




 
 

 
 

 

 

 

 

ABSTRACT 
 

The linearized stiffness and damping coefficients of fluid film journal bearings play a key role 

in predicting vibration levels and stability margins in high-performance rotating machinery. The 

need for accurate values of these coefficients grows in importance as higher speeds, higher loads, 

and new operation conditions demand more exact rotordynamic predictions. The subject of this 

study aims to increase the accuracy and relevance of experimentally derived dynamic coefficients 

by covering the three following objectives: 1) propose a new method for improving uncertainty 

estimations for experimentally derived dynamic coefficients, 2) propose a new method for a more 

accurate identification of the dynamic coefficients, and 3) develop a set of design guidelines for a 

test rig capable of meeting the demanding dynamic test conditions relevant to modern industrial 

machinery. 

This dissertation first presents an analysis of uncertainty estimations applicable to dynamic 

coefficients obtained by single-sample single-frequency dynamic tests. The effect of the non-

linearity of the dynamic coefficients on the uncertainty estimated by the Taylor Series Method is 

analyzed, for the first time, and the Monte Carlo Method is presented as a more accurate 

approach to estimating these uncertainties. Results of analyses for these two methods are 

presented and compared to published values from previously reported studies. This dissertation 

also proposes a novel method for converting the random uncertainty in the output of a sensor 

from the time domain to the frequency domain. It is found that this conversion is quite beneficial 

for improving the accuracy of the identified coefficients. In one example, uncertainty estimations 

of ±84% are reduced to just ±6% by using the proposed method. These analyses reveal that 



 
 

 
 

uncertainty estimations from the Taylor Series Method are not entirely reliable without additional 

checks of non-linearity; and that converting the random uncertainty from sensors to the frequency 

domain, by using the novel method here, is useful for achieving smaller uncertainty estimations 

than with traditional methodology. 

Classical techniques to experimentally identify the dynamic coefficients of a fluid film journal 

bearing assume that the dynamic forces and displacements are measured exactly at the midplane 

of the bearing. However, the actual measurements are usually taken at some distance away from 

the bearing (miscollocation). In addition, the flexible behavior of the rotor may be important. As a 

result, a significant error could be included in the identified coefficients if these conditions are not 

considered. Therefore, this dissertation proposes a new method to accurately identify the eight 

dynamic coefficients of fluid film journal bearings by accounting for miscollocation of sensors and 

rotor flexibility. Numerical validation shows the error in the identified coefficients to be less than 

0.001% when the proposed identification method is applied to three different rotor-bearing 

configurations. These configurations included a test bearing floating around a rotor, a rotor floating 

within the clearance of two identical journal bearings, and a rotor floating within two different 

journal bearings. 

Finally, despite many years of measurement and testing, the dynamic characterization of fluid 

film bearings is still a field in progress; and the need for more experimental testing and validation 

under more demanding conditions has produced a demand for new test rigs, particularly those 

with a capacity to reach speeds on the order of 20,000 rpm and test bearings with diameters of 

150 mm and larger. Therefore, this dissertation also develops and presents, for the first time, a 

guideline for researchers and engineers involved in the design of a test rig for the dynamic 

characterization of radial fluid film bearings. This guideline covers the design steps, starting with 

an analysis of the input information provided as industry needs, translating those needs into 

design requirements, next designing and/or selecting the critical components of the rig in order to 

meet the design requirements, and finally verifying the suitability of the design process. The 



 
 

 
 

purpose of this guideline is to inform the test rig design process, such that the designer has a 

directed focus and can make accurate and fast decisions. Recommendations are provided along 

with specific background information for the designer to consider. 
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Chapter 1 
 

 

 

Introduction 
 

Rotating machinery such as centrifugal and reciprocating pumps and compressors, fans, turbines, 

and electric motors and generators have played an important role in the development of industry 

and in general of our society. In most cases, inherent to rotating machinery is the transformation 

of the mechanical energy of a fluid into the rotation and torque of a rotor, or vice versa. The impact 

of this energy transformation is that fluids can be transported in pipelines over long distances, 

and the energy of water or fuels can be transformed to electrical power or the thrust of an airplane. 

The spinning of the rotor plays the role of being the input or output channel in this energy 

transformation. However, the housing of the machinery is static and therefore some important 

machine components are required to connect the rotor and the housing. The bearings are the 

components performing this connection, and they must mechanically support and transmit the 

loads of the rotor and allow its free rotation. Fluid film journal bearings are one type of bearing 

that is especially suited to perform this function in heavy industrial rotating machinery due to an 

ability to support high loads and work at high rotating speeds with lower friction than other types 

of bearings. An important feature of fluid film journal bearings is that their dynamic characteristics 

significantly influence the lateral rotordynamic behavior of the rotor. For any journal bearing, these 

dynamic characteristics can be represented by eight dynamic coefficients, and the accurate 
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determination of these coefficients is critical for performing an accurate rotodynamic analysis. 

This is particularly important given that these coefficients change as a function of the rotating 

speed. The overall goal of this dissertation is to present contributions to enable a more accurate 

experimental determination of the dynamic coefficients of a fluid film journal bearing.  

 

1.1 FLUID FILM JOURNAL BEARINGS 
 

Fluid film journal bearings are the bearings considered in this dissertation and a brief description 

is provided here to highlight the important underlying physics. In these bearings a thin layer of 

viscous lubricant separates the rotor and the pad of the bearing, with no contact between the 

surfaces. This thin layer of viscous lubricant (usually oil) is produced when there is a relative 

motion (ω rotation) and a converging geometry between the rotor and the pad of the bearing. This 

converging geometry is given by the difference between the radius of the bearing RB and the 

radius of the journal RJ, and the result is a small radial clearance. Under these conditions, the 

lubricant is continuously dragged into the clearance volume by a hydrodynamic action that also 

produces a hydrodynamic pressure distribution (Figure 1.1). 

 

Figure 1.1: Bearing Geometry - reproduced from [1] 
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This distribution of hydrodynamic pressure provides the fluid film journal bearing with the capacity 

to support high-magnitude lateral loads (static and dynamic) received by the rotor, while avoiding 

contact between the journal (rotor) and the bearing surface. Additionally, this pressure distribution 

is specific for the dimensions and the geometry of the lubricant film at any instant. Therefore, the 

resultant hydrodynamic force of each pressure distribution is associated with a single radial 

location of the rotor with respect to the bearing, as given by the instantaneous geometry of the 

lubricant film. 

In practical situations, the rotor always experiences some dynamic force, either from the process 

or from uneven mass distributions, and when this situation is combined with the non-linear nature 

of the hydrodynamic force from the bearings, then this creates a complex framework for including 

the hydrodynamic bearing forces in any rotordynamic analyses. 

The standard approach for this situation [2] is to represent the hydrodynamic force of the bearing 

as a first-order Taylor approximation of the instantaneous position and velocity of the center of 

the rotor around the location given by only considering the static forces. Using this approach, the 

following two expressions are obtained for a 2D representation (x and y direction) of the bearing 

force: 𝐹 =  𝐹 + ∆𝑋 +  ∆𝑌 +  ̇ ∆�̇� + ̇ ∆�̇� (1.1) 

𝐹 =  𝐹 + ∆𝑋 +  ∆𝑌 +  ̇ ∆�̇� +  ̇ ∆�̇� (1.2) 

Where Fx and Fy are the components of the bearing force in the x and y directions, Fx0 and Fy0 the 

static components of the bearing force acting in the x and y directions, and ΔX, ΔY, ΔẊ, Δẏ are 

the instantaneous location and velocity of the center of the rotor. 

Now, the eight dynamic coefficients of a fluid film journal bearing can be introduced, such that 

equations (1) and (2) can be expressed as: 𝐹𝐹 =  𝐹𝐹 −  𝐾 𝐾𝐾 𝐾 ∆𝑋∆𝑌 − 𝐶 𝐶𝐶 𝐶 ∆�̇�∆�̇�   (1.3) 
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where the dynamic bearing coefficients, are defined according to table 1: 

 

Stiffness Coefficients Damping Coefficients 

𝐾  =  − 𝜕𝐹𝜕𝑋  𝐶  =  − 𝜕𝐹𝜕�̇�  

𝐾  =  − 𝜕𝐹𝜕𝑌  𝐶  =  − 𝜕𝐹𝜕�̇�  

𝐾  =  − 𝜕𝐹𝜕𝑋  𝐶  =  − 𝜕𝐹𝜕�̇�  

𝐾  =  − 𝜕𝐹𝜕𝑌  𝐶  =  − 𝜕𝐹𝜕�̇�  

Table 1.1: Definition of dynamic coefficients 

Note that four of the dynamic coefficients are defined as the change of the component of the force 

in one direction over the change of the position or velocity in that same direction. They are called 

the direct or main coefficients and include Kxx, Kyy, Cxx, and Cyy. The four remaining dynamic 

coefficients are defined as the change of the force in one direction, over the change of the position 

or velocity in the orthogonal direction. They are called the cross-coupled coefficients and include 

Kxy, Kyx, Cxy, and Cyx. The implication of this is that a change in the position or velocity of the rotor 

does not only produce a fluid film bearing force in the same direction of the change but also in the 

orthogonal direction. 

Equation 1.3 shows that identifying the dynamic coefficients of a fluid film journal bearing has a 

key role in the representation of the bearing forces, and the consequent rotordynamic predictions. 

 

1.2 MOTIVATION 
 

This section provides the motivations for this dissertation work and articulates new contributions 

on the following three specific topics. 
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1.2.1 Motivation for a better understanding of the uncertainty related to experimentally 
obtained dynamic coefficients of fluid film journal bearings 

 

As with any experimental measurement, experimentally obtained dynamic coefficients do not 

reveal the exact, true values of the coefficients, but instead give ranges of results (uncertainty), 

within which the true values of the coefficients are located. Therefore, the user of a rotodynamic 

report should be aware of what uncertainty is associated with the dynamic coefficients, because 

that is affecting the predictions in the report. 

Figure1.2 presents an example of how the uncertainty range of a coefficient could affect the 

predictions of a critical speed in rotating machinery. Figure 1.2 is an undamped critical speed map 

taken from [2], where the thick black lines show the evolution of the undamped critical speeds as 

functions of bearing stiffness. It will be assumed for this example that the true value of the 

stiffness, Kxx or Kyy, is 105 lbf/in, and that the uncertainty associated with the coefficients is 40% 

(red lines), similar to values reported in [3]. 

 

 

Figure 1.2: Effect of the uncertainty on predictions of undamped critical speeds 
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Then, the dashed red lines represent the range of possible true values for the stiffness, and the 

crossing of these red lines with the thick black lines determines the range of the possible 

undamped critical speeds for this rotor-bearing system. The effect of the uncertainty is most 

significant for the first two critical speeds. The first critical speed is predicted to be somewhere 

between 500 and 800 rpm, which is a substantial range. If the desired operating speed is within 

or near this range it would be difficult to know if or what modifications should be introduced to the 

components and in which direction. Therefore, dynamic coefficients with smaller uncertainty 

estimations have a tangible benefit in improving the quality of rotordynamic predictions expected 

by a user. 

 

The previous paragraphs highlight the importance of the following points: 

 

 The data should be processed such that the estimated uncertainty range truly represents the 

behavior of the dynamic coefficients (reliability). This dissertation will present an analysis of 

an existing method that could be providing uncertainty estimations of dynamic coefficients 

with significant inaccuracies. These inaccuracies are the result of a simplifying assumption of 

the method. 

 As higher rotating speeds are demanded, the uncertainty estimations of the dynamic 

coefficients also increase due to increasing the synchronous frequency of the rotation. 

Therefore, it is also important to consider new possibilities in hardware and processing 

techniques to produce smaller uncertainty estimations. Otherwise, the uncertainty may grow 

to a value that the measured coefficients are useless for rotordynamics analyses. This 

dissertation proposes a new method to analyze data, with the benefit that uncertainty 

estimations will be significantly reduced, as compared to previous techniques. 
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1.2.2 Motivation for including the rotor flexibility and the real axial location of 
displacement sensors when identifying the dynamic coefficients of fluid film journal 
bearings 

 

Techniques to experimentally obtain the eight dynamic coefficients of a fluid film journal bearing 

usually relate direct measurements of dynamic displacements (vibration) of the rotor and dynamic 

forces (excitation), acting ideally at the midplane of the bearing, which avoids considering the 

flexibility of the rotor. 

In the past, most industry requirements were focused on low-speed applications, which was 

convenient for dynamic tests in research environments and produced rotating speeds far away 

from the critical speeds and with very little response from the flexibility of the test rotor. These 

speeds combined with short rotors and low loads led to a rigid or quasi-rigid behavior of the rotor 

and the reasonable assumption that the lateral vibration of the rotor was the same along its axial 

length. Therefore, these conditions made irrelevant the axial location of the displacement sensor 

with respect to the midplane of the bearing. 

However, more recent industry requirements for increased rotor speed has inevitably involved 

some degree of flexible behavior of the rotor. Then, it should be important to include within the 

analysis the consideration that displacement sensors are located axially at some distance from 

the center of the bearing and are therefore measuring vibrations with different amplitude and 

phase than the vibrations that occur at the axial center of the bearing. 

Despite the fact that the flexibility of the rotor could have a significant impact on the identification 

of accurate dynamic coefficients, the literature on this topic is very limited. A few approaches that 

consider the flexibility of the rotor have been presented [4,5]; however, their scope of applicability 

is limited and in almost all cases the methods rely on the assumption that the sensors are located 

as close as possible to the midplane of the bearing, such that the difference can be neglected. 

This dissertation proposes a new approach to identify the dynamic coefficients of one or two 

identical or different fluid film journal bearings. This new approach includes the rotor flexibility, as 



8 
 

 
 

well as the non-collocation of the dynamic displacements sensors with respect to the bearing 

midplane. 

 

1.2.3 Motivation for contributing guidelines for the design of a test rig to identify the 
dynamic coefficients of fluid film journal bearings 

 

The dynamic characterization of fluid film journal bearings is a field in continuous progress, 

aligned with the new industry demands in terms of rotating speed, loads, and diameter of the fluid 

film journal bearings. Keeping pace with this progress requires the design and construction of 

new test rigs, updated to the demands of industry and research. 

However, the design of such a test rig is a complex technical task involving: the design and 

selection of several main components, the harmonious integration of the technical and operational 

characteristics of the equipment, and the integration of several engineering disciplines including 

mechanical, electrical, and instrumentation. On top of these complexities, current demands point 

to rigs spinning faster than 15,000 rpm and journal diameters larger than 100 mm, which increases 

the investment to hundreds of thousands of dollars and makes more sensible the integration of 

the components and the dynamic behavior of the rig as a unit. These increased demands in 

speed, size, and power also bring rotodynamic and safety challenges that did not exist with 

smaller rigs; but the most important challenge is perhaps to maintain the ability to produce and 

reliably measure small radial vibrations of less than 12.5 µm to not exceed a safe displacement 

where the bearing force is still validly represented by equation (1.3). 

Despite the technical complexities mentioned above and the increased cost of these rigs, the 

literature provides scant design guidelines and key aspects to consider, for the researcher 

involved in the task of this design. Some researchers have described the rigs they have designed 

or used and, although some descriptions are quite complete, there are many important design 

details that are omitted. Thus, there is room in the literature for a contribution of important 
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guidelines, so that the design work can move faster, more confidently, and with less possibility for 

expensive mistakes. 

 

1.3 DISSERTATION OBJECTIVES 
 

This section presents the following three main objectives of this dissertation, that align with each 

of the main motivations of this study: 

1. The first objective of this dissertation is to analyze the methods to produce uncertainty 

estimations of dynamic coefficients obtained by single-sample, single-frequency dynamic 

tests. One section of the analysis studies why two different methods (the Taylor Series Method 

and the Monte Carlo Method) to estimate the uncertainty of experimentally estimated dynamic 

coefficients produce different uncertainty results, despite using the same data and conditions. 

Assumptions of the Taylor Series Method are analyzed in detail to explain the difference in 

results. Finally, a new method is proposed that, for the same data and conditions, produces 

smaller uncertainty estimations for the dynamic coefficients. 

2. The second objective is to analyze the influence of the miscollocation of the displacement 

sensors with respect to the midplane of the bearing and the flexibility of the test rotor, during 

the identification of the dynamic coefficients of a fluid film journal bearing. As test conditions 

become more demanding, it is important to consider the impact of these conditions in the 

identification method, and to find approaches to include corrections to estimate dynamic 

coefficients closer to the true values. A new method is proposed to identify the eight dynamic 

coefficients of a fluid film journal bearing that accounts for rotor flexibility and non-collocation 

of the displacement sensors with respect to the midplane of the bearings. 

3. The third objective is to present a detailed guideline on how to design a test rig, aimed to 

experimentally estimate the eight dynamic coefficients of a radial tilting-pad bearing. 
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Guidelines are intended to cover test rigs for different rotating speeds and bearing diameters, 

including updated requirements of up to 20,000 rpm and diameters of around 127 mm. 

 

1.4 DISSERTATION STRUCTURE 
 

The remainder of this dissertation is comprised of four chapters. 

Chapter 2 presents a comparative analysis of uncertainty estimations of dynamic coefficients of 

fluid film journal bearings, applied to three different bearing cases, using the Taylor Series Method 

and the Monte Carlo Method. These analyses are applicable to dynamic coefficients obtained by 

techniques in the frequency domain and by single-sample single-frequency tests. The analysis 

includes reasoning to explain the different estimations generated by these two methods. This 

chapter also presents a new approach to estimate the uncertainty for dynamic coefficients which 

produces significantly smaller uncertainty estimations for three considered bearing cases. 

Chapter 3 presents a new approach and method to identify the dynamic coefficients of fluid film 

journal bearings. This new approach includes the flexibility of the test rotor and the dynamic 

displacements measured by sensors located at any axial location with respect to the midplane of 

the bearing. The distinctive feature of this approach is that it eliminates the errors that come with 

assuming the dynamic displacement at the location of the sensors is the same as at the midplane 

of the bearings. Results are presented showing the application of this new approach to a typical 

test configuration of a floating bearing housing with one single test bearing, and to a configuration 

of a floating test rotor supported by two identical or two different fluid film journal bearings. 

Chapter 4 presents a complete guideline on how to design a test rig with capacity to identify the 

eight dynamic coefficients of a fluid film journal bearing. This chapter is subdivided into four 

sections. The first subsection covers background information on the customer needs required to 

start a design process and the technical implications of those needs. The second subsection 

covers the technical process on how to translate the customer needs into technical requirements 
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that will guide the design. The third subsection presents the main components of a test rig and 

the detailed steps to design and select those components. Finally, the fourth subsection presents 

verifications to be performed on the assembled test rig, as the final objective of the design is to 

have a rig working as a single unit and not as isolated individual components. 

Finally, Chapter 5 summarizes the contributions and conclusions of the research work presented 

in this dissertation. 

