
LiveNet: Robust, Minimally Invasive Multi-Robot Control for Safe and Live Navigation in
Constrained Environments

A Research Paper submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Srikar Gouru

Spring, 2025

Technical Project Team Members

Srikar Gouru

Siddarth Lakkoju

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Rohan Chandra, Department of Computer Science

Proceedings of Machine Learning Research vol 283:1–13, 2025

LIVENET: Robust, Minimally Invasive Multi-Robot Control for Safe
and Live Navigation in Constrained Environments

Srikar Gouru MCJ2VB@VIRGINIA.EDU
University of Virginia

Siddharth Lakkoju QMN4CJ@VIRGINIA.EDU
University of Virginia

Rohan Chandra ROHANCHANDRA@VIRGINIA.EDU
University of Virginia

Abstract
Robots in densely populated real-world environments frequently encounter constrained and clut-
tered situations such as passing through narrow doorways, hallways, and corridor intersections,
where conflicts over limited space result in collisions or deadlocks among the robots. Current
decentralized state-of-the-art optimization- and neural network-based approaches (i) are predom-
inantly designed for general open spaces, and (ii) are overly conservative, either guaranteeing
safety, or liveness, but not both. While some solutions rely on centralized conflict resolution, their
highly invasive trajectories make them impractical for real-world deployment. This paper intro-
duces LIVENET, a fully decentralized and robust neural network controller that enables human-
like yielding and passing, resulting in agile, non-conservative, deadlock-free, and safe, navigation
in congested, conflict-prone spaces. LIVENET is minimally invasive, without requiring inter-agent
communication or cooperative behavior. The key insight behind LIVENET is a unified CBF for-
mulation for simultaneous safety and liveness, which we integrate within a neural network for
robustness. We evaluated LIVENET in simulation and found that general multi-robot optimization-
and learning-based navigation methods fail to even reach the goal, and while methods designed spe-
cially for such environments do succeed, they are 10–20× slower, 4–5× more invasive, and much
less robust to variations in the scenario configuration such as changes in the start states and goal
states, among others. We open-source the LIVENET code at https://github.com/srikarg89/LiveNet.
Keywords: Multi-Robot Navigation, Liveness, Safety, Constrained Environments.

1. Introduction
Large-scale multi-agent robot navigation has recently gained popularity for its applications in many
fields, including warehouse robots, autonomous vehicles, unmanned aerial vehicles, and more (Bogue
(2024); Rasheed et al. (2022)). These systems frequently operate in constrained and cluttered envi-
ronments, such as navigating doorways, intersections, or narrow hallways.

Figure 1: LIVENET enables minimally invasive, robust, safe and
deadlock-free navigation in constrained environments compared
to existing methods.

Such scenarios often lead to con-
flicts, manifesting as deadlocks, col-
lisions, or both, when multiple agents
attempt to occupy the same lim-
ited space simultaneously (Chandra
et al. (2024)). In contrast, humans
navigate these challenges effortlessly
and intuitively, demonstrating agility
and safety by dynamically modulat-
ing their speed and trajectory. This
allows them to avoid collisions (en-
suring safety) and prevent deadlocks
(maintaining liveness—defined as the
ability to continually make progress
toward their goal) while ensuring smooth and efficient transitions. This work investigates a fun-
damental research question: How can robots emulate human-like agility, safety, and liveness in
constrained environments?

© 2025 S. Gouru, S. Lakkoju & R. Chandra.

https://github.com/srikarg89/LiveNet

GOURU LAKKOJU CHANDRA

We approach this question by designing a low-level controller capable of simultaneously en-
suring safety and liveness. Achieving only one of these properties is insufficient for replicating
human-like behavior, such as agile yielding. Focusing solely on safety results in overly conservative
behavior, while prioritizing liveness alone can lead to aggressive and potentially unsafe navigation.
While some efforts have attempted to integrate both safety and liveness (Chandra et al. (2024);
Wang et al. (2017); Zhou et al. (2017); Chen et al. (2023); Garg et al. (2024)), these solutions often
perturb the robots in an invasive manner that forces them to adopt suboptimal trajectories. For ex-
ample, (Zhou et al. (2017); Wang et al. (2017)) implement the right-hand-rule to induce clockwise
movement in the event of a deadlock. Furthermore, in prioritizing safety, current methods only
resolve deadlocks after they occur and all agents come to a stop. This is in stark contrast to how hu-
mans navigate by preemptively detecting and preventing the deadlock, without invasive maneuvers
or delays. These issues highlight a critical gap in the literature towards achieving a robust, mini-
mally invasive liveness without sacrificing safety. An optimal algorithm to navigating in constrained
and cluttered spaces, therefore, must satisfy the following criteria:

1. Decentralized / Non-cooperative: The algorithm should not assume that agents can communicate
with one another or with a centralized controller. The robots should only gain information about
their surrounding environment through sensory perception.

2. Robust: Agents must adapt to changes in the environment or in their own configurations.
3. Safe: The agents should maintain a predefined safety distance from other agents and obstacles.
4. Live: The agents should avoid deadlocks and continuously make progress towards the goal.
5. Minimally invasive: An optimal strategy should apply the least disruptive intervention using

minimal perturbations to ensure conflict resolution.
6. Dynamically feasible: The agents should follow predefined non-holonomic and kinodynamic

constraints, including bounds on the velocity and acceleration of the agent.

Main Contributions: We propose a novel approach for optimal end-to-end learnable multi-robot
navigation in constrained spaces such as doorways and corridor intersections. The key insight of
our approach is to formulate both safety as well as liveness via differentiable CBFs within the neural
network controller.

• We propose the first safe, robust neural controller with provable liveness guarantees (Theorem (1))
for agile and smooth multi-robot navigation in constrained spaces.

• Unlike prior methods, LIVENET, while still fully decentralized, is minimally invasive, only per-
turbing the speed of a robot by the smallest amount necessary, without changing its direction,
resulting in smoother and more optimal trajectories.

• LIVENET’s control cycle frequency is between 10–20× faster than MPC-based optimization ap-
proaches and 20× faster than MACBF (Qin et al. (2021)), a state of the art end-to-end learning-
based multi-robot navigation baseline.

