the minimum TTC 
not greater than 100 ft. 

44.7 66.4 

Event Button 
Activated by the driver pressing a button located by the 
rearview mirror when an event occurred that the driver 
deemed critical. 

8.4 69.9 

Forward TTC 

Acceleration or deceleration ≥ 0.5 g coupled with a 
forward TTC of 4 seconds or less. 
All longitudinal decelerations between 0.4 g and 0.5 g 
coupled with a forward TTC ≤ 4 s, and with a 
corresponding forward range value at the minimum TTC 
not greater than 100 ft. 

56.4 86.4 

Rear TTC 

Any rear TTC trigger value of 2 s or less that also had a 
corresponding rear range distance of ≤ 50 ft AND any 
rear TTC trigger value in which the absolute acceleration 
of the following vehicle is greater than 0.3 g. 

4.6 59.9 

Yaw Rate 

Any value greater than or Equal to a plus AND minus 4-
degree change in heading (i.e., vehicle must return to the 
same general direction of travel) within a 3-s window of 
time. 

21.7 91.1 

 
 

 Two additional studies had similar goals and were able to achieve reasonable 
classification rates for crash and near-crash events but they relied on radar data, or other 
information on the interaction between lead and following vehicles. The first was done using 
radar data from the 100 Car NDS study and showed that the relationship between Range Rate 
(speed moving toward radar target) and Range, could achieve a decision boundary that was 
accurate 74% of the time in identifying crashes or near-crashes, with only 20% false alarms [6]. 
Talebpour et al. [8] also devised an algorithm using data collected in the NGSim study [9] to 
identify near-crashes using the distribution of individual drivers’ longitudinal accelerations and 
their interactions with lead and following vehicles. Again, the reliance on information from a 
lead and following vehicle make this a less feasible approach until there is a high market 
penetration of the connected vehicle technology. 
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 Wu and Thor [10] suggested that a safety frontier of a vehicle that experiences a high 
braking event could be used to identify whether or not that hard braking resulted in a safety-
related event. The safety frontier is calculated by determining required deceleration to stop 
before hitting the lead vehicle and the deceleration actually experienced. Again, this requires 
information on lead and following vehicles which is not something that can be accurately 
assessed in a partially saturated connected vehicle environment.  
 Wu and Jovanis [11] presented a 4-step process to identify surrogate events, or events 
that have a positive correlation to a crash, using NDS data.  The proposed process involved a 
preliminary screen of kinematic data, a chow test to classify crashes by intersection and non-
intersection, and then a secondary screening. A model was then developed to predict the 
conditional probability of an observed surrogate event being a crash, under certain 
circumstances. It isn’t clear what the false positive rate is when applied to non-crash or non-near-
crash scenarios (i.e. how many times will this trigger over 10 hours of driving with no safety-
critical events), and it’s unknown what the scalability of this process into a big data environment 
is, but this could be another potential way to identify crashes observed in BSMs because the 
methodology is limited to kinematic data.  
 An event similar to the near-crash is the traffic conflict, an incident where a crash would 
occur barring one or more vehicles involved performing an evasive maneuver, such as hard 
braking or a sudden change of trajectory. Traffic conflicts can vary by perceived severity, from 
minor conflicts to serious conflicts depending on how close the event is to a collision, often 
measure in the form of TTC. Serious conflicts and near-crashes are synonymous, so near-crashes 
are a specific type of traffic conflict. These events have been used in numerous studies as 
surrogates for crashes since they are much more common than crashes but often provide the 
same insight if they can be captured. The problem is actually capturing these events, as they 
require observation, which can be time consuming and involves subjective judgment to identify 
[12]. Computer vision analysis techniques can be utilized to intake video data from deployed 
cameras and automatically track vehicles. They can be used to identify traffic conflicts by 
predicting future vehicle positions and estimating when two vehicles would collide. This requires 
the deployment of cameras and software to track vehicles, but is a good way to achieve 
consistency in defining conflicts and avoids having to designate time to watch video and manual 
record conflicts. It also can successfully measure vehicle speeds, which can in turn be used to 
measure TTC, acceleration, and jerk [13,14].  
 In summary, numerous substantial work had been done to automatically identify when 
and where different events that have safety implications are occurring using emerging 
technology. Many of the previous studies have had interesting findings and solid methodologies, 
but cannot necessarily be used as stand-alone methods to identify when and where safety-critical 
events are occurring without relying on information on vehicle interactions.  
 
METHODOLOGY 
 
Data 
 
 In this study, time series and video data was acquired from the 100-Car Study [6] on 11 
trips with crashes and 14 trips without crashes. Each trip with a crash in it had a time-series data 
file with more than 50 data elements as well as two video files, one from a camera facing out the 
front windshield (Figure 1), and one from a camera facing out the rear windshield. The 
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timestamp in the bottom left corner of the front video is how observations in the data file were 
matched to points in the videos.  
 

 
Figure 1 - Front Video of a Trip in the 100 Car Naturalistic Driving Study 

 
 The data that was used was the vehicle’s acceleration, derived from a GPS unit equipped 
on the vehicle, and vehicle speed, which was collected from the vehicle’s data bus. The speed 
field was collected at varying frequencies ranging from 10 Hz, to 1 Hz. For the speeds collected 
at less than 10 Hz, the values of speed were interpolated, and the collection frequency was 
recorded. Other strings missing values were handled in a similar manner as long as they were not 
for more than 1 second. If they were longer than 1 second, the time series was broken and the 
resulting pieces were analyzed individually. 
 The distribution of crash types is shown in Table 2.  The sample size is very small and 
the majority of the crashes are rear end crashes. As a result, the algorithm is focused on speed 
and longitudinal acceleration, though future work can modify the algorithm to include lateral 
acceleration, yaw rate, braking, and numerous other variables. For this reason, this paper must be 
treated as a proof-of-concept and not something that is ready for use in a real setting until more 
data can be acquired. However if the results hold on a valid data set, this is a simple process with 
high accuracy that can easily be expanded upon.  
 

Table 2 - Crash Type Distribution 

Crash Type Count 
Rear End 7 
Sideswipe – Same Direction 1 
Lane Departure 1 
Angle 2 

 
 For the 14 normal driving trips, these trips had no crashes or near-crashes, and were used 
to establish a false positive rate. This data consisted of over 10 hours of driving in total across all 
of the trips. For the trips with crashes, the time spent driving before the crash was also used to 
test for false positives. This time varied between the acquired data and ranged from less than 2 
minutes, to more than 40 minutes. 
 
Algorithm Purpose and Development 
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 In general, this algorithm estimates what a vehicle’s future speed should be, given a 
current speed and acceleration. Then, if the estimate and the future speed are not within a certain 
margin of error, the observation is flagged as a potentially safety-critical event. Finally, a logistic 
regression model was built to predict the probability of a flagged observation being safety-
critical, using the length of the flagged event and the extent at which it exceeded the allowable 
margin of error. This section will outline the steps in the proposed algorithm, while discussing 
the purpose and functionality of each step. The algorithm detects safety-critical events using the 
following process: 
 

1. Predict speed at a future time, given current speed and acceleration in a time series. The 
speed and acceleration time series data must be collected at a high frequency.   
 

𝑆#$%;RST%;_T-) = 𝑆/STUVW_T + ∆𝑡	𝑎T 
 

S = Speed (m/s), 
a = Acceleration (m/s2), 

t = Time 
 

This step implements a well-known physical model to describe future speed based on 
current speed and average acceleration over a given time period. This calculation can be made 
over an entire vehicle’s time series. The key assumption is that, if ∆𝑡 is small enough, the 
observed instantaneous speed collected from the sensors can be treated as an average speed, as 
long as nothing major occurs between the observations (like a crash).  

 
2. Calculate the prediction discrepancy using the difference in predicted speed and actual 

speed. 
 

𝛅T = 	𝑆#$%;RST%;_T −	𝑆/STUVW_T 
 

S = Speed (m/s), 
δ = Speed Prediction Discrepancy 

t = Time 
 

The second step is to quantify the difference between the prediction of the physical model 
described in the first step and the actual observed speed. As the vehicle collects new data, the 
difference between the predicted speed, calculated from the previous time period’s observed 
speed and acceleration, and the observed speed can be determined. In a connected vehicle 
system, speed and acceleration are being collected at a high frequency, so this calculation can be 
done in real time, or this can be done post-hoc once the time series data has already been 
collected. 

