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Abstract

Hyperparameter Optimization of Deep Learning Models for Biomedical Image
Segmentation

by
William Adorno IIT
Doctor of Philosophy in Systems and Information Engineering

University of Virginia

Deep image segmentation of biomedical images is growing in prevalence as an essential tool
for extracting and analyzing clinical data. Like other machine learning techniques, deep seg-
mentation models contain hyperparameters that can have a significant impact on prediction
performance. A considerable amount of time and computational resources are required to
tune hyperparameters, so researchers often settle on settings from previous experience. In
this dissertation, the performance and feasibility of multiple hyperparameter optimization
techniques are evaluated to prove the efficacy of these methods. The evaluated techniques in-
clude random search, Bayesian optimization, multi-armed bandit, and two novel approaches.
The first novel approach, Random Search with Statistical Reduction (RSSR), was designed
to deal with optimization trials runs that contain bimodal-distributed response data. RSSR
also enables the inclusion of a user’s utility function within the non-parametric statistical
testing to reduce the settings space. The second novel approach, Gaussian Mixture with
Epsilon Greedy, was designed to ensure continued exploration of the hyperparameter space
during long optimization runs.

To evaluate these approaches, three varying biomedical image segmentation datasets are
utilized to foster a robust comparison. These datasets include: eosinophil detection in
Eosinophilic Esophagitis patients, multiple cell type detection in 3D cardiovascular florescent
microscopy, and handwritten vital sign detection in surgical flowsheet graphs. The results
from the evaluation revealed that the Gaussian process-based Bayesian optimization consis-
tently produced higher validation set accuracy when computation time is limited and was
also the most Pareto efficient option. When ample computation time is available, the RSSR
approach is able to find high validation accuracy by effectively reducing the search space.
Several hyperparameters such as batch normalization, learning rate, and batch size were
proven as crucial in reaching minimum validation loss. With these findings, researchers will
be more encouraged to perform hyperparameter optimization on real-world image segmenta-
tion problems and will know the most effective techniques to execute the process depending
on their situation.
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Chapter 1

Introduction

1.1 Biomedical Image Segmentation

The growth of Artificial Intelligence (AI) and Machine Learning (ML) has heavily impacted
many fields and the biomedical domain is no exception [28]. Computer vision, in particular,
has assisted in the diagnosis of diseases by finding delineating patterns and features in medical
imaging such as biopsy tissue samples, magnetic resonance images, X-rays, ultrasounds, and
fluorescent microscopy [48]. Traditional classification Convolutional Neural Networks (CNN)
were the most well-known approach for biomedical image problems, but image segmentation
models have emerged as another useful tool for the community [10]. The main advantage
of image segmentation is the ability to detect and represent specific features within images.
Classification CNNs and their black-box nature are mainly focused on prediction rather than
discovery. Image segmentation allows medical researchers to target certain aspects of images
that are known to have clinical significance and thus can lead to important findings and
improved health outcomes.

Image segmentation is a supervised modeling approach, so annotated or labeled data
is required to train, validate, and test the models. Depending on the particular problem,
expert medical professionals such as histopathologists are utilized to annotate the locations
of the desired features. The annotations are performed in specialized software that allow
the user to draw outlines around objects at the pixel level. These annotations are typically
stored as an XML or JSON file and then are processed and converted into an image form
which is known as a segmentation mask. For semantic segmentation, the original images
and the segmentation masks are the only inputs required to develop a model. Image seg-
mentation model architectures such as the U-Net differ from classification CNNs by being
fully-convolutional to ensure that the output prediction mask has the same resolution as the
input image [37]. Like other deep learning models and CNNs, image segmentation models
can take a considerable amount of time to train based on the size and resolution of available
image datasets and the complexity of the model.
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1.2 Hyperparameter Optimization

A common concern with developing almost any AI/ML project is selecting the model hy-
perparameters before training. Image segmentation models can contain millions of trainable
parameters that are adjusted to detect desired features. Although, even one hyperparameter
can greatly impact model performance or how well these parameters are trained. Some of
the hyperparameters are directly involved with model training such as the optimizer learning
rate, the number of images to process in each train set batch, and the proportion of nodes
that are eliminated with a dropout layer approach. The hyperparameter problem can also
include attributes of the neural network, but neural architecture search should be utilized
for creation of the entire network [22]. The neural network attributes that can be opti-
mized through hyperparameter optimization include how many layers are in the network,
the number of nodes or filters per layer, and the kernel size of each filter.

Often, an ML researcher will begin using hyperparameter settings that worked well in
previous experiences or have some basis in literature review. This can be problematic for
several reasons. First, the researcher may not have experience tuning a particular model
or is using a brand-new dataset. Second, while existing literature may provide acceptable
recommendations for certain techniques or settings, there is no guarantee that the high-
performance will translate to other datasets. Lastly, settings that are user-established may
seem to train quickly and reach a satisfactory level of performance, but there could be other
settings that lead to even more efficient training and optimal performance. For these reasons,
hyperparameter optimization approaches are utilized to provide a structured method to find
the most appropriate hyperparameter settings [27].

There are many different methods for hyperparameter optimization. If all of the settings
are discrete, then an exhaustive search of every possible setting combination can be executed
to find the optimal setting [9]. However, for obvious reasons, this strategy is infeasible
for many deep learning researchers. There are often continuous variable settings involved
in hyperparameter tuning such as dropout rate. The search space can become incredibly
large as the number of hyperparameters increases which makes testing every combination
impossible. Lastly, training deep learning models often requires a large amount of time and
computational expense, so efficiency is critical when considering optimization techniques.
Every ML researcher has varying requirements and capabilities regarding the amount of time
and computational effort they can put towards hyperparameter optimization. Therefore,
each modeling scenario may require a certain optimization technique that performs best in
that situation.

1.3 Problem Statement

The goal of this dissertation was to evaluate the performance of hyperparameter optimiza-
tion techniques on varying biomedical image segmentation datasets. When demonstrating
optimization performance on computer vision problems with CNNs, these techniques were
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usually evaluated on benchmark datasets such as MNIST and CIFAR-10 [9, 8]. These
datasets are typically not representative of real-world image datasets, because the images
are of very low-resolution [39]. Hyperparameters can be tuned on these benchmark datasets
quickly due to the smaller image size. Also, these datasets contain many images, but hy-
perparameters can still be successfully tuned on smaller partitions of the full data. It was
important to evaluate optimization techniques on real-world datasets to determine if they
are feasible, worthwhile, and capable of improving performance in real applications.

It would not be appropriate to claim one optimization as best for all image segmentation
problems if it was only evaluated on one real-world dataset. Every dataset has different char-
acteristics that could lead to completely different hyperparameter settings and optimization
paths. Therefore, this dissertation utilizes three different biomedical image projects to eval-
uate the optimization approaches. These three projects differ greatly in medical application,
as well as, image appearance and characteristics. Two of the projects even feature three
different types of annotations within the project to do further evaluation. This enables as-
sessment of whether the optimization comparison and optimal hyperparameter settings are
similar within the same dataset regardless of annotation. Applying hyperparameter opti-
mization to each of these problem sets will improve prediction performance of each trained
model which ultimately results in more accurate clinical information obtained from these
images.

With an unlimited amount of time and computational resources, the actual technique
used for hyperparameter optimization has less importance. In almost all real-world scenar-
ios, ML researchers have time constraints and computational budgets, so there iss a range
at which optimization technique selection can greatly benefit the user. The dissertation
experiments covered time constraints that range from 2 to 24-hours of total computational
runtime. Runtime was more effective at comparing models than the number of runs or trials,
because certain techniques may generate more runs as part of the optimization strategy. A
total of five different hyperparameter settings were optimized from areas that include model
generalization, training efficiency, and neural architecture size.

In this study, hyperparameter optimization techniques were split into two broad cate-
gories: search and sequential. Search techniques such as grid or random search establish
a list of settings to test and then those were evaluated until a certain amount of trials or
time limit was reached. While these tested settings were typically spread-out over the design
space, search techniques were not utilizing any information after each trial to test settings
that were more beneficial to finding optimal performance. In contrast, Sequential Model-
Based Optimization (SMBO) techniques determined the next setting to test after each trial is
complete [32]. The purpose of most SMBO techniques is to find a balance between exploita-
tion and exploration. Exploitation involves testing settings in areas that are currently high
in performance to find the true global optima, while exploration is to ensure that model is
not stuck in a local optima. The SMBO techniques evaluated include Bayesian optimization,
an infinite-armed bandit, reinforcement learning, and sequential random search.
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1.4 Dissertation Overview

The following is the overview of this dissertation. The next chapter is the literature re-
view that details CNNs, image segmentation approaches, and hyperparameter optimization
techniques. The third chapter introduces the three different biomedical image segmenta-
tion projects used to evaluate the optimization techniques. The fourth chapter explains the
methodology of the experimental setup, as well as, discusses the optimization techniques used
in this study. Two of these techniques were novel approaches designed specifically to address
issues apparent with biomedical datasets or the application of other techniques. Within the
three segmentation projects emerge seven total datasets of images and annotations that were
used to produce the results found in the fifth chapter. Finally, the last chapter discusses the
conclusions drawn from the results and suggests areas for future work.

This dissertation provided contributions for many field to include systems engineering,
data science, machine learning, deep learning, computer vision, artificial intelligence, im-
age segmentation, medical image analysis, hyperparameter optimization, and more. The
following is a list of some of the major contributions:

e Demonstrated through the experimentation that Bayesian optimization, specifically
with a Gaussian process surrogate function and a upper-confidence bound acquisition
function, can achieve high performance in limited-time scenarios.

e Showed the relationship of hyperparameter optimization with allowable runtime. Par-
ticular techniques, such as Bayesian optimization, were useful when few trials can
be run, but eventually most techniques will converge to similar performance as then
number of trials or time grows.

e Introduced the Random Search with Statistical Reduction (RSSR) approach to sequen-
tially reduce the random search space by considering and factoring out trials runs that
produce very low performance. This approach also incorporates non-parametric sta-
tistical testing. RSSR consistently produces some of the highest validation accuracies
in the 8 and 16 hour scenarios.

e Introduced the Gaussian Mixture with Epsilon Greedy (GMEG) approach that was
designed to force more exploration into long SMBO runs, because the Bayesian ap-
proaches would occasionally test the same settings for many trials. GMEG showed
success as one of the most efficient methods for some datasets regarding finding high
performance results in a quick manner.

e Displayed strong evidence that certain hyperparameter setting work well with image
segmentation models including some settings that aligned with the particular project.
There was not “one-size-fits-all” answer for hyperparameter settings. Each dataset
must be tuned separately to discover what settings work best.
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e Evaluated the Pareto efficiency of the optimizations for finding high validation accuracy
in a short amount of runtime. The Gaussian process Bayesian approach was the most
efficient of the SMBO techniques, so an obvious recommendation is to build a stopping
criterion into this approach. A near-optimal solution is typically found quickly and so
the research can save on time and computation by not continuing the optimization for
the remainder of the time scenario.

e Improved the detection performance of three different biomedical image segmentation
projects that all have critical clinical importance.



Chapter 2

Literature Review

This chapter discusses literature and related works regarding the many aspects of this disser-
tation. The first section discusses CNNs and various details about the concept, architecture,
and model training that can impact hyperparameter optimization. The second section is
specifically about image segmentation, the different models, and ways to train and evaluate
them. The third section discusses various types of hyperparameter optimization and the
purpose of each.

