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Abstract

Effective non-parametric modeling of probability distributions is a central problem in statis-

tics and machine learning. The ubiquity of large amounts of data generated in real-world systems

has created unprecedented opportunities to apply such models to critical machine learning tasks

for making quick and informed decisions. However, inherent difficulties associated with modern

data such as high-dimensionality, incomplete data (vector realizations with missing entries),

and complex high-order interactions between features, pose a key challenge and necessitate

expressive methods that are efficient both computationally and in memory cost. The main contri-

bution of this dissertation is to introduce principled methods for non-parametric estimation of

the data-generating distribution function using low-rank tensor models and show their potential

in various real-world applications.

The first part of the dissertation focuses on non-parametric density estimation through

the lens of complex Fourier series approximation and low-rank tensor modeling (a low-rank

characteristic function approach). We show that any smooth compactly supported multivariate

probability density function (PDF) can be approximated by a finite tensor model and under

relatively mild assumptions, the proposed model can approximate any high dimensional PDF

with approximation guarantees. We also show that, by virtue of uniqueness of low-rank tensor

decomposition, assuming low-rank in the Fourier domain, the underlying multivariate density is

identifiable. A promising extension of this work, suitable for even higher-dimensional data such

as images, considers a joint dimensionality reduction and density estimation framework. The

dimensionality reduction component is carried out via deep autoencoders and the latent density

is modeled using a non-parametric low-rank tensor model in the Fourier domain.

However, for some applications such as problems involving hybrid random variables (contin-

uous and discrete) or tasks requiring multivariate integration of the high-dimensional PDF (e.g.,

corresponding to finite or semi-infinite “box” events), modeling the joint cumulative distribution

function (CDF) seems more appropriate. The second part of the dissertation introduces a novel

parametrization of grid-sampled multivariate CDFs using tensor factorization in the data or in the

copula domain. Furthermore, the abundance of time-series data in machine learning systems such

as sensor signals collected from wrist-worn devices, brings new demands in density estimation,

as it requires estimating time-varying and high-dimensional distributions, capable of accurately
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modeling both inter- and intra-series dependencies. Our proposed model combines the temporal

modeling power of recurrent neural networks (RNNs) with the parsimony of principled low-rank

density models, to propose a versatile time series high-dimensional distribution model. As a

practical demonstration of the abilities of our models, we applied them to various machine

learning tasks, showcasing a highly competitive performance with respect to the state-of-the-art.

In particular, we apply the proposed low-rank CDF method to predict enrollment rate (ER) in

clinical trials, and we demonstrate significant improvements over previous methods used in the

health informatics industry. Accurate ER prediction is key for successful and timely clinical

trials, and has potential for strong societal impact in human health.

Keywords: probabilistic modeling, low-rank tensor models, identifiable models, CPD decompo-

sition, probabilistic inference, density estimation, generative models.

0.1 Intellectual Merits

This dissertation reports basic research on a fundamental problem in statistical learning: effective

non-parametric modeling and estimation of high-dimensional joint distributions. By providing

new theoretical contributions, algorithms and applications, our work aspires to theoretically and

experimentally showcase how valuable insights from classical statistical learning and tensor

factorization tools can lead to solutions that remarkably advance the state-of-the-art performance

for fundamental problems in machine learning. The proposed probabilistic frameworks offer a

wide range of desired benefits such as model uniqueness, easy model marginalization, prediction

of any variable from (a subset of) the other variables, and sampling, which can potentially benefit

many research problems in applied statistics, data mining, and machine learning where density

estimation can be used as a building block.

0.2 Broader Impact

The proposed research is expected to yield exciting new theoretical and methodological insights

that can be used in a broad variety of applications, including those that can have strong societal

impact – e.g., healthcare applications to better diagnose, forecast, and otherwise characterise

the health of individuals. Skills, tools, and knowledge gained during my Ph.D. studies have

been leveraged throughout my first internship with Apple Health AI, where we developed a
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novel method for modeling complex time-series such as vital signs and illustrated promising

forecasting performance on the Apple Heart and Movement Study. During my second internship

with IQVIA, we applied our CDF method developed in [1] to solve an important practical

problem in clinical trial optimization. Our experimental results demonstrated an improved

performance of the proposed method in the enrollment rate prediction task over the best baselines

by up to 12.2% in mean squared error on a large-scale real-world clinical trial dataset from

IQVIA, while also offering direct means of quantifying uncertainty in the predictions based on

the fitted model.
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Chapter 1

Introduction

1.1 Goal, Motivation, and Challenges.

Probabilistic modeling is a cornerstone of artificial intelligence and machine learning as massive

amounts of information are generated in data-intensive fields such as healthcare, social networks,

finance, sales, marketing and many more, increasing the demand for tools that can store, detect

summarize the multivariate structure of high-dimensional data, while also allowing the inherent

uncertainty in these systems to be represented. Accurate modeling of probability distributions

based on observed data samples lies at the core of multivariate data analysis and unsupervised

learning. The joint probability distribution function encodes a complete statistical model of the

data generative process and thus it can be used as a basic building block for modern tasks in

intelligent systems that involve knowledge of the underlying structure of data.

Given an accurate and tractable estimate of the joint distribution function, one can generate

new samples, calculate the conditional and marginal probability distributions of arbitrary subsets

of variables, their corresponding expectations, or other quantities of interest on never-before-seen

data. One can naturally solve a variety of types of inference problem, such as classification,

regression, missing value imputation, and many other predictive tasks. This can facilitate a wide

range of applications ranging from sampling realistic “synthetic” images (generative models)

to anomaly detection (predicting acts of terrorism, detecting fraud, etc.), where we can use

an accurate joint distribution model to label query points as anomalies if they reside in low

density areas. Another potential area of applications is healthcare, where such models could

be used to predict a patient’s response to specific therapies based on cancer gene expression

1
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data or generate hypothetical gene expression profiles under various types of molecular and

genetic perturbation. To list a few recent applications, such models have demonstrated success

in generating high-fidelity images [2], [3], realistic speech synthesis [4], [5]; semi-supervised

learning [6]; reinforcement learning [7]; and detecting adversarial data [8].

Methods for estimating statistical distributions can be broadly classified as either parametric

or non-parametric. Parametric methods such as the Gaussian Mixture Model (GMM) [9], use a

specific functional form with a fixed number of tunable parameters but they become inaccurate

when the data generating process differs significantly from the assumed parametric model.

Non-parametric models such as the kernel density estimator (KDE) [10, 11], histogram density

estimation (HDE), and Orthogonal Series Density Estimation (OSDE) [12], [13], [14], are more

unassuming and in that sense more flexible, but the flip-side is that they do not scale beyond a

small number of variables (dimensions) due to the curse of dimensionality (CoD): the number of

training data needed to obtain reasonable estimates blows up exponentially. However, real-world

data (such as images, audio, and text) reside in a high dimensional and complex feature spaces

while only a limited amount of observed data are directly available.

Recently, several neural network-based approaches for (both direct and indirect) distribution

estimation have been proposed and demonstrated promising results in high-dimensional problems.

Direct models include the so-called autoregressive models (AR) models [5,15], which decompose

the distribution into a product of conditionals, and Normalizing flows (NFs) [16], which represent

a density value though an invertible transformation of latent variables with known density. These

methods do not construct a distribution model but rather serve for point-wise evaluation –

they cannot impute more than very few missing elements in the input as grid search becomes

combinatorial. Incomplete observations due to causes such as faulty sensors and corrupted

data, present further distinct challenges to the training of these models. Such requirements

call for statistical models that are flexible enough to represent a wide class of distributions

from “imperfect” samples, and tractable and scalable at the same time. Indirect models, such

as generative adversarial networks [17] (GANs) and do not allow for likelihood evaluation on

held-out data. Furthermore, most of them do not address model identifiability, and can not

guarantee the recovery of the true latent factors that generated the observed samples.

This thesis combines probability theory and tensor factorization tools to develop highly

expressive and efficient statistical models, which are promising for high-impact real-world
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applications. In particular, the central goal of this project is to propose solutions for (non-

parametric) statistical modeling of complex data – spanning high-dimensional continuous (joint

PDF), discrete or categorical distributions (PMF), and distributions of (potentially) hybrid

random variables (CDF). The proposed models are expressive enough to represent never-before-

seen data, and tractable and (computationally and memory-wise) scalable at the same time

(expressivity-tractability trade-off). The proposed frameworks offer a wide range of desired

benefits such as model uniqueness, parsimony, easy model marginalization, prediction of any

variable from (a subset of) the other variables, and fast sampling.

1.2 Thesis Outline

Our main building blocks are tensors and tensor decompositions. In Chapter 2, we review

necessary background on tensors, we introduce the Canonical Polyadic Decomposition (CPD), a

powerful tensor model, and discuss its identifiability properties. We also describe how CPD has

been proposed for modeling finite-alphabet random vectors, a topic that was first pointed out

in [18].

Although the first part of this dissertation also includes joint PMF modeling (e.g., a multi-

variate PMF model based on a coarse-fine hierarchical tensor partition [19]), we will mainly

focus on the key novelty, which is tensors as universal PDF approximators. Before that, however,

in Chapter 3 we introduce a novel information-theoretic feature selection method using tensor

based joint PMF modeling [20]. In Chapters 4 and 5, we revisit the classic problem of non-

parametric density estimation from a fresh perspective – through the lens of complex Fourier

series approximation and tensor modeling, leading to a low-rank characteristic function approach.

In Chapter 4, we show that any compactly supported density can be well-approximated by a

finite characteristic tensor of leading complex Fourier coefficients as long as the coefficients

decay sufficiently fast [21]. Chapter 5 builds on this foundation to develop a joint compression

(nonlinear dimensionality reduction) and compressed density estimation framework [22]. Each

approach has its own advantages. Although it does not provide a density estimate in the original

space as the “baseline” method in this first part does, it offers additional flexibility and scalability.

The second part of this dissertation comprises the following two thrusts. In Chapter 6,

we introduce a low-rank parametrization of grid-sampled multivariate CDFs using tensor fac-

torization either in the data or in the copula domain, with applications in classification and
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missing data imputation [1]. In Chapter 7, we combine the temporal modeling power of recurrent

neural networks (RNNs) with the parsimony of principled low-rank density models, to propose a

versatile time series high-dimensional distribution model capable of capturing complex nonlinear

dependencies between variables and time.

In Chapter 8 we present conclusions and discussion on future research directions.

1.3 Contributions

1.3.1 Chapter 3 — Information-theoretic Feature Selection via Tensor Decompo-
sition and Submodularity

Feature selection by maximizing high-order mutual information between the selected feature

vector and a target variable is the gold standard in terms of selecting the best subset of relevant

features that maximizes the performance of prediction models. However, such an approach

typically requires knowledge of the multivariate probability distribution of all features and the

target, and involves a challenging combinatorial optimization problem. Recent work has shown

that any joint Probability Mass Function (PMF) can be represented as a naive Bayes model, via

Canonical Polyadic (tensor rank) Decomposition. In this paper, we introduce a low-rank tensor

model of the joint PMF of all variables and indirect targeting as a way of mitigating complexity

and maximizing the classification performance for a given number of features. Through low-rank

modeling of the joint PMF, it is possible to circumvent the curse of dimensionality by learning

‘principal components’ of the joint distribution.

• By indirectly aiming to predict the latent variable of the naive Bayes model instead of

the original target variable, it is possible to formulate the feature selection problem as

maximization of a monotone submodular function subject to a cardinality constraint –

which can be tackled using a greedy algorithm that comes with performance guarantees.

• Numerical experiments with several standard datasets suggest that the proposed approach

compares favorably to the state-of-art for this important problem. The results of this

chapter are reported in [20].

In chapter 4, we propose a novel approach for non-parametric joint Probability Density Function

(PDF) estimation that builds upon tensor factorization tools [21].
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1.3.2 Chapter 4 — Low-rank Characteristic Tensor Density Estimation Part I:
Foundations

We show that any compactly supported continuous density can be approximated, within control-

lable error, by a finite characteristic tensor of leading complex Fourier coefficients, whose size

depends on the smoothness of the density. This characteristic tensor can be naturally estimated

via sample averaging from realizations of the random vector of interest. In order to circumvent

this “curse of dimensionality” (CoD) and further denoise the naive sample averaging estimates,

we introduce a low-rank model of the characteristic tensor, whose degrees of freedom (for

fixed rank) grow linearly with the random vector dimension. Low-rank modeling significantly

improves the density estimate especially for high-dimensional data and/or in the sample-starved

regime. By virtue of uniqueness of low-rank tensor decomposition, under certain conditions, our

method enables learning the true data-generating distribution.

• We show that a finite mixture model (approximately) follows from compactness of support

and continuous differentiability (smoothness).

• Furthermore, assuming low-rank in the Fourier domain, a controllable approximation of

the multivariate density is identifiable.

• We also show that a high dimensional joint PDF can be recovered by observing subsets

(e.g., triples or quadruples) of variables, under certain conditions.

• The proposed model allows efficient and low-complexity inference, sampling, and density

evaluation. We provide convincing experimental results on sampling, likelihood evaluation,

and regression on toy, image, and many real datasets that are often used as benchmarks

in our context. Our results corroborate the effectiveness of the proposed method even for

datasets that have hundreds of variables. The results of this chapter are reported [21].

In chapter 5, we show that scaling to higher dimensions is possible under a joint dimensionality

reduction and non-parametric density estimation framework, using a non-parametric low-rank

tensor model in the Fourier domain to capture the underlying distribution of appropriate reduced-

dimension representations.
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1.3.3 Chapter 5 — Low-rank Characteristic Tensor Density Estimation Part II:
Compression and Latent Density Estimation

Learning generative probabilistic models of complex data such as images is a core problem

in machine learning, which presents significant challenges due to the curse of dimensionality.

This paper, proposes a joint dimensionality reduction and non-parametric density estimation

framework, using a novel estimator that can explicitly capture the underlying distribution of

appropriate reduced-dimension representations of the input data. The idea is to jointly design

a nonlinear dimensionality reducing auto-encoder to model the training data in terms of a

parsimonious set of latent random variables, and learn a canonical low-rank tensor model of

the joint distribution of the latent variables in the Fourier domain. The proposed latent density

model is non-parametric and “universal”, as opposed to the predefined prior that is assumed in

variational auto-encoders. Joint optimization of the auto-encoder and the latent density estimator

is pursued via a formulation which learns both by minimizing a combination of the negative

log-likelihood in the latent domain and the auto-encoder reconstruction loss.

• Although it does not provide a density estimate in the original space as the “baseline”

method in this first part does, this joint approach boosts the flexibility, scalability, and

statistical performance in terms of prediction (regression/detection) accuracy and sampling

fidelity.

• Instead of the coupled tensor factorization approach adopted in Part I, Part II tackles joint

density estimation as a hidden tensor factorization problem using maximum likelihood

learning of the latent distribution’s parameters. The proposed model achieves very promis-

ing results on toy, tabular, and image datasets on regression tasks, sampling, and anomaly

detection. The results of this chapter are reported in [22].

For some applications, such as tasks requiring estimates of (possibly semi-infinite) “box” proba-

bilities, e.g. of type Pr{35 < Age ≤ 45, · · · , 55 < Income ≤ 70}, or tasks involving mixed

random variables, modeling the joint CDF is more appropriate, as it avoids the (potentially

intractable) multi-dimensional integration of the joint PDF. In contrast to a PDF/PMF, a joint

CDF (and its grid-sampled sketch) always exists, and allows modeling both discrete, continuous

or hybrid (continuous and discrete) random variables.
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1.3.4 Chapter 6 — Learning Multivariate CDFs and Copulas using Tensor Fac-
torization

In Chapter 6, we aim to learn multivariate cumulative distribution functions (CDFs), as they

can handle mixed random variables, allow efficient ‘box’ probability evaluation, and have the

potential to overcome local sample scarcity owing to their cumulative nature. We show that any

grid-sampled version of a joint CDF of mixed random variables admits a universal representation

as a naive Bayes model via the Canonical Polyadic (tensor-rank) decomposition. By introducing

a low-rank model, either directly in the raw data domain, or indirectly in a transformed (Copula)

domain, the resulting model affords efficient sampling, closed form inference and uncertainty

quantification, and comes with uniqueness guarantees under relatively mild conditions. We

demonstrate the superior performance of the proposed model in several synthetic and real

datasets and applications including regression, sampling and data imputation. Interestingly,

our experiments with real data show that it is possible to obtain better density/mass estimates

indirectly via a low-rank CDF model, than a low-rank PDF/PMF model. The results of this

chapter are reported in [1]. This work is presented in chapter 4, where we show that:

• Every multivariate CDF evaluated on a predefined grid admits a compact representation

via a latent variable naive Bayes model with bounded number of hidden states equal to the

rank of the grid-sampled CDF tensor.

• This affords easy sampling, marginalization (by discarding the subset of factor matri-

ces corresponding to the variables we are not interesting in), derivation of conditional

distributions and expectations, and uncertainty quantification – bypassing the curse of

dimensionality.

• The proposed model also affords direct and efficient estimates of (possibly semi-infinite)

“box” probabilities, which is important for classification tasks. Multivariate PDF estima-

tors, on the other hand, require multidimensional integration (analytical, numerical, or

sampling-based Monte-Carlo) to estimate box probabilities, which is cumbersome and

often intractable.

• At the same time, the proposed rank-constrained estimator is unassuming of the structure

of the data (thus offering greater expressive power) and identifiable under relatively mild

rank conditions – see [23].
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• On the experimental side, our results indicate that, perhaps surprisingly, estimating the

grid-sampled CDF and then deriving a PDF estimate from it yields improved performance

relative to direct PDF estimation in several machine learning applications of interest. In

addition, the performance of the proposed non-parametric model in the Copula domain

outperforms state-of-the-art Copula-based baselines.

Building upon the framework and the methods developed in [1], we solve an important practical

problem of high societal impact, using unique data and know-how of IQVIA R&D, which has

a long track record in optimizing clinical trials. We leverage the results presented in [1], for

reliable enrollment rate estimation, delivering probability estimates of a specific trial meeting an

expected enrollment rate or probability estimates of being within a certain interval, as well as

country recommendation.

• Experimental results demonstrate an improved performance of the proposed method in the

enrollment rate prediction task over the best baselines by up to 12.2% in mean squared

error on a real country-level trial dataset, while also offering direct means of quantifying

uncertainty in the predictions based on the fitted model.

1.3.5 Chapter 7 — Modeling time series using latent history summaries and
low-rank tensor densities

Probabilistic modeling of multivariate time-series is a challenging problem but fundamental for

many applications in machine learning such as sensor signal modeling [24] and stock market

forecasting. Although accurately modeling both inter- and intra-series dependencies is a key

factor, the computational difficulties of estimating high-dimensional densities across time often

limit existing methods by imposing strong assumptions on the dependencies between the variables

across time. The proposed method described in this Chapter deals with these demands.

• We combine deep learning models for learning sequential dynamics with the parsimony of

principled distribution models. This novel end-to-end framework ties together two threads

of research: low-rank tensor modeling for flexible and efficient distribution estimation and

the temporal modeling power of recurrent neural networks.

• The proposed model generates probabilistic forecasts that allow for uncertainty quantifica-

tion and can handle missing inputs in some or all of the components in a multivariate time



9

series.

• At the same time, experiments on six real-world datasets show that our method achieves

significant improvements in forecasting compared to the most state-of-the-art baseline

methods, as well as an average 8.07% reduction on RMSE metric for time-series imputa-

tion.



Chapter 2

Notation and Tensor Preliminaries

2.1 Notation and Definitions

Unless stated otherwise, for every Chapter of this dissertation, we use the symbols x, X, X for

vectors, matrices and tensors respectively. We use the notation x(n), X(:, n), X (:, :, n) to refer

to a particular element of a vector, a column of a matrix and a slab of a tensor. Symbols ◦, ⊗, ⊛,

⊙ denote the outer, Kronecker, Hadamard and Khatri-Rao (column-wise Kronecker) product

respectively. The vectorization operator is denoted as vec(X), vec(X ) for a matrix and tensor

respectively [23]. Additionally, diag(x) ∈ RI×I denotes the diagonal matrix with the elements

of vector x ∈ RI on its diagonal. Symbols ∥x∥1, ∥x∥2, ∥X∥F , dTV , and ∥x∥∞, correspond

to L1 norm, L2 norm, Frobenius norm, total variation distance, and infinity norm. The total

variation distance between distributions p and q is defined as dTV (p, q) =
1
2∥p− q∥1.

Given an N -dimensional random vector X := [X1, . . . , XN ]T , X ∼ FX will denote that

the random vector X follows distribution FX. 1(A) is the indicator function of event A, i.e., it

is 1 if and only if A is true. The set of integers {1, . . . , N} is denoted as [N ]. Given M data

samples, D = {xm}Mm=1 denotes the given dataset.

2.1.1 Tensor Preliminaries:

Tensors provide a natural representation for massive multidimensional data. An N -way tensor

X ∈ RI1×I2×···×IN is a multidimensional array whose elements are a function of N indices

X (i1, i2, · · · , iN ), with in ranging from 1, · · · , In. The number of elements in the tensor

10
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A3(: , R)
A2(: , R)

A1(: , R)

λ(R)λ(2)λ(1)

Figure 2.1: CPD model of a 3-way tensor.

X ,
∏N

n=1 In, grows exponentially with N , a problem known as the curse of dimensionality

(CoD). Similar to the matrix case, a tensor can be represented in succinct form with tensor

decompositions. It can always be decomposed as a finite sum of R rank-1 tensors for high-

enough but finite R, i.e.,

X =

R∑

h=1

λ(h)A1(:, h) ◦A2(:, h), · · · ,AN (:, h), (2.1)

where λ ∈ RR, each An ∈ RIn×R, An(:, h) denotes the h-th column of matrix An. A

visualization is shown in Figure 2.1 for the case of N = 3. The decomposition can be compactly

denoted as a collection of latent factor matrices and the weight vector λ,

X = [[λ,A1,A2, · · · ,AN ]] (2.2)

or elementwise as

X (i1, i2, · · · , iN ) =
R∑

h=1

λ(h)

N∏

n=1

An(in, h). (2.3)

The vectorized form of the tensor can be expressed as

vec(X ) =
(
⊙N

n=1An

)
λ. (2.4)

We can express the mode-n matrix unfolding which is a concatenation of all mode-n ‘fibers’

of the tensor as

X (n) = (⊙k ̸=nAk)diag(λ)An
T , (2.5)

where (⊙k ̸=nAk) = AN ⊙ · · · ⊙An+1 ⊙An−1 ⊙ · · · ⊙A1.
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When R is minimal, it is called the rank of X , and the decomposition is called Canonical

Polyadic Decomposition (CPD) [25, 26]. For many practical applications, low-rank decomposi-

tions can be used for extracting latent factors from tensorial datasets. If the tensor can be well

approximated by a low-rank CPD model, the number of free parameters of the model to be

estimated drops to O
(
R
(∑N

n=1 In

) )
.

2.2 Uniqueness of Canonical Polyadic Decomposition

A key property of the CPD is that the rank-1 components are unique under mild conditions. For

a rank−R tensor, the goal is to recover all the underlying factors An and λ. The uniqueness

properties of tensor rank decomposition [27] implies probability (and generative) model identifi-

ability in our context. A model is identifiable, if and only iff there is a unique set of parameters

that is consistent with what we have observed.

Theorem 2.1. [27]: Let kA be the Kruskal rank of A, defined as the largest integer k such that

every k columns of A are linearly independent. Given X = [[λ,A1, . . . ,AN ]], if
∑N

n=1 kAn ≥
2R+N − 1, then the rank of X is R and the decomposition of X in rank-one terms is unique.

Better results allowing for higher tensor rank are available for generic tensors of given rank.

Theorem 2.2. [28]: Given X = [[λ,A1,A2,A3]], assume, without loss of generality, that

I1 ≤ I2 ≤ I3. Let α, β be the largest integers such that 2α ≤ I1 and 2β ≤ I2. If R ≤ 2α+β−2

the decomposition of X in rank-one terms is unique almost surely.

There are many more different uniqueness conditions for CPD. The take-home point here is

that the CPD model is essentially generically unique even if R is much larger than I1, I2, I3 – so

long it is less than maximal possible rank.

2.3 Representing Statistical Distributions via Tensors

Learning multivariate distributions is one of the core research problems in machine learning and

statistics. Modeling a data-generating distribution generally refers to the approach of inferring a

function that describes the hidden structure from unlabeled data and can “explain” given samples.

Given a set of independently and identically generated realizations (or data-points) of a vector
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X1 X2 XN

H

…

An(in, h) = PXn|H(in |h)

λ(h) = PH(h)

Figure 2.2: Latent variable-naive Bayes model.

X ∈ RN ,X := [X1, . . . , XN ]T , the goal is to find an accurate estimate of the true underlying

data distribution.

If Xn takes discrete integer values in {1, · · · , In}, n = 1, . . . , N , X is governed by a

joint Probability Mass Function (PMF). We can think of the joint PMF as an N -way array

X ∈ RI1×I2×···×IN , which we call a probability tensor. The size of each dimension is equal to

the alphabet size I1, . . . , IN of the corresponding variable and the indexed elements represent

the probability of the particular realization, i.e.,

X (i1, i2, . . . , iN ) = Pr(X1 = i1, X2 = i2, . . . , XN = iN ).

Every tensor X admits a non-negative CPD of finite rank [18], and thus we can always

express the joint PMF using a non-negative CPD model

X (i1, . . . , iN ) =
R∑

h=1

λ(h)
N∏

n=1

An(in, h), (2.6)

for high enough R [18].

Equation (2.6) shows that every joint PMF admits a naive Bayes model interpretation with

bounded R. The naive Bayes model assumes that there is a hidden random variable Z taking R

values, such that given H = h the random variables XV are conditionally independent i.e.,

PXV
(i1, . . . , iN ) =

R∑

h=1

PH(h)

N∏

n=1

PXn|H(in|h). (2.7)

By variable matching between Equations (2.6) and (2.3) and upon defining

An(in, h) := PXn|H(in|h), for n = 1, . . . , N, and λ(h) := PH(h),
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we can see that the naive Bayes model can be represented by a non-negative CPD model

X = [[λ,A1, . . . ,AN ]] with the constraints that matrices An are column-stochastic, and 1Tλ =

1 [18], [19]. The observed data (so-called ‘manifest’ variables) are generated through an unknown

mapping expressed by the conditional distributions PXn|H and the prior distribution of the hidden

variable PH . One of the very appealing properties this generative model is that it affords easy

sampling. According to Equation , a sample of the multivariate PMF can be generated by first

drawing H according to PH and then independently drawing samples for each variable Xn from

the conditional PDF PXn|H . The resulting generative model can be visualized in Figure 6.1.

This model is also known as mixture of unigrams or latent class model and has been applied in

many applications such as topic modeling [29], clustering [30] and crowdsourcing [31]. The

rank of the probability tensor is a nonlinear measure of statistical dependence of the associated

random variables. If R = 1, the random variables are independent while full rank indicates

complete statistical dependence. Partial dependence is typical, and can be modeled using a

low-rank multivariate probability tensors.

In conclusion, any joint PMF can be represented by a latent variable model with just one

hidden variable having R possible states and therefore admits a non-negative CPD of bounded

rank. Employing this model, we can alleviate the CoD by focusing on ‘principal components’ of

the joint distribution.

If X is a real valued vector with its support (the set of values that it can take) contained

in SX , X is governed by a joint PDF. In case of continuous random variables, however, the

joint PDF can no longer be directly represented by a tensor. One possible solution could be

discretization, but this can lead to discretization error and possibly loss of identifiability. In

Chapter 4, we show is that we can approximately represent any smooth joint PDF (and evaluate

it at any point) by a finite characteristic tensor of leading complex Fourier coefficients, thereby

avoiding discretization loss altogether. For mixed random variables, in Chapter 6, we target

modeling the joint CDF (and its grid-sampled sketch).



Chapter 3

Information-theoretic Feature Selection
via Tensor Decomposition and
Submodularity

3.1 Introduction

Real-world data often exhibit complicated manifold structure in very high dimensional spaces,

making conventional machine learning tools insufficient for data analysis. Knowledge discovery

in a high-dimensional space with limited training examples is a difficult task that entails high

computational cost in both the training and the run-time stage, large variance of the predictions

due to overfitting the training samples, and poor generalization. Although adding more input

variables may provide additional information, an assumption supported by the data processing

inequality [32], after a certain point the performance of classification will typically degrade as

the number of features continues to increase. In practice, not all features are equally important

and discriminative, as many of the dimensions carry little or redundant information. Analyzing

high-dimensional data therefore raises the fundamental problem of reducing dimensionality by

discovering compact representations that do not incur significant loss in prediction accuracy for

the ultimate task at hand. Feature selection methods try to find a lower-dimensional representation

of data by removing redundant or irrelevant features. Feature selection maintains the physical

meaning and dependencies between the selected features, resulting in predictive models with

15
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better interpretability [33, 34]. Feature selection aids the learning task by reducing the number

of parameters to learn (and hence sample complexity), and by speeding up the associated

computation.

Projecting data onto a lower dimensional space facilitates, among other tasks, exploratory

data analysis and visualization, clustering, and compression of high-dimensional data. Feature

selection is particularly important and challenging in biomedical data mining, where the data is

characterized by relatively few training instances and a high-dimensional feature space, leading

to degradation of classifier performance as noisy/uninformative features prohibit us from mining

potentially useful knowledge [35]. In personalized marketing, feature selection is used for

sentiment analysis of customer reviews as it aims to identify indicators in the document to

infer the polar category, either positive or negative sentiment, so that products are targeted to

customers where the probability of positive sentiment is higher [36]. Feature selection has also

been used to improve text data clustering and classification [37], and in stock market price index

prediction to reduce the cost of training time and to improve prediction accuracy [38].

To evaluate any possible subset, feature selection methods require a quality measure. Most

prior information-theoretic methods for feature selection use a lower-order approximation of the

Mutual Information (MI). We consider using the high-order Shannon entropy-based MI as the

evaluation criterion, because it can capture any kind of relationship, linear or nonlinear, between

multiple random variables.

Computing MI typically entails the estimation of a high-dimensional probability distribution.