• LIVENET is robust to changes in the environment and agent configurations. Given a wide range
of diverse environments, LIVENET succeeded in 30% more scenarios compared to MPC-based
baselines.

2. Related Work
In this section we discuss the variety of methods that have been applied to safely navigate multi-
robot deadlock avoidance scenarios.

2.1. Simultaneous Safety and Deadlock Resolution Methods
Most current methods rely on cooperative, predetermined behavior between the robots to resolve
conflicts. For instance, in (Zhou et al. (2017); Wang et al. (2017); Zhu et al. (2022); Chen et al.
(2023)), the authors heuristically define a clockwise movement to establish the right of way (the
rightmost agent moves first). Other deadlock resolution methods generate vehicle priorities through
reservation systems like first come first serve (Au et al. (2015)) or auctions with predefined bidding

2

LIVENET

strategies (Carlino et al. (2013); Suriyarachchi et al. (2022)). Garg et al. (Garg et al. (2024)) used
large language models to act as a central arbiter to resolve the conflict. However, these heuristics
result in larger perturbations than necessary to avoid the deadlock, and they often falter in scenarios
with unpredictable agents where knowledge of other agents’ planned trajectories is unavailable.

2.2. Other Multi-Robot Navigation Approaches

Multi-agent path-finding (MAPF) algorithms such as conflict-based search (CBS) and its vari-
ants (Sharon et al. (2015)), M∗ (Stern (2019)), ICTS (Sharon et al. (2013)), and Uniform Cost
Search (Mao et al. (2024), Guo et al. (2024), McNaughton et al. (2011)). Many MAPF techniques
yield a globally optimal solution, but require centralized solvers, discretized state spaces, and low-
dimensional observation, state, and action spaces, thereby restricting its use primarily to simulation
or offline as a coarse preprocessing step (Ma (2022)). These assumptions are prohibitive to most real
world robots that possess non-holonomic and kinodynamic constraints. Learning-based approaches
use imitation learning (Hussein et al. (2018); Yan et al. (2022); Daftry et al. (2017); Qin et al. (2021);
Xiao et al. (2023)) and multi-agent reinforcement learning (MARL) (Liu et al. (2020); Martinez-Gil
et al. (2012); Mehr et al. (2023)) to learn a navigation policy using supervised or unsupervised learn-
ing methods. While these methods offer robustness and scalability, they model safety as a learned
behavior rather than a constraint. Thus, despite large training sets, no mathematical guarantees
for robot safety can be drawn, which is crucial for robots deployed in safety-critical environments.

Symbol Description
Problem formulation (Section 3)

k Number of agents
T Planning horizon
X General continuous state space
XI Set of initial states
Xg Set of final states
xit State of agent i at time t
Ωi Observation set of agent i

Oi : X → Ωi Agent i’s observation function
oit Observation of agent i at time t
Γi Agent i’s trajectory
Γ̃i Agent i’s preferred or desired trajectory
Ψi Agent i’s input control sequence

T : X × U i → X Environment transition dynamics (Equation 1b)
U i Action space for agent i
J i Running cost for agent i (J i

t : X × U i → R)
J i
T Terminal cost at time T

Ci
(
xit
)
⊆ X Convex hull of agent i

Γ
i Agent i’s minimally invasive trajectory

zit ∈ X × Ωi Model input, consisting of xit and oit.
F : X × Ωi → U i network defining agent i’s controller

Technical Approach (Section 4)

bi
(
zit
)
: X × Ωi −→ R Control barrier function (CBFs)
bio, b

i
l

(
zit
)

Obstacle and liveness CBFs
Lfb

i
(
zit
)
, Lgb

i
(
zit
)

Lie derivatives of bi
(
zit
)

w.r.t f and g.
sit, θ

i
t, v

i
t Position, heading, and velocity of agent i

Γ̂i, Ψ̂i State and input controls trajectory dataset
po, pl Penalty values defining the relaxation of the CBFs

Table 1: Summary of notation used in this paper.

Optimization-based methods, par-
ticularly Model Predictive Control
(MPC) with control barrier functions
(CBFs), have been employed to cal-
culate safe trajectories over short fu-
ture horizons (Mestres et al. (2024),
Zhu et al. (2020)). These receding-
horizon control strategies iteratively
solve an optimization problem at
each step, adjusting the agent’s tra-
jectory to avoid collisions in the im-
mediate future. Chandra et al. (Chan-
dra et al. (2024)) model liveness as a
control barrier function (CBF) within
a receding-horizon control scheme,
adjusting the agent’s trajectory to
avoid collisions and deadlocks in the
immediate future. Although effective
in certain settings, these methods lack
robustness since they are often tuned
to specific environment configura-
tions and quickly falter when the en-
vironment changes. Another class of
distributed optimization-based meth-
ods uses dynamic game theory to
compute a Nash equilibria for similar
problems that dictates all agents’ trajectories (Wang et al. (2021a,b); Schwarting et al. (2021); Sun
et al. (2015, 2016); Morimoto and Atkeson (2003); Fridovich-Keil et al. (2020); Di and Lamperski
(2018)). However, this requires knowledge of the other agents’ objective functions, their desired
trajectories, and their kinodynamic constraints (Mylvaganam et al. (2017)).

The algorithms described above are able to either guarantee safety, liveness, or robustness to
adapt to new scenarios well, but are unable to do all three. This research builds on foundational ideas
of Neural Network based controllers and Control Barrier Functions (CBFs) (Wang et al. (2017)) to
provide safety and liveness while being robust.