2.1 Convolutional Neural Networks

Deep feedforward, fully-connected artificial neural networks or multi-layer perceptrons are
capable of performing image prediction, but are not efficient at this task [27]. Tmages with
even a moderate size or resolution would require many neural nodes in the first layer to
connect with each pixel. This typically results in fully-connected networks being infeasible
to train due to the enormous network size or the unreasonable resources needed to be possible.
The network may also end up spatially-biased, depending on the data, since learning is still
traced back to the original pixel location of objects. CNNs eliminate these training concerns
by utilizing convolutional layers to generate important image-level features before reaching
fully-connected decision layers [42]. Convolutional layers consist of a set of image filters that
are applied to the input image or the current tensor by a mathematical operation known as
a convolution [27]. The spatial-bias is removed, because the filters are scanned the through
entire image to create a ”feature map” that represent where important textures, patterns,
or objects, are located on the tensor [27].

The filters can be of any kernel size but are typically 3 x 3 pixels. The number of filters
in each convolutional layer is also adjustable. The kernel size and the number of filters
can both be tunable parameters in a hyperparameter optimization or neural architecture
search. Convolutional layers are often featured within a convolutional block and then the
CNN architecture can contain several or many blocks, but these attributes are all flexible.
The basic convolutional block consists of a convolutional layer and a pooling layer [27]. One
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example of a pooling layer is a 2 X 2 max-pooling layer that finds that returns the maximum
value within every 2 x 2 kernel on the tensor to greatly reduce the size of the tensor. Studies
have shown that max-pooling can still retain important information, while increasing the
efficiency of model training [42]. The number of convolutional layers or blocks in a model
are typically optimized through neural architecture search.

While the width and depth of CNNs can be customized for each dataset, the computer
vision community typically utilizes existing, pre-trained models by researchers participating
in the ImageNet conference [18]. In 2012, the AlexNet CNN architecture utilized a series
of convolutional blocks and was trained on a Graphics Processing Unit (GPU) to greatly
increase prediction performance on the ImageNet benchmark test set than had been seen
before [40]. This sparked a influx of deep learning computer vision research that resulted
in development of other popular CNN architectures such as VGG16 [68], ResNet [29], and
Inception [75]. Because there are many existing CNN architectures that have shown high-
performance, hyperparameter optimization typically avoids little or no architectural aspects
of these models when applied. In some cases, a researcher may want to evaluate different
ImageNet models such as ResNet18 versus ResNet50 [29]. Although the image input size
can be another tunable hyperparameter.

CNNs are trained similarly to multi-layer perceptrons, so they will have similar training
and generalization focused hyperparameters. There were some additions to neural networks
and the training prcoess that prevent over-fitting. Batch normalization is a technique that
standardizes the activations or inputs from one neural layer to the next [33]. This stabilizes
the learning process, especially in deeper networks, so larger learning rates can be used.
Models with batch normalization can reach optimal parameters in much less epochs and
it also provides some regularization benefit. For hyperparameter tuning, the use of batch
normalization is typically considered active or not for the entire network. Dropout layers are
another generalization technique. Depending on the dropout rate percentage, a random set
of activations are dropped or zeroed-out from one layer to the next [72]. This prevents certain
nodes from co-adapting together and greatly reduces over-fitting. A single dropout rate for
all dropout layers is typically tuned during hyperparameter optimization. It is believed that
batch normalization and dropout may not need to be combined in the same network, so the
optimization can determine if this is true [44].

Much like multi-layer perceptrons, CNNs utilize an optimizer during training to dictate
how the parameters (filter weights and biases) are determined to minimize training and vali-
dation loss. The most popular optimizers are stochastic gradient decent [11], RMSProp [31],
and Adam [38]. Which optimizer to use can be treated as a categorical hyperparameter.
Each optimizer has a learning rate that controls how much the parameters are updated after
each batch is processed. The learning rates can be held constant, decreased according to a
schedule, or set to decrease exponentially according to the epoch [69]. Learning rate sched-
ulers can be setup for hyperparameter tuning, but the simplest is to tune a single constant
learning rate. Learning rate as a continuous hyperparameter can either be modeled as a
uniformly-distributed value within a certain range or as a log-normal variable. Finally, the
batch size is very important aspect of model training. It coincides with learning rate to
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determine how quickly and closely the optimizer reaches a global optimum. For hyperpa-
rameter tuning, batch size must be an integer, is usually a power of two, and is constrained
by the amount of available processor memory. Therefore, batch size is typically tuned as a
categorical variable.

2.2 Deep Image Segmentation

Deep image segmentation models are also supervised learning approaches that utilize CNNs.
Instead of classifying at the image-level, semantic segmentation models classify at the pixel-
level [41]. An image is inputted into the segmentation model and the output is a segmentation
mask of the same pixel height and width as the input image. The segmentation mask con-
tains a class label at each pixel that represents what object is present at that location. For
segmentation problems in this dissertation, each pixel is a binary classification of whether
the specific object of interest is present of not. A positive detection is made if the pre-
diction probability exceeds a selected threshold (typically 0.5 for binary problems). The
segmentation masks can then be analyzed or post-processed for certain results depending
on the problem. An example: for an image segmentation model that segments a tumor, a
biomedical researcher might be interested in tumor size to describe severity, so they would
calculate the area or the total number of pixels that classified as positive for tumor in the
segmentation mask.

One of the most popular image segmentation models is the U-Net [63]. The U-Net
was original designed for biomedical image cell segmentation and can find adequate fits
without a substantial amount of labeled data. One major aspect of U-Nets and other similar
segmentation models is that they are fully-convolutional networks [49]. This means that the
entire model consists of convolutional blocks and there no dense or decision layers at the
back-end. For the U-Net, there are four sets of convolutional blocks that contract the image
into a feature vector (bottom of the “U”) and then more convolutional blocks up-samples
the image back to the original dimensions. There are also skip connections that can bypass
the contracting path and send minor info to the expansion side of the “U” to ensure that
the final mask has adequate resolution [63]. Many attributes of the U-Net architecture can
be customized and tuned with hyperparameter optimization or neural architecture search.
However, typically only the number of filters in the first layer is adjusted. The number of
filters in subsequent layers are based on the initial number of filters.

There have been many modifications and alternate designs of the original U-Net model.
Residual blocks have been incorporated into the U-Net architecture to more efficiently train
deeper networks on more complex imagery [82, 19, 45]. Although residual models may require
more labeled data to take advantage of the residual skip connections than a traditional U-Net.
Attention gates were added to the U-Net structure to help the model focus on more critical
areas of images and concentrate less on irrelevant areas [57, 1]. Residual blocks and attention
gates have been combined in the same U-Net architecture [14, 55]. For certain segmentation
problems, it is debatable whether certain areas of the image are more important than others,



CHAPTER 2. LITERATURE REVIEW 9

so this could diminish the benefit of self-attention. A recurrent residual convolutional layers
were added to the U-Net architecture to be able to accumulate important features and
improve performance [5]. The U-Net has also been adapted fro 3D image problems [15, 52].

There are other types of non-U-Net based semantic segmentation models. Most of these
other models were designed to segment complex imagery into high-resolution, multi-class
segmentation masks. The most popular benchmark datasets for these types of tasks are
Cityscapes [16] and Microsoft Common Objects in COntext (COCO) [47]. These other se-
mantic segmentation approaches include SegNet [6], DeepLab [13], and Gated-SCNN [76].
While these other semantic models are very powerful, they are more difficult to implement
on custom datasets than the U-Net. Further, what works to improve Cityscapes detection
may not translate to biomedical engineering. Instance segmentation is another alternative
to semantic segmentation and is similar to object detection approaches. Rather than just
classifying objects at the pixel-level, instance segmentation models returns bounding-boxes
that describe where each individual object is located. One of the most popular instance
segmentation approaches is the Mask R-CNN which outputs both segmentation masks and
bounding boxes [30]. Detecting individual objects is useful for most biomedical image seg-
mentation models, but instance segmentation is not applied as much as U-net, because they
are harder to implement and are believed to require more labeled data.

To train semantic segmentation models, using binary or categorical cross entropy is pos-
sible, but is ineffective if there is a large class imbalance [73, 21]. There are many biomedical
scenarios where an object, such as a nuclei cell, is much less prevalent than other sections
of biopsy tissue samples (background, cytoplasm, stroma, connective tissue). Therefore,
region-based loss functions or intersection-over-union approaches are typically preferred for
many image segmentation tasks [50]. The most well-known region-based metrics are the
Jaccard index [59, 61], Tversky [78, 65, 1], and Dice coefficient [71, 52, 20]. There are also
approaches that combine different types of loss functions together such as merging cross
entropy and Dice loss [34].

2.3 Hyperparameter Optimization Techniques

Grid and Random Search

Grid search is as exhaustive search method that tests the hyperparameter space in evenly-
spaced intervals [9]. The intervals only apply to continuous variables, because categorical
variables must be tested for all combinations. The researcher can specify how many trials
will be performed and this dictates the interval spacing on the grid. Besides from the
computational rigor required to complete a full grid search, the main issue with grid search is
low-fidelity sampling for the continuous variables. For example, if there were two continuous
hyperparameters and nine trials were to be performed, a grid search intervals would only lead
to three different settings tested for each hyperparameter. To solve this problem, random
search is preferred over grid search when the continuous variables can be modeled with a
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probability distribution [9]. In the same example as above, a random search using a uniform
distribution for each continuous variable would produce nine different settings to test for each
variable. This ensures that an optimal value can be found for each setting, while maintaining
efficiency in the number of trials required.

In design of experiments terms, grid and random search are similar to a space-filling
design [53]. Space-filling designs are typically used to test non-linear design spaces when the
experiments are relatively quick computer simulations. The difference here is that each trial
is a full training run of a deep learning model which could take hours to complete. Before
experimentation, a researcher could produce a list of what settings will be tested in a grid
or random search and the optimization will not deviate from that list. Therefore, if certain
settings appear to produce much lower or higher validation loss performance, the search plan
does not change for the entirety of the optimization run. An alternative to grid and random
search are Sequential Model-Based Optimization (SMBO) techniques which will determine
what settings to test before each trial based on previously collected information from prior
experiments within the optimization run [32].

Bayesian Optimization

Bayesian optimization is a form of SMBO that works well optimizing black-box functions
that are expense-to-evaluate like the deep learning model training scenario [25]. Bayesian
optimization involves updating a probabilistic posterior distribution p(y|x) after every trial.
In this case, the optimization goal (validation loss) is the response y and the hyperparameter
settings are the independent variables x. This function is known as the surrogate function,
because it acts as a substitute or estimation of the true function that maps hyperparameters
to optimal loss [25]. The second aspect to Bayesian optimization is the acquisition function.
This is the technique used to determine what settings will be tested on the next trial.