 

1.5 CONTRIBUTIONS OF THIS DISSERTATION 
 

Chapter 2 presents for the first time an analysis of two existing uncertainty methods applied to 

the experimental determination of dynamic coefficients and performs a comparison of their 

uncertainty estimations. In addition, Chapter 2 also presents for the first time, a new approach to 

analyze the dynamic data during a dynamic test that can lead to considerably smaller uncertainty 

estimations than with the traditional method. Chapter 3 introduces, for the first time, a new 

approach to identify the dynamic coefficients of one or two identical or different fluid film journal 

bearings, including the rotor flexibility and non-collocation of the dynamic displacement sensors 

with respect to the bearing midplane. Chapter 4 presents, for the first time in literature, a complete 

set of guidelines for the design of a test rig to determine the dynamic coefficients of a fluid film 

journal bearing. The design of such a rig is a complex task involving: the design and selection of 

several main components, the harmonious integration of the technical and operational 

characteristics of these components, and the integration of several engineering disciplines 

including mechanical, electrical, and instrumentation. Therefore, the purpose of this last chapter 

is to provide a designer with key background information to reduce complexities and accelerate 

the design process. 
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Chapter 2 
 

 

 

Propagation of Uncertainty in Experimental 
Dynamic Coefficients of Fluid Film Journal 
Bearings 
 

There is a constant demand for heavy rotating machinery such as gas turbines and centrifugal 

compressors to operate at higher rotating speeds and larger loads to achieve better levels of 

performance and efficiency. These new conditions of operation are simultaneously implemented 

with restrictions on the weight and size of some components, putting more pressure on the 

rotordynamic design. A rotordynamic design should include the characteristics of the bearing 

components, in addition to the characteristics of the rotor, and bearings usually play a key role in 

defining this rotordynamic behavior [1, 6]. 

Fluid film bearings are widely used in heavy rotating machinery due to special features, such 

as high load capacities, long life, and favorable influence on the rotordynamic behavior from 

significant amounts of damping [7]. These bearings are typically represented in rotordynamic 

analyses by eight linearized dynamic coefficients: four represent the stiffness properties, and four 

represent the damping properties [8, 9]. 

The dynamic coefficients are not directly measured. Instead, they are usually obtained by 

measurements of applied force excitations and the subsequent rotor response [10]. Unfortunately, 
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these measurements will never reveal real or true values, no matter how accurate the instruments 

are, due to sources of experimental uncertainty, such as: calibration variations, electromagnetic 

noise, and temperature variations, among others. The consequence of this is that the 

experimenter obtains dynamic coefficients within a range that contains the true values, but without 

being able to precisely determine the true values. This range is defined, in rigorous terms, as the 

uncertainty of a measurement or the uncertainty related to a result, and it could be determined by 

statistical sampling and/or by performing an uncertainty analysis. The purpose of this study is to 

analytically estimate the uncertainty applicable to experimental single-sample (sample size =1) 

single-frequency (only one excitation frequency) dynamic coefficients, obtained by techniques in 

the frequency domain. The uncertainty estimations to be presented will be obtained by 

propagating the random uncertainty of the displacement and force measurements. 

Kostrzewsky and Flack [11] developed the first method to propagate the uncertainty in the 

measured dynamic displacements and forces, leading to an analytical estimation of the 

uncertainty in experimentally obtained dynamic coefficients. This method is applicable to single-

sample dynamic coefficients, obtained by the application of single-frequency harmonic 

excitations. The core of this method is based on the general guidelines by Kline and McClintock 

[12], or referred by others as the Taylor Series Method (TSM), because this expansion is the core 

mathematical approach. Partial derivatives providing the amount of change in the dynamic 

coefficients by unitary changes in displacements are calculated numerically in [11], due to the 

lack of a standard analytical formula. This method was applied to the eight experimentally 

obtained dynamic coefficients for a three-lobe test bearing operating at 2,500 rpm. Estimated 

uncertainty for the stiffness coefficients was around 3%, and around 25% for the damping 

coefficients. 

The dynamic coefficients of a 70 mm diameter tilting-pad bearing were experimentally 

obtained by Wygant et al [3], and the uncertainty was estimated using the method developed in 

[11]. Measurements were taken of the dynamic excitation force and the dynamic displacement of 



14 
 

 
 

the floating test bearing, while the velocity and acceleration of the test bearing were found 

analytically as the first and second derivative of the displacement. Random uncertainties were 

applied and propagated for the magnitude of the dynamic displacement of the test bearing and 

the magnitude of the excitation force. Reported uncertainties for the main stiffness coefficients 

were in the range from 5 to 82%, and for the main damping coefficients from 7 to 92%. Cross-

coupled coefficients presented considerable larger uncertainties. 

An alternate method for the computation of experimentally obtained dynamic coefficients was 

developed and presented by Rouvas et al [13]. This method relies on the averaging of signals, in 

the frequency domain by using Power Spectrum Density (PSD) formulations, to reduce noise and 

provide more accurate coefficients. Moreover, when this method is applied to multi-sample tests 

obtained by the application of multi-frequency harmonic forces, the uncertainty on the coefficients 

can be estimated using the analysis in [14]. 

More recently, an uncertainty quantification on the numerical modeling of a 40 mm diameter 

tilting-pad bearing spinning at 4,200 rpm was performed by Pereira and Nicoletti [15]. This study 

implemented the Monte Carlo method to propagate some expected uncertainty in the bearing 

clearance and find and envelope of results for the dynamic coefficients. This envelope of results 

is then statistically analyzed to find the probability of failure of the bearing with respect to certain 

reference situations. 

Barsanti et al. [16] presented a novel uncertainty analysis for dynamic coefficients, that 

combines a statistical sampling (multi-sample test) with a statistical technique called Bootstrap to 

find the confidence intervals of the obtained dynamic coefficients. A particular feature of this 

proposed analysis is that the confidence interval is not dependent on the distribution of the 

population, contrary to the Monte Carlo method. 

Based on the above studies, there has been over the last 30 years, an increased awareness 

of the importance of estimating and reporting the uncertainty when obtaining experimental 

dynamic coefficients. Two uncertainty methods (TSM and PSD) have practically dominated the 
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field, and basically no upgrades or reviews have been made of them, since these methods were 

proposed. In particular, the method in [11] was developed with the implicit assumption of a linear 

behavior of the dynamic coefficients with respect to the measured variables. However, to our 

knowledge no rigorous validation of this assumption has been performed, and its impact on 

uncertainty estimations is not clear. Conversely, alternate techniques, such as the Monte Carlo 

Method (MCM) can be easily applied now, due to modern computers, and no simplifying 

assumptions are required to perform the uncertainty estimations. Finally, the method in [11] has 

also propagated the random uncertainty of the transducers in the time domain, which could be 

producing larger uncertainty estimations, as compared to other methods. Therefore, this study 

also explores the use of an analytical conversion to the frequency domain as a means of reducing 

uncertainty estimations of the dynamic coefficients. 

Reliable uncertainty estimations in experimental dynamic coefficients are required for the 

purpose of validating dynamic coefficients from bearing codes. Kocur et al. [17] conducted a 

survey, providing a rotor model and the geometry of a 5-pad tilting pad bearing, to industrial users, 

vendors of rotating equipment, consultants, and educators, in order to compare their analytical 

predictions of the dynamic coefficients. This survey showed variations in dynamic coefficient 

predictions of up to 1,000%, highlighting the need of a reliable validation. 

The purpose of this study is to present an analysis of the available methods to determine the 

uncertainty of single-sample experimental dynamic coefficients, when excited by the application 

of single-frequency harmonic forces. More specifically, this study addresses the following three 

aspects: 

 

1. Most often, the uncertainty of single-sample dynamic coefficients has been determined using 

the TSM [3, 11, 18, 19], based on linear assumptions; however, dynamic coefficients could 

exhibit a non-linear response. The analysis presented here is the first effort to quantify the 

error in the uncertainty estimations due to the linear assumption of the TSM. Additionally, the 
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non-linearities could be reflected as asymmetric rather than the symmetric uncertainty that 

the TSM produces. 

2. The second part of this study presents the Monte Carlo Method (MCM) and its use as a 

validation tool to confirm the findings of the previous analysis and to quantify how the non-

linearities might impact the uncertainty estimations by the TSM. The MCM is applied without 

any assumption or simplification in the identification of the coefficients, in order to obtain a 

more faithful representation of the uncertainty behavior during real tests. 

3. Finally, the uncertainty of single-sample dynamic coefficients has traditionally been 

determined by propagating the random error of the measurements in the time domain. 

However, this study proposes a novel method that converts that random error from the time 

domain to the frequency domain. This method shows a reduced spread of measurements in 

the frequency domain, which, as will be discussed, significantly reduces the uncertainty 

estimations. 

 

This chapter has the following structure: first a method section that includes some uncertainty 

concepts and the framework for the replicated hardware and identification model used in this 

study; second, an analysis section showing the non-linear behavior of coefficients and its impact 

on the TSM, simulations with the MCM, and details of an analytical method to convert random 

uncertainty from the time domain to the frequency domain; third a section with results comparing 

the different analyses; and finally a conclusion section discusses the significant findings. 

To our knowledge, this study presents the first analysis that shows the effect of non-linear 

behavior of dynamic coefficients on the uncertainties estimated by the TSM. The quantification of 

these effects is obtained by propagating the uncertainties with a MCM in the identification model 

for the dynamic coefficients, without any simplifying assumption. Additionally, a novel analytical 

method is proposed to transform random uncertainty from the time domain to the frequency 

domain, leading to smaller uncertainties for dynamic coefficients in single-sample tests. 
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2.1 METHOD FOR THE ANALYSIS 

 

This section has three primary objectives: to provide a brief description of useful concepts on 

measurement uncertainty, to describe the three bearing cases used for the uncertainty analyses 

in this study, and to describe the mathematical model to estimate the uncertainties in the dynamic 

coefficients when using the MCM. 

 
2.1.1 Uncertainty 

 
The objective of performing a measurement is to obtain the true value of a measurand. 

However, in real situations there is always a source of error that is out of the control of or unknown 

to the experimenter, such that the true value is not perfectly measured. Therefore, a well-

conceived experiment must also estimate the limits within which the true value is located; for 

example, the range of results for a large population is an indication of this uncertainty. A 

quantitative indication of the uncertainty is important, because it allows the target audience to 

know the reliability of the measurement and to compare measurements from different sources or 

obtained under different conditions. 

Traditionally, measurements errors have been classified in two categories: systematic and 

random [20, 21]. A systematic error is any error that remains constant if measurements are 

repeated during the same test. Thus, gathering additional test data will not help to identify them. 

Some examples of systematic errors are: imperfect calibrations, biased reduction models, and 

environmental conditions. 

A random error is any error that varies randomly during a test and produces scatter in the 

measurements. Electrical noise is a typical cause of random error in sensors or transducers. This 

electrical noise is reflected as a random behavior in the sensor’s output with the important 

consequence that the output of a sensor cannot be known more reliably than the amount of this 

noise. When this electrical noise is translated into the output units of the sensor it is called 
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resolution. The resolution of displacement and force sensors is typically one of the main causes 

of uncertainty propagating to the dynamic coefficients. 

 
2.1.2 Bearing cases for the uncertainty analyses 

 
Three different bearing cases, selected from a set of bearings tested in [3], are subject to 

uncertainty analyses and estimations presented in this chapter. 

The bearings in [3] were preloaded 5-pad tilting pad bearings and were tested at 900, 1,650, 

and 2,250 rpm, with speed/load conditions producing Sommerfeld numbers from 0.1 to 2.0. 

Dynamic loads were not specifically detailed. However, it was reported that typical forced orbits 

were 25 μm peak to peak (pk-pk). Based on this information, the three bearing cases were 

selected with bearing parameters and operating and test conditions, as shown in table 2.1. Cases 

1 and 2 have forced orbits of around 25 μm as reported in [3], while case 3 replicates case 1, but 

limits the dynamic load to 500 N. The force limit in case 3 was implemented due to test rig 

specifications reported in [22]. 

 

 Case 1 Case 2 Case 3 
Journal Dia. 70 mm 70 mm 70 mm 
L/D ratio 0.75 0.75 0.75 
Offset 0.5 0.5 0.5 
Cb 78 μm 78 μm 78 μm 
Preload 0.3 0.3 0.3 
Pad Thickness 12.7 mm 12.7 mm 12.7 mm 
Speed 900 rpm 2,250 rpm 900 rpm 
Static Load 1,000 N 550 N 1,000 N 
Sommerfeld 0.2 0.9 0.2 
Amplitude Oscillation 12.7 μm 0-Pk 12.7 μm 0-Pk Given by 500 N 
Lubricant ISO VG 32 
Viscosity at 40° C 0.0256 N.s/m2 

Viscosity at 55° C 0.0157 N.s/m2 
Oil Inlet Temperature 51.1 ± 0.7° C 

Table 2.1: Parameters for bearing cases 

 

The test rig configuration in [3] is shown in figure 2.1 and modeled for the uncertainty analyses 

as composed of a rotor with a nominal diameter of 70 mm, supported by two precision ball 
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bearings with a gap of 209 mm. The test bearing was mounted in a floating bearing housing and 

dynamically excited by two orthogonal external shakers. Two force transducers measured the 

applied dynamic excitation and eddy current probes measured the relative displacement between 

the housing and the rotor, in the x and y directions. More specific details of the test rig are found 

in [22]. 

Uncertainty analyses in this chapter apply only random uncertainties to amplitude and phase 

of dynamic displacements and forces, with values given in table 2.2 for a 97,5% confidence 

interval. Values of uncertainty in amplitude replicate the same values in [3], while the value of 

uncertainty in phase was taken from a study in [11] operating the same test rig. Therefore, 

uncertainty estimations in [3] are the comparison line for all the uncertainty estimations in this 

study. 

 

 

Figure 2.1: Test rig configuration 

 
Variable Measurement Uncertainty 

Magnitude of Dynamic Force ± 0.45 [N] 
Magnitude of Dynamic Displacement ± 2.5 [μm] 

Phase Angle ± 1.0 [degrees] 
Table 2.2: Measurement Uncertainty Levels 

 

2.1.3 The model to estimate uncertainties in the dynamic coefficients 
 
The uncertainty analyses presented in this chapter are performed by two different methods: 

the TSM and the MCM. However, both methods will require the use of a mathematical model that 
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relates the dynamic displacements and forces with the bearing dynamic coefficients. This section 

describes the 2-D mathematical model used in this chapter. 

Considering the orbits to be analyzed are less than 20% of the diametral clearance, the 

dynamic bearing forces are modeled by the eight linearized dynamic coefficients corresponding 

to the particular bearing, static load and speed being analyzed. The following equation of motion 

(EOM) is obtained: 𝑀 00 𝑀 �̇̈��̈� + 𝐶 𝐶𝐶 𝐶 �̇��̇� + 𝐾 𝐾𝐾 𝐾 𝑥𝑦 = 𝑓𝑓 ..  (2.1) 

In this equation, fX and fY are the forces applied by the orthogonal external shakers to the 

floating bearing housing, and Mh is the mass corresponding to this bearing housing. x and y are 

the small orthogonal dynamic relative displacements between the bearing housing and the rotor 

induced by fX and fY; while ẋ and ẏ are the velocities corresponding to these relative 

displacements, and ẍ and �̈� are the related accelerations. 

One additional consideration for the model is that fX and fY are single-frequency harmonic 

excitations, which can be expressed in complex notation as, 𝑓 (𝑡)  =  𝑅𝑒[𝐹 𝑒 ( ∅ )]   (2.2) 𝑓 (𝑡)  =  𝑅𝑒[𝐹 𝑒 ( ∅ )]   (2.3) 

where ω is the excitation frequency and is synchronous with the rotating speed of the rotor, 

as reported in [3]. Variables φX and φY represent the phase lag angles of the excitations, with 

respect to a certain reference, for example a keyway. The response of the system to the 

excitations are the dynamic displacements x and y, hence, they can also be represented in 

complex notation as, 𝑥(𝑡)  =  𝑅𝑒[𝑋𝑒 ( )]   (2.4) 𝑦(𝑡)  =  𝑅𝑒[𝑌𝑒 ( )]   (2.5) 

where βX and βY are the phase lag angles related to x(t) and y(t). 
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Velocity and acceleration can be expressed as time derivatives of (4) and (5), and substitution 

in (1) leads to: (𝐾  − 𝑀 𝜔 ) + 𝑖𝜔𝐶 𝐾 + 𝑖𝜔𝐶𝐾 + 𝑖𝜔𝐶 (𝐾  − 𝑀 𝜔 ) + 𝑖𝜔𝐶 𝑋𝑒 ( )𝑌𝑒 ( ) = 𝐹 𝑒 ( ∅ )𝐹 𝑒 ( ∅ )  (2.6) 

During a test the magnitude and phase of dynamic forces and dynamic displacements are 

measured, and with this data the eight dynamic coefficients are calculated. However, two 

independent rounds of forces and displacements are required, and equation (2.6) is expanded 

and terms rearranged, to include both rounds of measurements, in the following form, (𝐾  − 𝑀 𝜔 ) + 𝑖𝜔𝐶 𝐾 + 𝑖𝜔𝐶𝐾 + 𝑖𝜔𝐶 (𝐾  − 𝑀 𝜔 ) + 𝑖𝜔𝐶 = 𝐹 𝐹𝐹 𝐹 𝑋 𝑋𝑌 𝑌     (2.7) 

All forces and displacements on the righthand side of (2.7) are complex numbers, exactly as 

they were on equation (2.6). However, in (2.7) they are written in a simplified way, and the indices 

1 and 2 refer to the first and second rounds of measurements.  

The approach in this chapter for the uncertainty analyses followed the next steps: 

 

1. For each bearing case in table 2.1 numerical dynamic coefficients are found by using 

MAXBRG [23], which is an industry-standard finite element computer code for performing 

steady state thermo-elasto-hydrodynamic (TEHD) analysis of tilting-pad bearings. These 

dynamic coefficients are cited as the “reference” coefficients throughout this chapter. 

2. With the dynamic coefficients from step 1 and utilizing equation (2.6), dynamic excitations 

are entered to produce forced dynamic orbits with amplitudes of around 25 μm peak to 

peak, as reported in [3]. Two rounds of dynamic excitations and orbits are produced, and 

they will be cited as the “reference” dynamic forces and displacements for subsequent 

sections of this chapter. 

3. By using equation (2.7) and the “reference” values of dynamic forces and displacements, 

then partial derivatives can be calculated for the TSM, or random or specific values of 
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uncertainty in force and/or displacement can be applied to the reference values to produce 

“errored” dynamic coefficients (MCM). 

