
An Analysis of Language Binding in Multi-Language Systems: Optimizing FAA
Simulations through C++ and Python Integration

Challenges in Accelerating Technological Modernization in Government Agencies:
Addressing Barriers to Updating Legacy Systems

A Thesis Prospectus
In STS 4500
Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia
In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By
Ahbey Yared Mesfin

11/8/24

On my honor as a University student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISORS

Rider Foley, Department of Engineering and Society

Rosanne Vrugtman, Department of Computer Science



Introduction

Government agencies frequently rely on legacy systems—older technologies

characterized by their age, lack of technical support, and replacement by more modern

alternatives—to carry out critical operations. Agencies such as the Department of Defense,

Department of Education, Health & Human Services, and Homeland Security continue to depend

on these systems, which pose risks to national security and public well-being due to their

heightened vulnerability to malicious attacks (Harris et al., 2019). Maintaining these legacy

systems is also an extremely costly endeavor, with expenditures reaching billions of dollars

nationwide (Harris et al., 2019).

The barriers to modernizing these aging systems are deeply rooted not only in technical

limitations but also in social factors within government organizations. Employee resistance to

change, fear of losing control over familiar systems, and insecurity about new technology all

contribute to reluctance in adopting updated solutions (Elgohary & Abdelazyz, 2020).

Addressing these social and organizational challenges is essential for enabling the modernization

of legacy systems and reducing the operational and security risks associated with outdated

technology.

Modern software development often involves multiple programming languages, each

chosen for its suitability to specific tasks. However, this multilingual approach creates complex

interfaces between languages, which can lead to decreased performance and limited flexibility

(Grimmer et al., 2018). Language interoperability—the ability for different programming

languages to work seamlessly together within a single program—presents a potential solution to

these issues. One method for achieving interoperability is language binding, which allows code

written in one language to directly access and execute code in another, circumventing

1



compatibility barriers (Wegner, 1996). By exploring language binding, this research seeks to

optimize legacy systems and demonstrate how interoperability could enhance the functionality

and adaptability of existing technology.

This prospectus examines the technical and social challenges of modernizing legacy

government systems, focusing on language interoperability as a case study. Through this

research, I aim to address the socio-technical barriers that limit innovation in public agencies and

propose solutions for a more collaborative and flexible approach to technology adoption in the

government sector.

PROGRAMMING LANGUAGE BINDINGS

During my internship at The MITRE Corporation, I focused on optimizing a flight

simulation program for the Federal Aviation Administration (FAA). The simulation had two

primary components: A C++ component, and a Python component. The C++ component was

responsible for doing all of the intensive calculations for the simulation when provided with the

appropriate parameters. The Python component, a REST interface (REST means

Representational State Transfer, a known software architecture) handled other tasks for the

simulation, such as displaying the data output from the C++ component in a clean, readable way

(among other tasks). It also served as an interface to increase ease-of-use for the end-user, as

working directly with the large C++ codebase could be cumbersome. The two components relate

as follows: after the C++ code finished all of its calculations, it would write its results to a file

within a shared filesystem. Once all the data was written, the Python REST interface would read

in the data from that shared file and display it. This architecture was reliable with respect to

actual functionality, but it was significantly slowed down by the overhead associated with

2



file-based data transfer. The read/write operations with the filesystem were particularly time

consuming - taking as long or longer than the computational steps themselves. My job was to

create a more efficient architecture by writing a “language binding” between the Python and C++

components. This would allow direct data exchange between the two, bypassing the filesystem

altogether.

To achieve this goal, I first studied the existing codebase and noted any code that

attempted to communicate with the filesystem. Next, I implemented replacement functions in

those parts of the codebase that retained the role of the function, but without any filesystem

communication. I then used open-source tools to develop the language binding that would enable

direct data transfer between the two components. This approach dramatically improved the

performance of the simulation by solving the file system bottleneck. The result of my work was

an optimized simulation, with data passing between components seamlessly. Figure 1 below

illustrates the before-and-after architecture of the simulation.

