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Abstract

Populations of simple interacting oscillators can give rise to complex dynamics.

Real-world examples of such systems abound in biology, chemistry, and physics.

Reduced-variable models can describe these systems. The phase model is a particu-

larly successful reduced-variable model which, in its simplest form, each element

is represented by one variable, the phase of oscillation. The phase model can be

constructed from observable variables, without specific knowledge of underlying

phenomenological behavior. Such reduced variable models are easier to construct

and more generalizable than models derived from underlying physics or chemistry.

In this dissertation, we study the dynamics of a population of coupled electro-

chemical oscillators in order to modify the phase model to expand its applicability.

Specifically, we develop a two-phase model, a phase and radius model, and models

with network coupling.

We analyze data from two coupled oscillators with a standard one-dimensional

phase model and a newer two-dimensional phase model. The same quantity of

data is needed for either model. The two-dimensional analysis reveals behaviors

and coupling parameters in theoretical and experimental examples that the one-

dimensional analysis does not show. The two-dimensional model could be useful

in systems that exhibit learning due to its ability to distinguish stimulation and

reaction.
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We examine clustering on small networks with time-delayed interactions. Our

experimental results agree with numerical and analytical results from a phase

and amplitude model (the Stuart-Landau model). For near-sinusoidal oscillators,

the standard Stuart-Landau model successfully describes clustering dynamics.

We extend the Stuart-Landau model to describe clustering dynamics for higher

harmonic oscillators. We present examples of asymmetrical clusters arising from

networks of higher harmonic oscillators. We show that the amplitude of oscillation is

functionally influenced by coupling; we believe this ”amplitude coupling function”

has not been previously described. This function can be constructed from the

original time series with no additional measurements.

Recently, combined phase and amplitude models have gained attention; we

explore the conditions where a phase and amplitude model is useful. We show

experimentally a change in cluster state due only to changes in coupling strength.

Such a transition is not possible with a phase-only model. Simulations with the

extended Stuart-Landau model match experimental results. We demonstrate a

method for predicting the amplitude coupling function from the coupling. Prior

to this study, the relationship between stimulation and response was not known

for the amplitude. We suggest that the phase and amplitude model will be most

useful (1) in modeling high-harmonic oscillations, and (2) where coupling exceeds

the ”weak coupling” approximation of the phase-only model.
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Chapter 1

Introduction and Scope

Many natural systems are comprised of coupled oscillating elements. Extensive

studies have been performed to understand, predict, and engineer behaviors such

as synchrony in these oscillatory populations. Examples include coupled lasers [1],

population dynamics [2], chemical reactions [3], superconducting Josephson junc-

tions [4], and cardiorespiratory interactions [5, 6], among others.

If the elements or interactions in a system are nonlinear, populations can exhibit

highly complex behavior. The sum is greater than the parts; small changes can be

magnified to yield radically di↵erent behaviors. Consequently, when we study these

systems, we must examine them as a whole, not from the standpoint of individual

pieces. Each oscillator can be thought of as an M-dimensional problem. If we have

a population of N oscillators, this quickly becomes an unwieldy system. In order to

study the system, we employ a reduced-variable model called the phase model.

There are several reasons for working with the phase model. If we have N

oscillators, the phase model requires only N equations, rather than NxM . The

phase model is also more intuitive than the full equations, due to its simplicity.

Additionally, the phase model lets us compare the dynamics of dissimilar systems
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(such as a biological and a physical system) in the same framework. Finally, the full

M dimensional equations are not known for all systems. The phase model can be

constructed for any system that has oscillatory elements, because it is constructed

only from observable measurements. For example, in our system, oscillations are

due to the formation and dissolution of nickel oxide on the surface of an electrode;

a full model would need to consider the density of various chemical species present

on the electrode. Instead, we construct phase models from the current measured

at each electrode. The phase model approach has been employed in a variety of

contexts [7–12]. It has been used in biology to model plasticity and learning [13] and

inter-neuron coupling [14]. It has been used in physics to model phase synchrony in

chaotic lasers [15] and to extract coupling directionality in electronic oscillators [16].

j � gj,n f ( n j )
n

Ch. 5 & 6Ch. 5 & 6Ch. 4

(A) (B) (C)

Two-phase model Phase-and-amplitude model Network model

Standard model

Figure 1.1: Three extensions to the standard phase model: (A) The two-
phase model, with dynamics depending on two phases rather than a phase
di↵erence, (B) the phase and amplitude model, with dynamics depending
upon the amplitude in addition to the phase, and (C) the network model, in
which all pairwise interactions are scaled by a network, G. � denotes phase
while r denotes radius/ amplitude.

Previous work in this lab (and the vast majority of the work in the field) has

employed the standard phase model [17–20]. This dissertation extends the standard
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phase model in three ways. We represent the dissertation graphically in Fig. 1.1,

with the standard phase model depending upon phase di↵erence at the top, and the

three extensions to the model given in A, B, and C.

1. In the two-phase model, interactions are a function of two phases, rather than

the phase di↵erence (see Fig. 1.1A). See Chapter 4.

2. In the phase and amplitude model, amplitude dynamics are considered in

addition to phase dynamics (see Fig. 1.1B). See Chapters 5 and 6.

3. In the network model, pairwise interactions between elements may now di↵er

in value from one another (see Fig. 1.1C). See Chapters 5 and 6.

The two-phase model and the phase and amplitude model both give more detailed

descriptions of the systems than the standard phase model. These extensions can be

considered second-order approximations, which may be needed in cases where the

first-order approximation of the standard phase model is inadequate. The network

model will be needed when the system in question is coupled via a network. All

three extensions can be used in combination; in principle it is possible to use all

three together. The only additional data needed to employ these three extensions is

knowledge of the coupling network, and only in the case of the network model.

In Chapter 2, the background chapter, we introduce the reader to oscillators and

the phase model. We describe in detail how the quantities are calculated for the

phase model from an oscillatory time series. We briefly describe network theory

concepts and the master stability function.

Chapter 3 describes the experimental system and experimental procedure. We

detail the experimental apparatus. We describe simulations used in tandem with

experiments.
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Chapter 4 compares two-dimensional and one-dimensional phase models for

two coupled oscillators, respectively called the two-phase and phase-di↵erence

models. The two-phase model may be necessary in cases of more complex dynam-

ics [21]; similar data analysis techniques have been used to measure synchrony in

epileptic brain signals [22]. The two-phase model can also be useful for systems

where coupling evolves over time, due to the ability to separate stimulation and

response [13, 23]. We demonstrate that model selection is more nuanced than

previously thought. Prior to our study, the one-dimensional model was considered

adequate for similar oscillators while the two-dimensional model was believed only

necessary for dissimilar oscillators. Instead the underlying dynamics dictate the

appropriateness of the model. We successfully apply the one-dimensional analysis

to dissimilar oscillators and show another case where the two-phase model better

describes interactions between similar oscillators. This chapter closely mirrors a

paper that we published in 2011 with Michael Rosenblum and Arkady Pikovsky

from the University of Potsdam (see Section A.5.1).

Chapter 5 explores clustering on small, delay-coupled networks using exper-

iments, simulations, and the master stability function. There is general interest

in small networks as a stepping stone for understanding the dynamics on larger

networks [24, 25]. We successfully model dynamics using the Stuart-Landau model,

a model which incorporates the phase and radius (amplitude). We show asymmet-

rical clusters in experiments with higher harmonics.We present a set of modified

Stuart-Landau equations to capture system behavior. We show the the amplitude of

oscillation is functionally dependant upon the coupling in the ”amplitude coupling

function”, which we believe is a first. This chapter closely mirrors our recently

accepted paper with Eckehard Schoell’s group at the Technical University in Berlin

(see Section A.5.1).
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Chapter 6 discusses the implications of the phase and radius model from Chap-

ter 5. We show a cluster transition due to changes in coupling strength. The phase

and radius model describes this behavior well, unlike the phase-only model. We

describe a method to predict amplitude dynamics if the coupling is known, which

we believe is a first. We suggest two settings in which a phase and amplitude de-

scription may be superior to a phase-only description: (1) When higher harmonics

are present, and (2) when coupling exceeds the ”weak coupling” requirement of

the phase-only model [8]. Higher harmonic oscillators may be more sensitive to the

amplitude of perturbation; neurons exhibit a threshold of sensitivity for firing, as

do neuron models such as the FitzHugh-Nagumo model [26, 27].

Chapter 7 briefly summarizes other miscellaneous studies. We discuss spatially-

dependent coupling which may produce a chimera state, a mix of order and disorder.

We discuss amplitude dynamics in systems with two subpopulations. We discuss

clustering dynamics on small weighted networks, in which not all pair-wise interac-

tions are equal in magnitude.

Chapter 8 briefly summarizes the dissertation, and describes its place in the

field. We discuss possible future work in the field arising from this dissertation, and

the broader future of the field.
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Chapter 2

Background

Systems of coupled oscillators exist in many fields of study. Each element has

some repeated action, and interacts with other elements in some way. The repeated

action can be intermittent, such as the firing of a neuron, or highly periodic, such as

the swinging of a metronome. Oscillation shape can vary from neuron-spiking to

simple sine wave harmonics. Interactions can be unidirectional, bidirectional or

weighted, and for di↵erent length scales. Small interactions between elements can

lead to surprising population behaviors.

2.1 Oscillations

As oscillations are central to this dissertation, this section defines them in detail. We

are particularly interested in smooth and relaxation oscillations that are periodic.

Both kinds of oscillations can be characterized by their phase and radius. The radius

is similar to the amplitude of the oscillation–it is the di↵erence between the peak of

the waveform and the mean.

Any signal that oscillates periodically can be considered a ”limit cycle”. Fig. 2.1

shows how a simple pendulum can be considered as either a time series or a limit
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Figure 2.1: A system which oscillates, such as a pendulum (left), can be
considered as an oscillatory time series (middle) or as a ”limit cycle” in
phase space (right) [28].

cycle in phase space. In this view, the oscillation is a circle, and the radius of the

oscillation is the radius of this circle.

Limit cycle oscillations often arise as the result of a supercritical Hopf bifurcation.

A simplified model for a Hopf bifurcation is

ṙ = (�� r2)r (2.1)

�̇ = !, (2.2)

where r is the radius, � is the phase, and ! is the frequency. � is the bifurcation

parameter. Readers familiar with nonlinear dynamics may recognize the radial

equation as a generic pitchfork bifurcation. As shown in Fig. 2.2, when � < 0, a

single stable point will exist at r = 0. When � > 0, the solution r = 0 becomes

unstable, and a pair of stable solutions at r = ±
p
� are born.

The phase is always increasing at a rate of !, thus we can imagine that when

� > 0, the system traces a limit cycle with period 2⇡/! and radius
p
�, as shown in

Fig. 2.3. The time series of a limit cycle as shown in the figure will oscillate between

values of ±
p
�.
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Figure 2.2: The pitchfork bifurcation, as given by Eq. (2.1). Solid lines
indicate stable solutions while dashed lines indicate unstable solutions.

h
�

h
�

Figure 2.3: AHopf bifurcation, as given by Eqs. (2.1) and (2.2). Two possible
limit cycles for oscillations are shown, at �1 (red) and �2 (blue). Solid lines
indicate stable solutions while dashed lines indicate unstable solutions.

2.1.1 Smooth oscillations

Sinusoidal or nearly-sinusoidal oscillations are often called smooth oscillations.

These oscillations occur at values of � near the Hopf bifurcation (at � = 0). They have

the simplest oscillatory dynamics, and in some cases may be adequately modeled

with linear dynamics [8]. Fig. 2.4 shows an example of a smooth electrochemical

oscillation.

2.1.2 Relaxation oscillations

As we increase the value of the bifurcation parameter, �, higher harmonics not

captured by the simplified model of Eq. (2.1) appear. These higher harmonics
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Figure 2.4: Time series of smooth oscillations.
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Figure 2.5: Time series of relaxation oscillations.

cause the system to spend more time in certain values of the oscillation; these

relaxation oscillators are sometimes called slow-fast oscillators [29]. The phase �

still increases uniformly by definition. Relaxation oscillations are periodic, and thus

can be expressed in terms of a Fourier series:

f (x) =
1
X

n=0

An sin(n⇡x) +Bn cos(n⇡x). (2.3)

Many oscillations of interest are relaxational, such as the firing of neurons

and heart cells; a variety of models have been developed to describe relaxation

oscillators [26, 27, 30]. Fig. 2.5 shows an example of an electrochemical relaxation

oscillation.
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2.2 Phase Models

We want to understand and control the emergent behavior that arises from coupling

between oscillating elements. In a chemical or biological system, it can be cumber-

some to generate and work with a complete model of all species. Such a model can

also be unintuitive and may be di�cult to adapt for system changes. Additionally,

it can be di�cult to see commonalities between di↵erent phenomenological models

(for example, in previous work this lab has shown that neurons and electrochemical

oscillators synchronize in similar ways [31, 32]). Instead of modeling the underlying

chemistry, we choose to model the observable behavior.

Any oscillatory signal can be assigned an instantaneous phase, �j (t). According

to the Kuramoto phase model [8], a population of weakly-coupled oscillators can be

written as

�̇j(t) = !j +
K
N

N
X

n=1

H(�n(t � ⌧)��j(t)) for j = 1,2, ...N (2.4)

where!j is the natural oscillator frequency of oscillator j , K is the coupling strength,

N is the number of elements, H(��) is the coupling function, � the phase, and

⌧ is the time delay. The coupling function for perfectly smooth oscillators is

H(��) = sin(��); in real systems there are usually additional harmonics. The

coupling function is obtained by [33]

Hj(��) =
�2⇡
KP2

j

[Pj(��)�Pj ], (2.5)

where Pj is the period of the uncoupled oscillator (!j = 2⇡/Pj ), and Pj(��) is the

change in the period as a function of phase di↵erence. Here, �� = �n(t � ⌧)��j(t).
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Figure 2.6: (Left) We perturb one of two identical systems with starting
phase, �. The phase di↵erence between the two systems due to the perturba-
tion, ��⇤, gives the value of the response function, Z(�), at the initial phase,
�. (Right) Phase-advance and phase-lag due to perturbation as a function of
oscillator phase, giving the response function, Z , in Eq. (2.6) [35].

The coupling function can also be written as [8]

H(��) =
1
2⇡

2⇡
Z

0

Z(�)h(� +��)d�, (2.6)

where Z(�) is the response function and h is the voltage perturbation h(x(t)) from

Eq. (3.4) with x(t) expressed as the phase. The response function gives the phase

o↵set due to a di↵erential perturbation over the oscillation; in some regions of the

oscillation a perturbation will advance the resultant phase, while perturbations in

other regions may result in a delay. Fig. 2.6 shows two systems, one which is not

perturbed (orange square) and one which is perturbed. The response function is an

inherent oscillator property that changes only with changes in system parameters

such as the voltage, the acid concentration, or the circuit resistance. Detailed

examples of these calculations can be found in Ref. [34].
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2.3 Time series analysis

In order to implement the theory discussed in Section 2.2, we must be able to assign

phases and radii to the time series.

2.3.1 Peak and phase finding

Throughout this dissertation, we use the algorithm described in this section for

finding peaks. In the following we also define a method for finding phases; in

Chapter 4, we introduce an instantaneous phase finder. Unless otherwise noted, we

find phase via the peak-to-peak interpolation described here.

Ref. [35] describes in depth the methods for finding peaks and phase. We recap

these methods here briefly. The Matlab code for both the peak and phase finder are

in Appendix A.1.

First we find the peaks of the time series. We set a peak threshold, such that

all the peaks of the data series will easily exceed this value. This creates a set of

data windows where the time series exceeds the threshold. A window will only

be considered if it contains a large enough set of points. This is to avoid spurious

windows due to noise or other e↵ects. Each window j is fitted with a fourth-order

polynomial. The location of the peak of the polynomial within the window closest

to the largest value is taken to be the location of the peak within that window. This

process is repeated for all windows, giving a vector of peak times.

Once the peaks are found, we can find the phase and the period. As shown

in Fig. 2.7, each peak is defined as phase zero, and we define phase as linearly

increasing between each peak. For example, the point which occurs halfway between

a peak and the next peak is assigned the phase ⇡ radians. The periods are just

t(peakj+1)� t(peakj ).
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Figure 2.7: Finding phase from peak-to-peak linear interpolation. Peak
times are shown by vertical red lines; in between peaks phase is linearly
interpolated. Periods are found by the time between peaks.
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Figure 2.8: Peak times are shown by vertical red lines; the mean signal is
shown by to horizontal black line. Radii rj are found for each peak j as the
di↵erence between the mean and the value at the peak.

2.3.2 Finding the the radius

To find the radius, we first find the value of the times series at the time of each

peak. This is subject to noise, and we therefore filter the initial time series with

a fourth-order, 129 point Savitsky-Golay filter (SG filter). This filter is designed

to preserve the form of the oscillation. The SG filter tends to underestimate sharp

excursions, such as the peak, but preserves changes caused by coupling.

We define the radius as the value at the peak minus the mean of the oscillation.
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We use a slightly di↵erent definition, (peak � trough)/2 in Chapter 5. Peak �mean is

generally preferable, because the trough can be become harder to fit as oscillations

become more relaxational (see Fig. 2.5).

2.4 Network Theory

Any population of connected elements can be thought of as a network. Network

theory has been used to study food webs [36], the internet [37], the power grid [38],

epidemic spreading [39] and other systems. Elements of the network may be

time-dependent, such as a neuron, or be static, such as a website on the internet.

Connections between elements may be time-dependent, nonlinear, or time-delayed.

Networks may have millions of elements. Due to all of these factors, the study of

networks is a broad field of its own [40–42].

We use the connectivity matrix, G, to represent interactions between pairs of

elements; gj,n is the pairwise coupling strength that element j feels from element n.

Fig. 2.9 shows a simple network in which oscillator 1 feels coupling from oscillator

2 with strength x, and oscillator 2 feels coupling from oscillator 3 with strength

2x. Fig. 2.9A shows a simple schematic while Fig. 2.9B shows the equivalent

connectivity matrix, G.

1

2

3

x

2x

A B

Figure 2.9: (A) A simple network, given in the text. (B) Connectivity matrix
G of simple network in (A).
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The Kuramoto phase model can be written for networks:

�̇j(t) = !j +K
N
X

n=1

gj,nH(�n(t � ⌧)��j(t)), (2.7)

with gj,n now included in the model to indicate tunable pairwise interactions.

Many metrics have been used to numerically characterize networks. These

metrics can make predictions about behavior on the network [43], and reveal

non-obvious similarities or di↵erences between networks. Suppose we have two

populations of six elements; one of these populations is coupled globally (all

gj,n = 1
N�1 , and the other is coupled in a simple unidirectional ring (gj=n+1 = 1 and

gj,n+1 = 0), shown respectively in Fig. 2.10A and Fig. 2.10B.

1 2

3

45

6

Gglobal=

1 2

3

45

6

Gring=

(A) (B)

Figure 2.10: (A) Global coupling of 6 elements. (B) Unidirectional coupling
of 6 elements. Top: simple schematic, bottom: connectivity matrix, G.
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We can use the diameter and the spectrum to illustrate the di↵erence between

global coupling and a simple network. We define a matrix D as the shortest distance

between all pairwise elements, such that dj,n is the smallest number of steps needed

to get from element n to element j . The matrix D helps quantify how long it takes

for information from one element to reach another element. The largest value of D

is called the diameter. The diameter of the global graph and unidirectional ring are

1 and 5 respectively. Information takes longer to traverse the ring, which will a↵ect

synchrony.

The spectra, and the quantities derived from it, are used in many network

analytics [41]. To obtain the graph spectra, we first define the adjacency matrix,

A. A is a simplification of the graph G in which aj,n = 1 if gj,n , 0 and aj,n = 0 if

gj,n = 0. The spectrum of G is given by the eigenvalues of A, �, where an eigenvalue

is a number such that det(A��I) = 0. (Note that definitions vary in the literature;

some define the spectrum as the eigenvalues of the Laplacian matrix, a zero row-

sum version of the adjacency matrix, while some treatments require symmetrical

coupling, that is, gj,n = gn,j , in G [44, 45].) One of the eigenvalues of A in a constant

row sum matrix will be the row sum; we are concerned with the other values. For

global coupling, all non-row sum eigenvalues � are �1. There are five uniquely

valued non-row sum eigenvalues in the unidirectional ring: � = ±12 ±
p
3
2 i and � = �1.

The eigenvalue distribution gives information about the number of time scales in

the network [46]; global coupling has only one while ring coupling has many. All

time scales must be satisfied to achieve synchrony; this is an underpinning of the

Master Stability formalism [47].

Both of the graphs presented in Fig. 2.10 are simple, but we can see with the two

metrics presented that they will exhibit di↵erent synchronization behavior. We can

guess, without any simulations, that the synchrony problem will be more complex
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for the unidirectional ring due to its large diameter and multivalued spectrum. It is

interesting to note that there are 30 unidirectional connections in global coupling,

while there are only 6 in the unidirectional ring. The ring coupling is more complex,

although it has the same elements and fewer connections.

2.4.1 The Master Stability Function

The Master Stability Function (MSF) is a transform to analytically find the stability

of system of elements connected by a network, G. In essence, the MSF says that a

system will be stable if a certain value is less than zero for all the time scales of the

system. It was originally developed to determine the stability of the synchronous

state with no time delay [47, 48]. It was recently extended to analyze clusters in

network-coupled oscillators, as well as for time delay [49].