 

2.2 UNCERTAINTY ANALYSIS 
 

This section covers the three main objectives of this chapter that were explained in the 

introduction section. This section first explains the TSM and performs an analysis of the non-linear 

behavior of uncertainty of dynamic coefficients. It also explains why this behavior could affect the 

uncertainty estimations generated by this method. In the second place, this section implements a 

MCM to find uncertainties for dynamic coefficients. Finally, an analysis is presented to analytically 

transform random uncertainty of instruments to the frequency domain. It is shown that random 

uncertainties are significantly smaller in the frequency domain than in the time domain, so this 

transformation is useful to produce refined uncertainty estimations for the dynamic coefficients. 

The calculations for the analyses were developed and implemented in Matlab. 

 
2.2.1 The Taylor Series Method and analysis on linearity of uncertainty in dynamic 

coefficients. 
 

The Taylor Series Method (TSM) is a method aimed at estimating the uncertainty in a result 

r, when r is a function of J experimentally measured variables, Vi, as expressed in equation (2.8). 

When the uncertainty of these variables is known and expressed as ui, the uncertainty in the result 

r, expressed as ur, is treated as a propagation of the uncertainty of the variables and the value 

can be estimated with equation (2.9), as instructed in [11, 12]. Detailed explanations and 

background for this method are covered in [20]. 

The TSM has been a preferred method to estimate uncertainties of dynamic coefficients. This 

section will present an analysis on the relevance of some important features of the method. 

 𝑟 =  𝑟(𝑉 , 𝑉 , . . . , 𝑉 )   (2.8) 
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𝑢  =  𝑢  + 𝑢  + . . . + 𝑢   (2.9) 

 

The level of accuracy of the uncertainty estimation provided by equation (2.9) will depend on 

how strictly the following conditions are fulfilled: 

 

1. The experimental result r should be a linear function of the variables Vi 

2. The uncertainty in each one of the Vi variables should be completely independent from 

the others. 

 

According to equation (2.7), any dynamic coefficient in this chapter, whether stiffness or 

damping, could be expressed as a general mathematical function of the following variables, 𝑓 =  𝑓(𝐹 , 𝐹 , 𝐹 , 𝐹 , 𝑋 , 𝑋 , 𝑌 , 𝑌  , 𝑀 )  (2.10) 

and it can be seen from equations (2.8), (2.9), and (2.10) that the uncertainty related to each 

dynamic coefficient is a result of the propagation of the uncertainty in the dynamic forces and 

displacements, and the mass of the housing. However, one assumption in this study is that the 

true mass of the housing is known, so it does not contribute to the uncertainty of the coefficients. 

Equation (2.9), assuming the linearity of the coefficients, has been a common method used 

by researchers to determine the uncertainty in single-sample dynamic coefficients [3, 11, 18, 19, 

24, 25]. However, no study has analyzed if this linearity assumption is having a relevant impact 

on the uncertainty estimations by equation (2.9), considering the non-linearity of dynamic 

coefficients [26]. This study performs, for the first time, an analysis of this specific topic on the 

particular bearing cases in table 2.1, with the aim of establishing how reliable the uncertainty 

estimations in dynamic coefficients are for these bearing cases, when estimated by the TSM, 

under the linear assumption. 
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The variation in the value of a dynamic coefficient around a set point, defined as δf, can be 

determined as a function of the variation in all the individual variables of equation (2.10), defined 

as δVi, by using a Taylor Series Expansion, as expressed in equation (2.11). One important 

remark about the Taylor expansion written here is that it only includes first and second order 

partial derivative terms, for the sake of simplicity, but that does not mean that significant higher 

order terms do not exist. 𝛿𝑓 =  ∑ 𝛿𝑉 + ∑ ∑ . ( )! +. ..  (2.11) 

If the uncertainty for each dynamic coefficient (δf) is as a quasi-linear function of the random 

uncertainty of dynamic forces and displacements, when each δVi is substituted by the values of 

uncertainty in table 2.2, then a predominant relative weight of first order related terms would be 

expected in the Taylor Series Expansion. The relative weight of second or higher order terms 

should be zero or very small when compared to individual first order terms. The relative weight of 

each component of the Taylor expansion is found by dividing equation (2.11) by the reference or 

initial value of each coefficient provided by MAXBRG. For example, for stiffness Kyy, it would lead 

to the following expression,  =  ∑ + ∑ ∑ . ( )  .  ! +. ..  (2.12) 

Derivatives for equation (2.12) are calculated around the ‘reference’ coefficients, forces, and 

displacements, by applying centered finite differences methods in equation (2.7). 

Figure 2.2 shows the uncertainty of the main dynamic coefficients, for bearing cases in table 

2.1, when random uncertainties of 2.5 μm are applied to dynamic displacements X1 and Y2. Figure 

2.2 also shows the uncertainty as contributed by first order or second order direct terms of 

equation (2.12), in order to better evaluate if the uncertainty is behaving linearly. Contribution of 

other variables (Fx1, Fx2, Fy1, Fy2, X2, Y1) to the uncertainty of the coefficient was calculated to be 

less than 0.3%, and for this reason it is not shown in figure 2.2. 
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Figure 2.2: Uncertainty of dynamic coefficients evaluated as a Taylor Series Expansion 

 

Figure 2.2 shows that second order terms have noticeable weight over the uncertainty of the 

coefficients. For example, figure 2.2b shows that for bearing case 2 the relative impact of the 

second order terms due to the uncertainty in X1 is 3.89%, which is around 20% (3.89/19.73) of 

the relative impact of the first order terms. For three bearing cases, the impact of second order 

terms can be quantified from around 18% to 45% of the variation of the most significant first order 

term for each coefficient. These numbers indicate the non-linear behavior of uncertainty, for the 

analyzed cases, and therefore that the linear uncertainty estimations provided by the TSM will not 

have the best level of accuracy. As a rough approximation, the TSM is underpredicting or 

overpredicting the uncertainty by the relative percentage of variation associated with the second 

order term. 

The non-linearity of the dynamic coefficients is affecting the accuracy of the uncertainty 

estimation provided by the TSM, and it may also have the additional consequence of violating the 

symmetric behavior assumed by the TSM. Equation (2.9) estimates the uncertainty ur in a result 

r, but in reality, the TSM is predicting that the uncertainty is ±ur, due to the symmetric behavior of 

linear functions. Therefore, the second step in the analysis is to evaluate whether the non-linearity 
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of the coefficients produces an asymmetric behavior of the uncertainty, that is not captured by the 

TSM. 

The symmetric or asymmetric behavior of the uncertainty is evaluated by applying individual 

positive and negative identical variations to each one of “reference” values of the variables in 

equation (2.10) and then finding the variation produced in each one of the dynamic coefficients. 

The mathematical model for this evaluation is equation (2.7). A symmetric behavior will produce 

approximately the same absolute variation in the coefficient for a positive or negative variation of 

the same size in the same variable. 

Tables 2.3 and 2.4 show the variation in the main coefficients when ±2.5 μm variations are 

applied to the amplitudes of X1 and Y2. For example, the variation of Kyy (bearing case 1) is 16.4% 

(ΔKyy/Kyy), when a variation of +2.5 μm is applied to Y2. Meanwhile, when the applied variation to 

Y2 is -2.5 μm, the variation of Kyy is 24.5%. The different variation of the coefficients, depending 

on the sign of the variation applied to the variables, clearly suggests an asymmetric behavior of 

the uncertainty, which constitutes another source of inaccuracy for the uncertainty estimations 

provided by the TSM. 

 

  Relative Variation of Coefficient [%] 
 Bearing Case Variation to X1:-2.5 μm Variation to X1:+2.5 μm 

Kxx 
1 22.28 -15.15 
2 19.47 -13.06 
3 22.28 -15.15 

Cxx 
1 23.53 -16.00 
2 24.57 -16.48 
3 23.53 -16.00 

Table 2.3: Asymmetric response of uncertainty of Kxx and Cxx 

The analysis performed in this section reveals the non-linearity and asymmetric behavior of 

the uncertainty for the specific conditions analyzed here, but more importantly it highlights the 

Taylor Series Method could fail to provide reliable uncertainty estimations for dynamic 

coefficients, due to its linear assumption. This finding cannot be generalized to all conditions, 
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nonetheless, it should be interpreted as a warning that additional verifications of linearity and 

symmetry should be considered when using the TSM to estimate uncertainty. 

 

  Relative Variation of Coefficient [%] 
 Bearing Case Variation to Y2:-2.5 μm Variation to Y2:+2.5 μm 

Kyy 
1 24.48 -16.41 
2 22.40 -15.08 
3 82.73 -31.09 

Cyy 
1 24.57 -16.47 
2 24.25 -16.33 
3 83.04 -31.21 

Table 2.4: Asymmetric response of uncertainty of Kyy and Cyy 

 

2.2.2 The Monte Carlo Method. 
 

The Monte Carlo Method (MCM) is a statistical technique predicting the possible outcomes in 

a situation, when the inputs to this situation are comprised of random processes with known or 

assumed probability density functions. The simulation of a random process was a powerful, but 

inefficient technique requiring significant computational time. One of the first applications of this 

method is traced to ENIAC (Electronic Numerical Integrator and Computer) and the prediction of 

nuclear processes at the end of the 1940’s [27]. For some time, this method was restricted to 

exceptional situations and research groups with access to state-of-the-art computers. Now, with 

the widespread availability of affordable and high-performance computers, the MCM has become 

more popular and accessible due to its power [28]. 

The MCM can be applied to uncertainty analyses as the random errors in the measurements 

are treated as the inputs, and the MCM will provide a distribution of possibles outcomes for the 

dynamic coefficients, from which the uncertainty range is obtained. The numerical analysis with 

the MCM creates a population of n different situations when n different random errors are applied 

to the readings of the instruments. By applying this n combinations to the identification model in 

equation (2.7) a set of n dynamic coefficients is produced, despite the true dynamic coefficients 
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are constant. Therefore, by propagating the random uncertainty of the instruments, the random 

uncertainty of the coefficients is estimated. 

Despite the simplicity of the MCM and that the steps can be implemented with the assistance 

of many widely available math simulation/programming software codes, it has been a method with 

little usage to estimate uncertainties for experimental dynamic coefficients. The main features of 

the MCM when applied to uncertainty estimations in experimental dynamic coefficients are the 

following: 

 

1. There is no need of simplifying assumptions to estimate the uncertainties because the MCM 

is not relying on a single result. The MCM is generating possible results for the dynamic 

coefficients, based on using random possibilities, within the programmed limits. 

2. The Monte Carlo simulation is especially well-suited to represent the random behavior of 

sensor output, and additionally the user may program any frequency distribution or shape 

for any input variable. Therefore, the simulation can provide a closer similarity to the 

expected behavior of the sensors during a test. 

3. The Monte Carlo simulation runs as many random cases as the user considers necessary, 

providing the same number of results. Consequently, the user can analyze a histogram of 

uncertainty rather than a single value. 

 

The uncertainty in the amplitude and phase of the dynamic displacements and forces will be 

represented as gaussian distributions because the analysis in [10] showed the results by the TSM 

are best suited to represent the propagation of uncertainties with these distributions. The mean 

of the distribution will be assigned to the “reference” values of displacements and forces, while 

the uncertainty values in table 2.2 will be assigned as 2.24 times the standard deviation, to 

replicate confidence intervals of 97.5% as reported in [3]. Figure 2.3 shows the applied steps by 

this analysis, in Matlab, to propagate the random error (simulated by the random generator 
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functions in Matlab) of the dynamic forces and displacements and find the uncertainty estimations 

for the dynamic coefficients. The selected number of simulations was 1,000,000 and the 

acceptance criteria was that for five simulation processes the upper and lower limits of the 

confidence interval (97.5%) had to be within ±1% of their average. 

 

 

Figure 2.3: Flowchart for uncertainty estimations by the MCM 

 

Figures 2.4, 2.5, and 2.6 presents the histogram of the main coefficients, for the three bearing 

cases in table 2.1, when uncertainty is estimated by the MCM. All histograms are asymmetric, 

confirming the finding in the previous analysis. For example, the asymmetric uncertainty 

estimated by the MCM for Kyy -bearings case 1 (figure 2.4b) is 16.5% to the left of the “reference” 

coefficient, and 24.6% to the right; while the symmetric uncertainty estimated by the TSM is 20%. 

The difference in the estimations is nearly identical to that previously attributed to the missing 

higher-order terms (3.8%) not included in the TSM. 
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Figure 2.4: Histogram of main coefficients, for bearing case3, by the MCM 

 

 

Figure 2.5: Histogram of main coefficients, for bearing case 2, by the MCM 
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Figure 2.6: Histogram of main coefficients, for bearing case3, by the MCM 

 

2.2.3 Random uncertainty of instruments in the frequency domain. 
 

Previous uncertainty estimations of single-sample single-frequency dynamic coefficients [3, 

11, 18, 19] have applied the resolution of the sensors as the random uncertainty to be propagated. 

However, the magnitudes of resolution provided by the sensors’ manufacturers are in the time 

domain, and no consideration has been given to the fact that random uncertainty of the 

instruments (in the time domain) is propagated over data in the frequency domain. This section 

presents an analysis in which the random uncertainty of the instruments is first propagated in the 

time domain, and later transformed to the frequency domain, which is more realistic. Results will 

also show this analysis has the feature of producing significantly smaller uncertainty estimations 

for the dynamic coefficients. 

The data from dynamic displacements and forces is collected in the time domain at equal 

intervals of time, and this is known as the sampling rate or frequency, for example 1,000 

samples/sec. Once data is collected, it will be processed in order to facilitate the analysis, and 
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one of these processes is the Digital Fourier Transform (DFT), which converts the time domain 

(amplitude vs time) data into a frequency domain (amplitude vs frequency) spectrum. 

The data of an ideal harmonic displacement, with a frequency of 15 hertz and an amplitude 

12.5 μm, captured by an ideal displacement sensor, with no electrical noise, at a sampling rate of 

1,000 samples/sec, would look, in the time domain, as shown in figure 2.7a. Nonetheless, the real 

situation is that the random uncertainty of the sensor produces uncertain measurements within 

the area indicated by the bars in figure 2.7b, despite the physical signal could be perfectly 

harmonic. The final result is that the obtained measurements could display innumerable random 

variations of the signal, within the area by the bars, given by the random error of the instrument 

at each reading. Now, if the set of data from figure 2.7a and a set of data from figure 2.7b are 

processed by a DFT, they look, in the frequency domain, as shown in figure 2.8. It can be seen 

that the DFT, for the ideal set of data (on the left side), is identifying that at 15 Hz the amplitude 

is exactly 12.5 μm (100% reliability); and surprisingly, the DFT is identifying, for the real set of 

data (on the right side), an amplitude of 12.49 μm (99.9 % reliability), despite the fact that each 

data point was corrupted in the time domain with a random gaussian error of ±2.5 μm (±20% or 

more of the true displacement!). 

 

 

Figure 2.7: Harmonic signal measured by an ideal sensor vs a real sensor 
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Figure 2.8: Spectrum for a noise-free and a noisy harmonic signal 

 

Transforming an uncertainty of 20% of the reference signal into 0.1%, by converting data from 

the time to the frequency domain, is a promising result. Random processes can usually be 

characterized by their average and associated statistical uncertainties, and then the focus of this 

analysis will be to find the uncertainty of amplitude in the frequency domain, of all random signal 

to be measured, within the random error bars in figure 2.7b. 

Before entering into the proposed method some particular details of the DFT will be briefly 

explained. The DFT is a discrete process, as its name says, and it performs the calculations with 

a limited amount of data points, corresponding to a limited amount of time T (time period), as 

selected. This T is important for the analysis in two ways: 

 

 The general case is that T includes a non-integer number of cycles of the harmonic signal 

under analysis, and this requires an additional step of processing; however, by choosing 

T’s that contain exactly an integer number of the cycles the only processing required is 

the DFT; for example, a T of 0.2 secs contains exactly 3 cycles of 15 Hz. This analysis 

has selected only T’s that accommodate an integer number of the cycles in study, in order 

to have the DFT as the only process affecting the domain transformation of the uncertainty. 
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 The DFT is a discrete process and will not provide information about the continuous 

spectrum of frequencies, instead of that, it provides the amplitude at discrete frequencies, 

given by n*(1/T). Therefore, the selection of T is also a tool to influence how accurately 

the DFT calculates the amplitude for a single frequency; for example, the same T of 0.2 

secs means the amplitudes will be calculated at discrete steps of 5 Hz (1/0.2), which is 

adequate when the signal is oscillating at 10 or 15 Hz. In order to avoid further processes, 

this analysis will also select T’s that provide the discrete frequencies in study, that is, 15 

and 37.5 Hz. 

 

Now that conditions for T are determined, the steps of the method to perform the conversion 

to the frequency domain, of the random uncertainty of an instrument measuring a harmonic signal, 

are defined, as follows: 

 

1. Determine, from the test measurement, the amplitude and frequency of the harmonic signal 

to analyze. 

2. Define quantitively the frequency distribution of the uncertainty to be applied to the harmonic 

signal; for example, setting the value of the standard deviation is enough for a gaussian 

distribution. 

3. Determine the sampling rate at which the harmonic signal is being captured, during the test. 

4. Determine the time period T to be analyzed by the DFT. 

5. Calculate the discrete points of the harmonic signal, determined at step 1, at each time 

interval given by the sampling rate, and for the total time period T. The assistance of a math 

software is useful for this and subsequent steps. 

6. Generate individual random values, according to the features determined in step 2, and 

apply each individual value to each individual discrete point calculated in step 5. 

7. Apply the DFT to the data points generated in step 6. 
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8. Collect the amplitude information at the frequency in analysis. 

9. Repeat steps 6, 7, and 8 for as many times as required, until a convergence criterion is 

achieved on the spread of all data collected from step 8. 

 

To exhibit the efficacy and utility of the proposed method, an example signal is analyzed, 

performing the proposed steps. The characteristics to be obtained from steps 1, 2, 3, and 4 are 

defined in table 2.5. Three time periods were chosen in step 4, to evaluate the impact of this 

variable on the uncertainty transformation. 

 

Signal to Analyze 
Signal Amplitude (Step 1) 12.5 μm 
Frequency of Signal (Step 1) 15 Hz 
Uncertainty Distribution (Step2) Gaussian 
Uncertainty Magnitude (Step2) ±2.5 μm 
Standard Deviation (Step2) 1.1160 μm 
Sampling Rate (Step 3) 1000 points/sec 
Time Period (Step 4) 0.2 sec 1 sec 3 sec 

Table 2.5: Features of the simulation to convert data from time to frequency domain 

 

Table 2.6 shows the random process was repeated 1,000 times, for each T, until the σ 

calculated for this population, in the frequency domain, met a convergence criterion of σ±3%. The 

ratio between this converged σ (frequency domain) and the defined σ (time domain) in step 2 of 

the analysis, also shown in table 2.6, indicates that the domain transformation reduced the 

random uncertainty even to 2.6% of the value in the time domain. Therefore, a relevant benefit of 

applying this proposed analysis is that the uncertainty estimations of the experimental dynamic 

coefficients will become smaller than traditionally estimated (applying uncertainty in the time 

domain). 