Bayesian optimization strategies typically differ in what types of surrogate functions are
used. Spearmint was developed by Snoek et al. [70] and uses a Gaussian process as the
surrogate function. The Tree-structured Parzen Estimator (TPE) models p(z|y) and p(y)
instead of modeling p(y|z) directly [9]. TPE models p(z|y) with two distributions, I(z) and
g(x), which are created by splitting the trial results into two groups based on a response
cutoff or a fraction of trials. A separate Gaussian Mixture Model (GMM) is fit to each
distribution and then the next trial is chosen by finding the settings x that maximizes the
ratio of [(x)/g(z) [8]. TPE also requires a warm-up period. It weights later trials more
than previous trials and adjusts the fraction of trials in each distribution as the optimization
continues. The SMAC technique fits a random forest model as a surrogate function that
predicts the validation loss response using the hyperparameter settings from the previously
obtained trial results [32]. The possible acquisition functions for Bayesian optimization
techniques include probability of improvement, expected improvement, and upper-confidence
bound [70].
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Multi-armed Bandit

The multi-armed bandit can be considered within the realm of reinforcement learning and is
focused on exploration and exploitation like most other methods. One popular example of
a multi-armed bandit is a gambler trying to determine which slot machine has the highest
payout [79]. If one slot machine appears to be doing the best, a gambler is inclined to keep
exploiting that machine, because maybe it has the best return and thus is more profitable
to keep testing it. Although, perhaps it is not the best slot machine and the gambler should
keep exploring the other options. The Hyperband approach applies a similar strategy to
hyperparameter optimization [43]. Buckets are created that contain random hyperparam-
eters settings and these are screened at a low number of epochs. After a round of this
screening process, the settings that did not do well are removed and the process continues,
but the number of epochs also increases [43]. Eventually a full model is trained on the set-
tings believed to be the global optimal. Hyperband is not a full-SMBO, so some processes
can be run more quickly with parallel processing. The Bayesian Optimization HyperBand
(BOHB) approach was designed to combine the beneficial aspects of both strategies and has
shown improved performance [23]. The TPE technique replaced the random sampling of
configuration within each evaluation round.

Reinforcement Learning

Reinforcement Learning (RL) is another aspect of machine learning that includes supervised
and unsupervised learning. A Markov decision process is the foundation of RL where there
are states, actions, transition probabilities, and rewards [74]. In hyperparameter optimiza-
tion context, the states are hyperparameter settings, the actions change these settings, and
the rewards are the validation set accuracy. There are a few methods that apply RL to
hyperparameter optimization with Deep Q-Learning [80] [36]. A Long Short-Term Memory
(LSTM) recurrent neural network is used as a state representation to store the settings and
performance results as the trials were tested. There are also methods for utilizing the Proxi-
mal Policy Optimization (PPO) technique to perform parts of hyperparameter optimization
or neural architecture search[66].
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Chapter 3

Segmentation Datasets

In this chapter, the three projects used to evaluate the hyperparameter optimization tech-
niques are presented. The clinical or medical research impact of each image segmentation
project are also explained.

3.1 Eosinophilic Esophagitis Biopsy Images

Eosinophilic Esophagitis (EoE) is an inflammatory disease of the esophagus and is increasing
in prevalence. The inflammation, caused by eosinophil (a type of white blood cell) response
is believed to be an allergic reaction to dietary factors in patients [12]. The symptoms can in-
clude swallowing issues, food impaction, regurgitation, and decreased appetite [64]. To diag-
nosis EoE, patients undergo an endoscopy where tissue samples were retrieved from locations
within the patient’s esophagus. These biopsy tissue samples were colorized with Hematoxylin
and Eosin (H&E) staining in order to visualize the cellular features. Histopathologists can
review the tissue samples under a microscope or with digital imagery. For the latter, the
stained biopsy tissue samples were digitized and stored as very large-resolution Whole-Slide
Images (WSI). The gold-standard diagnostic criteria is to find at least 15 eosinophils within
at least one 400x magnification high-power field of esophageal tissue [26].

Due to the large size of WSI, it can be quite difficult for pathologists to accurately
describe EoE severity and extent. It would require significant time and effort to count each
eosinophil contained in the tissue samples. An automated eosinophil detection model could
quickly and accurately summarize EoE characteristics of each patient so that they can receive
personalized disease management plans. With aspects of EoE medical research still in its
infancy, this tool could also assist with computer-aided diagnosis, discovery of eosinophil
trends with other cellular features, and finding potential linkages of eosinophil presence with
clinical and treatment phenotypes. Adorno et al. [4] presented the first technique to apply
deep learning computer vision to quantify eosinophils with EoE patients.

WSI cannot be feasibly processed through deep learning models due to memory con-
straints [24]. Annotating entire WSI was unreasonable for annotators to handle and could
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Figure 3.1: This figure shows the process of converting a biopsy sample into digitized whole-
slide image and then split into many 512 x 512 pixel patches.

reduce patient-level diversity if not enough were labeled. Therefore, the WSI were patched
into smaller images of 512 x 512 pixels for annotation and for model input [24]. Figure
3.1 shows a visual depiction of the WSI digitization and patching process. The results of
a segmentation model at the patch size can be scaled to the high-power field size using a
sliding window approach. After a few rounds of labeling there were 483 patches annotated
at the pixel-level indicating whether an eosinophil was located there. These patches were
derived from WSIs of 29 different patients. Figure 3.2 shows nine examples of eosinophil
annotations on esophageal biopsy image patches of patients diagnosed with EoE.

Figure 3.2: This figure shows examples of patch-level annotations of eosinophils on EoE
biopsy patches. The eosinophils were outlined by trained experts on specialized software
and then converted into ground-truth segmentation masks.

Javaid et al. [35] trained a U-Net model on the EoE dataset using a 20% training/validation
split. The hyperparameters were user-established at:

e Batch normalization = True

e Number of filters = 32
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e Learning rate = 2 x 1074
e Dropout Rate = 0.25

e Batch size =4

These hyperparameter settings led to a validation accuracy of 0.671 for the Dice coef-
ficient. This model was trained with similar settings as discussed later in the Experimental
Setup chapter. The segmentation model was applied to generate eosinophil counts at the
high-power field level. The eosinophil counts were aggregated to create patient-level statistics
to include: maximum eosinophil count within an HPF, percentage of high-power fields with
greater than 15 eosinophils, and average eosinophil size. These stats and others were used to
describe EoE severity and extent in patients at their initial biopsy. Ultimately, the end-goal
is to determine if there is any linkages between initial biopsy eosinophil stats and patient’s
clinical or treatment phenotype. If linkages are discovered, then it could be possible to de-
sign a disease management plan to reach remission sooner and improves patient outcomes.
Figure 3.3 shows examples of comparing the eosinophil stats with patient phenotypes [4].
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Figure 3.3: This figure shows three different examples of examining linkages between patient-
level eosinophil count statistics at initial biopsy with a patients’ phenotypes. For instance,
the left-most chart shows the the 4 to 6 Food Elimination Diet (Diet

treatment appeared to have a linkage with patients who have a large percentage of
high-power fields containing 15 or more eosinophils.

The performance of segmentation model directly affects the accuracy of counting eosinophils
on biopsy images. Improving the current performance through hyperparameter optimization
can reduce false positives and negatives in diagnosing patients and result in better charac-
terization of severity and extent. It also ensures that the data used to assess phenotype
linkages are reliable.
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3.2 Cardiovascular Immunofluorescent 3D Images

Heart attack and stroke are leading causes of death in the world. [7] Each are caused by
rupture of atherosclerotic plaques that release debris that can block vessels in the heart or
brain. Studies show that the composition of the atherosclerotic plaque is more of indicator
of heart attack or stroke than the size of the lesion. [46, 58]. Atherosclerotic composition
can be described by quantifying the number of certain cell types within the lesion. This cell
quantification can be performed with image segmentation of 3D atherosclerotic plaque im-
munofluorescent images. Adorno et al. [2] developed an approach to accommodate multiple
annotation strategies to accuracy quantify the number of cells for three different cell types.

Cardiovascular immunofluorescent images are quite different from the biopsy images dis-
cussed in the EoE dataset. These images are 2,048 x 2, 048 pixels in size for height and width,
but also contain five different color channels and a depth (Z-axis) of varying size. The Z can
cause difficulty when annotating cells and when processed through image segmentation mod-
els, so a maximum intensity projection was applied to eliminate the Z dimension [54]. The
five color channels correspond to four different antibody stains and confocal scanning mi-
croscopy. Three of the antibody stain color channels, 4’,6-diamidino-2-phenylindole (DAPI),
Actin alpha 2 (ACTA2), and Galectin-3 (LGALS3), are used to detect nuclei, Smooth Muscle
Cells (SMC), and macrophages, respectively, in atherosclerotic plaque lesions. The fourth
stain antibody, the Yellow Fluorescent Protein (YFP) lineage marker, did not have a large
enough sample size to develop a cell detection model. Each stain antibody coincides with a
particular fluorescent color: nuclei = blue, SMC = red, macrophages = magenta, and YFP
= green.

One major challenge for this problem was developing an annotation strategy to efficiently
label a substantial number of cells per image. Normally, annotations are created that pre-
cisely outline the entire cell structure. Due to limitations, only the nuclei cells were fully
annotated in this manner, but the other cells were annotated with basic shapes that simi-
larly described the location of the cells. Figure 3.4 shows an example of the two different
annotation strategies for a single crop of a immunofluorescent image.

Adorno et al. [2] evaluated each of the annotations strategies to determine which was
most accurate at cell quantification. The ground-truth total cell counts were obtained di-
rectly from the original annotations and compared to the total counts predicted by U-Net
models trained on each cell type and annotation strategy. The results showed that different
annotation strategies performed best for each cell type. The nuclei cells achieved accurate cell
quantification with a ”dots” technique for the segmentation masks that represents each cell
at a small circle centered at the annotation centroid. The SMC cells were best quantified by
using the ellipses shapes annotations for the segmentation masks. Lastly, the macrophages
were best quantified by linking the two annotating strategies by replacing the circle anno-
tations with nuclei polygons where they intersected. Every cell type must include a nuclei
cell, so this combination utilizes the outlined nuclei cell annotations to bolster prediction of
macrophages. Figure 3.5 shows an example of one immunofluorescent image patch and the
optimal annotation strategy for each cell type.
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Figure 3.4: This figure shows an example at a single Z-level of the two different annotation
strategies used to represent cell types within the cardiovascular immunofluorescent images.
On the left, the nuclei cells are marked with red arrows, the SMCs are annotated with
ellipses, and the macrophages are annotated with circles. On the right, only nuclei cells are
outlined in the traditional annotation format. These annotations correspond with the blue
fluorescent antibody stain and the red arrow markings on the left image.

The original images and masks were patched to 512 x 512 pixel images for input into
the segmentation model. Each image set was allocated into training and validation sets
with roughly a 20% split. Certain images had to be selected for the validation set to avoid
data leakages issues, because in some cases there was an overlap of atherosclerotic plaque
lesions between multiple images from the same patient. Table 3.1 shows the image counts
for training and validation sets across the three cell types.

Table 3.1: Training and validation set patch counts for each cell type.