 
3. Find all observations in the time series where the error, δt, exceeds a certain threshold, 
δthreshold. Flag: 

 
𝛅T^$%_^`W; 	≤ 	𝛅T 
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−𝛅T^$%_^`W; 	≥ 	𝛅T 

 
 
Once all of the δ’s have been calculated, the next step is to screen them for the points 

where the assumption in the first step is violated. If a safety-critical event does happen, the actual 
speed observed will be affected, while the predicted speed will not, since the prediction was 
calculated before the event occurred. Any major discrepancies between the predicted and 
observed speeds will be flagged for further investigation in this step. 
 

4. Identify groups of observations with a prediction discrepancy exceeding the threshold, 
and for each group, record the number of observations, n, and the maximum or minimum 
observed error, δMax. Since direction is no longer important, the absolute value should be 
taken before getting the value of δMax. 

 
 

The fourth step is to define events and then determine the extent to which they violate the 
assumptions. The purpose of this step is to aggregate observations that are close together into a 
single event, and use this to describe the likelihood of the group of observations being an event, 
considering the extent and magnitude of the prediction discrepancy.  Not all flagged groups of 
observations are likely to be safety-critical events, but the events that are will likely deviate from 
the prediction by a larger amount, for a longer period of time, or both.  

Multiple observations that exceed the threshold but occur within a certain time window 
will be grouped into a single event, rather than being defined as multiple single short-lived 
events. The value of n will need to be corrected to account for the collection frequency of speed 
data from the data bus. By virtue of the method for interpolation, the data that was collected at 1 
Hz is going to have a higher number of observations flagged in the event of a high discrepancy, 
than the same event would if the data had been collected at 10 Hz. Because of this, a correction 
was made to n, using the following formula.  

 

𝑛S`$$%ST%; =
𝑛

10/𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

 
 
The effect of the above formula is that a set flagged at a frequency of 10 Hz is only going to 
count 1/10 of the observations, while a collection frequency of 1 Hz will count all of them. It 
should be noted that this is only applicable if the collection rate of the dataset is 10 Hz and 
values were interpolated. 

Additionally, the maximum observed error in each group quantifies the severity of the event. 
The result of this step is a data table that has a measurement of length, and maximum difference 
in discrepancy for each event that is flagged by the algorithm through this point. 
 

5. Determine the probability of a group of observations occurring during a safety-critical 
event using a classification model. 

 



Identification	of	Safety-Critical	Events	in	Connected	Vehicle	Environments	

-48-	
	

The final step in this algorithm is to build, or apply, a classification model, using the 
𝑛S`$$%ST%; and δMax values as the independent variables. The dependent variable can either be a 
probability or binary variable to classify an event as “safety-critical” or “not safety-critical.” The 
model only needs to be built once, but should be application-specific due to the trade off between 
detection and false positives. For the same modeling technique and data sets, as the number of 
detected events increases, the number of false alarms will also increase. An example will be 
shown in the results section that will demonstrate what can be done once a model is established. 
 
RESULTS 
 
Example Application 
 
 The specific application these events are being used for is important to remember when 
applying the algorithm. Namely, the cost of having a false alarm or the cost of missing a true 
positive are going to drive the decisions made when applying the algorithm. For example, in an 
automated detection system to alert emergency services to a crash, the cost of a false positive is 
going to be very expensive as it wastes the emergency response team’s time and potentially 
prevents them from responding to another incident. Conversely, if this is used in a screening 
application to identify potentially unsafe sites, then any false positives will likely be revealed in 
later in the process of site evaluation, so having some false positives to identify all of the major 
safety events acceptable. The latter is more relevant to the authors, as this algorithm will be 
applied in larger study where the goal is to use kinematic data to replace crash reports in traffic 
engineering safety analyses.  

For the first step, the value of ∆𝑡 in this application was 0.1 seconds, the time between 
observations collected in the 100-Car study. The tenth of a second frequency of observations is 
small enough to reasonably treat instantaneous observations as an average. It is unclear at what 
frequency the assumption becomes invalid due to the time interval between observations, 
however there were a few trips that collected speed data at a lower frequency. 

The value of δthreshold, used in step three, was 2 m/s in this application. For reference, a 
change in 2 m/s is a change in 4.4 mph, so an observation’s detected speed would need to change 
by 4.4 mph in 0.1 seconds for the algorithm to flag it as a potential event for further 
investigation. Values of 1.5 and 2.5 m/s were also tested but were less successful, with the 1.5 
m/s threshold providing too many false positives and the 2.5 m/s threshold failing to identify 
enough actual events, which was the result of the limited sample data set.  The selected threshold 
should reflect the goals of the application while maintaining the ability to correctly group sets of 
events. If the threshold is too low, there will be a large number of observations that get flagged 
which may lead to more false observations as well as multiple different events being 
conglomerated into a single group by the algorithm, while if the threshold is too high some 
safety-critical events won’t be flagged. This is where the application is important, because most 
applications have an associated cost with false positives and false negatives. In a real-time 
application the cost of a false positive is sending emergency services to a location and disrupting 
traffic for no apparent reason. So, in that application you want to minimize false positives. 
However if the application is to identify safety-critical events that occurred, regardless of their 
severity, to safety at a location, a false positive may still be interesting or provide information. 
Additional testing to find the optimal threshold can be carried out using sensitivity analysis, 
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however given the sample size, finding an optimal value is unlikely to hold to a further 
application. 

After the implementation of steps one through three, Table 3 provides an example of 
what the results could look like on a single trip. The trip presented in Table 3 was a trip during 
which a vehicle was driving on the highway in heavy traffic. The subject vehicle approached the 
end of the queue and had to hit the brakes quickly on multiple occasions. Eventually the subject 
vehicle was unable to slow down in time struck the lead vehicle. In a real application the “Crash” 
column would not be present, but for algorithm design purposes, the video was used as a way to 
validate the findings. It should also be noted that this trip was selected since it had a lot of false 
positives so it can be used to clearly provide examples for subsequent steps. Most trips flagged 
very few, if any, observations outside of the crash event. 

 
Table 3 – Observations Exceeding the Error Threshold in a Sample Trip 

Time (s) Speed Discrepancy Crash Group 
631.2 5.348964 0 1 
644.3 -4.615082 0 2 
1777.4 4.45491 0 3 
1785.9 -4.398706 0 3 
1786.2 4.941294 0 3 
1786.3 -4.648707 0 3 
1828.1 4.517498 0 4 
1846.7 -4.424654 0 5 
1846.8 4.609572 0 5 
1846.9 -4.85905 0 5 
2204.3 11.873522 1 6 
2204.4 3.57367 1 6 
2204.5 3.089111 1 6 
2205.7 2.509898 0 6 
2205.9 2.12455 0 6 
2206.0 2.751791 0 6 
2206.1 2.571878 0 6 
2206.4 2.043342 0 6 
2206.5 4.42576 0 6 
2210.3 -5.105168 0 6 

 
 
In the fourth step, for each group of the flagged observations, obtain the number of 

flagged observations in the group, n, as well as the maximum discrepancy in speed prediction, 
δmax over that timespan. Two observations are considered part of the same group if they occurred 
within 10 seconds of each other. This was usually long enough to cover brief stop-and-go 
situations on the freeway where a vehicle approaches the end of a queue without generating two 
separate groups, one for when the vehicle comes to a stop and then restarts motion. Lowering the 
value will increase the number of events identified, and may lead to the identification of multiple 
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events that are results of the same action performed by a driver, such as a brief stop on the 
freeway. Increasing the value of the time window can potentially lead to a grouping of flagged 
observations that stem from multiple actions the driver performs.  

Table 4 shows the results of applying step 4 to the trip outlined in Table 3. In this case, 
the speed data was collected at 10 Hz so no correction was applied to n. This process was done 
for every trip and resulted in a large data frame with which to build a model. Again, the crash 
column was for algorithm training purposes and is not present when applying algorithm to new 
data. After steps one through four were applied to all of the trips in the training data set, 39 
groups were identified among all of the trips. This included ten actual crash events (all but one of 
the 11 crash events) and 29 other potential events. 
 

Table 4  - Identified Groups after Step 4 

Group Ncorrected |Speed Discrepancy| Crash 
1 1 5.348964 0 
2 1 4.615082 0 
3 4 4.941294 0 
4 1 4.517498 0 
5 3 4.85905 0 
6 10 11.873522 1 

 
 
Modeling and Performance 
 

In steps 1-4, a preliminary filtering was carried out to identify segments of trips that 
could potentially be safety-critical. The error rate is still fairly high; especially considering the 
sample of trips being used to build the algorithm has a very high crash rate, relative to what 
would normally be experienced in a real setting. So, there is a need to further distinguish 
between the potential events using characteristics of those events. 