Additionally, these results indicate that selecting a longer T had an increased benefit in the 

reduction of the uncertainty region in the frequency domain. Even if there is some averaging in 
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the time domain for longer T’s; the fact that a T=0.2 secs, with only 3 cycles of the analyzed signal 

and minimum possibility of averaging, reached an uncertainty ratio of 10% the value in the time 

domain, seems to confirm that most of the reduction is due to the domain transformation. 

 

 Frequency Domain Time Domain Time Period 0.2 sec 1 sec 3 sec 
σ[μm] 0.1131 0.0498 0.0292 1.1160 
Number of Simulations 1000 1000 1000 N.A. 
Convergence Criteria σ ± 3% σ ± 3% σ ± 3% N.A. 
σfreq. domain / σ time domain 0.10 0.04 0.026 1.0 

Table 2.6: Results of converting uncertainty from time to frequency domain (DFT process) 

 

Additional to the domain transformation, some techniques also perform averaging in the 

frequency domain, and it was reported by Burrows and Sahinkaya [29] an enhanced effect of 

signal averaging in the frequency domain, to reject noise. Then, this study also included an 

analysis with signal averaging in the frequency domain. The steps are as already proposed in this 

chapter, with the only difference that in step 7 a Power Spectral Density (PSD) with averaging 

blocks, as defined in [30], is applied, instead of the DFT. 

 

 Frequency Domain 
Time Domain Time Period 0.2 secs 1 sec 3 sec 

Averaging Blocks 20 20 20 
σ [μm] 0.0230 0.0107 0.0067 1.1160 
Number of Simulation 100 100 100 N.A. 
Convergence Criteria σ ± 3% σ ± 3% σ ± 3% N.A. 
σfreq. domain / σtime domain 0.02 0.01 0.006 1.0 

Table 2.7: Results of converting uncertainty from time to frequency domain, using a PSD + 20 
averaging blocks process 

 

Table 2.7 shows the results when the signal in table 2.5 was analyzed with a PSD method, 

including 20 averaging blocks for the three different T. The ratio between the converged σ 

(frequency domain) and the defined σ (time domain) in step 2 of the analysis indicate that 
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PSD+averaging reduced the uncertainties to 2%, and even to less than 1% the values they had 

in the time domain. Averaging produced smaller uncertainty windows than the DFT, in the 

frequency domain, but in general, these results confirm the significant reduction of the uncertainty 

window by transforming this signal to the frequency domain. The improvement of averaging 

comes with the expense of gathering more data in a longer time, and the consequent additional 

processing. For example, for the simulations with the DFT the longest simulated time of data 

acquisition was 3 secs, and this reduced the uncertainty to 3%, meanwhile, the signal averaging 

analysis reduced the uncertainty to less than 1%, but it was required to simulate 60 seconds of 

data points (a time window 20 times larger). 

 
2.3 RESULTS 
 

This section will discuss the results of the uncertainty estimations under the different methods, 

and for all cases the range of uncertainty results reported in [3] and shown in table 2.8 should be 

considered as the reference for this study. Uncertainties will be expressed in percentages (relative 

to the reference value of the coefficient), and results only include the main dynamic coefficients. 

The “reference” cross-coupled dynamic coefficients calculated by Maxbrg were of such a small 

magnitude (less than 1% the value of the smallest main stiffness or damping coefficient), that the 

uncertainty estimation for them was extremely sensitive and out of useful ranges. 

 

 Uncertainty in [9] 
[%]  

Kxx ±8 -±82 
Kyy ±5 – ±45 
Cxx ±9 – ±92 
Cyy ±7 – ±82 

Table 2.8: Uncertainty estimations reported by Wygant et al 
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Figure 2.9 shows the results of uncertainty estimations using the TSM. Test and bearing 

conditions were replicated from [3], however, some assumptions were made due to unreported 

information, for example specific static and dynamic loads. Despite these assumptions the 

estimations of uncertainty are well within the range of uncertainty reported in [3], providing 

confidence the assumptions were adequate. Although uncertainty was applied in magnitude and 

phase to each dynamic force and displacement, the uncertainty in the magnitude of dynamic 

displacement is by far the most important contributor to the uncertainty of the coefficients. 

 

 

Figure 2.9: Uncertainties of dynamic coefficients by the TSM 

 

Figure 2.10 shows the results of uncertainty using the MCM and the flowchart of figure 2.2. It 

was stressed in a previous section that one feature of the MCM is that it uses no assumptions to 

simplify the calculations, then it is a reliable method to replicate the real behavior of the system. 

Therefore, the results of the MCM are very useful to validate the findings on the non-linearity and 

asymmetry of the coefficients, and how they affect the accuracy of the estimations by the TSM. 

For Kxx, the TSM predicted that the uncertainty was 16-18% for the three bearing cases, but 

the analysis showed that the weight of second order terms was around 3.0-3.4% (opposite sign). 
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Therefore, it is expected a more accurate uncertainty of Kxx to be around 13-15%, and that is 

precisely the range that the MCM is estimating for the three cases: 13.9-15.5%. 

For Kyy and Cyy, the TSM predicted the uncertainty was around 45% for bearing case 3, and 

the analysis showed the weight of second-order terms is around 20.5% (opposite sign). Therefore, 

it is expected a more accurate estimation for these two coefficients to be close to 25%, and again, 

that is the estimation by the MCM: 30-31%. 

 

 

Figure 2.10: Uncertainties of dynamic coefficients by the MCM 

 

Similar lines of reasoning can be followed for Cxx in all bearing cases, and Kyy and Cyy in cases 

1 and 2, leading to the same finding: the MCM is providing more accurate uncertainty estimations 

for the coefficients and it is validating that the estimations by the TSM are inaccurate due to the 

existence of higher-order terms (non-linearity effect). 

By comparing results between the MCM and the TSM, there is also another finding: the MCM 

is providing evidence the uncertainty range for the coefficients is asymmetric. For example, for 

Kyy in bearing case 3, the MCM predicted an asymmetric range of (-31) % to (+83) %. Meanwhile, 

the TSM is just predicting a single symmetric value of 45%, so on one side it is overpredicting the 
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estimation by 14% and on the other side is underpredicting the estimation by 38%, which is a 

significant underprediction. Similar findings can be made when comparing results for all 

coefficients and bearing cases. Therefore, the results of the MCM validate that another source of 

inaccuracy for the TSM is its inability to capture asymmetric uncertainty behavior when it exists. 

Figure 2.11 shows results of uncertainty estimations of dynamic coefficients, when uncertainty 

in dynamic displacements is propagated from the frequency domain, by previously having used 

the conversion simulation (DFT process) explained in the analysis section. In general, figure 2.11 

shows that in all cases the uncertainty estimations were reduced to values below 6%, which is a 

great benefit for the report of the dynamic coefficients. It is seen that the worse the estimations 

by propagating uncertainty in the time domain the greater the reduction by propagating it in the 

frequency domain; for example, Kyy was previously estimated to have uncertainties of 84 and 83% 

(figure 2.10), but now those values are 6 and 5%, by transforming displacement data with a DFT 

with a T that includes 3 cycles (figure 2.11a). If the T is increased to contain 45 cycles of the 

displacement signals (figure 2.11b), the uncertainty estimations of the coefficients decreased 

further to a range between 2 and 4%, for the main coefficients. These results indicate that 

increasing the time period T from 3 to 45 cycles reduced the uncertainty estimations, although 

not exactly in a linear relation to the increase in T; for example, r for Kyy and Cxx the reduction was 

clearly evident, while for Kxx and Cyy the reduction was less notorious. Overall, uncertainty 

estimations in figure 2.11 show reductions to a range between 5 and 15% of the values in figure 

2.10, confirming the utility of considering the uncertainty windows of the dynamic signals in the 

frequency domain. 
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Figure 2.11: Uncertainties of dynamic coefficients when random uncertainty of the instrument 
is evaluated in the frequency domain by a DFT 

 

Table 2.9 shows the uncertainty estimations for the dynamic coefficients when the 

transformation to the frequency domain is achieved using a PSD and 20 averaging blocks. These 

uncertainty estimations also showed a great reduction, compared to the estimations in figures 2.9 

and 2.10, and in general all of them are below 5%, with the estimations for Cxx even between 1 

and 2%. However, it is seen that the effect, on the uncertainty estimations, of increasing the time 

period from 0.2 to 3.0 seconds was only marginal. Moreover, when the uncertainty estimations 

for a T of 3.0 seconds in figure 11 (using a conventional DFT) are compared against the 

estimations in table 2.9 (using 20 averaging blocks), it can be seen that the differences are minor. 

  Uncertainty by averaging 20 displacements blocks in the 
Frequency Domain using a PSD [%] 

Uncertainty in [9] 
[%] 

  Case 1 Case 2 Case 3 

T=3 
cycles 

Kxx (-3.65) – (+3.58) (-4.64) – (+4.59) (-3.63) – (+3.58) ±8 -±82 
Kyy (-1.45) – (+1.51) (-2.92) – (+2.87) (-1.62) – (+1.58) ±5 – ±45 
Cxx (-1.72) – (+1.66) (-1.32) – (+1.29) (-1.71) – (+1.65) ±9 – ±92 
Cyy (-4.24) – (+4.18) (-2.13) – (+2.08) (-4.28) – (+4.23) ±7 – ±82 

T=45 
cycles 

Kxx (-3.62) – (+3.56) (-4.61) – (+4.54) (-3.63) – (+3.57) ±8 -±82 
Kyy (-1.48) – (+1.42) (-2.85) – (+2.80) (-1.49) – (+1.43) ±5 – ±45 
Cxx (-1.68) – (+1.63) (-1.11) – (+1.06) (-1.69) – (+1.63) ±9 – ±92 
Cyy (-4.24) – (+4.17) (-2.03) – (+1.97) (-4.22) – (+4.18) ±7 – ±82 

Table 2.9: Uncertainty estimations using data converted to the frequency domain by a PSD + 20 
averaging blocks process 
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2.4 CONCLUSIONS 

 

This study presents an analysis on uncertainty estimation of experimental dynamic 

coefficients obtained by single-sample single-harmonic frequency tests. 

 The Taylor Series Method has been examined for specific conditions, and it has been shown, 

for the first time, that the non-linearity of the dynamic coefficients with respect to the dynamic 

forces and displacements is producing detectable inaccuracies in the uncertainty estimations 

by this method. 

 The analysis on the TSM also shows, for the first time, that the non-linearity is also expressed 

as an asymmetric behavior of the uncertainty that the TSM was not developed to capture, 

which adds more inaccuracies to the uncertainty estimations of dynamic coefficients. 

 The amount of inaccuracy of the uncertainty estimations by the TSM will depend on the 

specific dynamic conditions of the test and the resolution of the used sensors, but for example 

for Kyy, in one of the simulated cases, the TSM predicted an uncertainty of 45%, while more 

accurate estimations provided by the MCM showed an asymmetric range of (-31)% to (+84)%. 

Although the non-linearity of the coefficients will always affect the uncertainty estimations by 

the TSM, the level of impact will be different depending on the specific hardware and test 

conditions of each particular test. 

 In case the TSM is the selected method to estimate the uncertainty on the dynamic 

coefficients, it is advisable to quantify the effect of the non-linearities on the accuracy following 

a similar analysis, as in this study. 

 The Monte Carlo Method is presented as an alternative method to estimate the uncertainties 

in experimental dynamic coefficients. It is analyzed that one superior feature of this method is 

that it makes no assumptions, then it faithfully replicates the real behavior of the model relating 

coefficients and dynamic forces and displacements. Uncertainty estimations by the MCM can 

be considered to be more accurate, as they faithfully represent the nonlinearities and 
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asymmetries of the dynamic coefficients, without any additional correction or inspection of 

accuracy. 

 Previous uncertainty estimations for single-sample single frequency tests have applied the 

resolution of the displacement and force sensors as one source of uncertainty, and this is 

equivalent to apply the range of the resolution in the time domain. However, this study 

proposes one analysis to transform that value of resolution from the time to the frequency 

domain. The analysis works with different conversion methods, but in this study the Discrete 

Fourier Transform (DFT) and Power Spectrum Density (PSD) with averaging were the 

selected tools. Conversion to the frequency domain has shown to be useful in reducing the 

value of the uncertainty region in the output of sensors to even less than 1% the value in the 

time domain, for the specific conditions analyzed in this study. 

 The method proposed in this study, to transform the uncertainty of sensors from the time to 

the frequency domain, has shown to be highly beneficial to reduce the uncertainty estimations 

of the dynamic coefficients. The uncertainty analysis in [3], applied the uncertainty of the 

sensors in the time domain, produced uncertainty estimation in a range from 5 to 82%. 

However, the analysis in this study indicates that by taking the uncertainty data to the 

frequency domain, using the novel method proposed here, the uncertainty estimations could 

actually be less than 6% for all the coefficients, and even less than 2% for Kyy and Cxx, which 

is certainly a remarkable improvement in the accuracy of the coefficients. 

 The analyses showed that increasing the time periods and performing PSD and averaging in 

the frequency domain had an evident and increased benefit in reducing the region of 

uncertainty, when converting to the frequency domain. Nonetheless, this additional reduction 

of the uncertainty region was not always reflected in additional reductions on the uncertainty 

estimations of the dynamic coefficients, or at least not in significant reductions. Therefore, the 

longest time period or the longest averaging number will not always be the most efficient 

process, as to uncertainty estimations. 



44 
 

 
 

 Uncertainty analyses are also a valuable tool in selecting the adequate sensor technology for 

a test rig, during a stage of design or a refurbishment. However, one conclusion that could be 

extrapolated, from the analyses and results reported in this chapter, is that for experimental 

dynamic coefficients the analytical conversion of dynamic data to the frequency domain is a 

key aspect to consider and not only the resolution of the sensor in the time domain. 
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Chapter 3 
 

 

 

Identification of Dynamic Coefficients of Fluid 
Film Journal Bearings Supporting a Flexible 
Rotor 
 

The safe and reliable operation of rotating machinery depends on accurate rotordynamic 

analyses. Especially important for high-speed applications is a lateral rotordynamic analysis, 

which is dependent on the geometry and elastic properties of the rotor and strongly influenced by 

the dynamic characteristics of the fluid film journal bearings that support the rotor. Therefore, the 

use of accurate dynamic characteristics of the journal bearings is a key requirement to obtain 

accurate lateral rotordynamic predictions [1,6]. 

The dynamic characteristics of a fluid film journal bearing are usually represented by a set of 

four stiffness and four damping coefficients [7,9]. Most experimental techniques to obtain these 

eight coefficients relate measurements of dynamic displacements (vibration) and dynamic forces 

(excitation), under the ideal assumption that they act at the midplane of the bearing [10]. Some 

conditions suitable for this ideal assumption may be feasible at research facilities, such as low 

loads, short rotors and bearings, and rotating speeds far away from any critical speeds. These 

conditions reduce or eliminate the relevance of the axial location of the displacement sensors by 

producing a rigid or quasi-rigid rotor such that the lateral vibrations are nearly the same at the 
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bearing midplane as at the sensor location. However, in most real machines the displacement 

sensors are not located at the bearing(s) midplane and the rotor exhibits flexible behavior. The 

consequence of these real conditions is that the measured vibrations have different amplitude 

and phase than the vibration actually occurring at the bearings midplane, and this will be reflected 

as a significant error in the identified dynamic coefficients. 

The purpose of this chapter is to propose a novel method for accurately identifying the 

dynamic coefficients of fluid film journal bearings in the presence of sensor miscollocation and 

rotor flexibility. The proposed method is conceptually applicable to almost any configuration of 

rotor and fluid film journal bearings, unlike previous methods that are applicable to the specific 

configuration for which they were developed. The wider applicability of the novel method proposed 

here is shown with three different rotor-bearing configurations. The method is numerically applied 

to a first case with a single test bearing floating around a test rotor, similar to many test rigs, and 

to a second and third case where the test rotor is supported by two identical or different test 

bearings (as is the case in most real machines). 

Even though sensor miscollocation along with rotor flexibility can have a significant impact on 

the identification of accurate dynamic coefficients, the literature on this topic is very limited. Some 

methods that include miscollocation have been presented in the past, but with very limited scope 

of applicability. For example, Brockwell and Dmochowsky [4] asserted that the dynamic 

coefficients were not accurate, unless the identification model included the miscollocation and the 

rotor flexibility. Therefore, the identification model included these two features; however, the 

applicability was limited to a configuration with a floating bearing housing oscillating around a rotor 

and to journal bearings with non-existent cross-coupled stiffness and damping dynamic 

coefficients. 

De Santiago and San Andres have presented two methods [5, 31] to identify the coefficients 

of two identical fluid film journal bearings supporting a flexible one-inch diameter rotor. This 

method is based on building a matrix model of the rotor flexibility and then applying a specific 
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reordering of the matrix system. This specific reordering leads to calculating the hydraulic bearing 

force acting on the specific nodes assigned at the midplane of the bearings. Finally, the dynamic 

coefficients are identified by relating these calculated forces with the displacements at the same 

nodes. The vibration measured by the sensors was applied to these nodes in [31] assuming the 

miscollocation was negligible. Meanwhile, an approximation was implemented in [5] to correct the 

miscollocation, although specific details were not provided. Unfortunately, the applicability of the 

method is limited to the rotor-bearing configuration considered in the analysis and to the condition 

that both bearings have identical dynamic behavior. Despite the miscollocation was included in 

[5], no details were provided to replicate the approximation. 

A different approach has been presented by Tiwari et al [32] for the identification of stiffness 

and damping coefficients, including the rotor flexibility. This analysis was applied to a 12 mm 

diameter rotor supported directly by three rolling bearings, which rested on supports with some 

level of flexibility and damping. The flexible behavior of the rotor was represented by a finite 

element model, and using roller bearings allowed for a more straightforward measurement of the 

vibration at the bearing locations by using accelerometers on the bearing housings. However, this 

measurement setup is not directly applicable to identifying dynamic coefficients of fluid film 

bearings, as the bearing housing vibration is different than the rotor vibration, due to the relative 

displacement between the bearing housing and the rotor in fluid film bearings. 

A configuration with a test rotor supported by two fluid film journal bearings with a bearingless 

motor located in the middle of the gap between the two bearings, was used by Chen et al [33] to 

find the dynamic coefficients of the fluid film bearings and the current-force and displacement-

force coefficients of the motor. The rotor flexibility is represented by a finite element model, and 

the identification process is performed by changing the Proportional Integral Derivative (PID) 

control parameters of the bearingless motor to obtain and measure different rotor responses 

(vibration) and control currents. These responses are related to the unknown dynamic coefficients 

through a proposed regression equation that finally allows their calculation. However, it is not 
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completely clear how the miscollocation is considered in the regression, and the method is 

applicable only to the analyzed configuration, which includes a bearingless motor at a specific 

location. 