Direct estimation of the joint distribution for high-dimensional data is impossible, due to the curse

of dimensionality. We thus need a ‘universal’ model that can capture the ‘principal components’

of this high-dimensional joint distribution in a parsimonious way. It has recently been shown

that low-rank approximation of the joint probability tensor addresses this need [18]. Rank-F

approximation represents the joint distribution as a latent variable model with just one hidden

variable having F possible states. For large enough but finite F the latter model is universal

– it can represent any joint distribution of categorical variables. Low rank CPD models have

been successfully applied for joint distribution modeling and downstream tasks in applications

ranging from recommender systems, see Kargas et al. [18], to anomaly detection, see Amiridi

et al. [22] and sampling images from the USPS dataset where the dimensionality is N = 256

with tensor rank equal to F = 8 [21]. Higher dimensional data (MNIST, FashionMNIST,

N = 784) have also been modeled using low rank CPD models in a reduced-dimension latent
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space. These results clearly support the claim that relatively low-rank CPD can effectively

model relatively high-dimensional distributions. In this paper, we propose a novel dimensionality

reduction framework that incorporates a low-rank model of the joint distribution, which affords

disciplined subset selection through maximization of a monotone submodular function. The

latter optimization is amenable to greedy solution with performance guarantees.

3.2 Related work

Numerous methods have been proposed for feature selection. This work focuses on information-

theoretic feature selection methods. An extensive body of work on information-theoretic feature

selection techniques exists which is based on maximizing mutual information between subsets

of features and class labels. Brown et al. [39], for example, posed the feature selection problem

as a conditional likelihood maximization of the class labels, given features. Most techniques are

greedy methods that make use of low-dimensional MI quantities due to the difficulty associated

with estimating high dimensional distributions from limited samples. Simpler methods often

ignore features which have strong discriminatory power as a group but are weak as individual

features. There are a growing set of methods for feature selection based on variational lower

bound estimates on mutual information [40] but the properties of existing variational estimators

of MI are not yet well understood. To address these problems, recent techniques consider

interactions among more than two variables, by estimating / approximating higher-dimensional

mutual information quantities. We selected four state-of-the-art information-theoretic feature

selection methods (MRMR [41], JMIM [42], RJMI [43], and GlobalFS/iSelect [44]) as baselines.

1. MRMR: The Maximum Relevance Minimum Redundancy approach is an information-

theoretic based method that uses mutual information to select features that have high

relevance to the class while having low mutual information with the other selected features,

thus guarding against pairwise redundancy. MRMR is a greedy algorithm like our method,

but with a coarser criterion [41].

2. JMIM: The Joint Mutual Information Maximization approach starts with a feature of a

maximal mutual information with the target variable Y . Then, it greedily adds the feature

X that maximizes J(X) = I(X;Y |S), where S is the set of already selected features [42].

Similar to the proposed method, this framework also requires the input to be discrete and
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uses empirical estimators of distribution, and, consequently, information gain or entropy.

3. Rényi-based JMI (Rényi’s α-order based joint MI maximization): Instead of using Shan-

non’s definition of the mutual information, [43] defines a multivariate extension of the

matrix-based Rényi’s α-order joint entropy, which allows estimating the multivariate MI

with respect to a desired variable Y , without evaluating the underlying PMF.

4. GlobalFS/iSelect: By denoting a new candidate feature as Xcand, this method [44] aims to

find an optimal set of features that jointly maximize the mutual information with the class

variable while penalizing low values of the increment of I(S;Y ) after adding Xcand, i.e.,

I(Xcand;Y |S′).

Throughout our experiments, we used the respective author-provided codes downloaded from

https://github.com/danielhomola/mifs for MRMR and JMI, https://sites.

google.com/site/vinhnguyenx for GlobalFS/iSelect, and shared1 by the authors of

[43].

3.3 Preliminaries

3.3.1 Mutual Information and Submodularity

The Shannon entropy of a random variable X is defined as

H(X) = −
∑

x

PX(x) logPX(x)

and measures the amount of uncertainty in X . Given a second variable Y , we can quantify the

uncertainty in X after Y has been observed using the conditional entropy

H(X|Y ) = −
∑

x,y

PX,Y (x, y) logPX|Y (x|y).

The Mutual Information (MI) between two random variables X and Y is defined as

I(X;Y ) =
∑

x,y

PX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)
,

1Private communication – we gratefully acknowledge the authors of [43] for sharing their code with us.

https://github.com/danielhomola/mifs
https://sites.google.com/site/vinhnguyenx
https://sites.google.com/site/vinhnguyenx
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and measures how far the variables X,Y are from being independent. Alternatively, we can view

MI as

I(X;Y ) = H(Y )−H(Y |X),

which allows us to interpret MI as the reduction of the uncertainty about Y when we are provided

with knowledge of X . MI is symmetric in its arguments:

I(X;Y ) = I(Y ;X) = H(X)−H(X|Y ).

Given the joint PMF PXV ,Y of XV = {X1, X2, . . . , XN} and Y , we consider the high-order

mutual information between a subset of features XS , S ⊆ V and the variable Y

f(S) = I(XS ;Y ) = H(XS)−H(XS |Y ),

which quantifies the expected reduction of uncertainty about Y upon revelation of XS . According

to the non-decreasing property of MI, adding extra variables increases joint entropy, decreases

conditional entropy, and increases information:

I(XS ;Y ) ≤ I(XV ;Y ).

MI has been successfully employed in many feature selection methods due to the fact that it can

capture complex relationships between the features and the target variable. However, selecting

the optimal subset of features of cardinality K that maximizes the high-order mutual information

is known to be NP-hard [45]. Additionally, the calculation of high-order mutual information

requires a reliable estimate of the joint probability distribution.

It has been shown that in the special case where the features are independent given the target

variable Y (which is a very restrictive and unrealistic assumption in practice), f is monotone

submodular [46, 47]. Submodular functions comprise a class of set functions f : 2V → R that

satisfy the diminishing returns property

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B)), ∀A ⊆ B ⊆ V and x ∈ V \B.

This property states that adding an element to a smaller set results to larger increase in f
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than adding it to a larger set. Moreover, if

f(A ∪ {x}) ≥ f(A), ∀A ⊆ V

holds, the function is monotone submodular. [48] showed that the problem of maximizing a

monotone submodular function f subject to a cardinality constraint can be approximated with a

constant multiplicative factor of

1− 1

e
,

performance guarantee to the optimal solution of the NP-hard optimization problem using a

simple greedy algorithm. Here, e is the base of the natural logarithm. See more in Equation 3.4.

Submodularity can be further exploited to accelerate the greedy implementation, leading to an

algorithm called lazy greedy with almost linear time complexity [49].

3.4 Problem Formulation

Given a datasetD = {xi, yi}Mi=1 of M realizations of the random variables XV = {X1, X2, . . . , XN}
(features) and the target variable Y (label), we wish to infer a subset S ⊆ V comprising |S| ≤ K

features that best predicts Y for the given K. Ideally, K is the intrinsic dimension of the dataset

– the minimum number of variables that carry sufficient information for accurately predicting

the target variable Y . Intrinsic dimension can be alternatively viewed as the size of the smallest

feature subset after which the MI between this subset and the target variable stops increasing.

We begin by formulating feature selection as an optimization problem seeking to maximize the

MI between the features XS and the target variable Y ,

argmax
S⊆V,|S|≤K

f(S). (3.1)

Instead of ranking each variable Xn independently of the rest, this multivariate approach, which

utilizes the high-order mutual information, evaluates features according to their joint information

power, enabling us to detect redundant features. Feature interaction is significant in view of the

fact that groups of several features acting simultaneously may be relevant, but not the individual

features alone. For example, consider the binary case, where the conditional joint PMF of two

binary random variables X1 and X2 given Y = 0 and Y = 1, respectively is given in matrix
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form:

PX1,X2|Y=0 =

(
0.5 0

0 0.5

)
, PX1,X2|Y=1 =

(
0 0.5

0.5 0

)
.

Then clearly X1 is independent of Y , same for X2, but X1, X2 together are not independent

of Y , i.e., X1 ⊥⊥ Y,X2 ⊥⊥ Y, {X1, X2} ⊥̸⊥ Y , and we say that features X1, X2 constitute an

interaction group – a set of features that appear to be irrelevant or weakly relevant with the class

Y individually, but if considered jointly, they correlate to the class. However, the number of

candidate subsets is
(
N
K

)
, thus an exhaustive search is too costly and practically prohibitive even

for a medium feature set size K. As mentioned earlier, the problem is NP-hard [50].

Instead of solving optimization problem (3.1), we propose an intuitive and more efficient

alternative approach. Since every joint distribution admits a naive Bayes representation, via the

CPD, we take an indirect path for determining the most informative features, through the latent

variable Z. We propose using the mutual information as a metric to identify the subset of the

‘manifest’ variables that can best identify the operational component of the distribution, or, in

other words, to best predict the latent variable Z in the CPD model. The graphical model implies

a dependence of the label Y on the observed variable Xn through the latent variable Z. Given Z,

the features and the label Y become conditionally independent, hence if we predict Z from the

features, predicting Y from Z is a simple task.

In lieu of the initial I(XS ;Y ) maximization approach, we therefore propose solving the

surrogate problem of selecting features by maximizing the MI between the selected features and

the latent variable Z, i.e.,

argmax
S⊆V,|S|≤K

g(S), where g(S) = I(XS ;Z) =
∑

xS ,z

PXS ,Z(xS , z) log
PXS ,Z(xS , z)

PXS
(xS)PZ(z)

.

Employing a CPD model for the joint PMF PXV ,Y , feature selection can be equivalently described

as dropping out all but an optimal subset S of K edges tied to the N features (Fig. 6.1). In terms

of the CPD model, this means choosing a representative subset of factor matrices {AS} ⊂ {AV }
to form the reduced CPD model

X ′ = [[λ, {AS},AN+1]]. (3.2)
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Claim 1.

g(S)− const ≤ f(S) ≤ g(S),

where const = I(XV ;Z|Y ) = I(XV ; {Z, Y })− I(XV ;Y ).

Proof: Given XS , Y, and Z, the conditional mutual information is defined as I(XS ;Z|Y ) =

I(XS ; {Z, Y })− I(XS ;Y ). From the definition of the conditional MI and the latent variable

model, for which it holds that I(XS ;Y |Z) = 0, we get the following:

I(XS ;Y ) = I(XS ; {Y, Z})− I(XS ;Z|Y )

= I(XS ;Z)− I(XS ;Z|Y ).

Since MI is always non-negative, we get that

I(XS ;Z|Y ) ≥ 0

and thus

I(XS ;Y ) ≤ I(XS ;Z),

which means that our surrogate objective is an upper bound on the original objective function.

Furthermore, by the non-decreasing property of MI, we get that

I(XS ;Z|Y ) ≤ I(XV ;Z|Y ),

and it holds that

I(XS ;Z)− I(XV ;Z|Y ) ≤ I(XS ;Y ) ≤ I(XS ;Z)⇔
I(XS ;Z)− const ≤ I(XS ;Y ) ≤ I(XS ;Z)⇔

g(S)− const ≤ f(S) ≤ g(S),

where

const = I(XV ;Z|Y ) = I(XV ; {Z, Y })− I(XV ;Y ).

The double inequality shows that we are maximizing a surrogate function that is a constant

band-gap away from the desired function. Note that if we estimate the principal components of

the joint PMF, we can easily estimate the band-gap. The band-gap can be further bounded as
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follows:

const = I(XV ;Z|Y ) = H(Z|Y )−H(Z|XV , Y ) ≤ H(Z|Y ).

Using H(Y )−H(Y |Z) = I(Y ;Z) = H(Z)−H(Z|Y ),

const ≤ H(Z|Y ) = H(Z)−H(Y ) +H(Y |Z),

and thus

const ≤ H(Z) +H(Y |Z) ≤ log(F ) +H(Y |Z),

since the entropy of a finite-alphabet random variable is upper bounded by the logarithm of its

alphabet size (achieved by the uniform distribution over its alphabet), and Z has alphabet size

equal to the tensor rank, F (F ≤ 30 in our experiments). This confirms our intuition that when

Z is predictive of Y (H(Y |Z) is small) the band-gap should be small. In practice we expect

much smaller band-gaps, as we used multiple upper bounding steps in this derivation.

Like the original problem, the proposed alternative is NP-hard. The reason we propose it,

however, is two-fold: first, given Z, all the X’s become irrelevant as far as Y is concerned; and

the above surrogate optimization problem where we aim to predict Z involves the maximization

of a monotonic submodular reward function subject to a cardinality constraint [46, 47], which is

not the case when our aim is to predict Y directly from the regressors. Monotone submodular

maximization subject to a cardinality constraint enjoys 1− 1
e approximation guarantee to the

optimum solution, while simultaneously enabling extremely fast optimization [49].

3.5 Algorithm Description

The proposed feature selection process, called Greedy Submodular Monotone optimization

using CPD (GSM-CPD), consists of four steps, namely, PMF estimation of all variables, subset

generation, MI evaluation and subset selection.

3.5.1 PMF Estimation

In the first step, our algorithm utilizes a rank-F approximation of the empirical joint PMF tensor

X̂ , computed using Kullback-Leibler (KL) divergence as the fitting criterion. The empirical

probability tensor, which is typically sparse, is formed by computing how often an event (a
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Algorithm 3.1 PMF Estimation

Input: Empirical PMF: X̂ , ‘Signal Rank’ F
Output: X = [[λ,A1, . . . ,AN ]]

1: Initial guess X = [[λ,A1, . . . ,AN ]]
2: Ŷ ← X̂/ [[λ,A1, . . . ,AN ]]
3: while termination condition not met do
4: for all f do
5: λ(f)← λ(f)Ŷ ×1 A1(:, f) · · · ×N AN (:, f)
6: end for
7: for all n update in parallel
8: An ← An ∗MTTKRP(Ŷ, {An}Nn=1, n)
9: end for

10: Ŷ ← X̂/ [[λ,A1, . . . ,AN ]]
11: end while
12: X ← [[λ,A1, . . . ,AN ]]

realization of the feature vector) occurred in the training set. The rank-F approximation of the

joint PMF captures the F principal components of the distribution and is essential for the MI

calculation process, which serves to evaluate the quality of the selected feature set S. Defining

KL divergence between two probability tensors X and Y as

DKL(X∥Y) :=
∑

i1,...,iN

X (i1, . . . , iN ) log
X (i1, . . . , iN )

Y(i1, . . . , iN )
,

we propose solving the following optimization problem

min
λλλ,A1,...,AN

DKL

(
X̂ ∥[[λλλ,A1, . . . ,AN ]]

)

subject to λλλ ≥ 0,1Tλλλ = 1,

An ≥ 0, n = 1 . . . N,

1TAn = 1T , n = 1, . . . , N (3.3)

by employing the Expectation Maximization (EM) algorithm as described in [51] and [52]. At

each iteration, EM updates the factors simultaneously, making the algorithm easily parallelizable.

The exact updates for λ,An are shown in Algorithm 3.1. Notation ×n stands for the n-mode
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product of a tensor with a matrix, MTTKRP denotes the n-mode matricized tensor times Khatri-

Rao product, and / stands for element-wise division. Note that the complexity of this operation

is O(M). Here, M denotes the number of samples which is approximately equal to the non-zero

elements of tensor X̂ .

Determining the rank F of tensor X is an NP-hard problem [53]. Essentially, instead of

detecting the exact rank, we are interested in fitting a model that has ‘meaningful’ number of

components – the useful ‘signal rank’, which is determined by cross-validation techniques. The

per iteration complexity of the algorithm is dominated by the λ-update, which is of O(MF )

complexity, and by each An-update, which is also O(MF ) complexity.

3.5.2 Incremental Greedy Feature Selection

After fitting a low-rank CPD model to the empirical PMF, we employ a forward greedy al-

gorithm (Alg. 3.2) for the problem of subset selection, i.e, max
S⊆V,|S|≤K

g(S). During the subset

generation procedure, candidate feature subsets are generated for evaluation based on the MI.

Starting with an empty set S = ∅, the algorithm incrementally builds a solution. At iteration i, it

selects the feature si that improves the current solution the most, according to information gain

si = argmax
s∈V \S

I(XS∪{s};Z)− I(XS ;Z),

and adds it to the current set S ← S ∪ {si}. The process of subset generation and evaluation is

repeated until |S| = K. The output of the greedy algorithm is always a set S such that

I(XS ;Z) ≥
(
1− 1

e

)
I(XS⋆ ;Z), (3.4)

where S⋆ is the optimal solution i.e., the set maximizing g(S) among all size-K sets.

Without loss of generality, assume that at iteration k ≤ K, XS = {X1, X2, . . . , Xk}. We

can evaluate the MI between XS and the latent variable Z as follows.

I(XS ;Z) =
∑

xS ,z

PXS ,Z(xS , z) log
PXS ,Z(xS , z)

PXS
(xS)PZ(z)

= 1T
[
(⊙k

n=1An)diag(λ) ∗ log
(⊙k

n=1An)diag(λ)

[(⊙k
n=1An)λ] ◦ λ

]
1,
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Algorithm 3.2 Incremental Greedy Feature Selection
Input: K: Number of features; X : Joint PMF tensor
Output: S: Estimated subset of features

1: V = {1, 2, . . . , N}
2: S = ∅
3: while |S| < K do
4: for all s ∈ V \ S do
5: MI(s) = I(XS∪s;Z)
6: end for
7: si ← feature with maximum MI
8: S ← {S ∪ si}
9: end while

where ∗ indicates the matrix Hadamard product and the logarithm is computed element-wise.

In case of large k the above computation is prohibitive. It can be simplified using the fact that

under the naive Bayes model, MI is given by

I(XS ;Z) = H(XS)−H(XS |Z) = H(XS)−
K∑

n=1

H(Xn|Z).

In terms of the CPD factors, the joint entropy of XS is given by

H(XS) = −
∑

xS

PXS
(xS) logPXS

(xS)

= −
∑

i1,...,iK

X (i1, . . . , ik) logX (i1, . . . , ik)

= −1T
[
(⊙K

n=1An)λ ∗ log(⊙K
n=1An)λ

]
1,

and the conditional entropy for each variable Xn is given by

H(Xn|Z) = −
∑

xn,z

PXn,Z(xn, z) logPXn|Z(xn|z)

= −
∑

in,f

An(in, f)λ(f) logAn(in, f)

= −1T [(Andiag(λ)) ∗ logAn]1.

Calculating the MI function can be expensive due to the computational bottleneck of the joint
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entropy, which requires Ik evaluations. To overcome this issue, we can take advantage of the

fact that

H(XS) = −E[logPXS
(XS)]

to calculate an approximation for this term, by drawing samples from the joint distribution. We

randomly sample T values of the latent variable Z according to its distribution λ and for each

value f we similarly sample from the f -th column of each factor matrix An(:, f), ∀n ∈ S. We

calculate the probability of this particular realization via the probability tensor X ′ = [[λ, {AS}]].
After transforming to logarithmic scale, we sum up the results and normalize by T to get the

sample mean. Note that, in our experiments drawing 1, 000− 5, 000 samples is sufficient for a

well-approximated joint entropy. The per iteration complexity of the algorithm is determined

by the calculation of the joint entropy which is of O(NFT ) complexity and the conditional

entropy computation which is of O(NFI) complexity. In total, the complexity of the algorithm

is O(KNF (T + I)).

3.6 Experiments

Datasets: We conducted experiments on multiple real-world datasets to assess the performance

of the proposed GSM-CPD sequential feature selection framework against various supervised

information-theoretic feature selection algorithms that are representative of the state-of-art

described in Section 3.2. Note that the parameters were separately tuned to optimize the

performance of each method considered. For RJMI, α is tuned on the set {0.1, 0.5, 1, 2} and

the kernel size σ is tuned on the set {0.1, 0.5, 1, 5, 10, 50, 100}. For GlobalFS/iSelect, the

significance parameter α was tuned on the set {0.99, 0.95}. We have noticed that the results are

not sensitive with respect to the choice of α, as also noted in [44]. All datasets are from the UCI

machine learning repository [54]. A summary of the selected datasets is presented in Table 3.1.

For each dataset, continuous features are uniformly discretized into 5 bins. Features that were

already discrete (or categorical in nature) are left as-is. Note that we only discretize the data for

the methods that assume discrete features. No discretization is used for the methods that work

with continuous data, such as RJMI or GlobalFS, which are fed with the raw continuous features.
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Data set W/O FS GSM-CPD MRMR JMIM RJMI GlobalFS/iSelect

Lung-cancer 79.58 ± 20.52 86.43 ± 15.59 83.45 ± 17.35 81.56 ± 18.50 85.07 ± 16.59 82.48 ± 17.37
Promoters 86.83 ± 7.64 87.93 ± 5.45 87.13 ± 6.65 87.89 ± 5.07 84.95 ± 7.39 86.39 ± 8.52
Splice 94.14 ± 1.43 93.83 ± 1.62 89.94 ± 1.84 89.25 ± 1.93 92.92 ± 1.49 93.79 ± 2.41
USCensus 97.49 ± 0.21 97.41 ± 0.17 96.95 ± 0.74 97.01 ± 0.36 97.41 ± 0.38 96.22 ± 0.32
CoIL2000 93.97 ± 0.28 94.22 ± 0.11 92.02 ± 0.13 94.03 ± 0.14 94.05 ± 0.21 92.64 ± 0.83
Chemical 94.65 ± 1.62 96.47 ± 2.18 95.51 ± 2.53 93.48 ± 1.91 95.72 ± 1.93 93.47 ± 1.63
Musk2 96.79 ± 0.72 95.52 ± 0.70 93.48 ± 0.76 94.65 ± 0.94 95.35 ± 0.71 91.33 ± 0.51
Arrhythmia 67.24 ± 2.51 72.80 ± 5.73 68.59 ± 6.74 65.92 ± 8.37 65.36 ± 5.36 67.44 ± 6.73
Isolet 79.10 ± 3.36 79.58 ± 6.14 58.49 ± 5.27 80.75 ± 6.47 79.47 ± 5.64 69.27 ± 5.52
Multi-features 94.31 ± 1.25 95.08 ± 1.37 80.41 ± 2.35 94.98 ± 1.03 90.80 ± 1.65 91.49 ± 1.75

Table 3.2: Test accuracy of the AdaBoost with classification stumps on a fixed number of selected
features for each feature selection algorithm.

Dataset N M C

Lung-cancer 57 32 3

Promoters 59 106 2

Splice 62 3190 3

USCensus 90 689338 3

CoIL2000 86 5822 2

Chemical 151 936 3

Musk2 169 6598 2

Arrhythmia 280 452 16

Isolet 618 1560 26

Multi-features 650 2000 10

Table 3.1: Summary of bench-mark datasets. N is the total number of features, M is the number

of feature vectors (samples), and C is the number of classes – the size of the alphabet of the

target random variable Y .

Data set W/O FS GSM-CPD MRMR JMIM RJMI GlobalFS/iSelect

Lung-cancer 80.00 ± 22.92 90.05 ± 16.32 84.12 ± 16.37 80.83 ± 22.92 90.00 ± 17.88 81.57 ± 13.93
Promoters 90.91 ± 6.45 94.64 ± 5.47 87.73 ± 6.55 92.64 ± 6.55 84.00 ± 6.15 82.17 ± 6.87
Splice 95.14 ± 1.57 94.48 ± 1.53 93.48 ± 2.20 89.25 ± 1.94 88.40 ± 2.20 93.60 ± 1.87
USCensus 93.38 ± 0.19 97.95 ± 0.22 96.95 ± 0.15 97.93 ± 0.20 97.87 ± 0.30 92.74 ± 0.38
CoIL2000 79.03 ± 0.21 93.94 ± 0.07 92.02 ± 0.04 93.58 ± 0.07 93.99 ± 0.20 92.94 ± 0.06
Chemical 62.79 ± 2.03 78.20 ± 2.15 72.11 ± 2.31 67.20 ± 1.79 71.72 ± 2.09 70.68 ± 1.57
Musk2 84.69 ± 2.04 84.59 ± 2.12 64.83 ± 2.17 84.59 ± 1.14 64.85 ± 1.93 81.94 ± 1.82
Arrhythmia 60.62 ± 3.36 68.80 ± 4.25 67.80 ± 4.28 66.81 ± 3.93 66.60 ± 5.94 68.60 ± 5.73
Isolet 83.72 ± 2.38 83.06 ± 2.74 71.67 ± 3.25 83.37 ± 2.53 82.28 ± 2.52 80.06 ± 3.42
Multi-features 93.95 ± 2.42 96.15 ± 2.94 76.05 ± 2.24 95.95 ± 1.96 93.75 ± 1.95 92.25 ± 2.26

Table 3.3: Test accuracy of RBF-kernel SVM on a fixed number of selected features for each
feature selection algorithm.
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Experimental Settings: The proposed approach, GSM-CPD, is implemented in MATLAB using

the Tensor Toolbox [55] for tensor operations. For each experiment we split the dataset such

that 80% of the data samples is used for training and 20% for testing, and run 10 Monte-Carlo

simulations (each Monte-Carlo simulation is a random 80%− 20% split of the data).

An appropriate rank F for our model is found using 10−fold cross-validation on the training

data. For each dataset, we fit CPD models of different ranks, F ∈ {5, 10, 15, 20, 30}, and

choose the one which on average minimizes the misclassification error on the validation set. The

quality of a subset is always determined by a certain criterion – an optimal subset selected using

one criterion may not be optimal according to another criterion. After extracting the optimal

subset S of features using each method, each subset of features is evaluated on the testing set, in

terms of the classification performance of two classifiers: AdaBoost with classification stumps

and RBF-kernel SVM. Simpler classifiers, such as a linear SVM classifier, were also tested

to ensure that the performance gain is driven by the selected features rather than the chosen

classifier. Qualitatively similar results were obtained using simpler classifiers. We report the

mean (and standard deviation) classification accuracy of each feature selection method evaluated

on a certain range of percentage of selected features, namely [1%− 10%]. For each method, we

keep the smallest percentage which results in largest validation accuracy. The reason for this

setting is to answer the following question: Can we use a much smaller feature subset without

sacrificing classification accuracy, or even better, can we enhance classifiers to improve their

overall performance?

If the dataset dimensionality exceeds N = 100, the feature selection process is realized

with the following modification. At iteration k + 1 ≤ K, where the current subset of selected

features is XS = {X1, X2, . . . , Xk}, we remodel the PDF of the subsets XS∪{s}, s ∈ V \ S
of variables and select the one that maximizes the MI. In order to limit the extra complexity

incurred, we warm-start the extended model using [[λ,A1, · · · ,Ak]] from the previous iteration,

which drastically reduces the number of iterations.

3.6.1 Experiments on real-world data sets

Tables 3.2,3.3 depict the predictive performance using the above feature selection methods

followed by two different classifiers. In each of these tables, we include the accuracy of the

classifier without any prior feature elimination (W/O FS).

Then, for each dataset and classifier we highlight the best three performing methods in
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bold, while underlining the best performing method. The results demonstrate the superior

performance of GSM-CPD as a feature selection strategy. From individual average accuracy

values, we observe that for most of the data sets, GSM-CPD can identify redundant and noisy

features and thus maintain or even increase the accuracy by using a much smaller subset for

the classification task. Specifically, we observe that utilizing feature subsets generated by

GSM-CPD for classification can increase the classification accuracy of AdaBoost with stump

functions learner by 8.61% and 8.24% on the Lung-cancer and Arrhythmia dataset respectively.

Additionally, an accuracy improvement of order 1.92% and 1.27% is observed on the Chemical

and Promoters dataset respectively. Better classification results are achieved using the proposed

method for Multi-features, Isolet, and CoIL200 datasets. In almost all of the datasets, and

especially for Lung-cancer and Arrhythmia, GSM-CPD has a clear lead compared to the baselines

which demonstrates the capability of our algorithm to select the most informative features. For

the rest of the datasets (Splice, USCensus, and Musk2), the best performance is achieved when

using all features. Even then, there is always another reduced-dimension subset (which is at

most 10% of the original dataset dimensionality) that is very close in performance, namely only

0.33%, 0.08, 1.27% accuracy reduction for Splice, USCensus, and Musk2 respectively.

We also tested using another classifier, namely a radial basis function kernel support vector

machine (RBF-kernel SVM), to confirm the consistency of our comparative analysis. The results

are qualitative similar to those with the AdaBoost classifier. GSM-CPD can boost the accuracy

of both classifiers better than the baselines can, with the Isolet dataset being the only exception,

where JMIM has a slightly better classification performance than GSM-CPD. Nonetheless, in

most cases, our GSM-CPD feature selection method appears to be very effective in feature

selection, and often close to optimal in terms of classification accuracy. Therefore, we can

design a classifier based on reduced dataset according to GSM-CPD to improve the classification

accuracy or at least without sacrificing significant accuracy.

It is also useful to compare which method achieves the highest level of dimensionality

reduction on average for each dataset. The results are presented on Table 3.6. We conclude that

GSM-CPD can efficiently achieve high degree of dimensionality reduction and simultaneously

enhance classification accuracy with predominant features. Specifically, GSM-CPD outper-

forms the baselines in context of dimensionality reduction on the Promoters, Splice, USCensus,

CoIL2000, Musk2, and Arrhythmia datasets. For the remaining datasets, either JMIM or RJMI

can achieve a better dimensionality reduction level, although the proposed method is very close
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Data set F = 5 F = 10 F = 15 F = 20 F = 30

Splice 0.916 0.911 0.902 0.895 0.855
Isolet 0.629 0.703 0.784 0.764 0.729

Table 3.4: Results for test-set accuracy for different choices of rank F .

Data set #bins = 5 #bins= 10 #bins = 20 #bins = 30

Splice 0.916 0.912 0.899 0.809
Isolet 0.784 0.798 0.802 0.801

Table 3.5: Results for test-set accuracy for different number of bins.

to that. It is also notable that by tuning the value of K it is possible identify the intrinsic dimen-

sion of the dataset by identifying the minimum number of features needed before a significant

degradation in prediction performance. Next, we investigate how hyper-parameters (the number

of bins (for discretization) and the rank F ) influence the performance of the proposed method.

The results of a linear SVM classifier for the Splice dataset for different ranks F (and fixed

number of bins = 5) are shown in Table 3.4. A rank of 5− 10 seems to be the best for getting the

subset that leads to optimal accuracy. The decreased accuracy for higher ranks and/or more bins

is expected due to overfitting. For Isolet, similar results can be observed for different ranks F

(and fixed number of bins = 5). We then fix rank to F = 5 for Splice and F = 15 for Isolet and

vary the number of bins (see Table 3.5). One can observe that the method is not very sensitive

to the choice of rank and number of bins, but a careful parameter search can lead to optimal

performance.
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Datasets
GSM
CPD MRMR JMIM RJMI

GlobalFS
iSelect

Lung-cancer 5 7 5 5 8

Promoters 4 4 5 5 4

Splice 6 7 12 11 10

USCensus 2 12 2 13 16

CoIL2000 9 10 12 17 20

Chemical 8 7 7 11 7

Musk2 4 10 6 11 11

Arrhythmia 17 25 25 26 28

Isolet 23 62 25 19 38

Multi-features 14 36 14 12 23

Table 3.6: Average number of selected features for each algorithm and dataset.