To further classify the flagged events, a logistic regression model was trained. The model 
used in an application of this algorithm should reflect the goals of the application. In this paper, 
an example application will be provided to demonstrate how the process should be carried out. 
That example will be to detect crashes and near-crashes to do a preliminary network screening 
for a regional safety analysis. In this setting, false alarms are less of an issue, because a 
subsequent site diagnosis phase should catch them after a more comprehensive analysis takes 
place. The form of the logistic regression model is: 
 

𝑂𝑑𝑑𝑠	 = 		 𝑒no-	npqp-	nrqr-...-	n9q9 
 
Odds ratio can then be used to calculate probability in the following manner: 
 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 	
𝑂𝑑𝑑𝑠	

𝑂𝑑𝑑𝑠 + 1 
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 Twelve candidate models were analyzed before a model was selected. The candidate 
models tested the inclusion of difference in predicted speed and observed speed and length of 
event, with difference combinations, interactions, and transformations of the two variables. The 
best models were selected using minimum AIC (Akaike Information Criterion) and cross-
validated error as the criteria, and the model’s performance was quantified using a combination 
of area under the ROC (Receiver Operator Characteristic) curve, and model accuracy in terms of 
precision and recall on the training set. There was not enough data to build a robust test set, and 
the implications of this will be discussed in the discussion section. Table 5 presents the three best 
models. 
 

Table 5 - Candidate classification models 

Model 1 Coefficient SE z-value p-value  
Intercept -4.583 1.419 -3.23 0.00124 ** 

log(|Discrepancy|) 2.783 1.029 2.704 0.00685 ** 
Model 2 Coefficient SE z-value p-value  

Intercept -2.6602 0.7466 -3.563 0.000367 *** 
Ncorrected 0.7296 0.2937 2.484 0.012985 * 
Model 3 Coefficient SE z-value p-value  

Intercept -4.554 1.5246 -2.987 0.00282 ** 
log(|Discrepancy|) 2.0096 1.191 1.687 0.09153 . 

Ncorrected 0.4619 0.323 1.43 0.15267  
Significance: . = 90%, * = 95%, ** = 99%, *** = 99% 

 
The first model included the log of the extreme value of the difference in predicted and 

observed speeds, with both coefficients being significant with 99% confidence. It had 14 false 
positives, which a total of five drivers were responsible for, and it classified all crash events 
correctly. The second model only included the time-length of the event, measured in number of 
consecutive observations. There were nine false positives, seven of which came from the same 
driver, however this model only correctly classified six of the ten crashes. The third model had 
both of the variables and there were six false positives across two drivers. There were also three 
false negatives. For comparison, applying the NDS acceleration thresholds from Table 1, four of 
the crashes were flagged, and one false positive was identified.  
 Table 6 presents the cross-validated error, AIC, and area under the ROC curve for each 
candidate model. The ROC curves are shown in Figure 2. Table 7 presents the third model’s 
prediction of the event with 1 being an event occurred and 0 being no event occurred. It should 
be noted that this example was chosen because it best illustrated the way to carry out the 
algorithm and not because. This driver experienced some unusual circumstances and was 
somewhat aggressive which led to a larger number of initial flags. Most of the trips with a crash 
only had the crash flagged. 
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Figure. 2 - Receiver Operator Characteristic Curves of Each Model 

 
 

Table 6 - Model performance metrics 

  Cross-Validated 
Error AIC Area under 

ROC Curve 
Model 1 0.1483 35.664 .845 
Model 2 0.1434 36.392 .755 
Model 3 0.1491 35.075  .841 

 
 

Table 7 – Example model output 

Group Ncorrected |Speed Discrepancy| OR Probability Crash 
1 1 5.348964 0.485684551 0.326909606 0 
2 1 4.615082 0.361042657 0.265269171 0 
3 4 4.941294 1.655646723 0.62344389 0 
4 1 4.517498 0.345864915 0.25698338 0 
5 3 4.85905 1.008598742 0.502140483 0 
6 10 11.873522 154.0650849 0.993551095 1 

 
 
 Of the three final candidate models, none stand out as much better than the other two. 
There is merit to selecting each of the models and it is difficult to make a definite suggestion 
without a more complete dataset. The cross-validated error suggests that model 2 would hold up 
best on a validation set, but on the training set, the other two models are clearly better. If having 
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a specific probability is not enough for the application, a decision boundary threshold can be 
selected to place observations into a binary, event/no-event classification.  

For an example, the probabilities from the sample events flagged in the previous section 
(Table 4) will be calculated using model 3. If the decision boundary were a probability of 0.5, the 
highlighted rows would be flagged as events by the algorithm. It should be noted that for this 
particular scenario, there were 2 false positives with a threshold of 50%. In most cases, only the 
crash was flagged, but this particular trip was chosen as the example since it is easier to see what 
is happening with the previous steps of the algorithm.  
 
 
DISCUSSION 
 
 The presented material should be treated primarily as a proof-of-concept, to show that 
this methodology can work. In the authors’ opinion, this work is promising in that it appears to 
outperform the simple acceleration thresholds at first glance, but is not supported with a robust 
data set yet. Additional data is required to confirm this, and validate the algorithm. It is also 
believed that additional data will increase the significance of coefficients in the models, and will 
allow for the testing of models with additional variables, such as change in acceleration over the 
span of an event.  
 Additionally, the authors say that this algorithm detects safety-critical events, but the only 
events to train the algorithm on were crashes. Again additional data that includes all safety-
critical events would either validate or invalidate that this model can indeed detect near-crashes 
and other, less severe events. It should also be noted that many of the false positives could be 
considered near-crashes, depending on the observer. 
 When video was available, the false positives flagged by the algorithm were reviewed. 
There were a few common situations that tended to flag the algorithm in situations without a 
crash. Additionally, any missed crash events were reviewed to find out why the event may have 
been missed. For the first 4 steps, all but one of the crash events was flagged, but 29 other non-
events were also flagged. That event was a rear-end crash where the subject driver released the 
brakes and rolled into the lead vehicle while in a queue at a traffic signal.  
 Certain occurrences other than crashes tended to flag the algorithm. Frequently a single 
driver would falsely flag the algorithm multiple times which could imply a few things: either the 
driver was generally more aggressive on stops or starts, the driver was in a certain set of 
conditions where false positives are more likely to happen (like approaching a queue on the 
freeway), or their in-vehicle equipment may have been defective or not have been well 
calibrated. Regardless, a few trips tended to comprise many of the original flags, indicating there 
is likely a vehicle-specific, or driver-specific calibration that can be done to filter out false 
predictions.  
  

 
CONCLUSION 
 

In this study, a 5-step, heuristic algorithm was presented as a way to identify safety-
critical events using speed and acceleration time series data collected at a high frequency. The 
algorithm performed well on the limited data set, but further testing is required to validate and 
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refine this algorithm, so the maximum precision and recall can be achieved. The algorithm 
should be used as a starting point to classify safety-critical events and can be expanded upon 
with further research. For example, if TTC metrics were to become available, they can be added 
to the algorithm in either the preliminary screening or the secondary model. It is also very 
simple, and can be easily integrated into connected vehicle technology in its current state. 
Further work must be done to validate this algorithm and sensitivity analysis needs to be 
completed to find optimal values for thresholds and other inputs, once a larger, representative 
data set is available. 

Finally, including separate steps in the algorithm that can identify the difference between 
different types and severities of crashes would also provide a major benefit to applications. In its 
current state, the algorithm only implies that a safety-critical event likely happened at a certain 
point of time, but it does not provide any additional information about the severity, or even what 
type of interaction likely occurred. Examining each type of crash and evasive maneuver 
individually would create a more specific algorithm that may be able to increase the accuracy, as 
well as provide additional information about what occurred once an event is identified. 
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NOTATION 
The following symbols are used in this paper: 
 
Spredicted = Predicted Speed 
SActual = Actual Speed 
t = Time 
a = Acceleration 
δ = Spredicted - SActual = Speed Discrepancy 
δthreshold = Threshold of Discrepancy 
n = Number of Consecutive Observation Flagged 
f = Collection Frequency (Hz) 
ncorrected = n corrected for f 
Crash = Variable Indicating Presence of a Crash (0/1) 
OR = Odds Ratio 
AIC = Aikaike Information Criterion 
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Abstract 
 
Recent technological advances have made it both feasible and practical to identify unsafe driving 
behaviors using second-by-second trajectory data. Presented in this paper is a unique approach to 
detecting safety-critical events using vehicles’ longitudinal accelerations. A Discrete Fourier 
Transform is used in combination with K-means clustering to flag patterns in the vehicles’ 
accelerations in time-series that are likely to be crashes or near-crashes. The algorithm was able 
to detect roughly 78% of crashes and near-crashes (71 out of 91 validated events in the 
Naturalistic Driving Study data used), while generating about 1 false positive every 2.7 hours. In 
addition to presenting the promising results, an implementation strategy is discussed and further 
research topics that can improve this method are suggested in the paper. 
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1. Introduction 
 