The objective of this chapter is to contribute to the limited literature on this topic, by proposing 

a new method of increased accuracy to identify all eight dynamic coefficients for fluid film journal 

bearings. More specifically, this chapter contributes in the following aspects: 

 To the author’s knowledge, the proposed identification method is the first time in the open 

literature that sensor miscollocation is clearly included in a standard way to increase the 

accuracy of the eight identified dynamic coefficients of a fluid film journal bearing. 

 The identification method presented in this chapter is the first that simultaneously includes the 

rotor flexibility and the miscollocation of displacement sensors to identify the eight dynamic 

coefficients of a single fixed-geometry fluid film journal bearing tested in a floating bearing 

housing. The floating housing is probably the most common configuration for research test 

rigs evaluating the dynamic characteristics of fluid film journal bearings [4, 11, 22, 34, 35]. The 

method in [4] did include the rotor flexibility and the miscollocation, but only identified the four 

main dynamic coefficients.  

 The identification method in this chapter is also applicable to a configuration with a flexible 

rotor supported by two identical or different fluid film journal bearings, including any real 

location of the displacement sensors, unlike other methods. The method leads to the 

identification of either the eight (for identical bearings) or sixteen (for two different bearings) 

dynamic coefficients of fixed-geometry fluid film journal bearings. This capability is important, 

as this configuration has been used in research studies [36-38], and is a common 

configuration for rotating machines in operation. 

The method in this chapter uses a mathematical matrix model to represent the flexible 

behavior of a rotor, based on Timoshenko’s beam theory, similar to the standard approach 

implemented by other studies [5, 31, 32, 33]. However, the novelty of the approach here is to 
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consider that at any axial location of the rotor, the relative dynamic displacement (in the frequency 

domain) between the rotor and the bearing housing, produced as a response to a harmonic 

excitation applied to the rotor-bearing(s) system, is a function of the dynamic coefficients of the 

fluid film journal bearing(s). The advantage of this new approach is that it eliminates the need to 

perform the identification of the dynamic coefficients from displacement data at the midplane of 

the bearings and instead opens the possibility of using data from any axial location of the rotor. 

Therefore, this new approach appropriately includes data from any location where the sensors 

may be measuring the dynamic displacements and eliminates the error of identifying the 

coefficients with displacement sensors miscollocated with respect to the midplane of the bearings. 

This novel approach uses a Newton-Raphson iterative process, due to the non-linearity of the 

dynamic coefficients [39], in which a converging process should lead to a successful identification 

of the values of the dynamic coefficients. The success of the iterative process is controlled by the 

convergence, within certain tolerance margins, to some experimentally obtained reference 

measured displacements, at the sensor’s locations, as the dynamic coefficients are being iterated 

upon. 

The remainder of this chapter has the following structure: the next section presents the 

geometry of the rotors and details of the rotor-bearing(s) system used for the numerical analyses, 

this is followed by a description of the steps of the proposed method to identify the dynamic 

coefficients of the fluid film journal bearing(s), a results section shows the identified dynamic 

coefficients when this method is applied to several chosen examples in order to confirm its validity 

and utility, and finally, a conclusion section discusses the significant findings. 

 
3.1 DESCRIPTION OF THE ROTOR-BEARING SYSTEMS 
 

This section provides a description of the rotor-bearing(s) configurations used to show the 

validity of the new method proposed in this chapter to accurately identify the dynamic coefficients 

of fluid film journal bearings. These configurations are all based on actual machines that have 
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been used in testing and described in the open literature. The description includes the geometry 

of the rotor for each configuration, the axial location of the displacement sensors and fluid film 

journal bearings, and the characteristics of these fixed-geometry journal bearings. This 

information is provided for description purposes and for the matrix model of the flexible behavior 

of the test rotor. 

 
3.1.1 Configuration 1: one fluid film journal bearing floating around a fixed flexible rotor. 
 

A prevalent configuration in test rigs for identifying the dynamic coefficients of fluid film journal 

bearings [4, 11, 22, 34, 35] during the last 50 years has been a housing enclosing a single test 

fluid film journal bearing that is floating around a test rotor, where the rotor is supported by a pair 

of ball or roller bearings. However, despite the prevalence and long use of this configuration, the 

identification model still assumes a rigid behavior of the rotor, as pointed out by Tiwari [10]. 

The identification method proposed by this chapter is applicable to this floating-housing 

configuration and aims to increase the accuracy in the identification of the dynamic coefficients, 

by including the rotor flexibility and the sensor miscollocation. 

 

 

Figure 3.1: Rotor-Bearing System for Config. 1 (mm) 
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The analyzed rotor-bearing system for this configuration is shown in figure 3.1 and replicates 

the rotor dimensions of a real test rig [22] used in numerous studies to identify dynamic 

coefficients [3, 11, 40]. The test rotor was made of steel with a nominal diameter of 70 mm in the 

area of the floating test bearing. The dynamic excitation was applied to the floating bearing 

housing, by means of two independent actuators located at 90 degrees from each other such that 

the test bearing oscillated around the test rotor. Two displacement sensors, located axially at 45.7 

mm from the midplane of the test bearing measured the relative displacement between the 

bearing and the rotor in two orthogonal directions x and y. 

 Configuration 1 
Journal Dia. 70 mm 
L/D ratio 0.75 
Offset 0.5 
Cb 76 μm 
Pad Thickness 10 mm 
Speed 2,000 rpm 
Static Load 5,427 N 
Sommerfeld 0.1 
Amplitude Oscillation 8 μm 0-Pk 
Lubricant ISO VG 32 
Viscosity at 40° C 0.0256 N.s/m2 
Viscosity at 99° C 0.0043 N.s/m2 

Table 3.1: Specification for test bearing to identify in Configuration 1 

 

 Configuration 1 
Kxx [N/m] 1.0912e+08 
Kxy [N/m] -1.1865e+07 
Kyx [N/m] -2.6128e+08 
Kyy [N/m] 3.6368e+08 
Cxx [N-s/m] 4.2310e+05 
Cxy [N-s/m] -5.9399e+05 
Cyx [N-s/m] -5.9399e+05 
Cyy [N-s/m] 2.3808e+06 

Table 3.2: Reference Dynamic Coefficients for Configuration 1 

 

The fluid film journal bearing to be analyzed with this Configuration 1 is a fixed geometry 

bearing with specifications as defined in table 3.1. The journal diameter is 70 mm and the axial 
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length of the bearing is 52.5 mm, for a 0.75 L/D (length/diameter) ratio. The specific load applied 

to this bearing is 1,489 kPa, which produces a noticeable flexible behavior of the test rotor. The 

dynamic coefficients to be used as a reference in this analysis are listed in table 3.2 and were 

numerically found using MAXBRG [23], an industry-standard finite element computer code for 

performing steady state thermo-elasto-hydrodynamic (TEHD) analysis of journal bearings. 

 
3.1.2 Configuration 2: one flexible rotor supported by two identical fixed-geometry fluid 

film journal bearings. 
 

This configuration has been used by several researchers to identify the dynamic coefficients 

of fluid film journal bearings [5, 31, 36, 37], but its use has been much less common than the 

floating bearing configuration. However, configuration 2 is of great practical interest as it 

represents a quite common configuration in industrial rotating machinery, where the rotor 

oscillates within the clearance of the two fluid film journal bearings that support it. 

 

 

Figure 3.2: Rotor-Bearing System for Config. 2 (mm) 

 

The analyzed rotor-bearing system for this configuration 2 is shown in figure 3.2 and replicates 

the dimensions of the slender rotor used by De Santiago and San Andres in [5, 31]. The rotor is 

made of steel with a nominal diameter of 25.4 mm throughout its length of 640 mm. The rotor also 
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includes two disks, 31.8 mm in length and 165 mm in diameter, mounted 280 mm from each other. 

The gap between the two bearings is 532 mm, for a ratio of this gap to rotor diameter of 20.9, 

which as pointed out in [31] is an extremely flexible rotor. The dynamic excitation is intended to 

be applied to the rotor at the locations of the two disks in the form of unbalance masses, impact 

forces with instrumented hammers, or magnetic bearings. Sets of two displacement sensors, 

located axially at 39.0 mm from the midplane of each of the fluid film journal bearings, measure 

the relative displacement between the bearings and the rotor, in two orthogonal directions x and 

y. 

 Configuration 2 
Journal Dia. 25 mm 
Bearing Length 28.5 mm 
Offset 0.5 
Cb 38 μm 
Pad Thickness 6.5 mm 
Speed 2,000 rpm 
Static Load 71 N 
Sommerfeld 0.26 
Amplitude Oscillation 6 μm 0-Pk 
Lubricant ISO VG 32 
Viscosity at 40° C 0.0256 N.s/m2 
Viscosity at 99° C 0.0043 N.s/m2 

Table 3.3: Specification for test bearing to identify in Configuration 2 

 Configuration 2 
Kxx [N/m] 3.0338e+06 
Kxy [N/m] 2.1950e+06 
Kyx [N/m] -6.9069e+06 
Kyy [N/m] 3.1139e+06 
Cxx [N-s/m] 2.5657e+04 
Cxy [N-s/m] -1.7452e+04 
Cyx [N-s/m] -1.7452e+04 
Cyy [N-s/m] 6.8164e+04 

Table 3.4: Reference Dynamic Coefficients for Configuration 2 

 

The fluid film journal bearings to be analyzed with Configuration 2 are two identical fixed 

geometry bearings, with the specifications listed in table 3.3. The journal diameter is 25.4 mm and 

the axial length of each bearing is 28.5 mm, for a 1.12 L/D (length/diameter) ratio. The specific 
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load applied to each of these bearings is 88.2 kPa, which represents the pressure from half the 

weight of the rotor. The reference dynamic coefficients of these bearings are shown in table 3.4 

and were numerically found using MAXBRG [23]. 

De Santiago and San Andres experimentally identified the free-free natural frequencies of this 

rotor, by hanging it from vertical ropes and impacting it along a horizontal plane to measure its 

response [5]. The first free-free natural frequency was experimentally identified at 196 Hz and the 

second natural frequency at 384 Hz. The numerical rotor model used in this chapter predicted the 

first and second natural frequencies at 192 and 370 Hz. Then, the predicted value is within 2.0% 

of the tested first natural frequencies and within 3.5% of the second one, verifying the accuracy 

of the rotor model used in this chapter. 

 
3.1.3 Configuration 3: one flexible rotor supported by two different fixed-geometry fluid 

film journal bearings. 
 

Configuration 3 has been rarely used by researchers to identify the dynamic coefficients of 

fluid film journal bearings [32, 38] due to the complexity of determining sixteen unknown 

coefficients while accounting for the flexibility of the test rotor. However, configuration 3 is of great 

practical interest as it is a common configuration in industrial rotating machinery, where the rotor 

oscillates within the clearances of the fluid film journal bearings that have different technical 

specifications. 

The analyzed rotor-bearing system for this configuration is shown in figure 3.3 and exactly 

replicates the axial dimensions of the rotor used in configuration 2. The only difference with 

respect to the rotor in configuration 2 is that the rotor has a nominal diameter of 50.8 mm, instead 

of 25.4 mm. This rotor also includes two disks, 31.8 mm in length and 165 mm in diameter, 

mounted 280 mm from each other. The dynamic excitation is intended to be applied to the rotor 

at the location of these two disks, in the form of unbalance masses, impact forces with 

instrumented hammers, or magnetic bearings. Sets of two displacement sensors, located axially 
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at 39.0 mm from the midplane of each of the fluid film journal bearings, measure the relative 

displacement between the bearings and the rotor in two orthogonal directions x and y. 

 

Figure 3.3: Rotor-Bearing System for Config. 3 (mm) 

 

Table 3.5: Specifications for test bearings to identify in Configuration 3 

 Configuration 3 
Bearing 1 

Configuration 3 
Bearing 2 

Kxx [N/m] 5.1068e+07 4.2091e+07 
Kxy [N/m] -2.4289e+06 -9.8166e+06 
Kyx [N/m] -1.1946e+08 -1.0626e+08 
Kyy [N/m] 1.5512e+08 1.6557e+08 
Cxx [N-s/m] 2.1125e+05 1.4732e+05 
Cxy [N-s/m] -2.8834e+05 -2.3144e+05 
Cyx [N-s/m] -2.8834e+05 -2.3144e+05 
Cyy [N-s/m] 1.1530e+06 1.0109e+06 

Table 3.6: Reference Dynamic Coefficients for Configuration 3 
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The fluid film journal bearings to be analyzed with Configuration 3 are two different fixed 

geometry bearings, with specifications listed in table 3.5. The journal diameter is 50.8 mm and 

the axial length of each bearing is 50.8 mm, for a 1.0 L/D (length/diameter) ratio. The specific load 

applied to each of these bearings is 1034 kPa, and the reference dynamic coefficients for these 

bearings are shown in table 3.6 and were numerically found using MAXBRG [23]. 

 
3.2 PROPOSED IDENTIFICATION METHOD 
 

This section details the steps of the proposed novel method to identify the dynamic coefficients 

of fluid film journal bearings. The method has been divided into seven steps, with steps 1 and 2 

detailing how to build the model of the rotor-bearing(s) system, step 3 sets the conditions of the 

experimental dynamic displacements to be used as the convergence reference for this method, 

and the remaining steps cover the application of the Newton-Raphson iteration. 

 
3.2.1 Step 1: Modeling the flexibility of the rotor in two dimensions. 
 

The flexibility of the rotor is modeled using the Timoshenko beam theory, while the disks in 

the rotor are considered rigid. The model includes gyroscopic effects and inertia of masses. The 

equations of motion for a generic flexible rotor are: [𝐌𝐑]�̈�𝐑 + [𝐂𝐑]�̇�𝐑 + Ω[𝐆𝐑]�̇�𝐑 + [𝐊𝐑]𝐐𝐑 = 𝐅𝐑    (3.1) 

where [MR], [CR], [GR], and [KR] are the rotor matrices of inertia, damping, gyroscopic, and 

stiffness, respectively. FR is a vector that includes all external dynamic forces applied to the rotor, 

and QR is the vector of displacements at the defined nodal locations of the model, and Ω is the 

rotational frequency of the rotor. 

The vector FR includes the excitation dynamic forces received directly by the rotor, the forces 

from the fluid film journal bearing(s), and any other dynamic force received directly by the rotor. 

Meanwhile, the vector QR provides the lateral displacements and the angular deflections for each 

node of the model, in two orthogonal directions x and y. Additionally, it is assumed that all dynamic 
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excitations are harmonic at a given frequency, and thus the dynamic response forces and 

displacements are also harmonic, with the same frequency as the excitation. Therefore, FR = 

FuReiωt and QR = QuReiωt , and by substituting these two expressions equation (3.1) is transformed 

to: [𝐊𝐑 − ω 𝐌𝐑 + iω𝐂𝐑 + iωΩ𝐆𝐑]𝐐𝐮𝐑 = [𝐇𝐑]𝐐𝐮𝐑 = 𝐅𝐮𝐑   (3.2) 

where ω is the frequency of excitation, FuR is a vector with the complex amplitude of the 

harmonic excitations and QuR is a vector with the complex amplitude of the harmonic 

displacements at the nodal locations. For the cases analyzed in this chapter ω=Ω, that is the 

excitation forces are synchronous with the rotational frequency of the rotor. 

One important consideration for an accurate rotor-bearing(s) model is that it should include 

nodes at the exact locations of: the fluid film journal bearings (preferably the midplane), the 

displacement sensors, and the points of application of dynamic forces to the rotor. 

 
3.2.2 Step 2: Adding the bearing coefficients of the journal bearing(s) to the model. 
 

For a fluid film journal bearing, the linearized oil-film bearing dynamic force in orthogonal 

directions x and y is represented by FF =   K KK K ∆X∆Y + C CC C ∆Ẋ∆Ẏ    (3.3) 

where Fx and Fy are the dynamic hydrodynamic bearing forces, ΔX and ΔY are the dynamic 

displacements of the oil film at the midplane of the bearing, Kxx and Kyy are the direct stiffness 

coefficients in the x and y directions, Kxy and Kyx are the cross-coupled stiffness coefficients, Cxx 

and Cyy are the direct damping coefficients and Cxy and Cyx are the cross-coupled damping 

coefficients. Now, by using the same previous consideration that response forces and 

displacements are harmonic, then equation (3.3) is transformed to: FF =   K KK K XY + iω C CC C XY = ([𝐊𝐛] + iω[𝐂𝐛]) XY   (3.4) 
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where Fxb and Fyb are the complex amplitudes of the harmonic forces exerted by a fluid film 

journal bearing, and Xb, and Yb are the complex amplitudes of the harmonic displacements of the 

oil film at the midplane of the bearing, in the x and y direction. 

It is seen that the amplitude of the hydrodynamic force applied by each fluid film bearing is a 

function of the amplitude of the dynamic displacement in the area of the bearing. 

The rotor-bearing(s) model should have nodes located, preferably, at the midplane of each 

bearing, as mentioned in step 1. Then, the displacements at the midplane of the bearings are 

contained in the vector QuR. and the bearing forces can be represented as the multiplication of a 

diagonal matrix HB, the same size as the matrix HR, and the vector QuR. The only non-zero entries 

in the diagonal matrix HB will be the dynamic coefficients of each journal bearing interacting with 

the rotor at the location(s) corresponding to the position of the bearing node(s) in the vector QuR. 

For example, if the displacements of the node located at the midplane of bearing 1 have the fifth 

position in the vector QuR, then the dynamic coefficients of bearing 1 are located in the diagonal 

section corresponding to the fifth column or row of the matrix HB. 

Then, the rotor-bearing(s) system can be mathematically represented by: [𝐇𝐑]𝐐𝐮𝐑 + [𝐇𝐁]𝐐𝐮𝐑 = 𝐅𝐮𝐑     (3.5) [𝐇𝐑 + 𝐇𝐁]𝐐𝐮𝐑 = 𝐅𝐮𝐑     (3.6) 

 
3.2.3 Step 3: Obtaining a set of reference measurement data with the displacement 

sensors. 
 

The success of this proposed identification method is proven by the convergence of the 

Newton-Raphson iterations to a determined set of reference values. Then the harmonic 

displacement data collected in this step have the role of acting as that reference set. 

Each individual displacement sensor provides two pieces of data for a harmonic displacement: 

an amplitude and a phase difference. Two orthogonal sensors at any axial location then provide 

four reference data points. The number of data points to be referenced depends on the number 

of dynamic coefficients to be identified: one data point is required for each coefficient. For 
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example, to identify the eight dynamic coefficients of the two identical fluid film journal bearings 

in configuration 2, eight data points must be measured and arranged as an 8x1 vector that will be 

called REF, to have the information for eight independent equations. However, the method 

presented in this chapter requires the application of, at least, two independent harmonic 

excitations, due to the sensitivity of the method to high condition numbers as will be explained in 

step 6. Four data points could be obtained at a single axial location, provided there are two 

orthogonal sensors at that location, with the application of the first harmonic excitation. The other 

four data points could be measured at the same or at a different location with the application of 

the second independent harmonic excitation. 