3

GOURU LAKKOJU CHANDRA

3. Problem Formulation
In this section, we formulate the problem objective that we aim to solve. Notation for variables
referenced is summarized in table 1. We formulate the problem as the following partially observable
stochastic game (POSG) (Hansen et al. (2004)): ⟨k, T,X ,U i, T ,J i,Oi,Ωi⟩, where k refers to the
number of agents, and T refers to the finite horizon length of the game. A superscript of i refers to
the ith agent, where i ∈ [1, .., k] and a subscript of t refers to discrete time step t where t ∈ [1, .., T].
At any given time step t, agent i has state xi

t ∈ X where X is the general, continuous state space.
U i is the continuous control space for robot i representing the set of admissible inputs for i. Agent
dynamics are defined by the transition function T : X × U i → X at time t ∈ [1, .., T − 1]. The
cost function, J i : X × U i → R is used to determine the cost of the specified control action in the
agent’s current state, and the terminal cost J i

T : X → R is used to calculate the cost of the terminal
state xi

T . Each agent i also has an observation oit ∈ Ωi which is determined via the observation
function oit = Oi(xit). A discrete trajectory of agent i is defined by Γi = (xi

0,x
i
1, ...,x

i
T), and

has a corresponding control input sequence Ψi = (ui0, ..., u
i
T−1). Agents follow the control-affine

dynamics xi
t+1 = f(xi

t) + g(xi
t)u

i
t, where f, g are locally Lipschitz continuous functions. At any

time t, each agent i occupies a space given by Ci(xi
t) ⊆ X . Two robots i, j are considered colliding

at time t if Ci(xi
t) ∩ Cj(xj

t) ̸= ∅.
A Social Mini-Game (SMG) is a variation of the generic POSG where each agent has a starting

state, xi
0 ∈ XI and a goal state xi

g ∈ Xg where XI and Xg are subsets of the continuous space X
(Chandra et al. (2024)). Additionally, each agent has a preferred trajectory, denoted by Γ̃i, which
would be the desired trajectory that the agent would take in the absence of any other agents:(

Γ̃i, Ψ̃i
)
=arg min

(Γi,Ψi)

T−1∑
t=0

J i
(
xi
t, u

i
t

)
+ J i

T

(
xi
T

)
(1a)

s.t xi
t+1 =f

(
xi
t

)
+ g

(
xi
t

)
ui
t, ∀t ∈ [1;T − 1] (1b)

umin ≤ ui
t ≤ umax (1c)

xi
0 ∈ XI , xi

T ∈ Xg (1d)

(a) SMG Scenario (b) Non-SMG Scenario

Figure 2: Example SMG and Non-SMG scenarios
with agent 1’s desired trajectory in red and agent 2’s
desired trajectory in blue. Their starting and goal
locations are indicated by t = 1 and t = 4, re-
spectively, with t being used to show the agents’
time-parameterized desired trajectories. Collisions are
shown in purple.

A game is considered a social mini-game
when if for some t ∈ [1, .., T], there exists
at least one pair i, j where i ̸= j such that
Ci(xi

t) ∩ Cj(xj
t) ̸= ∅ where xi

t ∈ Γ̃i and
xj
t ∈ Γ̃j . As shown in Figure 2, if the de-

sired spatio-temporal trajectories of any two
agents result in either a collision or a deadlock,
the game is considered an SMG. As in previ-
ous works (Chandra et al. (2024), Grover et al.
(2023)), we define a deadlock when a robot i
is in deadlock if the current velocity vit = 0
prior to reaching the goal, meaning xi

t /∈ Xg.
A robot exhibits liveness if it is able to prevent
collisions and deadlocks.
Objective: Our goal is to prevent both colli-
sions and deadlocks in an SMG by perturbing the preferred trajectory, Γ̃i, in a minimally invasive
manner. We define the new trajectory, Γi to be minimally invasive if it perturbs the agent’s velocity
throughout the trajectory by the minimal amount possible without any spatial deviation from the
preferred trajectory and avoids collisions with all other agents while following kinodynamic con-
straints. This mimics human yielding when crossing an intersection or passing through a doorway,
where humans simply slow down to allow someone else to pass, but don’t change their intended spa-
tial path. For a minimally invasive trajectory, we define the cost function J i as the time to reach the

4

LIVENET

goal. This implies wanting to travel at the maximum allowed velocity for as long as possible, thus
we want to minimize any velocity deviations. Mathematically, this means that over the planning
time-horizon T , the following constraints must be incorporated into Problem (1):

T−1∑
t=0

D(sit, Γ̃) ≤ ϵ(1),

T−1∑
t=1

|vit − vit−1| ≤ ϵ(2), Ci(xi
t) ∩ Cj(xj

t) = ∅, vit = 0 ↔ xi
t /∈ Xg (2)

for all i, j ∈ [0, k] s.t. i ̸= j where D(sit, Γ̃) represents the spatial deviation of point si from the
desired trajectory Γ̃. Formally, our goal is now to solve Problem (1) with the added constraints
given by (2). We define a minimally invasive solution as one that minimizes the value of ϵ(1), and
in the event of a tie minimizes ϵ(2).

4. LIVENET: Technical Approach

Figure 3: LIVENET Architecture Overview The ego state and obser-
vation inputs get fed into a feedforward network with three individual
outputs: the reference control, the obstacle penalties, and the mini-
mal invasiveness penalties. These three outputs get fed into a differ-
entiable QP layer which solves a standard QP problem with inequality
constraints (Equations (4) and (11)) to enforce the CBFs. During back-
propagation, the optimal reference value, as well as optimal penalty
values for the CBF constraints, are learned.

Each LIVENET agent is defined
by a neural network, where the
function F : X × Ωi → U i

defines the feed-forward func-
tion of the model. The input to
the network is the agent’s state
and observation, namely zit =
(xi

t, o
i
t). The cost function for

the model is defined via a mean-
squared-error loss function such
that J i = 1

T

∑T
t=0(F (ẑit)−ûit)

2

for all corresponding (ẑi, ûit)

in a trajectory dataset (Γ̂i, Ψ̂i).
The LIVENET network (visual-
ized in Figure 3) takes in the
agent’s state and observation as
inputs, and passes it through
three subnetworks, Fr, Fo, and
Fl, which generate the reference
control output uref , along with
penalty values for the obstacle
barrier function, po and the live-
ness barrier function, pl. po

determines the level of relax-
ation on the obstacle CBF (Sec-
tion 4.1) and pl determines the
level of relaxation on the live-
ness CBF (Section 4.2). The net-
work subsequently feeds these variables into a quadratic programming (QP) layer (Amos and Kolter
(2017)) to minimize the function (u− uref)

2 given differential CBF (dCBF) constraints defined by
po and pl. During backpropagation, the mean squared error loss between the outputted u and the
optimal û (provided via the training dataset) is used to optimize the weights in the networks Fr, Fo,
and Fl via gradient descent.