High resolution, kinematic vehicle data (second-by-second speed, acceleration, yaw, etc.) 
is becoming more available than ever in the transportation community. With this influx of data, 
there are a considerable number of potential benefits to a wide range of safety applications, 
including monitoring driver performance, identifying unsafe locations on the road (hot spots), or 
even providing real-time emergency response. However, before these benefits can be realized, 
there is a need to be able to identify unsafe driving activities, like crashes and near-crashes, 
amongst a vast amount of regular driving.  
 The goal this paper to is to develop ways to identify safety-critical events (SCEs), defined 
in this context as crashes, near-crashes, and other unsafe driving behaviors using kinematic data 
from single vehicles. Creating an algorithm that can detect SCEs using only the trajectories of 
single vehicles could have a variety of applications including: 
 

• Allowing infrastructure providers to identify SCEs in connected vehicle environments 
and evaluate road network safety 

• Allowing taxis and shared ride service providers to monitor their drivers and ensure they 
provide safe rides to customers 

• Allowing insurance companies to monitor their customers' driving tendencies and better 
evaluate risk 

• Allowing agencies to monitor fleet vehicles (e.g. buses, snow plows, etc.) for both driver 
performance and tort liability claims 

• Allowing transportation management agencies to monitor traffic and provide emergency 
response when necessary 

• Providing real-time alerts to emergency response services in connected vehicle 
environments 

• Identifying events in large-scale naturalistic driving studies 
 

Each of these applications is slightly different and will likely require varying inputs to a 
method or algorithm when identifying SCEs but there is a clear benefit to a variety of 
stakeholders by having the ability to identify them. 

Many established methods for identifying unsafe driving, whether it be SCEs, or a specific 
subset of SCEs, rely on information to be available describing how one or more vehicles are 
interacting. One example of such information is Time-to-Collision (TTC), which is an estimate 
of how much time a vehicle has on its current trajectory before it would collide with a lead 
vehicle. This typically requires access to radar data, which can be expensive to equip on large 
fleets of vehicles. As a result the analysis was restricted to kinematic data that is native to 
connected vehicle standards (SAE International, 2009) and can be collected from smart phones 
or aftermarket devices. 

For this study, crash and near-crash data was acquired from the SHRP2 Naturalistic 
Driving Study (NDS) (Virgina Tech Transportation Institute, 2013). The methodology outlined 
performs subsequence-matching techniques on longitudinal accelerations observed in vehicles 
during a set of crashes and near-crashes. A Discrete Fourier Transform (DFT) is used to 
transform subsequences of the observed time-series and a K-means clustering algorithm is then 
used to classify those subsequences as events or baseline driving. 
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2. Research Goals 
 

The primary goal of this study is to develop a methodology for identifying safety critical 
events when given a high-resolution time series of kinematic vehicle data, specifically 
longitudinal acceleration. With recent advancements in vehicle and roadside technology, learning 
how to identify unsafe driving behavior using high-resolution data streams has become a 
practical endeavor that can provide benefits in a variety of applications.  

Time series data was acquired from the SHRP2 NDS during crash and near-crash events. 
The goal of the algorithm developed was to identify time series where a crash or near-crash 
occurred without flagging time series that did not contain any SCEs. Before proceeding, it is 
necessary to provide definitions relevant to this study. 

 
• Crash: “Any contact with an object, either moving or fixed, at any speed in which 

kinetic energy is measurably transferred or dissipated. Includes other vehicles, 
roadside barriers, objects on or off the roadway, pedestrians, cyclists, or 
animals.” 

• Near-Crash: ”Any circumstance that requires a rapid evasive maneuver by the 
participant vehicle or any other vehicle, pedestrian, cyclist, or animal, to avoid a 
crash. A rapid evasive maneuver is defined as steering, braking, accelerating, or 
any combination of control inputs that approaches the limits of the vehicle 
capabilities.” 

• Baseline: Any time series without a crash or near-crash.  
• Safety-Critical Event (will be used synonymously with the term “Event”): Any 

crash or near-crash event. 
 

The crash, near-crash and driving definitions were those used by VTTI for their 
naturalistic driving studies (Guo, Klauer, McGill, & Dingus, 2010), since that is the source of the 
data. The authors defined a safety-critical event as any crash or near-crash, though a case can 
certainly be made to include other situations and will also be discussed further at a later point. 

The proposed algorithm takes the following steps: 
 

• Break time-series into small subsequences or “windows” to examine specific 
sections in time 

• Perform Discrete Fourier Transform to identify the strength of different 
frequencies present in each window  

• Execute K-means clustering to group each window by the strength of different 
frequencies. 

 
Relevant literature is examined, including additional context for the research motivation 

as well as some information on previous approaches to this problem. Then a description of the 
methods used and why they were applied is provided. While the range of applications is diverse, 
the specific inputs the presented methodology addresses is light vehicle crashes and near-crashes. 
The discussion section addresses how this algorithm may change based on specifics of each 
application. 
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3. Literature Review 
 
 Discussed in this section will be background information on two key topics relevant to 
this paper. The first will outline a few studies that collect high-resolution kinematic data on a 
large-scale. Second, there will be a review of literature that uses this type of data to classify 
events, or other patterns and behaviors, with a description of the methods being used.  
 Two studies that have successfully recorded kinematic data during crashes are the 100-
Car Naturalistic Driving Study (Dingus et al., 2006) and the larger follow up, SHRP2 
Naturalistic Driving Study (Virgina Tech Transportation Institute, 2013). In both of these 
studies, subjects were recruited to equip their vehicles with cameras, radar, and a Data 
Acquisition System (DAS) designed by Virginia Tech Transportation Institute (VTTI).  High-
resolution trip-level data was then generated for subjects over the life of each study. Other 
studies such as the Safety Pilot Model Deployment in Ann Arbor, Michigan (Harding et al., 
2014), the NGSim study in California (Halkias & Colyar, 2006), and Integrated Vehicle-Based 
System Safety Field Operation Test in Ann Arbor, Michigan (Sayer et al., 2008) Also collected 
similar data on different scales and in different contexts. Since all of these studies are 
naturalistic, subjects could, and on occasion did, get into crashes and near-crashes. 

In particular, the SHRP2 NDS is unique due to the scale of the study in terms of both 
network coverage and number of participating subjects, the presence of a system for 
documenting events, and the presence of a suite of cameras equipped to vehicles for establishing 
ground truth. While some of the other listed studies also had some of those qualities, they were 
unable to accomplish all of those at the level of the SHRP2 NDS. 

In the SHRP2 NDS, VTTI and the field teams at each site were responsible for 
identifying when and where their subjects got into crashes. Their approach was to use a 
collection of criteria to flag potential events in the trip data collected. Those flags include a 
longitudinal acceleration threshold, a lateral acceleration threshold, some time-to-collision (TTC) 
thresholds, a yaw rate trigger, and an event button that subjects could press to signal a collision. 
Individual thresholds alone (e.g. 0.6 g’s of longitudinal acceleration) tended to have low recall 
(true positives/total events) and many of them also had poor precision (true positives/test 
positive) (Dingus et al., 2006). The SHRP2 Study has adjusted the criteria to flag events by 
removing most of the radar-based triggers, adding a time-component to the deceleration, 
adjusting the acceleration thresholds to 0.75 g’s of lateral acceleration and 0.65 g’s of 
longitudinal acceleration, and adding some vehicle-safety system activation triggers. The 
individual triggers often had recall in the single digits, with the best individual flag had around 
20% recall. While VTTI was successful in locating crashes despite the low individual 
identification rates of individual flags, they were able to include some data elements that were 
not native to the BSM and they have video to verify if an event did or did not occur for trips that 
were flagged. 