Cell Type Training | Validation
DAPI (Nuclei) 851 156
ACTA2 (SMC) 702 145
LGALS3 (Macrophage) 710 147

U-Net models were trained using these training and validation sets and then evaluated
on the validation set Dice coefficient. The segmentation masks from the best annotation
strategies were used for ground-truth. The validation coefficient results were 0.683, 0.451,
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Figure 3.5: This figure shows an example of one patch of a cardiovascular immunofluorescent
image. The top row shows each of cell type channels with maximum intensity projection
of the Z-axis applied. The colors refer to each antibody stain. The bottom row shows
segmentation masks for annotation strategy that most accurately counted the total number
of cells.

and 0.710 for nuclei, SMC, and macrophage detection, respectively. The following user-
established hyperparameters were used to train each of the three models for the three cell

types:
e Batch normalization = True
e Number of filters = 32
e Learning rate = 2 x 1074
e Dropout Rate = 0.25
e Batch size = 4

With hyperparameter optimization applied to optimize the performance of these three
models, the cell quantification of each type will be more accurate. This will lead to a better
estimation of atherosclerotic plaque composition and hopefully result in better understanding
and prevention of heart attacks and strokes.
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3.3 Vital Signs Graph from Surgical Flowsheet

Analyzing perioperative data is critical in understanding why certain patients died from
surgery or had long post-surgery hospital stays. In low-to-middle income countries, this
analysis is very difficult, because perioperative data is often not collected digitally during
surgery. Perioperative data is hand-written onto paper surgical flowsheets, but there was
not an efficient process to digitize this data. To solve this problem, Rho et al. [62] designed
a scanning apparatus that can be used to effectively and consistently convert the paper
flowsheets into high-quality digital images. As digital images, image processing or deep
learning computer vision approaches can be applied to extract the important information.
The vital signs graph section of the flowsheet, in particular, could be digitized with an image
segmentation approach. Figure 3.6 shows an example of the surgical flowsheet with the vital
signs graph outlined in red.
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Figure 3.6: This figure shows an example of a paper flowsheet that includes handwritten
perioperative data. The flowsheet includes sections such as the medications administered,
surgical info checkboxes, and the graph to track vital signs. The vital signs graph is outlined
in red.

The vital signs graph contains recorded Blood Pressure (BP) and heart rate readings
at 5-minute intervals. Blood pressure in particular is believed to be closely linked with
post-operative mortality. These vital signs are captured using three different symbols on
the graph at each time interval. The heart rate is represented as small circles, the systolic
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BP is represented as downward arrows, and diastolic BP is represented as upward arrows.
The goal of digitization is to detect the presence and location of each symbol on the graph
and then convert that into the true numerical values at the appropriate time point. Figure
3.7 shows an example of a vital signs graph and the resultant digitized numerical values in
spreadsheet form.

Time (Minutes) Heart Rate Systolic BP Diastolic BP

5 120 130 90

10 115 120 80

Systolic BP 15 110 100 80
20 108 118 82
25 112 140 90
30 115 100 80

35 120 135 85
P 40 115 170 105

. » 45 123 110 85
50 121 140 95

Surgery Start 55 112 125 90

" 60 110 135 98
eslaEnd 65 110 160

70 110 120 90

75 120 135 92

80 130 120 90

85 130 142 108

Diastolic BP

Heart Rate

Anesthesia Start
x

o
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Figure 3.7: This figure shows an example of a vital signs graph that has been converted
into digitized numerical values. On the left, is a section of the vital signs graph from a
perioperative flowsheet with the symbols manually recorded by hand. On the right, is an
example of the final end result in converting of all the symbols on the graph into tabular
data for further analysis.

Since the location of the detected symbols on the graph relate to the numerical value of
each, image segmentation can be applied to produce a segmentation mask with all detected
symbols. The segmentation mask can be post-processed to obtain time and value of each
symbol. Adorno et al. [3] developed a process to annotate symbols, train U-Net segmentation
models, and post-process the symbols. There were 29 vital sign graphs annotated of size
164 x 990 pixels. The heart rates were annotated with a single coordinate, while the BPs
were annotated by outlining the arrows with a rectangle. The heart rates were converted
to small circles with a radius of three pixels and centered at the annotated coordinate in
the segmentation masks. Some of the these symbols could overlap or be near each other, so
the segmentation masks were kept separate and models were trained to predict each symbol.
Figure 3.8 shows an example of the raw annotations on a vital signs graph image.

The 29 total images were divided into training and validation sets with 23 and 6 images,
respectively, which is roughly a 20% split. The images are black-and-white, so they are
converted into a one channel gray-scale image before model training. The original input size
did not not work well as a U-Net input, so the original image is placed in the top-right corner
of a 256 x 1024 pixel image and then zero-padded elsewhere. This ensure that the image
can process through a U-Net and preserves the original resolution. This may seem like a
small number of images for CNN training, but these images and objects are not complex
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Figure 3.8: This figure shows an example of the annotations performed on vital signs graphs.
The top image is an example vital signs graph. The bottom image is annotations for each of
the three symbols. The systolic BPs are blue squares, the heart rates are green dots, and the
diastolic BPs are red squares. Each symbol is separated into different segmentation masks
to train separate models.

and all contain images contain a similar background setting which facilitates training. Three
separate U-Net models were trained for symbol and resulted in the validation Dice coefficients
0.835, 0.889, and 0.879 for heart rate, systolic BP, and diastolic BP, respectively. The
following user-established hyperparameters were used to train each of the three models for
the three cell types:

e Batch normalization = True
e Number of filters = 20

e Learning rate = 2 x 1073

e Dropout Rate = 0.25

e Batch size = 2

Improving image segmentation performance through hyperparameter optimization could
both reduce false positive and negative symbol detections, as well as, decrease the error
between ground-truth and predicted digitized numerical values on true positives. The post-
processing steps rely on a segmentation mask that is accurate in order to search the space
and obtain numerical values for each detected symbol. Improved digitization in these areas
will ensure that datasets used to analyze linkages between perioperative vital signs and post-
operative mortality and hospital stay length are reliable and worthy of finding significant
clinical conclusions.
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Chapter 4

Methodology

This chapter explains the details of how the hyperparameter optimization evaluated experi-
ments were designed and executed. The experimental setup and scenarios are discussed first.
The image segmentation model and architecture was presented. The tested hyperparameters
are listed and explained. Finally, the evaluated hyperparameter optimization techniques are
listed to include two novel approaches introduced in this dissertation.

4.1 Experimental Setup

The following sections explain all of the details of how these experiments were coded and
performed.

Scenarios

To evaluate hyperparameter optimizations, timed scenarios are used. Using time limits was
better to fairly compare methods than the number of trials performed, because then number
of trials can vary based on the design of each technique. With a high enough time-limit,
most optimization techniques should converge to similar results. Therefore, scenarios are
performed at multiple time limits, so it can found which techniques do best under strict
time constraints. We can also see how runtime affects optimization and about how long it
will take to achieve near optimal performance. The time scenarios executed in this study
are: 2, 4, 8, 16, and 24 hours.

U-Net Architecture

There are many different semantic and instance segmentation architectures. Model selection
of the architecture itself usually comes before hyperparameter optimization. Models can be
compared based off of validation results obtained via hyperparameter optimization, but this
just increases the amount of computation required and was not a good way of comparing
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optimization techniques. Therefore, in this study, a single architecture was utilized for
all experiments. The base U-Net model trains quickly, was easy to implement, and does
not require a substantial amount of data to find a fit [63]. Table 4.1 shows the exact U-
Net architecture used in this research. The input image size (height x width x channels)
changes based on what dataset was used, so this was kept as a variable in this depiction of
the architecture. Also, the initial number of filters (F) can be adjusted as a hyperparameter,
so this remains flexible in the architecture.

Table 4.1: This table shows the U-Net architecture used throughout all the experiments.
The left side of the table was the contracting side of the U-Net (processes downwards). The
right side was the expansion side (processes upwards in the table). The variables in the
tensor output size refer to: H = image height, W = image width, C = number of input
channel, and F = number of initial filters.

Contracting Side Expansion Side
Block Layer Type  Output Tensor Size Skip Connections Layer Type Output Tensor Size Block
. . ) . Conv HxW Output Mask
Biomedical Image  Input HxWxC Batch Norm HxWxF
Conv Conv
Batch Norm HxWxF Batch Norm Hx Wx2F Expansion Block 4
Contracting Block 1 Conv Conv
-ontracting Bloc Batch Norm Concatenate Dropout
Max Pooling , Conv Transpose HxWxF
Dropout H/2x W/2xF Batch Norm H/2x W/2x 2F
Conv Conv
Batch Norm 1 0« w2 x oF Batch Norm H/2x W/2x 4F  Expansion Block 3
Contractine Block 2 Conv Conv
ontracting Blo¢ Batch Norm Concatenate Dropout

Max Pooling Conv Transpose  H/2 x W/2 x 2F

H/4x W/4 x 2F

Dropout Batch Norm H/4 x W/4 x 4F
Conv Conv
Batch Norm ) W4 am Batch Norm H/4x W/4x 8F  Expansion Block 2
Contracting Block 3 Cony Cony
-ontracting ’ Batch Norm Concatenate Dropout

Max Pooling Conv Transpose  H/4 x W/4 x 4F

H/8 x W/8 x 4F

Dropout Batch Norm
Conv Conv .
X X H/8 x W/8 x 8F
Batch Norm H/8 x W/8 x 8F Batch Norm Expansion Block 1
Conv Conv

Contracting Block 4 Batch Norm Concatenate Dropout H/8 x W/8 x 16F

%[;(.)X E(l)tohng H/16 x W/16 x SF g(iztvhii\?:t?;i)()se H/8 x W/8 x 8F
Conp C;nlr H/16 x W/16 x 16F Bottom of U
Bottom of U M H/16 x W/16 x 16F Al

Batch Norm

Experiment Details

All experiments were performed on Rivanna, the University of Virginia’s high-performance
computing cluster. All code was written in Python 3.7 and used the deep learning framework
TensorFlow 2.1 with Keras 2.2.4. Rivanna contained several different options for GPU, so
allowing it to select whatever was available could lead to unfair comparisons across opti-
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mization techniques. Therefore, each dataset used a particular GPU for every experiment.
The following was the GPU list across the datasets:

e EoE eosinophils: NVIDIA GeForce RTX 2080 Ti

e Cardiovascular Nuclei: NVIDIA Tesla P100
e Cardiovascular SMC: NVIDIA Tesla P100

Cardiovascular Macrophage: NVIDIA Tesla P100

Graph reading heart rates: NVIDIA Tesla V100
e Graph reading systolic BP: NVIDIA Tesla V100
e Graph reading diastolic BP: NVIDIA Tesla V100

Using different GPUs across the datasets also allowed for more experiments to be running
simultaneously. Multiple GPUs can be utilized to run jobs in parallel. Parallel computing
does not add much benefit to SMBO techniques since trials must be run one at a time, but
random search can be performed on multiple nodes to execute more trials within the time
limit. Only one GPU was used for every experiment in this study. The effect of multiple
GPUs can still be estimated with the generated timed-scenario results. For example, if a
2-hour random search was performed on 2 GPUs, then one could assume that the results
are similar to a 4-hour random search performed on 1 GPU. Each model was trained for
up to 100 epochs. An early stopping criteria was implemented that ended training when
validation loss did not improve after ten consecutive epochs. A negative Dice coefficient was
used to measure loss for training and validation since loss was minimized by default in Keras.
The Adam optimizer was used to optimize the model parameters during training. No data
augmentation methods were applied to the images and masks in these experiments to ensure
consistency across experiments.