Here we lay out the original MSF derivation. Consider the system:

dxj
dt

= F(xj ) +�
N
X

n=1

gj,nH(xn). (2.8)

Where � is the coupling strength, F is the uncoupled behavior of the system, and H

is a function of the dynamical variables for each oscillator that describes how the

components of the system interact through coupling. We perform a 1st order Taylor

series expansion, xn(t) = s(t)+⇠n, where ⇠ is a small perturbation and s is a solution

to the uncoupled system. When we expand all functions, this gives the variational

equation, which shows how perturbations evolve along a trajectory,

d⇠j

dt
=

N
X

n=1

[DF(s)�j,n +�gj,nDH(s)] ·⇠n, (2.9)

where DF and DH are the Jacobians of the functions F and H, and �j,n is the
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Figure 2.11: The Master Stability Function for the Rössler oscillators with
di↵erent coupling and parameters. (Figure 1 from [51].)

Kronecker delta function. This equation can be rewritten to give:

d⇣l
dt

= [DF(s) +��lDH(s)] ·⇣l , (2.10)

where �l is an eigenvalue of the coupling matrix. From this equation, we can solve

for the Floquet exponents, µ, in the case of a limit cycle oscillator, or the Lyapunov

exponents, �, in the case of a chaotic oscillator. The MSF is µmax or �max as a

function of ↵, where ↵ = �� [47, 48, 50].

Fig. 2.11 shows the MSF for the Rössler oscillator under chaotic and limit cycle

conditions, with x- and y-component coupling; when �max < 0, the synchronous

state will be stable. All types of coupling in the Rössler oscillator synchronize first

at a lower gain, and then desynchronize at a higher gain. We note that this is an

interesting behavior; the phase model can never desynchronize due to increasing

gain. The MSF of the Rössler oscillator shows that synchrony can be disrupted



CHAPTER 2. BACKGROUND 19

by su�ciently strong coupling, or if a coupling network has a su�ciently broad

spectrum. Given an MSF, one can predict if it is possible to synchronize a specific

network. For example, N = 34 is the maximum number of x-coupled chaotic Rössler

oscillators that can be synchronized with any coupling strength in a star network

(one hub and N � 1 spokes) [48]. Mathematics for the extension of the model for

time-delay and cluster states can be found in Ref. [49] and in our paper in Chapter 5.
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Chapter 3

Experimental Apparatus

3.1 Introduction

We used an oscillatory nickel-oxide experimental system to study the dynamics of

oscillatory populations. We performed simulations using various models.

3.2 Electrochemical system

Our nickel oxide system is a good proxy for the broader study of interacting

oscillators; it has low noise, high controllability, and oscillates on a convenient

timescale that is fast enough to allow the recording of many oscillations, but slow

enough so that the data can be readily sampled. By tuning various parameters, we

can choose the oscillation type, coupling type, and form of coupling.
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3.2.1 Experimental System

The following system of reactions describes electrochemical dissolution of nickel in

sulfuric acid [52]:

Ni ! Ni2+ + 2e� (3.1)

Ni +H2SO�4 ! NiH2SO�4

H2O ! 2H+ +
1
2
O2 +2e�

Ni+H2O ! NiOH+H+ + e�

NiOH ! NiO+H+ + e�

NiO+2H+ ! Ni2+ +H2O.

This system has an open-circuit voltage of -0.68V vs. the Hg/Hg2SO4/K2SO4 (sat)

reference electrode.

The oscillatory form can be tuned by the applied potential; potentials near the

Hopf bifurcation will be smooth with fewer significant harmonics (see Fig. 3.1B)

while potentials farther from the Hopf bifurcation will be relaxational with more

significant harmonics (see Fig. 3.1C). Oscillations do not occur above about 1.25V

(this number can vary slightly depending upon the potentiostat); Fig. 3.1A shows

the bifurcation diagram of the nickel oxide system. Fig. 3.1B shows the waveform

of a smooth oscillator at V = 1.105V; Fig. 3.1C shows the waveform of a relaxational

oscillator at V = 1.225V.

Between V ⇡ 1.05V and V ⇡ 1.23V, when a nickel oxide layer is present, localized

negative di↵erential resistance occurs, as well as bistability between a high current

and a low current. These conditions occur due to competition by sulfate and

bisulfate groups for surface sites. When an additional resistance is applied (we use
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Figure 3.1: (A) Bifurcation diagram for nickel electrodissolution when
|H2SO4| = 3.0M and R = 650⌦. The bifurcations are labeled: Hopf (H),
Saddle Node (SN) and Saddle Loop (SL) [35, 52, 53]. (B) Time series of
smooth oscillations at V = 1.105V. (C) Time series of relaxational oscillations
at V = 1.225V [35].

Rp = 650 ⌦) in the voltage range of negative di↵erential resistance, this causes the

eigenvalues to cross the imaginary axis, resulting in a Hopf bifurcation [18, 52].

3.2.2 Electrode preparation

The procedures outlined in this section are very similar to those described in

Ref. [35], Section 3.2.2.

We assemble the electrode array from 99.98% pure nickel wire with a diameter

of 1 mm. We seat these wires in epoxy, which spaces them and provides electrical

insulation. In this way, reactions can only occur at the ends of the electrodes. The de-

tailed procedure for building the electrode array is given below, with accompanying
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images in Fig. 3.2.

1. Cut 64 pieces of nickel wire to a length of about 10 cm; roll to ensure straight-

ness.

2. Prepare the 1/8” teflon spacers that will hold the top and bottoms of the wires:

(a) Drill 1-mm holes for the 64 wires in the desired pattern.

(b) Cut divots into one of the teflon disks.

3. Solder an 8” teflon coated wire to each of the 64 nickel wires.

(a) Cover these 64 solders with a rubber shrink tube.

4. Thread the 64 wires through the holes in the teflon disks. The disk without

divots should be at the bottom of the nickel portion of the wire while the disk

with divots should be at the top.

5. Above the divoted teflon disk, place 64 rubber shrink tube on the teflon

portion of the wire. Do not shrink them.

6. Solder the teflon wires to three 25 pin male D-sub connectors (25 to the first,

25 to the second, and 14 to the third).

(a) Slide the shrink tubes over these connections and shrink them.

7. Check the electrical contact of all wires. Ensure that all the wires are electri-

cally isolated.

8. Place assembly in a 2” diameter teflon mold.

9. Mix the epoxy resin (1 part epoxy (Type W-7), 1 part hardener (Type A)) and

pour slowly into the mold to avoid the creation of air pockets. Allow 24-48

hours for the resin to harden.
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Figure 3.2: The fabrication of the 64 electrode array. (A) An individual
nickel wire soldered to a teflon coated wire. (B) 64 wires arranged with the
teflon spacers. (C) The fully assembled array [35].

3.2.3 Experimental procedure

We perform experiments using up to 64 1-mm diameter Ni working electrodes

(99.98% pure) embedded in resin so that reactions occur only at the wire end. The

electrochemical cell consists of the electrodes in a 3M H2SO4 electrolyte, a Pt mesh

counter electrode, and a Hg/Hg2SO4/K2SO4 (sat) reference electrode. A jacketed

glass vessel enclosed the cell and maintained a temperature of 11�C. A potentiostat

set the electrode potential V of the electrodes such that they undergo transpassive

dissolution, where the nickel may tunnel through the nickel oxide layer present dur-

ing the experiment. We can set electrode potential Vj and voltage perturbations �Vj

individually with the ACM Instruments multi-channel potentiostat. The apparatus

is shown in Figs. 3.3 and 3.4.

Before each experiment, we polish the electrodes with a wet grinder, first with a

rough grit (180 grit) and then with increasingly smoother grits (up to 4000 grit).

The polishing removes the oxide layer from the previous experiment and provides a

consistent starting condition.
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Figure 3.3: (Left) Experimental apparatus with ACM Instruments 64-
channel potentiostat. (Right) Photo of the physical electrochemical cell.

Figure 3.4: Labeled photo of the entire experimental apparatus.

We connect the cell to the potentiostat and ZRA, and ramp from �0.68V to

1.25V and back down to 0V at a rate of 10 mV/s. The purpose of this voltage sweep

is to form the nickel oxide layer on the surface of the electrodes. Oscillations are

due to the formation and dissolution of this layer. After the initialization, we let

the oscillators rest for about two hours. The oscillator frequency drifts quickly

following initialization; this drift never stops, but it slows over time, and is relatively
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constant after two hours.

We physically couple the oscillators via perturbations to the applied potential.

Two computers and several Labview programs calculate and apply these pertur-

bations (see Ref. [35] for more description of these programs). A data acquisition

computer measures the electrode currents at 250 Hz. A Labview based program on

the host computer then calculates the voltage perturbations.

First, we scale the current:

Īj(t) =
hAalli
Aj

(Ij(t)� hIji) (3.2)

where hIji is the mean value of the channel, Aj is the amplitude of oscillator j , and

hAalli is the mean amplitude of the population. Then we calculate the potential

drop across the double layer:

xj(t) = Vj(t)� Īj(t)Rp (3.3)

where Vj(t) is the applied voltage of channel j . Finally, we calculate the voltage

perturbations, �Vj :

h(xj(t)) =
S
X

s=0

ksxj(t � ⌧s)s (3.4)

�Vj =
N
X

n=1

gj,nh(xn(t)) (3.5)

where S is the harmonic of the feedback, ks is the feedback magnitude of the S = s

harmonic, and ⌧s is the delay of the S = s harmonic. gj,n are elements of the coupling

matrix, or graph, that gives the pairwise interaction strengths between all oscillators.

We often normalize the coupling matrix, G, such that all row sums are unity. The

coupling matrix required for Labview must be tab-delimited in a specific format;
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see Appendix A.4 for code to output such a matrix.

3.3 Simulation and analysis methods

We simulated many of our experiments with ordinary and delayed di↵erential

equations. We used a fourth-order Runge-Kutta to compute all ODEs and DDEs

(see code in Appendix A.5).

Per Eq (2.5), we findH(��), the period as a function of the phase di↵erence, with

one data point per oscillation. For the purposes of modeling and simulation, we

want a direct relationship between the two. We achieve this by performing a Fourier

fit of H . Fourier fits require evenly-sampled data; the initial data is often highly

non-uniform in its sampling, so we resample using a sliding window averager. We

typically keep the first 5-7 coe�cients of the Fourier series. Appendix A.2 gives the

relevant code.



28

Chapter 4

Reconstruction of two-dimensional

phase dynamics1

4.1 Notes to the reader

This chapter closely mirrors our 2011 paper with Michael Rosenblum and Arkady

Pikovsky [54]. Here, we select pairs of dissimilar oscillators (achieved via di↵erent

applied voltages) from the whole population of 64. We couple these pairs with

weak coupling that does not induce synchrony. For Figure 4.9, we drive a single

smooth oscillator with a sine wave. Please note that Section 4.4 describing the

experimental apparatus is mostly information repeated from Chapter 3. We repeat

this information for the convenience of the reader. Also note that Section 4.7, the

discussion of this chapter, has been re-written for greater readability.

1K. A. Blaha, A. Pikovsky, M. Rosenblum, M. T. Clark, C. G. Rusin and J. L. Hudson, “Reconstruc-
tion of two-dimensional phase dynamics from experiments on coupled oscillators” Phys. Rev. E, 84,
046201, 2011.
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4.2 Introduction

Scientists have investigated systems of coupled oscillators in a variety of fields. Ex-

amples include coupled lasers [1], population dynamics [2], chemical reactions [3],

and cardiorespiratory interactions [5, 6], among others. There are two ways to

obtain a theoretical description of the system: either write the model equations for

the coupled systems starting from the first principles, or reconstruct the model

equations from observations. In many cases, e.g. in biological systems, use of the for-

mer approach is greatly impeded by underlying complexity and lack of knowledge

about oscillation generation and coupling mechanisms.

This paper takes the second approach and reconstructs the interaction between

a pair of experimental nonlinear electrochemical oscillators. We discuss the basic

theory, which we apply for our system of two oscillators with weak coupling. The

system is represented in terms of two phases, which in many cases may be sim-

plified to a single variable, the phase di↵erence [8]. We show that phase models

that preserve dependence on individual phases generally provide a more detailed

description of the interactions between two oscillators than do those based on the

phase di↵erence. We compare results of the two modeling methods and discuss

limitations of models based on phase di↵erence. We calculate from experimental

data a two-phase model using a previously introduced technique [55]. Our ex-

perimental results verify phase reconstruction in a system with noise and connect

the two-dimensional and one-dimensional models [8, 56, 57]. We calculate the

natural oscillator frequencies, changes in coupling directionality and coupling

time delay from the experimentally determined phase models. We also present

experiments where coupling functions exhibit higher order terms, and show that

the one-dimensional model does not capture these terms.
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4.3 Theory

Suppose we observe two interacting oscillators described by

~̇xj = ~Fj(~xj ) + "~pj(~xj ,~xn) , (4.1)

where j = 1,2, n = 2,1, and the parameter " describes the strength of the interaction.

Generally, the functions ~Fi are di↵erent; moreover they can be of di↵erent dimension.

The coupling functions ~pi can be di↵erent as well. We assume that both systems

when uncoupled, i.e. when " = 0, possess stable limit cycles in their phase spaces.

The asymptotic dynamics of each oscillator (after transients die out) can be then

described by a single variable, the phase [7, 8, 56].

Even when the Eqs. (4.1) of the coupled oscillating system are known their

analytical treatment can be quite complicated. A simplification can be made in

the case of weak coupling, where applied perturbations are small compared to

the negative Lyapunov exponent(s) of each oscillator. For this case the oscillators

remain near their closed orbits and the dynamics of a pair of coupled systems is

confined to the two-dimensional torus in the phase space. Correspondingly, the

dynamics can be parameterized by two phases [7, 8, 56],

�̇j = !j +Q(j)(�j ,�n) . (4.2)

Here �j is the phase of oscillator j, �n is the phase of the other oscillator and !j is

the natural angular frequency of the oscillator j, i.e. the frequency of the uncoupled

system. The functions Q(j) describe the coupling between the systems. The only a

priori assumption about these functions is that they are 2⇡-periodic with respect to

both arguments; in particular, they can contain a constant term.



CHAPTER 4. TWO DIMENSIONAL PHASE MODELING 31

If the dynamical Eqs. (4.1) are known, the coupling functions Q(j) can be rep-

resented in the form of the power series by means of a perturbative expansion

[8],

Q(j)(�j ,�n) = "Q
(j)
1 (�j ,�n) + "2Q

(j)
2 (�j ,�n) + . . . , (4.3)

where the subscripts onQ(j) correspond to the order of approximation. Computation

of the high-order terms represents, to the best of our knowledge, an unsolved

problem, whereas the first-order phase approximation is widely used in various

applications [8, 57]. The first-order coupling functions can be written as

Q
(j)
1 (�j ,�n) = ~Zj(�j ) ·~hj(�j ,�n) , (4.4)

where ~Z is the phase-dependent response function of the oscillator and~h = ~p(~xj (�j ),~xn(�n))

is the applied stimulation. In the simplest case when the scalar driving is indepen-

dent of the phase of the driven system and enters the state-space Eqs. (4.1) as an

additive term, the coupling function can be represented as a product of two func-

tions of one variable, Q(j)
1 (�j ,�n) = Zj(�j )hj(�n). The phase description Eq. (4.2)

can be valid for not-so-weak coupling as well: as long as a stable invariant torus in

the phase space exists, the motion on it can be parametrized by the phases and the

dynamics can be written in the form of Eq. (4.2).

A large body of work concerns the description of two interacting oscillators

as a function of the phase di↵erence [11]. Theoretical studies and numerical sim-

ulations show that these one-dimensional phase models capture the important

synchronization properties of populations of similar oscillators with weak interac-

tions [9, 10, 12, 58–61]. Phase di↵erence based phase models also predict system

behavior in electrochemical experiments [62]. The one-dimensional approach is

suitable, because the long-term dynamical e↵ects, such as synchronization, depend
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mainly on the averaged coupling functions q, discussed below.

The reduction to a one-dimensional description can be made if the coupling

is also weak compared to the natural frequency, i.e. the norm of the coupling

function ||Q(j)|| ⌧ !i , and the natural frequencies of two systems are close to a

resonance condition, m!1 ⇡ n!2. In this case one can introduce a slow variable,

phase di↵erence,

 = n�2 �m�1,

and average Eq. (4.2) over the common oscillation period P = 2⇡n/!1 ⇡ 2⇡m/!2.

In the case of similar oscillators (m = n = 1),  reduces to �2 ��1. The averaged

equations have the form [8],

�̇j = !j + q
(j)
m,n( ) , (4.5)

where the new, averaged coupling function qm,n is a function of the phase di↵erence

only,

q
(j)
m,n( ) =

"
2⇡

2⇡
Z

0

Q(j)(�1,
m
n
�1 +

 
n
)d�1 . (4.6)

Thus, a description in terms of phase di↵erence is possible only in vicinities of the

resonant frequency ratios. For each of the resonant tongues one should establish

an averaged coupling function qm,n. Thus, although a complete description of

the coupled system for any frequency ratio can be achieved with one pair of two-

dimensional functions Q, a large set of one-dimensional coupling functions is

required to provide the same result.

We illustrate the di↵erence in synchronization predictions between two- and

one-dimensional phase models by an analysis of the following toy model of a
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harmonically driven oscillator

�̇1 = !1 + "[cos(�1) + cos(2�1)]sin(�2) (4.7)

�̇2 = !2. (4.8)

Averaging Eq. (4.7) using Eq. (4.6) yields two nontrivial one-dimensional cou-

pling functions q1,1 = "
2 sin(�2 ��1) and q2,1 = "

2 sin(�2 � 2�1); all other functions

qn,m = 0. Thus, the averaged description of Eq. (4.7) predicts locking only when

!1 ⇡ !2 and 2!1 ⇡ !2, with triangular Arnold tongues. However, the tongues

Figure 4.1: (a) Main synchronization tongue for the two-dimensional model
Eq. (4.7) (solid line) and the tongue predicted by the one-dimensional model
q1,1 (dashed line). (b) The second tongue at !2 ⇡ 2 for the two-dimensional
model (solid line) and for the one-dimensional model q2,1 (dashed line).
Here the averaging works well and the di↵erence is pronounced only far
from resonance, see inset. (c) Devil’s staircase for the toy model Eq. (4.7)
with !1 = 1, for " = 0.3; here ⌦ = h�̇i where h·i is time average. Locking
regions at⌦/!2 = 2,⌦/!2 = 1,⌦/!2 = 2/3, and⌦/!2 = 1/2 are seen. Zoom
of the plot (not shown) exhibits further locking ratios, e.g. 3/2, 4/5, 3/4, and
3/5.
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obtained by numerical simulation of the full model (4.7) di↵er from the triangular

shape when !2 is farther from the resonance frequencies, as shown in Fig. 4.1A and

B. Furthermore, numerical analysis of Eq. (4.7) shows many locking regions, as seen

in Fig. 4.1C, in contrast to prediction of the reduced model. We explore the applica-

tions of the two-dimensional method and compare the one- and two-dimensional

methods in the following sections.

4.4 Experimental setup

Experiments were performed on an electrochemical cell consisting of two Ni work-

ing electrodes (99.98% pure), a Pt mesh counter electrode, and Hg/Hg2SO4/K2SO4

(sat) reference electrode, with a 3M H2SO4 electrolyte, shown in Fig. 4.2A. The cell

was enclosed in a jacketed glass vessel maintained at a temperature of 11�C. An

ACM Instruments multi-channel potentiostat was used to individually set the elec-

trode potential Vi of each electrode such that the electrodes undergo transpassive

dissolution.

Figure 4.2: (a) Experimental apparatus with multi-channel addressable volt-
age and feedback. (b) Time series of relaxational oscillations at V = 1.210 V.
(c) Electrochemical dissolution time series showing smooth oscillations at a
potential of V = 1.105 V.



CHAPTER 4. TWO DIMENSIONAL PHASE MODELING 35

A 650⌦ resistor was attached to each electrode, causing the dissolution current

to oscillate [52]. The resulting dissolution currents were measured using a zero

resistance ammeter attached to a real time data acquisition system, Fig. 4.2A.

The shape of the electrochemical oscillator waveform depends on applied voltage.

Smooth oscillations with a natural frequency of about 0.5 Hz are observed at

potentials of approximately 1.105 V. Relaxational oscillations with a frequency of

about 0.35 Hz are observed around 1.20 V [63]. As the applied voltage of each

electrode in the experimental system can be chosen independently, any combination

of smooth or relaxation oscillators is accessible. Relaxational and smooth oscillations

are shown in Fig. 4.2B and Fig. 4.2C, respectively. Here, oscillator 1 refers to the

more relaxational oscillator (V1 = 1.180 V) with a natural frequency of ⌫1 = 0.405 Hz

± 0.005 Hz, while oscillator 2 (V2 = 1.105 V) refers to the smooth oscillator with a

natural frequency of ⌫2 = 0.479 Hz ± 0.002 Hz, where ⌫ = !/2⇡. The range is due to

the slow drift over time of the natural frequencies of the oscillators as an inherent

property of the system.

Negligible intrinsic electrical interactions exist between the uncoupled oscilla-

tors. The startup or shutdown of an oscillator does not alter the behavior of the

second oscillator. Furthermore, the oscillator dynamics have no interdependence

when both oscillators are functioning in the uncoupled state.

Interactions were introduced using real-time coupling of the form:

�V1(t) = K[k1x2(t � ⌧)] (4.9)

�V2(t) = K[k2x1(t � ⌧)] (4.10)

where �V1,2 are the changes in the circuit potentials of the elements, K is the fixed

overall coupling gain, k1 and k2 are the coupling gains on oscillator 1 and oscillator
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2, respectively, such that 0 6 kj 6 1, and ⌧ is the coupling time delay. The scaled

potentials of the elements as a function of time xj(t) are,

xj(t) = Vj(t)� Ij(t)Rp, (4.11)

where Vj are the applied potentials, Ij are the normalized currents, and Rp = 650⌦

is the channel resistance. Only linear coupling is considered here, with and without

time delay [64, 65].

4.5 Methods

The only information required by the phase models in Eqs. (4.2) and (4.5) is the

instantaneous phases. The instantaneous phases are calculated directly from the

electrochemical current time series using the phase space angle, as shown in Fig. 4.3.