Figure 1: Flight Simulation Architecture Redesign

3



This technical project illustrates the core of my research question: technical overhauls

alone are insufficient for modernization if they lack support through changes in organizational

practice. This work was only possible because both major parties (The MITRE Corporation and

the FAA) endorsed and encouraged the creation of this project. It is a common phenomena that

employees resist changes to modernizing a system they commonly use (Khadka et al., 2015), and

had that been the case here, this project would have never begun. Another major source of

resistance to modernization is policy-driven rather than organizational practice (Alexandrova et

al., 2015). By showing the practical benefits of improving a known system, language

interoperability in this case, this project advocates for a reevaluation of accepted practice and

policy, and promotes the positives of modernization by demonstrably improving a frequently

used tool within the FAA.

SOCIAL ISSUES IN MODERNIZING GOVERNMENT LEGACY SYSTEMS

Government agencies face significant challenges in modernizing legacy systems, which

are deeply rooted in institutional practices and technical infrastructures. Modernization is the

process of updating (and sometimes replacing entirely) outdated computer systems and software

with more modern technologies. Despite their known security vulnerabilities and inefficiencies,

these systems persist due to a complex web of social dynamics and regulatory constraints within

the public sector (Abu Bakar et al., 2022). The slow rate of modernization in these agencies is

not simply a technical problem; it is a socio-technical issue that requires a nuanced

understanding of the interactions between technology, organizational culture, and policy

frameworks. Modernizing these systems is not a trivial endeavor, requiring both technological

4



solutions and the willingness to address the institutional and social factors that reinforce their

use.

A useful lens for examining this problem is path dependency, which explains how early

technological choices create dependencies that are difficult to break, especially as systems

become more deeply embedded over time (Mahoney, 2000). As agencies make initial

investments in particular technologies, those technologies often become “locked-in” due to the

high cost (financial and time) of transitioning to new systems , especially given the scale and

complexity of public agency infrastructures. This “lock-in” effect contributes to the persistence

of inefficient legacy technologies as the industry standard, allowing inefficiencies to endure for

extended periods of time (Barnes et al., 2004). Path dependency also highlights how initial

design decisions, reinforced by institutional policies and norms, shape the technological

trajectory of agencies. For instance, once a technology is established, agencies develop

procedures and training programs around it, making future changes more costly and disruptive

which accrues technical debt (Monaghan & Bass, 2020). Understanding path dependency allows

us to see modernization not just as a technical upgrade but as a transformation that challenges

entrenched practices and investments.

Another framework that complements this perspective is technological momentum. This

concept, introduced by Hughes (1987), posits that as a technology becomes integrated into social

structures, it begins to shape society as much as society shapes it (Taylor, Johnsen, 1986). In the

case of government legacy systems, technological momentum implies that these systems do

more than simply support organizational functions; they actively shape agency routines and

employee roles. Over time, legacy systems acquire their own “inertia”, becoming increasingly

difficult to overhaul/replace. This momentum reflects a paradox within government agencies:

5



while technology is intended to foster efficiency, the degree of its integration within

organizational practices can actually significantly slow down modernization efforts. The more

deeply entrenched a legacy system becomes, the more resistant it is to change - despite security

and performance concerns. Technological momentum thus helps to explain why, as legacy

systems mature, they become less adaptable and more resistant to external pressures for change

(Schubert et al., 2013), making modernization efforts more complex as time progresses.

These two frameworks highlight the need for a comprehensive approach to

modernization that considers both technical and socio-cultural roadblocks. Path dependency and

technological momentum suggest that efforts to modernize aging government systems need to

provide solutions to the social elements at play, such as institutional resistance, rather than purely

technical solutions. Thus, these frameworks offer a comprehensive perspective for understanding

and addressing the different complexities that come with modernizing government legacy

systems.