The OptNet framework (Amos and Kolter (2017)) that LIVENET is built on allows QP prob-
lems to be passed in with generalized inequality constraints in the form G(z)u ≤ h(z). Sections
4.1 and 4.2 discuss the usage of Higher-Order CBFs (HOCBFs) in order to construct barrier func-
tion inequalities that are dependent on the control inputs. We refer the reader to [Xiao and Belta
(2019)] for more details. Our approach presents both a multi-agent differential CBF (dCBF) layer

5

GOURU LAKKOJU CHANDRA

for multi-dimensional state spaces, as well as a liveness dCBF filter to ensure deadlock avoidance
in a minimally invasive manner. In this work, we specifically explore the k = 2 scenario.

4.1. Multi-Agent Collision Avoidance dCBFs
We present an environment setup with double-integrator unicycle dynamics and a state space de-
fined by x = (x, y, θ, v) ∈ X where x and y represent the 2D position of the robot, θ represents the
heading, and v represents the forward velocity. When referring to the robot’s position, s = (x, y) is
used. The control inputs are defined by (ω, a) ∈ U i where ω represents turning velocity and a rep-
resents linear acceleration. Observations of agent i includes the positions, headings, and velocities
of other, as well as the positions of static obstacles. We also refer to both agents and static obstacles
under the general term obstacles for this subsection, as agents are treated as moving obstacles whom
we have no control over, where we utilize forwards dynamics to derive their future position based
on their current velocity and heading. For any static obstacle j, we set θj = 0 and vj = 0. for static
obstacles. Thus, from agent i’s perspective, the transition dynamics are defined as

ż =

[
f i(xi)
f j(xj)

]
+
[
B 0
0 0

] [
ui

uj

]
, (3)

where ż =
[
ẋi, ẏi, θ̇i, v̇i, ẋj , ẏj , θ̇j , v̇j

]⊤
. The control inputs are applied using an input matrix,

B, where B = [0, 0, 1, 0; 0, 0, 0, 1]⊤, and the control vectors for agents i and j are ui =
[
ωi, ai

]⊤
and uj =

[
ωj , aj

]⊤, respectively. The dynamics for each agent are represented by f i(xi) and

f j(xj), where f i(xi) =
[
vi cos(θi), vi sin(θi), 0, 0

]⊤. For simplicity, agents and static obstacles are
considered to occupy circles of their respective radius r. The barrier function for obstacle avoidance
can be written out as b(z) = (xi−xj)2+(yi−yj)2−(ri+rj)2 >= 0 where (xj , yj) ∈ R2 represents
the position of obstacle j, and rj represents the radius of obstacle j.

As shown in (Xiao et al. (2023)), the HOCBF for b(z) which has degree 2 with respect to the
control outputs yields the following inequality:

−LfLgb(z)u ≤ L2
fb(z) + (po1(z) + po2(z))Lfb(z) + (ṗo1(z) + po1(z)p

o
2(z))b(z), (4)

where po1(z) and po2(z) are trainable penalty functions, and ṗo1(z) can be set to 0 due to the dis-
cretization solving method of the QP as shown by (Xiao et al. (2023)). Additionally, we use sig-
moid as a continuous and differentiable activation function for the penalty network to ensure that
po1(z) and po2(z) are Lipschitz continuous, maintaining BarrierNet’s safety guarantees. Given that
b(z) = (xi−xj)2+(yi− yj)2− (ri+ rj)2, we can solve for the Lie derivatives of b(z) in the f(x)
and g(x) vector fields:

Lfb(z) = 2(xi − xj)(vi cos(θi)− vj cos(θj)) + 2(yi − yj)(vi sin(θi)− vj sin(θj)), (5a)

L2
fb(z) = 2(vi

2
+ vj

2 − 2vivj(cos(θi + θj)), (5b)

LgLfb(z) =

[
−2(xi − xj)vi sin(θi) + 2(yi − yj)vi cos(θi)

2(xi − xj) cos(θi) + 2(yi − yj) sin(θi)

]T
. (5c)

These values, plugged into Equation (4), generate our differential CBF constraint.

4.2. Minimally Invasive Deadlock Prevention dCBFs
We introduce a minimally invasive differential CBF layer to look ahead and output accelerations
that avoid collisions and maintain liveness in SMG scenarios. We first check if agent i’s projected
spatial path intersects with the projected spatial path of any other agent j for all j in [1; k] s.t. i ̸= j,
assuming that agent j maintains their heading (θj) and velocity (vj). This check boils down to a ray
intersection, which occurs when the following is satisfied:

6

LIVENET

(∆y ∗ cos(θi)−∆x ∗ sin(θi)) ∗ det > 0, (∆y ∗ cos(θj)−∆x ∗ sin(θj)) ∗ det > 0, (6)

where det = v̂jx ∗ v̂iy − v̂jy ∗ v̂ix and v̂i = vi

|vi| , v̂
j = vj

|vj | . The minimally invasive liveness filter
is only applied if the rays intersect.