Vehicle trajectories from the SHRP2 NDS and similar studies have been analyzed to 
classify certain occurrences on the road in terms of kinematic data elements. Engström and 
Victor developed and patented at method using neural networks to classify driving patterns and 
demonstrated the method on vehicle trajectories in different roadway setting (Engstrom & 
Victor, 2005). McDonald et. al used a computationally efficient SAX-VOX method to transform 
time series data into character strings and perform natural language processing to identify 
commonly observed action and patterns (Mcdonald et al., 2013).  
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In terms of specifically detecting safety-critical events, Wu and Jovanis proposed a novel 
algorithm to classify crash types using the maximum differences over time in both lateral and 
longitudinal accelerations during crashes and near-crashes. They also outlined the sensitivity and 
specificities they were able to achieve for a variety of thresholds in those calculated kinematic 
elements, which were an improvement on the NDS event flags (K Wu & Jovanis, 2013a; K Wu 
& Jovanis, 2013b). Kluger and Smith used Euclidean distance to classify crashes with 
longitudinal acceleration time series data, assigning known patterns to a pre-defined action and 
flagging any subsequence that did not fit into one of those patterns. This analysis was performed 
on a limited sample size with promising results (Kluger & Smith, 2014). 
 A range of additional studies in crash and near-crash dynamics has occurred using TTC 
or other lead-vehicle-following-vehicle information as a metric. Wu and Thor proposed the idea 
of a safety frontier calculated by temporal headway and the difference in speeds between the lead 
and following vehicles. They showed that if the safety frontier was violated, a rear-end crash was 
likely to occur (K. Wu & Thor, 2015). Talebpour et al. developed an algorithm that specifically 
identifies near-crashes in connected vehicle environments using drivers’ accelerations and 
behavior during car-following situations to identify near-crashes and specifically highlights the 
differences between drivers (Talebpour, Mahmassani, Mete, & Hamdar, 2014). 
 The last type of work in event detection methodologies relates to the concept of traffic 
conflicts, which has frequently been proposed as a surrogate event for crashes. A traffic conflict 
is defined as “an observable situation in which two or more road users approach each other in 
space and time to such an extent that there is risk of collision if their movements remain 
unchanged” (Amundsen & Hyden, 1977). This traffic conflict technique is used frequently in 
both simulation and application, however the prevailing concern with this method is that traffic 
conflicts can often be subjective. Additionally, identifying traffic conflicts in a large network 
requires an enormous amount of video data reduction (Chin & Quek, 1997). Computer vision 
techniques that identify vehicles, calculate frame-by-frame trajectories, and if the TTC is below a 
certain acceptable amount, the event is identified as a conflict. While this is going to consistently 
call certain types of actions conflicts, it requires a widespread deployment of cameras and 
software capable of performing this on a large scale in order to capture these (Saunier, Sayed, & 
Ismail, 2010). Our proposed method does not require additional equipment such as cameras, and 
is utilizing technology that has already been deployed in many fleets and will continue to be 
deployed as additional technologies are developed. 
 
4. Data 
 

Data for this study was acquired from the aforementioned SHRP2 Naturalistic Driving 
Study. The NDS data set contains the same trajectory data elements, collected at the same 
frequency, 10 Hz. Furthermore, with safety-critical events identified in the data set through 
analysis by VTTI staff using video data, the NDS provides validated events that are critical to the 
research.  

The event data received consisted of 91 unique incidents, 49 near-crashes and 42 crashes. 
From here on, the unique incidents will be referred to as “safety-critical events”, or sometimes 
just “events”. The events followed a specific, predefined distribution in order to try and 
encompass most situations that could occur on the road. Table 1 shows the breakdown of the 
events received by type and speed at the time of event occurrence. The crashes had varying 
degrees of severity with some being police-reportable and others incurring little to no damage. 
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Obviously, the specific crash type had to be observed within the study, which did limit the 
sample size for some of the more severe crash types, however the authors are confident that 
those tend to be the easier crashes to detect as they experience the exceedingly high accelerations 
relative to what is normally observed. The “other” rows were requested to be filled out with the 
less commonly seen types in the NDS. For the near-crashes other referenced accelerating and no 
reaction near-crashes, while for crashes they included animal strikes and any other type of 
collision not listed in the predefined distribution. It should be noted that in some scenarios the 
subject driver was hit while in other cases the subject driver struck another vehicle.  

Each measured event was a 30-second time series of kinematic data collected by the Data 
Acquisition System. The time series received consisted of about 300 observations collected 
around the time of the event. The series was made up of three portions, one pre-event, one during 
the event, and one after the event. 

 
Table 1. Distribution of Crash and Near-Crash Events 

 
 
 The additional test data included the same data elements for 35 hours of driving during 
which no known safety-critical events occurred. This data will be referred to as the normal, or 
baseline, driving set and was used for false positive testing as a way to validate the proposed 
methodology. Video data was not acquired for either data set but analysts at VTTI watched it and 
verified there were no safety-critical events before providing it to the authors. 
 
5. The Discrete Fourier Transform 
 
 Every time series, x = {x1,x2…xt}, can be expressed as a combination of unique circular 
patterns of varying frequencies, amplitudes, and phases by using a Fourier Transformation. This 
will result in a function, X= {X1,X2…Xf}, which is dependent on frequency (f) values instead of 
time (t). In the case of discrete data, such as time series data sampled at a specific frequency, the 
Discrete Fourier Transform (DFT) is used to estimate the amplitude, phase, and frequencies. For 
a time series of length n, the DFT is equation 1 where j= −1. 
 

  Speed 
  < 20 mph 20-29 mph 30-39 mph 40-49 mph > 50 mph 

E
va

si
ve

 
M

an
eu

v
er

 Braking 3 5 4 3 4 
Steering 4 4 4 4 4 
Other 2 1 3 2 2 

C
ra

sh
 T

yp
e 

Rear End 3 2 1 0 1 
Sideswipe 1 2 2 0 1 

Angle 2 4 2 2 0 
Run-off 

the Road 1 2 0 0 1 

Curb 
Strike 1 2 3 2 1 

Other 0 0 4 1 0 
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 𝑋y ≝ 	 𝑥T𝑒(|P}yT/=	𝑓𝑜𝑟	𝑓 = 0,1,2, … , 𝑛 − 1
=()

TD7

 (1) 

 
 
The “≝” in equation 1 stand for “equals, by definition.” The time series can also be 
reconstructed using equation 2, the inverse DFT. 
 
 

 𝑥T = 	
1
𝑁 𝑋y𝑒(|P}yT/=	𝑓𝑜𝑟	𝑓 = 0,1,2, … , 𝑛 − 1

=()

TD7

 (2) 

 
 
By considering Euler’s formula in equation 2, equation 1 can be represented as a sum of real and 
imaginary waves of different frequencies, amplitudes, and phases in equation 3 (Smith, 2007). 
 

 𝑒|� = cos 𝜃 + 𝑗 sin 𝜃 (3) 
 

 𝑋y ≝ 	 𝑥T cos −
2𝜋𝑓𝑡
𝑛 + 𝑗 sin −

2𝜋𝑓𝑡
𝑛 	𝑓𝑜𝑟	𝑓 = 0, 1, … , 𝑛 − 1

=()

TD7

 (4) 

 
 
 The transform was used to obtain relationship between amplitude and frequency in 
subsequences of the time series. For reference, the time domain is used to describe the series of 
accelerations observed over time while the frequency domain will be used to describe the 
relationship after the DFT has been executed. 
 The software, R, was used to perform the DFT using built in functions. The functions use 
an expanded version of the Cooley-Tukey algorithm (Cooley & Tukey, 1965) presented by 
Singleton (Singleton, 1969) to quickly estimate the amplitude and phase at each frequency.  
 Agrawal et al. suggested a method to group similar subsequences by some observed 
characteristics of the DFT of those subsequences (Agrawal, Faloutsos, & Swami, 1993). A 
similar approach was used in the present application, but our interest is in the subsequences that 
do not match with what is normally expected from drivers. In essence, subsequences are being 
compared to baseline driving and the ones that do not fit will be flagged as possible events. 
 
6. Methodology 
 
 To begin with, the longitudinal acceleration time series were broken into 2.5 second 
subsequences or “windows”. This was done to examine local areas of the time series so the exact 
region of the time series that was a crash could be identified. Additionally, actions that happen 
far enough apart are unlikely to be related to the current action. The implications of selecting the 
specific value of 2.5 seconds for the window length will be addressed in the discussion section. If 
a data point was missing in the time series, it was interpolated linearly, as long multiple 
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consecutive observations were not missing. If there were multiple observations missing, the 
window was removed from the analysis. 
 Each window of acceleration time series data was treated as a single observation and 
placed in a data frame. The DFT was then performed on each window, and the amplitudes at 
each frequency were then recorded and placed in a new data frame. For windows with no event, 
the transform generally had amplitudes very close to zero for all frequencies past the first (f = 0), 
but transforms on windows with crashes tended to have one or more frequencies with relatively 
high amplitudes. Figure 1a shows a selection of windows of longitudinal accelerations in the 
time domain and figure 1b shows the same windows in the frequency domain after undergoing a 
DFT. The red windows are windows with crashes and the black windows are baseline driving. 
The transformed windows appear to have a higher amount of separation in the frequency domain 
compared to the time domain. 
 