Other definitions of phase are equally applicable provided they yield a one-to-one

correspondence between phase and location on the closed orbit [15, 57, 66]. For

example, phase defined from percentage of trajectory length between consecutive

Poincaré surface of section crossings is useful for more complicated oscillations (e.g.

electrocardiograms) [55].

Electrodissolution currents of each element are measured at 250 Hz, filtered with

a 129 point fourth order Savitsky-Golay filter, and used to calculate the genuine

phases. The Savitsky-Golay filter preserves the structure of the oscillation while

removing nonphysical phase velocities caused by noise in the system. Although

the maximum amplitude of the relaxation oscillator (oscillator 1) tends to be

underestimated, the phase is well-preserved; the di↵erence between the phases

calculated from filtered and unfiltered signals is delta correlated.

Note that definitions of phase based on the Hilbert transform have inherent
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Figure 4.3: Time series in Hilbert space; ✓i indicates protophase (a) for the
relaxational oscillator, (b) for the smooth oscillator. Note that although the
phase portraits look very much alike, the distributions of ✓i are di↵erent, as
shown in Fig. 4.4B.

Figure 4.4: (a) Wrapped protophase of oscillator 1 (relaxational, V1 =
1.180 V) versus protophase of oscillator 2 (smooth, V2 = 1.105 V) obtained
via the Hilbert transform. (b) Phase transformation function, � . �(✓1) is
dash-dotted, and �(✓2) is solid. (c) Wrapped genuine phases of the two
oscillators, �1 and �2.

deviations in phase velocity as a function of phase. These deviations arise from

the non-sinusoidal nature of the oscillations. This introduces strong dependence

on phase into oscillator phase velocity in the absence of perturbations. Such a

dependence contradicts the definition of phase lying at the basis of Eq. (4.2), as in

this equation phase increases uniformly in the absence of interactions. Moreover,

this dependence swamps the e↵ect of perturbations on the instantaneous rate of

phase advance, see Fig. 4.4A. These phases obtained directly from the embeddings in

Fig. 4.3 are thus referred to as ✓, the protophases. In order to isolate phase velocity

changes resulting from perturbations, phase must be defined as increasing linearly
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in the absence of perturbations. A nearly linearly increasing phase is obtained with

the help of the protophase probability density distribution (2⇡)�1�(✓j ) [55], which

is the inverse of the average instantaneous velocity of the oscillator through the

limit cycle, see Fig. 4.4B. The genuine phases � result from the transformations

d�j /d✓j = �(✓j ), and exhibit non-linear phase advance in response to coupling or

feedback only. This is evident in Fig. 4.4C, where the overall phase advance is

uniform while localized excursions remain.

From the transformed, genuine phases �j we find the coupling functions Q,

following the methods of [55]. First, the phase of each oscillator is cleansed of

nonuniform phase advance. Then the phase velocities are fit with a two-dimensional

Fourier expansion, Eq. (18) in [55] (when the phase space is not well-covered,

phase velocities are instead fit with a two-dimensional kerneling function). The

coupling functions are then further cleansed using the method in Section IV, part

B in [55]. Numerics demonstrate that satisfactory results can be obtained already

after the first cleansing, since the second cleansing is small compared to the first.

Note two limitations of the method (see [55] for details): (i) if the coupling function

contains a component dependent only on the phase of the driven system, it will

be cleansed; (ii) generally the coupling function contains a constant term which

cannot be separated from the natural frequency; this may be done only if several

observations with di↵erent yet unknown coupling strength are available. A matlab

implementation of the techniques employed for the data analysis may be found

online [67].

There is more than one way obtain the one-dimensional coupling functions,

q(j). These can be obtained as in Eq. (4.6), by averaging from the two-dimensional

coupling functions Q(j), or they can be obtained directly from the time series [3].

The methods are conceptually equivalent, and yield nearly identical results. The



CHAPTER 4. TWO DIMENSIONAL PHASE MODELING 39

latter is easier to implement numerically, and we use it here to obtain q(j). First, the

periods of each oscillation are calculated. The inverse of the period is the average

frequency over the oscillation. Next, we calculate the average phase di↵erence over

each oscillation. Here we express phase di↵erence as obtained from the genuine

phases; phase di↵erences from the protophases distort the coupling function if the

oscillators are dissimilar. Finally, q(j) is obtained by fitting the average frequency as

a function of phase di↵erence. The fitting can be performed with a Fourier series or

a kerneling function.

4.6 Results

Experiments were performed using the two-oscillator electrochemical system de-

scribed in Section 4.4. Oscillator 1 has a relaxational waveform (V1 = 1.180V) and

oscillator 2 has a smooth waveform (V2 = 1.105V). The oscillators are coupled

using the form in Eqs. (4.9) and (4.10). Phase models of the two oscillators are

then reconstructed from the genuine phase time series according to Eq. (4.2) or the

procedure for the one-dimensional reconstruction discussed in Section 4.5.

Figure 4.5: Coupling function for oscillator 2 based on phase di↵erence,
q(2)(�1 ��2). (a) No time delay, ⌧ = 0. (b) Time delay equal to roughly three
quarters of oscillator 2 natural period, ⌧ = 1.8s.
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Figure 4.6: Coupling function in Hz for oscillator 2 based on each phase
independently, Q(2)(�2, �1). (a) No time delay, ⌧ = 0. (b) Time delay equal
to three quarters the natural period of oscillator 2, ⌧ = 1.8s.

In order to highlight the advantages of the two-dimensional coupling function,

we compare the coupling functions of the one- and two-dimensional models with

symmetrical coupling with and without time delay. Fig. 4.5A shows the one-

dimensional coupling function of oscillator 2 based on phase di↵erence. The phase

model of oscillator 1 is obtained in a similar fashion, but is not shown. This

coupling function quantifies the oscillator’s average change in frequency over a

period. For example, when �� = ⇡/2 the frequency of oscillator 2 increases relative

to its natural frequency. Fig. 4.6A shows the two-dimensional coupling function of

oscillator 2 based on each phase independently. The one-dimensional phase model,

Fig. 4.5A, is the average of this two-dimensional model over trajectories between two

crossings of �2 = 0, i.e. one period. Note that the amplitude of the one-dimensional

coupling function is an order of magnitude smaller than the two-dimensional

due to the averaging. The two-dimensional function provides a mapping between

instantaneous changes in phase velocity and the state of each system. For example,

oscillator 2 advances most rapidly near �1 = ⇡/2 and �2 = 3⇡/2.

Further experiments were performed in order to quantify the e↵ects of time
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delay. From the definitions of the coupling function in Eqs. (4.4) and (4.6), time

delay is expected to shift the stimulation function in the phase of the perturbing

oscillator. Fig. 4.5B shows the coupling function of oscillator 2 based on phase

di↵erence for symmetric coupling and time delay of ⌧ = 1.8s. The phase model

based on individual phases for this case is shown in Fig. 4.6B. Notice that both

coupling functions are translated as expected. However, the two-dimensional

coupling function clearly distinguishes between shifts in the two phases: Fig 4.6B

becomes nearly identical to Fig 4.6A if one shifts the phase of the forcing oscillators

�1 by ⌧⌫12⇡ = 4.58 rad. Therefore, changes in coupling time delay are measurable

from the two-dimensional model to within an additive factor of 2⇡. Time delay may

be recovered from the one-dimensional model provided that the response function

is known to be time-invariant.

Now we investigate the e↵ect of changing coupling magnitude on the phase

models. Focus is placed on the two-dimensional model, as it provides a more

Figure 4.7: (top row) Q(1)(�1, �2) (bottom row) Q(2)(�2, �1). k2 = 1.0 for all
plots, (a,d)k1 = 1.0, (b,e) k1 = 0.5, (c,f) k1 = 0.1.
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complete description of the system. Oscillator 1 is a relaxational oscillator (V1 =

1.210 V) with a natural frequency of 0.42 Hz ± 0.02 Hz and oscillator 2 is a smooth

oscillator (V2 = 1.105 V) with a natural frequency of 0.53 Hz ± 0.01 Hz. Fig. 4.7

shows the coupling functions of oscillators 1 and 2 as a function of the genuine

phases. The means of the coupling functions are less than one percent of the natural

frequency, indicating a negligible change in average frequency due to coupling.

Three coupling combinations (k1:k2) are shown: symmetric, asymmetric (1:2) and

highly asymmetric (1:10). As expected from Eq. (4.4), the amplitude of the surface

variations decreases with diminishing stimulation magnitude. Also note that the

functional dependence of each coupling function on its own phase is characteristic

of the oscillator’s response function [62].

The magnitude of an oscillator’s response is quantified by the L2-norm of its

coupling function,Q. Fig. 4.8 shows the dependence of the coupling function norms

on the coupling strengths k1 and k2. In this series of experiments the coupling

strength to oscillator 2 was held constant at k2 = 1.0 while the strength of the

coupling to oscillator 1, k1, was increased incrementally from zero to 1.0. In a

subsequent series of experiments with the same oscillators, the coupling strength

on oscillator 1 was held constant at k1 = 1.0 and k2 was decremented from 1.0 to

zero. Fig. 4.8 shows that the norm of the coupling function increases linearly with

increasing coupling strength. This experimentally confirms that the coupling of

electrochemical oscillators in the range of parameters studied is predominantly

described by first-order terms in the coupling strength, i.e. we are in the regime of

linear response.

The relative magnitudes of the coupling functions indicate the coupling direc-

tionality between the oscillators. In the electrochemical system described above,

the values of k1 and k2, and therefore the relative coupling magnitude, are known
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Figure 4.8: (a) Relaxational oscillator: Norm versus gain k1, linear fit:
||Q(1)||= 0.045 k1 + 0.003, R2 = 0.998, (b) smooth oscillator: Norm ver-
sus gain k2, linear fit: ||Q(2)|| = 0.032 k2 + 0.001, R2 = 1.000, where R2 is the
square of the correlation coe�cient.

from the experimental setup. The applied directionality is,

dA =
k1 � k2
k1 + k2

. (4.12)

Thus, dA varies between -1 and 1. The more positive the directionality, the stronger

k1 is relative to k2. A directionality of zero indicates equal coupling strengths, i.e.

k1 = k2. We can compare this quantity with the observed directionality, defined as

dO =
C1 �C2
C1 +C2

, (4.13)

where Cj = ||Q(j)||/!j . As shown in Fig. 4.8, the relaxational oscillator has a greater

response to the same coupling gain and thus less voltage perturbation, according to

Eq. (4.9). Therefore dA and dO are generally di↵erent. When the norms are scaled

by the response slope from Fig. 4.8, one restores dO = dA. Here we know k1,2 and

thus can obtain the response slopes; in general, k1,2 may not be known.

Next we carried out experiments on an electrochemical oscillator with adjustable

harmonic forcing. Fig. 4.9 shows the coupling functions, Q(1) and q(1), when

the forcing frequency is 5% faster (A and C), and when the forcing frequency is

5% slower (B and D) than the natural frequency of the oscillator for a smooth
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Figure 4.9: Experimental results, (a) Q(1) with ⌫/! = 0.95, (b) Q(1) with ⌫/!
= 1.05, (c) q(1)1,1 with ⌫/! = 0.95, (d) q(1)1,1 with ⌫/! = 1.05.

(V = 1.105V) oscillator. We see that the two-dimensional coupling function varies

with forcing frequency, while the change is not detectable in the one-dimensional

coupling function. The observed dependence of the two-dimensional coupling

functions on the frequency of the driving has also been observed numerically with

the harmonically forced van der Pol and periodic Rössler oscillators.

4.7 Discussion

In this paper we evaluate the coupling functions for two coupled nonlinear elec-

trochemical oscillators directly from measured signals. We evaluate both the one-

[3, 20] and two-dimensional [55] coupling functions and compare the results of the

models. While both models may recover changes in coupling time delay, only the
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two-dimensional model clearly distinguishes between changes in oscillator charac-

ter and changes in time delay. We show that the relative magnitudes of the coupling

functions quantify the directionality of coupling [16, 68]. Using a toy model we

show that the two-dimensional model predicts more synchronization regions and

predicts the synchronization gain more accurately than the one-dimensional model.

With an experimental oscillator driven by a harmonic voltage perturbation, we

show that the two-dimensional model captures changes in the coupling function

that are not detected by the one-dimensional coupling function.

We changed the coupling time-delay and calculated the one- and two-dimensional

coupling functions (Figs. 4.5 and 4.6). The two-dimensional function indicates

the precise configurations of both phases that correspond to maximum and mini-

mum phase advance. Phase models based on generalized phase di↵erence average

out dependence of phase advance on the individual phases. Therefore in a one-

dimensional coupling function, a shift may be due to changes in time delay or in

oscillator characteristics. Systems where the coupling and intrinsic system proper-

ties evolve with time include physiological and medical applications. Unless the

oscillator is known to be time-invariant, the two-dimensional coupling function is

the preferable model for inferring time delay.

We performed experiments in which we varied the ratio of the coupling compo-

nents, k1 and k2 in Eqs. (4.9) and (4.10). We then calculated the two-dimensional

coupling functions. Deviations from linear phase advance indicate points in phase

space where an oscillator is susceptible to perturbation and is stimulated. This

is nicely visualized in the top row of Fig. 4.7 which shows the instantaneous fre-

quencies of the relaxational oscillator. There is a dominant ridge in the middle of

the surface corresponding to maximum amplitude of the smooth oscillator, and

therefore the greatest stimulation. A similar result is seen for the smooth oscillator
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in Fig. 4.7C. The largest instantaneous frequency on the ridge occurs near �1 = 3⇡/2,

which corresponds to the large amplitude in the oscillator phase-dependent re-

sponse curve [62]. From the coupling functions, the coupling directionality was

calculated, as in Eq. (4.13). The nearly linear increase in the norms of the coupling

functions with gain, shown in Fig. 4.8, is a verification of the two-dimensional

reconstruction.

Using the toy model of Eq. (4.7), we highlight the di↵erences of the predictions of

the one- and two-dimensional models. We construct two Arnold tongues (Fig. 4.1A

and B), and show that the synchronization gains predicted by the two models di↵er

increasingly as the forcing frequency becomes farther from the resonance condition.

Additionally, we show that the two-dimensional model predicts many regions of

synchrony in a Devil’s staircase (Fig. 4.1C); the one-dimensional model predicts

only two regions of synchrony. The di↵erences between the predictions of the two

models in a relatively simple and explicitly defined system illustrate how the two

models may di↵er in more complex systems.

Finally, we show from experimental data that the two-dimensional coupling

function depends upon the forcing frequency, while the one-dimensional coupling

function does not (Fig. 4.9). As already mentioned, the phase approximation is valid

if the cycle is su�ciently stable and therefore the amplitudes can be considered as

fixed. For this case the coupling function Q(i) can be reconstructed from data. If the

coupling is su�ciently small, this function can be approximated by only one term

of the series Eq. (4.3), i.e. Q(j)(�j ,�n) ⇡ "Q(j)
1 (�j ,�n), and in this approximation the

function depends solely on the phases, but not on the frequencies. However, the

condition when the first approximation su�ces is not yet known, and if it is not

fulfilled, we can expect a dependence on the frequency and on the amplitude of

the forcing. In this experiment, neither the stimulation function nor the response
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function changes, so we may infer according to Eq. (4.4) that the first-order approxi-

mation does not hold. The e↵ect of forcing frequency on the coupling function was

not previously predicted or shown; this e↵ect as well as the range of applicability of

the first-order approximation represent opportunities for further study.

An interesting and practically important problem is determination of the re-

sponse function Zj(�j ) from the observation of the driven system. The ability to

separate stimulation and response could be useful in any system where coupling

evolves over time, such as system where learning occurs [13, 23]. When the first or-

der approximation is valid, as in Eq. (4.4), the coupling function can be represented

as a product Q(j)
1 (�j ,�j ) = Zj(�j )hj(�n). Because there is indication of significant

higher order terms in the coupling function, the first-order approximation is not

valid here and the deconvolution is not possible. We can suggest an alternative

explanations for this; the driving may enter the state-space Eqs. (4.1) as a multi-

plicative term, e.g. as f (x1)g(⌫t); in the process of phase reduction this term yields a

function of two phases which cannot be written as a product of two one-dimensional

functions. This important issue also requires further studies.
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Chapter 5

Clustering in small networks with

delay1

5.1 Notes to the reader

This chapter closely mirrors our recently accepted paper with Eckehard Schöll’s

group [69]. Here, we select sets of four oscillators from the whole population of

64; we apply time-delayed coupling to induce phase locking. To obtain interaction

functions, shown in Figure 5.5, we weakly coupled pairs of oscillators. Please note

that Section 5.4 describing the experimental apparatus is repeated from Chapter 3.

We repeat this information for the convenience of the reader. Also note that

Section 5.8, the discussion of this chapter, has been re-written for greater readability.

1K. A. Blaha, J. Lehnert, A. Keane, T. Dahms, P. Hövel, E. Scḧoll and J. L. Hudson, “Clustering in
delay-coupled smooth and relaxational chemical oscillators” Phys. Rev. E, (accepted).
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5.2 Introduction

The field of nonlinear dynamics in coupled systems has seen a huge increase in

interest during the last years [41, 57, 70–72]. The systems range from a few coupled

elements to complex networks. Collective dynamics may arise in various patterns,

of which in-phase (or zero-lag) synchronization is the most prominent. Traveling

waves [73, 74] and cluster or group synchronization [75–77] are other examples.

In particular, during cluster synchronization, parts of a network synchronize with

zero lag, but with a nonzero phase-lag between di↵erent clusters. Interest in cluster

synchrony has led to significant theoretical [75–80] and experimental [81–85]

results.

A recent theoretical study [49] discussed cluster synchronization in delay-

coupled networks of Hopf normal-form oscillators (also known as Stuart-Landau

oscillators), which are given by a generic model of a Hopf bifurcation. Depending

upon the delay time, di↵erent cluster states exist and are stable. These intervals

overlap leading to multistable regimes; i.e., the specific state that is realized is

determined by the initial conditions. In Ref. [49] it was shown that the phase of a

complex coupling constant can be used to select a desired cluster state.

Combining theoretical analysis with experiments, chemical oscillators can be

mathematically described by very simple models like the Kuramoto phase oscillator

model or the Stuart-Landau model in certain regimes of operation. In the present

paper, we study a system of four chemical oscillators coupled in a unidirectional

ring.

We consider two regimes of operation: (1) For low bias voltages, the elements

show smooth sinusoidal oscillations and we are able to verify the results of Ref. [49]

experimentally. The theory not only correctly predicts the interval where each
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cluster state exists but also quantitatively the common frequency which arises

depending upon the delay time and the particular cluster state. We show that the

time delay can be used to ensure the existence and stability of a desired cluster

state, instead of the phase of a complex coupling constant, which is unavailable in

the experiment. (2) For a higher bias voltage, the oscillations become of the strongly

nonlinear relaxational type. In this regime, cluster synchronization with secondary

cluster states, i.e., unequal phase di↵erences between the clusters, can occur in

addition to symmetric cluster states. We introduce an extended version of the Stuart-

Landau model, based on experimentally measured interaction functions. Linear

stability analysis and numerical continuation allow for a theoretical treatment of

these states.

This paper is organized as follows: Sec. 5.3 presents a short summary of relevant

results from Ref. [49]. We introduce the theoretical model and carry out the analysis

that allows us to predict intervals of existence and common frequencies of the

di↵erent cluster states. Sec. 5.4 describes the experiment using chemical oscillators.

Sec. 5.5 presents the corresponding experimental results for smooth oscillators.

Having identified limitations in the existing theory, we adapt the theoretical model

for more general use and apply it again to the chemical oscillators in the relaxational

regime using a higher bias voltage in Sec. 5.6 and Sec. 5.7. Details of the extended

theory are given in Sec. 5.7.1. Finally, we conclude with Sec. 5.8.

5.3 Theoretical model: Sinusoidal Oscillations

This section summarizes the results of Ref. [49], concerning cluster synchronization

and stability in a network of N Stuart-Landau oscillators. We focus on the case that

is relevant to the considered experimental setup (see Sec. 5.4), namely a topology
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given by a unidirectionally coupled ring and the case of real coupling constant. In

Ref. [49, 86] more general topologies and complex coupling constant were discussed

as well.

The dynamics of the Stuart-Landau oscillators in a unidirectionally coupled ring

is given by:

żj = f
⇣

zj
⌘

+Kz(j+1) mod N (t � ⌧) (5.1)

with zj = rje
i'j 2 C, j = 1, ...,N , time delay ⌧, and coupling strength K . For notational

convenience, we will drop the modulus N in the indices in the following, i.e.,

zj+1 ⌘ z(j+1) mod N . Note that in Ref. [49] a di↵usion-like coupling was used. There,

the coupling term reads zj+1(t � ⌧)� zj instead of just zj+1(t � ⌧). Nevertheless, this

alters the involved equations only slightly so that we only have to adapt the analysis

of Ref. [49] at a few points.

The local dynamics of each element is given by the normal form of a supercritical

Hopf bifurcation:

f (z) =
h

�+ i! � (1 + i�)|z|2
i

z (5.2)

with real constants �, ! , 0, and � . This class of systems arises naturally as a generic

expansion in center manifold coordinates near a Hopf bifurcation, and therefore its

dynamics is generic for many systems close to the Hopf bifurcation.