Let s̃i ∈ Ci be the closest point on agent i’s convex hull to agent i. Similarly, let s̃j ∈ Cj be the
closest point on agent j’s convex hull to agent i. We denote s̃i and s̃j to be the agents’ critical points.
Assuming that the agents have not yet collided, these points lie on the boundaries of their respective
agent’s convex hull, and thus are ri and rj from the agents’ current positions. Mathematically,

s̃i = ŝi + ri ∗ ŝj−i, s̃j = ŝj − rj ∗ ŝj−i, (7)

where ŝj−i = sj−si

|sj−si| . Thus, our problem reduces to avoiding a point-point collision instead of a
convex-convex collision. We first calculate c, the potential collision point of s̃i and s̃j , by projecting
them forwards along the agents’ current spatial path given θ and v:

s̃i
′
= s̃i + vi, s̃j

′
= s̃j + vj ,

ai = x̃i ∗ ỹi
′
− ỹi ∗ x̃i′ , aj = x̃j ∗ ỹj

′
− ỹj ∗ x̃j′ ,

cx = (ajvi cos(θi)− aivj cos(θj))/det, cy = (ajvi sin(θi)− aivj sin(θj))/det,
(8)

where det = vivj(cos(θi) sin(θj) − sin(θi) cos(θj)). We then calculate the distance from each
agent’s critical point s̃ to the collision point.

di =
√
(x̃i − cx)2 + (ỹi − cy)2, dj =

√
(x̃j − cx)2 + (ỹj − cy)2. (9)

Given each agent’s velocity, we calculate ti and tj , the time for each agent’s critical point, s̃, to
reach the collision point c as t = v/d. We split the scenario into two different cases. If ti < tj ,
then that indicates that the ego agent, agent i, will pass the collision point before agent j. In this
scenario, to maintain liveness we want to enforce that tj > ti, thus resulting in the barrier function

b(z) = tj − ti ≥ 0. (10)

As stated previously, tj = dj

vj
and ti = di

vi
. Since the c lies along each agent’s heading, θ, and

since a minimally invasive trajectory involves zero spatial deviation from the desired path, v is the
direct derivative of d. That is, dd/dt = v. Since our barrier function is with respect to vi, and the
control input ai appears in the first derivative of our barrier function, we alter the HOCBF inequality
from Equation (4) to instead be

−Lgb(z)u ≤ Lfb(z) + plb(z). (11)

Thus, we compute the Lie derivatives and formulate the CBF in Equation (12).

b(z) = δ(tj − ti), Lgb(z) = δ

(
aidi

vi
2

)
, −δ

(
aidi

vi
2

)
≤ plδ(x)

(
dj

vj
− di

vi

)
, (12)

where δ(·) is an indicator function and is equal to 1 if ti < tj (the ego-agent will currently reach
sooner) and −1 if ti >= tj (the ego-agent will currently reach later and should yield to agent j).
Note that there is no Lie derivative along the f function since in the absence of any control outputs,
the barrier function tj − ti would remain constant over time. The penalty value, plδ(z) is chosen for
these CBFs to allow the network to learn the necessary constraint levels in each scenario.

7

GOURU LAKKOJU CHANDRA

Doorway Scenario
Method # Collisions # Deadlocks Makespan (s) ∆V (m/s) ∆ Path (m) Cycle Time (s)

MPC-CBF (Zeng et al. (2021)) 0 50 N/A 0.003± 0.000 0.016± 0.000 90.9± 0.9
MACBF (Qin et al. (2021)) 50 0 N/A 0.006± 0.000 0.149± 0.048 171.05± 1.66

PIC (Liu et al. (2020)) 50 0 N/A 0.031± 0.006 0.041± 0.002 0.3± 0.0
BarrierNet (Xiao et al. (2023)) 50 0 N/A 0.004± 0.000 0.010± 0.002 7.3± 0.0

SMG-CBF (Chandra et al. (2024)) 0 0 13.8± 0.0 0.009± 0.000 0.001± 0.000 81.1± 0.3

LIVENET 0 0 13.8± 0.0 0.002± 0.000 0.008± 0.000 7.5± 0.0

Intersection Scenario

MPC-CBF (Zeng et al. (2021)) 0 50 N/A 0.006± 0.000 0.170± 0.001 302.6± 3.9
MACBF (Qin et al. (2021)) 50 0 N/A 0.300± 0.002 0.009± 0.004 170.8± 1.6

PIC (Liu et al. (2020)) 50 0 N/A 0.081± 0.024 0.033± 0.003 0.3± 0.0
BarrierNet (Xiao et al. (2023)) 50 0 N/A 0.008± 0.000 0.033± 0.001 7.3± 0.0

SMG-CBF (Chandra et al. (2024)) 0 0 12.2± 0.0 0.012± 0.000 0.000± 0.000 157.0± 0.5

LIVENET 0 0 11.6± 0.0 0.011± 0.000 0.000± 0.000 9.3± 0.1

Table 2: Experiment results in the Doorway and Intersection scenarios, averaged over 50 runs.
Theorem 1 Assuming pl−1(z), p

l
1(z) are differentiable functions with respect to z, then the LIVENET

constraints in Equation (12) guarantee the liveness of the system defined by (10).

Proof The proof follows directly from (Xiao et al. (2023))(c.f. Theorem 2) and relies on the
requirement that the relative degree of pl−1(z), p

l
1(z) with respect to each component in z is greater

than or equal to that of the liveness constraints in Equations (12). In Equations (12), since the
control input (ai) appears in the first derivative, the relative degree is 1. Next, recall that each agent
i has a partial observability over the positions and velocities of other robots in its neighborhood, that
is, z = [si, vi, sj , vj]. The penalty functions pl−1(z), p

l
1(z) have a relative degree of 2 with respect

to position and 1 with respect to velocity, therefore, the conditions set forth in (Xiao et al. (2023))
are satisfied.

5. Experiments and Results
We aim to investigate two main questions: (i) how does LIVENET compare with existing multi-
robot navigation methods in SMGs? and (ii) how does LIVENET compare with methods specif-
ically designed to navigate SMGs? To investigate these questions, we compare LIVENET to five
baseline methods. These baselines include two receding-horizon optimization-based controllers,
MPC-CBF (Zeng et al. (2021)), which maintains safety from static and moving obstacles using
CBFs and SMG-CBF (Chandra et al. (2024)), an extension of the MPC-CBF formulation that
employs a threshold-based liveness CBF with steep acceleration outputs. Due to the deterministic
nature of SMG-CBF, it was predetermined which agent would go faster in perfectly symmetric sce-
narios. Two multi-agent learning-based approaches were also tested: MACBF (Qin et al. (2021)),
which learns safety through separated action and CBF networks, and PIC (Liu et al. (2020)), which
utilizes graph CNNs with a permutation invariant critic for scalable navigation. BarrierNet (Xiao
et al. (2023)) was also tested as a baseline. We measure number of collisions and deadlocks,
makespan, and runtime per control iteration (in seconds) in a variety scenarios. To evaluate mini-
mal invasiveness between the different approaches, we measure average change in velocity and the
average deviation from the desired path.