 

 
Figure 1a. Time series windows of accelerations during both baseline driving and during 

crashes 
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Figure 1b Windows from 1a converted to the frequency domain with the DFT 

 
 
 The final step in data preparation before classification was to characterize the location of 
observed peaks. To achieve this, the transform was segmented into P equal sections and the area 
under the windows in the frequency domain was calculated for each of those sections. The 
trapezoidal area was used to estimate the area using equation 5. Note that the the first value of 
the transform X, was omitted because amplitudes observed at frequencies equal to 0 are 
essentially noise. Additionally the total area under the amplitude for frequencies greater than 0, 
was recorded for each window.  
 

 𝐴𝑈𝐶�,�-) = 	
𝑋� + 𝑋�-)

2 ∗
10
𝑃 		𝑝 > 0 (5) 

 
 

K-means clustering was then performed in order to group the transformed windows by 
how similar they are, in the hopes that there would be one or more clusters of only events that 
emerge and another set of separate clusters with no events would also be present. The areas 
under each section and the total area under curve were used as variables in the K-means 
algorithm. The K-means clustering algorithm (Leisch, 2008) is  an unsupervised learning 
technique (i.e. the method is grouping the inputs without knowing their classification), 
performed in the following manner: 

 
1. Define number of clusters (k) and randomly assign each window (i) to one of the 

k clusters. Calculate the centroid (ck) of each cluster.  
2. Calculate the Euclidean distance (d) between each window and each cluster 

centroid. Each window is made up of a set of N variables. In this application, the 
N variables are the areas under each section of the transformed time series in the 
amplitude-frequency relationship, as calculated by equation 5, as well as the total 
AUC for all sections. 
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3. Assign windows to cluster with the minimum calculated Euclidean distance. 
4. Recalculate center of each cluster to include the newly classified windows. 

 

𝑐�(= = 	
1
𝑖S(�

𝑥R(=
R

 

 
𝑐�: {𝑐�(), 𝑐�(P, … , 𝑐�(C} 

 
5. Repeat steps 2-5 until the algorithm converges and assignments stop changing. 

 
What is essentially happening in the clustering algorithm is the normal baseline driving 

with no events is consistently being classified into one group while anything else that does not 
fall into this category is being classified into another cluster. In some cases, this method can be 
sensitive to the arbitrary starting location so the K-means algorithm was rerun multiple times to 
test how sensitive the results were to the random starting location.  

Clusters were trained on a sample of the baseline driving set (50 randomly selected 
baselines) and all of the event data. The remaining baseline driving consisted of about 35 hours 
and those time series were broken into windows and assigned to clusters without re-centering the 
clusters. This was done to ascertain if specifically defined cluster centers could be used in an 
application of this methodology without needing to perform the clustering algorithm in an ad-hoc 
manner, especially since an iterative process like K-means clustering is unlikely to respond well 
to scaling at the level envisioned, given current computing capabilities.  
 The time series was broken up into windows as a way to look at smaller happenings 
within a trip. Since each window had a constant length, breaks between windows were arbitrary 
and realistically could, and in some cases did, occur midway through a crash event. A successful 
algorithm should be able to detect at least one window within the duration of a crash event, but it 
does not matter if every window during the crash was detected. By flagging a single window, the 
entire crash can be detected, and it does not matter what the classification says is happening in 
the surrounding windows. It is entirely plausible that an event spanning multiple windows may 
only have a single window where the impact occurred classified as an event. While technically 
the windows during the event that go undetected are labeled false negatives, there is no loss of 
information by the algorithm’s failure to indicate that window was positive if a neighboring 
window is classified as positive. So the only events that were considered false negatives were the 
crashes where no window spanning the length of the crash event was assigned to the event 
clusters. Otherwise, if one or more nearby windows indicated an event, it was considered a 
success. 

Similarly, if consecutive windows indicate an event occurred, that is treated as a single 
event. So if the algorithm indicates a false positive, if consecutive or nearby windows have all 
been assigned to one of the event clusters, they are treated as a single false positive. How close 
two windows need to be in order to be considered the same event is unclear as in all cases of 
false positives spanning multiple windows, the false positives were next to each other. For the 
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reasons stated, the performance will be evaluated on the percent of crash events detected (the 
recall), and a false positive rate (number of false positives per hour of driving time). 
 
7. Results 
 

The area under the amplitude-frequency relationship was calculated using equation 5 and 
the following breaks, presented in Table 2. Additionally, total AUC was calculated. Each 
subsequence had the twelve corresponding observations on Table 2 and the total AUC used in 
the clustering algorithm. 

 
 

Table 2 - Breaks for Area Calculations 

Variable Start Frequency (p) End Frequency (p+1) 
X1 0.3846154 1.1538462 
X2 1.1538462 1.9230769 
X3 1.9230769 2.3076923 
X4 2.3076923 3.0769231 
X5 3.0769231 3.8461538 
X6 3.8461538 4.6153846 
X7 4.6153846 5.3846154 
X8 5.3846154 6.1538462 
X9 6.1538462 6.9230769 
X10 6.9230769 7.6923077 
X11 7.6923077 8.4615385 
X12 8.4615385 9.6153846 

 
 
 For the K-means clustering, the “flexclust” (Leisch & Dimitriadou, 2015) package and R 
version 3.2.4 was used. In K-means, the number of clusters needs to be defined before the 
algorithm can run. The starting point was varied between 2 and 6 clusters. 4 clusters were 
selected to represent distinct patterns in the data, as this had the best balance of classification 
rates in the training set and low false alarm rates in the baseline test set. The resulting cluster 
centroids are shown in Figure 2. Figure 3 shows a neighborhood plot of the cluster centers and 
the data points assigned to each cluster, projected to the first two principal components. The 
reason 4 clusters worked best is the decision boundary between clusters 2 and 3 was better than 
other values for cluster starting points. 

Table 3 shows a summary of what was assigned to each cluster. The “Subsequences” 
column shows the total number of subsequences assigned to each cluster. The other four columns 
show the number of unique events represented in each cluster. This Table helps illustrate the 
trade-off between classification rates and false alarms. As detection rates increase, the number of 
false alarms also increase. 
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Figure 2 - Cluster Centroids 

 
 

 
Figure 3 - Neighborhood Plot of K-means Analysis 
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Table 3 - Clustering Classifications 

Cluster Subsequences SCEs Crash Near-Crash Baselines 
1 1049 91 42 49 50 
2 202 76 41 41 9 
3 90 69 40 29 0 
4 7 7 7 0 0 

3&4 97 71 31 40 0 
2&3&4 299 90 41 49 9 

 
 Using Table 3, clusters 3 & 4 were selected to be the “event clusters”. The events were 
considered flagged if there was at least one subsequence spanning a portion of the event was 
placed in one of the two event clusters. An event was considered missed (false negative) if none 
of the subsequences spanning the event were placed in either of the event clusters. A false 
positive was any baseline subsequence, or group of consecutive baseline sequences, placed into 
the event cluster. The additional recall gained by including cluster two does not outweigh the 
addition of 9 false alarms, especially considering baseline driving is generated at a considerably 
higher rate than SCEs. This will be discussed further in section 8.  
 The centroids of these clusters were recorded and an additional 35 hours of baseline 
driving was used to get a realistic sense of this algorithm’s false alarm rate in application. During 
the baseline driving, a total of 13 false alarms were identified. This translates to about 1 false 
positive per 2.7 hours. 
 

Table 4. Event Cluster Breakdown 

Clusters Number of 
Data Sets 

Number of 
Unique Events 

Flagged by 
Algorithm 

Event Total 91 Epochs 91 71 
    Crash 42 Epochs 42 31 
    Near-Crash 49 Epochs 49 40 
Baseline 50 Epochs 0 0 
Baseline Test 35 Hours 0 13 

 
False positives can be explained by a variety of possibilities including: 
 

• Certain drivers behave more aggressively and the algorithm needs to take that into 
account when making a prediction. 

• The equipment recording certain drivers’ actions may have been calibrated differently, 
located poorly within the vehicle, or malfunctioning. 

• Different vehicles are prone to different dynamics based on various factors such as the 
vehicle’s weight, tire quality, tire pressure, road conditions, etc. 

• Site characteristics like poor pavement quality could be responsible for the unusual action 
• Clusters may not be using a set of ideal baseline samples, though they were randomly 

sampled for each run and the results only changed minimally. 
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There is also a possibility that some of the false positives are actually near-crashes that were not 
categorized by the NDS study, and since the authors do not have access to video to review what 
was happening, that will remain unknown. All of the false alarms were assigned to the same 
event cluster, but the majority of events also were classified in that cluster as well. 