The double inequality in Claim 1 shows that we are maximizing a surrogate function g(S)

that is a constant band-gap away from the desired function f(S). Intuitively, when the conditional

entropy H(Y |Z) is small, the amount of information needed to describe the outcome of the

random variable Y given the value of the latent random variable Z is small, and thus the band-gap

is small. If we estimate the principal components of the joint PMF, we can easily estimate the

band-gap. In Table 3.7, we present the estimated entropy H(Y ) and conditional entropy H(Y |Z)

for the various datasets considered in our experiments. We can see that given Z, the entropy of

the label reduces significantly, which further supports the maximization of the surrogate function.
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Dataset H(Y ) H(Y |Z)

Lung-cancer 1.284 0.238

Promoters 0.835 0.147

Splice 0.750 0.250

USCensus 0.715 0.149

CoIL2000 0.974 0.260

Chemical 1.094 0.369

Musk2 0.879 0.267

Arrhythmia 0.902 0.159

Isolet 1.502 0.348

Multi-features 1.221 0.354

Table 3.7: Quantifying the marginal entropy of target random variable Y and conditional entropy

between Y and latent random variable Z, H(Y |Z).

3.6.2 Quantifying mutual information

Since both our method and the baselines attempt to maximize some measure of mutual informa-

tion between the selected subset and the target variable / class label, it is useful to compare how

effective the different methods are in doing just that – maximizing mutual information.

For our next set of experiments, we proceed by fixing the reduced feature space dimension-

ality K to 10% of the original feature space, extracting the corresponding subsets proposed by

each of the baselines, and evaluating the MI of the extracted set. To quantify the MI, we use

tree methods: our GSM-CPD model, the Mutual Information Neural Estimator (MINE) [56],

and the Ensemble Dependency Graph Estimator (EDGE) [57]. Our GSM-CPD model evaluates

the subset quality by approximating the high-order MI of the reduced subsets using the joint

PMF estimate obtained by our CPD-based approach. MINE is a non-parametric estimator for

computing MI by exploiting a lower-bound based on the Donsker-Varadhan representation of

the KL divergence. The lower bound on the mutual information is estimated with a neural-

net-parameterized function. We fix the network architecture to 5 fully connected layers with

FC(K, 200, 200, 100, 1) neurons, and set (batch size, learning rate) to (100, 5× 10−4) for 1000

epochs. EDGE is a dependence graph-based approach. We report the mean MI estimate over 5

runs using our CPD-MI model (see Table 3.8), MINE (see Table 3.9), and EDGE (see Table 3.10).

The results show that the subset produced by our framework is able to get consistently higher

mutual information compared to widely-used information theoretic feature selection techniques
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Data set
GSM
CPD MRMR JMIM RJMI

GlobalFS
iSelect

Lung-cancer 0.775 0.752 0.708 0.752 0.723
Promoters 0.896 0.877 0.877 0.847 0.848
Splice 0.952 0.894 0.932 0.934 0.947
USCensus 0.987 0.979 0.982 0.979 0.937
CoIL2000 0.846 0.822 0.840 0.839 0.829
Chemical 0.894 0.815 0.857 0.834 0.836
Musk2 0.644 0.615 0.697 0.657 0.636
Arrhythmia 0.689 0.678 0.668 0.666 0.673
Isolet 0.590 0.5368 0.543 0.529 0.504
Multi-features 0.761 0.603 0.759 0.7375 0.722

Table 3.8: MI evaluation using our CPD-MI modeling on reduced feature vectors. The higher,
the better.

on the majority of the considered datasets. The results presented in Tables 3.9 and 3.8 verify

the superior quality of the subset proposed by our approach. The results are reassuring, in the

sense that the MINE and GSM-CPD estimates of MI are close. The results in Table 3.10 show

that even though EDGE tends to overestimate MI values relative to our GSM-CPD estimator

and MINE, it assigns higher MI values to subsets generated by our proposed feature selection

method.

Data set
GSM
CPD MRMR JMIM RJMI

GlobalFS
iSelect

Lung-cancer 0.778 0.733 0.711 0.751 0.728

Promoters 0.899 0.891 0.898 0.859 0.863

Splice 0.938 0.909 0.929 0.911 0.931

USCensus 0.982 0.959 0.975 0.979 0.952

CoIL2000 0.858 0.820 0.847 0.840 0.846

Chemical 0.895 0.854 0.877 0.854 0.848

Musk2 0.675 0.634 0.696 0.683 0.671

Arrhythmia 0.695 0.687 0.669 0.653 0.684

Isolet 0.595 0.524 0.598 0.584 0.529

Multi-features 0.750 0.604 0.749 0.708 0.714

Table 3.9: MI evaluation by MINE on reduced feature vectors.
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Data set
GSM
CPD MRMR JMIM RJMI

GlobalFS
iSelect

Lung-cancer 0.864 0.830 0.832 0.852 0.792

Promoters 0.995 0.975 0.978 0.934 0.932

Splice 1.384 1.070 1.135 1.052 1.129

USCensus 1.240 1.092 1.126 1.131 1.065

CoIL2000 0.999 0.907 0.965 0.990 0.950

Chemical 0.970 0.920 0.928 0.905 0.910

Musk2 0.736 0.732 0.783 0.766 0.734

Arrhythmia 0.782 0.774 0.733 0.731 0.734

Isolet 0.652 0.604 0.665 0.630 0.626

Multi-features 0.782 0.625 0.765 0.706 0.726

Table 3.10: MI evaluation by EDGE on reduced feature vectors.

3.7 Chapter Summary

In this work, we presented a novel low-complexity approach for identifying the most predictive

and informative subset of variables for classification and data analysis without compromising

classification accuracy. In the first step, we model the joint PMF of the complete set of variables

using a latent variable model following the “naive” Bayes hypothesis. In earlier work, it has

been shown that such a model is universal – it can generate any joint distribution. In our present

context it naturally suggests a monotone submodular surrogate optimization problem that is

amenable to greedy optimization with performance guarantees. This gives rise to the proposed

GSM-CPD feature selection approach. Experiments on real-world data show that GSM-CPD

can outperform well-appreciated baseline methods by a significant margin. Our contributions

can be summarized as follows.

◦ Using the CPD model to approximate the underlying distribution of the high-dimensional

data, the CoD is alleviated.

◦ Employing high-order mutual information, complex multi-way interactions and inter-

dependencies between the features are taken into account in the feature selection process.

◦ PMF modeling via CPD gives rise to an efficient greedy algorithm that comes with

optimality guarantees for the surrogate problem of predicting the latent variable.
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◦ Experiments on real-world data show that GSM-CPD can outperform well-appreciated

baseline methods by a significant margin.



Chapter 4

Low-rank Characteristic Tensor
Density Estimation Part I: Foundations

4.1 Introduction

Density estimation is a fundamental yet challenging problem in statistical signal processing

and machine learning. Density estimation is the task of learning the joint Probability Density

Function (PDF) from a set of observed data points, sampled from an unknown underlying data-

generating distribution. A model of the density function of a continuous random vector provides

a complete description of the joint statistical properties of the data and can be used to perform

tasks such as computing the most likely value of a subset of elements (“features”) conditioned on

others, computing any marginal or conditional distribution, and deriving optimal estimators, such

as the minimum mean squared error (conditional mean) estimator. Density estimation has a wide

range of applications including classification [19, 20, 58, 59], clustering [60], data synthesis [61],

data completion [62] and reconstruction related applications [63], as well as learning statistical

regularities such as skewness, tail behavior, multi-modality or other structures present in the

data [64].

Existing work on density estimation can be mainly categorized into parametric approaches

such as Gaussian Mixture Models (GMM) [65], and non-parametric approaches such as His-

togram [10] and Kernel Density Estimation (KDE) [11]. A density model must be expressive –

flexible enough to represent a wide class of distributions, and tractable and scalable (computa-

tionally and memory-wise) at the same time (expressivity-tractability trade-off). Over the last

37
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several years, explicit feed-forward neural network based density estimation methods [66–68]

have gained increasing attention as they provide a tractable way to evaluate high-dimensional

densities point-wise. On the other hand implicit generative models such as generative adversarial

networks [17] and variational autoencoders [69] can be used to obtain models which allow

effective and efficient sampling. Although neural network based solutions show promise in some

high-dimensional applications such as image sampling, they are not currently well-suited for

many other real-world applications. They lack the ability to compute expectations, marginalize

over arbitrary subsets of variables, and evaluate conditionals, as they rather serve for point-wise

density evaluation, or sampling. Additionally, model identifiability (i.e., recovery of the true

data-generating distribution) is a fundamental goal of PDF estimation, which most deep gen-

erative models have not yet addressed. Incomplete observations (due to causes such as faulty

sensors, corrupt data, cost of acquisition, or privacy concerns) present distinct challenges to

the training of these models. The majority of such models are trained on complete data only

and are unable to handle missing elements in the input vector, during both training and testing

(“showtime”).

In this paper, we develop a novel non-parametric method for multivariate PDF estimation

based on tensor rank decomposition – known as Canonical Polyadic Decomposition (CPD) [25,

70]. CPD is a powerful model that can parsimoniously represent high-order data tensors exactly

or approximately, and its distinguishing feature is that under certain reasonable conditions it

is unique – see [23] for a recent tutorial overview. We show that any compactly supported
continuous density can be approximated, within controllable error, by a finite characteristic

tensor of leading complex Fourier coefficients, whose size depends on the smoothness of
the density. This characteristic tensor can be naturally estimated via sample averaging from

realizations of the random vector of interest.

The main challenge, however, lies in the fact that the size of this tensor (the number of

model parameters in the Fourier domain) grows exponentially with the number of random

variables – the length of the random vector of interest. In order to circumvent this “curse of

dimensionality” (CoD) and further denoise the naive sample averaging estimates, we introduce a

low-rank model of the characteristic tensor, whose degrees of freedom (for fixed rank) grow
linearly with the random vector dimension. Low-rank modeling significantly improves the

density estimate especially for high-dimensional data and/or in the sample-starved regime. By

virtue of uniqueness of low-rank tensor decomposition, under certain conditions, our method
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enables learning the true data-generating distribution.
In order to handle incomplete (both training and testing) data (vector realizations with missing

entries) as well as scaling up to high-dimensional vectors, we further introduce coupled low-rank

decomposition of lower-order characteristic tensors corresponding to smaller subsets of variables

that share ‘anchor’ variables, and show that this still enables recovery of the global density,

under certain conditions. As an added benefit, our approach yields a generative model of the
sought density, from which it is very easy to sample from. This is because our low-rank model

of the characteristic tensor admits a latent variable naive Bayes interpretation. A corresponding

result for finite-alphabet random vectors was first pointed out in [18]. In contrast to [18], our

approach applies to continuous random vectors possessing a compactly supported multivariate

density function. From an algorithmic standpoint, we formulate a constrained coupled tensor

factorization problem and develop a Block Coordinate Descent (BCD) algorithm.

The main results and contributions of this paper can be summarized as follows:

• We show that any smooth compactly supported multivariate PDF can be approximated
by a finite tensor model, without using any prior or data-driven discretization process.

We also show that truncating the sampled multivariate characteristic function of a random

vector is equivalent to using a finite separable mixture model for the underlying distribution.

Note that we do not assume a latent variable mixture model; instead the latent variable
factorization falls off from compactness of support and smoothness. Under these

relatively mild assumptions, the proposed model can approximate any high dimensional
PDF with approximation guarantees. By virtue of uniqueness of CPD, assuming low-

rank in the Fourier domain, the underlying multivariate density is identifiable.

• We show that high dimensional joint PDF recovery is possible under low tensor-rank
conditions, even if we only observe subsets (triples) of variables. This is a key point

that enables one to handle incomplete realizations of the random vector of interest. To

the best of our knowledge, no other generic density estimation approach allows this.

To tackle this more challenging version of the problem, we propose an optimization

framework based on coupled tensor factorization. Our approach jointly learns lower-order

(3-dimensional) characteristic functions, and then assembles tensor factors to synthesize

the full characteristic function model.

• The proposed model allows efficient and low-complexity inference, sampling, and density
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evaluation. In that sense, it a more comprehensive solution that neural density evaluation

or neural generative models. We provide convincing experimental results on sampling,
likelihood evaluation, and regression on toy, image, and many real datasets that are
often used as benchmarks in our context. Our results corroborate the effectiveness of
the proposed method even for datasets that have hundreds of variables.

This is the first of a two-part paper. The second part builds on this foundation to develop

a joint compression (nonlinear dimensionality reduction) and compressed density estimation

framework that offers additional flexibility and scalability, but does not provide a density estimate

in the original space as the “baseline” method in this first part does. Each approach has its own

advantages, but the second builds upon the first. It is therefore natural to present them as Part I

and Part II.

4.2 Background

4.2.1 Related work

Density estimation has been the subject of extensive research in statistics and the machine

learning community. Methods for density estimation can broadly be classified as either paramet-

ric or non-parametric. Parametric density estimation assumes that the data are drawn from a

known parametric family of distributions, parametrized by a fixed number of tunable parameters.

Parameter estimation is usually performed by maximizing the likelihood of the observed data.

One of the most widely used parametric models is the Gaussian Mixture Model (GMM). GMMs

can approximate any density function if the number of components is large enough [9]. However,

a very large number of components may be required for good approximation of the unknown

density, especially in high dimensions. Increasing the number of components introduces compu-

tational challenges and may require a large amount of data [71]. Misspecification and inconsistent

estimation is less likely to occur with nonparametric density estimation.

Nonparametric density estimation is more unassuming and in that sense “universal”, but

the flip-side is that it does not scale beyond a small number of variables (dimensions). The

most widely-used approach for nonparametric density estimation is Kernel Density Estimation

(KDE) [10, 11]. The key idea of KDE is to estimate the density by means of a sum of kernel

functions centered at the given observations. However, worst-case theoretical results show that
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its performance worsens exponentially with the dimension of the data vector [72].

Our approach falls under nonparametric methods, and is motivated by Orthogonal Series

Density Estimation (OSDE) [12–14], a powerful non-parametric estimation methodology. OSDE

approximates a probability density function using a truncated sum of orthonormal basis functions,

which may be trigonometric, polynomial, wavelet etc. However, OSDE becomes computationally

intractable even for as few as 10 dimensions, since the number of parameters grows exponentially

with the number of dimensions. Unlike OSDE, our approach is able to scale to much higher

dimensions.

The first work using tensor decomposition to establish identifiability of latent variable models

was [73], where it was shown that, under certain conditions, a finite mixture of non-parametric

product distributions is identifiable. The linear independence conditions mentioned in [73] are

in fact not necessary for uniqueness; a milder condition pertaining to the sum of Kruskal-ranks

of the latent factor matrices is in fact sufficient [27]. Also, [73] did not provide a companion

density estimation procedure, which limits its applicability.

Later on, [74, 75] proposed using whitening-based orthogonal tensor decomposition to

recover the parameters of certain latent variable (not general density) models – but this algorithm

is not always feasible [76] because the whitening step cannot always find a positive semi-definite

matrix via linear combination of tensor slices. This happens with positive probability [76], in

which case the orthogonal decomposition algorithm fails altogether. Furthermore, if the rank of

this matrix is lower than the tensor rank, then the algorithm has a “soft” failure. We also note

that the approach in [74] is a kernel method that involves eigenvalue decomposition of M by M

matrices, where M is the training sample size, which is prohibitive for large training sets. Our

proposed algorithm is scalable (its complexity is linear in M ) and it avoids earlier pitfalls. It

is also worth re-iterating that, whereas there have been prior works dealing with multivariate

density estimation for latent variable models such as [73, 74], our work is the first to use tensor

models for high-dimensional densities, where the dimensionality is well above 3− 10. Part of

our novelty is showing that low-rank tensor factorization can work, with remarkably low ranks,

in these high dimensions (up to 256 here).

Another method also based on low-rank tensor decompositions with theoretical guarantees

of identifiability (for distributions of low enough rank) has been presented in [77]. In contrast

to [73, 74] and [77], our approach is “universal” for smooth, compactly supported multivariate

densities, i.e., no assumptions regarding a multivariate mixture model of non-parametric product
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distributions are made in the present paper; we show that a latent variable factorization falls off

from compactness of support and smoothness. A similar approach to [77] was considered in [78],

where a tensor train model is used to approximate a discretized PDF, followed by interpolation.

The authors use a conditioning chain and compute each conditional distribution given the model

for the full joint distribution – this computation depends on the ordering of the variables. There

are no identifiability guarantees, and the method is geared towards sampling applications. This is

natural, since tensor train models do not offer easy marginalization and inference.

Recently, several density evaluation and modeling methods that rely on neural networks have

been proposed. The Real-valued Neural Autoregressive Distribution Estimator (RNADE) [79] is

among the best-performing neural density estimators and has shown great potential in scaling

to high-dimensional distribution settings. These so-called autoregressive models (not to be

confused with classical AR models for time-series) decompose the joint density as a product

of one-dimensional conditionals of increasing conditioning order, and model each conditional

density with a parametric model. Normalizing Flows (NF) [80] models start with a base density

e.g., standard Gaussian, and stack a series of invertible transformations with tractable Jacobian to

approximate the target density. Masked Autoregressive Flow (MAF) [68] is a type of NF model,

where the transformation layer is built as an autoregressive neural network. These methods

do not construct a joint PDF model but rather serve for point-wise density evaluation. That is,

for any given input vector (realization), they output an estimate of the density evaluated at that

particular input vector (point). For small vector dimensions, e.g., two or three, it is possible to

evaluate all inputs on a dense grid, thereby obtaining a histogram-like density estimate; but the

curse of dimensionality kicks in for high vector dimensions, where this is no longer an option.

Additionally, these methods cannot impute more than very few missing elements in the input, for

the same reason (grid search becomes combinatorial).

Another class of neural network density models are the sum-product networks (SPNs) [81,82].

SPNs are deep probabilistic models, represented by a directed acyclic graph with univariate

distributions at the leaves, that decompose a joint distribution into a hierarchy of mixtures (sums)

and factorizations (products). Their extension to continuous variables assumes a model for

the one-dimensional marginals, e.g., Gaussian or mixture of Gaussians for each input variable,

in which case the overall distribution is a mixture of separable Gaussians. In the discrete

(finite-alphabet / categorical) case, our model [18] can be interpreted as a shallow SPN; in
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the continuous case, as considered in this paper, we do not make any assumption on the one-

dimensional marginals at the leaves, so our approach can be viewed as a nonparametric shallow

SPN. From the viewpoint of SPNs, we show in this paper that

1. a shallow (one-sum layer) SPN is a universal model for smooth and compactly supported

multivariate densities, and the underlying 1-D densities can be recovered (versus pre-

scribed). That is, if the true density has low rank, then it can be pinned down and its

components can be ‘unraveled’ via the CPD.

2. the low-rank assumption works well in various practical applications.

A multi-layer SPN, on the other hand, is akin to a hierarchical Tucker model, and thus no model

identifiability claims can be made for deep SPNs – they can always be replaced by a shallow

SPN with sufficiently many leaves.

SPNs enjoy a tractable marginalization and inference process, but our proposed model allows

for even easier marginalization (by discarding the subset of factor matrices corresponding to the

variables we are not interesting in), as well as easier and closed form inference. SPNs require

specific structural constraints in order to guarantee exact inference [81]. In contrast to SPNs, our

model does not require architecture specification.

4.2.2 Notation

In this Chapter, we use the symbols x, X, X for vectors, matrices and tensors respectively. We

use the notation x(n), X(:, n), X(:, :, n) to refer to a particular element of a vector, a column of

a matrix and a slab of a tensor.

4.3 A Characteristic Function Approach

The characteristic function of a random variable X is the Fourier transform of its PDF, and it

conveys all information about X . The characteristic function can be interpreted as an expectation:

the Fourier transform at frequency ν ∈ R is E
[
ejνX

]
. Similarly, the multivariate characteristic

function is the multidimensional Fourier transform of the density of a random vector X , which

can again be interpreted as the expectation E[ejν
TX ], where ν is a vector of frequency variables.

The expectation interpretation is crucial, because ensemble averages can be estimated via sample
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averages; and whereas direct nonparametric density estimation at point x requires samples

around x, estimating the characteristic function enables reusing all samples globally, thus

enabling better sample averaging and generalization. This point is the first key to our approach.

The difficulty, however, is that pinning down the characteristic function seemingly requires

estimating an uncountable set of parameters. We need to reduce this to a finite parameterization

with controllable error, and ultimately distill a parsimonious model that can learn from limited

data and still generalize well. In order to construct an accurate joint distribution estimate that is

scalable to high dimensions without making explicit and restrictive prior assumptions (such as

a GMM model) on the nature of the density, and without requiring huge amounts of data, we

encode the following key ingredients into our model.

• Compactness of support. In most cases, the random variables of interest are bounded,

and these bounds are known or can be relatively easily estimated. The assumption of

knowing the support of the sought distribution is not limiting in practice. Given that we

are aiming to estimate a high-dimensional distribution we should naturally have access to

much more data than is needed to estimate the support of any marginal distribution of one

of the variables. Also note that we do not need to know the exact support – reasonable

upper and lower bounds are enough to compress and shift the range.

• Continuity of the underlying density and its derivatives. The joint distribution is

assumed to be sufficiently smooth in some sense, which enables the use of explicit or

implicit interpolation.

• Low-rank tensor modeling. We show that joint characteristic functions can be represented

as higher order tensors. In practice these tensor data are not unstructured. Low-rank tensor

modeling provides a concise representation that captures the salient characteristics (the

principal components) of the data distribution in the Fourier domain.

4.3.1 The Univariate Case

Before we delve into the multivariate setting, it is instructive to examine the univariate case.

Given a real-valued random variable X with compact support SX , the Probability Density

Function (PDF) fX and its corresponding Characteristic Function (CF) ΦX form a Fourier
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transform pair:

ΦX(ν) :=

∫

SX

fX(x)ejνxdx = E[ejνX ], (4.1)

fX(x) :=
1

2π

∫ ∞

−∞
ΦX(ν)e−jνxdν. (4.2)

Note that ΦX(0) =
∫∞
−∞ fX(x)dx = 1. Without loss of generality, we can apply range

normalization and mean shifting so that sX + c ∈ [0, 1] – the transformation is invertible.

We may therefore assume that SX = [0, 1]. Every PDF supported in [0, 1] can be uniquely

represented over its support by an infinite Fourier series,

fX(x) =
∞∑

k=−∞
ΦX [k]e−j2πkx, (4.3)

where ΦX [k] = ΦX(ν)
∣∣
ν=2πk

, k ∈ Z. This shows that countable parameterization through

samples of the characteristic function suffices for compactly supported densities. But this is still

not enough - we need a finite parametrization. Thankfully, if fX is sufficiently differentiable in

the sense that fX ∈ Cp i.e., all its derivatives ∂fX
∂x , ∂

2fX
∂x2 , · · · , ∂pfX

∂xp exist and are continuous we

have that

Lemma 4.1. (e.g., see [83]): If fX ∈ Cp, then

|ΦX [k]| = O
(

1

1 + |k|p
)
.

It is therefore possible to use a truncated series

f̂X(x) =

K∑

k=−K

ΦX [k]e−j2πkx,

with proper choice of K that will not incur significant error. Invoking Parseval’s Theorem

∥fX − f̂X∥22 =
∑

|k|>K

|ΦX [k]|2,
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Figure 4.1: The Univariate Case: Illustration of the key idea on a univariate Gaussian mixture of
two distributions with means µ1 = 0.35, µ2 = 0.7 and standard deviations σ1 = 0.1, σ2 = 0.08.
The PDF can be (approximately) recovered from only 9 uniform samples of its Characteristic
Function (CF).

which is controllable by the smoothing parameter K. The k-th Fourier coefficient

ΦX [k] =

∫ 1

0
fX(x)ej2πkxdx = E[ej2πkX ]

can be conveniently estimated via the sample mean

Φ̂X [k] =
1

M

M∑

m=1

ej2πkxm

Here M is the number of available realizations of the random variable X .

A toy example to illustrate the idea is shown in Figure 4.1. For this example, we are given

M = 500 realizations of a random variable X , which is a mixture of two Gaussian distributions

with means µ1 = 0.35, µ2 = 0.7 and standard deviations σ1 = 0.1, σ2 = 0.08. The recovered

PDF is very close to the true PDF using only 9 coefficients of the CF.

4.3.2 The Multivariate Case

In the multivariate case, we are interested in obtaining an estimate f̂X of the true density fX of

a random vector X := [X1, . . . , XN ]T . The joint or multivariate characteristic function of X

is a function ΦX : RN → C defined as

ΦX(ν) := E
[
ejν

TX
]
, (4.4)
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where ν := [ν1, . . . , νN ]T . For any given ν, given a set of realizations {xm}Mm=1, we can

estimate the empirical characteristic function of the sequence as

Φ̂X(ν) =
1

M

M∑

m=1

ejν
Txm . (4.5)

Under mixing conditions such that sample averages converge to ensemble averages, the

corresponding PDF can be uniquely recovered via the multidimensional inverse Fourier transform

fX(x) =
1

(2π)N

∫

RN

ΦX(ν)e−jνTxdν. (4.6)

If the support of the joint PDF fX(x) is contained within the hypercube SX = [0, 1]N , then

similar to the univariate case, it can be represented by a multivariate Fourier series

fX(x) =

∞∑

k1=−∞
· · ·

∞∑

kN=−∞
ΦX [k]e−j2πkTx,where ΦX [k] = ΦX(ν)

∣∣
ν=2πk

,k = [k1, . . . , kN ]T .

(4.7)

Lemma 4.2. (see e.g., [83]): For any p ∈ N, if the partial derivatives ∂θ1

∂x
θ1
1

· · · ∂θN

∂x
θN
N

fX(x) exist

and are absolutely integrable for all θ1, . . . , θN with
∑N

n=1 θn ≤ p then the rate of decay of the

magnitude of the k-th Fourier coefficient |ΦX [k]| obeys |ΦX [k]| = O
(

1
1+∥k∥p2

)
.

The smoother the underlying PDF, the faster its Fourier coefficients and the approximation

error tend to zero. Thus we can view the joint PDF through the lens of functions with only low

frequency harmonics. Specifically, it is known [84], [85, Chapter 23] that the approximation

error of the truncated series with absolute cutoffs {Kn}Nn=1 is upper bounded by

∥fX − f̂X∥∞ ≤ C

N∑

n=1

ωn

(
∂θn

∂xθn
n
fX , 1

1+Kn

)

(1 +Kn)
θn

, (4.8)

where

ωn(fX , δ) := sup
|xj−x′

j|≤δ

∣∣fX(x1, . . . , xj , . . . , xN )− fX(x1, . . . , x
′
j , . . . , xN )

∣∣ ,
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and

C = C2

(
1 + C1

N∏

n=1

logKn

)
.

C1, C2 are constants independent of Kn. The smoother the underlying PDF, the smaller the

obtained finite parametrization error. It follows that we can approximate fX

f̂X(x) =

K1∑

k=−K1

· · ·
KN∑

kN=−KN

ΦX [k]e−j2πkTx. (4.9)

The truncated Fourier coefficients can be naturally represented using an N -way tensor Φ

where

Φ(k1, . . . , kN ) = ΦX [k]. (4.10)

4.4 Proposed Approach: Breaking the Curse of Dimensionality

We have obtained a finite parameterization with controllable and bounded error, but the num-

ber of parameters (2K1 + 1)× · · · × (2KN + 1) obtained by truncating ΦX as above grows

exponentially with N . This curse of dimensionality can be circumvented by focusing on the

principal components of the resulting tensor, i.e., introducing a low-rank parametrization of the

Characteristic Tensor obtained by truncating the multidimensional Fourier series. Keeping the

first F principal components, the number of parameter reduces from order of K1 × · · · ×KN to

order of (K1 + · · · +KN )F . Introducing the rank-F CPD in Equation (4.9), one obtains the

approximate model

f̃X(x) =
K∑

k1=−K

· · ·
K∑

kN=−K

F∑

h=1

pH(h)
N∏

n=1

ΦXn|H=h[kn]e
−j2πknxn , (4.11)

where H can be interpreted as a latent (H for ‘hidden’) random variable, ΦXn|H=h[kn] is the

characteristic function of Xn conditioned on H = h

ΦXn|H=h[kn] := ΦXn|H=h(ν|h)
∣∣
ν=2πkn

= EXn|H=h

[
ej2πknXn

]
, (4.12)
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Figure 4.2: The proposed generative model f̃X(x) admits an interpretation as a mixture of F
product distributions i.e., a latent variable naive Bayes interpretation.

and we stress that for high-enough F , this representation is exact without loss of generality – see,

e.g., [23]. For the rest of the paper, we consider K = K1 = · · · = KN for brevity.

By linearity and separability of the multidimensional Fourier transformation it follows that

f̃X(x) =

F∑

h=1

pH(h)

N∏

n=1

K∑

kn=−K

ΦXn|H=h[kn] e
−j2πknxn

=

F∑

h=1

pH(h)

N∏

n=1

fXn|H(xn|h). (4.13)

This generative model can be interpreted as mixture of product distributions [77]. The joint PDF

fX is a mixture of F separable component PDFs, i.e., there exists a ‘hidden’ random variable H

taking values in {1, . . . , F} that selects the operational component of the mixture, and given H

the random variables X1, . . . , XN become independent (See Figure 4.2 for visualization of this

model). We have thus shown the following result:

Proposition 4.1. Truncating the multidimensional Fourier series (sampled multivariate charac-

teristic function) of any compactly supported random vector is equivalent to approximating the

corresponding multivariate density by a finite mixture of separable densities.

Thus, by choosing appropriate K and F , it is possible to represent and approximate any

compactly supported density that it is sufficiently smooth by the proposed model. See Figures

4.4, 4.3 where we showcase how each parameter affects the modeling of complex structures in

2D synthetic datasets.

Conversely, if one assumes that the sought multivariate density is a finite mixture of separable

densities, then it is easy to show that the corresponding characteristic function is likewise a
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mixture of separable characteristic functions:

ΦX(ν) = E
[
ejν

TX
]

= EH

[
EX|H

[
ejν1X1 · · · ejνNXN

]]

= EH

[
ΦX1|H(ν1|H) · · ·ΦXn|H(νN |H)

]

=

F∑

h=1

pH(h)

N∏

n=1

ΦXn|H(νn|h). (4.14)

If we sample the above on any finite N -dimensional grid, we obtain an N -way tensor and its

polyadic decomposition. Such decomposition is unique, under mild conditions [23]. It follows

that:

Proposition 4.2. A compactly supported multivariate (N ≥ 3) mixture of separable densities is

identifiable from (samples of) its characteristic function, under mild conditions.