5.1. Experiment Setup
The simulation environment was setup in Python using the do mpc framework (Lucia et al. (2017))
based on Casadi (Andersson et al. (2019)). The kindoynamic and scenario time constraints remained
constant across all scenarios: max velocity of 0.3m/s, max acceleration / deceleration of 0.1m/s2,
max angular velocity of 0.5 rad/s, agent radii of 0.1 m, sim fidelity of 0.2 s/iteration, and max
sim time of 18s. The following symmetric SMGs were tested: (i) Doorway scenario: multiple
robots pass through a doorway 0.3m wide at (1, 0) wide. The agents are placed (−1, ±0.5) with

8

LIVENET

(a) MPC-CBF (b) SMG-CBF (c) MACBF (d) PIC (e) BarrierNet (f) LIVENET

(g) MPC-CBF (h) SMG-CBF (i) MACBF (j) PIC (k) BarrierNet (l) LIVENET

Figure 4: Resulting trajectories in Doorway (Figures 4(a)-4(f)) and Intersection (Figures 4(g)-4(l))

(a) Distance CBF (po) (b) Liveness CBF
(
pl
)

(c) Average ∆ Path

Figure 5: LIVENET’s obstacle dCBF, liveness dCBF, and deviation from desired path in Doorway scenario.
initial velocity 0.3m/s. Intersection scenario: multiple robots cross a 0.35m× 0.35m intersection.
The robots started 1m away from the intersection with their goal placed 1m past the intersection.

Training: To train LIVENET, we generated data using an optimal, receding-horizon MPC-CBF
controller (Zeng et al. (2021)) across various perturbations of the doorway and intersection scenar-
ios. Parameters such as starting state, goal state, and gap size were perturbed to increase diversity.
For each scenario perturbation, the MPC’s state and input cost matrices, as well as the CBF param-
eters, were individually tuned to generate an optimal trajectory. LIVENET was subsequently trained
on this augmented data through offline supervised learning, using mean squared error as the loss
function. The training process spanned 30 epochs of shuffled data, with a batch size of 64 and a
learning rate of 0.001. Baseline methods (Figure 2) were trained in the same environment, with the
exception of PIC, which performed better when trained within its native training environment and
was subsequently adapted to the SMG environment through a custom state-action mapping.

5.2. Results
For each agent, 50 Doorway and Intersection scenarios were run to test the safety, liveness, and
smoothness of the trajectories of each agent. The accumulated and averaged metric values are
displayed in Table 2 and the resulting trajectories are shown in Figure 4. The MACBF, PIC, and
BarrierNet models resulted in collisions due to mere soft constraints on safety with the limited train-
ing data. The MPC-CBF model was able to avoid collisions, but succumbed to deadlocks due to
an inability to make safe progress. Additionally, LIVENET performed minimally invasive behavior
as it maintained its desired spatial trajectory and minimally perturbed its velocity, approaching the
CBF threshold without ever violating it (Figure 5).

Of the baselines, only SMG-CBF was successful due to its deadlock resolution capabilities.
Additionally, when SMG-CBF was tested without the predetermination of which agent would be
faster, it resulted in deadlocks in perfectly symmetric versions of both the Doorway and Intersection

9

GOURU LAKKOJU CHANDRA

scenarios. SMG-CBF, however, is 10× slower than LIVENET as it runs an iterative optimization
algorithm every control cycle. Additionally, as shown in the Doorway scenario results, SMG-CBF
was significantly more invasive, with an average velocity perturbation of 4–5× that of LIVENET.
Another core limitation with SMG-CBF is its dependence on a liveness threshold to determine
when to apply the CBF (Chandra et al. (2024)). As the controller enters and exits this threshold,
its acceleration output varies significantly, thus producing jagged controls as shown in Figure 6(b)
between iterations 10 and 40. On the other hand, LIVENET’s ability to learn how much to relax the
CBF as a function of the agent’s state and observation allows the velocity profile of the resultant
path to be much smoother as demonstrated by the smoother dip in agent 2’s velocity in Figure 6(a),
which more closely mimics human-like behavior. Figure 6 further shows evidence of better human-
like yielding for LIVENET. In particular, note that agent 2 does not begin to yield until the last
second (around iteration 20) compared to SMG-CBF where agent 2 begins to slow around iteration
10, suggesting that LIVENET results in less conservative, more agile navigation.

LIVENET is also more robust to variations in the environment and agent configurations thanSMG-
CBF. We tested both on a suite of 28 perturbed scenarios of the original doorway SMG without any
changes to their parameter configuration. The perturbations were created by variations in the agents’
initial position, initial heading, initial velocity, and goal position. The positions were altered on a
scale of 0.5m, initial headings facing the doorway and facing the wall were tested, and the initial
velocity was either full speed (0.3m/s) or standstill (0.0m/s). LIVENET was able to solve 25 /
28 scenarios without a deadlock or collision, whereas SMG-CBF was only able to solve 16 / 28.

(a) LIVENET (b) SMG-CBF

Figure 6: Comparing agents’ (A1, A2) velocities generated by
LIVENET and SMG-CBF, before and after crossing the doorway.

It should also be noted that due
to SMG-CBF’s deterministic man-
ner, it is unable to solve perfectly
symmetrical cases without predefin-
ing which agent should start off mov-
ing faster. On the other hand, the
same LIVENET network could be
used for both agents, as it has a slight
inherent bias based on its starting and
goal positions, allowing it to break
the symmetry. SMG-CBF’s lack of
robustness is due to constant parame-
ters defining how strictly the CBF is
followed for each scenario. On the other hand, LIVENET’s ability to predict the penalty values,
p(z), that define the relaxation of the CBF allows it to better adapt to a multitude of scenarios.