The code was run 100 times with different random seeds to determine how sensitive the 
methodology was to the random starting point. The size of each cluster was the same for all 100 
runs showing that the method is not sensitive to random starting point.  
 
8. Discussion 
 
 The results using this proposed algorithm to detect safety-critical events were markedly 
better than anything found in the literature review while using a reasonably complete sample of 
91 total crash and near-crash events. Findings indicate that roughly 78% of all safety-critical 
events can be identified with a high frequency time series of longitudinal acceleration data alone.  
 As discussed in the introduction, the authors envision a variety of possible applications 
for a methodology like the one presented. Those applications include: 
 

• Allowing infrastructure providers to identify SCEs in connected vehicle environments 
and evaluate road network safety 

• Allowing taxis and shared ride service providers to monitor their drivers and ensure they 
provide safe rides to customers 

• Allowing insurance companies to monitor their customers' driving tendencies and better 
evaluate risk 

• Allowing agencies to monitor fleet vehicles (e.g. buses, snow plows, etc.) for both driver 
performance and tort liability claims 

• Allowing transportation management agencies to monitor traffic and provide emergency 
response when necessary 

• Providing real-time alerts to emergency response services in connected vehicle 
environments 

• Identifying events in large-scale naturalistic driving studies 
 
Each potential application will likely have slightly different inputs depending on the purpose of 
the application, sensor quality, allowable false positive rate, vehicle type, and numerous other 
factors. This work was done with high quality sensors and for light vehicles driven by the public 
and is applicable as presented in connected vehicle environments according to current standards 
as well as large-scale naturalistic driving studies.  
 There are a variety of ways that longitudinal accelerations can be collected in vehicles, 
including dedicated sensors like accelerometers or through cellular technology and GPS data. 
The vehicles used in this study were equipped with high-quality sensors using an accelerometer, 
but it is unclear how well this carries over using accelerations derived from GPS technology in 
cell phones. It is possible that the cluster centers may look different and there may be more false 
positives as errors in GPS readings can lead to larger accelerations since they are derived from 
positions and that positional error will carry over.  
 Allowable false positive rate and definition of an SCE is also going to determine how 
usable this algorithm is in application and what some of the inputs need to be for it to be 
successful. While the false positive rate is low, baseline driving gets generated at a much higher 
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rate than SCEs. As a result, there are still likely to be some false positives due to exposure 
despite the small percentage of baselines that get flagged, although their significance is 
application dependent. While false positives may be completely unacceptable in some situations, 
they also likely still indicate an unexpected driving action such as hitting a pot-hole or 
approaching the end of a queue in congestion, which could be useful to document.  
 The exact methodology presented in this paper is only applicable for finding SCEs in 
light vehicles with accelerations collected at a frequency of 10 Hz. The exact inputs, like the 2.5 
second window length and number of pre-defined clusters were selected because, of the values 
tested, the results were the best on a consistent basis when varying other variables.  

The general process using a DFT and K-means clustering could work, but likely requires 
different window lengths, data processing needs, numbers of clusters, resulting cluster centers, 
and error rates and therefore will need to be altered accordingly. Thus experimentation was 
performed on the number of predefined clusters and the window length used in order to assess 
sensitivity. Of the ones testes, the values that worked best in this application with the stated goals 
in mind were selected. Specifying crash type and severity while considering location is a clear 
next step to this work, as is examining other kinematic data like speed and lateral acceleration. 
 
9. Conclusion 
 
 Presented in this paper was a unique approach to detecting safety-critical events using 
vehicles’ longitudinal acceleration. It used the Discrete Fourier Transform in combination with 
K-means clustering to flag windows that were likely to be crashes or near-crashes. The algorithm 
was able to detect almost 78% of crashes and near-crashes that were acquired for this study, 
while generating about 1 false positive every 2.7 hours. This algorithm had excellent 
performance in comparison to what is currently being used in application, and can also be easily 
expanded upon as other advances are made and other data types are collected. 
 Further points of emphasis in future studies on this subject will be to include additional 
variables frequently collected, such as lateral acceleration to improve the recall and the false 
positive rate. The most glaring issue with this methodology is the inability to differentiate 
between crashes and near-crashes as well as the inability to determine crash type for events that 
were crashes. One additional check to differentiate between crashes and near-crashes could be a 
heuristic to check if the driver continues to drive. Other than that, including different variables, 
and placing additional emphasis on the relationship between location of peaks in the frequency 
domain and the type or severity of event is a logical next step to improve this methodology’s 
performance. Some examples of additional sensors that could provide more information include 
noise sensors and multi-directional radar. Additional focus on driver-specific or site-specific 
trajectories could also improve classification rates and reduce false positives.  
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RESEARCH CONTRIBUTION 
 
This compendium of work has a few key research contributions. First, it includes a 
comprehensive discussion of the findings related to how connected vehicle technology can 
benefit highway safety analyses. These findings are interesting and should be treated as a starting 
point for future methods and ideas. The true benefit to using connected vehicles to carry out 
safety analyses remains to be seen, and requires more data than is currently available. Identifying 
hot spots with any level of confidence or accuracy using connected vehicles is not likely feasible 
at the current level of market penetration, even in pilot deployments like the safety pilot. 
However, described were some considerations as connected vehicle technology grows and 
changes that are better to be examined now rather than after the technology is deployed. This 
includes how this process fits within the connected vehicle standard to ensure it is feasible once 
the technology is widely deployed. Falling into that realm is: ensuring the algorithms will 
operate properly under the security and de-identification measures taken by the standard message 
set to ensure privacy, ensuring the vehicles are collecting the correct data elements at the highest 
quality available while utilizing everything to which the vehicle has access, ensuring that the 
message set standard has a mechanism in place to deliver event flags that may be produced by 
vehicle OBEs, and finally ensuring that, as research progresses and algorithms are developed, 
there is a means to test advancements and improvements to algorithms that do detect events. 
With these measures in place, there should be no issues evaluating how to identify hot spots once 
technology reaches a critical level of market penetration. 
 
The second contribution is the exploration of how crashes and near-crashes can be detected in 
connected vehicle environments. All of the hypothesized benefits of using connected vehicles for 
hot spot identification hinge on the ability to successfully detect crash and crash-surrogate 
events. As a result, a major focus of this research was modeling crashes and near-crashes in order 
to describe them in terms of connected vehicle data elements. Three creative methods were 
proposed as possible approaches to identifying these types of events, including a pattern 
matching approach, a speed prediction time series based approach, and a discrete Fourier 
transform approach. Each of them have benefits and drawbacks in terms of both complexity and 
accuracy, but serve as excellent starting points for further research and the lessons learned are 
applicable and should be considered as additional models are proposed. 
 
It is also important to consider that the event detection work is not just applicable to connected 
environments. The benefits to being able to identify crash and surrogate events automatically 
from an incoming data stream can easily be seen throughout the transportation community. 
Infrastructure providers can use this to monitor fleet vehicles and contractors to ensure proper 
driving behavior while vehicles are in-use for government purposes. Similarly, this can be done 
by insurance providers to try and ascertain driver risk, rental car agencies for audits, and taxi-like 
services to ensure drivers meet a certain safety benchmark. Additionally, in connected 
environments, assuming the model accuracy can be improved, models can be developed to 
automatically alert emergency response units and traffic management agencies so the incident 
can be managed as quickly as possible. 
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FURTHER RESEARCH 
 
EVENT DETECTION 
 
For event detection, there are numerous directions further research can take. In this dissertation a 
few different general models were proposed to identify generic events regardless of type or 
severity while only using longitudinal acceleration and speed as key indicators. This was partly 
an artifact of the fact that the data sets were still on the small side which made it difficult to 
create specific models with any amount of confidence. In reality, it is likely that regional or local 
models would be required anyways, to account for regional dependencies that may be present. 
Local driver characteristics, tendencies by infrastructure providers, and regional characteristics 
like weather effects can all impact how a prediction model performs. This is similar to the way 
current crash prediction models are used in practice today. There are still a variety of questions 
that must be answered before this is viable for real-life applications. 
 
First, it is clear that trajectory data needs to be reliably collected or processed. It is preferable to 
use the vehicle’s built-in network rather than GPS-based trajectories, especially if event 
detection is the goal. If detecting other more common actions is the goal, having consistently 
high quality data becomes less critical as 1) it is going to be relatively easy to identify outliers, 
and 2) removing the outliers shouldn’t hugely impact sample size. When this becomes an issue is 
for event detection where events are the outliers. Observed outliers could just as easily be an 
event as they could be a GPS error or other bad data that was collected erroneously if the data 
collection mechanism is not trustworthy. 
 