4.2 Tested Hyperparameters

The following list shows the hyperparameters that were tuned in the experiments:

Batch normalization - categorical {True, False}

Batch size - categorical {2, 4, 8}

Dropout Rate - continuous as Uniform(0, 0.5)

Learning rate - categorical {2 x 107!, 2 x 1072, 2 x 1073, 2 x 107%, 2 x 107}

Number of filters - categorical {16, 20, 24, 28, 32}
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There were batch normalization layers throughout the architecture, so “True” means that
all will stay active, while “False” means that batch normalization was completely removed.
The dropout rate was a single value that applies to all dropout layers. Although the very
first dropout rate in the contracting path was divided by two. Dropout rates above 0.5 are
uncommon. If the optimal dropout rate was found to be zero, then this would be equivalent
to not having any dropout layers. The number of filters must be an integer and divisible by
2, so it was easiest to make this a categorical variable. A max of 32 was used due to memory
constraints. The batch size must also be an integer and is commonly a power of two, so it
was also treated as categorical. Batch sizes above 8 were likely to lead to Out-Of-Memory
(OOM) errors. The learning rate could be modeled as a continuous variable with a log-
normal distribution. However, not all optimization techniques have the ability to represent
learning rate this way, so it was modeled as categorical with five of the most common rates
used.

It was important that any combination of these hyperparameter settings results in a trial
that does not generate an OOM error. For example, it may be possible to run a batch
size of 16 if the number of filters is 16, but 32 initial filters would result in an OOM error.
To create an orthogonal hyperparameter search space, the settings are restricted to where
all possibilities can be successfully trialed. Hyperparameter optimizations can be run with
many more tunable hyperparameters, but these five are the most critical to training a U-Net
and sufficiently compare techniques in a reasonable time frame.

4.3 Existing Optimizations
Random Search (RS)

The random search implementation from the Keras Tuner Python package was utilized [56].
Typically a certain number of trials are established before executing random search, but it
would be difficult to compare all optimizations fairly using trials since some techniques run
trials with a low maximum number of epochs. The number of random trial is set to a large
number so that the search continues for the duration of the timed-scenario. Each trial run
is random and independent from the next, so completing as many trials as possible within a
time-limit should be equivalent to running a random search with that many trials specified
at the start.

Gaussian Process - Upper Confidence Bound (GP-UCB)

The Bayesian optimization implementation from the Keras Tuner Python package was uti-
lized [56]. This implementation uses a Gaussian Process (GP) as the surrogate function
and Upper-Confidence Bound (UCB) as the acquisition function. The maximum number
of trials is set to a a large number so that the optimization will run for the entirety of the
timed-scenario, if needed. It is possible that the optimization converges to an optimal solu-
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tion and stops testing before the time limit expires, but this scenario never occurred in this
study. This SMBO requires a warm-up period to establish the Gaussian process and start
using the UCB acquisition function. The provided rule-of-thumb for warm-up trials was to
use three times the number of the hyperparameters settings which resulted in 15 trials used
in this study. In shorter time-scenarios, it is possible that only warm-up runs are executed
and the actual Bayesian optimization never begins. It appears the warm-up trial runs in
Keras Tuner are similar to a grid search and start off testing the boundaries of the space.
This techniques also contains two of its own hyperparameters: « and beta. « represents the
expected amount of noise in the observed performances and f is a balancing factor between
exploration and exploitation. These settings are left to their default values of 1 x 10—4 and
2.6 for o and [, respectively.

Hyperband (HB)

The Hyperband implementation from the Keras Tuner Python package was utilized [56]. The
number of maximum trials was also established as a very large number for Hyperband, but
this number needs to be even greater than the other approaches, because Hyperband tends
to run many trials at a low number of maximum epochs. The Keras Tuner implementation
does not have a minimum number of epochs hyperparameter, so it is possible to do very
short trial runs that do not gain much of a fit on the training or validation data. If that
setting was available, it would still be difficult to determine a number that would balance
exploration and exploitation. The reduction factor was left to the default value of 3. The
number of Hyperband iterations was also set to a high enough value that the algorithm
would continue to run for the entire timed-scenario.

Tree-structured Parzen Estimator (TPE)

The TPE implementation from the HyperOpt Python package was utilized [8]. The maximum
number of trials was set to a large number to ensure that TPE ran for the entirety of the
time-scenario. All other TPE hyperparameters were left to the default values established
within HyperOpt.

4.4 Random Search with Statistical Reduction
(RSSR)

All SMBO techniques intend to reduce the search space and efficiently balance exploration
and exploitation. However, existing approaches can have difficulties during execution of
certain datasets and problems. For example, the Bayesian optimization technique acquisition
function may not reliable due to many trials with low validation accuracy. Certain settings
can lead to slow training that stops prematurely due to the established early-stopping criteria.
When this occurs, the resulting validation losses of all previous trials appear to be a bimodal
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distributed. This cause certain settings to have unusually high uncertainty and directly affect
an SMBO’s acquisition function. The method Random Search with Statistical Reduction
(RSSR) was developed to reduce the search space and evaluate settings in more beneficial
area, while providing more flexibility to handle highly non-linear and non-parametric results.

The first step in RSSR is to run a random search optimization to produce enough results
to be able to statistically analyze differences in all hyperparameter setting changes. The
amount of runtime needed is dependent on each dataset, how many hyperparameters are
being optimized, and how many bins the categorical variables contain. After the random
search is complete, the next step is to split the trial results into two separate categories based
on the final validation accuracy: good runs or bad runs. The goal is to analyze performance
of settings using all trials and only-good trials. While it may seem worth it to consider
only-good trials, it is useful to assess the trends of bad trials to determine if certain settings
consistently do not train well. To assign each trial as good or bad run, a validation Dice
threshold is determined by finding the intersection of two Gaussian distributions that were
fit to the validation results using a Gaussian Mixture Model (GMM) [77]. The GMM is fit
using the scikit-learn package in Python [60]. The GMM portion does assume that the good
and bad trials are each normally-distributed. This may not always hold true, but it is still
effective at modeling the separation each and to provide a probabilistic method for finding
the threshold. The threshold is determined by setting the two fitted Gaussian distributions
equal to each other and then solving for the validation Dice variable.

The rest of this explanation of the RSSR method will use results obtained from the hy-
perparameter optimization of systolic BP. A 2-hour random search was executed a produced
147 trials worth of setting combinations and validation Dice results. The graph reading data
produces many trials in a short period of time due to the smaller dataset size. The EoE and
cardiovascular data need at least a 4-hour scenario to produce enough runs for statistical
comparison. With the 2-hour SBP results, the first step is determining the validation Dice
threshold that will split good and bad trials. Figure 4.1 shows the validation Dice results
in a few different formats. The boxplot and histogram confirm that validation loss not bell-
shaped and is bimodal distributed. A GMM with &£ = 2 component was fit on all of the
validation Dice results to produce a 1 and o for each distribution. The chart on the right of
Figure 4.1 shows the Gaussian Probability Density Function (PDF) for each Gaussian. The
green dot, the solved intersection of the two PDFs, is located at 0.344.

The next step is to assess each hyperparameter to determine if certain settings can be
eliminated for another random search optimization. If the next random search exploits the
most beneficial settings, then it may have a higher likelihood of finding the global optimal
than continuing searching the full hyperparameter. The first round of random search acts as
the exploration and factor-screening phase and then the next round is targeting the settings
of most promise. The following sections explain how RSSR is applied to binary, multi-
category, and continuous hyperparameters. To statistically evaluate the hyperparameter
settings, a Mann-Whitney U test is utilized . The Mann-Whitney U test is a non-parametric
equivalent to the parametric t-test of independently sampled groups [51]. The limitation
here is that the hyperparameters are assessed independently, because it would be difficult to
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Figure 4.1: This figure shows the validation Dice results for systolic blood pressure symbol
detection. A total of 147 trial results were obtained in a 2-hour random search optimization.
The left chart shows a boxplot of the validation Dice. The middle chart shows a histogram
of the same response. It is clear from these two charts the data is bimodal. The chart on
the right shows the two Gaussian distributions that were fit to this data and the intersection
between them. This intersection splits good trial runs from bad trials.

execute statistical reduction based on hyperparameter interaction results.

Binary Hyperparameter

Batch normalization (True or False) is a binary hyperparameter optimized in this study
and is used here to show an example of applying RSSR. Figure 4.2 shows the boxplots of
validation Dice for both batch normalization as “True” and “False” for all trials and only
good trials. After the validation Dice cutoff is applied, there are only 34 results in the good
trial category. This indicates that there were many hyperparameter settings that lead to slow
training and early stoppage. From both charts, it is evident that using batch normalization
tends to produce higher validation Dice results. Batch normalization appears to result in less
bad trials and good trials are also higher performing. The maximum values for validation
Dice also come during trials where batch normalization is active. This is all confirmed in
the Mann-Whitney U tests results which produced p-values of 7.4 x 107% and 0.010 for all
trials and only good trials, respectively. To automate this process, the user can establish
that both test results must reject the null hypothesis to remove one of the settings or just
one test results can be enough. Typically, an o = 0.05 or 95% confidence is sufficient to
make this test determination. For this example, batch normalization will be set to “True”
for the entire second random search based on these findings.
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Figure 4.2: This figure shows the validation Dice results for systolic blood pressure symbol
detection by batch normalization. The left chart contains all 147 trials, while the right
chart contains the 34 good trials. It appears that batch normalization contributes to higher
validation Dice and future random search trials should always contain batch normalization.

Multi-category Hyperparameter

Learning rate for the Adam optimizer is one of the multi-category hyperparameters optimized
in this study and is here to show an example of applying RSSR. Figure 4.3 shows two sets
of boxplots for validation Dice split by learning rate. The chart on the left shows all trials,
while the chart on right shows only-good trials. It is apparent that learning rates of 2 x 1073
and 2 x 107* stand out when looking at all trials, while 2 x 1072 and 2 x 1073 appear to
perform best on only-good trials. There is always a possibility of differences between all trial
versus only good trial, so it is important to include both sets when considering to reduce the
search space.

The process to evaluating these settings is similar as mentioned above for binary compar-
isons, but we must run a Mann-Whitney U test pairwise for all setting combinations. These
statistical tests are performed separately for all trials and for only-good trials. An a@ = 0.5
is used to reject or fail to reject the null hypothesis that each distribution is equal. If the
null hypothesis is rejected, the test combination receives a 1 if p; > p; and a —1 if p; < p;
where ¢ and j are each categorical setting. Table 4.2 shows these results for the statistical
comparisons of all trials. If column has many —1 values, then it means that this setting is
dominated by the other settings and should be considered for removal.

The same statistical comparison strategy is performed on the good trials, as well. Table
4.3 shows the results for the only the good trials.

After completing these tables for all trials and only good trials, the results can be com-
bined to have an overall assessment of what variables should remain or be removed. Table
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Figure 4.3: This figure shows the validation Dice results for systolic blood pressure symbol
detection by Adam optimizer learning rate. The left chart contains all 147 trials, while the
right chart contains the 34 good trials. It appears that learning rates of 2 x 1072, 2 x 1073,
and 2 x 10™* contributes to higher validation Dice and future random search trials should

consider only testing these settings

Table 4.2: This table shows the statistical comparison results of learning rate for the five
possible settings on all trials. An entry receives a -1 or 1 if the distributions are statistically
different according to a Mann-Whitney U test. A -1 or 1 is assigned based on if the mean of
the row entry is less than or greater than the column entry. A learning rate of 2 x 10™° was
significantly lower in validation Dice performance than three other settings.
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Table 4.3: This table shows the statistical comparison results of learning rate for the five
possible settings on only good trials. A learning rate of 2 x 1073 was significantly higher in
validation Dice performance than three other settings.

2 x 1072 -1 0
2x 1073 -1
2x 107 0
2x107° 0

4.4 shows the sum of Tables 4.2 and 4.3. Again, negative values across a column indicate
that the setting is not useful and positive values indicate that the setting is useful.