In polar coordinates with radius and phase variables the system Eq. (6.6) reads

as follows:

ṙj = (�� r2j )rj +Krj+1(t � ⌧)cos('j+1(t � ⌧)�'j(t)) (5.3a)

'̇j = ! ��r2j +K
rj+1(t � ⌧)

rj
sin('j+1(t � ⌧)�'j(t)). (5.3b)

Cluster states with a common amplitude and equal phase lags between neigh-
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boring nodes can be described by rj ⌘ r0,m and 'j = ⌦mt + j�'m with collective

frequency ⌦m and �'m = 2⇡m/N . Such states we call primary states. In contrast,

the nodes of secondary states as discussed in Section 5.7 are still characterized by a

common collective frequency, but di↵erent amplitudes and phase lags. The integer

m = 0, . . . ,N � 1 labels the specific states: In the case of four nodes, there are four

possible cluster states: m = 0 corresponds to zero-lag synchronization, m = 1 is the

splay state, m = 2 the 2-cluster state, while m = 3 labels the reverse splay state (see

below). Applying this notion to Eqs. (6.8) yields the following set of transcendental

equations for the collective amplitude r0,m and frequency ⌦m of the m-state:

r20,m = (�+K cos�m) (5.4a)

⌦m = ! ��r20,m +K sin�m, (5.4b)

where �m = �'m �⌦m⌧. Note that ⌦m only depends on r0,m if � , 0. Thus, the

parameter � couples the frequency to the oscillation amplitude (anisochronicity).

Considering small deviations �rj and �'j , we obtain rj = r0,m(1 + �rj ), 'j =

⌦mt + j�'m + �'j , ⇠j =
⇣

�rj ,�'j

⌘T
. This leads to a variational equation for the

m-cluster state:

⇠̇ = IN ⌦ (J0,m �KRm)⇠ +K(G⌦Rm)⇠(t � ⌧) (5.5)

with the 2N -dimensional vector ⇠ = (⇠1, . . . ,⇠N )
T , the N ⇥N identity matrix IN , and

matrices Rm =

0

B

B

B

B

B

B

B

@

cos�m �sin�m

sin�m cos�m

1

C

C

C

C

C

C

C

C

A

, J0,m =

0

B

B

B

B

B

B

B

@

�2r20,m 0

�2�r20,m 0

1

C

C

C

C

C

C

C

C

A

. The adjacency matrix G

describes the unidirectional ring topology: gjn = 1 for n = j +1 and zero otherwise.

Diagonalizing G, we arrive at the block-diagonalized variational equation:

⇣̇k(t) = J0,m⇣k(t)�KRm [⇣k(t)� ⌫k⇣k(t � ⌧)] , (5.6)
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where ⌫k = e2ik⇡/N , k = 0,1, . . . ,N�1, are the eigenvalues ofG. Note that Eq. (5.6) can

be considered as a master stability equation [47] for Eq. (6.6). Here, the coe�cient

matrices J0,m and Rm do not depend on time. Hence, the Floquet exponents of the

synchronized periodic state are given by the eigenvalues ⇤ of the characteristic

equation

det
n

J0,m �⇤I2 +K
⇣

� 1+ e2ik⇡/N�⇤⌧
⌘

Rm

o

= 0. (5.7)

If for all k = 0, . . . ,N � 1 all Floquet exponents (except the one relating to the

Goldstone mode) have a negative real part, the cluster state with index m will be

stable.

Figure 5.1 depicts the common frequencies of all four possibles cluster states in
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Figure 5.1: The frequencies ⌦m of the four possible cluster states as time
delay, ⌧ varies, as given by solutions of Eqs. (5.4). Solutions may be stable or
unstable. Stable solutions: blue triangle: in-phase state. green circle: splay
state. orange diamond: 2-cluster state. red square: reverse splay state. Blank
curves refer to unstable solutions. The stability is determined via Eq. (5.7).
Parameters: � = 1.1025, ! = 3.4228, � = 0, K = 0.3, N = 4.
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a unidirectionally coupled ring of four elements. Symbols and blank curves refer to

stable and unstable solutions, respectively, where the stability is calculated via the

characteristic equation (5.7). It can be seen that for most values of ⌧ multistability

between di↵erent states exists, but that all four cluster states do not necessarily

occur for every value of ⌧. However, it is always possible to choose the delay in such

a way that the desired m-state exists with a frequency ⌦m. Using the delay time

⌧m =
2⇡m
N⌦m

(5.8)

Eq. (5.4b) holds for �m = 0, so that ⌦m = ! ��(�+K). From �m = 0 we also have

Rm = I2, meaning that Eq. (5.7) simplifies to:

[�2r0,m +K
⇣

� 1+ e2ik⇡/N�⇤⌧
⌘

�⇤]

⇥ [K
⇣

� 1+ e2ik⇡/N�⇤⌧
⌘

�⇤] = 0. (5.9)

The dominant Floquet exponent is always obtained by setting the second factor to

zero: ⇤ = K
⇣

� 1+ e2ik⇡/N�⇤⌧
⌘

. The solution ⇤ of this equation will always have a

negative real part [49]. Note that the choice ⌧m only guarantees the existence and

stability of them-state, but does not ensures monostability. In fact, for the parameter

choice of Fig. 5.1 and generally for large enough delay times, multistability clearly

persists for ⌧ = ⌧m.

5.4 Experimental setup

The experimental setup is described in the following. Experiments are performed

in an electrochemical cell consisting of four 1-mm diameter Ni working electrodes

(99.98%pure), a Pt mesh counter electrode, and Hg/Hg2SO4/K2SO4 (sat) reference
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electrode, with a 3M H2SO4 electrolyte, shown in Fig. 5.2(a). The four electrodes are

electrically coupled in a unidirectional ring. The cell is enclosed in a jacketed glass

vessel maintained at a temperature of 11�C. An ACM Instruments multi-channel

potentiostat is used to set the potentials V0 of the electrodes such that they undergo

transpassive dissolution. A resistor, Rp = 650 ⌦, is attached to each electrode,

causing the dissolution currents Ij to oscillate [52]. These resulting electrodissolu-

tion currents are measured at 250 Hz using zero resistance amperemeters (ZRAs)

attached to a real time data acquisition system.

(a)

(b) (c)

Figure 5.2: (a) Experimental apparatus with multi-channel addressable
feedback, Rp is the channel resistance of 650 ⌦. (b) Electrochemical dissolu-
tion time series showing smooth oscillators at a potential of V0 = 1.105 V.
(c) Time series of relaxation oscillators at V0 = 1.2 V. ZRA: zero resistance
amperemeter.

Four oscillators with similar frequencies are selected from an array of 64 oscilla-
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tors. The character of the oscillator may be varied by the choice of applied voltage.

Experiments are performed at two voltages: a low voltage to induce nearly-harmonic

oscillations, which can be modeled by Stuart-Landau oscillators (cf. Sec. 5.5), and a

higher voltage exhibiting higher harmonics and more complex behavior (cf. Sec. 5.7).

We will use the terms smooth and relaxation oscillations, respectively. Negligible

intrinsic electrical interactions exist between the uncoupled oscillators [19]. The

startup or shutdown of an oscillator does not alter the behavior of the other oscilla-

tors. Furthermore, the oscillator dynamics has no interdependence when oscillators

are functioning in the uncoupled state.

Interactions are introduced using real-time coupling of the form

Vj(t) = V0 + �Vj(t), (5.10)

where �Vj are the changes in the circuit potentials of the jth elements due to the

feedback. These feedback voltages are given by

�Vj(t) = K
N
X

n=1

gjn
h

Vn(t � ⌧)�RpÎn(t � ⌧)
i

, (5.11)

where Rp = 650 ⌦ is the channel resistance, K is the fixed overall coupling gain,

and ⌧ denotes the coupling time delay, which is realized by the real-time data acqui-

sition system combined with the multi-channel potentiostat. În are the normalized

currents measured by the ZRAs.

To obtain this quantity, the measurements of the dissolution current In are first

scaled such that the mean value of each channel Īn is removed as an o↵set. Then, we

perform normalization of the amplitude of the oscillation Imax
n relative to the mean

amplitude of the electrode ensemble N�1
N
P

n=1
Imax
n . gjn is an element of the adjacency

matrix G, which describes the structure of the coupling. We apply unidirectional
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coupling on a four-member ring with the adjacency matrix

G =

0
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. (5.12)

This coupling scheme is implemented via the multi-channel potentiostat (see

Fig. 5.2).

We calculate the dynamical variables (amplitudes rj and phases 'j ) from the

ZRAs’ experimental measurement of the electrodissolution current of each oscillator

(see Fig. 5.2). From these currents, the phase of each oscillator is found by peak-to-

peak linear interpolation, where the peak is defined as 0 or 2⇡ [87]. From the phases,

we can then calculate the average frequencies of the oscillators. The amplitudes

are measured as half of the di↵erence between the peak and trough value of the

electrodissolution current, giving one data point per period.

The parameters � and ! that belong to the theoretical model can be identified

by the dynamics of a single uncoupled oscillator (see Figs. 5.2(b) and (c)). �must be

set such that the amplitude r is equal to
p
�; while ! should be chosen such that the

period of oscillation must be equal to 2⇡/!. In the experiments ! is not identical

for each oscillator, but the oscillators are chosen so that the values of ! are very

close to each other. As such ! is simply taken to be the average (i.e. ! =N�1
N
P

j=1
!j ).

Furthermore, we let � be equal to zero, i.e., the frequency does not depend on the

radius.
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5.5 Smooth oscillations

In this section we consider the case of smooth sinusoidal oscillations. The four

electrodes were held at a voltage of V0 = 1.105 V. This is slightly above a Hopf

bifurcation that occurs at V0 ⇡ 1.05 V. Hence the oscillations are nearly harmonic

(cf. Fig. 5.2(b)). Although visually the time series is not perfectly sinusoidal, in

practice we can model the oscillators’ phase dynamics as linear [62].

The four oscillators operate at !1 = 3.424±0.063 rad/s, !2 = 3.393±0.069 rad/s,

!3 = 3.418± 0.063 rad/s, and !4 = 3.456± 0.057 rad/s. The frequency range is due

to the slow drift of the natural frequencies of the oscillators.

Figure 5.3 depicts the measured and numerically calculated, stable states of the

compound system depending upon the time delay in panels (a) and (b), respectively.

In Fig. 5.3(b), lines are calculated from Eqs. (5.4) and points are based on solution

continuation of Eqs. (6.8) usingDDE-BIFTOOL. In order to resolve the multistability

present in the coupled system we slowly increase the time delay (shown by arrows

in Fig. 5.3(a)) up to ⌧ = 1.25⇥ (2⇡/!) at which point we perform a down-ramping.

During the up-sweep, ⌧ is increased from 0.80⇥(2⇡/!) to 1.25⇥(2⇡/!) in increments

of 0.05⇥ (2⇡/!). The system is allowed to reach a stationary state at each value of ⌧.

The qualitatively di↵erent states are marked by the following symbols: red squares

represent the reverse splay state, blue triangles represent the in-phase state, and

green circles represent the splay state.

We start at ⌧ = 0.8⇥ (2⇡/!) with a reverse splay state, which is characterized

by phase di↵erence of 3⇡/2 between two subsequent oscillators. Increasing to

⌧ = 0.95⇥ (2⇡/!), we obtain in-phase synchronization with '1 = '2 = '3 = '4. For

larger ⌧ values, the system exhibits a splay state; that is, phase di↵erence is ⇡/2

between two subsequent oscillators.
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Figure 5.3: Collective frequency ⌦m versus the time delay ⌧. Red squares,
blue triangles, and green circles represent a reverse splay state, an in-phase
state, and a splay state, respectively. (a) Experimental data, V0 = 1.105 V,
K = 0.15. The arrows indicate an increase or decrease of ⌧ during the
measurement. (b) Solution continuation of Eqs. (6.8) using DDE-BIFTOOL
(symbols) and numerical solutions of Eqs. (5.4) (lines). Parameters as in
Fig. 5.1.

During the down-sweep, the time delay is decremented by 0.05⇥ (2⇡/!) until

⌧ = 0.75⇥ (2⇡/!). We observe the same states in the down-sweep as the up-sweep.

Each time ⌧ is decremented, the frequency increases slightly, except when a cluster

transition occurs and the frequency abruptly jumps to a lower value. The system

maintains the splay state until transitioning to the in-phase cluster state and then

the reverse splay state. The transitions are also shown by arrows for the up- and



CHAPTER 5. CLUSTERING IN SMALL NETWORKS WITH DELAY 60

down-sweep. Note that they occur at di↵erent time delays depending upon the

direction of the time delay sweep. The coexistence of several cluster states at a

given value of ⌧, which depends upon the prior state of the system, demonstrates

hysteresis. In Fig. 5.3(a) showing the experimental data, the triangles representing

the in-phase cluster state are slightly nonidentical near ⌧ = 1⇥ (2⇡/!); this is due to

drift in the natural frequencies during the course of the experiment.
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Figure 5.4: Experimental time series (top) and schematic diagram (bottom)
of an in-phase state (a), a 2-cluster state (b), a reverse splay state (c), and a
splay state (d) as shown in Fig. 5.3(a). The schematics show phase relations
between oscillators on the phase ring. Oscillator colors in the schematic
correspond to the colors in the times series: '1 is shown in blue (solid), '2 is
black (dashed), '3 is red (dotted), and '4 is green (dot-dashed). Parameters:
V0 = 1.105 V, K = 0.15; time delays: (a) ⌧ = 1.05 ⇥ 2⇡/!, (b) 0.5 ⇥ 2⇡/!,
(c) 1.2 ⇥ 2⇡/!, and (d) 0.8 ⇥ 2⇡/! with ! = 3.4228 rad/s as in Fig. 5.1,
respectively.

Figures 5.4(a)-(d) illustrate the qualitative di↵erences between the cluster states

seen in Fig. 5.3. Next to the time series, corresponding schematic diagrams are also

depicted. Note, that the 2-cluster state (Fig. 5.4(b)) does not occur in the range of ⌧
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shown in Fig. 5.3.

We see that the cluster states and hysteresis can be modeled by the Stuart-Landau

oscillator as given in Eqs. (6.8). The numerical results, including simulations as

well as path continuation using DDE-BIFTOOL [88, 89], shown in Fig. 5.3(b) closely

match the experimental results. The only discrepancy seen is that the branches

of each cluster state in the experiments seem to be stable for a shorter range of

⌧, leading to an earlier jump to another cluster state. This is probably due to

experimental noise and small heterogeneities in the oscillators’ parameters.

5.6 Interaction functions

If we increase the voltage to V0 = 1.2 V, the profile of the oscillations deforms from

a sinusoidal to a strongly nonlinear relaxation oscillation. One could use a nonlin-

ear time transformation to map the relaxation oscillations back to the sinusoidal

model and thus still employ the Stuart-Landau model for a theoretical description.

However, this nonlinear time transformation will also a↵ect the coupling, which

no longer can be assumed to be sinusoidal. Instead we rewrite Eqs. (6.8) in a more

general form

ṙj = (�� r2j )rj +Krj+1(t � ⌧)Hr('j+1(t � ⌧)�'j(t)) (5.13a)

'̇j = ! +K
rj+1(t � ⌧)

rj
H'('j+1(t � ⌧)�'j(t)), (5.13b)

where Hr and H' are coupling functions, also called interaction functions, which

can be obtained experimentally.

To determine Hr and H', we conduct a separate, but related experiment ac-

cording to the methods described in Refs. [20, 33, 87]. We select two oscillators
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Figure 5.5: Phase interaction function H' in panels (a) and (b) for V0 =
1.105 V and V0 = 1.2 V, respectively; radial interaction functionHr in panels
(c) and (d) for V0 = 1.105 V and V0 = 1.2 V, respectively. Experimentally
obtained data is shown in red dots. A 5-term Fourier fit from evenly sampled
data is shown by the black curve.

at the same voltage with slightly di↵erent natural frequencies and couple them

such that they interact, but do not phase lock. We measure the time-dependent

radius rj ('i(t)�'j (t)) and the frequency⌦j ('i(t)�'j (t)) of oscillator j as a function

of phase di↵erence �' = 'i(t)�'j(t). We find that rj and �' are approximately

constant over one oscillation period. Following Ref. [33] with stationary radii rj , we

use

H'(�') = �
2⇡�Tj
T 2
j

1
K
, (5.14)

where �Tj denotes the deviation from the natural period Tj . We choose K equal

to the maximum of the first factor. This yields max�'H(�') = 1 as shown in
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Figs. 5.5(a) and (b). Setting ṙj = 0 in Eq. (5.13a), we obtain

Hr(�') =
1
K

h

r(�')2 ��
i

, (5.15)

where
p
� is experimentally measured as the time average of r over the course of

the experiment.

Figure 5.5 shows the two interaction functions Hr and H' for the low voltage

V0 = 1.105 V in panels (a) and (c) and for the higher voltage V0 = 1.2 V in panels (b)

and (d). The (black) curve is a 5th-order Fourier fit from evenly sampled data.

For V0 = 1.105 V, the radial interaction function remains approximately constant

and the phase interaction function exhibits a sinusoidal shape. Thus, we have

H'(�') = sin(�') as considered in Eqs. (6.8).

At this point, we also see a possible cause for the di↵erence between Fig. 5.3(a)

and (b). The numerically calculated frequencies coincide with the use of an ap-

propriate phase interaction function. Since we have assumed � = 0, the radial

interaction function does not influence the frequencies, but it does influence the sta-

bility of the particular state. The lack of an appropriate radial interaction function

might explain the di↵erence between the stability of the states shown in Fig. 5.3(a)

and (b).

For V0 = 1.2 V, both interaction functions have a more complex structure. In

order to take their complex shapes into account in our theory, we approximate Hr

and H' by Fourier series up to the fifth order. How well this approach works is the

topic of the following section.
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5.7 Relaxation oscillations

In this section, we present the results for operation at a higher voltage compared

to Sec. 5.5, that is, further away from the Hopf bifurcation. We fix the voltage of

the system at V0 = 1.2 V such that the electrode current oscillates in a relaxational

fashion. We perform experiments similar to the one in Sec. 5.5 with four oscillators

coupled in a unidirectional ring, but consider a di↵erent range for the time delay.

The oscillators for these experiments now have di↵erent intrinsic frequencies

compared to Sec. 5.5. For the experiment yielding the results seen in Fig. 5.6 the

four oscillators operate at !1 = 2.421± 0.068 rad/s, !2 = 2.445± 0.088 rad/s, !3 =

2.407± 0.069 rad/s, and !4 = 2.449± 0.112 rad/s. During the experiment yielding

the results seen in Fig. 5.8 they operate at!1 = 2.495±0.109 rad/s,!2 = 2.510±0.124

rad/s, !3 = 2.448± 0.094 rad/s, and !4 = 2.515± 0.097 rad/s.

For the chosen voltage, the interaction functions have a more complex shape (cf.

Figs. 5.5(b) and (d)) and are approximated by fifth order Fourier series. Therefore,

we describe the experiment by the following set of delay-coupled Stuart-Landau

equations:

ṙj =
⇣
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⌘
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where the Fourier coe�cients al,r ,bl,r , al,', and bl,' are determined by a fit to the

experimentally obtained interaction functions Hr and H' . The coe�cients are given

in Tab. 6.1. They are normalized such that max|H' | = 1. The coupling strength K
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Radial interaction function
a1,r = �0.97948, b1,r = �1.82354
a2,r = 0.36110, b2,r = �0.07963
a3,r = 0.29724, b3,r = 0.54854
a4,r = 0.05846, b4,r = 0.09098
a5,r = �0.11558, b5,r = �0.09251
a0,r = 0.45579
Angular interaction function
a1,' = �0.00610, b1,' = 0.31622
a2,' = �0.35811, b2,' = 0.29020
a3,' = �0.25341, b3,' = �0.05585
a4,' = �0.13541, b4,' = 0.00799
a5,' = �0.07183, b5,' = 0.00425
a0,' = 0

Table 5.1: Fourier coe�cients used in Eqs. (5.16).

still represents the overall coupling strength.

The relaxation oscillators exhibit more complicated cluster and hysteresis be-

havior as depicted in Figs. 5.6(a) and (b) for experimental and numerical data,

respectively. For the latter we use the continuation software DDE-BIFTOOL sim-

ilar to the case of smooth oscillators. The detected states agree very well with

the experimental results in Figs. 5.6(a), where the black arrow marks the starting

configuration. Note that only stable solutions relevant to the experimental results

are shown. For the comparison between Figs. 5.6(a) and (b), it must also be noted

that while the natural frequency ! varies slowly during the experiments due to

drift, it is kept constant in our numerical calculations.

We find a sequence of di↵erent cluster states as the time delay ⌧ is increased

or decreased. The primary states discussed earlier in Fig. 5.4, (in-phase, 2-cluster,

reverse splay and splay states) are also present in the case of the relaxational

oscillators. In the current regime of operation additional qualitatively di↵erent

states are possible. These secondary states are investigated in the following.
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Figure 5.6: Dynamics in dependence on the time delay ⌧. (a) Experimental
data, V0 = 1.2 V, K = 0.10. The starting state is marked by a black arrow. The
increasing and decreasing of ⌧ during the experiment are shown with arrows.
(b) Solutions of Eqs. (5.16) using the continuation tool DDE-BIFTOOL
(markers) and numerical solutions of Eqs. (5.4) (lines). In-phase, 2-cluster,
compressed splay, reverse splay, compressed reverse splay and open 2-
cluster states are represented by upward-triangles, diamonds, open circles,
squares, open squares and downward-triangles, respectively. The interaction
functions Hr and H' are chosen as in Eqs. (5.16) and Tab. 6.1. Parameters:
� = 2.890, K = 0.189 and ! = 2.430.
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The relaxation oscillators still demonstrate hysteresis as ⌧ is increased and

decreased. In a population of smooth oscillators, each cluster state persists over

a range of roughly 0.25⇥ (2⇡/!) of delay after it first occurs, as in Fig. 5.3. With

relaxation oscillators, each cluster state persists over a range of roughly 0.125 ⇥

(2⇡/!), as in Fig. 5.6(a). The relaxation oscillators tend to alternate between primary

and secondary states as ⌧ is varied. The primary states appear near multiples of

0.25 ⇥ (2⇡/!) delay. As ⌧ is ramped, the phase di↵erences between subsequent

elements might vary. As a consequence there could be di↵erent phase di↵erences

between subsequent elements. This gives rise to the secondary states that appear in

between the primary states.
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Figure 5.7: Experimental time series (top) and schematic diagram (bottom)
for (a) a compressed splay state, (b) reverse compressed splay state, (c) open
2-cluster state, (d) compressed 2-cluster state. For the relaxation oscillators,
these are in addition to the possible states seen in Fig. 5.3. Parameters:
V0 = 1.2 V, K = 0.10; time delays: (a) ⌧ = 1.11⇥ 2⇡/!, (b) 0.82⇥ 2⇡/!, (c)
0.59 ⇥ 2⇡/! with ! = 2.43 rad/s as in Fig. 5.6 and (d) 0.68 ⇥ 2⇡/! with
! = 2.492 rad/s as in Fig. 5.8.