It is also important to have exact values for the rotor rotating speed, as well as the location, 

amplitude, and frequency of the applied harmonic excitations for which the reference data were 

collected, because these values are applied to the rotor-bearing(s) model in equation (3.6) when 

iterating for the dynamic coefficients in subsequent steps. 

 
3.2.4 Step 4: Selecting a first estimation for the dynamic coefficients. 
 

The Newton-Raphson iteration method is applied by using equation (3.6) and the data points 

measured in step 3, arranged as vector REF. The iteration starts by assuming a good first estimate 

for the unknown dynamic coefficients. For example, this first estimation could be obtained by 

assuming a rigid rotor, or by using an estimate from a numerical bearing code. These estimated 

values are substituted in equation (3.6), together with the conditions of the two independent 

harmonic excitations selected in step 3. This substitution allows a numerical calculation of two 

vectors QuR1.and QuR2, in which each vector holds the data of the harmonic displacements 

generated as a response to each one of the applied harmonic excitations. QuR1.and QuR2 contain 

the amplitude and phase for each node of the rotor model; however, the method only requires the 

amplitude and phase at the location(s) selected during step 3, and by extracting this data a new 

vector, called Q1, is arranged. The size of Q1 is 8x1 if eight dynamic coefficients are being 



60 
 

 
 

identified (following the same example in step 3), or 16x1 if the dynamic coefficients of two 

different bearings are being identified. 

 
3.2.5 Step 5: Calculating the change in Q1 for a new set of dynamic coefficients. 
 

It will usually be the case that the values of Q1 are different than the values of REF, which 

means that the first estimate of the dynamic coefficients is not correct. Then, each dynamic 

coefficient should be individually incremented or decremented in a given amount, over the value 

used in step 4, and applied with the conditions of the two harmonic excitations to equation (3.6), 

and this leads to the numerical calculation of two new vectors QuR. For example, if only the 

coefficient Kxx is incremented (keeping constant the values of all the other coefficients), two 

vectors QuR1A.and QuR2A are obtained, and by extracting from them only the eight data points of 

interest, a new vector QA is formed. As the process is repeated for the other coefficients, seven 

new vectors are obtained (one per each incremented coefficient): QB, QC, QD, QE, QF, QG, QH. 

These vectors can be arranged in such a way to obtain a matrix [Δ] that contains the increment 

in each data point per the applied increment in each coefficient. [∆] = [𝐐𝐀𝐐𝐁𝐐𝐂𝐐𝐃𝐐𝐄𝐐𝐅𝐐𝐆𝐐𝐇] − [𝐐𝟏𝐐𝟏𝐐𝟏𝐐𝟏𝐐𝟏𝐐𝟏𝐐𝟏𝐐𝟏]  (3.7) 

 
3.2.6 Step 6: Performing a preconditioning in the matrix [Δ] and obtaining the condition 

number. 
 

The steps presented in this chapter have been implemented in Matlab, allowing the use of a 

standard Matlab algorithm called “Equilibrate” [41], which preconditions the original square matrix 

[Δ]nxn to produce a new matrix [B]nxn. The objective of preconditioning a matrix is to improve the 

condition number and the stability of the linear system. The condition number of a matrix A is 

defined as the ratio of the largest singular value to the smallest singular value of that matrix, or it 

is also defined as the product of the norm of A and the norm of A-1. If A is part of a linear system 

of equations Ax=b, then the condition number of A is a measure of how much error in the output 

b of the linear system is amplified when some error is contained in the input, x. In the cases 
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analyzed here, the sources of error in the input are the uncertainty in the measurements and/or 

errors in the installation of the sensors, and they are reflected as deviations in the experimental 

measurements. 

The specific preconditioning used here calculates three matrices R, P, and C, such that 

B=R*P*[Δ]*C has values in its diagonal equal to 1, and values smaller than 1 in the other locations 

of the matrix. Different characteristics of the rotor and the journal bearings lead to a large range 

in the original condition numbers of [Δ] making it difficult to use this number to predict the 

suitability of the linear system. Therefore, a significant advantage of applying this preconditioning 

to [Δ] is to obtain a more standard condition number, despite the unique features of each rotor-

bearing system. 

The condition number of the preconditioned matrix, B, will be a better predictor of the linear 

system to provide a successful result. Condition numbers of B smaller than 150 are 

recommended, as this indicates that B or its original matrix Δ constitute a linear system that is an 

excellent candidate for the required convergence of the method. On the other hand, condition 

numbers larger than 150 may present difficulties in achieving the required convergence of the 

Newton-Raphson method, and/or difficulties in dealing with the usual noise or disturbances 

encountered during experimental measurements. 

 
3.2.7 Step 7: Applying the Newton-Raphson method. 
 

As mentioned earlier, the first estimation of the dynamic coefficients (step 4) will not lead to a 

perfect match with the vector Q1, so an adjustment of the value of the coefficients is found with 

equation (3.8). [𝐑] ∗ [𝐏] ∗ (𝐑𝐄𝐅 − 𝐐𝟏) = [𝐁] ∗ 𝐘𝐦    (3.8) 

where matrices R, P, and B were defined in step 6, and vectors REF and Q1 were defined in 

step 4. Ym is the unknown vector in the equation and contains the information of the adjustment 
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ΔCOEF to apply to the first estimates of the dynamic coefficients and can be extracted with equation 

(3.9). ∆𝐂𝐎𝐄𝐅= 𝐂 ∗ 𝐘𝐦     (3.9) 

Here, ΔCOEF is a vector that contains the values by which each dynamic coefficient needs to 

be incremented or decremented, and it delivers the values in the same order in which vectors QA 

– QH are ordered in equation (3.7). For example, if QA is the first column and relates to the 

increment in Kxx, then the first location in ΔCOEF is the increment to be applied to the estimation of 

Kxx; if QB is the second column and relates to the increment in Kxy, then the second location in 

ΔCOEF is the increment to be applied to Kxy; and if QE is the fifth column and relates to the increment 

in Cxx, then the fifth location in ΔCOEF is the increment to be applied to Cxx, and so on for the other 

columns and dynamic coefficients. 

One important observation is that ΔCOEF does not provide the increment of the dynamic 

coefficients in absolute value. Instead, it provides the increment in units of the increment applied 

in step 5. For example, if the increment applied to Kxx in step 5 was 500, and ΔCOEF provided a 

value of 98.8 for Kxx, then the absolute increment to apply to Kxx is 500*98.8=49,400. 

Successive applications of steps 5, 6, and 7 are required with a termination criterion for the 

convergence of the eight or sixteen dynamic coefficients involved. Successful convergence is 

given by obtaining a defined and small amount of error when comparing the output coefficients of 

two successive iterations. The convergence can be defined as an absolute (equation 3.10) or as 

a percentage comparison (equation 3.11). |𝐃𝐞𝐟𝐢𝐧𝐞𝐝 𝐄𝐫𝐫𝐨𝐫| ≤ |𝐂𝐨𝐞𝐟𝐧 𝟏 − 𝐂𝐨𝐞𝐟𝐧|    (3.10) |𝐃𝐞𝐟𝐢𝐧𝐞𝐝 𝐄𝐫𝐫𝐨𝐫 (%)| ≤ 𝐂𝐨𝐞𝐟𝐧 𝟏 𝐂𝐨𝐞𝐟𝐧𝐂𝐨𝐞𝐟𝐧 𝟏     (3.11) 

Alternatively, the progress of the convergence could be done by comparing vectors Q1 and 

Ref at the end of each iteration. 
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3.3 RESULTS 
 

This section presents the results of applying the method proposed here to identify the dynamic 

coefficients of fluid film journal bearings for the configurations detailed in the second section. As 

explained in step 3, the standard procedure for the method is to obtain the reference data points 

of the vector REF by experimental measurements. However, the results presented in this chapter 

come from numerically generating vectors REF using the same rotor-bearing(s) models developed 

in steps 1 and 2, which has the advantage of knowing exactly the reference dynamic coefficients 

that a successful identification method should estimate. 

The results of applying the proposed method are presented highlighting two main aspects: 

the first is the convergence behavior of the Newton-Raphson iterations for the identification of the 

dynamic coefficients, and the second is the impact of random errors in the displacement 

measurements, that will be expressed as a range of random uncertainty in the identified dynamic 

coefficients. 

The convergence behavior is presented in figures 3.4 to 3.11. In each figure the y-axis 

represents the value of the dynamic coefficient and the x-axis represents the number of the 

iteration. A dashed horizontal line shows the reference value of the dynamic coefficient to which 

a successful iteration process should converge. The initial guess for each coefficient, chosen in 

step 4 above, is reflected as the value assigned to iteration 1. Specific properties of convergence 

for each test case are discussed below. 

Tables 3.7, 3.8 and 3.9 present the calculated uncertainty for the identified dynamic 

coefficients in each of the test configurations. The calculated ranges are the result of propagating 

a random uncertainty of ±0.18 μm in the amplitude and ±0.25 degrees in the phase of the 

displacement measurements, with a confidence interval of 95%. The uncertainty analyses were 

performed with Monte Carlo simulations leading to the identification of 10,000 different sets of 

dynamic coefficients [42]. The resolution value of 0.18 μm was taken from commercial catalogs 
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for an average Eddy-Current sensor (probe diameter= 5 mm) coupled with an average-resolution 

data-acquisition driver. The values of uncertainty reported in the tables can be used as a 

reference, but it is important to note that uncertainty analyses are specific to the actual case, and 

even for the same case uncertainty values could be smaller with the use of finer resolution sensors 

of the same technology (Eddy-Current), or with finer-resolution sensors of different technology, 

that are available in the market. 

 
3.3.1 Results for configuration 1: one fluid film journal bearing floating around a fixed 

flexible rotor. 
 

The results presented for this configuration were obtained with the numerical application of 

two independent synchronous harmonic dynamic excitations at the mid-plane of the bearing 

housing: one of 600 N in the x-direction, and one of 2,800 N in the y direction. In this configuration, 

the purpose is to identify the eight dynamic coefficients of a single fluid film journal bearing, and 

figures 3.4 and 3.5 show the progress of this identification. 

Figure 3.4 shows the progress of the identification for the direct stiffness and damping 

coefficients, while figure 3.5 shows the identification for the cross-coupled stiffness and damping 

coefficients. Both figures show that by the fourth iteration all eight dynamic coefficients have 

converged, within an error of less than 0.001% to the reference values, and thus the proposed 

method has performed an accurate identification of the eight dynamic coefficients (direct and 

cross-coupled). 
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Figure 3.4: Evolution of iteration for the main dynamic coefficients (Config. 1) 

 

Figure 3.5: Evolution of iteration for the cross-coupled dynamic coefficients (Config. 1) 

 

Table 3.7 shows the calculated range of uncertainty for the dynamic coefficients, including a 

resolution of 0.18 μm for the displacement sensors during the uncertainty analysis. This table 

shows that the largest calculated uncertainty is for Kxy with a range of around ±14%; however, for 
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the other 7 dynamic coefficients the uncertainty is smaller than ±2.6% of the respective reference 

coefficient. These small values of uncertainty show the ability of the method handle levels of 

noise, particularly since the identification includes the cross-coupled dynamic coefficients, which 

are much more sensitive to errors in measurements than the direct coefficients. 

 Uncertainty Range 
Kxx [N/m] ± 1.02 % 
Kxy [N/m] ± 14 % 
Kyx [N/m] ± 1.13 % 
Kyy [N/m] ± 1.6 % 
Cxx [N-s/m] ± 1.0 % 
Cxy [N-s/m] ± 0.6 % 
Cyx [N-s/m] ± 2.6 % 
Cyy [N-s/m] ± 0.6 % 

Table 3.7: Estimated Uncertainty range for coefficients – Configuration 1 

 

3.3.2 Results for configuration 2: one flexible rotor supported by two identical fixed-
geometry fluid film journal bearings. 

 
Configuration 2 uses two fluid film journal bearings. In this case; however, it is assumed that 

the manufacturing and assembly characteristics as well as the static loading conditions are so 

similar that both bearings may be assumed to have identical dynamic coefficients, which reduces 

the identification requirement from sixteen to only eight dynamic coefficients. 

The results presented for this configuration were obtained with the numerical application of 

two independent synchronous harmonic dynamic excitations. The first excitation is 25 N in the x-

direction, at the location of disk 1; and the second excitation is one unbalance of 0.0004140 kg-

m, at the location of disk 2. The purpose of this configuration is the identification of the eight 

dynamic coefficients of the two identical fluid film journal bearings supporting a flexible 1-inch 

diameter rotor. Figures 3.6 and 3.7 show the progress of this identification. 
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Figure 3.6: Evolution of iteration for the main dynamic coefficients (Config. 2) 

 

Figure 3.7: Evolution of iteration for the cross-coupled dynamic coefficients (Config. 2) 

 

Figure 3.6 shows the progress of the identification for the direct stiffness and damping 

coefficients, while figure 3.7 shows the identification for the cross-coupled stiffness and damping 
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coefficients. Both figures show that at the seventh iteration all eight dynamic coefficients have 

achieved convergence, within an error of less than 0.001%, to the reference values for the 

coefficients. 

Table 3.8 shows the calculated range of uncertainty for the identified dynamic coefficients in 

configuration 2, when a resolution of 0.18 μm is considered for the displacement sensors. For Kxx, 

Kyx, Cxx, and Cyy, the uncertainty range is less than ±5.2%, while for Kxy, Cxy, and Cyx the 

uncertainty is between ±7% to ±12%. Kyy has the largest uncertainty with a value of ±19.8%. 

Again, the method has shown its ability to keep within acceptable limits (less than 20%) the 

uncertainty in the identification of all eight dynamic coefficients. 

 Uncertainty Range 
Kxx [N/m] ± 5.1 % 
Kxy [N/m] ± 11.8 % 
Kyx [N/m] ± 4.5 % 
Kyy [N/m] ± 19.6 % 
Cxx [N-s/m] ± 2.6 % 
Cxy [N-s/m] ± 7.3 % 
Cyx [N-s/m] ± 8.4 % 
Cyy [N-s/m] ± 3.4 % 

Table 3.8: Estimated Uncertainty range for coefficients – Configuration 2 

 

3.3.3 Results for Configuration 3: one flexible rotor supported by two different fixed-
geometry fluid film journal bearings. 

 
Configuration 3 uses two fluid film journal bearings with different specifications, such that the 

eight dynamic coefficients of bearing 1 are different than the coefficients of bearing 2, and the 

method must identify all sixteen dynamic coefficients. 

The results presented for this configuration were obtained with the numerical application of 

two independent synchronous harmonic dynamic excitations. The first excitation is 500 N in the 

x-direction, at the location of disk 1; and the second excitation is one unbalance of 0.008782 kg-

m, at the location of disk 2. The purpose of this configuration is the identification of the sixteen 

dynamic coefficients of the two fluid film journal bearings supporting a flexible 2-inch diameter 
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rotor. Figures 3.8 and 3.9 show the progress of the identification for the coefficients of bearing 1, 

while figures 3.10 and 3.11 show the progress for the coefficients of bearing 2. 

Figures 3.8 and 3.10 show the progress of the identification for the direct stiffness and 

damping coefficients of the two bearings, while figures 3.9 and 3.11 show the identification for the 

cross-coupled stiffness and damping coefficients. The four figures show that at the sixth iteration 

the identification process for the sixteen dynamic coefficients has achieved convergence, within 

an error of less than 0.001%, to the reference values for the respective coefficients, and therefore 

the proposed method has performed a successful identification of all sixteen dynamic coefficients 

involved in this configuration. 

 

 

Figure 3.8: Evolution of iteration for the main dynamic coefficients (Config. 3 – Bearing 1) 
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Figure 3.9: Evolution of iteration for the cross-coupled dynamic coefficients (Config. 3 – 
Bearing 1) 

 

 

Figure 3.10: Evolution of iteration for the main dynamic coefficients (Config. 3 – Bearing 2) 
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Figure 3.11: Evolution of iteration for the cross-coupled dynamic coefficients (Config. 3 – 
Bearing 2) 

 

Table 3.9 shows the range of uncertainty for the identified dynamic coefficients of the two 

bearings in configuration 3, when a resolution of 0.18 μm is considered for the displacement 

sensors during the uncertainty analysis. This table shows that for 12 of the 16 identified 

coefficients the uncertainty range is less than ±8.0%, for Cyx in both bearings the uncertainty is 

around ±12%, and Kxy has the largest uncertainty with a value of ±22% for bearing 2 and ±146% 

for bearing 1. The proposed method has shown its ability to keep within acceptable boundaries 

(less than 15%) the uncertainty of 14 out of the 16 coefficients, including 6 out of the 8 cross-

coupled dynamic coefficients in this configuration. The uncertainty values for Kxy could be reduced 

by applying more excitation rounds and simultaneously processing that data. 

 Uncertainty Range 
Bearing 1 

Uncertainty Range 
Bearing 2 

Kxx [N/m] ± 3.5 % ± 2.5 % 
Kxy [N/m] ± 146 % ±22% 
Kyx [N/m] ± 4.1 % ± 3.0 % 
Kyy [N/m] ± 6.6 % ± 4.7 % 
Cxx [N-s/m] ± 3.6 % ± 2.8 % 
Cxy [N-s/m] ± 6.6 % ± 4.3 % 
Cyx [N-s/m] (-12%) - (+10.8%) ± 8.2 % 
Cyy [N-s/m] ± 5.7 % ± 3.6 % 

Table 3.9: Estimated Uncertainty range for coefficients – Configuration 3 
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3.4 CONCLUSIONS 
 

This chapter presents a new method for the identification of dynamic coefficients of fluid film 

journal bearings. The method includes rotor flexibility and miscollocation of displacement sensors 

with respect to the midplane of the bearings, which are often neglected in traditional identification 

methods. This method assumes that the dynamic displacement of the rotor at any axial location 

is a function of the dynamic coefficients, which provides a higher accuracy of the identified 

dynamic coefficients by eliminating the errors due to the miscollocation of the sensors and the 

rotor flexibility. 

The method has been numerically applied to three different configurations of rotor-bearing 

systems, to show the efficacy of the method in identifying the eight dynamic coefficients of fixed-

geometry fluid film journal bearings. The first configuration is a single floating test bearing around 

a flexible test rotor, which is a very common configuration in test rigs, and requires the 

identification of four direct and four cross-coupled dynamic coefficients. The second configuration 

is two identical test bearings supporting a flexible test rotor, which again requires the identification 

of four direct and four cross-coupled dynamic coefficients. The third configuration is two different 

test bearings supporting a flexible rotor, which requires the identification of eight direct and eight 

cross-coupled coefficients. The second and third configurations are common designs in practical 

rotating machinery. In all three configurations, the proposed method is able to identify all direct 

and cross-coupled dynamic coefficients, with an error of less than 0.001%. 