The main reasons for working in the Fourier / characteristic function domain are that

1. truncation is a “universal” approximation in the sense that it only requires smoothness of

the joint PDF;

2. the Fourier transform is “global” allowing us to estimate the PDF in places where there is

a scarcity of “local” samples – which is a key problem in high-dimensional cases;

3. since we limit ourselves to regular samples of the characteristic function (multivariate

Fourier series), we can invert using the computationally advantageous Fast Fourier Trans-

form; and

4. relative to the moment generating function, the characteristic function always exists.

The above analysis motivates the following course of action. Given a set of realizations

{xm}Mm=1,

1. estimate

Φ[k] =
1

M

M∑

m=1

ej2πk
Txm , (4.15)
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2. fit a low-rank model

Φ[k] ≈
F∑

h=1

pH(h)
N∏

n=1

ΦXn|H=h[kn], (4.16)

3. and invert using

fX(x) =
F∑

h=1

pH(h)
N∏

n=1

fXn|H(xn|h), (4.17)

where fXn|H(xn|h) =
K∑

kn=−K

ΦXn|H=h[kn]e
−j2πknxn . When building any statistical model,

identifiability is a fundamental question. A statistical model is said to be identifiable when,

given a sufficient number of observed data, it is possible to uniquely recover the data-generating

distribution. When applying a non-identifiable model, different structures or interpretations may

arise from distinct parametrizations that explain the data equally well. Most deep generative

models do not address the question of identifiability, and thus may fail to deliver the true

latent representations that generate the observations. Our approach is fundamentally different,

because it builds on rigorous and controllable Fourier approximation and identifiability of the

characteristic tensor.

In the Appendix (Section 4.7), we provide additional statistical insights regarding the pro-

posed methodology, including the asymptotic behavior of the empirical characteristic function

and the mean squared error reduction afforded by low-rank tensor modeling in the characteristic

function domain.

Two issues remain. First, uniqueness of CPD only implies that each rank-one factor is unique,

but leaves scaling/counter-scaling freedom in pH and the conditional characteristic functions. To

resolve this, we can use the fact that each conditional characteristic function must be equal to 1

at the origin (zero frequency). Likewise, pH must be a valid probability mass function. These

constraints fix the scaling indeterminacy.

We note here that, under certain rank conditions on the Fourier series coefficient tensor, the

proposed method ensures that the reconstructed density is positive and integrates to one, as it

should. This is due to the uniqueness properties of the Fourier series representation and the CPD:

if there exists a density that generates a low-rank characteristic tensor, and that tensor can be

uniquely decomposed, the sum of Fourier inverses of its components is unique, and therefore

equal to the generating density. Under ideal low-rank conditions, this is true even if we ignore
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the constraints implied by positivity when we decompose the characteristic tensor in the Fourier

domain. This is convenient because strictly enforcing those in the Fourier domain would entail

cumbersome spectral factorization-type (positive semidefinite) constraints. We therefore propose

the following formulation:

min ∥Φ− [[λ,A1, . . . ,AN ]]∥2F
subject to λ ≥ 0,1Tλ = 1,

An(K + 1, :) = 1T , n = 1 . . . N,

(4.18)

where An(K + 1 + kn, h) holds ΦXn|H=h[kn], and λ(h) holds pH(h).

The second issue is more important. When N is large, instantiating or even allocating memory

for the truncated characteristic tensor is a challenge, because its size grows exponentially with

N . Fortunately, there is a way around this problem. The main idea is that instead of estimating

the characteristic tensor of all N variables, we may instead estimate the characteristic tensors of

subsets of variables, such as triples, which partially share variables with other triples. The key

observation that enables this approach is that the marginal characteristic function of any subset

of random variables is also a constrained complex CPD model that inherits parameters from the

grand characteristic tensor. Marginalizing with respect to the n′-th random variable, we have that

Φ(k1, . . . , kn′ = 0, . . . , kN ) =

F∑

h=1

N∏

n=1
n̸=n′

ΦXn|H [kn]ΦXn′ |H [0]
︸ ︷︷ ︸

=1

=

F∑

h=1

N∏

n=1
n̸=n′

ΦXn|H [kn]. (4.19)

Thus, a characteristic function of any subset of three random variables Xi, Xj , Xℓ (triples) can

be written as a third-order tensor, Φijℓ, of rank F . These sub-tensors can be jointly decomposed

in a coupled fashion (see the optimization problem in (4.21)) to obtain the sought factors that

allow synthesizing the big characteristic tensor. In this way, we beat the curse of dimensionality

for low-enough model ranks. In addition to affording significant computational and memory

reduction, unlike neural network based methods, the above approach allows us to work with

fewer and even missing data during the training phase, i.e., only having access to incomplete

realizations of the random vector of interest. We estimate lower-order characteristic function

values from only those realizations that all three random variables in a given triple appear

together. Our method can easily be adapted to work with pairs or quadruples, but reliably

estimating fourth-order characteristic functions requires more sample averaging, whereas the 2−



53

dimensional case requires stricter identifiability conditions. Hence working with 3-D tensors

offers a good compromise between these conflicting considerations.

In earlier work, we proposed a similar approach for the categorical case where every random

variable is finite-alphabet and the task is to estimate the joint probability mass function (PMF)

[18]. There we showed that every joint PMF of a finite-alphabet random vector can be represented

by a naı̈ve Bayes model with a finite number of latent states (rank). If the rank is low, the high

dimensional joint PMF is almost surely identifiable from lower-order marginals – which is

reminiscent of Kolmogorov extension.

In case of continuous random variables, however, the joint PDF can no longer be directly

represented by a tensor. One possible solution could be discretization, but this unavoidably leads

to discretization error. In this work, what we show is that we can approximately represent any

smooth joint PDF (and evaluate it at any point) using a low-rank tensor in the characteristic

function domain, thereby avoiding discretization loss altogether.

Our joint PDF model enables easy computation of any marginal or conditional density of

subsets of variables of X . Using the conditional expectation, the response variable, taken without

loss of generality to be the last variable XN , can be estimated in the following way (see detailed

derivation in Section 4.7.).

E [XN |X1, . . . , XN−1] =
1

c1

F∑

h=1

λ(h)
N−1∏

n=1

K∑

kn=−K

An(kn, h)e
−j2πknxn

K∑

kN=−K

c2,kNAN (kN , h)

(4.20)

where c1 =

F∑

h=1

λ(h)

N−1∏

n=1

K∑

kn=−K

An(kn, h)e
−j2πknxnand c2,kN =

e−j2πkN

−j2πkN
+

1− e−j2πkN

[−j2πkN ]2
.

One of the very appealing properties of the proposed approach is that it is a generative

model that affords easy sampling. According to Equation (4.17), a sample of the multivariate

distribution can be generated by first drawing H according to pH and then independently drawing

samples for each variable Xn from the conditional PDF fXn|H . The resulting generative model

can be visualized in Figure 4.2.
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Algorithm 4.2 Low-Rank Characteristic Function based Density Estimation (LRCF-DE).
Input: A real-valued dataset D ∈ RN×M , parameters F,K.
Output: The joint PDF model fX .
Compute Φijℓ∀i, j, ℓ ∈ {1, . . . , N}, ℓ > j > i from training data, using (4.15).
Initialize λ,A1, . . . ,AN in compliance with their constraints.
repeat

for all n ∈ {1, . . . , N} do
Solve the optimization problem with respect to An defined in (4.22).

end for
Update λ by solving the optimization problem defined in (4.24).

until convergence criterion satisfied
Assemble the joint PDF as in equation (4.26).

4.4.1 Algorithm: Coupled Tensor Factorization

We formulate the problem as a coupled complex tensor factorization problem and propose a Block

Coordinate Descent algorithm for recovering the latent factors of the CPD model representing the

joint CF. Then, we only need to invert each conditional CF and synthesize the joint PDF. We refer

to this approach as Low-Rank Characteristic Function based Density Estimation (LRCF-DE).

We begin by defining the following coupled tensor factorization problem

min
λ,A1,...,AN

∑

i

∑

j>i

∑

ℓ>j

∥∥Φijℓ − [[λ,Ai,Aj ,Aℓ]]
∥∥2
F

subject to λ ≥ 0,1Tλ = 1,

An(K + 1, :) = 1T , n = 1, . . . , N.

(4.21)

Each lower-dimensional joint CF of triples, Φijℓ, can be computed directly from the observed

data via sample averaging according to equation (4.15). The formulated optimization problem

(4.21) is non-convex and NP-hard. However it becomes convex with respect to each variable

if we fix the remaining ones and can be handled using alternating optimization. By using the

mode-1 matrix unfolding of each tensor Φijℓ, the optimization problem with respect to Ai

becomes
min
Ai

∑

j ̸=i

∑

ℓ̸=i,ℓ>j

∥∥∥Φ(1)
ijℓ − (Aℓ ⊙Aj)diag(λ)AT

i

∥∥∥
2

F

subject to Ai(K + 1, :) = 1T .

(4.22)
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Figure 4.3: Visualization of synthetic M ′ = 1500 samples generated from the proposed model
trained on the Weight-Height dataset for different F,K parameter combinations – The rightmost
figure represents the ground truth. On the first row, we fixed K, K = 4, and varied F ,
F ∈ [2, 4, 6, 8, 10] (from left to right). On the second row, we fixed F , F = 8, and varied K,
K ∈ [1, 2, 3, 4, 5] (from left to right).

The exact update for each factor Ai can be computed as

Ai ← Gi
−1Vi, (4.23)

where
Gi = (λλT )⊛

∑

j ̸=i

∑

ℓ̸=i,ℓ>j

QH
ℓjQℓj ,

Vi = diag(λ)
∑

j ̸=i

∑

ℓ̸=i,ℓ>j

QH
ℓjΦ

(1)
ijℓ ,

Qℓj = Aℓ ⊙Aj .

For each update, the row of Ai that corresponds to zero frequency is removed and updating Ai

becomes an unconstrained complex least squares problem. A vector of ones is appended at the

same row index after each update Ai. Due to role symmetry the same form holds for each factor

An.

Now, for the λ-update we solve the following optimization problem

min
λ

∑

i

∑

j>i

∑

ℓ>j

∥∥vec(Φijℓ)− (Aℓ ⊙Aj ⊙Ai)λ
∥∥2
F

subject to λ ≥ 0, 1Tλ = 1.

(4.24)

The optimization problem (4.24) is a least squares problem with a probability simplex constraint.
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Figure 4.4: Qualitative synthetic M ′ = 1500 samples obtained from the proposed model trained
on M = 2000 samples of a toy 2-D Moons and Circles datasets (for fixed K, K = 11, from left
to right F ∈ [1, 2, 3, 4, 6] – The rightmost figures represent the ground truth).

We use an ADMM algorithm to tackle it. Towards this end, we reformulate the optimization

problem by introducing an auxiliary variable λ̂ and rewrite the problem equivalently as

min
λ,λ̂

f(λ̂) + r(λ)

subject to λ̂
T
= λ,

where, f(λ̂) =
∑
i

∑
j>i

∑
ℓ>j

∥vec(Φijℓ)− (Aℓ ⊙Aj ⊙Ai)λ̂∥2F and r(λ) is the indicator function

for the probability simplex. C = {λ|λ ≥ 0,1Tλ = 1},

r(λ) =




0, λ ∈ C

∞, λ ̸∈ C.
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At each iteration τ , we perform the following updates

λ̂τ+1 ← (G+ ρI)−1(V + ρ(λτ + uτ ))

λτ+1 ← PC(λτ − λ̂
τ+1

+ uτ )

uτ+1 ← uτ + λτ+1 − λ̂
τ+1

,

where

G =
∑

i

∑

j>i

∑

ℓ>j

QH
ℓjiQℓji,

V =
∑

i

∑

j>i

∑

ℓ>j

QH
ℓjivec(Φ),

Qℓji = Aℓ ⊙Aj ⊙Ai.

(4.25)

PC(y) denotes the projection operator onto the convex set C – it computes the Euclidean

projection of the real part of a point y = [y1, . . . , yF ]
T ∈ CF onto the probability simplex

min
x∈RF

1

2
∥x−ℜ(y)∥2F

subject to x ≥ 0, 1Tx = 1,

using the method described in [86]. The overall procedure is described in Algorithm 4.2.

As the final step, the factors are assembled from the triples and the joint CF over all variables

is synthesized as Φ = [[λ,A1, . . . ,AN ]]. Given, the model of the joint CF, the corresponding

joint PDF model can be recovered at any point as

fX(x) =

F∑

h=1

λ(h)

N∏

n=1

K∑

kn=−K

An(kn, h)e
−j2πknxn . (4.26)

4.5 Experiments

4.5.1 Low Dimensional Toy Data

We first show motivating results from modeling low dimensional datasets and showcase the

expressivity of the proposed model as well as the significance of each parameter. Our model

depends on the degree of smoothness and tensor rank (K and F ). We pick the number of
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Data set MoG KDE RNADE MAF LRCF-DE

Red wine 11.9± 0.29 9.9± 0.16 14.41± 0.16 15.2± 0.09 16.4± 0.67
White wine 16.1± 1.48 14.8± 0.12 17.1± 0.26 17.3± 0.20 18.4± 0.17
F-O.TP 125.4± 7.79 103.05± 0.84 152.48± 5.62 149.6± 8.32 154.34± 8.43
PCB 152.9± 3.88 147.6± 1.63 171.7± 2.75 179.6± 1.62 194.4± 2.43
Superconductivty 134.7± 3.47 127.2± 2.82 140.2± 1.03 143.5± 1.32 146.1± 2.31
Corel Images 211.7± 1.04 201.4± 1.18 223.6± 0.88 218.2± 1.35 222.6± 1.25
Gas Sensor 310.3± 3.47 296.48± 1.62 316.3± 3.57 315.4± 1.458 316.6± 2.35

Table 4.1: Average test-set log-likelihood per datapoint for 5 different models on UCI datasets;
higher is better.

Fourier series coefficients and the tensor rank through cross-validation for real data. Using

these figures, one can see how the model changes when varying one of the two parameters

separately. We begin by modeling M = 2000 samples from the Weight-Height dataset. In

Figure 4.3, we present M ′ = 1500 synthetic samples obtained from the proposed model for

different smoothing parameters K ∈ [1, 2, 3, 4, 5] and ranks F ∈ [2, 4, 6, 8, 10]. By judiciously

selecting the parameter search space, our approach yields an expressive generative model that

can well-represent the data.

Following the same procedure, we now visualize M = 2000 samples from the 2-D Moons

and Circles datasets. We fix the number of smoothing coefficients K, K = 11, and visualize

synthetic M ′ = 1500 samples obtained from the proposed model for different approximation

ranks F ∈ [1, 2, 3, 4, 6] in Figure 4.4. The results show that our model is able to capture complex

structures and properties of the data for an appropriate choice of rank F .

4.5.2 Real Data

We test the proposed approach on datasets (see a brief description of the datasets in Table 4.2)

obtained from the UCI machine learning repository [54].

For each dataset we randomly hide 20% of data (testing set) and consider the remaining

entries as observed information (training set). The parameters, which include the tensor rank F

and the smoothing parameter K, are chosen using cross-validation. The smoothing parameter K

is chosen from the set {5, 10, 20, 25, 30} and the rank F from {5, 10, 20, 30, 50, 100}. We use

20% of the training data as validation data, where we seek to find the optimal parameter values

maximizing the average log-likelihood of the validation samples. Once the hyperparameters

are chosen, we train the model using all the training data (including the validation data) and
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Data set N M

Red wine 11 1599
White wine 11 4898
First-order theorem proving (F-O.TP) 51 6118
Polish companies bankruptcy (PCB) 64 10503
Superconductivty 81 21263
Corel Images 89 68040
Gas Sensor Array Drift (Gas Sensor) 128 13910

Table 4.2: Dataset information.

measure its performance on the testing set. We compare our approach against standard baselines

described in section 5.2.1.

Evaluating the quality of density models is an open and difficult problem [87]. Following the

approach in [68, 79], we calculate and report the average log-likelihood of unseen data samples

(testing set), further averaged over 5 random data splits. The results are shown in Table 5.1.

LRCF-DE has a higher average test sample log likelihood on almost all datasets. Overall, we

observe that our method outperforms the baselines in 4 datasets and is comparable to the winning

method in the remaining ones.

Following the derivation in Equation (4.20), we test the proposed model in several regression

tasks. We evaluate and report the Mean Absolute Error (MAE) in estimating XN for the unseen

data samples in Table 4.3 and additional results for multi-output regression are presented in

Table 4.4. Overall, we observe that LRCF-DE outperforms the baselines on almost all datasets,

and performs comparable to the winning method in the remaining ones.

We have to stress again the fact that neural network based density estimation methods

evaluate multivariate densities point-wise. These methods cannot impute more than a few

missing elements in the input as grid search becomes combinatorial. Due to the interpretation of

the approximation of the sought density as a finite mixture of separable densities and the coupled

tensor factorization approach, our method allows us to easily work with missing data during both

training and testing. Here, we showcase the results of LRCF-DE against MAF for simultaneously

predicting the last two random variables of each dataset given the remaining ones.
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Data set MoG KDE RNADE MAF LRCF-DE

Red wine 1.28 1.13 0.66 0.63 0.56
White wine 1.79 1.31 0.80 0.75 0.59
F-O.TP 1.86 1.46 0.63 0.52 0.48
PCB 5.6 7.73 4.43 4.52 3.85
Superconductivty 18.56 19.96 16.46 16.38 16.53
Corel Images 0.53 0.93 0.27 0.27 0.28
Gas Sensor 29.7 35.3 26.8 26.2 26.7

Table 4.3: MAE for regression tasks.

Data set LRCF-DE MAF

Red wine 0.82 0.91

White wine 0.93 0.97

First-order theorem proving (F-O.TP) 0.69 0.72

Polish companies bankruptcy (PCB) 4.97 5.46

Superconductivty 20.84 20.72

Corel Images 1.36 1.59

Gas Sensor Array Drift (Gas Sensor) 25.7 26.1

Table 4.4: MAE for multi-output regression tasks.

The reduction in free parameters makes the proposed model particularly beneficial in the

low-sample regime. We conducted an additional experiment on the Gas dataset to study how

our model performs in terms of test-set log-likelihood when the number of samples is varied in

comparison with the best performing neural network based PDF estimator from the baselines

considered, namely, MAF. The results in Figure 4.5 verify that small to moderate training sample

sizes result in much better LRCF-DE performance than MAF.

As our last experiment, we train LRCF-DE to learn the joint distribution of grayscale

images from the USPS dataset [88], which contains 9298 images of handwritten digits of size

16 × 16 → N = 256. The number of examples for each digit is shown in Table 4.5. The

purpose of this experiment is to show that one can obtain reasonably accurate samples of digit

images, by only modeling the distribution of triples of variables, something which has never

been done before on images. We sample from the resulting 256-dimensional model, and provide

visualization of the generated data. We fix the tensor rank to F = 8 and the smoothing parameter
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Figure 4.5: LRCF-DE is particularly beneficial in the small to moderate training sample regime.
Using a limited number of training points from the Gas dataset, highlights the superior perfor-
mance of LRCF-DE against the state of the art deep learning based PDF estimator (MAF).

0 1 2 3 4 5 6 7 8 9 Total

Samples 1553 1269 929 824 852 716 834 792 708 821 9298

Table 4.5: Images of handwritten digits - USPS dataset information.

to K = 15, and draw 8 random samples of each digit (class). The resulting samples are shown in

Figure 4.6, and they are very pleasing – in light of the fact that our model is “agnostic”: designed

for general-purpose density estimation, not specifically for realistic-looking image synthesis. It

is possible to incorporate image modeling domain knowledge in the design of LRCF-DE (such

as correlation between adjacent pixel values), but this is beyond the scope of this paper. This

manuscript is the first part containing the foundations of a two-part paper. The second part [22]

builds on this foundation to develop a joint compression (nonlinear dimensionality reduction)

and compressed density estimation framework that offers additional flexibility and scalability

and is used to demonstrate improved image sampling performance against well known deep

learning models, including autoregressive methods and VAEs.
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Figure 4.6: The first eight columns correspond to class-conditional synthetic samples (generated
by LRCF-DE) and the rest correspond to real samples from the USPS dataset.

4.6 Chapter Summary

In this work, we have revisited the classic problem of non-parametric density estimation from a

fresh perspective – through the lens of complex Fourier series approximation and tensor modeling,

leading to a low-rank characteristic function approach. We showed that any compactly supported

density can be well-approximated by a finite characteristic tensor of leading complex Fourier

coefficients as long as the coefficients decay sufficiently fast. We posed density estimation as a

constrained (coupled) tensor factorization problem and proposed a Block Coordinate Descent

algorithm, which under certain conditions enables learning the true data-generating distribution.

Results on real data have demonstrated the utility and promise of this novel approach compared

to both standard and recent density estimation techniques.

4.7 Appendix

Due to the subtleties of tensor rank, the possible non-existence of best low-rank tensor approxima-

tion, and other technical issues, no perturbation theory currently exists for tensor decomposition
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to estimate how close low-rank approximation of a perturbed low-rank tensor is to the unper-

turbed low-rank tensor. In what follows, we summarize what is known for our method without

imposing low-rank structure, and further explain why partially imposing low-rank structure is

beneficial, using matrix results.

4.7.1 Bias, variance, consistency of the empirical characteristic function

In this appendix we summarize important properties of empirical characteristic functions as

statistical estimators of the corresponding characteristic functions. We refer the reader to [89] for

proofs and additional results.

By linearity of expectation, it is easy to see that the empirical characteristic function is an

unbiased estimator of the corresponding characteristic function, i.e.,

E
[
Φ̂X(ν)

]
= ΦX(ν),

for all ν and M ≥ 1. For the remainder of this section, we assume that {xm}Mm=1 is i.i.d. in m.

The variance of the empirical characteristic function estimate can be shown [89] to be

Var[Φ̂X(ν)] = E

[∣∣∣Φ̂X(ν)− E
[
Φ̂X(ν)

]∣∣∣
2
]

= E

[∣∣∣Φ̂X(ν)− ΦX(ν)
∣∣∣
2
]

=
1

M

(
1− |ΦX(ν)|2

)
.

Note that 0 ≤
∣∣ΦX(ν)

∣∣ ≤ 1, and therefore Var[Φ̂X(ν)] ≤ 1
M . It follows that

lim
M→∞

E

[∣∣∣Φ̂X(ν)− ΦX(ν)
∣∣∣
2
]
= 0,

i.e., for any fixed ν, Φ̂X(ν) converges to ΦX(ν) in the mean-squared sense. By the strong law

of large numbers, it also converges almost surely for any fixed ν. Furthermore, for any fixed

positive T <∞
lim

M→∞
sup ∥ν∥2≤T

∣∣Φ̂X(ν)− ΦX(ν)
∣∣ = 0,

almost surely. It can also be shown [89] that for any increasing sequence TM such that



64

limM→∞
log(TM )

M = 0, it holds

lim
M→∞

sup ∥ν∥2≤TM

∣∣Φ̂X(ν)− ΦX(ν)
∣∣ = 0,

almost surely. In our context, we only use a sampled and truncated version of the characteristic

function (corresponding to a truncated multivariate Fourier series), hence T is always finite – we

do not need the latter result.

It is also worth noting that the covariance of different samples of the empirical characteristic

function (corresponding to different values of ν) goes to zero ∼ 1
M , and so does the covariance

of its real and imaginary parts. As a result, for large M , the errors in the different elements of the

characteristic tensor are approximately uncorrelated, with uncorrelated real and imaginary parts.

This suggests that when we fit a model to the empirical characteristic function, it makes sense

to use a least squares approach. Another motivation for this comes from Parseval’s theorem:

minimizing integrated squared error in the Fourier domain corresponds to minimizing integrated

squared error between the corresponding multivariate distributions. This is true in particular when

we limit the support of the distribution to a hypercube and use the samples of the characteristic

function that correspond to the multivariate Fourier series, thereby replacing the multivariate

integral in the Fourier domain by a multivariate sum.

4.7.2 Low-rank denoising: reduction of the mean squared error

Our use of a low-rank model in the characteristic tensor domain is primarily motivated by

the need to avoid the “curse of dimensionality”: using a rank-F model with 2K + 1 Fourier

coefficients per mode parametrizes the whole N -dimensional multivariate density using just

FN(2K+1) coefficients, and avoids instantiating and storing a tensor of size (2K+1)N , which

is close to impossible even for moderate N . However, there is also a variance benefit that comes

from this low-rank parametrization. We know from [90] that for a square L× L matrix of rank

F observed in zero-mean white noise of variance σ2, low-rank denoising attains mean squared

error cLFσ2 asymptotically in L, where c is a small constant. In practice the asymptotics kick in

even for relatively small L [90]. Contrast this to the raw L2σ2 if one does not use the low-rank

property.

For an N -way tensor of rank F , assume N is even, Kn = K, ∀N (for simplicity of

exposition), and “unfold” the characteristic tensor into a KN/2 ×KN/2 matrix. In practice we
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use F far less than KN/2, and thus the resulting matrix will be very low rank. Invoking [90],

low-rank tensor modeling will yield a reduction in mean squared error by a factor of at least F
KN/2 .

We say at least, because this low-rank matrix structure is implied but does not imply low-rank

tensor structure, which is much stronger. Note also that mean squared error in the characteristic

tensor domain translates to mean squared error between the corresponding distributions, by

virtue of Parseval’s theorem.

4.7.3 Derivation of (4.20)

In this appendix we present the derivation of (4.20), which is used to solve regression tasks.

E [XN |X1, . . . , XN−1]

=

∫ 1

0
xNfXN |X1,...,XN−1

(xN |x1, . . . , xN−1)dxN

=

∫ 1

0
xN

fX1,...,XN
(x1, . . . , xN )

fX1,...,XN−1
(x1, . . . , xN−1)

dxN

=
1

c1

∫ 1

0
xNfX1,...,XN

(x1, . . . , xN )dxN

=
1

c1

∫ 1

0
xN

F∑

h=1

λ(h)

N∏

n=1

K∑

kn=−K

An(kn, h)e
−j2πknxndxN

=
1

c1

F∑

h=1

λ(h)
N−1∏

n=1

K∑

kn=−K

An(kn, h)e
−j2πknxn

K∑

kN=−K

AN (kN , h)

∫ 1

0
xNe−j2πkNxNdxN

=
1

c1

F∑

h=1

λ(h)
N−1∏

n=1

K∑

kn=−K

An(kn, h)e
−j2πknxn

K∑

kN=−K

c2,kNAN (kN , h),
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where

c1 = fX1,...,XN−1
(x1, . . . , xN−1)

=
F∑

h=1

λ(h)
N−1∏

n=1

K∑

kn=−K

An(kn, h)e
−j2πknxn ,

and

c2,kN =
e−j2πkN

−j2πkN
+

1− e−j2πkN

[−j2πkN ]2
.



Chapter 5

Low-rank Characteristic Tensor
Density Estimation Part II:
Compression and Latent Density
Estimation

5.1 Introduction

Accurate modeling of the multivariate structure of data based on observed data samples is

one of the most fundamental topics in machine learning. A model of the joint probability

density function (PDF) of a data vector encodes the complete statistical properties of the data

generative process and allows one to reason about data probabilistically, uncover the (possibly

low-dimensional) manifold the data live on, and ultimately generate new data. PDF estimation

serves as a building block in a wide variety of applications, such as image processing [91], speech

modeling [5], natural language processing [92], and anomaly detection [93]. Conventional density

estimation methods, such as kernel density estimation (KDE) [94] and Gaussian mixture models

(GMMs) [95] are usually designed to fit target distributions directly in the data space RN and fall

short in high dimensions from both computational and statistical points of view due to the Curse

of Dimensionality – convergence slows down as the number of dimensions increases as a result

of data sparsity in high-dimensional spaces. Real-world data often resides in a high-dimensional

67
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and complex feature space with only a limited amount of observed data being directly available.

Recently, the use of deep neural networks has led to substantial advances in this area. For

example, generative adversarial networks (GANs) [17] can be trained to sample from very

high-dimensional densities, but they do not support statistical inference or explicit density

evaluation. On the other hand, variational auto-encoders (VAEs) [69] provide functionality

for both (approximate) inference and sampling. VAEs assume a prior as a manually specified

distribution (e.g., a simple isotropic Gaussian or mixture of Gaussians) and are trained by

minimizing a reconstruction error and a divergence to force the variational posterior to fit the

prior of the latent variables. However, the forced global structure in the latent space through

the use of a manually specified prior may differ from the complex latent nature of the true data

manifold. Thus, such simplistic assumptions may potentially harm the generalization of high

dimensional data from low dimensional latent spaces. For example, it is observed that VAEs

tend to generate blurry images, an effect that is usually attributed to the latent density mismatch

problem [96, 97]. Finally, explicit neural models such as auto-regressive models [98] and

flow-based models [16, 99] are designed to perform sampling and point-wise density evaluation.

Despite their success, auto-regressive models generally suffer from slow sampling time [100]

and inferior quality of samples compared to VAEs; but they are particularly useful for point-wise

density evaluation. On the other hand, flow-based models, such as Real-NVP [16] and Glow [91],

are efficient for sampling, but have inferior performance in evaluating the log-likelihood of the

input compared to the auto-regressive ones.

The goal of this paper is to introduce a class of probabilistic latent variable models for

unsupervised learning which is tailored for high dimensional datasets. The proposed class of

models is non-parametric, and it learns the underlying distribution of latent representations of

the input data in the Fourier domain. The proposed framework consists of two main components:

an auto-encoder network, through which a lower-dimensional latent representation of the input is

sought; and a nonparametric density estimation module in the latent domain. The auto-encoder

compresses redundancies in the data domain while preserving the essential information, and

is used as a new feature representation space where we learn the data distribution. The auto-

encoder and the latent density are learned jointly via an optimization criterion that combines

a data reconstruction loss and a negative log-likelihood regularization term over the latent

representations of the training data.

This is the second part of a two-part paper. The first part [21] dealt with the density estimation
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problem in the native (“raw”) input data domain, showing that any joint density that is compactly

supported and continuously differentiable can be well-approximated using a low-rank tensor

model in the Fourier domain. A corollary of [21] is that a finite separable mixture model

(approximately) follows from compactness of support and continuous differentiability. This

interpretation enables an efficient and disciplined sampling process. By introducing a low-rank

tensor model in the Fourier domain via the Canonical Polyadic Decomposition (CPD) [26],

a controllable approximation of the multivariate density is identifiable. The choice of tensor

rank, number of Fourier coefficients, and the dimensionality of the latent space let us control the

expressivity of the learned distribution. With respect to Part I [21], the key differences in this

second part are the following:

• Unlike Part I, which aimed to tackle the problem directly in the original N -dimensional

space, probabilistic modeling in Part II is realized in a reduced-dimension latent space and

the effects are translated back into the input space through the decoder mapping. Towards

this end, a joint nonlinear dimensionality reduction and compressed density estimation

framework is proposed in Part II. The joint approach boosts the flexibility, scalability, and

statistical performance in terms of prediction (regression/detection) accuracy and sampling

fidelity.