For examples of secondary states, Fig. 5.7 shows several experimental time series
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and corresponding schematic diagrams. Figure 5.7(a) depicts a compressed splay

state. As in the splay state, we have '4 �'3 = '3 �'2 = '2 �'1, but these phase

di↵erences are di↵erent from a multiple of ⇡/2 (marked by x in the schematic

diagram). There also exists a reverse compressed splay state as shown in Fig. 5.7(b).

Another secondary state is the open 2-cluster state displayed in Fig. 5.7(c). For this

state, the phase di↵erences '3 �'1 and '4 �'2 are equal, but the two clusters have

a phase lag between them.

As expected from the experiment (cf. Fig. 5.6(a)), the open 2-cluster states are

located between the 2-cluster branch of solutions and the reverse splay branch in

numerical studies (cf. Fig. 5.6(b)). Likewise, the compressed reverse splay states

are located between the reverse splay branch and the in-phase branch and the

compressed splay states are located between the in-phase branch and the next splay

branch (not shown).

The sequence of cluster states in Fig. 5.6 may seem somewhat arbitrary at first

inspection. For example, when ⌧ ⇡ 2.25 and the branch of compressed reverse splay

states becomes unstable, why does the system transition to an in-phase state when

a 2-cluster state is also stable at this value of ⌧ according to Fig. 5.6(b)? When we

examine an example time series of the compressed reverse splay state in Fig. 5.7(b),

we can see that the phase di↵erences of this state are much closer to those of an

in-phase state than to those of a two-cluster state. The experimental states observed

depend upon both initial conditions and system parameters, as is typical for systems

with multi-stability.

Having the set of primary states in mind, one might ask if there is also a scenario

of a compressed 2-cluster state, when '1 = '3 and '2 = '4, but the phase di↵erences

between the two clusters is no longer equal to ⇡. Indeed, we find this state as shown

in Fig. 5.7(d). The corresponding range of appropriate ⌧-values is illustrated in
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Figure 5.8: Frequency vs. time delay. (a) Experimental data, V0 = 1.2 V,
K = 0.10. The starting state is marked by a black arrow. The increasing
and decreasing of ⌧ during the experiment are shown with arrows. (b) Nu-
merical results of Eqs. (5.16) using DDE-BIFTOOL (markers) and solutions
of Eqs. (5.4) (lines). The interaction functions Hr and H' are chosen as in
Eqs. (5.16) and Tab. 6.1. Parameters: � = 2.890, K = 0.189 and ! = 2.492.

Fig. 5.8. This figure depicts an experimental measurement for a narrower ⌧-range

and a starting configuration di↵erent from Fig. 5.6 (see black arrow) is implemented.

This explains why the compressed 2-cluster state was not found in Fig. 5.6 and thus

reflects the multi-stability present in the system. Again, only numerical solutions

relevant to the states found in the experiment are shown.
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5.7.1 Extended theory

The experiments shown in the previous section for the relaxation oscillator motivate

an extension of the theory introduced in Sec. 5.3. The extended theory includes the

interaction functions with a high order of Fourier coe�cients and takes into account

the existence of the secondary states. The secondary states can be obtained from

Eqs. (5.16) with the Fourier coe�cients given in Tab. 6.1, if we assume non-equal

radii and phase di↵erences. With the ansatz rj = const. ⌘ r0,j , and 'j = ⌦t +�'j ,

�'j 2 R, Eqs. (5.16) yield

0 = (�� r20,j )r0,j +Kr0,j+1c
j
r (5.17a)

⌦ = ! ��r20,j +Kr0,j+1/r0,j c
j
' (5.17b)
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Equation (5.17) is an 8-dimensional (�'1 = 0 without loss of generality) system of

transcendental equations which can be solved numerically. The variational equation

reads

⇠̇j = Jj⇠j +Rj⇠j+1(t � ⌧) (5.19)

with the matrices
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using the abbreviation
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Because of the unequal phase di↵erences and radii the variational equation cannot

be block-diagonalized (cf. Section 5.3) but the Floquet exponents ⇤ can be obtained

from the transcendental equation detM = 0 where the matrix M has the following

form

M =
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Solutions of Eq. (5.17) that were found to be stable (⇤ < 0) are plotted as lines in

Fig. 5.6(b) and 5.8(b). As expected the lines perfectly agree with the points obtained

by the analysis using DDE-BIFTOOL. The disadvantage of this analytic method

compared to using the continuation software is that it is di�cult to find all solutions

of Eq. (5.17); i.e., in Figs. 5.6(b) and 5.8(b) the secondary states were not found

analytically but only with the help ofDDE-BIFTOOL. However, the analytic method

gives further insight into the system, making analysis easier.
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5.8 Discussion

We have applied a theoretical analysis of the delay-coupled Stuart-Landau model to

a system of chemical oscillators. Experimental results and theory match for cluster

synchronization with constant phase lag; the experiment shows an additional type

of dynamics with delay-dependent phase lag. These secondary states necessitate

a more general approach, and we have extended the model to account for details

in the coupling scheme. This lets us approximate the experimental interaction

functions and include them in the theoretical model. The numerical results agree

with the experimental measurements when the standard Stuart-Landau model is no

longer appropriate.

This work illustrates the interplay between theory and experiment; the theory

motivates the experiment and the experiment inspires the improvement or extension

of the theory. On the one hand, the experiment lets us apply the existing theory.

The results for smooth oscillations show that theory accurately predicts the order of

cluster transitions in dependence upon the coupling delay and even predicts the

frequencies of each state well. On the other hand, we have found a di↵erence in the

stability of some states for smooth oscillators. The use of simple sine and cosine

functions as interaction functions can no longer be justified, in particular for the

radial interaction function.

In experiments with relaxation oscillators, we observe additional secondary

cluster states with di↵erent phase lags between subsequent clusters. An extended

theory matches the experiments. We can now explain the order of transitions

between di↵erent cluster states first observed in the experiment. The range of

stability of each solution branch generally matches. There is still a di↵erence

between the exact frequencies of each state, but this is due to the drift in the
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intrinsic frequencies of the chemical oscillators in the experiment.

Our theoretical approach has been shown to produce good results for a system

that is not necessarily located near the Hopf bifurcation. This means that the

extended model, which permits arbitrary interaction functions, applies to com-

plex non-sinusoidal systems. Although we only consider unidirectional rings, it is

interesting to note that the experimental apparatus allows more flexibility in the

coupling topology.
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Chapter 6

Exploring radial dynamics in

relaxation oscillators1

6.1 Notes to the reader

In Section 6.5.1, we select sets of four oscillators from the whole population of 64; we

apply coupling to induce phase locking and vary coupling strength. In Section 6.5.2

we weakly couple pairs of oscillators to obtain coupling functions. Please note that

Section 6.3 describing the experimental apparatus is mostly information repeated

from Chapter 3 on the experimental apparatus. We repeat this information for the

convenience of the reader.

6.2 Introduction

Systems of coupled oscillators are of interest in a variety of settings [41, 57]. Exam-

ples include arrays of lasers [15, 90], electronic Josephson junctions [91, 92], the

1K. A. Blaha, J. Lehnert, A. Keane, P. Hövel, I. Z. Kiss, E. Schöll, J. L. Hudson, “Exploring a phase
and radius model for coupled experimental relaxational oscillators” (paper in preparation).
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Circadian rhythm [93, 94], and the beating of the heart [95–97], amongst others.

Models for such systems can either be constructed from underlying phenomeno-

logical behavior, or from observable measurements. In many systems, the first

method can be di�cult, due to lack of knowledge about the mechanism or di�culty

measuring desired quantities, especially in biological systems.

A recent study [69] investigated the clustering of delay-coupled rings of oscilla-

tors described by the observable variables of phase and radius (amplitude). The

study used experimental oscillators in two regimes: (1) smooth (near-sinusoidal)

oscillations near the Hopf bifurcation and (2) relaxational (slow-fast) oscillations

far from the Hopf bifurcation. Smooth oscillators were modeled with Hopf normal-

form oscillators (also called Stuart-Landau oscillators), which are given by a generic

Hopf bifurcation model. Modeling relaxation oscillator dynamics required an ex-

tended Stuart-Landau model with experimentally-derived functions to describe

interactions in both the phase and radius. Phase coupling functions have been

shown previously [33, 87] in phase-only models such as the Kuramoto phase oscil-

lator model [8]. To our knowledge, the radial interaction function, which describes

how the radius of an oscillator varies with coupling, was a first.

In this paper, we explore the conditions where a phase and radius model is

needed, and relate the radial interaction function to the underlying voltage stimula-

tion. We present an experiment which is well-described by the phase and radius

model that cannot be described by a phase-only model. We present a method

for estimating the radial interaction function given knowledge of the coupling

parameters, and demonstrate its utility and accuracy.

This paper is organized as follows: In Section 6.3, the experiment using chemical

oscillators is described in detail. We present a short summary of relevant results

from Ref. [69] in Section 6.4 and introduce the two-variable model. We discuss two
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experimental results in Section 6.5. In Section 6.5.1 we describe an experiment

which demonstrates the utility of the two variable model. In Section 6.5.2 we

discuss the relationship between stimulation and behavior and use this relationship

to predict behavior. Finally, we discuss the general applicability of a phase and

radius model in Section 6.6.

6.3 Experimental setup

Experiments are performed in an electrochemical cell consisting of 1-mm di-

ameter Ni working electrodes (99.98%pure), a Pt mesh counter electrode, and

Hg/Hg2SO4/K2SO4 (sat) reference electrode, with a 3M H2SO4 electrolyte, shown

in Fig. 6.1(a). The cell is enclosed in a jacketed glass vessel maintained at a tempera-

ture of 11�C. An ACM Instruments multi-channel potentiostat is used to set the

potentials V0 of the electrodes such that they undergo transpassive dissolution. A

resistor, Rp = 650⌦, is attached to each electrode, causing the dissolution currents Ij

to oscillate [52]. These resulting electrodissolution currents are measured at 250 Hz

using zero resistance ammeters (ZRAs) attached to a real time data acquisition

system.

Oscillators are selected from an array of 64 oscillators. Negligible intrinsic

electrical interactions exist between the uncoupled oscillators [98]. The startup or

shutdown of an oscillator does not alter the behavior of the other oscillators. The

oscillator dynamics has no interdependence when oscillators are functioning in the

uncoupled state.

The character of the oscillator may be varied by the choice of applied voltage,

V0. At low voltages, nearly-sinusoidal oscillations occur while at high voltages, re-

laxational oscillations occur (see Fig. 6.1(b)). This paper uses relaxation oscillations
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Figure 6.1: (a) Experimental apparatus with multi-channel addressable
feedback, Rp is the channel resistance of 650⌦. (b) Time series of relaxation
oscillators at V0 = 1.2 V. ZRA: zero resistance ammeter.

because radial dynamics may be more influential in this regime.

Interactions are introduced using real-time coupling of the form

Vj(t) = V0 + �Vj(t), (6.1)

where �Vj are the changes in the circuit potentials of the jth elements due to the

feedback. The potential drops are given by

xj(t) = Vj(t � ⌧)�RpÎj(t � ⌧), (6.2)

where Îj are the normalized currents measured by the ZRAs. To obtain this quantity,

the measurements of the dissolution current Ij are first scaled such that the mean

value of each channel Īj is removed as an o↵set. Then, we perform normalization of

the amplitude of the oscillation Imax
j relative to the mean amplitude of the electrode
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ensemble N�1
N
P

n=1
Imax
n . The feedback voltages are

�Vj(t) = K
N
X

n=1

gjn

S
X

s=1

ksxn(t � ⌧s)s, (6.3)

where Rp = 650⌦ is the channel resistance, K is the fixed overall coupling gain and

s is the order of coupling. ks and ⌧s are the coupling strength and coupling time

delay of the sth order of coupling, respectively. gjn is an element of the adjacency

matrix G, which describes the structure of the coupling.

In Section 6.5.1, we select four oscillators with similar frequencies for the

experiments. We apply unidirectional coupling on a four-member ring with the

adjacency matrix
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In Section 6.5.2, we select two oscillators with dissimilar frequencies for the experi-

ments. We apply coupling on a two-member ring
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These coupling schemes are implemented via the multi-channel potentiostat (see

Fig. 6.1).

We calculate the dynamical variables (amplitudes rj and phases 'j ) from the

ZRAs’ experimental measurement of the electrodissolution current of each oscillator

(see Fig. 6.1). From these currents, the phase of each oscillator is found by peak-
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to-peak linear interpolation, where the peak is defined as 0 or 2⇡ [87]. From

the phases, we can then calculate the average frequencies of the oscillators. The

amplitudes are measured as the di↵erence between the peak and the mean value of

the electrodissolution current, giving one data point per period.

6.4 Theory

In this section we give a short summary of an extended phase and radius model

originally developed in Ref. [69] for coupled higher-harmonic oscillators. This

method can apply to any topology, but we focus on the unidirectional ring, which

we employ in Sec. 6.5. The dynamics of the Stuart-Landau oscillators is given by:

żj = f
⇣

zj
⌘

+Kz(j+1) mod N (t � ⌧) (6.6)

with zj = rje
j'j 2 C, j = 1, ...,N , and time delay ⌧. For notational convenience, we

will drop the modulus N in the indices in the following, i.e., zj+1 ⌘ z(j+1) mod N .

The local dynamics of each element is given by the normal form of a supercritical

Hopf bifurcation:

f (z) =
h

�+ i! � (1 + i�)|z|2
i

z (6.7)

with real constants �, ! , 0, and � . This class of systems arises naturally as a generic

expansion in center manifold coordinates near a Hopf bifurcation, and therefore its

dynamics is generic for many systems close to the Hopf bifurcation. We let � be

equal to zero, i.e., the frequency does not depend on the radius.

In polar coordinates with radius and phase variables the system Eq. (6.6) reads
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as follows:

ṙj = (�� r2j )rj +Krj+1(t � ⌧)cos('j+1(t � ⌧)�'j(t)) (6.8a)

'̇j = ! +K
rj+1(t � ⌧)

rj
sin('j+1(t � ⌧)�'j(t)). (6.8b)

We extended this model to describe the behavior of relaxation oscillators with

Hr and H' , the radial and phase interaction functions, respectively:

ṙj = (�� r2j )rj +Krj+1(t � ⌧)Hr('j+1(t � ⌧)�'j(t)) (6.9a)

'̇j = ! +K
rj+1(t � ⌧)

rj
H'('j+1(t � ⌧)�'j(t)). (6.9b)

where Hm can be represented by the Fourier series:

c
j
m ⌘

L
X

l=1

n

al,m cos
h

l(�'j+1 ��'j �⌦⌧)
i

+bl,m sin
h

l(�'j+1 ��'j �⌦⌧)
io

. (6.10)

The parameters � and ! that belong to the theoretical model can be identified

by the dynamics of a single uncoupled oscillator (see Fig. 6.1(b)). �must be set such

that the amplitude r is equal to
p
�; while ! should be chosen such that the period

of oscillation, P, must be equal to 2⇡/!. In the experiments ! is not identical for

each oscillator, but the oscillators are chosen so that the values of ! are very close

to each other. As such ! is simply taken to be the average (i.e. ! =N�1
N
P

j=1
!j ).

Hr and H' are found experimentally by coupling two oscillators such that they
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do not phase lock, and measuring the period and amplitude. Specifically:

Hr(�') =
1
K

h

r(�')2 ��
i

(6.11)

H'(�') =
�2⇡
KP2 [P(�')�P] . (6.12)

Fig. 6.2(a) and (b) show H' and Hr for a relaxation oscillator held at V = 1.2V.

Further details for H� is given in Ref. [33] and for both coupling functions are

given in Ref. [69]. The Fourier coe�cients for Fig. 6.2 are given in Table 6.1.
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ï�
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H
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H
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6q 6q

Figure 6.2: (a) Phase interaction function H' and (b) radial interaction
function Hr for V0 = 1.2 V. A 5-term Fourier fit from evenly sampled data
is shown by the black curve. Blue error bars show the standard deviations
of nine pairs of oscillators. Coe�cients for the black curve are given in
Table 6.1.

The Kuramoto phase oscillator model is similar to Eq. (6.9a):

'̇j = ! +KH'('j+1(t � ⌧)�'j(t)) (6.13)

H' is the same as H' in the phase and radius model, shown in Fig. 6.2(a).

6.5 Results

In Section 6.5.1 we show experimentally that increasing gain causes a cluster

transition. We show that the phase-only model cannot predict this result, and that
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Radial interaction function
a1,r = �4.4645, b1,r = �1.1462
a2,r = �0.41226, b2,r = �1.6362
a3,r = 0.60437, b3,r = 0.0655
a4,r = 0.057681, b4,r = 0.58627
a5,r = �0.2283, b5,r = 0.24678
Angular interaction function
a1,' = �0.14137, b1,' = 0.75125
a2,' = �0.45689, b2,' = 0.78142
a3,' = �0.24152, b3,' = 0.24713
a4,' = �0.002844, b4,' = 0.12026
a5,' = 0.02867, b5,' = 0.07666

Table 6.1: Fourier coe�cients used in Eqs. (6.9), H' in rad/s, Hr in mA/10.

the extended Stuart-Landau model does. In Section 6.5.2 we describe how coupling

functions Hr and H' may be predicted for systems with nonlinear coupling.

6.5.1 Cluster transitions due to coupling strength

Consider an experiment where ⌧ remains constant and we increment K . Before

each increment, the system reaches a steady state. If the system phase locks, drj /dt

and d('j+1 �'j )/dt = 0 and Eqs. (6.9) become

rj
rj+1

(r2j ��) = KHr('j+1 �'j � ⌧) (6.14a)

rj+2
ri+1

H'('j+2 �'j+1 � ⌧) =
rj+1
rj

H'('j+1 �'j � ⌧). (6.14b)

Eq. (6.13) becomes

H'('j+2 �'j+1 � ⌧) =H'('j+1 �'j � ⌧). (6.15)

Coupling strength cannot influence steady state behavior in Eq. (6.15) because K

drops out.
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The coupling strength does a↵ect phase-locking in the phase and radius model

in Eqs. (6.14) under certain conditions. If all the phase di↵erences 'j+1 �'j are

equal, then Hr('j+1 �'j � ⌧) will be equal for all j , and all rj will be equal. Thus,

rj+1/rj will be unity. Because there is no other dependence upon K , the stability of

the system will not be a↵ected by gain.

However, if the phase di↵erences are unequal, as in the case of secondary clusters,

introduced in Ref. [69], the radii will be unequal. When this is true, Eq. (6.14a) that

the radii will change relative to one another as the coupling gain is changed, even if

the phase di↵erences do not. From Fig. 6.2(b), when ��j+1,j � ⌧ > 0, rj <
p
�, and if

��j+1,j � ⌧ < 0, rj >
p
�. rj+1/rj su�ciently far from unity may disrupt the cluster

state. Additionally, only a certain range of amplitudes are possible in a physical

system; an rj outside this range may disrupt the cluster state.

We compare the results of experiment and simulation on a unidirectional four-

member ring when ⌧ is held constant near 0.6 times the natural period, P, and K is

incremented. We choose ⌧ = 0.6P because this delay is likely to induce a secondary

cluster state (Fig. 5.7). Fig. 6.3(a) and (b) show the initial secondary cluster state

observed in experiment and simulation, respectively.

1 1

2
2

3 3

4
4

(a) (b)

Figure 6.3: The phases, 'j as visualized on a phase ring (a) Experimental
data for relaxation oscillator, V = 1.2V, K = 0.12. (b) Simulated data using
Hr and H' as reported in Table. 6.1. � = 6.5, ! = 2.664, ⌧ = 1.5, K = 0.5.

Fig. 6.4 shows the behavior of the radii and phase di↵erences as the coupling



CHAPTER 6. EXPLORING RADIAL DYNAMICS 84

0.05 0.25 0.5
1

2

3

0.05 0.25 0.5
0

     pi

     2pi

0.04 0.08 0.12 0.16

3.2

3.5

3.8

0.04 0.08 0.12 0.16
0

   pi

   2pi

6
q (1

,i)

A
m

p 
(m

A
/1

0)

K K
6
q (1

,i)

A
m

p 

2/

2/

/

/

(a) (b)

(c) (d)

Figure 6.4: Experimental dynamics for relaxation oscillator, V = 1.20V,
⌧ = 0.6P. Plots of (a) phase di↵erence, 'j �'1 and (c) radius in mA. Plots
of simulated dynamics (b) phase di↵erence and (d) radius. Simulated with
Eq. (6.9 and coe�cients in Table 6.1. Phase di↵erence: �'(2,1) in blue
squares, �'(3,1) in red triangles, and �'(4,1) in black circles. Radii: 1 in
blue circles, 2 in green squares, 3 in red inverted triangles, and 4 in black
triangles. � = 6.5, ! = 2.664, ⌧ = 1.5.

strength, K , is incrementally increased in experiments and simulations. Figs. 6.4(a)

and (b) show the experimentally observed radii and phase di↵erences, respectively.