The proposed identification method requires the application of two independent harmonic 

excitations, in the form of unbalance masses, impact forces with instrumented hammers, or 

magnetic bearings. Additionally, the method is sensitive to the condition number of the matrix [Δ] 

or the preconditioned matrix [B], and different conditions of the excitation, combinations of 

excitations, and locations of the sensors may lead to different condition numbers. Large condition 
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numbers of [B] may produce difficulties for the method to converge and identify the right dynamic 

coefficients or lead to an excessive amplification of the inevitable errors inherent to experimental 

measurements. 

The ability of the method to keep the uncertainty of the identified coefficients within acceptable 

levels was tested by performing uncertainty analyses that propagated values of random error in 

the displacement sensors. 30 out of the 32 identified dynamic coefficients had values of 

uncertainty smaller than 20%, which gives confidence in the ability of the method to reliably 

identify bearing coefficients, including the cross-coupled ones, which are highly sensitive to errors 

in the inputs to the method. 
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Chapter 4 
 

 

 

Design Methodology for a Test Rig to Estimate 
Experimental Dynamic Coefficients of Fluid Film 
Journal Bearings 
 

Modern rotating machinery is required to handle large loads and operate at high speeds, 

leading to potential rotordynamic challenges, such as: operation through critical speeds, 

instability, and excessive vibration. Fortunately, fluid film bearings are well suited to support rotors 

under large loads and high operating speeds while providing significant damping to the lateral 

response. Damping is especially useful for suppressing instabilities, facilitating transit through 

critical speeds, and reducing vibration levels [6]. Due to these features, fluid film bearings are a 

preferred component for most rotating machinery, and knowing their dynamic properties is crucial 

in making rotordynamic predictions for a machine [7, 9]. 

The dynamic force of a fluid film bearing around a static point of equilibrium can be expressed 

as a linear function of eight dynamic coefficients: four of them represent the stiffness properties 

and the other four the damping properties of the bearing [43]. These fluid film dynamic coefficients 

(FFDC) may be found by experimental tests or by numerical bearing codes [44]. However, a 2007 

survey of results from several industry-standard bearing codes showed ranges of up to 1000% in 

some coefficients [17]. Experimental validation of the codes was recommended; however, that 
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validation is still missing from the public record. New demands for fluid film bearings are driving a 

need for rigs able to operate under ever more challenging conditions and experimental testing 

must provide reliable measurements for validation of computational bearing codes. 

The dynamic characterization of fluid film bearings is a field in progress requiring the design 

and construction of new test rigs, updated to meet the demands of industry and research. 

However, this effort is a complex task involving: the design and selection of several major 

expensive components, the harmonious integration of the technical and operational 

characteristics of these components, and the integration of mechanical, electrical, and 

instrumentation systems. In addition, current demands point to rigs spinning faster than 15,000 

rpm with journal diameters larger than 100 mm, which increases the investment to hundreds of 

thousands of dollars and puts more pressure in the integration of the components and the dynamic 

behavior of the rig as a unit, but without relaxing the requirement to produce and reliably measure 

small radial vibrations of less than 12.5 µm. 

Several researchers have described test rigs they have designed or operated. However, no 

attempt has been made in the literature to provide guidelines or key aspects for the researcher 

involved in such design work to consider. Therefore, the purpose of this chapter is to cover this 

gap of information, by providing useful guidelines for a test rig design, so the designer can proceed 

quickly and with more technical confidence. Some recommendations are specific, but considering 

the inherent flexibility of a design work, key aspects are also mentioned to provide the general 

background required to make appropriate design decisions. 

Hagg and Sankey [45] were some of the first researchers to experimentally measure FFDC. 

Their test rig was in a vertical orientation and driven directly by an electric motor up to 2,000 rpm. 

A lever applied static loads to the bearing housing while the dynamic excitation was produced by 

unbalance masses at defined locations on the rotor. The published description of the rig is only 

of limited assistance in a design process due to a lack of discussion of design decisions, 

limitations, and considerations. 
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A test rig in a horizontal orientation, with a 63.5 mm test rotor driven by a variable speed 3 hp 

electric motor, was used by Mitchell et al [46]. The bearing housing floated around the rotor and 

was statically loaded with weights. Once static equilibrium was achieved, the loads incremented 

in the x and y directions to modify the equilibrium position and estimate the four stiffness 

coefficients. The focus of the paper was measuring the coefficients, with little detail and/or 

discussion of the rig design. 

Glienicke [47] obtained the eight FFDC for bearings up to 100 mm in diameter using a 

horizontal test rig. The bearing housing floated around a rotor fixed by ball bearings while statically 

loaded with three orthogonal pneumatic devices. An ingenious mechanism using an additional 

rotor (0-10,000 rpm) applied dynamic excitations. The description of the rig is informative including 

several cross-sectional drawings. However, there is little discussion of the design process. 

A test rig at the University of Virginia was used to test 70 mm diameter bearings, at speeds 

up to 2,500 rpm [22]. A floating housing was loaded statically and dynamically using electric 

actuators, and the eight FFDC were estimated by correlating the measurements of strain gauges 

(force) and eddy-current probes (vibration). The published description of the rig is detailed as to 

graphics, but there was little discussion of design considerations or dimensions. 

A rig for testing large-scale fluid film bearings within a floating housing, was developed at 

Toshiba to be driven by a 2,400 kW steam turbine at a maximum speed of 4,000 rpm. The housing 

was instrumented with load cells, accelerometers and proximity probes and could receive a 

maximum static load (pneumatic) of 980 kN, and a dynamic load (hydraulic) of 90 kN. Ikeda et al 

[18] used this rig to obtain the eight FFDC for a 580 mm diameter bearing. Again, only an 

informative description of the rig was provided. 

Nordman and Schollhorn [36, 48] implemented two different excitation techniques, each in a 

different test rig. The first was to apply an excitation using the impact of a 1.2 kgs hammer to a 

rotor supported by two test fluid film bearings (50 mm diameter) [36]. The second method was to 

use a fixed bearing housing combined with two magnetic bearings, which provided both support, 
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and dynamic excitation to the rotor [48]. In both cases, the eight FFDC were estimated. 

Unfortunately, the focus of the rig description was conceptual. 

A recent test rig, capable of testing fluid film bearings up to 300 mm in diameter with maximum 

speed of 20,000 rpm, has been reported in [35]. The rig is driven by a variable speed 670 kW 

electric motor coupled to a 6:1 increasing gearbox. Static and dynamic loads are applied by 

hydraulic actuators to a floating housing instrumented with sensors. The published article provides 

a good description of some components of the rig, but the focus was again more on the description 

than on the design details and decisions. 

The general technique for estimating the FFDC is based on the correlation between an applied 

force and the resulting displacement of the rotor or the housing. Despite this simple relation, it is 

clear from the above descriptions that forces can be applied in many ways (static, dynamic, 

mechanical, impact, hydraulic, etc), producing a variety of rig configurations. Furthermore, even 

two rigs using the same excitation technique can use significantly different technologies in the 

main components [18, 22]. Designing a new test rig requires a consideration of several and 

diverse possibilities, and this demands a broad knowledge and understanding of the experimental 

technique, the quantification of the design requirements, and the available technical choices. It is 

the purpose of this study to provide the designer with the knowledge to quantify the design 

requirements, and understand the different technical choices that may be considered. 

Currently, there is lack of experimental data for fluid film bearings with diameters larger than 

100 mm operating at speeds higher than 15,000 rpm. Likewise, there is a shortage of test rigs 

with the capacity to exceed these two parameters. New rigs should address this deficiency as 

well as provide insight to the existing discrepancy between FFDC obtained from experimental 

tests and analytical predictions [49]. Even in recent comparisons discrepancies around 50% are 

not uncommon [50]. An additional issue is the variation of up to 1000% in FFDC produced by 

bearing codes [17]. The need for new test rigs to keep up with the needs of industry is clear, but 
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there is also a demand for producing experimental data that can be analyzed towards resolving 

the still-present differences between experimental and analytical predictions. 

Thus, the purpose of this chapter is to present a guideline on how to design a test rig to 

accurately determine the eight dynamic coefficients of a radial tilting-pad bearing. Most of the 

recommendations are valid for rigs with other purposes such as studying static parameters, or 

instabilities. This design guideline covers the following sections: 

 

1. The first section describes the needs a new rig should address. Ideally, these needs should 

exist as the input to the process, but if that is not the case some background is provided so 

the designer can assign values to produce a design of ample applicability. 

2. The second section discusses how these needs may be translated into technical design 

requirements for the rig and recommends procedures to obtain the most critical requirements. 

3. The third section explains the main components of a rig and recommends steps and 

considerations for their selection or design. 

4. Finally, a fourth section presents some verification for a design once it has been assembled 

in order, to validate whether or not results are acceptable or if modifications should be made 

to the individual components. 

 
4.1 CUSTOMER NEEDS FOR A TEST RIG 
 

The starting point for the design of a test rig is the existence of some customer 

(industry/research) needs to obtain experimental data for fluid film journal bearings. These needs 

are later translated into design requirements, which are the technical benchmarks for the design. 

Therefore, the designer needs to understand the connection between needs and requirements. 

This section covers some of the important needs to be satisfied by the rig and provides 

background on how their variation can affect the design requirements. The analytical predictions 

of tilting-pad fluid film bearings in this chapter, were performed using MAXBRG, which is an 
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industry-standard finite-element based computer code that performs steady state thermo-elasto-

hydrodynamic (TEHD) analysis [23]. 

 
4.1.1 Test bearing parameters 
 

Often, a customer has the need to obtain experimental data for some specific bearings. Then, 

a list of these bearings, including their geometrical parameters, is an ideal input for the designer 

of the test rig. On the other hand, while a single critical test bearing will define most of the design 

requirements, it may not supply the complete picture that the designer needs. In lieu of this list, 

the following paragraphs present how certain features of the bearing to be tested could affect the 

design requirements of the rig. 

 

4.1.1.1 Journal diameter 
 

The journal diameter has a direct influence on the following design requirements: 

 The peripheral surface speed. 

 The power requirement for the test bearing. 

 The oil flow rate to the test bearing. 

Most rigs have tested bearings under 100 mm in diameter. Hence, there is a current interest 

to experimentally observe the behavior of bearings with larger diameters and achieve peripheral 

speeds (the product of journal diameter and rotating speed) higher than 115 m/s, that induce a 

turbulent flow regime in the oil film. The peripheral speed is directly related to the viscous shearing 

losses per length of a fluid film bearing and, therefore to the power required to test the bearing. 

The journal diameter, also has a direct influence on the oil flow rate required by the test 

bearing, as can be seen in figure 4.1, where the flowrate (obtained from MAXBRG) is plotted as 

a function of journal diameter at several rotating speed for a set of similar geometrical bearing 

parameters. 
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Figure 4.1: Flowrate vs Journal diameter (ISO VG 32) 

 

4.1.1.2 Bearing length. 
 

This dimension is usually expressed by the length to diameter ratio, or L/D of the bearing, and 

has a direct influence on the following design requirements: 

 The oil flow rate. 

 The power requirements. 

 The value of the dynamic coefficients. 

For instance, a 127 mm diameter bearing with an L/D ratio of 0.75 spinning at 20,000 rpm is 

predicted by MAXBRG to require 109.4 l/min (28.9 GPM) of lubricant, to dissipate 109.35 kW 

(146.6 HP) in viscous losses, and to have a Kyy of 45,585 N/m. An otherwise identical bearing 

with a L/D ratio of 0.5 is predicted to require 76.65 l/min (20.25 GPM), 72.7 kW (97.5 HP) in 

viscous losses, and has a Kyy of 21,083 N/m. In this case, the oil flow rate and power requirements 

scale approximately with L/D, but Kyy does not. 

 

4.1.1.3 Bearing offset. 
 

This feature has an impact on: 
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 The oil flow rate. 

 The temperature of the pads. 

 The value of the dynamic coefficients. 

Bearings with central-pivot pads(offset=50%) usually exhibit higher pad temperature [51], 

require smaller oil flow rates, and have lower stiffness properties than bearings with offset-pivot 

(typical offset= 55 or 60. As an example, a 127 mm diameter central-pivot pad bearing operating 

at 20,000 rpm is expected to require 20.44 l/min (5.4 GPM) of oil, and have a maximum pad 

temperature of 126.4° C (259.5° F) with a Kyy of 31,400 N/m. The same bearing with an offset of 

0.6 is expected to need 108.25 l/min (28.6 GPM) of oil, and have a maximum pad temperature of 

115.5° C (240° F) with a Kyy of 50,251 N/m. 

 
4.1.2 Rotational speed 
 

The desired maximum rotational speed is of critical importance for the test rig designer and it 

should be obtained/derived from the needs of the end user. Nowadays, only a few test rigs have 

the capability to operate at 20,000 rpm or faster [35]. The operating speed has an influence on: 

 The viscous losses, which are a quadratic function of speed (figure 4.2). 

 The maximum temperature of the test bearing. 

 The selection of the driver equipment. 

It should be noted that electric motors or turbines with rotating speeds higher than 12,000 rpm 

are usually customized designs, due to the technical challenges involved. The minimum speed at 

which bearings are expected to be tested in a test rig must also be taken into consideration, due 

to limitations in the operational range of driver equipment. 

 

4.1.3 Lubricants 
 

ISO VG 32 is the generic denomination for the most common lubricant used in fluid film 

bearings for industrial applications, but it is not the only one. Therefore, it is recommended to 
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confirm needs of additional lubricants in the test bearings and to check the specifications of these 

lubricants. The following actions are suggested: 

 Analyze the expected bearing cases using each desired lubricant to understand how the 

design requirements (power, temperature, and expected dynamic coefficients) will be 

affected. 

 Consider the impact of independent lubrication systems for each lubricant, including area 

of installation, quantity of connections and provisions for satisfactorily cleaning traces of the 

previous lubricant in use, when a change of lubricants is performed. 

 

 

Figure 4.2: Viscous Power vs Rotating speed 

 

 
4.1.4 Utilities 
 

The test rig should be installed in a facility with sufficient resources for its operation. A single 

test bearing of 127 mm in diameter and operating at 20,000 rpm is predicted to have viscous 

losses on the order of 100 kW. Assuming a margin to account for other power demands of the 

rig, an approximate demand of 150 kW is reasonable. Hence, it is important to confirm if the facility 
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and surrounding grid have the capacity to supply the required power, or the equivalent energy in 

steam or pressurized. 

It is important to note a test rig operates with auxiliary equipment including: pump(s) and/or 

fans for the lubrication system(s), hydraulic system(s) for the exciters, a cooling system for the 

Variable Frequency Drive (VFD), as well as instrumentation and data acquisition systems. A 

complete power estimation is important to confirm the total required demand. 

Another significant consideration is the removal of heat generated by the test rig. The 100 kW 

viscous loss of the test bearing mentioned in the previous paragraph increases the temperature 

of the lubricant, and the typical means to remove this heat is through water or air heat exchangers. 

A water heat exchanger of appropriate size would require approximately of 70 l/min of water, 

which should flow in a closed industrial circuit and be recycled for cooling treatment. 

 
4.2 DESIGN REQUIREMENTS 
 

The design requirements are the set points the design must meet and are derived from the 

customer needs. For example, a customer wants to dynamically test a given set of bearings with 

a desired speed range and a defined lubricant. It is the designer’s job to ensure the rig has enough 

power, lubricant flowrate, and the capacity to operate, at the desired speed range with the defined 

lubricant. Therefore, this section will cover the calculation of the design requirements for a rig. 

 
4.2.1 Maximum power required by the test section. 
 

The power consumed at any instant during the rotation of the test rotor must be supplied by 

the drive train. Therefore, the maximum power requirement is a key quantity for selecting the drive 

train. This estimation should include viscous losses in the test bearing(s) along with any other 

bearings in the train and test section, and windage losses, if relevant. 

The power requirement for the test bearing(s) is found at the maximum rotational speed, the 

maximum journal diameter, and the maximum bearing length. The properties of the lubricant and 
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geometrical features of the bearings to test, such as the clearances and the preload have a 

dominant effect on the power; however, their impact is predicted by coupled partial differential 

equations [23]. Hence, it is advisable to analyze all these conditions using a TEHD bearing code, 

such as MAXBRG, and to apply a suitable safety factor (SF) in the absence of code validation. 

Other bearings to consider in this requirement include those that support the test rotor, and 

the bearings in any other equipment in the drive train, for example an increasing gearbox. As a 

reference point, a 76.2 mm diameter fluid film bearing could require approximately 7.45 kW at 

20,000 rpm. Windage losses will generally be small compared to viscous losses in fluid film 

bearings; however, they should be calculated, as each design condition is different [52]. 

 
4.2.2 Oil flow rate 
 

The estimated oil flow rate should include the test bearing(s) along with any other bearings 

and equipment to provide a total requirement for the test rig. 

The maximum oil flow rate required by the test bearing(s) is estimated at the maximum 

rotational speed, the maximum journal diameter, and the maximum length of the bearing, for a 

condition with a 60% pad offset. However, iterations with increased flow rates may be required to 

obtain cooler bearings, or to meet an American Petroleum Institute (API) recommendation that 

the temperature increase of the lubricant should never exceed 28 K [53]. It is again recommended 

to use a TEHD bearing code and a suitable SF. 

A similar process should be followed for other fluid film bearings in the rig to find their 

maximum lubricant flow rates. However, bearings within the scope of supply of purchased 

equipment (gearbox, electric motor, turbine, etc.) may have required oil flowrates defined by their 

manufacturers. 

Along with these estimations, it is recommended that all bearings be designed for the same 

lubricant to have the benefit of sharing one single lubrication system for the rig. Using different 

lubricants will add more cost and technical complexity. 
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4.2.3 Maximum dynamic force 
 

The designer needs to determine the magnitude of the maximum dynamic force the rig will 

have the capacity to apply during a test to find the dynamic coefficients of a bearing. This 

magnitude drives the selection of the dynamic exciters and impacts the selection of the load 

transducers. 