• Instead of the coupled tensor factorization approach adopted in Part I, Part II tackles joint

density estimation as a hidden tensor factorization problem using maximum likelihood

learning of the latent distribution’s parameters.

A high-level overview of the proposed framework is shown in Figure 5.1. A sneak peak

of the expected performance of the proposed method is shown in Figure 5.2 where we use our

model to learn the joint distribution of MNIST [101] images of 0s and 8s. With a suitable

combination of hyper-parameters, the proposed density estimator offers considerable flexibility

without sacrificing parsimony of representation. We showcase the promising results of the

proposed model on benchmark image (MNIST, FMNIST [102]) and several tabular datasets on

sampling, regression, and anomaly detection tasks, and on some toy but didactic examples for

illustration.
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Figure 5.1: Compressed Density Estimation: An auto-encoder attempts to reproduce the input in
the output layer by compressing it to fewer dimensions while retaining non-redundant information.
The hidden layer becomes a bottleneck, forming a lower-dimensional representation of the data,
which is used to build a non-parametric density model.

5.2 Background

5.2.1 Related work

Classic work on density estimation includes Gaussian Mixture Models, which are fragile to

model mismatch due to their parametric nature, and introduce computational and estimation

challenges in the high dimensional case. Conventional non-parametric models such as the Kernel

Density Estimators become computationally intractable in high dimensions, since the number of

parameters grows exponentially with the number of dimensions [72].

Recently, the use of deep neural networks has led to significant advances in modeling

modern complex and high-dimensional data. Auto-encoders enjoy a remarkable ability to learn

data representations. Auto-encoder networks such as VAEs [69] and GANs [17] learn latent

representations of very high-dimensional data such as images or videos. However, GANs only

support sampling, but not inference or density estimation. VAEs assume that high-dimensional

data can be modeled as lying on or near a low-dimensional, nonlinear manifold which they

approximate by learning nonlinear mappings while encouraging a global structure in the latent
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(d) F = 2,K = 3 (e) F = 4,K = 3 (f) F = 8,K = 3

Fig. 2: Sneak peek: Demonstration of generated MNIST
samples trained on images of 0s and 8s using the proposed
CDE model. We train the model on different values of F and K
to show that only a few parameters are needed to come close to
the ground-truth. Increasing K generates sharper digits, while
increasing F better differentiates the samples of the digits.

type of NF model where the transformation layer is built as an
autoregressive neural network. Finally, Gaussianization flows
(GF) [25] build upon rotation-based iterative Gaussianization.
These methods do not construct an explicit joint PDF model,
but rather serve for point-wise density evaluation. That is, for
any given input vector (realization), they output an estimate of
the density evaluated at that particular input vector.

B. Notation

In this paper, we use x, X, X for vectors, matrices
and tensors respectively. We use the notation x(k), X(:, k),
X(:, :, k) to refer to a particular element of a vector, a column
of a matrix and a slab of a tensor. Symbols ‖x‖2 and ‖X‖F
correspond to L2 norm and Frobenius norm. Symbols ◦,
~, � denote the outer, Hadamard and Khatri-Rao product
respectively. The set of integers {1, . . . , N} is denoted as [N ].
We use the notation FC (a, b, c) to describe a fully-connected
layer with a input neurons and b output neurons activated by
function c.

C. Canonical Polyadic Decomposition

In this section, we briefly introduce basic concepts related to
tensor decomposition. A D-way tensor Φ ∈ CK1×K2×···×KD

is a multidimensional array whose elements are indexed by D
indices. Any tensor can be decomposed as a sum of F rank-1
tensors, i.e.,

Φ = [[λ,A1,A2, . . . ,AD]] =

F∑

f=1

λ(f)a1
f ◦a2

f ◦· · ·◦aDf , (1)

where Ad = [ad1, . . . ,a
d
F ] ∈ CKD×F and constraining the

columns An(:, f) to have unit norm, the real scalar λ(f)
absorbs the f -th rank-one tensor’s scaling. A particular element

of the tensor is given by

Φ(k1, k2, . . . , kD) =

F∑

f=1

λ(f)

D∏

d=1

Ad(kd, f). (2)

When F is minimal, it is called the rank of Φ, and the decom-
position is called Canonical Polyadic Decomposition (CPD)

[26], [16]. CPD is a powerful model that can parsimoniously
represent the high-order interactions among multi-way data
exactly or approximately leading to significant reduction in
the number of parameters. A key property of the CPD is that
the rank-1 components are unique under mild conditions. For
learning latent variable statistical models the uniqueness of
tensor decomposition often translates to identifiability, that
is the existence of a unique set of parameters that can be
consistent with what we have observed. See [27] for a tutorial
overview and detailed identifiability results.

III. COMPRESSED-DOMAIN DENSITY ESTIMATION

We consider the problem of general-purpose modeling of
a high-dimensional continuous joint distribution fX of an N -
dimensional random vector X when N is large. Given a dataset
D of M i.i.d. realizations in the N -dimensional observable
space D = {xm}Mm=1, we typically wish to perform maximum
likelihood learning of its parameters, i.e., to minimize the
Negative Log-Likelihood (NLL)

LNLL = − 1

M

M∑

m=1

log
(
fX(xm)

)
. (3)

In general, LNLL is difficult to compute or differentiate directly,
since the density fX can be analytically and computationally
intractable. One can address this issue and evade the curse
of dimensionality by using a mapping h to encode the
input data samples xm ∈ RN into much lower dimensional
representations zm ∈ RD, with D � N , in the latent space.

In this work, we propose a joint dimensionality reduction
(DR) and density estimation framework where the DR part is
carried out through learning an auto-encoder:

Auto-encoder: x
h7→ z

g7→ x̃.

Here, h and g denote the encoder and the decoder, respectively,
and x̃ is the reconstruction of x. The mapping h : RN → RD
can be viewed as nonlinear dimensionality reduction, and the
low-dimensional z = h(x) as the bottleneck representation
of the observed vector x. We approximate the latent domain
distribution fZ using the non-parametric density estimation
framework in Part I of this work [15]. The density estimation
framework relies on the decomposition of a D-way tensor
of leading Fourier series coefficients through CPD. Part I has
shown that this model is quite general, in that it can approximate
any multivariate compactly supported density as long as its
Fourier coefficients decay sufficiently fast, and under certain
conditions it can identify the true latent model.

The choice of tensor rank, number of Fourier coefficients, and
the dimensionality of the bottleneck representation are used to
control the expressivity of the model. Here we propose to jointly
learn the auto-encoder and the parameters of the density model.
The combination of an auto-encoder and density estimation
takes advantage of their synergistic strengths. Auto-encoders
can compress input data to fewer dimensions while retaining
non-redundant information, while density estimation works
best in lower-dimensional spaces. The proposed framework
can be used for missing data imputation and as a generative
model.

(a) From left to right : (F = 4,K = 1), (F = 4,K = 3), (F = 4,K = 5)
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Fig. 2: Sneak peek: Demonstration of generated MNIST
samples trained on images of 0s and 8s using the proposed
CDE model. We train the model on different values of F and K
to show that only a few parameters are needed to come close to
the ground-truth. Increasing K generates sharper digits, while
increasing F better differentiates the samples of the digits.

type of NF model where the transformation layer is built as an
autoregressive neural network. Finally, Gaussianization flows
(GF) [25] build upon rotation-based iterative Gaussianization.
These methods do not construct an explicit joint PDF model,
but rather serve for point-wise density evaluation. That is, for
any given input vector (realization), they output an estimate of
the density evaluated at that particular input vector.

B. Notation

In this paper, we use x, X, X for vectors, matrices
and tensors respectively. We use the notation x(k), X(:, k),
X(:, :, k) to refer to a particular element of a vector, a column
of a matrix and a slab of a tensor. Symbols ‖x‖2 and ‖X‖F
correspond to L2 norm and Frobenius norm. Symbols ◦,
~, � denote the outer, Hadamard and Khatri-Rao product
respectively. The set of integers {1, . . . , N} is denoted as [N ].
We use the notation FC (a, b, c) to describe a fully-connected
layer with a input neurons and b output neurons activated by
function c.

C. Canonical Polyadic Decomposition

In this section, we briefly introduce basic concepts related to
tensor decomposition. A D-way tensor Φ ∈ CK1×K2×···×KD

is a multidimensional array whose elements are indexed by D
indices. Any tensor can be decomposed as a sum of F rank-1
tensors, i.e.,

Φ = [[λ,A1,A2, . . . ,AD]] =
F∑

f=1

λ(f)a1
f ◦a2

f ◦· · ·◦aDf , (1)

where Ad = [ad1, . . . ,a
d
F ] ∈ CKD×F and constraining the

columns An(:, f) to have unit norm, the real scalar λ(f)
absorbs the f -th rank-one tensor’s scaling. A particular element

of the tensor is given by

Φ(k1, k2, . . . , kD) =
F∑

f=1

λ(f)
D∏

d=1

Ad(kd, f). (2)

When F is minimal, it is called the rank of Φ, and the decom-
position is called Canonical Polyadic Decomposition (CPD)

[26], [16]. CPD is a powerful model that can parsimoniously
represent the high-order interactions among multi-way data
exactly or approximately leading to significant reduction in
the number of parameters. A key property of the CPD is that
the rank-1 components are unique under mild conditions. For
learning latent variable statistical models the uniqueness of
tensor decomposition often translates to identifiability, that
is the existence of a unique set of parameters that can be
consistent with what we have observed. See [27] for a tutorial
overview and detailed identifiability results.

III. COMPRESSED-DOMAIN DENSITY ESTIMATION

We consider the problem of general-purpose modeling of
a high-dimensional continuous joint distribution fX of an N -
dimensional random vector X when N is large. Given a dataset
D of M i.i.d. realizations in the N -dimensional observable
space D = {xm}Mm=1, we typically wish to perform maximum
likelihood learning of its parameters, i.e., to minimize the
Negative Log-Likelihood (NLL)

LNLL = − 1

M

M∑

m=1

log
(
fX(xm)

)
. (3)

In general, LNLL is difficult to compute or differentiate directly,
since the density fX can be analytically and computationally
intractable. One can address this issue and evade the curse
of dimensionality by using a mapping h to encode the
input data samples xm ∈ RN into much lower dimensional
representations zm ∈ RD, with D � N , in the latent space.

In this work, we propose a joint dimensionality reduction
(DR) and density estimation framework where the DR part is
carried out through learning an auto-encoder:

Auto-encoder: x
h7→ z

g7→ x̃.

Here, h and g denote the encoder and the decoder, respectively,
and x̃ is the reconstruction of x. The mapping h : RN → RD
can be viewed as nonlinear dimensionality reduction, and the
low-dimensional z = h(x) as the bottleneck representation
of the observed vector x. We approximate the latent domain
distribution fZ using the non-parametric density estimation
framework in Part I of this work [15]. The density estimation
framework relies on the decomposition of a D-way tensor
of leading Fourier series coefficients through CPD. Part I has
shown that this model is quite general, in that it can approximate
any multivariate compactly supported density as long as its
Fourier coefficients decay sufficiently fast, and under certain
conditions it can identify the true latent model.

The choice of tensor rank, number of Fourier coefficients, and
the dimensionality of the bottleneck representation are used to
control the expressivity of the model. Here we propose to jointly
learn the auto-encoder and the parameters of the density model.
The combination of an auto-encoder and density estimation
takes advantage of their synergistic strengths. Auto-encoders
can compress input data to fewer dimensions while retaining
non-redundant information, while density estimation works
best in lower-dimensional spaces. The proposed framework
can be used for missing data imputation and as a generative
model.

(b) From left to right : (F = 2,K = 3), (F = 4,K = 3), (F = 8,K = 3)

Figure 5.2: Sneak peek: Demonstration of generated MNIST samples trained on images of 0s
and 8s using the proposed CDE model. We train the model on different values of F and K to
show that only a few parameters are needed to come close to the ground-truth. Increasing K
generates sharper digits, while increasing F better differentiates the samples of the digits.

space through the use of a specified prior distribution. However, specifying the prior distribution

may prevent them from faithfully representing the true data manifold. It was shown in [103] that

choosing a simplistic prior could lead to over-regularization and, as a consequence, very poor

latent representation.

In this work, we avoid the variational training by jointly training a deterministic encoder–decoder

pair and an expressive density estimator in the latent space, which admits simpler optimization,

and, most importantly, generates better samples than VAEs. A key advantage of our approach

is that we introduce a non-parametric density model into the latent space, which by virtue

of uniqueness of low rank tensor decomposition comes with identification guarantees. This

approach can yield a more accurate model of the data manifold, as we will see. A conceptually

similar approach was proposed in [93] and applied for unsupervised anomaly detection, the key

difference being that the density of low-dimensional representations was modelled using a GMM,

which is far more restrictive and does not come with identification guarantees.

Other classes of generative models include the Real-valued Neural Autoregressive Distri-

bution Estimator (RNADE) [79] and its discrete version MADE [66], which is among the best

performing neural density evaluation methods and has shown great potential in scaling to high-

dimensional distribution evaluation problems. These so-called autoregressive models decompose

the joint density as a product of one-dimensional conditionals of increasing conditioning order,

and model each conditional density with a parametric model. Normalizing Flows (NF) [16]
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models, on the other hand, start with a base density e.g., standard Gaussian, and stack a series

of invertible transformations with tractable Jacobian to approximate the target density. Masked

Autoregressive Flow (MAF) [68] is a type of NF model where the transformation layer is built

as an autoregressive neural network. Finally, Gaussianization flows (GF) [104] build upon

rotation-based iterative Gaussianization. These methods do not construct an explicit joint PDF

model, but rather serve for point-wise density evaluation. That is, for any given input vector

(realization), they output an estimate of the density evaluated at that particular input vector.

5.2.2 Notation

In this paper, we use x, X, X for vectors, matrices and tensors respectively. We use the notation

x(k), X(:, k), X(:, :, k) to refer to a particular element of a vector, a column of a matrix and a

slab of a tensor. We use the notation FC (a, b, c) to describe a fully-connected layer with a input

neurons and b output neurons activated by function c.

5.2.3 Canonical Polyadic Decomposition

In this section, we briefly introduce basic concepts related to tensor decomposition. A D-way

tensor Φ ∈ CK1×K2×···×KD is a multidimensional array whose elements are indexed by D

indices. Any tensor can be decomposed as a sum of F rank-1 tensors, i.e.,

Φ = [[λ,A1,A2, . . . ,AD]] =
F∑

f=1

λ(f)a1f ◦ a2f ◦ · · · ◦ aDf , (5.1)

where Ad = [ad1, . . . ,a
d
F ] ∈ CKD×F and constraining the columns An(:, f) to have unit norm,

the real scalar λ(f) absorbs the f -th rank-one tensor’s scaling. A particular element of the tensor

is given by

Φ(k1, k2, . . . , kD) =
F∑

f=1

λ(f)

D∏

d=1

Ad(kd, f). (5.2)

When F is minimal, it is called the rank of Φ, and the decomposition is called Canonical Polyadic

Decomposition (CPD) [25, 26]. CPD is a powerful model that can parsimoniously represent the

high-order interactions among multi-way data exactly or approximately leading to significant

reduction in the number of parameters. A key property of the CPD is that the rank-1 components



73

are unique under mild conditions, see [23] for a tutorial overview and related identifiability

results. In our present context, uniqueness of the CPD implies uniqueness of the multivariate

density model that we will build using CPD in the Fourier domain, as we will see.

5.2.4 Choice of Tensor Decomposition Model

We will use CPD tensor modeling, but there are also other tensor decompositions that one might

consider using, such as Tucker decompositions, particularly HOSVD/MLSVD, and tensor-train

models, see [23] and references therein. Different decompositions serve different purposes

and our decision to choose CPD is based on its uniqueness properties, compactness of model

parametrization (scalability to higher dimensions), and ease of marginalization and sampling.

Marginalization is important when we wish to predict a subset of the random variables from

another subset of the random variables – one of the most important motivations for developing

multivariate density models. Ease of sampling is key when we wish to efficiently draw samples

from the fitted distribution, which is another common use of multivariate density models.

We briefly compare the three most commonly used tensor decompositions: CPD, Tucker

(including HOSVD/MLSVD), and tensor-trains. Tucker represents data as a core tensor and D

factor matrices using O(FD +DKF ) parameters, which scales exponentially in the number of

input random variables (D). CPD and tensor-train decompositions are preferred for high-order

tensors since their complexity scales linearly with D. CPD represents a tensor as a sum of

rank-one tensors using O(DKF ) parameters and the number of free parameters in tensor-train

models is O(KDF 2). We chose CPD over tensor-trains due to

1. its uniqueness properties and

2. ease of marginalization and sampling from the fitted model (these are considerably more

complicated for tensor-trains).

That does not mean that tensor-trains cannot be useful in our present context; but we defer this to

future work.

One of the key parameters in the CPD is the choice of rank F . Determining tensor rank

is an NP-hard problem. In practice we choose rank using a validation set. Aiming to bypass

the problem of rank determination, Bayesian probabilistic tensor factorization approaches such

as [105, 106] have been proposed. The objective of these approaches is not multivariate PDF
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or PMF modeling but general tensor modeling – i.e., instead of a collection of samples of a

random vector, their input is elements of a data tensor. Rank determination (subject to a user-

specified upper bound on rank) is automatic in these methods, but it falls off statistical modeling

assumptions that may or may not be appropriate in our context. Note that we model the complex

tensor of multivariate Fourier series coefficients of the joint PDF in some latent space. We know

that for differentiable PDFs the high-frequency coefficients will typically be much smaller than

low-frequency ones; but the priors used on the factors in Bayesian tensor models are i.i.d. across

modes.

Interestingly, reference [105] is about fitting non-negative tensors using non-negative factors.

While is not useful for PDF modeling in the Fourier domain, it can potentially be used in the

multivariate PMF case considered earlier in our work [18], if one can incorporate certain sum to

one constraints in the framework of [105].

5.3 Compressed-domain Density Estimation

We consider the problem of general-purpose modeling of a high-dimensional continuous joint

distribution fX of an N -dimensional random vector X when N is large. Given a dataset D
of M i.i.d. realizations in the N -dimensional observable space D = {xm}Mm=1, we typically

wish to perform maximum likelihood learning of its parameters, i.e., to minimize the Negative

Log-Likelihood (NLL)

LNLL = − 1

M

M∑

m=1

log
(
fX(xm)

)
. (5.3)

In general, LNLL is difficult to compute or differentiate directly, since the density fX can be

analytically and computationally intractable. One can address this issue and evade the curse of

dimensionality by using a mapping h to encode the input data samples xm ∈ RN into much

lower dimensional representations zm ∈ RD, with D ≪ N , in the latent space.

In this work, we propose a joint dimensionality reduction (DR) and density estimation

framework where the DR part is carried out through learning an auto-encoder:

Auto-encoder: x
h7→ z

g7→ x̃.

Here, h and g denote the encoder and the decoder, respectively, and x̃ is the reconstruction of x.
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The mapping h : RN → RD can be viewed as nonlinear dimensionality reduction, and the low-

dimensional z = h(x) as the bottleneck representation of the observed vector x. We approximate

the latent domain distribution fZ using the non-parametric density estimation framework in Part

I of this work [21]. The density estimation framework relies on the decomposition of a D-way

tensor of leading Fourier series coefficients through CPD. Part I has shown that this model is

quite general, in that it can approximate any multivariate compactly supported density as long as

its Fourier coefficients decay sufficiently fast, and under certain conditions it can identify the

true latent model.

The choice of tensor rank, number of Fourier coefficients, and the dimensionality of the

bottleneck representation are used to control the expressivity of the model. Here we propose to

jointly learn the auto-encoder and the parameters of the density model. The combination of an

auto-encoder and density estimation takes advantage of their synergistic strengths. Auto-encoders

can compress input data to fewer dimensions while retaining non-redundant information, while

density estimation works best in lower-dimensional spaces. The resulting training objective

provides a strong underlying signal to efficiently capture the latent space distribution of the input

data during training. The proposed framework can be used for missing data imputation and as a

generative model.

Missing data imputation: Assume that for a given data sample x, we observe a subset of

its values denoted as xO and xM is the part that we do not observe. Data imputation can

be performed by clamping the observed dimensions xO to their values and maximizing log-

likelihood with respect to the missing dimensions xM

max
xM

log
(
fZ
(
h(xO,xM )

))
. (5.4)

Data sampling: With g given, we can draw a realization of the random vector Z in the D-

dimensional latent space from fZ , and back transform to a sample in the original N -dimensional

space by its inverse image as

z ∼ fZ , x̃ = g(z). (5.5)

Similar approaches such as VAEs pose a stochastic condition on the latent variables to comply

with a fixed prior distribution fZ over a low-dimensional latent space:

VAE: x
h7→ z

g7→ x̃, z ∼ fZ(z).
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The generative process of the VAE is carried out as

z ∼ fZ ,x ∼ pθ(X|Z = z)

where a stochastic decoder

Dθ(z) = x ∼ pθ(x|z) = p(X|g(z))

links the latent space to the input space through the likelihood distribution pθ. This may be

limiting in case this predefined prior does not match the structure of the true data manifold,

leading to a less accurate model. Our approach is fundamentally different as we avoid prior

distribution matching between the variational posterior and the prior, but instead propose jointly

learning a non-parametric density estimator in the latent space. Most importantly, our approach

produces better samples than VAEs, as we will see. In the following sections, we give a detailed

description of the two main components of our framework and the optimization procedure.

5.3.1 Compression Network

The first component of our framework seeks a non-linear mapping h to project high-dimensional

input samples into a low-dimensional space. In the dimensionality reduction process, discarding

some dimensions inevitably leads to information loss. We wish to preserve the available informa-

tion as much as possible, and to this end we minimize the empirical approximation of the mean

squared error

MSE :=

∫

RN

∥x− g(h(x))∥22fX(x)dx. (5.6)

Auto-encoders learn a function by fine-tuning the parameters of a feed-forward Deep Neural

Network (DNN) in such a way that the reconstruction error is minimized when back projected

with another feed-forward DNN. These networks need to be specified a-priori, in terms of the

number of layers and neurons. In this work, we use the rectified linear unit (ReLU) activation

function [107] while the rest of the parameters such as the width of each layer and the depth of

the network are adjusted according to M,N .

Although we proceed with simpler networks, other types of networks (e.g., convolutional

neural networks [108, 109]) can also be used. Let h(·;θh) and g(·;θg) be DNNs and θh, θg

collect the encoder and decoder network parameters, i.e., the weights and bias terms at each



77

hidden layer. Given a finite set of samples M , the empirical reconstruction loss can be computed

as

LREC :=
1

M

M∑

m=1

||xm − g(h(xm;θh);θg)||22. (5.7)

The reconstruction loss is typically minimized using Stochastic Gradient Descent (SGD).

5.3.2 Latent Density Estimation Network

The second component of our framework is a non-parametric density estimation model [21]. The

key difference is that we propose joint dimensionality reduction and density modeling in the

reduced-dimension latent space so that we capture the bottleneck layer distribution, whereas [21]

aimed to tackle the problem directly in the original N -dimensional space. This combination

is crucial for enhanced performance and scalability. Additionally, instead of coupled tensor

factorization, we consider an alternative algorithmic approach by formulating density estimation

as a hidden tensor factorization problem.

Let us consider the multivariate joint PDF fZ of a D-dimensional random vector Z with its

support contained within the hypercube S = [0, 1]D. Then, the joint PDF can be represented by

a multivariate Fourier series

fZ(z) =
∞∑

k1=−∞
· · ·

∞∑

kD=−∞
ΦZ [k]e

−j2πkT z, (5.8)

where

ΦZ [k] = ΦZ(ν)
∣∣
ν=2πk

,k = [k1, . . . , kD]
T

and ΦZ is the Characteristic Function (CF). The multivariate characteristic function ΦZ : RD →
C is defined as

ΦZ(ν) = E
[
ejν

TZ
]
.

Similar to the PDF fZ , its corresponding CF ΦZ contains complete information about the

distribution of Z, i.e., the PDF and the CF have a bijective relationship – one being the Fourier

transform of the other. When the underlying PDF is sufficiently differentiable in all variables,
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fZ can be approximated by a truncated multivariate Fourier series with cutoffs K1, . . . ,KD i.e.,

f̃Z(z) =

K1∑

k1=−K1

. . .

KD∑

kD=−KD

ΦZ [k]e
−j2πkT z. (5.9)

The smoother the underlying PDF the faster the convergence rate and the smaller the approxima-

tion error.

For any p ∈ N, If the partial derivatives ∂θ1

∂z
θ1
1

· · · ∂θD

∂z
θD
D

fZ(z) of f(·) exist and are absolutely

integrable for all θ1, . . . , θD with
∑D

n=1 θn ≤ p then the rate of decay of the magnitude of the

k-th Fourier coefficient |ΦZ [k]| obeys [83]

|ΦZ [k]| = O
(

1

1 + ∥k∥p2

)
.

The worst-case approximation error is bounded by

∥fZ − f̃Z∥∞ ≤ C
D∑

d=1

ωd

(
∂θd

∂z
θd
d

fZ ,
1

1+Kd

)

(1 +Kd)
θd

,

where C = C2

(
1 + C1

∏D
d=1 logKd

)
, C1, C2 are constants independent of fZ and the Kd’s

and

ωj(fZ , δ) := sup
|zj−z′j|≤δ

|fZ(z1, ..., zj , ..., zD)− fZ(z1, ..., z′j , ..., zD)| (5.10)

measures the smoothness of fZ for each component j ∈ [D] [84], [85, Chapter 23]. Note that

we can represent the truncated Fourier coefficients using a D-way tensor Φ where

Φ(k1, . . . , kD) = ΦZ [k]. (5.11)

For simplicity we will assume that K1 = · · · = KD = K. Orthogonal series PDF approximation

using a truncated sum of basis functions (e.g., trigonometric, polynomial, wavelet) becomes

computationally intractable in high dimensions, since the number of parameters (tensor elements)

grows exponentially with the number of dimensions. To reduce the number of parameters,

we introduce a low-rank parameterization of the coefficient tensor obtained by truncating the
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multidimensional Fourier series [21] which reduces the number of parameters from O(KD) to

O(DKF ). Introducing the rank-F CPD we have

Φ(k1, . . . , kD) =

F∑

f=1

pH(f)

D∏

d=1

ΦZd|H=f (kd|f). (5.12)

By linearity and separability of the multidimensional Fourier transformation, applied to

rank-one components, f̃Z(z) can be written in the following form

f̃Z(z) =

K1∑

k1=−K1

. . .

KD∑

kD=−KD

ΦZ [k]e
−j2πkT z

=
F∑

f=1

pH(f)︸ ︷︷ ︸
λ(f)

D∏

d=1

K∑

kd=−K

ΦZd|H=f (kd|f)︸ ︷︷ ︸
af
d(K+1+kd)

e−j2πkdzd︸ ︷︷ ︸
bd(K+1+kd)

=
F∑

f=1

λ(f)
D∏

d=1

Ad(:, f)
Tbd.

The above joint PDF fZ model can be interpreted as a mixture of F product distributions, i.e.,

there exists a ‘hidden’ random variable H taking values in {1, . . . , F} that selects the operational

component of the mixture, and given H the random variables Z1, . . . , ZD become independent

(Fig. 5.3). Then, given z, we can compute the likelihood using

f̂Z(z) = (bT
1 A1 ⊛ · · ·⊛ bT

DAD)
Tλ

= (⊛D
d=1b

T
dAd)λ.

The complexity of computing the likelihood of a data point z is O(DKF ). Tensor methods are

commonly used to establish that the parameters of a generative model can be identified given

higher order moments. This generative model theoretically has enough flexibility to capture

highly complex distributions such as image manifolds. According to this model, a sample of the

multivariate latent distribution can be generated by first drawing H according to pH and then

independently drawing samples for each variable Zd from the conditional PDF fZd|H .
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Figure 5.3: Our approach yields a generative model of the latent density, from which it is very
easy to sample. This is because fZ can be interpreted as a mixture of F product distributions
i.e., admits a latent variable naive Bayes interpretation.

Maximum Likelihood Estimation

The above analysis suggests fitting a low-rank CPD model on the D-way Fourier series coefficient

tensor Φ. To this end, we build a generative probabilistic model that assigns high probability to

the transformed observed samples. We propose fitting the Fourier tensor coefficients indirectly

on the latent space representation of the training data. Let us define matrices Bd ∈ C(2K+1)×M

as

Bd(K + 1 + kd,m) = e−j2πkdzm(d).

Given M samples, we define the following NLL cost term

LNLL := − 1

M

M∑

m=1

log
(
f̂Z(zm)

)

= − 1

M

M∑

m=1

log
(
(⊛D

d=1(Bd(:,m)TAd))λ
)
,

(5.13)

where Ad(K+1+kd, h) holds ΦZd|H=h[kd], λ(f) holds pH(f). Note that we do not instantiate

the full Fourier coefficient tensor but rather recover it implicitly, by minimizing the NLL term.

We can further restrict the model and reduce its learnable parameters by 50% by noticing that

each column of the factor matrix Ad holds a valid characteristic function which is by definition

conjugate symmetric around the origin, and equal to one at the origin, i.e.,

Ad(K + 1, :) = 1T , and

Ad(K + 1 + k, :) = A∗
d(K + 1− k, :),
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k ∈ [K], d ∈ [D].

Algorithm 5.1 CDE (Projected - SGD)
Input: Z,Zval, F,K,D,Mbatch

Initialize λ, {An}Dn=1,θg, θh

repeat
Sample Mbatch data points
Update network parameters via SGD
for d = 1 to D do

Update Ad via SGD
end for
Update λ
Project λ onto the probability simplex
Compute LNLL + Lrec using Zval

until maxiter is reached or LNLL + Lrec stops diminishing

5.3.3 Optimization Procedure

By the above reasoning, instead of using decoupled two-stage training we suggest the following

overall joint DR and density estimation optimization problem which we tackle by stochastic

gradient descent

min
θh,θg ,{Ad}Dd=1,λ

1

M

M∑

m=1

(
∥xm − g(h(xm;θh);θg)∥2−

− µ log
(
(⊛D

d=1(Bd(:,m)TAd))λ
))

+

D∑

d=1

ρ∥Ad∥2F

s.t. λ ≥ 0,1Tλ = 1,

Ad(K + 1, :) = 1T ,

Ad(K + 1 + k, :) = A∗
d(K + 1− k, :).