Table 4.4: This table combines the all trials and only good trial results for learning rate
setting comparison by adding the two previous tables together. Now, both 2 x 1071, 2x 1075
appear dominated by the other settings.

The final step is to sum down the columns to obtain a single score for each setting. Table
4.5 shows the final results of summing down the columns of Table 4.4. This is where a
researcher can apply their own thresholds to determine what settings to keep or not. A good
rule-of-thumb is to remove variables that are < —S5'+ 2 where S is the number of settings in
that multi-category hyperparameter. In this case, the threshold is < —3, so learning rates of
2x 107! and 2 x 10~° would be removed from the next random search round. The researcher
can adjust this threshold depending on how conservative or aggressive they want to be as
they manage their time-limit and computational budgets.

Continuous Hyperparameter

The dropout rate is a continuous hyperparameter optimized in this study and is used here to
show an example of applying RSSR to a continuous variable. Applying a similar methodology
as above directly to continuous settings is more challenging. Figure 4.4 shows the dropout
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Table 4.5: This table is the final step in the statistical comparison process. It sums down
the columns of the previous table to create a metric for each setting that can be used to
determine which should remain or be removed. A learning rate of 2 x 1072 appears to perform
the best and should definitely remain, while 2 x 107! and 2 x 10~° should be considered for
removal.

2x 107°
-4

2x1071[2x102][2x103[2x107*
-3 2 4 1

Column Sum

rate versus validation Dice for all trials and only-good trials. Visually, there appears to be a
trend where higher dropout rates lead to higher validation Dice scores for only-good trials.
However, there is no straightforward statistical approach to justify changing the dropout
rate range from this visual inspection. To conform to the established strategy, the dropout
rate was converted into a categorical variable with five bins and each of a size of 0.1.
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Figure 4.4: This figure shows the validation Dice results for systolic blood pressure symbol
detection by continuous dropout rate. The chart on the left shows all 147 trials, while the
chart on the right is only the 34 good trials. The right chart shows a minor correlation of
higher dropout rates producing higher validation Dice results.

Figure 4.5 shows the updated charts after dropout rate is converted to a categorical
variable. It still appears that dropout rates above 0.2 achieve high validation Dice scores on
only-good trials, but now the sample size can be incorporated to statistically compare these
settings as was done before.
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Figure 4.5: This figure shows the validation Dice results for systolic blood pressure symbol
detection by categorical dropout rate. By converting into categorical, the established sta-
tistical comparison methods can be implemented. The right chart still shows a trend with
higher dropout rate, but the sample sizes can be incorporated to determine if this trend is

statistically significant.

Table 4.6 shows the final results of the categorical dropout rate comparison. Even though
higher dropout rates showed some benefit, there was not enough statistical evidence to
remove dropout rates below 0.2 from the search space. The 0.1 to 0.2 bin did reach close to
the threshold, so it could be considered for removal, but overall the consensus is that there
are no dropout rates that appear to maximize validation Dice at this point in this example.

Table 4.6: This tables shows the final results of the statistical comparison between the
five categorical dropout rates. Even though there did appear to be a minor dropout rate
and validation Dice trend, it was not a strong of difference to warrant eliminating dropout
settings for future random search testing. The safest conclusion is to continue to search the
entire dropout rate range.

2x1071 [ 2x1072|12x102% | 2x107*|2x10°
Column Sum 0 -2 1 1 0
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4.5 Gaussian Mixture with Epsilon-Greedy (GMEG)

Another issue with existing SMBO techniques is when the acquisition function becomes stuck
at testing the same area repeatedly and rarely exploring. Each approach is designed to have
some exploration and exploitation balance, but occasionally the previous trial results contain
outliers or is skewed in such a way to create this scenario. For instance, GP-UCB selects
the settings that have the highest UCB, but still tests same setting for many trials. Perhaps
because one of the settings that produced the highest achieved validation Dices also had
many bad trials at similar settings. The UCB is high because of some examples that did
well, but it also very uncertain due to the bad trials in the vicinity. There is some evidence
that these techniques perform almost the same trial over 100 times in a row which results in
the model just trying to optimize the random initial weights of the model.

One way to ensure that the approach continues to explore as trial results accumulate is to
implement an e-greedy approach. The e-greedy method has origins in multi-armed bandit and
reinforcement learning problems [74]. The € part refers to a probability that the agent will
take a random action next. A random number is drawn and if this number is less than €, then
a completely random action will be taken to force the agent to potentially explore new or rarer
states. If the random number exceeds €, then the agent is takes the exploitation route and
acts “greedily” by selecting the action that currently maximizes reward. In hyperparameter
optimization context, exploration opens the possibility to test any combination of settings
at a rate of € and exploitation tests the setting(s) that have the best current validation Dice
results.

A first glance, it seems simple and straightforward implementing e-greedy for hyperpa-
rameter optimization, but there are important considerations to make sure it does not have
the same issues as other SMBO techniques. As € increases, the technique approaches random
search, so epsilon should be adjusted to create a good balance. When exploiting, the method
should do more than just re-testing the current best setting, because then the technique is
just repeating trials again which is what this method is trying to avoid. In a reinforcement
learning approach, a state space is developed so that rewards can be assigned to states.
Actions are the agents way of moving from state to state. It is possible to construct a
tabular state space from hyperparameter settings if continuous variables are converted into
categorical, but this could lead to over 1,000 different states. Completing the tabular entire
state space with reward value is basically a fully-exhaustive grid search which is an infeasible
approach. Therefore, it is best to model the state space as a function and then improve the
approximation of this function as trial results are obtained.

Linear models and neural networks were considered for mapping hyperparameters to the
validation Dice reward, because these models are differentiable and the extracted gradient
could dictate the next setting to test. However, hyperparameter optimizations start from
scratch with no trials and are non-linear search spaces, so modeling the state space with linear
models or neural networks do not seem plausible at the moment. The workaround that was
developed was to treat the validation Dice coefficient as another independent variable and
train a GMM (unsupervised approach) onto validation Dice and the five hyperparameter
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settings to create a combined state space and reward representation [77]. The multivariate
Gaussians in this mixture model each be described by mean of the validation Dice scores
of the trials that labeled within each cluster. During the exploitation phase, a multivariate
random setting is drawn from the cluster that has the highest mean validation Dice. The
random validation Dice pulled during this is step is ignored. This setup ensures that the
exploitation phase is produced settings in the most beneficial areas, but is very unlikely to
continually choose the same setting. Figure 4.6 shows an example of a GMM (k = 7) fit to
validation Dice and dropout rate.
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Figure 4.6: This figure shows the validation Dice results for systolic blood pressure symbol
detection by continuous dropout rate. The colored ellipses show where the seven Gaussian
clusters are located with results from all completed trial runs. The top-right cluster has the
highest mean validation Dice, so the greedy action is to sample from this distribution. The
exploitation dropout rate will likely be in the 0.3 to 0.4 range using a multi-variate normal
random number generator. This methodology was also flexible for handling bad runs as
about 5 clusters formed in the low response area.

The main advantage of this technique was user-flexibility to control the rate of exploration
and exploitation. However, this technique has many of its own hyperparameters that need to
be considered. With traditional e-greedy, the € value must be determined. There are many
other e-greedy based techniques such as Greedy in the Limit of Infinite Exploration (GLIE)
where € reduces as the number of completed trials increases [67]. The number of Gaussians
or clusters to use was also adjustable. This number should be a function of the number of
trials completed in order to not over or under fit the data. The following function was a
conservative approach to determine the number of clusters:
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where k was the number of GMM clusters to fit and n was the current number of com-

pleted trials. Another more aggressive approach was created that increases the number of
clusters at a higher rate:

+1] (4.1)

k=[vn—1] (4.2)

where k and n are defined the same. It seemed that the number of clusters could impact
the performance of the Gaussian Mixture with Epsilon-Greedy (GMEG) the most, so the
number clusters from both equations are tested. Figure 4.7 shows an example of modeling
dropout rate and validation Dice with 12 clusters (Equation 4.2) instead of 7. Finally, the
major disadvantage with GMEG was that all hyperparameters must be convertable into
continuous values to be fit by a GMM. Even though hyperparameters like batch size or
number of filters are typically restrictive integers, they can be treated as continuous within
the GMM and then converted back to categorical once the random setting was obtained
from e-greedy. A category was assigned based on which value of the category was closest to
the continuous random sample. The learning rate was converted into integers from —1 to
—5, so that all categories are evenly spaced. The batch normalization was converted into
1 and 0 for “True” and “False”, respectively. Unfortunately, a hyperparameter that cannot
be converted into a continuous variable, such as which optimizer to apply, would have to
be optimized outside of the GMEG construct. Unlike the RSSR technique, the GMEG can
account for interaction effects between hyperparameters.
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Figure 4.7: This figure shows the validation Dice results for systolic blood pressure symbol

detection by continuous dropout rate.
clusters were located with results from all completed trial runs.

cluster was now the greedy option.

The colored ellipses show where the 12 Gaussian
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Chapter 5

Results

This chapter presents the results from the experiments to optimize the validation dataset
Dice coefficient over the seven total segmentation models. First, the optimization techniques
were compared by plotting the maximum validation Dice found by the time scenario for each
dataset. Next, this comparison was converted into a weighted rankings system to provide
a scoring approach to see which optimization techniques perform better with limited time
and on certain datasets. Then, we will assess which hyperparameter settings were selected
as optimal and determine if there were any trends by dataset. Finally, the runtime length
elapsed to find the maximum validation Dice will be used to evaluate the Pareto efficiency
of the various optimizations.

5.1 Comparison of Optimization Techniques

In this section, maximum validation Dice coefficient was utilized to compare the optimize
techniques across time scenarios and datasets. The scenarios with a longer runtime were
expected to achieve a higher performance than shorter scenarios since more trials can be
performed to find better settings. The main interest was which techniques reach near-optimal
accuracy as earlier as possible, because this was an indicator of efficiency of each approach.
For the optimization techniques, GMEG 1 refers to using Equation 4.1 to generate the
number of clusters per trial, while GMEG 2 was applying Equation 4.2. All other techniques
used the same acronyms as displayed in Chapter 4. GMEG 1 was not tested at the 24-hour
scenario due to computational constraints. GMEG 2 was only tested for one scenario and
performed poorly compared to GMEG 1. RSSR requires enough random search samples to
being the statistical comparisons. For each RSSR method tested, a pure random search was
executed until the halfway point in the time limit. The settings were reduced as necessary
and then the remainder half of the scenario was executed with this reduced settings. RSSR
was only tested up until 16 hours, because there was not a 12-hour random search scenario
to use as halfway assessment for the 24-hour scenario.
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Performance by Dataset

The following charts plot the best validation Dice coefficient obtained from each individual
experiment by dataset and time scenario. There were seven total datasets and models
evaluated and following was the notation used:

Eosinophilic Esophagitis (EoE) eosinophil detection

Cardiovascular (CV) nuclei detection

CV Smooth Muscle Cell (SMC) detection

e CV macrophage detection

Graph Reading (GR) Heart Rate (HR) detection

GR Diastolic Blood Pressure (DBP) detection

GR Systolic Blood Pressure (SBP) detection

Figure 5.1 shows the hyperparameter optimization results for the EoE eosinophil detec-
tion dataset. The best validation Dice found was 0.705 during the 4-hour scenario with the
GP-UCB technique. The GP-UCB approach was able to reach a high accuracy in short time
with this dataset. GMEG 1 also performed well at the 4 and 8-hour scenarios. All techniques
appear to approach a validation Dice in the 0.67 to 0.71 range as time progress.