6. Conclusion
In this work, we presented LIVENET, a robust, minimally-invasive neural network controller that
uses differentiable CBF layers to tackle safety and liveness in constrained environments. Our navi-
gation approach utilized the BarrierNet framework as the base neural network. We introduced novel
differentiable CBF layers to provide liveness and 2D multi-agent navigation. To train the network,
we hand-tuned an optimal recending-horizon controller over many perturbed scenarios to generate
a large dataset. Our approach guarantees safe and live behavior given enough training data and
a complex enough network to learn the dCBF’s corresponding penalty values. Experiments show
that in practical scenarios the model outperforms existing solutions in safety, minimal invasiveness,
compute speed, and robustness. The faster compute time and robustness are crucial when run on
real robots in constrained areas that need to react quickly to unpredictable situations.

Our approach has some limitations. LIVENET is currently tested in simulation, and we plan to
deploy it into the real world in the future. Additionally, LIVENET has only been tested on 2-agent
scenarios. We plan on investigating the scalability of this model in terms of the compute time and
accuracy as the number of agents increases. Additionally, since LIVENET is a discrete controller,
collisions and deadlocks can occur between timesteps. Furthermore, an issue with imitation learning
is a laborious data generation process, as we have to tune the optimal controller for each scenario
perturbation. Utilizing unsupervised learning methods would allow for self-exploration of novel
states instead of forcing the agent to only learn from states that the optimal controller explored.

10

LIVENET

References
Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.

In International conference on machine learning, pages 136–145. PMLR, 2017.

Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl. Casadi: a
software framework for nonlinear optimization and optimal control. Mathematical Programming
Computation, 11:1–36, 2019.

Tsz-Chiu Au, Shun Zhang, and Peter Stone. Autonomous intersection management for semi-
autonomous vehicles. In Routledge Handbook of Transportation, pages 88–104. Routledge, 2015.

Robert Bogue. The role of robots in logistics. Industrial Robot: the international journal of robotics
research and application, 51(3):381–386, 2024.

Dustin Carlino, Stephen D Boyles, and Peter Stone. Auction-based autonomous intersection man-
agement. In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC
2013), pages 529–534. IEEE, 2013.

Rohan Chandra, Vrushabh Zinage, Efstathios Bakolas, Peter Stone, and Joydeep Biswas. Deadlock-
free, safe, and decentralized multi-robot navigation in social mini-games via discrete-time control
barrier functions. 2024.

Yuda Chen, Chenghan Wang, Meng Guo, and Zhongkui Li. Multi-robot trajectory planning with
feasibility guarantee and deadlock resolution: An obstacle-dense environment. IEEE Robotics
and Automation Letters, 8(4):2197–2204, 2023.

Shreyansh Daftry, J Andrew Bagnell, and Martial Hebert. Learning transferable policies for monoc-
ular reactive mav control. In 2016 International Symposium on Experimental Robotics, pages
3–11. Springer, 2017.

Bolei Di and Andrew Lamperski. Differential dynamic programming for nonlinear dynamic games.
arXiv preprint arXiv:1809.08302, 2018.

David Fridovich-Keil, Ellis Ratner, Lasse Peters, Anca D Dragan, and Claire J Tomlin. Efficient iter-
ative linear-quadratic approximations for nonlinear multi-player general-sum differential games.
In 2020 IEEE international conference on robotics and automation (ICRA), pages 1475–1481.
IEEE, 2020.

Kunal Garg, Songyuan Zhang, Jacob Arkin, and Chuchu Fan. Foundation models to the rescue:
Deadlock resolution in connected multi-robot systems, 2024. URL https://arxiv.org/
abs/2404.06413.

Jaskaran Grover, Changliu Liu, and Katia Sycara. The before, during, and after of multi-robot
deadlock. The International Journal of Robotics Research, 42(6):317–336, 2023.

Jianhua Guo, Zhihao Xie, Ming Liu, Zhiyuan Dai, Yu Jiang, Jinqiu Guo, and Dong Xie. Spatio-
temporal joint optimization-based trajectory planning method for autonomous vehicles in com-
plex urban environments. Sensors, 24(14):4685, 2024.

Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
observable stochastic games. In AAAI, volume 4, pages 709–715, 2004.

Ahmed Hussein, Eyad Elyan, Mohamed Medhat Gaber, and Chrisina Jayne. Deep imitation learning
for 3d navigation tasks. Neural computing and applications, 29:389–404, 2018.

Iou-Jen Liu, Raymond A Yeh, and Alexander G Schwing. Pic: permutation invariant critic for multi-
agent deep reinforcement learning. In Conference on Robot Learning, pages 590–602. PMLR,
2020.

11

https://arxiv.org/abs/2404.06413
https://arxiv.org/abs/2404.06413

GOURU LAKKOJU CHANDRA

Sergio Lucia, Alexandru Tătulea-Codrean, Christian Schoppmeyer, and Sebastian Engell. Rapid de-
velopment of modular and sustainable nonlinear model predictive control solutions. Control En-
gineering Practice, 60:51–62, 2017. ISSN 0967-0661. doi: https://doi.org/10.1016/j.conengprac.
2016.12.009. URL https://www.sciencedirect.com/science/article/pii/
S0967066116302970.

Hang Ma. Graph-based multi-robot path finding and planning. Current Robotics Reports, 3(3):
77–84, 2022.

Katherine Mao, Igor Spasojevic, Malakhi Hopkins, M Ani Hsieh, and Vijay Kumar. Collision-
free time-optimal path parameterization for multi-robot teams. arXiv preprint arXiv:2409.17079,
2024.

Francisco Martinez-Gil, Miguel Lozano, and Fernando Fernández. Multi-agent reinforcement learn-
ing for simulating pedestrian navigation. In Adaptive and Learning Agents: International Work-
shop, ALA 2011, Held at AAMAS 2011, Taipei, Taiwan, May 2, 2011, Revised Selected Papers,
pages 54–69. Springer, 2012.

Matthew McNaughton, Chris Urmson, John M Dolan, and Jin-Woo Lee. Motion planning for
autonomous driving with a conformal spatiotemporal lattice. In 2011 IEEE International Con-
ference on Robotics and Automation, pages 4889–4895. IEEE, 2011.