The optimization criterion that guides CDE consists of three terms: the reconstruction loss of the

auto-encoder, NLL of the density estimation component, and Frobenius norm regularization. In

the above formulation, µ ≥ 0 is a regularization parameter which balances the reconstruction

error versus the maximum likelihood estimation. The number of coefficients K controls the
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desired smoothness of the joint density, while the number of latent dimensions D and the rank F

control the expressivity.

We refer to this approach as Compressed-domain Density Estimation with Hidden Tensor

Factorization (CDE-HTF). Figure (5.1) presents the network structure corresponding to the

final joint problem formulation. We solve the proposed optimization problem using projected

Stochastic Gradient Descent (SGD). We initialize the Fourier tensor-related parameters using

random initialization, while for θg and θh, it was empirically observed that auto-encoder pre-

training was most effective. At each step we update θg, θh, factors Ad and λ simultaneously

by first sampling a batch of size Mbatch and taking a gradient step. After that, we project λ to

the probability simplex. For the termination of the algorithm we compute the cost function on a

validation set and stop if a number of maximum iterations has been reached or the log-likelihood

has not improved in the last T iterations. The full procedure is shown in Algorithm 5.1.

5.4 Experimental Results

In this section, we evaluate the proposed approach using various datasets and evaluation criteria,

ranging from sampling of toy 3-D examples to real MNIST and Fashion-MNIST images, and

regression and anomaly detection tasks using standard tabular datasets from the UCI database.

We compare with density estimation and anomaly detection baselines from the deep learning

literature, including standard VAEs, Real-NVP, MAF, MADE and GF for reference.

5.4.1 Toy Datasets

We begin with modeling the joint density function of a subset of MNIST images, consisting of

only 0s and 8s using the proposed CDE model. For these experiments the network architecture

considered is a four-layer network encoder of 784, 128, 64, 32, neurons respectively (with the

decoder being a mirrored version of the encoder), and ReLU activation functions. In Figure 5.2,

we visualize random samples learned by the proposed model for different values of F and K to

show that only a few parameters are needed to obtain a model that is flexible enough to fit the

distribution in great detail. The first row represents results for fixed F = 4 and different values

of K ∈ [1, 3, 5], while the second row represents results for fixed K = 3 and different values of

F ∈ [2, 4, 8]. Increasing K generates sharper digits, while increasing F better differentiates the

samples of the two digits.
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(a) Latent space Z for the Swiss-
roll dataset.

(b) Latent space Z for the S-
Curve dataset.

(c) Latent space Z for the Fish
bowl dataset.

(d) Data space X for the Swiss-
roll dataset.

(e) Data space X for the S-Curve
dataset.

(f) Data space X for the Fish
bowl dataset.

Figure 5.4: Three toy 3-D (gray data-points) datasets and corresponding samples drawn via CDE.
CDE maps raw samples to latent features through a mapping h : R3 → R2 that is learned by an
auto-encoder. The non-parametric latent density model allows efficient sample generation in the
latent space (orange data-points on the images of the first row). The approximate inverse map of
the decoder, back-transforms latent samples into samples in the data space (orange data-points
on the images of the second row. See text for further details.



84

We then continue with modeling three toy 3-D datasets, namely Swiss-roll, S-curve, and

Fish-bowl where we are given 3000 training data points from each dataset and we use CDE to

randomly sample 5000 synthetic data points. For all the datasets considered, the auto-encoder

structure we use is FC (3, 128, ReLU), FC (128, 64, ReLU), FC (64, 32, ReLU), FC (32, 2,

none), FC (2, 32, ReLU), FC (32, 64, ReLU), FC (64, 128, ReLU), FC (128, 3, none), and the

tensor parameters are set to (K,F ) = (5, 10). We provide an illustration of the 2-D latent space

learned via latent synthetic samples drawn using the proposed method. Using the approximate

inverse map of the decoder, we can back-transform latent samples into samples in the original

data space and visualize the learned distribution in the original space. The results in Figure 5.4

showcase that the proposed framework is capable of learning the structure of the data, notably in

critical regions where the curvature is very high – which is interesting.

5.4.2 Tabular Datasets

Data set N M VAE Real-NVP MAF GF CDE

MINIBOONE 51 130065 3.69± 0.68 3.18± 0.16 3.17± 0.45 3.15± 0.52 3.12± 0.43
BSDS300 63 50000 0.37± 0.08 0.60± 0.02 0.32± 0.03 0.48± 0.03 0.30± 0.02
Gas Sensor 128 13910 1.46± 0.04 1.31± 0.31 1.23± 0.44 1.23± 0.30 1.21± 0.84
Musk 168 6598 0.40± 0.51 0.22± 0.68 0.12± 0.07 0.19± 0.08 0.13± 0.23
IDA2016Challenge 171 76000 0.23± 0.06 0.18± 0.09 0.12± 0.05 0.10± 0.09 0.11± 0.16
BlogFeedback 281 60021 2.43± 0.22 2.35± 0.21 2.37± 0.22 2.37± 0.42 2.32± 0.17
ISOLET 617 7797 1.41± 0.31 1.09± 0.04 1.11± 0.38 1.85± 0.21 1.03± 0.56

Table 5.1: Dataset information and test-set MAE on UCI datasets. For each test sample, we
choose the response variable Y at random and estimate using Stochastic Gradient Ascent.

Next, we evaluate the proposed approach on several regression tasks using tabular datasets

described in Table 5.1. We compare our approach against standard baselines. For each dataset

we split the data in two subsets: 80% used for training and 20% used for testing. The parameters

for each method are chosen using 5-fold cross-validation and we report the Mean Absolute

Error (MAE) for the unseen data samples. The results underline the superior performance

of the proposed method for inference tasks. Regarding the auto-encoder’s parameters for the

datasets, the number of hidden layers varies according to the dataset dimensionality – from

three (MINIBOONE dataset) to six (ISOLET dataset). The most critical one is the hidden layer
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dimensionality D ∈ {16, 32, 48, 64}, and concerning tensor parameters, the important ones are

the tensor rank F ∈ {5, 10, 20, 30, 50} and the smoothing parameter K ∈ {5, 10, 15, 20, 30}.
The learning, drop-out rates, and regularization parameters were sampled from a uniform

distribution in the range [0.05, 0.2]. That is, we randomly sampled parameters from this range

using a uniform distribution and used cross-validation to select the best set of parameters. The

initial weight matrices were all sampled from the uniform distribution within the range [−1, 1].

We used Adam optimizer [110] with a batch size of 500. Overall, we observe that CDE

outperforms the baselines on almost all datasets, and performs comparable to the winning

method in the remaining ones. More specifically, CDE shows significantly lower test-set MAE

on MINIBOONE, Gas Sensor, and BlogFeedback dataset compared to Real-NVP and MAF,

which appear to be the next best performing models. Additionally CDE has a clear lead against

the VAE especially on Gas Sensor, IDA2016Challenge, and ISOLET dataset, which confirms our

initial motivation of using a non-parametric latent density estimator to improve model flexibility.

5.4.3 Image Datasets

We consider grayscale images from the MNIST and Fashion-MNIST database, which both

contain a set of 60, 000 training observations of 28 × 28 pixels (N = 784) from 10 classes.

Regarding MNIST, the most critical parameters include the encoder architecture, which consists

of four hidden layers of 784, 128, 64, 32, neurons respectively (the decoder network has a

mirrored structure), ReLU activation function, tensor rank which is fixed to F = 50, smoothing

parameter K = 5, and the learning rate which is fixed to α = 0.0001. For Fashion-MNIST,

the model parameters are fixed to be the same as for the MNIST dataset, with the encoder

network (784, 256, 128, 64, 32, 16) being the only exception. See also Figure 5.7, which shows

the distribution of the components of the latent variable H after training the generative model.

These bar-plots tell us that the rank of the compressed density model is essentially F = 30,

but for exploratory modeling purposes, we set F = 50 (the parameter F is actually an upper

bound on tensor rank) and encourage sparsity of the latent components through our optimization

problem formulation. We sample from the learned lower-dimensional latent joint generative

model (D = 32 for MNIST and D = 16 for Fashion-MNIST) – See Section 5.3.2 for the detailed

sampling process – and provide visualization of the generated data. The resulting 100 randomly

drawn samples, which are impressively more pleasing to the eye in direct comparison with other

well-known models such as MADE and GFs are shown in Figures 5.5 and 5.6.
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Figure 5.5: Synthetic samples drawn from the joint density of MNIST from various models.
From left to right: Ground Truth, Masked auto-encoder for Distribution Estimation (MADE),
Gaussianization Flows (GF), Variational auto-encoder (VAE), Proposed: CDE.

We note that in our case, no prior is imposed on the latent variables, so we do not have

issues such as “posterior collapse” which has been observed to occur in VAEs. Degeneration

(“collapse”) could occur in principle for our model if the joint characteristic function is reduced

to a rank-1 tensor during training. An easy way to check this would be through the mixture

distribution of the latent components, i.e., the probability mass function of the latent variable H ,

pH(f). If after training the generative model only one element of pH(·) is nonzero, i.e., only

one component “survives”, then the characteristic tensor is rank-1, and degeneration / collapse to

a separable latent space distribution occurs. Throughout our experiments, although the datasets

can be well approximated with lower ranks, such degeneration did not take place. We show this

in Figure 5.7, where we demonstrate the distribution of the latent variable H after training the
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Figure 5.6: Synthetic samples drawn from the joint density of Fashion-MNIST from various
models. From left to right: Ground Truth, Masked auto-encoder for Distribution Estimation
(MADE), Gaussianization Flows (GF), Variational auto-encoder (VAE), Proposed: CDE.

generative model on MNIST (left figure) and Fashion-MNIST (right figure).

Although at first glance, the images generated by VAE have cleaner and thicker strokes,

they are also more blurry and distorted than those produced by CDE. The Fashion-MNIST data

help bring this out more clearly: one can see that CDE allows capturing and representing more

details in the items, while the samples drawn from the VAE are much more blurry. The overall

conclusion from the experiments is that while the quality of our synthetic images is competitive

against the VAE and considerably better than that of the samples generated by the rest of the

models considered, the proposed framework is superior for regression tasks.

Because the dimensionality of the latent space is an important factor in the architecture,
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Figure 5.7: Distribution of the components of the latent variable H after training the generative
model on MNIST (left figure) and Fashion-MNIST (right figure).

Figure 5.8: Fashion-MNIST samples for different values of latent dimensionality (D = 6, D =
10, D = 14).
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we demonstrate sampling results for different dimensionalities on Fashion-MNIST. We repeat

the experiment by setting F = 50 and K = 5. We randomly sample from the learned lower-

dimensional latent joint generative model for D = 6, 10, 14 and provide visualization of the

generated data in the input space. The resulting 100 randomly drawn samples are shown in

Figure 5.8. We can see that increasing latent dimenionality from D = 6 to D = 14 significantly

improves sample quality. Results for D = 16 can be seen on Figure 5.6 which yield high-

quality image samples. Larger latent dimensionality does not further improve the samples (and

eventually degrades it, as expected) so we opt for the smallest dimensionality that yields good

results.

5.4.4 Anomaly Detection Using Real Data

We use four public datasets‡: KDDCUP99, Thyroid, Arrhythmia, and KDDCUP-Rev. The

(instance number M , dimension N , anomaly ratio (%)) of each dataset is (494021, 121, 20),

(3772, 6, 2.5), (452, 274, 15), and (121597, 121, 20). For categorical features, we further used

one-hot representation to encode them. Regarding Thyroid, there are three classes in the original

dataset. We treat the hyperfunction class as the anomaly class and the other two classes are

treated as normal class. Regarding Arrhythmia, the smallest classes, including 3, 4, 5, 7, 8, 9, 14,

and 15, are combined to form the anomaly class, and the rest of the classes are combined to

form the normal class. We randomly extracted 50% of the data and assigned it to the training

subset and the rest to the testing subset. In our experimental setting for anomaly detection, clean

training data is adopted – that is, during the training, only normal data were used. We assume

that the percentage of anomalous data points is known, and our goal is to detect which data

points in the testing subset are most likely to be outliers. Towards this end, at the testing stage the

likelihood of each testing sample in the compressed domain was evaluated and sorted in order to

detect the anomalies as the points with the smallest likelihood. By knowing the percentage of

anomalies, we can indicate the exact number of outliers and output the data samples with the

smallest likelihood values.

The network structures of CDE used for individual datasets are summarized as follows.

• For KDDCUP, the auto-encoder network runs with FC (120, 60, tanh), FC (60, 30, tanh),

FC (30, 20, tanh), FC (20, 10, none), FC (10, 20, tanh), FC (20, 30, tanh), FC (30, 60,
‡Datasets can be downloaded at https://kdd.ics.uci.edu/ and http://odds.cs.stonybrook.

edu.

https://kdd.ics.uci.edu/
http://odds.cs.stonybrook.edu
http://odds.cs.stonybrook.edu
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Dataset Methods Precision Recall F1

KDDCup
VAE 0.9524 (0.0047) 0.9140 (0.0052) 0.9326 (0.0052)
DAGMM 0.9427 (0.0055) 0.9578 (0.0051) 0.9507 (0.0052)
CDE 0.9565 (0.0046) 0.9712 (0.0048) 0.9641 (0.0045)

Thyroid
VAE 0.6575 (0.0371) 0.5743 (0.0583) 0.6357 (0.0583)
DAGMM 0.4658 (0.0481) 0.4902 (0.0452) 0.4752 (0.0497)
CDE 0.6560 (0.0572) 0.6740 (0.0493) 0.6703 (0.0592)

Arrythmia
VAE 0.4375 (0.0538) 0.4340 (0.0496) 0.4302 (0.0482)
DAGMM 0.5358 (0.0468) 0.5592 (0.0475) 0.5403 (0.0421)
CDE 0.5299 (0.0400) 0.5551 (0.0418) 0.5389 (0.0420)

KDDCup-rev
VAE 0.9771 (0.0058) 0.9779 (0.0004) 0.9678 (0.0018)
DAGMM 0.9762 (0.0038) 0.9823 (0.0017) 0.9709 (0.0021)
CDE 0.9866 (0.0008) 0.9872 (0.0015) 0.9871 (0.0012)

Table 5.2: Average (over 20 runs) and standard deviations (in brackets) of Precision, Recall and
F1 score.

tanh), FC (60, 120, none).

• The auto-encoder network for Thyroid runs with FC (6, 12, tanh), FC (12, 4, tanh), FC (4,

2, none), FC (2, 4, tanh), FC (4, 12, tanh), FC (12, 6, none).

• The auto-encoder network for Arrhythmia runs with FC (274, 64, tanh), FC (64, 32, none),

FC (32, 64, tanh), FC (64, 274, none).

• The auto-encoder network for KDDCUP-Rev runs with FC (120, 60, tanh), FC (60, 30,

tanh), FC (30, 20, tanh), FC (20, 10, none), FC (10, 20, tanh), FC (20, 30, tanh), FC (30,

60, tanh), FC (60, 120, none).

As metrics, precision, recall, and F1 score are calculated. We run experiments 20 times for

each dataset split by 20 different random seeds. Table 5.2 reports the average scores and

standard deviations (in brackets). Compared to the baselines considered, CDE achieves the

highest performance – CDE is superior to both VAE and DAGMM for each evaluation criterion

except for precision on the Arrhythmia dataset. This result suggests that our proposed latent

nonparametric density estimation approach can provide more expressive models which can bring

better performance in important detection tasks as well.
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5.5 Chapter Summary

In this chapter, we introduced Compressed Density Estimation (CDE), a novel probabilistic latent

density model that builds upon deep auto-encoder networks and non-parametric multivariate

density modeling in the Fourier domain. We propose using an auto-encoder to embed the data

into a latent code space by minimizing reconstruction error, and a regularization over the latent

space which maximizes the likelihood of the hidden code vector and is modelled using a low-rank

characteristic tensor approach.

We investigated whether leveraging probabilistic (non-parametric) low-rank tensor models

in the Fourier domain as a latent distribution model can improve the expressivity of density

models. By jointly optimizing the auto-encoder and the latent density model, we can better

capture the latent distribution of data representations obtained by the auto-encoder. Experimental

results demonstrated the effectiveness of the proposed joint optimization approach, which is able

to learn complex high dimensional distributions using a parsimonious model with few tuning

parameters.



Chapter 6

Learning Multivariate CDFs and
Copulas using Tensor Factorization

6.1 Introduction

Modeling complex data distributions is a task of central interest in statistics and machine learn-

ing. Given an accurate and tractable estimate of the joint distribution function, various kinds

of statistical tasks can follow naturally including fast sampling, tractable computation of ex-

pectations, and deriving conditional and marginal densities. To list a few recent applications,

such models have demonstrated success in generating high-fidelity images [2], [3], realistic

speech synthesis [4], [5]; semi-supervised learning [6]; reinforcement learning [7]; and detecting

adversarial data [8]. The purpose of this work is to introduce a new class of universal estimators

for multivariate distributions based on CDFs and the Canonical Polyadic (tensor-rank) decompo-

sition, and to demonstrate their direct applicability and efficiency in missing data imputation,

sampling, density estimation, and regression tasks.

Distribution modeling is often studied under the perspective of non-parametric PDF estima-

tion, in which histogram, kernel [10], [11], and orthogonal series methods [12], [13], [14] are

popular approaches with well-understood statistical properties. Although these estimators are

data-driven and do not impose restrictive parameterisations on the form of the data distribution,

they usually have poor performance on datasets of high dimensions because of the “curse of

dimensionality”. Currently, the most prominent methods for modeling multivariate distributions

rely on neural networks [16], [68], [69], [17]. Such methods are capable of modeling higher

92
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dimensional data such as images and sound, either implicitly or explicitly. However, most of

them are black-box models [111] without any identifiability guarantees, lacking the simplicity

and interpretability of the classical methods. Additionally, they lack the ability to efficiently

compute expectations, marginalize over subsets of variables, and evaluate conditionals, which is

limiting in many critical machine learning applications.

This paper, attempts to bridge the gap between principled traditional non-parametric statis-

tics and the scalability benefits of neural-based models by developing two variants of a rank-

constrained estimator for multivariate CDFs based on tensor rank decomposition – known as

Canonical Polyadic (CP) or CANDECOMP/PARAFAC Decomposition [25], [26], [23]. Our

starting point is that any grid-sampled version of an N -dimensional CDF is an N−way cumula-

tive probability tensor F̂ , evaluated on a predefined I1 × I2 × · · · × IN grid G . We will refer to

F̂ as grid-sampled CDF tensor. The evaluation grid G describes the (finite) levels/cut-offs of the

CDF for every dimension and can be taken to be the cartesian product of the training samples

in each dimension, or reduced via scalar or vector k-means. Each element of F̂ can be easily

estimated via sample averaging from realizations of the random vector of interest.

Any tensor can be decomposed as a sum of R rank-1 tensors, for high-enough but finite

R [23]. To maintain direct control over the number of tensor parameters with growing dimen-

sionality N , which entails O
(∏N

n=1 In

)
CDF tensor elements, we introduce the reconstructed

approximation of F̂ , using the rank-R N -dimensional parameterization F ∈ RI1×I2×···×IN .

Such parametrization has much fewer degrees of freedom designated by the rank and size of the

the tensor. Tensor decompositions arise as a powerful tool for extracting meaningful latent struc-

ture from given data and can encode the salient characteristics of the multivariate grid-sampled

CDF tensor F̂ . We seek to minimize the squared loss between F and the empirical CDF tensor

F̂ . We formulate this task both directly, i.e., by forming and decomposing F̂ , and indirectly, as

a hidden tensor factorization problem, i.e., the pertinent parts of the latent factors of the CPD

model are updated from rank-1 measurements of the “hidden” discretized CDF tensor F̂ . From

an algorithmic perspective, we propose alternating optimization, where each matrix factor is

updated using ADMM, as well as stochastic optimization using Adam to allow scaling to larger

datasets.

6.1.1 Contributions

In summary, the present paper shows that:
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• Every multivariate CDF evaluated on a predefined grid admits a compact representation

via a latent variable naive Bayes model with bounded number of hidden states equal to the

rank of the grid-sampled CDF tensor.

• This affords easy sampling, marginalization (by discarding the subset of factor matri-

ces corresponding to the variables we are not interesting in), derivation of conditional

distributions and expectations, and uncertainty quantification – bypassing the curse of

dimensionality.

• The proposed model also affords direct and efficient estimates of (possibly semi-infinite)

“box” probabilities, which is important for classification tasks. Multivariate PDF estima-

tors, on the other hand, require multidimensional integration (analytical, numerical, or

sampling-based Monte-Carlo) to estimate box probabilities, which is cumbersome and

often intractable.

• At the same time, the proposed rank-constrained estimator is unassuming of the structure

of the data (thus offering greater expressive power) and identifiable under relatively mild

rank conditions – see [23].

• On the experimental side, our results indicate that, perhaps surprisingly, estimating the

grid-sampled CDF and then deriving a PDF estimate from it yields improved performance

relative to direct PDF estimation in several machine learning applications of interest. In

addition, the performance of the proposed non-parametric model in the Copula domain

outperforms state-of-the-art Copula-based baselines.

6.2 Background

6.2.1 Related work

Unsupervised learning of multivariate distributions has seen tremendous progress over recent

years, for the case of PDF modeling in particular. Classical methods in the literature include

kernel density estimation (KDE) [10, 11], histogram density estimation (HDE), and Orthogonal

Series Density Estimation (OSDE) [12–14]. All of the aforementioned methods, however are

inefficient for datasets with higher dimensionalities. Neural network-based approaches for

distribution estimation have recently shown promising results in high-dimensional problems.

Auto-regressive (AR) models such as [5, 15] decompose the distribution into a product of

conditionals, where each conditional is modeled by a parametric distribution (e.g., Gaussian or
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mixture of Gaussians in the continuous case). Normalizing flows (NFs) [112] represent a density

value though an invertible transformation of latent variables with known density.

On the down-side, AR models are naturally sensitive to the order of the variables/features

while strong network constraints of NFs can be restrictive for model expressiveness. Most

importantly, AR and NF do not yield an explicit estimate of the density function; they are

‘oracles’ that can be queried to output an estimate of the density at any given input point, i.e., to

generate samples of the sought density – the difference is important. Therefore, given a trained

model, calculating expectations, marginal and conditional distributions is not straightforward

with these methods. The same holds for generative adversarial networks [17] (GANs) as they do

not allow for likelihood evaluation on held-out data. Furthermore, deep multivariate CDF based

models such as [111], do not address model identifiability, and can not guarantee the recovery of

the true latent factors that generated the observed samples.

6.2.2 Tensor modeling of distributions

Tensor models for estimating distributions have been proposed for both discrete and continuous

variables. In the discrete case, the work in [18] showed that any joint PMF can be represented

as an N -way probability tensor and by introducing a CPD model, every multivariate PMF can

be represented by a latent variable naive Bayes model with a finite number of latent states. For

continuous random vectors, the joint PDF can no longer be directly represented by a tensor.

Earlier work ( [74]) has dealt with latent variable models, but not general distributions. In

contrast to prior work ( [74], [77]), we make no assumptions regarding a multivariate mixture

model of non-parametric product distributions in this paper. Another line of work (see [21], [22])

proposed a “universal” approach for smooth, compactly supported multivariate densities by

representing the underlying density in terms of a finite tensor of leading Fourier coefficients.

Our work requires less restrictive assumptions, as it also works with discrete or mixed random

variables, of possibly unbounded support.
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6.3 Methodology

6.3.1 Sketching multivariate CDFs

Let X ∈ RN , X ∼ FX, be a random vector comprising N discrete/categorical or continuous con-

stituent random variables (features) X := [X1, . . . , XN ]T . Given a collection D = {xm}Mm=1

of independently and identically generated observations xm = [xm(1), . . . ,xm(N)]T ∈ RN

sampled from FX, the goal is to find an accurate estimate F̂X of the true distribution function

FX with limited assumptions about the underlying model.

Let us denote the CDF cut-offs of a variable Xn as [x1(n), . . . , xIn(n)]
T ∈ RIn . In each di-

mension n ∈ [N ], the cut-off points are sorted in increasing order, e.g., x1(n) < · · · < xin(n) <

· · · < xIn(n). Considering an evaluation (target) point xi = [xi1(1), xi2(2), . . . , xiN (N)]T , a

natural estimator of the sought CDF is the empirical cumulative distribution function (ECDF)

F̂X,

F̂X(xi) =
1

M

M∑

m=1

1 (xm ≤ xi)

=
1

M

M∑

m=1

1 (xm(1) ≤ xi1(1), . . . ,xm(N) ≤ xiN (N)) . (6.1)

By considering an I1 × I2 × · · · × IN grid G (with possibly non-uniform mesh) of target evalu-

ation points xi, defined as the cartesian product of the observed 1-D samples (or a reduced set of

surrogates obtained via k-means), one can obtain a discretized version of the ECDF, which we

will be referring to as grid-sampled (empirical) CDF. We denote the multivariate CDF evaluation

grid G as G = {[xi1(1), xi2(2), . . . , xiN (N)]T ∈ RN | i1 ∈ [I1], i2 ∈ [I2], . . . , iN ∈ [IN ]}.

6.3.2 Motivation

Approximating the cumulative distribution function, instead of the multivariate density [77], has

significant advantages. A joint CDF (and its grid-sampled sketch) always exists in contrast to

a PDF/PMF. Instead of considering one type of random variables, a CDF can simultaneously

model discrete, continuous or mixed random variables. All observations “up to” a point xi are

considered for a single point CDF estimate FX(xi), allowing estimation in places where there is

a scarcity of “local” samples. Additionally, it affords direct and efficient estimates of (possibly
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semi-infinite) “box” probabilities, e.g. of type Pr{35 < Age ≤ 45, · · · , 55 < Income ≤ 70},
avoiding the (potentially intractable) multi-dimensional integration of the joint PDF. These

probabilities are needed for classification and anomaly detection. For example, in the 3-D

case, only 8 basic operations (additions, subtractions) of the multivariate CDF are required for

estimating a single interval probability, whereas a 3-D integration is required in the joint PDF case,

and the problem is compounded in higher-dimensional cases, where the only tractable option is

Monte-Carlo integration, which has poor accuracy as it suffers from the curse of dimensionality –

an exponential number of Monte-Carlo samples is needed for accurate estimation.

Still, sufficiently reliable estimates of F̂X in high-dimensional spaces require a number of

observations that grows quickly with the tensor order N , O
(∏N

n=1 In

)
. To reduce the number

of free parameters and scale up to higher dimensions, certain assumptions must be made. In our

case, the sole assumption is that the CDF tensor can be well-approximated by a low-rank model

FX. CPD is a powerful model that can parsimoniously represent the high-order interactions

among multi-way data exactly or approximately, leading to significant reduction in the number

of parameters. Even in high dimensional settings, data can be approximated to live in relatively

low dimensional space by exploiting the low rank property [113], [23].

6.3.3 Modeling and Interpretation

So far we have shown that given a set of M realizations in the training set and an evaluation

grid G indexed by [i1, i2, . . . , iN ]T , the multivariate grid-sampled empirical CDF induced by G

can always be represented as a finite CDF tensor F̂X, whose elements can be estimated by the

following sum

F̂X(i1, i2, . . . , iN ) =
1

M

M∑

m=1

1 (xm ≤ xi) . (6.2)

Assuming that {xm}Mm=1 is i.i.d. in m, it is easy to verify that F̂ is an unbiased estimator of

the corresponding joint cumulative distribution function [114], i.e.,E
[
F̂X(i1, i2, . . . , iN )

]
=

F (xi1(1), . . . , xiN (n)) , for all [xi1(1), . . . , xiN (n)]
T ∈ G and M ≥ 1.

We will leverage the universal approximation ability of tensors by a CPD model to build

a parameterization of multivariate grid-sampled (empirical) CDFs. We focus on the first R

principal components of the resulting tensor, i.e., we introduce a low-rank parametrization FX

of the grid-sampled CDF tensor F̂X, FX(i1, i2, . . . , iN ) =
∑R

h=1 λ(h)
∏N

n=1An(in, h). By
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10

An(xn, h) = FXn|h(xin(n) |h)λ(h) = PH(h)

xi1(1) xi2(2) xi3(3)
X1 X2 X3

xi1(1)
xi2(2)

xi3 (3)

̂ℱ X(i1, i2, …, iN) = 1
M

M

∑
m=1

1 (xm ≤ xi) .

Figure 6.1: Samples from the empirical grid-sampled CDF tensor can be thought as being
generated via a latent variable naive Bayes model. This generative model says that observed data
samples can be thought to be generated by a two-step process: First a value for H is generated
according to PH(h) and then, a value xin(n) is generated according to FXn|h.

enforcing non-negativity and “valid CDF” constraints on each column of the CPD factors, i.e.,

An(, h) to be non-negative, non-decreasing, and the last element to be equal to 1, as well as

simplex constraints 1Tλ = 1 on λ, it can be shown, using an argument first made for the case

of multivariate PMFs by [18], that every multivariate grid-sampled CDF can be thought to be

generated according to a hidden variable model,

FX(i1, . . . , iN ) =
R∑

h=1

PH(h)
N∏

n=1

FXn|H(xin(n)|h). (6.3)

This hidden variable H takes R possible values (R is the tensor rank) and follows a prior

distribution PH(h) = Pr(H = h). According to the resulting model, given H = h, the manifest

variables X1, . . . , XN are generated independently via an unknown mapping expressed by N

univariate (discretized) conditional distributions FXn|H(xin(n)|h) = Pr(Xn ≤ xin(n)|H = h).

This model is known as latent variable naive Bayes (NB) model and a visualization is presented

in Figure 6.1.

Remarkably, such representation is universal if one allows the hidden variable to have a

sufficiently rich finite alphabet. The parameters of this model FXn|H , PH will be recovered (or

estimated) jointly by decomposing tensor F̂X. A key property of the CPD is that the rank-1

components are unique under mild conditions. Uniqueness offers identification guarantees under
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ideal conditions – that is, when the true model is low rank and the correct rank is used. For model

approximation, uniqueness means that there is a single model of the data for fixed residuals that

is consistent with what we have observed. See [23] for detailed identifiability results.

The result in (6.3) states that a decomposition of multivariate grid-sampled CDFs in terms of

1 −D conditionals can be computed via constrained CPD. Conversely, if one assumes that a

multivariate CDF is a finite mixture of R product distributions of mixed random variables, the

discretized conditional CDFs are identifiable and can be recovered by decomposing the exact

CDF tensor,

FX(xi) = E [1 (X1 ≤ xi1(1), . . . , XN ≤ xiN (N))]

=
R∑

h=1

PH(h)
N∏

n=1

E [1{Xn ≤ xin(n)}|h]

=

R∑

h=1

PH(h)

N∏

n=1

FXn|h(xin(n)|h).