Figure 5.2 shows the hyperparameter optimization results for the CV dataset for detecting
nuclei. The best validation Dice found was 0.724 during the 16-hour scenario with the
Hyperband technique. Hyperband performed poorly in the 2 and 4-hour scenarios, but did
well from 8 to 16-hours. The RSSR technique also performed well at 8 and 16-hour scenarios.

Figure 5.3 shows the hyperparameter optimization results for the CV dataset for detecting
SMC. The best validation Dice found was 0.537 during the 24-hour scenario with the GP-
UCB technique. Random search performed best during the shorter length scenarios.

Figure 5.4 shows the hyperparameter optimization results for the CV dataset for detecting
macrophages. The best validation Dice found was 0.727 during the 24-hour scenario with the
RS technique. RSSR had success at the 8 and 16-hour scenarios and RS did well throughout
all scenarios.

Figure 5.5 shows the hyperparameter optimization results for the vital signs graph dataset
for detecting heart rates. The best validation Dice found was 0.867 during the 8-hour scenario
with the RSSR technique. RSSR had success at the 8 and 16-hour scenarios, but GP-UCB
also did well in the short time scenarios. The GMEG 1 approach did very poorly at the 2
and 4-hour scenarios.

Figure 5.6 shows the hyperparameter optimization results for the vital signs graph dataset
for detecting diastolic blood pressures. The best validation Dice found was 0.869 during the
24-hour scenario with the random search technique. GP-UCB did well at the 2-hour scenario,
but RSSR and RS perform better at the other time scenarios.
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Figure 5.1: Performance Results by EoE Dataset. This figure compares of the performance
of the optimization techniques at each time scenario. It appears that GP-UCB and GMEG
1 were best-suited for the EoE dataset.
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Figure 5.2: Performance Results by Cardiovascular Nuclei Dataset. This figure compares
of the performance of the optimization techniques at each time scenario. It appears that
Hyperband and RSSR were best-suited for the CV Nuclei dataset.
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pares of the performance of the optimization techniques at each time scenario. It appears
that random search and RSSR were best-suited for the CV macrophage dataset.
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Figure 5.5: Performance Results by Vital Signs Graph Heart Rate Dataset. This figure
compares of the performance of the optimization techniques at each time scenario. It appears
that RSSR and GP-UCB were best-suited for the GR HR dataset.
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Figure 5.6: Performance Results by Vital Signs Graph Diastolic BP Dataset. This figure

compares of the performance of the optimization techniques at each time scenario. It appears
that RSSR and RS were best-suited for the GR DBP dataset.



CHAPTER 5. RESULTS 42

Figure 5.6 shows the hyperparameter optimization results for the vital signs graph dataset
for detecting systolic blood pressures. The best validation Dice found was 0.892 during the
8-hour scenario with the RSSR technique. RSSR performed very well across 4 to 15-hour
scenarios. All techniques had comparable performance except for HB and GMEG 1 at earlier

scenarios.
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Figure 5.7: Performance Results by Vital Signs Graph Systolic BP Dataset. This figure
compares of the performance of the optimization techniques at each time scenario. It appears
that RSSR was best-suited for the GR DBP dataset.

Time Scenario Rankings

The performance results were just presented visually and by dataset, but it was still question-
able which optimizations were best for particular time constraints and datasets. Therefore,
a methodology was created to score each technique based on the ranking of the maximum
validation Dice found when using each technique. The following tables show the validation
Dice rankings for each optimization technique across the dataset. For example, a ranking
of 5 for RS technique on the EoE dataset means that the RS technique produced the fifth
highest validation Dice coefficient on the EoE dataset. A weighting vector was applied with
a sumproduct calculation to create an overall technique score for each optimization. Each
root dataset (EoE, CV, and GR) were equally worth 1/3 and then the subset datasets within
CV and GR were also equally weighted with 1/3 (1/9 overall). The technique with the low-
est score using this methodology was considered was considered the best overall approach
at that specific time scenario. If the validation Dice coefficients were equivalent at the 3-
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decimal place level, then the techniques were considered tied and then average ranking was
distributed between the ties.

Table 5.1 shows the weighted ranking scores for the 2-hour time scenario. GP-UCB
clearly dominates this scenario with five #1 rankings and never had a ranking worst than
second place. It was surprising that GP-UCB does so well at the shortest time scenario,
because it was still within the warm-up period (< 15 trials) for the EoE and CV datasets.

Table 5.1: 2-Hour Scenario Performance Comparison. This table shows the weighted ranking
scores for each optimization technique. GP-UCB clearly dominates the other optimizations
at the 2-hour scenario.

Dataset RS | GP-UCB | HB | TPE | GMEG 1 | Weight
EoE 5 1 3 4 2 0.333
CV Nuclei 4 1 5 2 3 0.111
CV SMC 1 2 5 4 3 0.111
CV Macrophage | 2 1 3 4 5 0.111
GR HBR 2 1 4 3 5! 0.111
GR DBP 1.5 1.5 4 3 5! 0.111
GR SBP 2 1 4.5 3 4.5 0.111
Sumproduct 3.06 1.17 3.83 | 3.44 3.50 1

Table 5.2 shows the weighted ranking scores for the 4-hour time scenario. GP-UCB
performs the best overall again, but did not dominate all datasets. Random search was
actually ranked first for all of the CV datasets which closed the overall scoring gap between
these two techniques.

Table 5.2: 4-Hour Scenario Performance Comparison. This table shows the weighted ranking
scores for each optimization technique. GP-UCB scored the best overall, but RS dominates
the entire CV dataset.

Dataset RS | GP-UCB | HB | TPE | GMEG (#1) | Weight
EoE 4 1 3 5 2 0.333
CV Nuclei 1 4 5 3 2 0.111
CV SMC 1 4 5 3 2 0.111
CV Macrophage | 1 2 3 4 5 0.111
GR HBR 4.5 1 2 3 4.5 0.111
GR DBP 3 1.5 4 1.5 ) 0.111
GR SBP 1.5 1.5 3 ) 4 0.111
Sumproduct 2.67 1.89 3.44 | 3.83 3.17 1
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Table 5.3 shows the weighted ranking scores for the 8-hour time scenario. As the amount
of runtime increases, it becomes harder to find techniques that stand out above the rest.
Overall, RSSR achieved the best weighted score and dominated the entire GR dataset, but
also was ranked 5th for EoE and CV SMC. GP-UCB and Hyperband were close in overall
score, but only had one first place ranking between them.

Table 5.3: 8-Hour Scenario Performance Comparison. This table shows the weighted ranking
scores for each optimization technique. RSSR scored the best overall, but the performance
was very inconsistent across all datasets.

Dataset RS | RSSR | GP-UCB | HB | TPE | GMEG 1 | GMEG 2 | Weight
EoE 6 5 2 4 7 1 3 0.333
CV Nuclei 5 2 3 1 7 5 5 0.111
CV SMC 1 5 4 2 7 3 6 0.111
CV Macrophage | 4 1 3 2 5 7 6 0.111
GR HBR 4 1 2 3 5 7 6 0.111
GR DBP 6 1 2 3 4 7 6 0.111
GR SBP 4 1 7 6 4 4 2 0.111
Sumproduct 4.67 | 2.89 3.00 3.22 | 5.89 4.00 4.44 1

Table 5.4 shows the weighted ranking scores for the 16-hour time scenario. RS was now
the top overall score and this makes sense, because at higher time-limits RS was able to
explore many hyperparameter setting possibilities. It was possible that success of GP-UCB
success tapers off as time increases, because it can get stuck exploiting the same setting
rather than utilizing the large number of trials for exploration. RSSR and HB also did well
at 16-hours and each had a first-place ranking.

Table 5.5 shows the weighted ranking scores for the 24-hour time scenario. GP-UCB did
best on shorter scenarios and now was the top scorer on the longest scenario. Perhaps having
an additional 8 to 16 hours worth of additional trials will eventually lead to some exploration
for the GP-UCB. Depending on the situation, GP-UCB either continues to search the entire
hyperparameter space or becomes stuck exploiting the same area, so that could explain the
inconsistency.

5.2 Analysis by Hyperparameter

In this section, we assessed which settings resulted in the maximum validation Dice for
each dataset. Without hyperparameter optimization, a researcher may have a default set
of hyperparameters that they apply every time they use a U-Net regardless of the dataset.
This analysis revealed whether certain datasets preferred certain hyperparameter settings
which can confirm or deny the need for hyperparameter optimization. Each optimization
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Table 5.4: 16-Hour Scenario Performance Comparison. This table shows the weighted rank-
ing scores for each optimization technique. RSSR scored the best overall, but the performance
was inconsistent across all datasets.

Dataset RS | RSSR | GP-UCB | HB | TPE | Weight
EoE 2.5 4 2.5 1 5 0.333
CV Nuclei 4 1 2 5) 3 0.111
CV SMC 1 2 3 4 5) 0.111
CV Macrophage 1 2 4 3 5 0.111
GR HBR 2.5 1 4 2.5 5 0.111
GR DBP 1 2 3 4 5 0.111
GR SBP 3 1.5 5 1.5 0.111
Sumproduct 2.33 2.56 3.00 2.94 | 4.39 1

Table 5.5: 24-Hour Scenario Performance Comparison. This table shows the weighted rank-
ing scores for each optimization technique. GP-UCB scored the best overall, but RS was
also the best ranking for three of the seven datasets.

Dataset RS | GP-UCB | HB | TPE | Weight
EoE 3 1 2 4 0.333
CV Nuclei 2 1 3 4 0.111
CV SMC 2 1 3 4 0.111
CV Macrophage | 1 3 2 4 0.111
GR HBR 1 2 3 4 0.111
GR DBP 1 2 3.5 3.5 0.111
GR SBP 3.5 2 3.9 1 0.111
Sumproduct 2.17 1.56 2.67 | 3.61 1
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run results in a different maximum validation Dice, but it was assumed that those varying
results were not a major factor in the following charts. Although settings obtained through
longer scenarios that produced the maximum validation Dice coefficients would have the
most reliable settings.

Figure 5.8 shows in how many total optimization runs were “ITrue” or “False” batch
normalization selected as the setting that produced the maximum validation Dice coefficient.
Across the board, batch normalization was beneficial to producing higher validation accuracy.

Datasets
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Figure 5.8: Batch Normalization Selection as the Best Setting. It was clear that batch
normalization should be set to True and remain active throughout the neural network archi-
tecture for all datasets.

Figure 5.9 shows in how many total optimization runs were each learning rate option
selected as the setting that produced the maximum validation Dice coefficient. A learning
rates of 2 x 1072 and 2 x 10~* appear to be the most popular selections, but there were some
trends per dataset. EoE greatly prefers a 2 x 10~* learning rate, while GR datasets mainly
lead to learning rates of 2 x 1073, The extreme learning rate on both sides were rarely ever
selected as the highest performing.

Figure 5.10 shows in how many total optimization runs were each initial number of filters
option selected as the setting that produced the maximum validation Dice coefficient. These
results were actually spread-out fairly evenly besides some trends within the datasets. The
results here debunks any notion that more complex models with more filters or parameters
will always perform better. It was possible that a model of lesser complexity will generalize
better to outside data.