We start with K = 0.04 and increment by 0.025. Around K = 0.06, the coupling

strength is su�cient to induce synchrony, and we observe the secondary cluster state

shown in Fig. 6.3(a). This state persists as K is incremented; the phase di↵erences

change only slightly, while the radii ri grow or shrink, according to the value of

KHr('j+1�'j �⌧). At K = 0.1725, the system switches to a primary cluster state, the

reverse splay state. The oscillators in Figs. 6.4(a) and (b) operate at!1 = 2.901±0.090

rad/s, !2 = 2.860± 0.073 rad/s, !3 = 2.812± 0.087 rad/s, and !4 = 2.810± 0.094

rad/s and r1 = 2.582±0.068 mA/10, r2 = 2.542±0.066 mA/10, r3 = 2.546±0.060

mA/10, and r4 = 2.580± 0.066 mA/10,.
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Figs. 6.4(c) and (d) show simulated results using the model presented in Eqs. (6.9)

and the interaction function coe�cients reported in Ref. [previous paper]. Like the

experiment, the system begins in a secondary cluster state, shown in Fig. 6.3(b). The

phase di↵erences remain constant while the radii change, until a sharp transition

occurs at K = 0.5. In the simulation, the system transitions to a non-realizable state,

as negative radii are numerically possible. However, the simulation successfully

predicts the loss of stability of the secondary cluster state.

6.5.2 Predicting the Radial Interaction Function

In this section, we show that the radial coupling function can be predicted given

two pieces of information: (1) the coupling parameters (i.e., ks and ⌧s from Eq. (6.3))

and (2) reference coupling functions from other coupling conditions.

First, we perform experiments to obtain the reference coupling functions. We

perform experiments with first order (linear) coupling, second order coupling, and

third order coupling. We then calculate Hr and H' for the three cases. With these

three reference coupling functions, we can calculate Hr and H' for any ks and ⌧s

according to:

H (all)
r (�') =

S
X

s=1

ksH
(s)
r (�' � ⌧s) (6.16)

H (all)
' (�') =

S
X

s=1

ksH
(s)
' (�' � ⌧s) (6.17)

Fig. 6.2 and Fig. 6.5 show the reference coupling functions for linear coupling,

and second and third order coupling, respectively, calculated from experimental

data according to Eqs. (6.11). Each function was calculated from experiments

with several pairs of oscillators. Fourier fits were performed on evenly sampled
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Figure 6.5: Reference coupling functions, H (s)
m in black, standard deviations

in blue. Second order coupling functions calculated from 11 pairs (a) H (2)
'

and (b) H (2)
r . Third order coupling functions calculated from 7 pairs (c) H (3)

'

and (d) H (3)
r .

Coupling function errors
H (1)
' = 6.50%, H (1)

r = 10.34%
H (2)
' = 8.38%, H (2)

r = 6.62%
H (3)
' = 6.58%, H (3)

r = 10.40%

Table 6.2: Standard deviations of coupling functions in Figs. 6.2 and 6.5

data. Error was found by the standard deviations of the fits; the average standard

deviation for H (s)
' was 6.11% and the average standard deviation for H (r)

r was 9.12%.

Breakdowns of standard deviation by coupling order are shown in Table 6.2.

With the reference coupling functions, we can predict H (all)
m for any combination

of coupling coe�cients. We performed experiments with seven random sets of

coupling constants with ten pairs of oscillators. Fig. 6.6 shows the predicted and

the experimentally measured coupling functions for one of the pairs at one of

the conditions. In H', we can see that the observed coupling function is shifted
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Figure 6.6: Coupling functions, (a) H (all)
' and (b) H (all)

r with coupling con-
stants k1 = 0.03, ⌧1 = 0.5, k2 = 0.3, ⌧2 = 0.75, k3 = 3, and ⌧3 = 0.25. Prediction
calculated from Eqs. (6.16) shown in black solid, observed coupling function
from Eqs. (6.11) shown in blue dot-dash.

slightly compared to the expected one; this is because the frequency naturally

drifts upwards, and thus ⌧ may be larger compared to the period. Such shifts

were the primary discrepancy between observation and expectation. From the 70

experiments, there was an average error of 15.4% for H' and of 15.7% for Hr .

6.6 Discussion

We modeled the behavior of electrochemical oscillators using the extended Stuart-

Landau model. We showed that by increasing coupling strength, we could cause

a unidirectional ring of four oscillators to switch clusters. The modified Stuart-

Landau model also exhibited this transition, which cannot occur in the Kuramoto

phase model. We note that the clusters became unstable at di↵erent coupling

strengths in the experiment and the phase and radius simulation. We suggest that

physical systems can only exhibit a certain range of radii; characterizing this range

would improve the model.

We described a method for estimating the radial interaction function, if the

form of coupling is known as well as the oscillator’s response to certain kinds of
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coupling. We believe this is the first time radial behavior has been predicted from

knowledge of the stimulation. We showed that interaction functions calculated by

this method matched the experimentally-measured interaction functions. Ref. [69]

demonstrated that, given knowledge of the interaction function, we can accurately

predict clustering on networks of such oscillators. In principle, we are able to

engineer the radial interaction function now that we have connected stimulation

and behavior. However, changes to the stimulation will a↵ect both the phase and the

radius, and both must be taken into account. Interactions with dynamic coupling

strength, K(t) or ks(t), might allow one to access radial dynamics specifically, but

more study on this topic is required.

We expect the extended phase and radius model described in this paper to

be useful for the description of relaxation oscillators. We observed greater radial

sensitivity in relaxation than smooth oscillators in the nickel-oxide dissolution

system. Generically, oscillators exhibit higher harmonics farther from the Hopf

bifurcation [29, 30], thus the radial model may aid description of these systems.

Additionally, phase-only models have been employed for biological oscillators [31].

We note that many biological oscillators, such as neurons, are highly relaxational

with amplitude-sensitive dynamics, and may be better described with a phase-and-

radius model. Finally, we suggest that the phase and radius model may be a natural

extension for systems with moderate coupling that exceeds the ”weak coupling”

requirement of the Kuramoto phase model [8].
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Chapter 7

Other investigations

7.1 Introduction

This chapter details several additional projects with coupling networks. Section 7.2

describes experiments and simulations with 64 oscillators with spatially-dependent

coupling. Section 7.3 extends the results of Chapter 5 for two additional coupling

matrices: (1) a unidirectional ring of 6 oscillators, and (2) a unidirectional ring

of 4 oscillators with one weighted value. Section 7.4 describes experiments and

simulations with 64 oscillators with two coupled subpopulations.

7.2 Chimeras

A chimera is a state of coexisting order and disorder that arises from spatially-

dependent coupling [99]. The literature contains few experimental studies with

network coupling because such coupling is computationally intense and was not

possible until recently. The chimera, which has been studied extensively theoreti-

cally [100–102], demonstrates how network coupling can support more complex
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Figure 7.1: An example of the chimera. The phase, ✓, as a function of
ring position. In the region of order, outside the dashed vertical lines, the
oscillators lock in synchrony. In the region of disorder the oscillators fail to
synchronize (Fig. 1 from [100]).

behavior than uniform coupling. The chimera state di↵ers fundamentally from

synchrony, and cannot be obtained with global coupling.

We investigated the chimera state, shown in Fig. 7.1, with Jörn Davidsen’s group

at the University of Calgary. Although we successfully produced the chimera in

simulations, we could not produce one experimentally. Chimeras cannot exist

when noise in a system is too high; we believe our system exceeded that noise

threshold. At the time of our investigation, no experiments showing a chimera had

been published.

7.2.1 Theory

A simple system that can support a chimera state is a population of phase oscillators

coupled di↵usively on a ring:

@�
@t

= ! +

⇡
Z

�⇡

�(x � x0)sin[�(x0, t)��(x, t)�↵]dx0 (7.1)
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where x denotes the position of an element on the coupling ring from �⇡ to ⇡, and

�(x, t) is the phase of the oscillator at position x and time t. ↵ is a phase lag, similar

to the previously introduced variable ⌧. �(x � x0) is the coupling vector (analogous

to the coupling matrix, G) which the describes the magnitude of coupling between

the oscillator and another oscillator some distance x � x0 away. In order to support

the chimera state, an oscillator is coupled more strongly to neighbors near on the

ring than those far away. Any properly-tuned function with coupling that decays

with distance can produce a chimera, from an exponential function [99], to a cosine

function [100] to a step function [102].

The chimera is only possible with certain coupling vectors and within a range

of phase lags. The chimera exists in bistability with a synchronous state, so only

some initial conditions successfully produce a chimera. The initial conditions must

have a mix of order and disorder, such as the example provided by Abrams and

Strogatz [100]:

�(x,0) = 6exp[�30(x � 1
2
)2]rand(x), (7.2)

where rand is a random number.

7.2.2 Experimental Methods

We express the equations for the system in more familiar terms

�̇j = !j +
N
X

n=1

gj,n sin(�n ��j �↵). (7.3)
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Here G is a coupling graph with a step function. G is obtained from

g 0j,n =

8

>

>

>

>

>

<

>

>

>

>

>

:

1, if |j�n|N 6 r

0, if |j�n|N > r

where r is a parameter of the coupling matrix giving the width of the step. We

calculate the final coupling matrix

gj,n =
g 0j,n
P

n
g 0j,n

.

Thus, G is row-sum 1 and the overall coupling strength is held constant for di↵erent

values of r.

Several obvious limitations exist for the system: we have only 64 oscillators

available, the oscillators are naturally slightly heterogeneous, and we have imprecise

control over the initial conditions. We induced an initial condition with a mix of

order and disorder as an alternative to the initial conditions in Eq. (7.2). To produce

this initial condition, 25% of oscillators were coupled globally amongst themselves,

and the remaining oscillators received no coupling. The 25% synchronize, while

the others do not.

We ran simulations with the phasemodel using the Runge-Kutta in Appendix A.5

to test if a chimera could exist with the conditions described. The existing literature

concerned populations of hundreds or thousands of oscillators with little to no

heterogeneity. In simulations with 60 slightly heterogeneous phase oscillators,

using our initial conditions and a coupling step width of r = 0.7, we successfully

simulated the chimera state. We also produced a chimera state in simulations with

Stuart-Landau (phase and radius) oscillators.
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We performed experiments with smooth oscillators using the apparatus de-

scribed in Fig. 3.3. Experiments were performed in pairs with di↵erent initial

conditions; the first experiment in the pair was performed immediately following

100% global coupling, the second experiment was performed immediately following

25% global coupling. These pairs of experiments were intended to show bistability

between a synchronous state and a chimera state. The experiment with the 100%

global coupling should yield a synchronous state, while the partial global coupling

should yield a chimera.

7.2.3 Results and Discussion

Our experimental results were initially di�cult to interpret. As we increased ⌧, we

observed a transition from order to disorder, but not as we expected. Whether or

not an element joined the synchronous group was determined solely by frequency,

and not ring position. Additionally, we did not observe bistability depending upon

the initial conditions. Almost all of the literature on the chimera state explored the

behavior of identical oscillators in simulations. We speculated that heterogeneity

might cause delocalization of the synchronous group. Simulations with more

heterogeneous populations revealed similar delocalization in the synchronous

group.

Two possibilities emerged: the chimera was fundamentally changed by hetero-

geneity, but retained some essential behaviors, or the chimera ceased to exist in the

presence of su�cient heterogeneity. Eventually we found a theoretical discussion of

the e↵ect of heterogeneity on the chimera. Fig. 7.2 shows the bifurcation diagram,

where D is the width of a Lorentzian distribution [103]. We believe that the value of

D where the chimera ceases to exist is smaller than the experimental heterogeneity;

thus, a chimera cannot be produced on our apparatus.
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Figure 7.2: The bifurcation diagram for a chimera in the presence of het-
erogeneity. The blue loop shows where the chimera can exist. When D,
the heterogeneity, is su�ciently large, the chimera ceases to exist (Fig. 7
from [103]).

Although we failed to produce a chimera state, one interesting and yet unan-

swered question arose. Some debate exists as to the best form for coupling oscillators.

In row-sum zero coupling (as in the Laplacian matrix), oscillator coupling is con-

sidered as di↵usive coupling (�xj(t) = f (xn(t) � xj(t))). In row-sum one coupling

(more like the adjacency matrix), oscillator coupling is direct (�xj(t) = f (xn(t))).

Di↵usive coupling is considered to more closely resemble equations for di↵usion

and energy transfer. The literature lacks consensus on the form of the coupling

matrix; some papers use a Laplacian with zero row sum [47, 51], some use a matrix

with constant row sum [49], and others use an adjacency matrix, which is not

necessarily constant row sum [50]. We suggest that di↵usive interactions occur

as part of the N -dimensional space of the system; the perturbations are already

relative to the applied voltage of the original oscillator, and the coupling function

may be a function of phase di↵erence whether or not the stimulation is a function

of a di↵erence.

In the experiments presented in Chapters 4 and 5, there is qualitatively no

di↵erence between di↵usive and non-di↵usive coupling. In the spatially-dependent
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coupling of this section, di↵usive and non-di↵usive coupling yield qualitatively

di↵erent behavior. It is not clear why this system di↵ers.

7.3 Exploring cluster states onmore complex networks

Chapter 5 explored cluster behavior on a four-member unidirectional ring. This

section explores additional network geometries including bigger rings and weighted

rings. At present, it is unclear to what extent a cluster state may be tuned by

changing only the coupling matrix; further study is required.

7.3.1 Theory

The theory for unidirectional rings with more than four members is well-understood

for smooth oscillators [49]. We explore the model developed in Chapter 5 for rings

of six or more relaxation oscillators, anticipating additional secondary cluster

states. Based upon the patterns of the four-member ring, we would expect six

primary states (one-cluster, two-cluster, three-cluster, reverse three-cluster, splay,

and reverse splay) and six secondary states that represent blends of each two

adjacent primary states.

The influence of coupling matrix weighting on phase locking has been shown

experimentally in Ref. [25] through the coupling of oscillators with di↵erent surface

areas. In experiments and simulations, we were able to change the stable cluster

states sampled by changing only one value of a unidirectional ring. By changing

only one value, we still preserve much of the symmetry originally present in the

system, which aids in reducing the complexity of the problem. In a three-member

unidirectional ring with one weighted value, the equations for the system are given
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by

�̇1 = ! + g1,2KH(�2 ��1 � ⌧)

�̇2 = ! +KH(�3 ��2 � ⌧) (7.4)

�̇3 = ! +KH(�1 ��3 � ⌧).

Thus the stationary states are given by

g1,2H(�2 ��1 � ⌧) =H(�3 ��2 � ⌧) (7.5)

H(�3 ��2 � ⌧) =H(�1 ��3 � ⌧).

One solution (there can be others) to H(�3 ��2 �⌧) =H(�1 ��3 �⌧) is �3 ��2 �⌧ =

�1 � �3 � ⌧, giving 2�3 = �2, if we say that �1 = 0 (we are only interested in

the phase di↵erences). When we substitute this back into Equation 7.5, we get

g1,2H(2�3�⌧) =H(��3�⌧). For anN -member unidirectional ring with one weighted

value, the equation is g1,2H((N � 1)�N � ⌧) = H(��N � ⌧). With this equation we

can plot frequency versus phase di↵erence, and make analytical predictions about

the eventual phase di↵erences in a simulation or experiment. Again, there may be

other solutions to H(x) =H(y), but this subset of solutions illustrates some of the

system behavior. When H has one maxima such as H(��) = sin(��), the agreement

is especially good.

7.3.2 Experimental Methods and Results

We coupled six relaxational oscillators in a unidirectional ring, analogous to the

experiments in Chapter 5. As expected, we observed six primary cluster states and

six secondary states, shown in Figs. 7.3 and 7.4 respectively. We observe the primary
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states in the following order as coupling delay is increased from zero to 2⇡: one

cluster, splay, three cluster, two cluster, reverse three cluster, reverse splay, and one

cluster again. The six secondary states are the six blends of adjacent primary states.

Additional secondary states will exist, as there will be hybrid states between all

pairs of primary states, but we will not observe them in our experiments.
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Figure 7.3: Time series and schematic on the phase ring of the six primary
clusters observed experimentally in a six-member unidirectional ring with
delay coupling: (A) the one-cluster state, (B) the two-cluster state, (C) the
three-cluster state, (D) the reverse three-cluster state, (E) the splay state, and
(F) the reverse splay state. Oscillators are color coded: 1 (blue), 2 (black), 3
(red), 4 (green), 5 (gray), and 6 (purple).

Fig. 7.5 shows the experimental cluster progression as ⌧ is increased in a ring

of six relaxation oscillators. As in the four-member ring, we observe alternation

between secondary and primary cluster states. Cluster states are labeled to match

the schematics shown in Figs. 7.3 and 7.4.

In experiments with a unidirectional four-member ring of smooth oscillators,
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Figure 7.4: Schematic on the phase ring of the six secondary clusters ob-
served experimentally in a six-member unidirectional ring of relaxational
oscillators with delay coupling: (↵) the compressed splay state, (�) the
reverse compressed splay state, (�) the splayed three-cluster state, (�) the
reverse splayed three-cluster state, (✏) the splayed two-cluster state, and (⇣)
the reverse splayed two-cluster state.

we examined the behavior of g1,2 = 0.4 (the coupling strength from oscillator 2 to 1).

We chose this value because when g1,2 = 1/(N �1) = 0.33 (assuming H� = ��), the

system transition from one without hysteresis to one with hysteresis. g1,2 = 0.4 is

slightly above this value, and thus exhibits slight hysteresis.

Fig. 7.6(a) and (b) show the cluster frequency depending upon time delay for ex-

periments and phase model simulations (H� = sin(��)), respectively. Discrepancies

between the two are likely because the interaction function for a smooth oscillator

is not perfectly sinusoidal. The simulations in Fig. 7.6(b) agree identically with the

solutions to g1,2 sin(3�4 � ⌧) = sin(��4 � ⌧) from Equations 7.4.

The cluster states that arise from altered values of g1,2 with smooth oscillators

resemble the compressed splay state found in relaxation oscillators in Chapter 5.

We suggest that the secondary clusters in the relaxation oscillator might be due to a
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Figure 7.5: The experimental cluster progression on a six-member unidirec-
tional ring as ⌧ is varied, visualized with the cluster frequency. Oscillators
are relaxational, V = 1.2 V. Black dots indicate experiments; colors indicate
the cluster configuration. The cluster states occur in the following order:
splayed three-cluster (light green, �), three-cluster (light blue, C), splayed
two-cluster (purple, ✏), two-cluster (red, B), reverse splayed two-cluster
(orange, ⇣), reverse three-cluster (yellow, D), reverse splayed three-cluster
(dark green, �), reverse splay (dark blue, F). Letters and greek letters refer
to primary and secondary clusters shown in Figs. 7.3 and 7.4, respectively.
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Figure 7.6: Frequency as a function of time delay for a one-value weighted
unidirectional ring with g1,2 = 0.4. (Left) Experimental results, (Right)
Simulation results with the phase-only model.
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loss of one of the system symmetries. The weighted network described has lost one

of its symmetries as well.

7.4 Radial e↵ects in the conformist/contrarian system

In the conformist/contrarian system, the total population is split into two subpopu-

lations. The first subpopulation is positively coupled to the mean-field; each element

in this population, j , experiences pairwise coupling strength gj,n = K1/(N �1) > 0

from all other oscillators, N � 1. The second subpopulation is negatively coupled to

the mean-field; each element in this population, j , experiences pairwise coupling

strength gj,n = K2/(N � 1) < 0 from all other oscillators, N � 1. The schematic and

coupling matrix for this system are given in Fig. 7.7(a) and (b), respectively.

1 2

3 4

0 1 1 1

1 0 1 1

2 2 0 2

2 2 2 0

A B

Figure 7.7: Four elements with conformist/contrarian coupling. Elements 1
and 2 are the conformists, shown in blue, with positive pairwise coupling,
K1 > 0. Elements 3 and 4 are the contrarians, shown in pink, with negative
pairwise coupling, K2 < 0. (A) A schematic representation. Black arrows
indicate positive pairwise coupling, gj,n > 0; red arrows indicate negative
pairwise coupling, gj,n < 0. (B) Coupling matrix, G, corresponding to the
schematic in (A). 1 = K1/(N � 1) > 0, 2 = K2/(N � 1) < 0.

Oscillators with positive coupling (the conformists) will tend to align with

the collective phase, while those with negative coupling (the contrarians) will

tend to align opposite to it. When conformists vastly outnumber contrarians,

the conformists synchronize and the contrarians phase-lock ⇡ radians from the

conformists. Under other conditions, the system exhibits more complex behavior.
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Studies with interacting subpopulations are relevant for the study of biological

systems, which may have many interacting subpopulations.

We performed experiments and simulations with the conformist/contrarian

system [104, 105]. In experiments we systematically observed amplitude di↵erences

between the conformists and the contrarians when order emerged in the subpopula-

tions. In simulations with the Stuart-Landau oscillator, we also observed amplitude

di↵erences in the organized populations.

7.4.1 Theory

The behavior of a population of phase oscillators with a mixture of positive and

negative mean field coupling is described by [104, 105]

�̇(s)
j = !j +

Ks

N

N
X

n=1

H(�n ��(s)
j ). (7.6)

Here there are two values of Ks: the conformists, where K1 > 0, and the contrarians,

where K2 < 0. Ks can be related to the coupling matrix shown in Fig. 7.7B by

Ks =
P

n
gj,n. The conformists tend towards the mean-field value as coupling strength

is increased, while the contrarians tend to oppose the mean-field value. Hong and

Strogatz varied p, the percentage of conformists in the population and observed

several categories of behavior, and C [104, 105]. C gives the relative intensity of the

conformist coupling, C = K1/(K1 �K2).