Let us consider an evaluation grid of size IN and refer to the element-wise grid spacing as

‘resolution’. Using Lemma C.1. of [115], we have obtained the following sample complexity

result for our problem. A detailed proof of the Lemma below can be found in the Appendix of

this chapter, section 6.9.1. The result in Lemma 6.1 states that it is possible to learn, within error

6ϵ, any rank−R grid-sampled distribution with resolution ϵ, using a number of samples that is

(worst-case) log-linear in rank R and quadratic in the number of dimensions N .

Lemma 6.1. Let F be any unknown N− dimensional (“true”) grid sampled CDF of X with

rank R, alphabet size I (per variable), and resolution parameter ϵ. There is an algorithm that

uses O
(
ϵ−2(RNIlog

1

ϵ
+NIRlogR+RN2Ilog(2I)) · log(

1

δ
)

)

samples from F , and with probability 1− δ outputs a distribution F ′ that satisfies

dTV (F, F
′) ≤ 6ϵ.

Thanks to the naive Bayes model interpretation, we can go from the joint CDF to the joint

PMF/PDF domain efficiently, by taking 1-D differences / derivatives. In the case of continuous

variables (PDF), we first use interpolation (linear, bandlimited, or spline – we use linear for

simplicity) followed by 1-D differentiation. For PDFs that are (approximately) band-limited
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with cutoff frequency ωc, [77] showed that they can be recovered from uniform samples of

the associated CDF taken π
ωc

apart. In this way, one is able to easily extract any conditional

or marginal distribution at negligible complexity beyond what is needed to estimate the grid-

sampled CDF tensor factorization – we simply drop factor matrices corresponding to the variables

we are not interested in. We stress that multivariate interpolation/differentiation is not needed to

compute any PDF, due to the separable nature of the CPD model.

Thus, given a test sample it is easy to infer a response value or label. Let us assume that the

label information is stored in the N−th variable. Given possibly incomplete data (vector realiza-

tions with missing entries) specified by the set XS , S ⊆ V , with XV = {X1, X2, . . . , XN−1}
, we can easily compute the posterior probability PXN |XS

and derive any desired classifier or

estimator and estimate its uncertainty (e.g., conditional variance, conditional tail probability) at

the same time. Such uncertainty quantification is very useful in many applications.

Preprocessing step: We explore two different variants. The first method, LR-CDF, directly

fits a low-rank tensor model of the grid-sampled CDF tensor, given raw data samples xm ∈
RN ,m ∈ [M ], without preprocessing. The second approach, LR-Copula, introduces a low-rank

parametrizaton of the grid-sampled version of the Copula instead. A Copula [116, 117] is a

special family of CDFs with uniform marginals and it is invariant under nonlinear monotonic

transformations of the individual variables. For LR-Copula, before training the models, we

map each sample vector xm ∈ RN into a vector x′
m ∈ [0, 1]N by transforming each component

separately, passing it through its (estimated) marginal CDF x′n = F̂Xn(xn). By this so-called

probability integral transform, we obtain a pseudo-observation vector x′ whose multivariate CDF

is CX′ . It is easy to see that each transformed random variable is uniformly distributed in [0, 1].

As we will see in our experimental results, transforming the original data (by applying non-linear

marginal transformations) often yields improved low-rank modeling.

6.4 Algorithmic approach

We now turn our attention to formulating the constrained optimization problem and the algorith-

mic approach for low-rank fitting of the grid-sampled CDF tensor. Given a dataset D, one can

estimate and instantiate (a discretized version of) the empirical joint CDF tensor F̂ using (6.2).

We consider a rank-R approximation F , computed using squared loss as the fitting criterion and
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solve the following optimization problem

min
λλλ,A1,...,AN

∥∥∥F̂ − [[λλλ,A1, . . . ,AN ]]
∥∥∥
2

F

subject to λ ≥ 0,1Tλλλ = 1,

An(0, h) ≥ 0,An(In, h) = 1,

An(in, h) ≤ An(in + 1, h),

n ∈ [N ], ∀h ∈ [R]. (6.4)

Although the problem described in (6.4) is very challenging, accurate decompositions can be

efficiently computed in many practical settings. For smaller N , a straightforward way to estimate

the latent factors is to directly instantiate tensor F̂ and decompose it by employing alternating

optimization (AO). Each model parameter is cyclically updated while the remaining ones are

fixed at their last updated values. Then, the optimization problem with respect to each An

reduces to a least-squares problem under “valid CDF” constraints on its columns. To solve

these two sub-problems, we propose the Alternating Direction Method of Multipliers (ADMM)

algorithm [118] because it amortizes certain expensive operations and uses a warm start to handle

the constraints more easily. We refer to the overall approach as AO-ADMM.

However, when the problem is high-dimensional, computing and directly forming the full

grid-sampled empirical CDF tensor could be very expensive, even intractable computationally

and memory-wise. Fortunately, we can still optimize the proposed model parameters without

explicitly forming the empirical CDF tensor, by minimizing

(
1

M

M∑

m=1

1 (xm ≤ xi)−
(
⊛N

n=1(An(in, :))
)
λ

)2

. (6.5)

Each parameter can be estimated on-the-fly by applying stochastic approximation – i.e.,

sampling parts of the data at random and using the sampled piece to update the latent factors.

Using this observation, we randomly sample a subset of data realizations from the training set

and update the pertinent parts of the latent factors of the CPD model from rank-1 measurements

of the “hidden” CDF tensor, using the sampled entries of the tensor. In the case of continuous

variables, the conditional PDFs can be estimated from their corresponding CDF samples stored

in An by interpolation and 1−D differentiation. For terminating the algorithm we compute the
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MSE on a validation set and stop if the number of maximum iterations has been reached or the

MSE has not improved in the last T iterations. Denoting the parameter set λ, {An}Dn=1 as θ, the

full procedure is shown in Algorithm 6.1. This algorithm uses the Adam optimizer with learning

rate set to 0.01.

Algorithm 6.1 CDF-CPD (Projected Adam)
Input: Raw data or transformed data {xm}Mm=1 in {X, Xval}, R, I , initial learning rate α,
Mbatch

Output: Model parameters θ∗

Initialize model parameters θ0

repeat
Sample Mbatch data points
Compute empirical estimates via Equation (6.2)
Jointly update model parameters θ ← θ − α∇θL
Project each h−th column of An using PC (An(, h))
Project λ onto the probability simplex
Compute MSEval using Xval

until maxiter is reached or MSEval stops diminishing

Methods Power Gas Hepmass Miniboone
RealNVP [16] 0.17± 0.01 8.33± 0.14 −18.71± 0.02 −13.55± 0.49
Glow [91] 0.17± 0.01 8.15± 0.40 −18.92± 0.08 −11.35± 0.07
MADE MoG [66] 0.40± 0.01 8.47± 0.02 −15.15± 0.02 −12.27± 0.47
MAF-affine MoG [68] 0.24± 0.01 10.08± 0.02 −17.73± 0.02 −12.24± 0.45
MAF-affine w/o MoG [68] 0.30± 0.01 9.59± 0.02 −17.39± .02 −11.68± 0.44
FFJORD [119] 0.46± 0.01 8.59± 0.12 −14.92± 0.08 −10.43± 0.04
NAF-DDSF [120] 0.62± 0.01 11.96± 0.33 −15.09± 0.40 −8.86± 0.15
LRCF - (HTF) [22] 0.68± 0.01 12.15 ± 0.02 −13.78± 0.02 −11.08± 0.04
LR-CDF 0.91± 0.01 12.15 ± 0.08 −11.71± 0.32 −7.97± 0.07
LR-Copula 0.97 ± 0.01 9.73± 0.05 -9.3 ± 0.18 -7.94 ± 0.08

Table 6.1: Average log-likelihood comparison in four UCI datasets. Best performances are in
bold.

In Algorithm 6.1, PC is the projection operator onto a set that defines a “valid CDF”. We

project each conditional by imposing the following constraints on each factor matrix: extreme

point values: An(In, h) = 1, positivity, and non decreasing An(:, h) for each h. For the latter,

isotonic regression [121] finds the best least squares fit according to the following process: When

a violation An(in, h) > An(in +1, h) is encountered, we replace this pair by their average, and

back-average to the previous value as needed, to get monotonicity. We continue this process, until



103

finally we reach An(I, h). Each factor matrix is initialized by random non-negative initialization,

followed by sorting.

6.5 Experimental Study

In this section, we showcase the effectiveness of the proposed methods, namely, LR-CDF and

LR-Copula (the main difference between the two methods is the use of preprocessing in the

LR-Copula case), and the proposed fitting algorithms, i.e., AO-ADMM and projected Adam,

against relevant baselines in a variety of machine learning tasks.

Low-Dimensional Toy Experiments: We first apply our LR-CDF (AO-ADMM) model to a

range of synthetic datasets to test LR-CDF’s ability to learn a known, ground truth distribution.

In the 2D case, six different toy datasets have been considered: 8gaussians, circles, moons,

pinwheel, swissroll, and checkerboard. We train the proposed model on M = 5000 samples

using I1 = I2 = 30, and R = 10. For qualitative evaluation, we visualize (see Figure 6.5

in supplementary material Section 6.9.2) the heatmaps of the generated samples. With an

appropriate choice of parameters, the proposed model is precise at capturing the modes and

structure of all the datasets considered.

In the 3D case, we assume that a three dimensional PDF is a mixture of two Gaussian distri-

butions with means µ1 = [−1.7, 0.45,−2.50], µ2 = [1.8, 2.30,−1.20] and co-variance matrices

Σ1 = diag([0.82, 1.42, 0.72]) and Σ2 = diag([1.32, 0.82, 0.82]). We show (see the Figure in

supplementary material Section 6.9.2) that given 5000 samples, the proposed method can reveal

(samples of) each marginal CDF – in this case λ holds the probability of choosing component.

Then, given sufficient number of CDF samples, linear interpolation and differentiation enable

high-quality conditional PDF reconstruction. Using only I = 20 transition levels and true rank

R = 2, the recovered PDF essentially coincides with the true PDF.

Density estimation results: In this section, we show results on density estimation for the

following multivariate datasets: Power, Gas, Hepmass, and Miniboone dataset. Because Power

(N = 6) and Gas (N = 8) have lower dimensionality, we employ AO-ADMM for fitting. On

the other hand, for Hepmass and Miniboone, we use projected Adam. For training our model,

we estimate the rank R and the number of cutoffs I , considering I1 = I2 = · · · = IN = I

for simplicity. We pick the pair that best fits the data by reserving 20% of the training set for

validation. The set from which the tensor rank is selected is R = [10, 20, 30, 50, 80, 100] and
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Banknote Breast Concrete Red White Yeast

Mean 1.020± 0.032 1.000± 0.047 1.010± 0.035 1.000± 0.030 1.000± 0.020 1.060± 0.052
Copula-EM 0.604± 0.040 0.298± 0.035 0.529± 0.18 0.635± 0.072 0.772± 0.021 0.998± 0.021
MIWAE 0.446± 0.038 0.280± 0.021 0.501± 0.040 0.643± 0.026 0.735± 0.033 0.962± 0.051
MAF 0.662± 0.029 0.749± 0.084 0.974± 0.083 0.892± 0.084 0.855± 0.020 0.950± 0.041
Real-NVP 0.728± 0.046 0.831± 0.029 0.933± 0.075 0.972± 0.029 0.917± 0.021 0.994± 0.053
LR-CDF 0.574± 0.035 0.268± 0.018 0.500± 0.016 0.633± 0.090 0.743± 0.012 0.947± 0.064
LR-Copula 0.439± 0.038 0.272± 0.018 0.560± 0.042 0.622± 0.021 0.711± 0.032 0.934± 0.021

Table 6.2: Mean-squared error for single imputation for various UCI data sets (mean and standard
deviations).

Income Credit Heart Car
Naive Bayes 0.206± 0.005 0.140± 0.018 0.166± 0.026 0.152± 0.017
SVM 0.179± 0.004 0.146± 0.02 0.170± 0.053 0.151± 0.016
LR-PMF 0.175± 0.003 0.129± 0.018 0.147± 0.023 0.089± 0.015
LR-CDF 0.164± 0.004 0.102± 0.016 0.122± 0.026 0.069± 0.008

Table 6.3: Misclassification error on different UCI datasets.

Exchange Rates

Gaussian 0.927± 0.102
Vine 0.281± 0.037
Vine-TLL2 0.255± 0.049
LR-Copula (ours) 0.172± 0.108

Table 6.4: MSE and standard deviation for Exchange Rates (lower is better).
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the set from which we pick the number of levels is I = [10, 20, 30, 50]. In Table 6.4, we show

average log-likelihoods results over test sets, which comprise test log-likelihoods and error bars

of 5 standard deviations.

We compare the results of the two models introduced in this work (LR-CDF and LR-

Copula) with state-of-the-art methods for density estimation. The baselines considered here

are RealNVP [16], Glow [91], MADE MoG [66], MAF-affine with and without MoG [68],

FFJORD [119], NAF-DDSF [120], and LRCF -(HTF) [22]. Both of our methods significantly

exceed the performance of state of the art models, suggesting an improved true density function

approximation, for the Power, Hepmass, and Miniboone datasets. We stress that even though

our method aims for CDF estimation, it performs better in PDF (density) estimation as well,

compared to state of art density estimation methods. This is quite surprising on first sight, and

it is in part due to the use of far-away samples to estimate the density in sample-starved areas,

which is built-in the empirical CDF. The same holds for the characteristic function approach

in [22], but still the proposed CDF approaches are better – which speaks for the appropriateness

of the proposed formulation.

Imputation results: Next, we focus on the imputation problem: given a trained joint

distribution model, and an incomplete realization x = [xOBS,xMISS]
T , our next task is to infer

the missing entries directly. In our experiments, all six datasets (we only consider continuous

features) from the UCI database considered, are corrupted by removing 30% of the features

uniformly at random. Our models are fitted with AO-ADMM for Banknote, Concrete, and Yeast

and projected-Adam for the rest. The experiment compares the MSE of the proposed methods

with other well established baselines. We chose the mean imputation, which is the simplest

baseline, the Copula-EM approach [122]; the recently proposed MIWAE approach [123]; MAF,

and Real-NVP. The results, averaged over 5 randomly corrupted repetitions, are presented in

Table 6.1. The results suggest that both approaches provide more accurate imputations than all

competitors, with CPD-Copula outperforming the rest in most cases.

PMF or CDF modeling? We also present an important set of experiments which targets

to answer the following question: Which CPD model (LR-PMF [18] or LR-CDF) offers better

performance on modeling mixed data? We test our LR-CDF (Adam) model using four different

datasets (of mixed variables) for classification against the CPD-based joint PMF model [18] and

two other standard baselines, namely, Naive Bayes classifier and linear SVMs. The results on

Table 6.3 suggests that modeling the joint CDF instead of the joint PMF, as proposed in [18],
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may achieve a better performance in misclassification error. This further supports the merits of

the proposed method, which can be useful even for discrete variables, for which we naturally

turn to the PMF.

A Copula comparison: Modeling with Copulas is a popular tool in financial risk man-

agement as they are invariant to nonlinear feature scaling and useful for modeling extreme

tail distributions. In the following experiment, we consider a data set of size N = 5844 that

contains 15 years of exchange rates of Yen, Euro, Canadian dollars and the British Pound to

US dollars. We estimate a parametric Gaussian copula, a Vine copula [124], a Vine copula

with only TLL2 pair-copulas [?], and our CPD LR-Copula model (via AO-ADMM) for this

dataset, and then perform data imputation, as described earlier. The proposed LR-Copula model

yields significantly smaller MSE relative to the baselines, which we attribute to the unassuming

non-parametric nature and strong identifiability properties of our LR-Copula model.

6.6 Application on Enrollment Rate Prediction

Clinical trials are of vital importance to global healthcare. They are a necessary step in drug

development to ensure the safety and efficacy of new therapies and vaccines. One of the main

reasons clinical trials are terminated in the first place is insufficient patient enrollment. Accurate

enrollment rate prediction, given relevant information (trial predictors) such as phase, country,

eligibility criteria, patient segment, and indication, is a key determinant of optimized clinical trial

planning as it serves to minimize the overall cost and possible delays for an effective treatment

from being approved. Minimizing the overall cost incurred by trials with low enrollment rates can

be achieved by avoiding initiating trials that are most unlikely to meet pre-specified recruitment

targets. Thus, the ability to predict the probability of proposed trials meeting enrollment goals

prior to initiating the trial is highly beneficial for pharmaceutical, biotech, and medical device

companies. Additionally, maximizing the expected enrollment rate of a given trial may be

accomplished by careful location selection (i.e., by primarily focusing on countries likely to

meet enrollment targets). Both of these aspects can be addressed if an efficient data-generating

distribution of clinical trials is available.

The need for probabilistic analysis in predicting the enrollment rate of clinical trials using

limited number of samples motivates the proposed method. We explore a data-driven, machine

learning approach for effectively modeling the multivariate distribution of trial predictors/features
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(trial phase, location, primary indication, therapeutic area) and enrollment rate based on grid-

sampled CDFs. This work builds upon the framework and the methods developed in [1] to

solve an important practical problem of high societal impact, using unique data and know-how

of IQVIA R&D, which has a long track record in optimizing clinical trials. We leverage the

results presented in [1], which show that one can always sketch a multivariate CDF in terms of a

multidimensional empirical cumulative probability array, i.e., a finite grid-sampled CDF tensor,

and every multivariate grid-sampled CDF can be thought to be generated according to a latent

variable Naive Bayes model with a bounded number of hidden states through CPD corresponding

to the tensor rank.

To jointly model both discrete (e.g., phase, country) and continuous variables (e.g., enrollment-

rate), we will sketch the trial-related multivariate distribution in terms of a grid-sampled CDF

tensor F̂ , where each mode represents the (finite) levels/cut-offs of the CDF for every individual

trial feature (e.g., phase I, II, III, IV for the trial phase feature and USA, Germany, etc. for the

location feature) and each element of that tensor can be easily estimated via sample averaging.

By introducing the reconstructed approximation of F̂ , using the rank-R parameterization F ,

one can get a “universal” approach, which is unassuming of the structure of the data, striking

an excellent trade-off between model generality and identifiability under mild conditions by

virtue of the uniqueness of CPD. The resulting model also yields a probabilistic method which

allows easy likelihood estimation, computation of conditional distributions, and closed-form

inference. The above enable us to reliably predict the expected enrollment rate given trial-related

information, provide the probability of a new trial achieving a target enrollment rate, as well as

country or site recommendation.

We evaluated the proposed approach against state-of-the-art machine learning methods

by leveraging a large-scale real-world clinical trial dataset from IQVIA. We focus on four

trial features to instantiate and decompose the multivariate CDF tensor, namely, trial location,

therapeutic area or primary indication, trial phase, and final enrollment rate. The proposed method

demonstrates improved performance in the enrollment rate prediction task over the best baselines

by up to 12.2% in MSE, while also allowing direct uncertainty quantification (e.g., through the

conditional variance which can be easily calculated from the derived conditional distribution).

Additionally, we demonstrate how the proposed approach can be utilized to benefit country

recommendation, maximizing the likelihood of a given trial towards reaching an enrollment rate

target, at negligible complexity beyond what is needed to estimate the grid-sampled CDF tensor.
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Figure 6.2: Model evaluation for the first configuration: country, phase, primary therapeutic area,
enrollment rate.

6.7 Enrollment Rate Prediction from IQVIA’s Real-World Clinical
Trial Database

We used information available prior to the initiation of the trials as features to obtain test-set

enrollment rate estimates. We utilized country-level trial data from IQVIA’s real-world clinical

trial database to conduct the evaluation. The dataset contains the country-level enrollment

rates which were collected from 5470 clinical trials in 54 countries between 03-31-2000 and

09-12-2018. The trials are across Phase I to Phase IV and with 15 indications. After basic

prepossessing, the resulting dataset contained 5337 clinical trials across 30 countries, 4 phases,

and 15 indications. Overall, the available features include geographic location of the trial, phase,

primary therapeutic area, primary indication and the outcome trial enrollment rate for each study

at a country-level.

We split the dataset such that 70% of the data samples are used for training and 30% for

testing, and we ran 10 Monte-Carlo simulations. We consider two different tensor configurations,

where the first one is based on country, phase, primary therapeutic area, and enrollment rate,

while the second one is based on country, phase, primary indication, and enrollment rate, which

is more granular than the first one. In the results, we report the parameter combination, i.e., rank

R and number of thresholds/ cut-offs for the enrollment rate I , that achieves the best possible

results, namely R = 20 and I = 25.

We assess the performance of the proposed Trial-CDF-CPD model in enrollment rate re-

gression tasks under Mean Squared Error (MSE), against various supervised learning baselines,
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Figure 6.3: Model evaluation for the second configuration: country, phase, primary indication,
enrollment rate.

Figure 6.4: Country recommendation: Given a prespecified phase and primary indication, we use
the trained model to output the conditional probability for each candidate country achieving an
expected enrollment rate. In this example, Trial-CDF-CPD assigns a high likelihood to United
States (ground truth) achieving the expected enrollment rate. However, our method also indicates
other countries (Poland, Italy, Canada, Czech Republic) that are within top-5 countries with
highest likelihood values. To encourage diversity, clinical trials require engaging a wide range of
countries instead of frequently selected countries (USA, Germany etc).
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that are representative of the state-of-art. In our experiments, we studied the following machine

learning regression techniques: Decision Tree (DT), both linear and non-linear Support Vector

Regression (SVR), Artificial Neural Networks (ANN), JULIA [125], and Random Forest (RF).

We explore the space of parameters and report the results stemming from their best variation for

each machine learning algorithm.

We obtained enrollment rate predictions under both conditional expectation and conditional

mode (MAP), with the latter achieving the best empirical performance. Figures 6.2 and 6.3 report

the enrollment rate prediction performance (MAP) for configurations (1) and (2) correspondingly.

For the first set of experiments, we observe a 4.662% reduction in MSE using Trial-CDF-CPD

against the next best baseline and a 12.219% reduction for the second configuration. At the same

time, out of the baselines, only our method can output the confidence of its decision, which

is important in the present healthcare context. Furthermore, our model is not restricted to this

specific application but can also be used to answer the following question: Which countries

can achieve an expected predefined enrollment rate? An example can be visualized in Figure

6.4, where Trial-CDF-CPD indicates top-5 locations (United States, Poland, Italy, Canada,

Czech Republic), which includes the one selected in real world (United States), that have a high

likelihood of achieving an expected enrollment rate. This knowledge could be useful during trial

planning and cite selection to minimize the risk of not achieving a desired enrollment rate for a

given trial.

6.8 Chapter Summary

In this paper, we introduced a new class of models for general purpose distribution estimation.

Our work has shown that every multivariate CDF admits a compact grid-sampled approximation

in terms of a latent variable naive Bayes model with a bounded number of hidden states through

CPD corresponding to the tensor rank. We have considered the statistical and computational

efficiency of the proposed estimators and highlighted desired properties such as easy marginal-

izability over subsets of variables, fast sampling, and identifiability under mild assumptions.

Furthermore, our experimental results indicate that estimating a grid-sampled CDF yields better

data modeling than direct PDF estimation. We have also presented results that clearly support

the broad applicability of low-rank grid-sampled CDF estimators in various tasks of interest in

machine learning and statistics.
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6.9 Supplementary Material

In this section, we provide a proof for sample complexity analysis of grid-sampled CDF-CPD

estimators and additional experimental material to better evaluate the performance of the proposed

method.

6.9.1 Sample Complexity

Using Lemma C.1. of [115], we have the following sample complexity result for our problem.

Lemma 1: Let F be any unknown N− dimensional (“true”) grid sampled CDF of X with

rank R, alphabet size I (per variable), and resolution parameter ϵ′. There is an algorithm that

uses O
(
ϵ′
−2

(RNIlog
1

ϵ′
+NIRlogR+RN2Ilog(2I)) · log(

1

δ
)

)

samples from F , and with probability 1−δ outputs a distribution F ′ that satisfies dTV (F, F
′) ≤

6ϵ′.

Proof: Let us start by considering the 2D rank-1 case.

We consider a dictionary of rank-1 CDFs generated by latent factor vectors whose elements

are drawn from a finite quantization. An element of the grid-sampled CDF matrix F̂(i, j) can be

expressed as

F̂(i, j) = (ai + ϵ̃i)(bj + ϵ̃j)

where ai and bj are the exact latent factors of F(i, j) = aibj . If the quantization error for

both dimensions is no more than ϵ, i.e., |ϵ̃i| ≤ ϵ, |ϵ̃j | ≤ ϵ, and using that the factors are 1-D

CDFs (follows from marginalization) and thus ai ≤ 1, bj ≤ 1, there exists a rank-1 CDF in the

dictionary such that

|F(i, j)− F̂(i, j)| ≤ 2ϵ+ ϵ2,

and thus, the overall error becomes

dTV (F, F̂) ≤ IJ(2ϵ+ ϵ2)

Assuming that I1 = I2 = · · · = IN = I for simplicity, the bound in the N -dimensional rank-1

case is

dTV (F, F̂rank-1) ≤ (2I)N ϵ.

This is because there are IN grid-sampled CDF elements overall, and the expression for the
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per-element error involves a total of 2N − 1 terms (product of N pairwise sums, with one term

corresponding to the exact value of the CDF), each of which is bounded above by ϵ < 1. In the

N -dimensional case of rank-R, the overall error is bounded by

dTV (F, F̂rank-R) ≤ R(2I)N ϵ.

We will denote this bound as ϵ′, ϵ′ = R(2I)N ϵ.

By choosing b bits to quantize each element of a conditional CDF, the resolution that we get

is ϵ = 1
2b

. The number of distributions in our quantized dictionary is then M = 2RNIb.

By focusing on M ,

M = 2RNIb = 2−RNIlogϵ

and replacing

ϵ =
ϵ′

R(2I)N
,

we get that

M = 2RNIb

= 2−RNI(logϵ′−log(R(2I)N ))

= 2RNIlog 1
ϵ′+RNI(logR+log(2I)N )

= 2RNIlog 1
ϵ′+NIRlogR+RN2Ilog(2I).

By plugging in M in Lemma C.1 considered in [115] and replacing the worst case number of

samples O(ϵ′−2logM · log(1δ )), we get the final result,

O
(
ϵ′
−2

(RNIlog
1

ϵ′
+NIRlogR+RN2Ilog(2I)) · log(

1

δ
)

)
.

6.9.2 2D, 3D-Synthetic Experiments

In this section, we employ synthetic experiments to showcase the effectiveness of the proposed

algorithm. We first showcase 2D sampling results from six different toy datasets: 8gaussians,

circles, moons, pinwheel, swissroll, and checkerboard (see Figure 6.5). Please refer to the

discussion of implementation details in the main paper.

Next, we assume that a 3−dimensional PDF of a random vector X := [X1, X2, X3]
T is a
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Figure 6.5: Visualization of training samples (upper row) and synthetic samples generated with a
learned CPD-CDF (lower row).

Figure 6.6: Illustration of the key idea on a 3-D two-component Gaussian mixture. Each row
shows the estimated component PDFs of X1, X2, X3 in dashed line, and the true component
PDFs in solid line. We also visualize the compound histogram per dimension, given M training
samples. The first row corresponds to M = 2000, R = 2, I = 20 and the second to M = 4000,
R = 2, I = 20.
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mixture of two Gaussian distributions with means µ1 = [−1.7, 0.45,−2.50], µ2 = [1.8, 2.30,−1.20]
and co-variance matrices

Σ1 =




0

0

0.82

0

1.42

0

0.72

0

0

 ,Σ2 =




0

0

1.32

0

0.82

0

0.82

0

0

 .

We show (see Figure 6.6) that given only 2000 (top row) or 4000 (bottom row) samples, the pro-

posed method can effectively estimate samples of each marginal CDF, which after interpolation

and differentiation yield high-quality conditional PDF reconstruction. For these plots, I = 20,

R = 2, and cubic interpolation of the marginal CDFs was used.



Chapter 7

Modeling time series using latent
history summaries and low-rank tensor
densities

7.1 Introduction

The ubiquity of multivariate time series data in real-world systems, has created unprecedented

opportunities for machine learning tools to capture system patterns across time, provide informa-

tive insights about the evolution of complex systems, and predict abnormal events at an early

stage. Accurate machine learning models for multivariate time series analysis have been applied

for financial risk management [126], demand forecasting [127], for monitoring an individual’s

health trajectory [128], or identifying unexpected system events, such as sensor faults [129].

For real-world applications, time-series often exhibit strong nonlinear inter-dependencies

(e.g., statistical dependencies between opening price, closing price, and daily highs for stock

price prediction [130]; cross-series correlations/effects between sensor signals from different

brain regions collected from EEG apparatus; occurrence of anomalies in a sensor system

can often be detected by measurements of multiple nearby sensors). Many approaches in

the literature, [131], [132], [133] avoid multivariate modeling overall, fit a separate model

per series, or assume linear relationships among variables. Although multivariate time-series

analysis poses a challenge due to modeling and computational difficulties in high-dimensional

115
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settings, leveraging information provided from complex interactions is crucial for accuracy. At

the same time, accounting for uncertainties in time series predictions is of vital importance

for risk-averse decision-making, especially for critical and high-stakes application domains

– such as medicine and finance. An accurate joint probabilistic time-series model addresses

this need as it allows assessing confidence in the predictions for downstream tasks. Thus, in

modeling multivariate (continuous) sequential data x1, . . . ,xt, we ideally aim to accurately

capture the joint density f(x1, . . . ,xt−1,xt), from which we can derive the conditional density

of the transitions f(xt|x1, . . . ,xt−1). Most previous work aims to estimate f(xt|x1, . . . ,xt−1)

directly and makes restrictive assumptions such as tractable density classes [134] or structural

assumptions [135], that may affect the flexibility and expressivity of these approaches.

The goal of this paper is to accurately model the joint multivariate density of xt and a

latent history summary of x1, . . . ,xt−1. Building upon previous work [135] on deep learning

for modeling time series data, we propose an end-to-end approach for multivariate time series

modeling consisting of a (multi-output) recurrent neural network (RNN) to capture necessary

information from historical data x1, . . . ,xt−1, and an expressive joint density model that learns

the joint distribution of the updated hidden state ht−1 and xt, i.e., the joint density of
[
hT
t−1,x

T
t

]T .