Second, a key area for additional improvement is to utilize other BSM elements that are currently 
being collected. This is an obvious next step that may be able to help improve accuracy and 
discern crash types. Some of those data elements include lateral acceleration, pitch, roll, and 
yaw. Additionally, there are some other databases that could be merged with the BSM to 
improve understanding of what is occurring. For example, information on the geometric design 
of each area can be used to understand if certain observed actions are expected or even legal in 
the vicinity. 
 
Third, in situations where vehicles do have radar and other equipment that may improve event 
detection capabilities, there is no reason for it to not be utilized. For connected vehicles, the 
current standard message set is restrictive. While constantly projecting radar data may be too 
taxing on the system, a generic BSMP2 trigger could be added to allow the vehicle network to 
communicate likely near-crashes to the OBE so that it can, in turn, be projected to the RSE. This 
would allow vehicle manufacturers to develop their own triggers using their vehicles’ full 
repertoire of equipment while maintaining corporate privacy. Similarly, non-connected vehicle 
settings may also be able to utilize radar, sound sensors, and other equipment that may be 
installed. In general, more equipment will likely increase the accuracy of the flags and many 
vehicles are being manufactured with radar for other applications so it is really a matter of 
effectively utilizing the technology for additional purposes. 
 
For pattern recognition approaches, establishing a known and controlled ground truth would 
likely be highly beneficial to prediction accuracy. Particularly for safe driving, having a bank of 
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time series patterns for each action in different types of vehicles and driving conditions would 
allow for nuanced differences between conditions that indicate a safety-critical event or other 
conditions that are observed regularly in driving to be identified. For example, in the pattern 
recognition application, the approach was to identify events that did not fit into known patterns. 
However, one of the observed false positives turned out to be a vehicle going over a speed bump. 
Knowing what a speed bump looks like in terms of vehicle dynamic time series data and testing 
it against the data as it gets generated could prevent false positives due to this specific 
occurrence.  
 
There could be a couple approaches to developing this bank of known actions. Controlled 
experimental field tests where drivers go out on a test track and collect trajectory data would be a 
large undertaking but would also likely provide the best ground truth data for matching to 
observed data. In these controlled experiments, inputs such as vehicle type or weight, road 
surface conditions, approach speed, reaction time, etc. can be varied to collect a complete bank 
of observable vehicle actions. While this is clearly the more expensive option to pursue, it could 
have other research and application benefits that may justify endeavor.  
 
Perhaps the more economic approach would be to wait for connected vehicle technology to be 
deployed and mine a more complete dataset for commonly occurring patterns. Restraining this to 
specific sites and RSE would control for specific local characteristics (i.e. if a speed bump is 
present within the range of the RSE, the trajectories at that specific location all reflect its 
presence). 
 
Additional heuristic indicators can also be used to differentiate between a crash or near-crash. 
For example, if the vehicle keeps driving after the flagged events, it may lower the likelihood 
that the flagged event was a crash. Data from other databases, such as operations data collected 
by loops and Bluetooth sensors, may also be able to verify or invalidate events shortly after a 
flag is detected. 
 
SAFETY HOT SPOT IDENTIFICATION 
 
This work is a preliminary look at how the evaluation of transportation safety can be carried out. 
Current transportation safety evaluation research and applications are heavily entrenched (in the 
best case scenario) in following the HSM’s process of developing crash prediction models using 
police-reported crash data, and using those models to determine if the location is safe or not. 
While historically this has been the only data set readily available on a large scale, technological 
advancements in both vehicle technology and cellular technology make it potentially beneficial 
for the entire process of safety evaluation to shift to utilizing the new data sources. 
 
In terms of further research for hot spot identification, a few necessary studies must take place 
before any implementation can occur. Specifically, the entire EB-method in centered around 
correcting and adjusting crash predictions to account for yearly variation and regression to the 
mean. At a minimum, the method must be adjusted for yearly variations in safety-critical events 
(rather than just crashes) and event prediction functions would need to replace the currently used 
safety performance functions (crash prediction models). Additionally, this method was 
developed specifically to account for regression to the mean bias present in yearly crash counts, a 



Conclusions	and	Further	Research	

-77-	
	

bias that is significant due to the relative scarcity of crash events. It is unclear if this issue will 
persist if safety-critical events, which occur more frequently than police reported crashes, can be 
accurately detected on a large scale. 
 
Much of this will be impacted by the exact relationship between safety-critical events and crash 
risk, the primary metric that needs to be minimized to improve safety. Right now, observed 
crashes are used to estimate crash risk and years of study have helped researchers and 
practitioners understand the relationship between observed crash counts and crash risk. One of 
the ways the known bias in the data can be counteracted is to wait for a proper sample size, 
something that usually takes three years. Studying the relationship between safety-critical events 
and crash risk, rather than just police reported crashes, may lead to findings where crash risk can 
be estimated quickly helping to solve the problems quicker and prevent unnecessary exposure to 
high-risk locations. But, the working assumption with this concept is that safety-critical events 
are indeed a good surrogate for crashes. This means that locations with a high crash risk also 
have a high safety-critical event risk as a byproduct of that crash risk. 
 
It is possible that the analysis methods change altogether. If regression to the mean is no longer 
an issue that needs to be corrected, it is entirely possible that large-scale spatial analysis 
techniques could be preferable to the EB method. For example, spatial scan statistics can be used 
to identify if the rate of event occurrences over a certain space is higher than the rest of the 
locations. For spatial scan statistics, the null hypothesis is that the rate of event occurrence over a 
predefined space is the same as every other similar space and it is rejected if the rate is different. 
A methodology for applying a spatial scan statistic to a relatively uniform region could be as 
follows: 
 

1. Ensure the AADT of the region is fairly uniform. Exposure is still going to be the leading 
cause of events and high exposure doesn’t necessarily mean the location is “hot” so it is 
best to test locations independent of exposure. 

2. Flag events that occur in the region using event detection algorithms and map them 
within the selected region. 

3. Define the event rate at each cluster i, as 𝜃R. The null hypothesis is that 𝜃R = 𝜃, where 𝜃 
is the population event rate, which is unknown. The clusters are circles of varying sizes 
being moved across a spatial area. 

4. A X2-distributed statistic can then be calculated to test the hypothesis using traditional 
hypothesis testing concepts. 

 
All clusters that are significantly different can be considered hot spots as the risk is statistically 
higher in those specific clusters. Further measures could perhaps be taken as well to constrain the 
scan statistic to a grid or network, rather than using a circle. After this, potentially “hot” 
locations would be sent into a diagnosis phase where the root cause of the problem would be 
identified through further study, just like the one outline in the HSM. This could, in theory, make 
the network screening portion of the process, easier to automate as it requires less manual input 
then the EB method.  
 
Validation will be particularly challenging for studies like this and will likely be time 
consuming. The primary metric needs to be improvement in targeting high-crash locations over 
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the EB method. The ideal way to handle validation of new methods would be to forecast high 
crash locations using both methods and simply wait to see which ones turn out to be more 
accurate in the long run. Obviously, certain factors make this very difficult to accomplish in a 
real-life scenario. For example, any changes in travel patterns caused by construction at the site, 
construction on parallel routes, or changes to route or mode choice patterns will impact how 
many crashes a site experiences, in addition to the random element already observed in crash 
data. Determining the best approach to validating all hot spot studies, including the ones 
described in this study utilizing connected vehicle data, requires attention and will be up to 
researchers in the safety community. 
 

CONCLUDING REMARKS 
 
The compendium addressed two research ideas to varying extents: 
 

1. Can crash and crash-surrogate events be identified using vehicle trajectory data that 
would be collected in connected vehicle environments? 

2. Can connected vehicle technology be used by infrastructure providers to identify hot 
spots? 

 
Both questions, and a variety of sub-questions that arose from examination of those two primary 
topics are explored. Both topics are expected to be of critical importance to the transportation 
community once connected vehicle technology is implemented on a wide scale. 
 
Findings were preliminary, though appeared positive. First, a general research paper outlining 
how and why connected vehicle technology could be beneficial to hot spot identification was 
presented. Next a pattern matching approach was described to identify safety-critical events on a 
small naturalistic driving study data set. This same data set with some added baseline driving 
was used to create a speed prediction algorithm for event detection. Finally, a clustering 
approach of time series segments using a discrete Fourier transform was tested on a significantly 
larger and more robust data set with apparent success in terms of both event detection 
capabilities as well as avoiding false alarms. Additionally, lessons learned and further research 
topics were described  
 
 