At low values of p, the contrarians win out and the incoherent state exists, shown

in Fig. 7.8(a). A traveling wave state exists at higher values of p when C is 2/3,

shown in Fig. 7.8(b). Finally, a ⇡-state is observed at high values of p and C, shown

in Fig. 7.8(d). A forth state, the blurred ⇡-state, is shown in Fig. 7.8(b), but we will

not discuss it because it only appears in systems of identical oscillators.
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Figure 7.8: States observed in the conformist-contrarian system: (A) the
incoherent state (B) the blurred state (C) the traveling wave state and (D)
the ⇡-state [105].

7.4.2 Experimental Methods

We used a population of 64 smooth oscillators (V = 1.105V) with a two-valued

coupling matrix using the apparatus in Fig. 3.3. The first 64p oscillators were

assigned positive coupling, K1. The remaining oscillators were assigned negative

coupling, K2. We swept through a range of p values with C = 1
4 or C = 3

4. We

calculated the Kuramoto orders of each population according to

r(s) =
1
n(s)

n(s)
X

j=1

ei�
(s)
j . (7.7)

We also calculated the mean amplitudes of each population, and the time-dependent

phase di↵erences between the two populations.
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7.4.3 Results and Discussion

We observed that the oscillator amplitudes depended upon p. When p is smaller

and the system is disordered, the two populations have similar amplitudes. When p

is large enough to induce order, the two populations take on di↵erent amplitudes

(see Fig. 7.9). These amplitude e↵ects are not possible in a phase-only model, but

we have observed them in the Stuart-Landau model:

ṙj = [�� r2j ]rj +
K (s)

N

N
X

n=1

rnHr(�n ��j ) (7.8)

�̇j = !j +
K (s)

N

N
X

n=1

rn
rj
H�(�n ��j ).

This result suggests that the radius still play a role in the dynamics of smooth oscil-

lators, though our findings in Chapter 5 suggest that the e↵ects are less pronounced

in a smooth oscillator than a relaxational oscillator. Higher values of gain may

significantly change the behavior of the system. The amplitude di↵erence between

the conformists and the contrarians show in Fig. 7.9 is about a tenth of that observed

in Fig. 6.4(c) (⇠ 0.005 mA vs. ⇠ 0.05 mA, respectively). Experiments with relaxation

oscillators would likely yield more changes to the radius as well. In addition to the

amplitude behaviors, we also observed behavior similar to that shown in Fig. 7.8.
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Figure 7.9: The di↵erence in amplitude (from A0) for conformists (black
circles) and for contrarians(gray squares) for smooth experimental oscilla-
tors. The populations start becoming ordered near p = 0.7, at which point
we can observe di↵erences in the average amplitudes of each population.
K1 = 1,K2 = �3, and C = 1/4.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation explores extensions to the phase model. Such reduced-variable

models are a powerful tool already utilized in many settings; these extensions

broaden the reach of the model. We specifically consider: (1) phase dynamics of an

element as a function of two phases, (2) phase dynamics of a population coupled by

a network, and (3) dynamics as a function of both phase and radius. These extended

models retain the advantages of the basic phase model; they are still constructed

from observed variables and remain easy to work with. Nevertheless, they predict

and highlight behaviors not observable in the basic phase model.

Chapter 4 applied a two-phase model and a phase-di↵erence model to experi-

mental data from two coupled oscillators. We showed that the two-phase model

recovers coupling directionality, which may be pertinent to biological systems. The

two-phase model may also be of particular interest in systems that exhibit learning

and dynamic coupling, due to the ability to separate stimulation and response.

We showed behavior revealed by the two-phase model but not for the one-phase
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model. We also presented a toy model to demonstrate behavior revealed only by the

two-phase model. Prior to our study, the phase-di↵erence model was considered

best for similar oscillators; dissimilar oscillators would necessitate a two-phase

model. We present exceptions in both directions; the dynamics of the oscillator

and the behavior of interest (i.e. phase locking) dictate the appropriateness of the

model.

Chapter 5 examined small networks of smooth and relaxation delay-coupled

oscillators. The smooth oscillator dynamics, including hysteresis between clusters,

were well described by the Stuart-Landau model (a generic model for a Hopf

bifurcation). Relaxation oscillator dynamics necessitated extensions to the Stuart-

Landau model; we calculated phase and radial interaction functions describing the

dynamics of the phase and radius due to coupling. This is the first radial interaction

function described, to our knowledge. The extended model generally matched

experimental results; both experiments and the model yielded asymmetrical delay-

dependent clusters.

Chapter 6 explored the utility of a phase and radius model such as developed in

Chapter 5. We showed that increasing gain will destroy the synchrony of certain

cluster states in experiments and the phase and radius model. We presented a

method to predict the radial interaction function from the coupling. We suggest

that a phase and radius model is preferable to a phase-only model (1) for higher

harmonic oscillations and (2) for “non-weak” coupling.

Chapter 7 described several other studies examining complex behavior on

network-coupled populations. We explored the chimera state in populations with

spatially-dependent coupling. We presented the cluster dynamics in a ring of six

delay-coupled experimental oscillators; we identified 12 di↵erent clusters. We ex-

plored cluster dynamics on small networks with weighting. We described dynamics
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in populations with coupled subpopulations.

8.2 Future Work

Although complex systems of oscillators exist in a variety of fields, the greatest

future interest likely resides in biological systems. Such systems yield complex

emergent behaviors such as breathing, the heartbeat, and human cognition, but

they cannot be considered from the scale of an individual element, or often even

a single region of an organ. Such a system cannot be handled in its entirety; this

suggests the need for a reduced-variable approach. The elements of these systems

are individually complex. For example, neurons are highly relaxational and they

are sensitive to the strength of stimulation. Biological elements also interact in

complex ways; continuing the example, there are multiple kinds of synapses, such as

excitatory or inhibitory. Neurons may also communicate electrically or chemically.

Thus, more flexible models are needed, which retain the simplicity of the

reduced-variable model yet include essential aspects of the system. Research such

as this dissertation on well-behaved test systems is needed to extend and develop

models. These models cannot be easily developed solely with biological oscillators;

they are more di�cult to work with (amongst other things, they can die) and they

are noisier.

The above are long term goals of the field. In the more immediate future we

present more measured goals to which this dissertation has contributed. If the long

term goal is to model biological oscillators, there are several aspects of biological

oscillators for which models may need to account.

1. Dynamics for complex coupling matrices. Due to computational limitations,

studies of network dynamics are relatively recent; simulations are only recently
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possible for large populations. Our work on small networks in Chapters 5

and 6 serves as a stepping stone toward handling large networks. We also

examined several network problems in Chapter 7.

2. Complex and highly nonlinear individual elements. Chapter 6 showed that

the phase and radius model described relaxation oscillators better than the

existing phase model.

3. Di↵erent kinds of coupling. Section 7.4 discussed the conformist/contrarian

system, in which some oscillators had positive mean-field coupling and some

had negative. This resembles excitatory and inhibitory coupling.

4. Interacting subpopulations. The conformist/contrarian system in Section 7.4

examined the interactions between two populations with positive and negative

mean-field coupling.

5. Behaviors other than simple synchrony or systems that evolve over time. The

two-phase model in Chapter 4 showed di↵erences between systems not re-

vealed by the basic phase-di↵erence model. This model can also separate

stimulation and response, which allows one to see changes in either specifi-

cally.

These considerations can also apply to populations of nonbiological oscillators. For

example, models with complex coupling networks are also useful for systems of

oscillating current generators on the US power grid.

This is the dissertation of the last student in this research group. As such, there

are no pending plans for future work from this group. Of course, other groups are

still active and we suggest several extensions to the existing work.

1. Chapter 5 explored cluster transitions as the time delay was varied. This study



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 109

can be extended in two dimensions, time delay and coupling gain. Chapter 6

demonstrated that cluster stability is influenced by coupling strength. Espe-

cially for relaxation oscillators, we would expect to see changes in the domains

of cluster stability change. Based upon the results of Chapter 6, su�ciently

strong coupling might cause the system to sample only symmetrical cluster

states.

2. The system could be adapted to allow for dynamic coupling strength, K(t) or

K('). For example, from Fig. 6.2, the frequency of a relaxation oscillator is

most sensitive to perturbation shortly before and after the peak, while the

radius of a relaxation oscillators is most sensitive to perturbation in the trough.

We might expect a population more weakly coupled with ' near 0 and more

strongly coupled with ' far from zero would not synchronize.

3. The two phase and the phase and radius approach could be combined, to

yield H�('i ,'j ) and Hr('i ,'j ). If certain oscillations exhibit more radial

sensitivity and the two-phase analysis reveals more data, this combination

could yield further insights. Our colleagues considered apnea in the neonatal

cardiorespiratory system with the two-phase model. Anecdotally, certain

distress behaviors were tied to the magnitude of breathing; after an apnea, the

infant would often draw a single large breath, while the infant would pant

shallowly in other circumstances.

4. A systematic study of possible radii in the system at various voltages would be

useful. This could be achieved by applying pulse perturbations to oscillators

at various points of their limit cycle with varying strengths of pulses. The

possible range of radii would be given by the range of radii achieved by pertur-

bations without destroying the limit cycle. It is not clear how to incorporate
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such information into a model yet.
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Appendix A

MATLAB Code

A.1 Time series analysis

A.1.1 Peak finder

1 %������������������������������������������������������������

%This program finds the values of the peaks in data from oscillators , adapted from a

program in Craig Rusin’s dissertation .

%������������������������������������������������������������

function [ output args ] = peak finder(waves, peak threshold, min num pts)

6 % row is the length of the data set , col is the number of oscillators .

[row,col] = size(waves);

indices = [1:1: row];

for counter = 1:col

11 % selects the vector of data, y, for oscillator = counter

y = waves(:,counter);
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% initializes a matrix for the peaks to be found

max data = [ ] ;

% creates a vector of 1s and 0s, with 1s where the vector exceeds the threshold

16 peak data indices = y>peak threshold;

% assembles the data exceeding the peak threshold

peak y = y(peak data indices);

% assembles the indices of the data exceeding the peak threshold

21 peak indices = indices(peak data indices);

% finds breaks between groups of indices

group break indices = find(di↵(peak indices)>1);

% for loop loops through all breaks between groups of indices

26 for group counter = 2:length(group break indices)

% assembles a ”block” of data from one break in data to the next

block indices = [group break indices(group counter�1)+1:group break indices(

group counter)];

data block y = peak y(block indices);

31 data block x = peak indices(block indices) ’;

% if the block is longer than the minimum, it is a ”window” to be fit for a

peak

if length(data block y)>min num pts

36 % performs a 4th order polyfit of the window

p = polyfit(data block x,data block y,4) ;
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% finds the roots of the derivative of the polyfit (to find minima and

maxima)

r = roots([p(1)*4 p(2)*3 p(3)*2 p(4) ]) ;

%finds the real roots lying within the data window

41 max index = find((r>data block x(1))&(r<data block x(end))&(imag(r)==0));

% if there is only one such root , it is the peak, otherwise , find the one

closest to the peak of the raw data

if length(max index)==1

46 peak max location = r(max index);

else

raw max index = find(data block y ==max(data block y)) +data block x

(1);

51 local dist = abs(r(max index) � raw max index(1));

max index index = find(local dist == min(local dist));

peak max location = r(max index(max index index));

end

56

% adds the location of the peak found for this window to the vector of

peaks

max data = [max data peak max location];

end
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end

61

% creates a cell for the vector of peaks found found oscillator = counter

output args{counter} = max data;

end

A.1.2 phase calculator

1 %�����������������������������������������������������������

% This program finds the phase for all data points by peak�to�peak linear interpolation

%������������������������������������������������������������

function phase data = phase calculator(peaks)

6 % finds the number of oscillators in the data

num elements = length(peaks);

% finds the number of peaks for oscillator 1

start index = peaks{1}(1);

end index = peaks{1}(end);

11

% initializes the phase vector

phase data = zeros(end index,num elements);

current peak int = ones(1,num elements);

16

% this for loop loops through all the oscillators , osc

for osc = 1:num elements

start peak = peaks{osc}(1) ;

% this if statement handles the phases of data before the first peak by



APPENDIX A. MATLAB CODE 115

extrapolating backwards from the first full oscillation

21 if floor(start peak) ˜= 1

next peak = peaks{osc}(2);

% the first period is the time between peak 1 and peak 2

period1 = next peak�start peak;

% finds the phase at the beginning

26 frac per = start peak/period1;

% finds the phase of times before the first peak by linear interpolation from the

period of the first full oscillation

phase data(1:floor(start peak) ,osc) = interp1([1 floor(start peak) ],[ frac per*2*

pi 2*pi ],1:floor(start peak) , ’ linear ’ , ’extrap’) ;

end

31

% this for loop loops over the rest of the data which occurs between two peaks

for k = 1:length(peaks{osc})�1

time now = floor(peaks{osc}(k));

time next = floor(peaks{osc}(k+1));

36

% assigns phase by linear interpolation between time now and time next

phase data(time now:time next,osc) = interp1([peaks{osc}(k),peaks{osc}(k+1)],[0

2*pi],time now:time next,’linear’, ’extrap’) ;

end

end
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A.2 Fourier analysis

A.2.1 Program to resample data set: even sample 2pi

%������������������������������������������������������������

% bin resampling program for a 2pi periodic function , to be fitted with a Fourier series

% bin width specifies the width in radians of the averaging bin��we generally choose

bins with an average of 15�20 data points per bin.

% bin incr specifies how much the bin slides by for each averaging�� we generally use

bin width/10.

5 %������������������������������������������������������������

function [resampled function] = even sample 2pi(data in, bin width, bin incr)

number of bins = round(2*pi/bin incr);

phase avg = zeros(size(number of bins));

10 bin mean = zeros(size(number of bins));

%below are the vectors giving the left and right hand sides of the phase bin

lil phi vector = (0:(1/number of bins):1)*2*pi � bin width/2;

big phi vector = (0:(1/number of bins):1)*2*pi + bin width/2;

15

for bin = 1:number of bins

% defines the beginning and end phases of the current bin

phase lim lo = lil phi vector (bin) ;

phase lim hi = big phi vector(bin) ;

20 % defines the middle phase of the bin

phase avg(bin) = (phase lim lo+phase lim hi)/2;

%this if statement handles cases that wrap around the 2pi/0 transition
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if phase lim hi > 2*pi

phase lo true1 = data in (:,1) > phase lim lo;

25 phase hi true1 = data in (:,1) <= phase lim hi;

ph lim hi mod = mod(phase lim hi,2*pi);

phase lo true2 = data in (:,1) > 0;

30 phase hi true2 = data in (:,1) <= ph lim hi mod;

phase true1 = phase lo true1 == phase hi true1;

phase true2 = phase lo true2 == phase hi true2;

phase true num = phase true1 + phase true2;

35 phase true = logical (phase true num);

bin mean(bin) = mean(data in(phase true,2));

elseif phase lim lo < 0

phase lo true1 = data in (:,1) > phase lim lo;

40 phase hi true1 = data in (:,1) <= phase lim hi;

ph lim lo mod = mod(phase lim lo,2*pi);

phase lo true2 = data in (:,1) > ph lim lo mod;

45 phase hi true2 = data in (:,1) <= 2*pi;

phase true1 = phase lo true1 == phase hi true1;

phase true2 = phase lo true2 == phase hi true2;

phase true num = phase true1 + phase true2;
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50 phase true = logical (phase true num);

bin mean(bin) = mean(data in(phase true,2));

else

55 %finds the parts of the input data greater than the minimum phase and

less than or equal to the maximum phase

phase lo true = data in (:,1) > phase lim lo;

phase hi true = data in (:,1) <= phase lim hi;

phase true = phase lo true == phase hi true;

60 % the mean value for the phase bin is the mean of the data that satisfy the

above logic

bin mean(bin) = mean(data in(phase true,2));

end

end

65

% outputs two vectors : the middles of the phase bins and the means of the data in those

bins

resampled function(:,1) = phase avg;

resampled function(:,2) = bin mean;

A.2.2 Program to find ↵ts: ↵t full

%������������������������������������������������������������

2 % This function finds the Fourier coe�cients for evenly sampled data

%������������������������������������������������������������
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function [ ↵t coe↵s ,A 0]=↵t full (t ,y,num coe↵s)

L = (t(end)�t(1))/2;

7 A 0 = 1/(2*L)*trap integrate(t ,y) ;

↵t coe↵s = zeros(num coe↵s,1);

for n = 1:num coe↵s

A n = 1/L*trap integrate(t,y.*cos(n*pi/L*t)) ;

12 B n = 1/L*trap integrate(t ,y.*sin(n*pi/L*t)) ;

↵t coe↵s (n) = [A n + B n*1i];

end

A.2.3 Program to find i↵ts: inv ↵t

1 %������������������������������������������������������������

% This function generates a function from Fourier coe�cients

%������������������������������������������������������������

function [invFFT exp]=inv ↵t( ↵t coe↵s ,A 0,t)

6 L = (t(end)�t(1))/2;

B n sum = 0;

A n sum = 0;

for n = 1:length( ↵t coe↵s )

11

A n = real( ↵t coe↵s (n)) ;

B n = imag(↵t coe↵s (n)) ;
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A n sum = A n sum + A n*cos(n*pi*t/L);

16 B n sum = B n sum + B n*sin(n*pi*t/L);

end

invFFT exp = A 0 + A n sum + B n sum;

A.3 A sample full analysis of data

A.3.1 all calc

1 %������������������������������������������������������������

% This program calculates phase, radius , and the interaction functions for a day of

data

% For this program, all groups are composed of two oscillators

%������������������������������������������������������������

load str = ’source data’;

6 folder = ’saving location’ ;

mkdir([folder]) ;

% defines the beginning and end of the data, and how many ”groups” are in the data

start run = 0;

end run = 6;

11 num groups = 10;

for j = start run+1:end run+1

%These lines load the labview output

kab feedback = [’kab feedback ’ num2str(j�1)];

feedback a = load([kab feedback ’.txt ’ ]) ;

16 % reads the defined period and the defined delay . The ratio of the two gives the

approximate delay in terms of the period
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K mat(j) = feedback a(1,num groups*2+19);

delay(j ) = feedback a(1,num groups*2+29);

tau mat(j) = feedback a(1,num groups*2+29)/feedback a(1,num groups*2+30);

csvwrite([folder, ’/K mat’,’.csv’ ], K mat)

21 csvwrite([folder, ’/delay’ , ’ .csv’ ], delay)

%This ”for” loop ramps looks at behavior for each ”group” of oscillators

for group=1:num groups%num groups%1:2

group folder = [folder , ’/group ’,num2str(group)];

mkdir(group folder)

26 %the Labview program outputs in mA/10��here we can account for that, if desired

unitize = 0.1;

% selects the Labview data for this ”group”

feedback = unitize*feedback a (:,((2*( group�1))+2):(2*(group)+1));

%filters the data with a 4th order , 129 point Savitsky�Golay filter to remove

noise

31 filt fb = sgolayfilt (feedback,4,129);

%This sets a threshold for the peak finder for what qualifies as a peak

threshold = unitize *2.5;

% Sets the minimum window size which qualifies as a peak

36 min num = 25;

peaks = peak finder( filt fb ,threshold, min num);

% calculates the phase by linear interpolation

phase now = phase calculator(peaks);

% removes the beginning and end of the time series (only 2 seconds) , where

fitting errors may be present

41 phase = phase now(500:end�500,:);
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% finds the minimum length of the two oscillators , so that the peaks can be

considered as a matrix

min length= min([length(peaks{1}) length(peaks{2})];

peaks = [peaks{1}(1:min length); peaks{2}(1:min length}];

46 periods = di↵ (peaks,1,2)./250;

%finds the average frequency from the last 25 values of the period

omega1(j,group) = 2*pi/mean(periods(1,end�25:end));

omega2(j,group) = 2*pi/mean(periods(2,end�25:end));

51 %We find the amplitudes by finding the peaks and subtracting the mean signal of

the oscillation .

mean sig = mean(end fb);

%to get values for H r, first we calculate the amplitudes, the peak value minus

the mean value

peak vals1 = filt fb (round(peaks(1,:)),1) ;

peak vals2 = filt fb (round(peaks(2,:)),2) ;

56 amps = [peak vals1 �mean sig(1)...

peak vals2 �mean sig(2)];

% the scaled radii , the input for the function H r, are found from ampˆ2 �

mean(amp)ˆ2

scaled radius = [(( amps(:,1)) .ˆ2 � (mean(amps(:,1))).ˆ2) ...

((amps(:,2)) .ˆ2 � (mean(amps(:,2))).ˆ2) ];

61 %lambda is the mean of the amplitudes, squared

lambda1(j,group) = mean(amps(:,1)).ˆ2;

lambda2(j,group) = mean(amps(:,2)).ˆ2;
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% calculates the phase di↵erences

66 phi delts = [phase now(round(peaks(1,:)),2)...

phase now(round(peaks(2,:)),1)];

csvwrite([folder, ’/omega1’,’.csv’ ], omega1)

csvwrite([folder, ’/omega2’,’.csv’ ], omega2)

71 csvwrite([folder, ’/lambda1’,’.csv’ ], lambda1)

csvwrite([folder, ’/lambda2’,’.csv’ ], lambda2)

save([group folder,’/int func ’ ,num2str(j�1)], ’phi delts ’ , ’periods’)

save([group folder,’/rad int func ’ ,num2str(j�1)], ’phi delts ’ , ’radius’)

76 end

end

%������������������������������������������������������������

% This section fits the phase data with a Fourier series

%������������������������������������������������������������

81 % The number of Fourier coe�cients to find to

num harms = 5;

[K mat] = csvread([folder,’/K mat.csv’]);

[delay] = csvread([folder, ’/delay.csv’ ]) ;

for group= 1:num groups

86 all shifts = zeros(num runs,2);

all ↵t scal = zeros(num runs,num harms);

for j = start run+1:end run+1

K = K mat(j);

load ([group folder,’/int func ’ ,num2str(j�1),’.mat’])

91 for osc = 1:2
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% The pre�interaction functions are vectors of the frequencies and the

phase di↵erences

int pre = [phi delts (1:end�1,osc) periods(osc ,:) ’];

% The data is sorted according to phase di↵erence

int func = sortrows(int pre) ;

96

% the data is unevenly distributed in dphi, which is incompatible with a

Fourier fit .