RESEARCH QUESTION AND METHODS

This research has the aim of answering “What are the primary socio-technical barriers to

modernizing legacy systems within government agencies” This question is significant because

outdated government systems pose significant risk to security and efficiency - understanding the

social and technical factors that hinder modernization efforts is essential for working towards

effective strategies to transition these systems to more efficient and secure architectures. My

research will begin by looking at the existing modernization steps, and observing the strengths

and weaknesses of their implementations. For example, cloud computing (Chiang & Bayrak,

2006) , “modularized modernization” (Jain & Chana, 2015) and Service-oriented architectures

6



(Galinium, 2008) are three concrete steps for achieving modernization in aging systems, of

which I can analyze and compare/contrast. The data will be collected from these case studies of

legacy system modernization efforts in different government agencies. For the social elements of

my research question, I will look to studies that primarily perform data collection via interviews

with IT professionals and project managers (Schubert et al., 2013), as well as government policy

analysis (Lam, 2005), (Waylen et al., 2015). I aim to observe how the two noted STS

frameworks, technological momentum and path dependency, are illustrated in such studies. For

example, there exist direct statements within these interviews that carry the sentiment of wanting

to maintain the current systems simply because they are “tried and true”, going hand-in-hand

with path dependency (Schubert et al., 2013). The core idea among these studies is to investigate

the “human element” of system modernization - exploring the reasons why certain workers are

strictly against modernization (Wellar et al., 2011), (Alexandrova & Rapanotti, 2020).

CONCLUSION

This paper addresses the rising issue of outdated legacy systems within government

agencies, which pose a threat to security, efficiency, and the general public good. My technical

work, a language binding interface between Python and C++ components, demonstrates the

potential of interoperability to optimize runtime performance in systems that depend on multiple

programming languages. The STS deliverable lays the groundwork for my research by providing

frameworks, namely path dependency and technological momentum, for understanding the

socio-technical barriers that hamper modernization efforts and how to begin addressing them.

This work aims to encourage more adaptable, secure, and efficient technology solutions within

the public sector. If implemented accordingly, these deliverables could illustrate a more flexible

7



approach for technological adoption in the government, ultimately benefiting the efficacy and

security of said systems. The research is meant to offer real, actionable insights that bolster

technological advancements as well as socio-organizational adoption in seemingly resistant

government institutions.

REFERENCES

Abu Bakar, H., Razali, R., & Jambari, D. I. (2022). A Qualitative Study of Legacy Systems

Modernisation for Citizen-Centric Digital Government. Sustainability, 14(17), Article 17.

https://doi.org/10.3390/su141710951

Alexandrova, A., & Rapanotti, L. (2020). Requirements analysis gamification in legacy system

replacement projects. Requirements Engineering, 25(2), 131–151.

https://doi.org/10.1007/s00766-019-00311-2

Alexandrova, A., Rapanotti, L., & Horrocks, I. (2015). The legacy problem in government

agencies: An exploratory study. Proceedings of the 16th Annual International Conference

on Digital Government Research, 150–159. https://doi.org/10.1145/2757401.2757406

Barnes, W., Gartland, M., & Stack, M. (2004). Old Habits Die Hard: Path Dependency and

Behavioral Lock-In. Journal of Economic Issues, 38(2), 371–377.

Chiang, C.-C., & Bayrak, C. (2006). Legacy Software Modernization. 2006 IEEE International

Conference on Systems, Man and Cybernetics, 2, 1304–1309.

https://doi.org/10.1109/ICSMC.2006.384895

Elgohary, E., & Abdelazyz, R. (2020). The impact of employees’ resistance to change on

implementing e-government systems: An empirical study in Egypt. THE ELECTRONIC

8

https://doi.org/10.3390/su141710951
https://doi.org/10.3390/su141710951
https://doi.org/10.1007/s00766-019-00311-2
https://doi.org/10.1007/s00766-019-00311-2
https://doi.org/10.1145/2757401.2757406
https://doi.org/10.1109/ICSMC.2006.384895
https://doi.org/10.1109/ICSMC.2006.384895


JOURNAL OF INFORMATION SYSTEMS IN DEVELOPING COUNTRIES, 86(6),

e12139. https://doi.org/10.1002/isd2.12139

Galinium, M., & Shagbaz, N. (2009). Factors Affecting Success in Migration of Legacy Systems

to Service-Oriented Architecture (SOA).