Figure 5.11 shows in how many total optimization runs were each batch size option
selected as the setting that produced the maximum validation Dice coefficient. It was ex-
ceedingly clear that the GR datasets produce higher validation accuracies when batch size
equalled two. Sometimes, the inclination was to set the batch size as high a possible to
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Figure 5.9: Learning Rates Selection as the Best Setting. Learning rates of 2x 1072, 2x 1073,
and 2 x 10% were the most popular, but there were some trends for which of these the datasets
prefer.
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Figure 5.10: Number of Initial Filters Selection as the Best Setting. The middle number of
filter option, 24, was selected the most, but the overall distribution of selected setting was
fairly flat. This does show that more filters was not always better for model generalization.
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quicken model training, but this shows that lower batch sizes can also be beneficial. The GR
datasets have a very small sample size, so maybe that was the reason why smaller batches
were preferred.
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Figure 5.11: Batch Size Selection as the Best Setting. Batch size appeared highly dependent
on which dataset was being used. The GR data greatly preferred a batch size of 2, while the
others fluctuated between 4 or 8.

Lastly, Figure 5.12 shows the distribution of dropout rates selected as the setting that
produced the maximum validation Dice coefficient. Dropout rate was shown across datasets,
as well as, optimization technique. The dropout rate selections were very wide-ranging
and rarely did any particular dropout rate seem to align with a dataset or optimization
technique. There were a couple datasets, CV nuclei and GR DBP, that may associate with
higher dropout rates. There were some studies that claim that a both dropout rate and
batch normalization needed in the same network and could actually decrease performance
[44]. Since batch normalization was almost always useful according to the results from Figure
5.8, perhaps this negated the effects of dropout rate.

5.3 Pareto Efficiency of Optimizations

This final section of this chapter examines the Pareto efficiency of each optimization tech-
nique [17]. Hyperparameter optimization techniques can be compared based on how quickly
each reached a high validation Dice coefficient. The Pareto frontier represented a balance
between quickness and lowered computation with validation accuracy performance. The
quicker a near-optimal solution was found, the less computation resources were needed if
the optimization was halted shortly after finding this value. The Section 5.1 compared per-
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Figure 5.12: Dropout Rate Select as the Best Setting. No particular dropout rate appeared
to correspond with higher performance, but there were a few datasets that seemed to prefer
higher dropout rates.

formance of the optimizations by the time-limit of each scenario, but it was likely that the
eventual maximum Validation Dice was found much sooner during the optimization. For
SMBO techniques, it was easy to monitor performance per trial and determine when accu-
racy has leveled-off. For random search, the maximum validation Dice could occur at any
moment, so it was harder to be certain when the optimization has plateaued. For the fol-
lowing charts, the elapsed optimization time when the maximum validation Dice was found
was extracted from the data. This time was compared with Dice to from a Pareto frontier of
options. Longer run times typically produced higher validation accuracies, but there should
still be a sweet-spot for achieving performance while staying computationally efficient.

Figure 5.13 shows the Pareto efficiency of the optimization techniques on the EoE dataset.
The GP-UCB and GMEG techniques were mostly located in the top-left of the chart which
was the Pareto frontier in this case. While these techniques were set to run from 2 to 24
hours depending on the scenario, the near-optimal solution can be obtained quickly due to
a fortunate random trial during the warm-up period or due to the benefits of the sequential
process.

Figure 5.14 shows the Pareto efficiency of the optimization techniques on the CV nuclei
dataset. The GMEG 1 optimization was also Pareto efficient on the CV nuclei dataset.

Figure 5.15 shows the Pareto efficiency of the optimization techniques on the CV SMC
dataset. The RS optimization has three optimizations near the Pareto frontier. It was
possible that a RS finds a high-performance at an early trial, but random search is never
considered an efficient approach. If an sufficient accuracy was found early on, the random
search could be terminated early, but otherwise the search would continue for the entire time
scenario.

Figure 5.16 shows the Pareto efficiency of the optimization techniques on the CV macrophage
dataset. RS also did well with Pareto efficiency on the macrophage data, but there were also
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Figure 5.13: EoE Dataset Pareto Efficiency of Optimizations. This figure shows a scatterplot
of the maximum validation Dice scores versus the time these scores occurred during each
each optimization. The points in the upper-left were the most Pareto efficient. GP-UCB
and GMEG 1 were both efficient on the EoE data.
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Figure 5.14: CV Nuclei Dataset Pareto Efficiency of Optimizations. This figure shows a
scatterplot of the maximum validation Dice scores versus the time these scores occurred
during each each optimization. The points in the upper-left were the most Pareto efficient.
GMEG 1 appeared most efficient on the CV nuclei data.
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Figure 5.15: CV SMC Dataset Pareto Efficiency of Optimizations. The RS optimization
appears efficient on this dataset, but this was likely due to random chance of testing a
near-optimal setting as one of the early trials.

some GP-UCB runs that quickly found high validation Dice coefficients.

Figure 5.17 shows the Pareto efficiency of the optimization techniques on the graph
reading heart rate detection dataset. For this dataset, GP-UCB was again the most efficient
optimization in finding high validation accuracies early using a sequential approach.

Figure 5.18 shows the Pareto efficiency of the optimization techniques on the graph
reading diastolic BP detection dataset. Both RS and GP-UCB were the most Pareto efficient
on this dataset.

Figure 5.19 shows the Pareto efficiency of the optimization techniques on the graph
reading systolic BP detection dataset. GP-UCB was the most Pareto efficient optimization
on this dataset.
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Figure 5.16: CV Macrophage Dataset Pareto Efficiency of Optimizations. The RS optimiza-
tion appears efficient on this dataset, but this was likely due to random chance of testing a

near-optimal setting as one of the early trials.

087

0.86-

Validation Dice
o
g

0.83

0.82-

0.85

0 200

How Long to Find Maximum Dice (minutes)

Optimization

“ RS

= GP-UCB

* HB

* TPE

* RSSR

* GMEG 1
GMEG 2

Figure 5.17: Vital Signs HR Dataset Pareto Efficiency of Optimizations. The GP-UCB

appeared as the most efficient on the graph reading HR dataset.
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Figure 5.18: Vital Signs Diastolic BP Dataset Pareto Efficiency of Optimizations. The RS
and GP-UCB optimizations appear as the most Pareto efficient on this dataset.
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Figure 5.19: Vital Signs Systolic BP Dataset Pareto Efficiency of Optimizations. The GP-
UCB optimization was the most Pareto efficient on this dataset.
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Chapter 6

Conclusion and Future Work

In this dissertation, different hyperparameter optimization techniques were evaluated on
three biomedical image segmentation projects. The evaluations were performed at five dif-
ferent timed-scenarios to learn how runtime or the number of executed trials affects model
performance and the sufficiency of each technique. The results showed that the Bayesian
optimization approach, GP-UCB, performed well in the scenarios where time was most lim-
ited. This makes sense because GP-UCB is a SMBO technique that starts exploiting and
exploring immediately after the warm-up period. In the 2-hour setting, the GP-UCB per-
formed better than the other techniques, while still in the warm-up period (15 trials) for
the EoE and CV data. Perhaps, the way the software package Keras Tuner allocated the
warm-up period was more robust than a random search of 15 trials. GP-UCB does fairly
well across all time scenarios, but was outperformed at the 8 and 16-hour scenarios.

The RSSR approach, when applied, usually achieved the highest validation accuracies
of all methods. RSSR was mainly designed to overcome the large skew between good and
bad trial runs. The implementation only reduced settings once at the timed-scenario halfway
point, but the same approach could be applied after every trial much like a traditional SMBO
technique. In that case, it could be possible to remove a setting and then reinstate the setting
later after more data is gathered. The cutoffs used to remove or retain variables allowed
for some user-flexibility based on how aggressive they would like to be or for computation
limitation purposes.

The GMEG approaches did not have as much success at finding the highest validation
accuracy. This technique did show some promise as an efficient method for finding a decent
model fit in a short amount of runtime. It was the ultimate approach for user-flexibility
as there were many different customizations including the desired number of filters, how to
model the variables, and how often to do exploration. Hoeever, this can also be seen as a
downside that a optimization technique has so many of its own hyperparameters to adjust.
The main purpose of this approach was to ensure there was adequate exploration since some
of the Bayesian options did repetitive testing for many trials. Therefore, the e-greedy aspect
should remain with this approach, but different e-greedy methods can be tested in the fture.
The use of GMM as the surrogate could change to function that maps hyperparameters to
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the validation accuracy response rather than treat the response as an independent variable.
A similar GMM strategy is applied in TPE, but perhaps a regression tree approach, similar
to SMAC, would perform better.

When researchers start an image segmentation project, it was often easy to re-use hyper-
parameters that excelled on previous projects. This was done for convenience, but researchers
likely do not realize how big of an impact the hyperparameters have on model performance.
The results in this dissertation showed that certain hyperparameters can lead to much higher
validation Dice coefficients than others. Settings for batch normalization, batch size, and
learning rate increased prediction performance on certain datasets. Therefore, it was criti-
cal to perform hyperparameter optimization on each specific image segmentation project to
ensure that the models were tuned exclusively to each problem. In the Datasets chapter,
each dataset had hyperparameter settings and results based on the prior knowledge-based
user-established values. Table 6.1 shows those results before and after hyperparameter op-
timization. The best validation Dice coeflicients found in all optimizations and the corre-
sponding settings were shown for each dataset as the upper-bound of what optimization can
do for performance. In all but one dataset, the performance improved and did greatly in
most cases.

Table 6.1: Comparison of User-established Hyperparameters with Best Hyperparameter Op-
timization Settings

Dataset Optimization Batch Norm. No. of filters Learning ]i{ate Dropout Rate Batch Size Val. Dice Change
e e R S
o R 8
e —— = — ——
S e — S — ——
-3
T B .
GRDBP  hoore T = S See . 08T 0010
arspp o TRUR o T 0250 SIS | o0,

When grid or random searches were performed, every trial can be considered an inde-
pendent sample, so the optimal result could be found at any trial. The order of search
runs was random, so it was appropriate to let the search execute the entire time scenario.
Alternatively, SMBO techniques do control the order of runs, so even though there was an
exploitation-exploitation balance, it should be unlikely that a much higher validation ac-
curacy will surprisingly occur late in the SMBO process. Some SMBO techniques have a
stopping criterion when it appears that optimality has been reached, but this seems like a
very rare occurrence from experience. The Pareto efficiency results showed that an SMBO
like GP-UCB typically found the best solution in about the first 5 to 6 hours, but the opti-
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mizations were still running for 3 to 19 hours in the 8 to 24-hour scenarios. Even the best
scores that were found at those times might only be minimally better than options found
much sooner. Therefore, the results from this dissertation recommend that better stopping
criterion be applied to SMBO techniques that monitor validation improvements and cease
optimization if no improvement is found after z trials.

There were other existing optimization techniques that were not evaluated in this study
and more will be developed over time. An obvious future work recommendation is to ex-
pand this research and methodology to cover more techniques. There has been a growth
of programming packages that handle hyperparameter optimization and feature numerous
approaches. For example, the Neural Network Intelligence package [81] contained many dif-
ferent hyperparameter optimization and neural architecture search algorithms that could be
evaluated, but the code was not implementable on the high-performance computing cluster
at the time. There was also a lack of shared code from many reinforcement learning im-
plementations of hyperparameter optimization or even value function approximation. When
these two areas become more accessible we can evaluate a true reinforcement learning ap-
proach against the other methods or utilize a value function approximation to improve the
GMEG technique.
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