%We resample by sliding a bin and finding the mean of the measurements in

that bin

data length = length(phi delts (:, osc)) ;

bin count = round(data length/15);

101 bin phase width = 1/(bin count)*2*pi;

bin march size = bin phase width/10;

[resamp if bin] = even sample 2pi(int func, bin phase width,

bin march size);

106 % The uncoupled period is approximately equal to the mean of the periods

p = mean(resamp if bin(:,2));

% H phi scaling according to Miyazaki and Kinoshita, 2006

scale = �2*pi/K/(pˆ2);

% The frequency portion is scaled and made zero�mean

111 resamp if = [resamp if bin (:,1) scale*(resamp if bin (:,2) � p) ];

% tests to see if the resampled data has gaps, which will make it unusable

if isnan(p)==0

%if no gaps
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%calculates the shifts needed to account for the applied coupling

116 shift amt = round(length(resamp if(:,1))*(delay(j)/(p*250)));

%shifts the back, as if there were no delay in coupling

resamp shift = circshift (resamp if (:,2) ,�shift amt) ;

[↵t ,A] = ↵t full (resamp if (:,1) ,resamp shift,num harms);

121

all ↵t (osc, j ,:) = ↵t ;

csvwrite([group folder,’/ ↵t coe↵s1 all ’ , ’ .csv’ ], all ↵t1 )

all shifts ( j ,osc) = shift amt1;

csvwrite([group folder,’/ all shifts ’ , ’ .csv’ ], all shifts )

126 end

end

end

end

%������������������������������������������������������������

131 % This section fits the radial data with a Fourier series

%������������������������������������������������������������

[K mat] = csvread([folder,’/K mat.csv’]);

[delay] = csvread([folder, ’/delay.csv’ ]) ;

for group= 1:num groups

136 all rad ↵t1 scal = zeros(num runs,num harms);

all rad ↵t2 scal = zeros(num runs,num harms);

[ all shifts ] = csvread([group folder,’/ all shifts .csv’ ]) ;

for j = start run+1:end run+1

K = K mat(j);

141 load ([group folder,’/rad int func ’ ,num2str(j�1),’.mat’])
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for osc = 1:2

int pre = [phi delts (:, osc) radius (:, osc) ];

rad int func = sortrows(int pre) ;

146

data length = length(phi delts (:, osc)) ;

bin count = round(data length/15);

bin phase width = 1/(bin count)*2*pi;

bin march size = bin phase width/10;

151

[resamp if] = even sample 2pi(rad int func, bin phase width,

bin march size);

resamp shift = circshift (resamp if (:,2) ,� all shifts ( j ,osc)) ;

scaler = K;

156 [ rad ↵t ,A] = ↵t full (resamp if (:,1) ,resamp shift,num harms);

rad ↵t = rad ↵t ./ scaler ;

A = A/scaler;

rad all ↵t (osc, j ,:) = rad ↵t ;

161 end

csvwrite([group folder,’/ rad ↵t coe↵s all ’ , ’ .csv’ ], rad all ↵t )

end

end
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A.4 Preparing a coupling matrix for labview

A.4.1 Create Labview MTX File

1 %������������������������������������������������������������

% This function creates a Labview spreadsheet text file from a matlab

% matrix. It was adapted from a program written by Craig Rusin.

%

% Usage:

6 % Create Labview MTX File(data);

% � This will allow the user to graphically select the filename and its

% full path

%������������������������������������������������������������

11 function Create Labview MTX File(varargin)

string mtx size=’’ ;

switch(length(varargin))

16 case{1}

MTX = varargin{1};

% allows the user to graphically select the file path

[ lFile ,lPath] = uiputfile( ’ *. txt ’ , ’Please Select File ... ’ ) ;

if ( lFile==0)

21 OK=0;

else

[pathstr,name,ext] = fileparts ( lFile ) ;

[name] = fileparts( lFile ) ;
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if (isempty(ext))

26 ext=’. txt ’ ;

end

filename = fullfile (lPath ,[ name ext]);

OK=1;

end

31 case{2}

filename = varargin{1};

MTX = varargin{2};

if (isnumeric(MTX) & ischar(filename))

OK=1;

36 end

% if there was no error on the kinds of data input

if (OK)

if (test MTX(MTX))

41 disp([ ’ File : ’ filename ’ was written successfully’ ])

else

mtx size=size(MTX);

for( i=1:length(mtx size)�1)

string mtx size=[string mtx size num2str(mtx size(i)) ’x’ ];

46 end

% displays an error if the matrix is not 64 x 64

string mtx size=[string mtx size num2str(mtx size(length(mtx size)))];

disp([ ’ERROR: The given data matrix is ’ string mtx size ’ . It must be 64

x64’])

end
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51 end

end

end

% tests that the matrix is of the right dimensions

56 function isgood=test MTX(MTX)

isgood=false;

data size = size(MTX);

if (length(data size)==2)

if (( data size(1)==64)&(data size(2)==64))

61 isgood=true;

else

isgood=false;

end

else

66 isgood=false;

end

end

71 % tells matlab how to write out the file with tab�delimiting for labview

function cgr dlmwrite(filename,MTX data)

fid=fopen(filename,’w’);

dim size=size(MTX data);

for(row counter=1:dim size(1))

76 for(col counter=1:dim size(2))

fprintf(fid , ’%f\t’,MTX data(row counter,col counter));
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end

fprintf(fid , ’\n’) ;

end

81 fclose(fid) ;

end

A.5 Simulation

A.5.1 A sample simulator

%������������������������������������������������������������

% This program calculates phi j and radius j with the extended Stuart�Landau model

when delay is steadily increased for oscillators with interaction functions expressed

in terms of Fourier coe�cients

3 % After the first iteration with random conditions, the simulator uses the end

conditions of the previous simulation as the new starting conditions .

%The Runge�Kutta used is contained at the end of this program. It allows for delay by

including a vector from the previous simulation.

%The function outputs tau (delay) , OMG (the collective frequency) , ph delts (the phase

di↵erences ) , and r end (the steady�state radii ) . Inputs are K (gain) , iter (the

calculation iteration ) , and folder (where the data is stored ) .

%������������������������������������������������������������

8 function [tau,OMG,ph delts,r end] = rad phi and r v tau(tau,K,iter,folder)

%var set contains the variables loaded in for this calculation (the frequency, the

Fourier coe�cients , the base amplitude, and the coupling matrix)

var set
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13 % the anonymous functions define phase and radius with time for the simulator

fun ph = @(r ,ph ,r tau,ph tau,t ,coup row, num osc,omega set,K)...

(omega set + ...

K*sum(coup row.*r tau./(r *ones(1,num osc)).*( fcor(1)*cos(ph tau�ph ) + fcoi(1)*sin

(ph tau�ph )...

+ fcor(2)*cos(2*(ph tau�ph )) + fcoi(2)*sin(2*(ph tau�ph )

) ...

18 + fcor(3)*cos(3*(ph tau�ph )) + fcoi(3)*sin(3*(ph tau�ph )

) ...

+ fcor(4)*cos(4*(ph tau�ph )) + fcoi(4)*sin(4*(ph tau�ph )

) ...

+ fcor(5)*cos(5*(ph tau�ph )) + fcoi(5)*sin(5*(ph tau�ph )

) ))) ;%...

fun r = @(r ,ph ,r tau ,ph tau,t ,coup row, num osc,omega set,K)...

23 (( lam�r ˆ2)*r + ...

K*sum(coup row.*r tau.*(r0+ rcor(1)*cos(ph tau�ph ) + rcoi(1)*sin(ph tau�ph )...

+ rcor(2)*cos(2*(ph tau�ph )) + rcoi(2)*sin(2*(ph tau�ph )

) ...

+ rcor(3)*cos(3*(ph tau�ph )) + rcoi(3)*sin(3*(ph tau�ph )

) ...

+ rcor(4)*cos(4*(ph tau�ph )) + rcoi(4)*sin(4*(ph tau�ph )

) ...

28 + rcor(5)*cos(5*(ph tau�ph )) + rcoi(5)*sin(5*(ph tau�ph )

) ))) ;%...
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% initializing the time, phase, and radius vectors

tmax = 200;

h = 0.005;

33 t sol = [0: h :tmax]’;

ph in = zeros(length(t sol) ,N);

r in = zeros(length(t sol) ,N);

%If this is the first simulation: Assigns random phases and the base radius sqrt (

lambda)

38 if iter == 1

ph start = 2*pi*rand(1,N);

r start = sqrt(lam);

ph out all = [];

43 r out all = [];

ph in (1,:) = ph start ;

r in (1,:) = r start ;

% If this is not the first iteration : Reads in the conditions of the last iteration

previously written to file

else

48 [ph out all] = csvread([folder, ’/ph out all.csv’ ]) ;

ph in (1,:) = ph out all(end,:) ;

[ r out all ] = csvread([folder, ’/ r out all .csv’ ]) ;

r in (1,:) = r out all (end,:) ;

53 end
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% the main simulation. The first iteration uses K=0, to initialize the system

[r out,ph out] = rk 2var(fun r,fun ph,t sol , r in ,ph in, h,omega,K,coup mtx,tau);

ph end = mod(ph out(end,:),2*pi);

58 ph out all = [ph out all ; ph end];

csvwrite([folder, ’/ph out all’ , ’ .csv’ ], ph out all)

r end = mean(r out(end�500:end,:));

r out all = [ r out all ; r end];

63 csvwrite([folder, ’/ r out all ’ , ’ .csv’ ], r out all )

% finds the mean frequency toward the end, when the system has presumably reached a

steady state

OMG = mean(di↵(ph out(end�2000:end�1000,1))/h);

68 %finds the phase di↵erences relevant to a unidirectional ring of four oscillators

delt vecs = zeros(N,length(ph out)); ph delts = zeros(N,1);

delt vecs (1,:) = mod(ph out(:,2) � ph out(:,1),2*pi) ;

delt vecs (2,:) = mod(ph out(:,3) � ph out(:,2),2*pi) ;

delt vecs (3,:) = mod(ph out(:,4) � ph out(:,3),2*pi) ;

73 delt vecs (4,:) = mod(ph out(:,1) � ph out(:,4),2*pi) ;

% writes out the phase and radii

csvwrite([folder, ’/phi ’ ,num2str(iter),’ .csv’ ], ph out)

csvwrite([folder, ’/r out ’ ,num2str(iter),’ .csv’ ], r out)

78

ph delts(1) = mean(delt vecs(1,end�4999:end));

ph delts(2) = mean(delt vecs(2,end�4999:end));
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ph delts(3) = mean(delt vecs(3,end�4999:end));

ph delts(4) = mean(delt vecs(4,end�4999:end));

83

r end

end

%������������������������������������������������������������

88 %The Runge�Kutta

%������������������������������������������������������������

function [sol A,sol B] = rk 2var(fun a,fun b,t ,A , B ,h,omega,K,coup mtx,tau)

tau steps = round(tau/h);

93 num osc = length(omega);

for i = 1:length(A )

if tau == 0 %if tau is zero , no time delay compensation

A tau = A (i ,:) ;

B tau = B (i ,:) ;

98 else

A tau = A (i � tau steps ,:) ;

B tau = B (i � tau steps ,:) ;

end

end

103

for N = 1:num osc

k11(N) = h*fun a(A (i,N), B (i ,N), A tau, B tau, t( i ) , coup mtx(N,:), num osc,

omega(N), K);
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k12(N) = h*fun b(A (i,N), B (i ,N), A tau, B tau, t( i ) , coup mtx(N,:), num osc,

omega(N), K);

108

k21(N) = h*fun a(A (i,N) + 0.5*k11(N), B (i ,N) + 0.5*k12(N), A tau + 0.5*k11(N),

B tau + 0.5*k12(N), t( i )+0.5*h, coup mtx(N,:), num osc,omega(N),K);

k22(N) = h*fun b(A (i,N) + 0.5*k11(N), B (i,N) + 0.5*k12(N), A tau + 0.5*k11(N),

B tau + 0.5*k12(N), t( i )+0.5*h, coup mtx(N,:), num osc,omega(N),K);

k31(N) = h*fun a(A (i,N) + 0.5*k21(N), B (i ,N) + 0.5*k22(N), A tau + 0.5*k21(N),

B tau + 0.5*k22(N), t( i )+0.5*h, coup mtx(N,:), num osc,omega(N),K);

113 k32(N) = h*fun b(A (i,N) + 0.5*k21(N), B (i,N) + 0.5*k22(N), A tau + 0.5*k21(N),

B tau + 0.5*k22(N), t( i )+0.5*h, coup mtx(N,:), num osc,omega(N),K);

k41(N) = h*fun a(A (i,N) + k31(N), B (i ,N) + 0.5*k32(N), A tau + k31(N), B tau +

k32(N), t( i )+ h, coup mtx(N,:), num osc,omega(N),K);

k42(N) = h*fun b(A (i,N) + k31(N), B (i,N) + 0.5*k32(N), A tau + k31(N), B tau +

k32(N), t( i )+ h, coup mtx(N,:), num osc,omega(N),K);

118

A (i+1,N) = A (i,N) + 1/6*(k11(N) + 2*k21(N) + 2*k31(N) + k41(N)) + hˆ5;

B (i+1,N) = B (i ,N) + 1/6*(k12(N) + 2*k22(N) + 2*k32(N) + k42(N)) + hˆ5;

end

123 end

sol A = A (1:end�1,:);

sol B = B (1:end�1,:);
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end



137

Bibliography

[1] A. M. Yacomotti, G. B. Mindlin, M. Giudici, S. Balle, S. Barland, and J. Tredicce.

Coupled optical excitable cells. Phys. Rev. E, 66(3):036227, 2002. doi: 10.

1103/PhysRevE.66.036227.

[2] B. Blasius, A. Huppert, and L. Stone. Complex dynamics and phase syn-

chronization in spatially extended ecological systems. Nature, 399:354–359,

1999.

[3] J. Miyazaki and S. Kinoshita. Determination of a coupling function in multi-

coupled oscillators. Phys. Rev. Lett., 96:194101, 2006.

[4] K. Weisenfeld, P. Colet, and S.H. Strogatz. Frequency locking in josephson

arrays: Connection with the kuramoto model. Physical Review E, 57:1563–

1569, 1998.

[5] M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka.

Identification of coupling direction: Application to cardiorespiratory interac-

tion. Phys. Rev. E, 65(4, Part 1), 2002.

[6] R. Mrowka, L. Cimponeriu, A. Patzak, and M. G. Rosenblum. Direction-

ality of coupling of physiological subsystems: age-related changes of car-

diorespiratory interaction during di↵erent sleep stages in babies. Am.



BIBLIOGRAPHY 138

J. Physiol. Regul. Integr. Comp. Physiol., 285(6):R1395–R1401, 2003. doi:

10.1152/ajpregu.00373.2003.

[7] A. T. Winfree. Biological rhythms and the behavior of populations of coupled

oscillators. J. Theor. Biol., 16:15, 1967.

[8] Y. Kuramoto. Chemical Oscillations, Waves and Turbulence. Springer, Berlin,

1984.

[9] H. Sakaguchi, S. Shinomoto, and Y. Kuramoto. Local and global self-

entrainments in oscillator lattices. Prog. Theor. Phys., 77(5):1005–1010, 1987.

[10] G. B. Ermentrout and N. Kopell. Multiple pulse interactions and averaging

in systems of coupled neural oscillators. J. Math. Biol., 29(3):195–217, 1991.

[11] J. A. Acebron, L. L. Bonilla, C. J. Perez Vicente, F. Ritort, and R. Spigler. The

Kuramoto model: A simple paradigm for synchronization phenomena. Rev.

Mod. Phys., 77(1):137–175, 2005.

[12] K. Okuda. Variety and generality of clustering in globally coupled oscillators.

Physica D, 63(3-4):424–436, 1993.

[13] P. Seliger, S. C. Young, and L. S. Tsimring. Plasticity and learning in a network

of coupled phase oscillators. Phys. Rev. E, 61:041906, 2002.

[14] H. Sompolinsky, D. Golomb, and D. Kleinfeld. Cooperative dynamics in

visual processing. Phys. Rev. A, 43:6990, 1991.

[15] D. J. DeShazer, R. Breban, E. Ott, and R. Roy. Detecting phase synchronization

in a chaotic laser array. Phys. Rev. Lett., 87(4):044101, 2001.



BIBLIOGRAPHY 139

[16] B. Bezruchko, V. Ponomarenko, M. G. Rosenblum, and A. S. Pikovsky. Char-

acterizing direction of coupling from experimental observations. Chaos, 13

(1):179–184, 2003.

[17] I. Z. Kiss, Y. Zhai, and J. L. Hudson. Control of complex dynamics with time-

delayed feedback in populations of chemical oscillators: Desynchronization

and clustering. Ind. Eng. Chem. Res., 47:3502–3514, 2008.

[18] Y. Zhai, , I. Z. Kiss, and J. L. Hudson. Emerging coherence of oscillating

chemical reactions on arrays: Experiments and simulations. Ind. Eng. Chem.

Res., 43:315–326, 2004. URL http://pubs.acs.org/doi/full/10.1021/

ie030164z.

[19] I. Z. Kiss, Y. Zhai, and J. L. Hudson. Emerging coherence in a population of

chemical oscillators. Science, 296:1676, 2002.

[20] I. Z. Kiss, C. G. Rusin, H. Kori, and J. L. Hudson. Engineering complex

dynamical structures: Sequential patterns and desynchronization. Science,

316(5833):1886–1889, 2007.

[21] B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, and R. Mrowka.

Uncovering interaction of coupled oscillators from data. Phys. Rev. E, 76:

055201, 2007.

[22] H. Osterhage, F. Mormann, M. Staniek, and K. Lehnertz. Measuring synchro-

nization in the epileptic brain: a comparison of di↵erent approaches. Int J

Bifurcation Chaos Appl Sci Eng, 17:35393544, 2007.

[23] M. A. Trevisan, S. Bouzat, I. Samengo, and G. B. Mindlin. Dynamics of

learning in coupled oscillators tutored with delayed reinforcements. Phys.

Rev. E, 72:011907, 2005.



BIBLIOGRAPHY 140

[24] B. Kralemann, A. Pikovsky, and M. Rosenblum. Reconstructing phase dy-

namics of oscillator networks. Chaos, 21:025104, 2011.

[25] M. Wickramasinghe, E. M. Mrugacz, and I. Z. Kiss. Dynamics of electro-

chemical oscillators with electrode size disparity: asymmetrical coupling and

anomalous phase synchronization. Phys. Chem. Chem. Phys., 13:15483–15491,

2011.

[26] C. Rocsoreanu, A. Georgescu, and N. Giurgiteanu. The FitzHugh-Nagumo

Model: Bifurcation and Dynamics. Kluwer Academic Publishers, Boston, 2000.

[27] E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Ex-

citability and Bursting. The MIT Press, Cambridge, MA, 2007.

[28] Wikipedia. Pendulum phase portrait — wikipedia, the free encyclo-

pedia, 2013. URL http://upload.wikimedia.org/wikipedia/en/d/da/

Pendulum_Phase_Portrait.jpg. [Online; accessed 15-November-2013].

[29] M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga, and

M. Wechselberger. Mixed-mode oscillations with multiple time scales. SIAM

Review, 54(2):211288, 2012.

[30] S. M. Baer and T. Erneux. Singular hopf bifurcation to relaxation oscillations.

SIAM J. Appl. Math., 46(5):721739, 1986.

[31] C. G. Rusin, S. E. Johnson, J. Kapur, and J. L. Hudson. Engineering the syn-

chronization of neuron action potentials using global time-delayed feedback

stimulation. Phys. Rev. E, 84(1):066202, 2011.

[32] S. E. Johnson. Neural Synchronization in Seizures. PhD thesis, University of

Virginia, 2012.



BIBLIOGRAPHY 141

[33] J. Miyazaki and S. Kinoshita. Method for determining a coupling function

in coupled oscillators with application to belousov-zhabotinsky oscillators.

Phys. Rev. E, 74(5):056209, 2006.

[34] I. Z. Kiss, C. G. Rusin, H. Kori, and J. L. Hudson. On-line supplement,

engineering complex dynamical structures: Sequential patterns and desyn-

chronization, see www.sciencemag.org/cgi/content/full/1140858/dc1.

[35] C. G. Rusin. Engineering the Behavior of Complex Rhythmic Systems. PhD

thesis, University of Virginia, 2009.

[36] R. J. Williams and N. D. Martinez. Simple rules yield complex food webs.

Nature, 404:180–183, 2000.

[37] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,

A. Tomkins, and J. Weiner. Graph structure in the web. Comput. Netw., 33:

309–320, 2000.

[38] Y. Moreno, J. B. Gomez, and A. F. Pacheco. Instability of scale-free networks

under node-breaking avalanches. Europhys. Let., 58:630–636, 2002.

[39] O. Diekmann and J. Heesterbeek. Mathematical Epidemiology of Infectious

Diseases: Model Building, Analysis and Interpretation. Wiley, New York, 2000.

[40] S. H. Strogatz. Exploring complex networks. Nature, 410:268–276, 2001.

[41] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang. Complex

networks: Structure and dynamics. Phys. Rep., 424:175–308, 2006.

[42] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou. Synchroniza-

tion in complex networks. Phys. Rep., 469:93–153, 2008.



BIBLIOGRAPHY 142
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Experimental observations of group synchrony in a system of chaotic opto-

electronic oscillators. Phys. Rev. Lett., 110:064104, 2013.

[85] D. P. Rosin, D. Rontani, D. J. Gauthier, and E. Schöll. Control of synchroniza-
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