Grimmer, M., Schatz, R., Seaton, C., Würthinger, T., Luján, M., & Mössenböck, H. (2018).

Cross-Language Interoperability in a Multi-Language Runtime. ACM Transactions on

Programming Languages and Systems, 40(2), 1–43. https://doi.org/10.1145/3201898

Hughes, (1987). The Evolution of Large Technological Systems, 51-81.

Information Technology: Agencies Need to Develop Modernization Plans for Critical Legacy

Systems. (n.d.). Retrieved October 19, 2024, from

https://apps.dtic.mil/sti/citations/AD1156632

Jain, S., & Chana, I. (2015). Modernization of Legacy Systems: A Generalised Roadmap.

Proceedings of the Sixth International Conference on Computer and Communication

Technology 2015, 62–67. https://doi.org/10.1145/2818567.2818579

Khadka, R., Shrestha, P., Klein, B., Saeidi, A., Hage, J., Jansen, S., van Dis, E., & Bruntink, M.

(2015). Does software modernization deliver what it aimed for? A post modernization

analysis of five software modernization case studies. 2015 IEEE International Conference

on Software Maintenance and Evolution (ICSME), 477–486.

https://doi.org/10.1109/ICSM.2015.7332499

Lam, W. (2005). Barriers to e‐government integration. Journal of Enterprise Information

Management, 18(5), 511–530. https://doi.org/10.1108/17410390510623981

Mahoney, J. (2000). Path Dependence in Historical Sociology. Theory and Society, 29(4),

507–548.

9

https://doi.org/10.1002/isd2.12139
https://doi.org/10.1145/3201898
https://apps.dtic.mil/sti/citations/AD1156632
https://apps.dtic.mil/sti/citations/AD1156632
https://doi.org/10.1145/2818567.2818579
https://doi.org/10.1109/ICSM.2015.7332499
https://doi.org/10.1109/ICSM.2015.7332499
https://doi.org/10.1108/17410390510623981


Monaghan, B., & Bass, J. (2020). Redefining Legacy: A Technical Debt Perspective (pp.

254–269). https://doi.org/10.1007/978-3-030-64148-1_16

Schubert, C., Sydow, J., & Windeler, A. (2013). The means of managing momentum: Bridging

technological paths and organisational fields. Research Policy, 42(8), 1389–1405.

https://doi.org/10.1016/j.respol.2013.04.004

Taylor, Johnson, Resisting Technological Momentum. (n.d.).

https://doi.org/10.1177/016146818608700512

Wegner, P. (1996). Interoperability. ACM Computing Surveys, 28(1), 285–287.

https://doi.org/10.1145/234313.234424

Waylen, K. A., Blackstock, K. L., & Holstead, K. L. (2015). How does legacy create sticking

points for environmental management? Insights from challenges to implementation of the

ecosystem approach. Ecology and Society, 20(2). https://www.jstor.org/stable/26270192

Wellar, B., Garrison, W. L., MacKinnon, R., Black, W. R., & Getis, A. (2011). Research

Commentary: Increasing the Flexibility of Legacy Systems. Int. J. Appl. Geosp. Res.,

2(2), 39–55. https://doi.org/10.4018/IJAGR.2011040104

10

https://doi.org/10.1007/978-3-030-64148-1_16
https://doi.org/10.1016/j.respol.2013.04.004
https://doi.org/10.1016/j.respol.2013.04.004
https://doi.org/10.1177/016146818608700512
https://doi.org/10.1177/016146818608700512
https://doi.org/10.1145/234313.234424
https://doi.org/10.1145/234313.234424
https://www.jstor.org/stable/26270192
https://doi.org/10.4018/IJAGR.2011040104