We capitalize on the “universality” of tensor-based density models to accurately learn the

distribution of complex high-dimensional data and the ability of RNNs and their variants (e.g.,

LSTM [136], GRU [137], etc.) for effectively modeling sequential dynamics. We follow a recent

line of work (see [21], [22]), which proposed a “universal” approach for smooth, compactly

supported multivariate densities by representing the underlying density in terms of a low-rank

tensor of leading Fourier coefficients. By virtue of uniqueness of low-rank tensor decomposition,

this model enables learning the true data-generating distribution, under certain conditions [23].

Additionally, it allows scaling to hundreds of dimensions without sacrificing model expressivity,

enables efficient and low-complexity inference from data with missing entries, and likelihood

evaluation.

The RNN learns relations through time and thanks to its memory state, it outputs a par-

simonious latent representation of previous data. The low-rank distribution model learns the

series progressions from the latent representations and current observations, while remaining

computationally tractable and without compromising expressivity. The key to success is that

these two components are trained jointly in an end-to-end fashion using backpropagation and

maximum likelihood as the optimization criterion. In this way, model parameters are learned



117

simultaneously to capture only the necessary information from the past that will enable accurate

learning and future state prediction.

7.1.1 Key Contributions

Our key contributions can be summarized as follows:

• Expressivity benefits: We introduce a parametrization of the joint density f(x1, . . . ,xt−1,xt)

without imposing idealized assumptions on the underlying data generating process, which

could hinder accuracy (linear inter-dependencies, independent components etc). Instead,

the proposed model allows for multivariate time-series analysis while respecting the

cross-series relationships between variables.

• The overall model allows for uncertainty quantification (e.g., via the conditional variance),

which is crucial for monitoring unexpected fluctuations and supports better-informed

decision making.

• Applicability for both time-series forecasting and imputation: We demonstrate that

our model achieves superior forecasting performance of complex dynamics and inter-

dependencies while scaling to high dimensions. Thanks to the ease of marginalization of

the resulting probabilistic model, the proposed approach also allows direct imputation of

incomplete time-series. We are able to deal with missing values by evaluating, for every

missing data point, its conditional expectation given the non-missing values.

• Efficient training: We introduce an end-to-end model based on optimizing an LSTM-

RNN network in combination with the tensor parameters. Both components encourage

parsimony in the resulting model, leading to a significant reduction in generative model

parameters, which enables fast and efficient training.

The paper first covers related work in Section 7.2 and provides background context in Section

7.3. Section 7.4 describes the proposed model in detail, including the proposed joint end-to-end

training of its two constituent components. Experiments are detailed in Section 7.5. We conclude

with discussion in Section 7.6.
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7.2 Related Work

The literature on probabilistic time-series modeling has a long history. Fundamental time-series

methods, such as vector auto-regressive (VAR) models [138], a multivariate extension of auto-

regressive (AR) models [139], assume linear relationships and become over-parameterized as

the number of component series increases. Classic time-series models, such as auto-regressive

moving average (ARMA) and auto-regressive integrated moving average model (ARIMA) [140]

and exponential smoothing (ES) [141] are often employed in univariate mode to separately learn

one model per scalar time-series, for simplicity and to avoid over-parameterization. There is rich

literature on multivariate state-space models (SSMs) exemplified by the Kalman filter [142–144].

An important limitation of univariate and linear multivariate approaches is that they fail when

there is strong and nonlinear coupling, respectively. For multivariate probabilistic time-series

analysis, ideally, a full joint distribution at each time step has to be modeled. Many of the methods

that estimate a joint global model can only handle a limited number of time series [145], [146]

due to the number of parameters that need to be estimated, which can be restrictive for many

modern application domains.

Multivariate approaches such as Gaussian Processes (GPs) [147], have been shown to

require prior knowledge in order to attain competitive performance against classical forecasting

methods such as ARIMA and ES [148]. Furthermore, the kernels employed in GPs can have

a strong impact on model performance. Recently, SSMs were revisited through the lens of

deep learning, with DeepAR [149] being among the earliest methods in this space. DeepAR

is a multi-task univariate forecasting method based on LSTMs, which outputs a probabilistic

forecast via the parameters of a parametric distribution (of the next time step) (e.g., µ and σ of a

Gaussian distribution). Following this line of work, current methods typically aim to estimate the

multivariate conditional density f(xt|x1, . . . ,xt−1) by introducing a combination of RNNs and

tractable distribution classes. Specifically, they employ recurrent neural networks to compress the

history x1, . . . ,xt−1 into a state vector ht−1 with probabilistic forecasts parameterized by pre-

selected tractable distribution classes such as Gaussian Copulas [135], Normalizing Flows [150],

or Diffusion models [151]. For example, multivariate methods such as Time-GAN [152] utilize

GANs to generate time series. Another related work combines variational methods with sequence

models such as variational RNN (VRNN) [134]. A VRNN applies a VAE to each hidden state

of an RNN over the input series. VRNN, however, does not provide a probabilistic model in
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the input space, so uncertainties in forecasts can not be directly estimated. The same holds for

the Temporal Latent Autoencoder (TLAE), where the temporal model is applied across a low

dimensional space [153]. In [135], the authors used a Gaussian copula to convert non-Gaussian

observations to follow a standard Gaussian distribution, a multitask univariate LSTM [136] to

model the latent states, and the conditional distribution is given by a low-rank plus diagonal

covariance Gaussian copula. Apart from the sensitivity to the choice of rank, imposing the

assumptions above can limit the distributional expressiveness of the resulting model.

In light of this limitation, more flexible models such as temporal conditioned Normalizing

Flows [150] have been proposed. This method uses a multivariate RNN to output a latent

representation ht−1 of process history up to time t− 1, and Normalizing Flows [16] to model

the conditional distribution f(xt|ht−1). Although Normalizing Flows (NFs) can potentially

represent any complex density though a flow of successive (invertible) transformations, in

practice, strong network constraints of NFs can be restrictive for model expressiveness.

In this paper, we advocate using Low-Rank Characteristic Function (tensor) based Density

Estimators (LRCF-DE) [21] as an appealing alternative. The motivation for doing so comes

from [21], [22], which have demonstrated that non- parametric low-rank tensor modeling in

the Fourier domain achieves superior performance in multivariate density estimation, while

also allowing easy marginalization, easy likelihood evaluation, and model identifiability. Some

background on tensors, low-rank tensor models, and their use in density estimation is necessary

at this point, before we proceed.

7.3 Background

7.3.1 Notation

We use x, X, X for vectors, matrices and tensors respectively. We use x(k), X(:, k), X(:, :, k) to

denote a particular element of a vector, a column of a matrix, and a slab of a tensor, respectively.

We denote the multivariate observation vector at time t as xt ∈ RN , and its n−th element at

time t as xt(n). We use x̄ to denote the expected value of the ground truth signal x, and x̂ to

denote an estimate of x. Symbols ◦, ⊛, ⊙ denote the outer, Hadamard, and Khatri-Rao product,

respectively. The set of integers {1, . . . , N} is denoted as [N ].

We employ six different metrics to evaluate the performance of our model, i.e., mean absolute

error (MAE) at moment t, MAE = 1
N

∑N
n=1 |xt(n)− x̂t(n)|, mean absolute percentage error
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(MAPE), MAPE = 1
N

∑N
n=1

|xt(n)−x̂t(n)|
|xt(n)| , mean square error (MSE) and root mean square

error (RMSE), RMSE =
√

1
N

∑N
n=1(xt(n)− x̂t(n))2, the Root Relative Squared Error (RSE),

RSE =

√∑N
n=1(xt(n)−x̂t(n))

2√∑N
n=1(xt(n)−x̄))2

, and Maximum Error (Max Error).

7.4 Proposed Model: Joint probabilistic modeling of latent history
and next state

7.4.1 Technical Approach

Prominent models for probabilistic analysis of high-dimensional time-series estimate the the

conditional one-step-ahead distribution given the current historical summary, using a combination

of RNN-based models with parametric densities (e.g., Gaussian Copulas [135]), which are often

further constrained (e.g., diagonal or low-rank covariance matrices) or are sensitive to hyper-

parameters (e.g., rank). Ideally, a joint distribution of [hT
t−1,x

T
t ]

T has to be modeled, with a

controllable number of parameters. The goal of the proposed approach is to introduce a scalable

probabilistic model of N dependent time-series xt with a parameterization that provides the

flexibility to fit an arbitrary data distribution and represent higher-order statistical dependencies.

We build upon the ideas of [150], [135] and [21], to introduce a tensor-based method for

joint densities with tractable likelihood in combination with an LSTM-RNN architecture to

model the multivariate temporal dynamics of the time series. At a high level, the proposed

model uses an LSTM network to capture the transition of latent states and a non-parametric

density estimate based on tensor decompositions to jointly model the latent state and the next

snapshot of time series observations. We will show that, in addition to enhanced modeling

accuracy, the proposed approach yields a more general method that comes with a number of key

advantages (e.g., a marginalizable probabilistic model), making it very competitive with respect

to the state-of-the-art.

We consider contiguous sequences of size T , sampled from the complete time series history

of the training data. Each sequence consists of past observations x1, . . . ,xt0−1 specified by a

context window, and future observations xt0 , . . . ,xT . We begin by focusing on the problem of

learning the conditional density of temporal transitions f(xt0 , . . . ,xT |x1, . . . ,xt0−1). Under

the chain rule decomposition, the conditional distribution of future values given the observed
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sequence, can be equivalently written as

f(xt0 . . .xT |x1, . . . ,xt0−1) =
T∏

t=t0

f(xt|x1:t−1). (7.1)

The first assumption of this paper is that a latent state vector ht−1 ∈ RM can summarize the

history of the time series up to its previous time step t− 2 via the hidden state of an LSTM-RNN.

Following [150], an LSTM-RNN is assumed to encode the time series sequence up to time point

t− 1 via the updated hidden state ht−1:

ht−1 = RNNθ(xt−1,ht−2), (7.2)

where RNNθ is a multi-layer recurrent neural network with LSTM cells parameterized by shared

weights θ and h0 = 0.

LSTM-RNN f(xt, ht−1)

xt

ht−1

x1 xN h1 hM

L

. . . . . .

xt ht−1

xt−1

ℒNegLL

ht−2

Figure 7.1: The LSTM network learns relations through time and outputs a parsimonious

latent representation ht−1 of previous data. The low-rank distribution model learns the series

progressions from the latent representations ht−1 and current observation xt. Our approach

yields a generative model of the joint density fX,H , which is very easy to marginalize. This

is because fX,H can be interpreted as a mixture of F product distributions i.e., admits a latent

variable naive Bayes interpretation.

At each time point, the LSTM-RNN gets input data xt−1 and the previous state ht−2, and

outputs a state for the next timestep ht−1, which is utilized along with the current observation

xt for estimating f(xt|ht−1). Provided that this assumption holds, the following equation

approximates the problem of probabilistically modeling several steps ahead to rolling prediction:

the prediction at time t− 1 is input to the model to predict the value at time t. Under this model,
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we can factorize the temporal distribution of the observations as follows:

f(xt0 . . .xT |x1, . . . ,xt0−1) ≈
T∏

t=t0

f(xt|ht−1) =
T∏

t=t0

f(xt,ht−1)

f(ht−1)
. (7.3)

Using the mere definition of conditional densities, according to Eq.7.3, an expressive model

for the joint density fX,H(x,h) contains all the necessary information for the task. The

joint density fX,H(x,h) should ideally allow several properties: (i) efficient evaluation of the

likelihood, (ii) efficient evaluation of conditional or marginal distributions during the inference

time, (iii) expressivity even if the number of time series components N is large. Assuming that

the joint density fX,H(x,h) is time-invariant, given a set of realizations {xt,ht} we can use

them to estimate fX,H(x,h). An advantage of modeling the joint instead of the conditional

distribution lies in that the joint approach takes into account the statistics of the history vector

and learn collaboratively, which could encourage better history representation learning and

generalize to unseen history vectors better. The overall model, as illustrated in Fig.7.1, uses the

observation of the last time step xt−1 as well as the recurrent state ht−2 to produce the state

ht−1 which is concatenated to the current observation xt and passed through the probabilistic

model. We introduce a parameterization of fX,H(x,h) using a CPD decomposition in the

Fourier series domain, i.e., fitting a low-rank CPD model on the (N +M)-way Fourier series

coefficient tensor Φ. Instead of learning conditional densities as in [150], [135], the model is

optimized by learning fX,H(x,h; θ) and updating ht jointly using Eq.7.2 via the maximum

likelihood principle. The LSTM network reduces the parameter space of the probabilistic model,

by encoding the time-series history into an M−dimensional latent vector ht ∈ RM , while the

LRCF model pushes ht to only keep the information from the past that will lead towards better

future modeling. We call the proposed method LRCF-LSTM.

7.4.2 Training the Overall Model

Training is performed by randomly sampling context and prediction length sized windows from

the training time series data and optimizing the set of all parameters θ of both the low-rank tensor

and the LSTM-RNN. In practice, the time series x1, . . . ,xT in a batch B are selected from a

random time window of size T with different starting points from the training data, so that the

proposed model takes into account most of the information from different sub-sequences. This is
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important when the given time-series dataset has small history. We train the components jointly

under the maximum likelihood principle, i.e. by minimizing the loss function

LNegLL := −
∑

xt0:T
∈B

T∑

t=t0

log fX,H(xt,ht−1; θ), (7.4)

using stochastic gradient descent-based optimization.

We introduce a truncated multivariate Fourier series over X1, X2, X3 . . . , XN , and H1, . . . ,HM

with cutoffs K1, . . . ,KN+M . For simplicity, we assume that K1 = · · · = KN+M = K, we

represent the concatenation of X ∈ RN and H ∈ RM in vector Z ∈ RN+M . To reduce the

number of parameters, we introduce a rank-F parameterization of the coefficient tensor obtained

by truncating the multidimensional Fourier series [21] which reduces the number of parameters

from O(KN+M ) to O(KF (N +M)). Notice that M is controlled by the dimensionality of the

LSTM-RNN output and serves as a tunable hyper-parameter in the proposed architecture (see

details in Section 7.5). Let Ad(K + 1 + kd, f) hold ΦXd|L=f (kd), λ(f) hold pL(f) and let us

define matrices Bd ∈ CK×(T−t0) as Bd(K + 1 + kd, t) = e−j2πkdzt(d). Introducing the rank-F

CPD, the loss function becomes

LNegLL := −
∑

xt0:T
∈B

T∑

t=t0

log
(
(⊛N+M

d=1 (Bd(:, t)
TAd))λ

)
(7.5)

The above model can be used to obtain any marginal model (e.g., a model of the marginal

density f(ht−1)) by dropping out all but the subset of factor matrices {AS}, where S ∈
{N + 1, · · · ,M},

fH(h) = (⊛N+M
d=N+1(Bd(:, t)

TAd))λ)). (7.6)

Since we can easily obtain f(ht−1) from f(xt,ht−1) using Eq.7.6, we can easily estimate

f(xt|ht−1). Forecasting can then be performed by computing the conditional expectation.

Missing data imputation can likewise be tackled efficiently. For example, if certain elements of

any xt are missing, they can be imputed from whatever is available using conditional expectation.

It is important to note that these conditional expectation computations are closed-form.
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7.5 Experimental Evaluation

We compare our proposed model to baselines in public benchmarks on forecasting and imputation

tasks.

Implementation details: All datasets have been split into training set (60%), validation set (20%)

and test set (20%) in chronological order. We split all datasets by using all data prior to a fixed

date for the training and validation and by using rolling windows for the test set. Parameters are

learned with the Adam optimizer with the learning rate set to 0.0001, and hyper-parameter values,

which include the rank F , the number of Fourier coefficients K, and the number of LSTM cells

M are obtained based on a grid-search from the sets [5, 10, 20, 30, 50, 80, 100], [5, 10, 15, 20, 30]

and [10, 20, 40, 80, 120] respectively, using the validation set. The RNN consists of two LSTM

layers for every experiment. We construct batches of size 64, with the context length equal to the

prediction length. We mainly use the Root Mean Square Error (RMSE) and its scaled version,

the Root Relative Squared Error (RSE) as evaluation metrics. Both for RMSE and RSE, lower

scores indicate better performance.

Datasets: The Solar dataset consists of solar power production records sampled every 10 minutes

from 137 stations in Alabama [154]. The future window is set from 30 to 120 minutes over

the Solar-Energy data. The Traffic dataset consists of 48 months (2015-2016) hourly data

describing the road occupancy rates measured by different sensors on San Francisco Bay area

freeways [155]. The future window is set from 3 to 12 hours for the Traffic data. The Electricity

dataset consists of hourly time series of the electricity consumption of 370 customers [54].

The Exchange-rates dataset includes daily exchange rates of eight foreign countries including

Australia, British, Canada, Switzerland, China, Japan, New Zealand and Singapore ranging from

1990 to 2016 [154].

Baselines: Our evaluation is extensive, covering relevant baselines, including LSTM-FCNN,

where an LSTM layer and a Fully Connected Neural Network are combined to perform multivari-

ate time series forecasting, VAR [139], a multivariate linear autoregressive model, DeepAR [149],

Vec-LSTM ind-scaling, which models the dynamics via an RNN and outputs the parameters of an

independent Gaussian distribution [135], GP LR-Cop [135], which parameterizes a f(xt,ht−1)

using a Gaussian copula with a low-rank-plus-diagonal parametrization of the covariance matrix,

TCNF-MAF and Transformer-MAF [150], which uses RNN or Transformer respectively to
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model the temporal conditioning and Masked Autoregressive Flow for the distribution emission

model. For each baseline, we use the recommended architectures and parameters reported for the

given datasets in the corresponding papers. For LSTM-FCNN, we use a two layer LSTM, with

the hidden state size chosen from {25, 50, 100, 200}, followed by a three-layer Fully Connected

Network, with the number of hidden units chosen from {20, 50, 100}. The LSTM-FCNN is

trained in an end-to-end fashion using a least-squares loss, thus directly approximating the nonlin-

ear MMSE (conditional expectation) point estimator of xt given ht−1, instead of estimating the

joint distribution and computing conditional expectations indirectly from the joint distribution.

Results: Results in Table 7.1 show the corresponding RSE values averaged over 5 indepen-

dent runs. The results indicate that LRCF-LSTM forecasts outperform current state-of-the-art

multivariate forecasting approaches in most cases (including both probabilistic forecasts and

point forecasts obtained by LSTM-FCNN). Compared with other models, the gain on Solar and

Traffic datasets can be as significant as 3.7% and 4.0% in RSE. Apart from the Exchange-Rate

dataset, we demonstrate improvement over [150], which further supports the claim that replacing

Normalizing Flows with an LRCF-DE model is beneficial for improved forecasting accuracy. To

empirically evaluate the sample complexity for all methods, we additionally test how changing

the percentage of training (we retain 40%, 50%, and 70% of the training set) affects the forecast-

ing performance on the Solar-Energy dataset. The results in Figure 7.2 suggest that in the small

sample regime (40% training) the direct point estimate method (LSTM-FCNN) works better.

However, the performance of our method quickly overpowers LSTM-FCNN, as more training

samples become available. At the same time, our method showcases a better overall performance

compared to the probabilistic baselines across different splits.
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Dataset Solar-Energy Traffic Electricity Exchange-Rate

Methods
Horizon

3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24

LSTM-FCNN .1927 .2505 .3363 .4755 .5205 .5522 .5605 .5695 .1008 .1144 .1193 .1298 .0185 .0264 .0408 .0626
VAR .2435 .3790 .5911 .8699 .5991 .6218 .6252 .6293 .0995 .1035 .1050 .1054 .0228 .0279 .0353 .0445
DeepAR .1843 .2559 .3254 .4643 .4777 .4893 .4950 .4973 .0864 .0931 .1007 .1007 .0226 .0280 .0356 .0449
Vec-LSTM ind-scaling .1803 .2347 .3234 .4389 .4487 .4658 .4641 .4765 .0823 .0916 .0964 .1006 .0174 .0241 .0341 .0444
GP LR-Cop .1898 .2580 .3472 .4441 .4212 .4586 .4679 .4743 .0762 .0917 .0966 .0994 .0175 .0244 .0338 .0447
TCNF-MAF .1704 .2257 .3072 .4050 .4095 .4470 .4640 .4641 .0740 .0898 .0940 .0980 .0175 .0244 .0339 .0442
Transformer-MAF .1778 .2348 .3109 .4270 .4162 .4754 .4461 .4535 .0745 .0878 .0916 .0953 .0194 .0259 .0349 .0456
LRCF-LSTM .1651 .2202 .2981 .3897 .4017 .4295 .4324 .4354 .0732 .0898 .0915 .0939 .0170 .0245 .0340 .0450

Table 7.1: Benchmark on Solar-Energy, Traffic, Electricity and Exchange-Rate. Root Relative
Squared Error (RSE) is reported for different horizons {3, 6, 12, 24}. All results have been
averaged over 5 runs.
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Figure 7.2: How the forecasting performance (RSE – the smaller the better) changes for different

models by varying the training data percentage from 40% to 70% for the Solar-Energy dataset.

Forecasting stock values: We also study the NASDAQ dataset [156], which includes the

stock prices of 81 major corporations, collected minute-by-minute. The future window over

the NASDAQ data is set from 3 to 12 minutes. Results in Table 7.3 show RMSE values of

different methods, averaged over 5 runs, demonstrating that our method offers better modeling

of complex inter-dependencies, validating the effectiveness of the proposed framework. To

further explore the modeling abilities of our model with respect to the best performing time-

series probabilistic models, we employ the Apple stock dataset obtained from Yahoo Finance,

which contains as features the volume, high, low, opening, and closing prices of Apple (AAPL),

Meta (META), Netflix (NFLX), and Google (GOOGL). Using the data from 1st January 2017

up to 31st December 2020 to train all models, we consider multivariate forecasting of the
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5−dimensional vector over the first 250 days in 2021. We use the Mean Absolute Errors

(MAE), Mean Absolute Percentage Errors (MAPE), Mean Squared Errors (MSE), and Max

Error to measure the performance. Our results are shown in Figure 7.3 and Table 7.2, where

we demonstrate the forecasts of our method and of [135] and [150] for the closing price. The

results indicate that the proposed model can accurately predict trends for AAPL, META, and

NFLX. However, all methods fall short of reasonably predicting the evolultion of GOOGL in

2021 (our method is slightly better, but still fails). Of course, 2021 was a very unusual year due

to the pandemic and other factors, so the fact that the other three stocks can be so well predicted

so much in advance is already better than expected.
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Figure 7.3: We use AAPL, META, NFLX, GOOGL (clockwise from top left) multivariate stock

related data from 1st January 2017 up to 31 December 2020 to train all models and test (use the

models to sequentially generate fully unsupervised predictions using previous predictions) over

the first 250 days of 2021. The proposed model yields better forecasts for AAPL, META, NFLX.

No model is able to forecast the meteoric rise of GOOGL that year.

Imputation: The second task of interest is time-series imputation. In the experiments, we use

the localization for human activity UCI [54] dataset (Activity), consisting of the multivariate

kinematic time series recording the motion state of 5 people performing 11 kinds of activities.

Each person wore four sensors (tags) on her/his left/right ankle, chest, and belt to record the
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Dataset AAPL META NFLX GOOGL

Methods
Metrics

MSE MAE MAPE Max Error MSE MAE MAPE Max Error MSE MAE MAPE Max Error MSE MAE MAPE Max Error

GP LR-Cop 245.79 12.28 0.085 53.40 3462.92 44.65 0.077 191.89 1685.32 32.48 0.097 137.25 245493.80 424.08 0.159 1037.62
TCNF - MAF 200.47 10.77 0.073 48.93 3240.03 42.68 0.073 178.42 931.09 24.59 0.073 96.20 276872.97 451.14 0.169 1071.00
LRCF-LSTM 111.99 7.89 0.054 43.19 1735.25 32.55 0.057 178.40 646.03 20.1 0.061 86.27 179519.31 353.69 0.131 804.31

Table 7.2: AAPL, META, NFLX, GOOGL multivariate stock forecasting results.

Methods 3 6 12

VAR 2.725 3.049 3.048
DeepAR 3.522 3.903 4.595
Vec-LSTM ind-scaling 4.195 4.295 4.574
GP LR-Cop 5.795 5.891 7.685
TCNF-MAF 0.366 0.522 0.754
LRCF-LSTM 0.365 0.516 0.739

Table 7.3: Benchmark on NASDAQ. Root Mean Squared Error (RMSE) is reported for different
horizons {3, 6, 12}. All results have been averaged over 5 runs.

3-dimensional coordinates. In the experiments, we utilize the RMSE to measure the imputation

performance. We compare the performance of our LRCF-LSTM model using conditional

expectation with both standard baselines and more recent ones. The standard baselines include

mean, last value repetition, replacing with a random value from the last 10 observed values,

weighted moving average, interpolation, Kalman smoothing and the more recent ones include

GP-VAE [157] and TSGAN [158]. The results are presented in Table 7.4. Our model incurs

8.21256%, 8.74636%, and 7.25191% decrease in RMSE against the second best model for 10%,

30%, and 50% missing data respectively.

7.6 Conclusions

Real-world time-series data has introduced many new challenges for data modeling. In this

work we aim to sufficiently capture high dimensional, complex dependencies across time by

learning embeddings of time steps and modeling them jointly with current observations using

flexible density models. We propose modeling an LSTM network to capture the transition

dynamics of latent representations of observed data and a non-parametric density model based

on tensor decompositions and the characteristic function representation, to model the latent
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10% 30% 50%

Mean .813 .873 .933
Last .792 .862 .936
Random-Last-10 .722 .792 .879
Weighted Moving Average .670 .726 .796
Interpolation .705 .785 .825
Kalman Smoothing .677 .762 .812
GP-VAE [157] .641 .724 .794
TSGAN [158] .621 .686 .786
LRCF-LSTM .570 .626 .729

Table 7.4: Performance comparison (in RMSE) of time series imputation methods under different
missing rates.

representations jointly with current observations. We obtain a flexible model that allows efficient

likelihood evaluation during training time and efficient evaluation of conditional expectations

during inference time. We employ extensive experiments to validate the accuracy of the proposed

approach with respect to the state-of-the-art on forecasting and on time-series imputation.



Chapter 8

Thesis Summary and Future Directions

In this dissertation we studied the general problem of distribution estimation under different

settings and challenges. We developed tensor-based approaches which are principled, come with

identifiability guarantees, while at the same time achieve a superior performance with respect to

the state-of-the-art. We addressed important and challenging problems that arise in real world

applications (e.g., anomaly detection, modeling complex high-dimensional data such as images),

described how tensor-based probabilistic models can be utilized towards them, and validated

their potential via a detailed experimental examination using complex real-world data.

8.1 Summary

In chapter 3, based an interesting link between tensors and multivariate statistics that was first

poionted out in [18], we showed that by indirectly aiming to predict the latent variable of the

naive Bayes model instead of the original target variable, it is possible to formulate the feature

selection problem as maximization of a monotone submodular function subject to a cardinality

constraint. This problem can be tackled using a greedy algorithm that comes with performance

guarantees.

In chapter 4 we studied the problem of non-parametric density estimation. If the sought

density is compactly supported, then its characteristic function can be approximated, within

controllable error, by a finite tensor of leading Fourier coefficients, whose size depends on the

smoothness of the underlying density. This tensor can be naturally estimated from observed and

possibly incomplete realizations of the random vector of interest, via sample averaging. In order

130
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to circumvent the curse of dimensionality, we introduced a low-rank model of this characteristic

tensor, which significantly improves the density estimate especially for high-dimensional data

and/or in the sample-starved regime. By virtue of uniqueness of low-rank tensor decomposition,

under certain conditions, our method enables learning the true data-generating distribution.

In chapter 5, we built on the results of chapter 4 and developed a joint dimensionality

reduction and non-parametric density estimation framework, using the aforementioned density

estimator that can explicitly capture the underlying distribution of appropriate reduced-dimension

representations of the input data. The idea is to jointly design a nonlinear dimensionality reducing

auto-encoder to model the training data in terms of a parsimonious set of latent random variables,

and learn a canonical low-rank tensor model of the joint distribution of the latent variables in

the Fourier domain. The proposed latent density model is non-parametric and “universal,” as

opposed to the predefined prior that is assumed in variational auto-encoders.

In chapter 6, we learn multivariate cumulative distribution functions (CDFs), as they can

handle mixed random variables, allow efficient ‘box’ probability evaluation, and have the

potential to overcome local sample scarcity owing to their cumulative nature. We show that any

grid-sampled version of a joint CDF of mixed random variables admits a universal representation

as a naive Bayes model via the Canonical Polyadic (tensor-rank) decomposition. By introducing

a low-rank model, either directly in the raw data domain, or indirectly in a transformed (Copula)

domain, the resulting model affords efficient sampling, closed form inference and uncertainty

quantification, and comes with uniqueness guarantees under relatively mild conditions.

In the last chapter 7, we pursue probabilistic modeling of multivariate time-series. We

propose a novel approach which ties together two threads of research: low-rank tensor modeling

for flexible and efficient density estimation and the temporal modeling power of recurrent neural

networks (RNNs). This end-to-end framework leverages RNNs for learning sequential dynamics

and the parsimony of principled tensor-based density models to obtain a time-series generative

model with a controllable number of parameters. The proposed model generates probabilistic

forecasts that allow for uncertainty quantification and can handle missing inputs in some or all of

the components in a multivariate time series.
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8.2 Future Directions

• Privacy-preserving density estimation: We have shown that an accurate distribution esti-

mate can be used to perform a variety of important analysis tasks in critical fields such as

the healthcare (e.g., output the likelihood estimate of a clinical trial achieving a certain

enrollment rate goal). For settings involving sensitive data (e.g., healthcare data), the

construction and subsequent release of a density estimate could potentially leak private

information. Thus, continued attention is required to develop privacy-preserving methods

for density estimation. The inputs to our density model introduced in chapter 4 are sample

average estimates of E[ejν
TX ], thus information about individual input vectors in the data

is washed out, due to averaging and the modulo 2π periodicity of the complex exponential.

We can in fact discard all raw data for the purposes of joint PDF estimation. Future work

could explore how secure this strategy really is for healthcare.

• Variational Inference using Low-Rank Characteristic Function based Density Estimators:

The choice of posterior distributions is one of the core problems in Variational autoen-

coders (VAE). In most cases, variational inference employs simple families of posterior

approximations (Gaussian densities) in order to allow for efficient inference. VAEs are

known to produce samples of poor quality when implemented in their most basic form

– they require more powerful generative models in order to be competitive. Given the

enhanced expressivity of Low-Rank Characteristic Function based density estimators, one

could introduce such models to approximate posterior distributions. Although Normal-

izing Flows have also been employed to this task [80], the proposed class of densities

allows much faster sampling times thanks to the latent variable naive Bayes interpretation.

Potential future work could explore if the overall model can enhance sample quality with

respect to [80].
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