Negar Mehr, Mingyu Wang, Maulik Bhatt, and Mac Schwager. Maximum-entropy multi-agent
dynamic games: Forward and inverse solutions. IEEE transactions on robotics, 39(3):1801–
1815, 2023.

Pol Mestres, Carlos Nieto-Granda, and Jorge Cortés. Distributed safe navigation of multi-agent
systems using control barrier function-based controllers. IEEE Robotics and Automation Letters,
2024.

Jun Morimoto and Christopher G Atkeson. Minimax differential dynamic programming: An ap-
plication to robust biped walking. In Advances in neural information processing systems, pages
1563–1570, 2003.

Thulasi Mylvaganam, Mario Sassano, and Alessandro Astolfi. A differential game approach to
multi-agent collision avoidance. IEEE Transactions on Automatic Control, 62(8):4229–4235,
2017. doi: 10.1109/TAC.2017.2680602.

Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. Learning safe multi-
agent control with decentralized neural barrier certificates. CoRR, abs/2101.05436, 2021. URL
https://arxiv.org/abs/2101.05436.

Ammar Abdul Ameer Rasheed, Mohammed Najm Abdullah, and Ahmed Sabah Al-Araji. A re-
view of multi-agent mobile robot systems applications. International Journal of Electrical and
Computer Engineering, 12(4):3517–3529, 2022.

Wilko Schwarting, Alexander Pierson, Sertac Karaman, and Daniela Rus. Stochastic dynamic
games in belief space. IEEE Transactions on Robotics, pages 1–16, 2021.

Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The increasing cost tree search for
optimal multi-agent pathfinding. Artificial intelligence, 195:470–495, 2013.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. Conflict-based search for optimal
multi-agent pathfinding. Artificial intelligence, 219:40–66, 2015.

Roni Stern. Multi-agent path finding–an overview. Artificial Intelligence: 5th RAAI Summer School,
Dolgoprudny, Russia, July 4–7, 2019, Tutorial Lectures, pages 96–115, 2019.

12

https://www.sciencedirect.com/science/article/pii/S0967066116302970
https://www.sciencedirect.com/science/article/pii/S0967066116302970
https://arxiv.org/abs/2101.05436

LIVENET

Wenliang Sun, Evangelos A Theodorou, and Panagiotis Tsiotras. Game theoretic continuous time
differential dynamic programming. In 2015 American Control Conference (ACC), pages 5593–
5598. IEEE, 2015.

Wenliang Sun, Evangelos A Theodorou, and Panagiotis Tsiotras. Stochastic game theoretic trajec-
tory optimization in continuous time. In 2016 IEEE 55th Conference on Decision and Control
(CDC), pages 6167–6172. IEEE, 2016.

Nilesh Suriyarachchi, Rohan Chandra, John S Baras, and Dinesh Manocha. Gameopt: Optimal real-
time multi-agent planning and control for dynamic intersections. In 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC), pages 2599–2606. IEEE, 2022.

Li Wang, Aaron D Ames, and Magnus Egerstedt. Safety barrier certificates for collisions-free
multirobot systems. IEEE Transactions on Robotics, 33(3):661–674, 2017.

Mingyu Wang, Zijian Wang, John Talbot, J. Christian Gerdes, and Mac Schwager. Game-theoretic
planning for self-driving cars in multivehicle competitive scenarios. IEEE Transactions on
Robotics, 37(4):1313–1325, 2021a. doi: 10.1109/TRO.2020.3047521.

Mingyu Wang, Zijian Wang, John Talbot, J Christian Gerdes, and Mac Schwager. Game-theoretic
planning for self-driving cars in multivehicle competitive scenarios. IEEE Transactions on
Robotics, 37(4):1313–1325, 2021b.

Wei Xiao and Calin Belta. Control barrier functions for systems with high relative degree. In 2019
IEEE 58th conference on decision and control (CDC), pages 474–479. IEEE, 2019.

Wei Xiao, Tsun-Hsuan Wang, Ramin Hasani, Makram Chahine, Alexander Amini, Xiao Li, and
Daniela Rus. Barriernet: Differentiable control barrier functions for learning of safe robot control.
IEEE Transactions on Robotics, 39(3):2289–2307, 2023.

Chengzhen Yan, Jiahu Qin, Qingchen Liu, Qichao Ma, and Yu Kang. Mapless navigation with
safety-enhanced imitation learning. IEEE Transactions on Industrial Electronics, 70(7):7073–
7081, 2022.

Jun Zeng, Bike Zhang, and Koushil Sreenath. Safety-critical model predictive control with discrete-
time control barrier function. In 2021 American Control Conference (ACC), pages 3882–3889.
IEEE, 2021.

Dingjiang Zhou, Zijian Wang, Saptarshi Bandyopadhyay, and Mac Schwager. Fast, on-line collision
avoidance for dynamic vehicles using buffered voronoi cells. IEEE Robotics and Automation
Letters, 2(2):1047–1054, 2017.

Edward L Zhu, Yvonne R Stürz, Ugo Rosolia, and Francesco Borrelli. Trajectory optimization for
nonlinear multi-agent systems using decentralized learning model predictive control. In 2020
59th IEEE Conference on Decision and Control (CDC), pages 6198–6203. IEEE, 2020.

Hai Zhu, Bruno Brito, and Javier Alonso-Mora. Decentralized probabilistic multi-robot collision
avoidance using buffered uncertainty-aware voronoi cells. CoRR, abs/2201.04012, 2022. URL
https://arxiv.org/abs/2201.04012.

13

https://arxiv.org/abs/2201.04012

	47b75c14-5318-43b2-a919-3c7efdb571a5.pdf
	Introduction
	Related Work
	Simultaneous Safety and Deadlock Resolution Methods
	Other Multi-Robot Navigation Approaches

	Problem Formulation
	LiveNet: Technical Approach
	Multi-Agent Collision Avoidance dCBFs
	Minimally Invasive Deadlock Prevention dCBFs

	Experiments and Results
	Experiment Setup
	Results

	Conclusion