From previous design requirements, the most critical bearing cases should have been 

analyzed using a TEHD bearing code, which should also provide expected values for the dynamic 

coefficients. Now, the designer should consider the largest magnitude of dynamic coefficients as 

they will provide the highest force magnitude. Equations (4.1) and (4.2) can be used to calculate 

the expected dynamic forces and displacements for a given set of dynamic coefficients: (𝐾  −  𝑀𝜔 ) + 𝑖𝜔𝐶𝐾 + 𝑖𝜔𝐶 𝑋 = 𝐹𝐹    (4.1) 

𝐾 + 𝑖𝜔𝐶(𝐾  −  𝑀𝜔 ) + 𝑖𝜔𝐶 𝑌 = 𝐹𝐹    (4.2) 

where X and Y are the maximum amplitudes of the planned dynamic oscillation, in those 

orthogonal directions; Fx1 and Fy1 are the forces in complex form, in orthogonal directions x and 

y, required to produce an oscillation of amplitude X; Fx2 and Fy2 are the forces in complex form to 

produce an oscillation of amplitude Y; M is the expected mass for the bearing housing or the test 

rotor, depending on whether the design is considering a floating or fixed bearing housing; and ω 

is the frequency of the excitation. 

The amplitude of the dynamic forces is given by (4.3) and (4.4): 

Fx = |Fx1 + Fx2|  (4.3) 

Fy = |Fy1 + Fy2|  (4.4) 

Usually, the amplitude of X and Y should be between 2.5 and 12.7 μm 0-Pk [4]. The exact 

value is determined by considering the resolution of the displacement sensors and the expected 

uncertainty for the dynamic coefficients. Additionally, the larger the oscillation and force, the more 
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restricted the selection of the exciter. For example, for a 5-inch diameter bearing with a specific 

load of 3.1 MPa, MAXBRG predicts the relatively stiff dynamic coefficients as shown in table 4.1 

and equations (4.1) – (4.4) give the dynamic force for a 2.5 μm oscillation to be approximately 

5,400 N. For a 12.7 μm oscillation the required force increased to 27,100 N. 

 Values 
Kxx [N/m] 1.55e+09 
Kxy [N/m] 10.60e+06 
Kyx [N/m] 19.25e+06 
Kyy [N/m] 1.55e+09 
Cxx [N-s/m] 0.65+06 
Cxy [N-s/m] 2.90+03 
Cyx [N-s/m] 0.87+03 
Cyy [N-s/m] 0.65+06 

Table 4.1: Values of dynamic coefficients 

 
4.3 DESIGN/SELECTION OF COMPONENTS 
 

A test rig to identify dynamic coefficients of a fluid film journal bearing will, in general, be an 

assembly of the following components: a drive train, a bearing housing, a system to apply dynamic 

forces, rotor couplings, a baseplate, a lubrication system, and a set of instrumentation. This 

section provides recommendations for the selection or design of these components (figure 4.3). 

 

 

Figure 4.3: A test rig and main components 
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4.3.1 Drive train selection 
 

The drive train includes all pieces of equipment to mechanically drive the spinning of the test 

rotor. A satisfactory selection must meet the following conditions: 

 

 Provide the required power for the rig to operate at the most demanding conditions. 

 Operate over the expected range of rotating speeds. 

 Provide the required torque at all operating conditions. 

 Operate with the available utilities. 

 

Due to the current shortage of test rigs able to rotate at 20,000 rpm and higher, two common 

alternatives for achieving this specific purpose will be considered here. One alternative is to select 

a single piece of equipment, with its output rotor capable of spinning at the range of required 

speeds and providing the required power and torque. This equipment could be, for instance, a 

variable speed electric motor, or a steam/pneumatic turbine. A second alternative is a two-piece 

set, where the rotor of the first piece meets the power requirements, but with a reduced range of 

speed, and is then mechanically coupled to the second piece of equipment. The second piece of 

equipment then increases the rotating speed, so the test rotor can spin at the desired speeds but 

does not add any power. An example of this second arrangement is shown in figure 4.4 for a 

variable speed electric motor with a maximum speed of 4,400 rpm, connected to the low-speed 

shaft of an increasing gearbox with a speed ratio of 5.0, which means the high-speed shaft of the 

gearbox could spin up to 22,000 rpm. Table 4.2 summarizes some advantages and 

disadvantages of these two alternatives. 
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Figure 4.4: Drive train: electric motor & gearbox 

 

 Advantages Disadvantages 
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 The density of equipment for the 
rig will be lower than in other 
configurations 

 The modal behavior of the 
assembly will contain less 
resonant modes. 

 During operation, only one point 
of alignment (driver - test rotor) is 
required. 

 The thermal expansion of a single 
driver is simpler, and alignment 
adjustments will probably be only 
in the vertical direction 

 The equipment will be custom 
designed and manufactured. 

 Only a few manufacturers are 
specialized to supply high-speed 
drivers. 

 If the driver is an electric motor, 
liquid cooling could be required 
for the coils and the bearings 
(utilities should be confirmed) 

 A turbine could decrease even 
more the density of equipment in 
the rig, but it is quite unusual to 
have a supply of steam or 
compressed air 
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 More manufacturers can be found 
to supply a low-speed driver. 

 The driver could not be exactly a 
standard product, but 
manufacturers are much more 
familiar with providing solutions at 
low speeds. 

 The lubrication system for a low-
speed driver is usually simpler. 
Bearings could even be grease 
lubricated. 

 The addition of the gearbox 
increases the density of 
equipment for the test rig: 
additional lubrication demands, 
additional instruments, and more 
electrical connections. 

 The gearbox will probably 
introduce three additional 
resonant frequencies (lateral, 
twisting, and axial mode) to the 
modal behavior of the assembly 

 During operation, two points of 
alignment will be required. 

 The thermal expansion of a 
gearbox is more complex, and 
alignment will include horizontal 
and vertical adjustments.  

Table 4.2: Pros / Cons Single equipment vs Equipment + Gearbox 
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It is important to keep in mind that rotating drivers have limitations as to the minimum speed 

they can achieve and in their range of operation. Furthermore, the efficiency is affected by 

significant changes in speed and load; for instance, the efficiency of a National Electrical 

Manufacturers Association (NEMA) motor may drop below 50% of its maximum value if the load 

(a quadratic function of speed for radial bearings) is decreased to approximately 10% of the full-

load [54]. Therefore, the designer needs to analyze the alternatives for meeting this minimum 

speed requirement and the consequences in terms of energy. 

 
4.3.2 Bearing housing 
 

Bearing housings are not usually available to select and purchase. Therefore, it is likely they 

will have to be designed and manufactured for the specific installation. It is recommended the 

following points be clearly defined: 

 

 External physical dimensions of the test bearing(s) to be installed in the bearing housing. 

 Definition of whether the bearing housing is floating or fixed. In the floating bearing housing 

configuration, the housing is not rigidly attached to the rig and oscillates around the test 

rotor in response to excitations received by the housing. In a fixed housing configuration, 

the housing is attached to the rig. The test rotor receives the dynamic excitations and 

oscillates with respect to the housing in response to those excitations. 

 The maximum oil flow rate required by the test bearing(s). 

 

The details and dimensions of the test bearing serve two purposes: to define the dimensions 

of the interface between housing and bearing as well as the size and location of the connections 

between the lubricant inlet/outlet ports of the bearing and the housing. Usually, the cartridge of 

tilting pad bearings contains an anulus, so the lubricant directly feeds each pad. The housing 
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should then have an equivalent cavity for the lubricant passage. Unfortunately, there are no 

published standards or industrial recommendation as to the size of this cavity. However, a 

recommendation in [55], points to flow velocities from 1 to 5 m/s, for single-phase liquid lines; and 

velocities from 3 to 5 m/s are indicated in [56], being careful not to reduce the static pressure of 

the lubricant. 

The interface between the outlet ports of the bearing and the housing is a work of dimensional 

detail, and probably the main challenge is to size an adequate drainage in the bearing housing 

due to the lack of standards. For the 127 mm diameter bearing considered in previous sections, 

the maximum oil flow rate to drain is around 148 l/min, which is a rate that can flood a housing in 

less than 3 seconds. Fortunately, for sizing the drainage there is an industrial recommendation in 

[57] that suggests a pipe diameter of 150 mm for a flowrate of around 170 l/min, with a lubricant 

velocity of less than 0.38 m/s, and no more than half the cross-sectional area of the pipe wetted 

by the lubricant. The difficulty with this recommendation is to accommodate this large drainage 

area in the housing. 

The housing design also needs to consider the drain method in the bearing. Some bearings 

have axial end seals to restrict axial drainage and direct the lubricant through outlet ports in the 

bearing cartridge. Adequate inner channels should be included in the design of the bearing 

housing, for these bearings. 

For a floating housing configuration, it will be simpler to assign the area for the drain, because 

all surfaces are free of any attachment to the rig. The lubricant drains by gravity and the best area 

for locating the drain is the bottom surface of the housing. For a housing in a fixed configuration, 

the bottom surface may be attached to the rig forcing the drain to be through the lateral surfaces. 

A disadvantage of a lateral drain is that one single drain will increase the housing dimensions and 

weight. However, an alternative is a split drain, as shown in figure 4.5, which is a design for a 

housing fixed to a baseplate, draining a maximum oil flow rate of 148 l/min trough two lateral 

drains. 
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Figure 4.5: A bearing housing for a fixed configuration (lateral drain) 

 

An additional detail to be considered for floating housings is their tendency for axial 

misalignment with respect to the bearing journal, due to the lack of a rigid support. This 

misalignment will be reflected as a conical vibration of the housing when excited. A solution to 

this situation in many housings is to include tensioning wires connecting the housing to fixed parts 

of the rig. Usually, the connection points on the housing are distributed at 120 degrees, over the 

circumference [22]. By individually tensioning these wires, the axial alignment of the housing can 

be kept within adequate levels. 

On the other hand, for a fixed housing configuration the dynamic excitation will be applied to 

the rotor, often by use magnetic actuators. Therefore, the test rig will have a test section holding 

the housings for two magnetic actuators as well as the test bearing. These additional masses 

introduce an effect on the dynamic behavior of the test rig, similar to an inverted pendulum. In this 

case, it is recommended to perform a modal analysis of the test rig structure, to confirm 

resonances in the expected range of operating frequencies for the rig. Reducing the mass of the 

bearing housing will increase the associated resonant frequencies and probably eliminate any 

potential operating interferences. The use of lighter material for the housings is also a possibility 

if dynamic interferences are a concern. 
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4.3.3 Dynamic excitation system 
 

Most techniques to estimate the dynamic coefficients rely on the application of dynamic 

excitations, either to the rotor or the bearing housing. For floating housings, the excitation is 

usually applied by means of two hydraulic linear actuators [18, 22], located orthogonally, while for 

fixed housings the excitation can be applied to the rotor by using magnetic radial actuators [48]. 

The mentioned actuators have the capacity to apply single or multi-frequency excitations, at a 

wide range of frequencies. Unbalance masses are not considered here due to their lack of 

flexibility in the excitation frequency to apply. 

An adequate excitation system should meet the following requirements: 

 Maximum dynamic force. 

 Expected range of excitation frequencies. 

Hydraulic linear actuators can be selected from various suppliers, and the complete system 

will require a hydraulic cylinder, a controller, and a hydraulic console. Standard available systems 

can provide sinusoidal forces up to 10,000 N at frequencies between 5 and 1,200 Hz, which 

should meet the requirements of most dynamic tests. 

Magnetic radial actuators are systems comprising a magnetic stator piece with an electric coil 

to generate the required magnetic fields, a magnetic journal that is typically shrunk fit onto the 

rotor, an amplifier, a controller, and sensors [58]. Such a system may be difficult to buy off-the 

shelf, but may be developed in collaboration with a few specialized companies or designed in-

house. An in-house design should combine a design effort with selection of some components. 

The design effort for a magnetic actuator should initially focus on the geometrical design of the 

stator, which in conjunction with the parameters of the coil will determine the maximum levels of 

magnetic force that the actuator can apply to the rotor. Variations in the electrical currents 

circulating through the coils, which are commanded by the controller/amplifier, generate the 

desired oscillating shape of the dynamic force. Standard amplifiers may offer loop times of 50 μs, 
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which means that 2,000 discrete points will be available to represent one cycle of a 500 Hz 

sinusoidal wave, offering an adequate representation. 

The design of the magnetic stator is a bit of an art with a number of potential geometrical 

configurations and magnetic materials available. A full finite-element package such as ANSYS 

may be used to increase the speed and accuracy of the estimations. There are also free available 

tools such as Finite Element Methods Magnetic (FEMM), which performs 2-D magnetic 

calculations. Figure 4.6 shows the final design iteration of a stator and its coil arrangement, 

performed with the assistance of FEMM, for a magnetic radial actuator. The designer needs to 

define the materials and the geometry in a trial-and-error process, while FEMM calculates the 

magnetic field and force. The design requirement was that the actuator was able to provide 21,500 

N of maximum force, including the static and dynamic loading. 

 

 

Figure 4.6: Magnetic bearing actuator 

 
4.3.4 Baseplate 
 

The baseplate is a common steel structure where some pieces of equipment, as defined by 

the customer, are installed and assembled for their operation. It is the interface between the civil 

foundation and the machine components and should be designed to provide stiffness and 

structural stability for the installation and operation of the assembly as a unit. The focus of this 
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section is the design of a baseplate to install the driver train and the test section of the rig (figure 

4.7). 

 

 

Figure 4.7: A baseplate for a test rig 

 

A preliminary selection of the equipment to install on the baseplate should have been 

performed before starting the design of the baseplate. It is paramount to be based on the physical 

dimensions of the driver (electric motor, turbine, etc.), gearbox (if applicable), and the test section, 

which includes the bearing housing and supporting bearings. It is especially important to have, 

for each piece of equipment, the details and dimensions of the base, which defines the attachment 

to the baseplate, the vertical distance to the rotor axis such that the baseplate can align all axes 

should lie in the same horizontal plane, and the total mass. 

All Original Equipment Manufacturers (OEM) of rotating machinery have experience in design 

and manufacturing of baseplates, and working with one of these OEM’s is an efficient method to 

develop a baseplate. The design of a baseplate is basically a structural analysis; hence, an in-

house design of the baseplate is possible with the assistance of a finite element-based 

engineering software. Additional considerations for the baseplate are given in [53]. Two 

recommendations important to consider are the following: 
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 The height of the axes with respect to the bottom of the baseplate should be minimized; 

however, adequate clearance should be provided for the drain piping and connections. The 

pedestals on the baseplate act as an inverted pendulum and the shorter they are the higher 

the resonant frequencies will be and thus less likely to interfere with the operating frequencies 

of the rig. 

 The baseplate should be designed to contain any lubricant leakage and the bottom surface 

of the baseplate should be sloped toward the test section, where a tapped drain opening 

should be located to drain the leakage. 

 

For an in-house design, some consideration should also be given to the manufacturing 

process. The baseplate requires significant welding of structural members and successive 

machining must provide flat surfaces on the pedestals, within tight tolerances. 

One final note here is that although a baseplate is good practice and can facilitate installation 

and alignment, it is not strictly a requirement for a test rig. The designer has the freedom to choose 

other means that may be more appropriate to a specific facility or technical requirements. 

 
4.3.5 Couplings 
 

The couplings mechanically connect two rotors and transmit torque and power from one to 

the other. In the case of a test rig, one or two couplings may be required depending on whether 

the drive train includes a gearbox or not. One coupling would connect the driver to the test rotor 

or the gearbox, and a second coupling would connect the gearbox to the test rotor. 

Couplings are selected from manufacturers based on the following information: 

 

 The maximum torque to be transmitted by the coupling. 

 The maximum speed at which the coupling will rotate. 
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 Tolerance of angular and parallel misalignment. 

 The distance between shaft ends (DBSE), and the type of connection on the end of the 

rotors. 

 The safety features of the coupling. 

 

Usually, the maximum torque is experienced during the acceleration from rest to operating 

speed and it is not unusual to have values of 200 or 300% the maximum torque in normal 

operation (full-load torque). The actual value of this torque depends on the driver equipment, but 

this information may not be available during the design phase. An alternative method is the 

application of a safety factor, as found in design books [59] or from coupling manufacturers, to 

the torque obtained from the maximum rated power of the driver. 

Note that a coupling tolerance to misalignment is not intended to avoid alignment adjustments. 

Rather, the alignment between rotors should always be corrected during the startup; however, 

some small residual misalignment may remain or develop during operation, which may be 

accommodated by a coupling with tolerance to misalignment. This will both increase the coupling 

life and reduce vibration in the test rig related to misalignment. Two additional characteristics to 

examine during the coupling selection are the DBSE and the available connections on the end of 

the rotors. A preliminary layout of the equipment on the baseplate or the foundation should help 

determine the DBSE, and once the coupling is selected minor adjustments could take place in 

the baseplate or the foundation. Most standard couplings are manufactured to connect cylindrical 

or tapered rotors; however, gearbox rotors are usually flanged, which must be considered in the 

coupling selection. 

An all-metal flexible element, spacer-type coupling, is recommended in [53]. For this type of 

coupling, different spacers of different lengths could be provided for the same model, and this 

provides greater flexibility to accommodate the DBSE. Additionally, the flexible elements of this 

type of coupling can absorb angular and parallel misalignment, and some axial stress. This 
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coupling can also be selected with the safety feature that the spacer is retained and not expelled 

during rotation, in case the flexible elements fail due to excessive misalignment, controlling the 

most dangerous safety concern of the coupling. 

Figure 4.8 shows the selected coupling for a low-speed connection up to 4,400 rpm, with a 

nominal torque to transmit of 1,220 N-m (10,800 lb-in). This coupling includes a metallic spacer 

of variable length and flexible metallic elements on both sides to accommodate misalignment. 

The specifications from the coupling manufacturer are on the left bottom part of the figure. 

 

 

Figure 4.8: Selected coupling for a specific application 

 

The universe of types, models, and manufacturers of couplings is substantial, and the 

designer should investigate the available catalogs. Usually, there will be more than one suitable 

standard coupling, and even in difficult selections a customized coupling could be ordered, to be 

designed and manufactured. 

 
4.3.6 Instrumentation 
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Any test rig requires the use of instrumentation to monitor the operation of the rig and to collect 

data during the tests. At a minimum, the designer should consider the following data for monitoring 

purposes: 

 

 Temperature of the internal wiring of the main electrical motor (driver). 

 Temperature of the motor, turbine and/or gearbox bearings (radial and thrust). 

 Relative rotor-bearing displacement (vibration) for fluid film bearings (radial and thrust) in 

the motor, turbine and/or gearbox. 

 Housing vibration of the motor, turbine, and/or gearbox. 

 

Moreover, the tests data also needs to be collected, including: 

 

 Temperature of the bearing pads at different locations, as determined by the analyses to 

be performed. 

 Dynamic displacement of the test rotor. Two orthogonal measurements for at least one 

axial location are required for the identification of dynamic coefficients. 

 Acceleration of the bearing housing. Some identification techniques rely on orthogonal 

measurements of acceleration, instead of using derivations of the dynamic displacements. 

 Dynamic force applied for the identification of bearing coefficients. 

 Magnitude of the static force applied to the test bearing. 

 If specific tests are planned to measure thickness and/or pressure of the oil film, then at 

least provisions for the wiring need to be considered. 

 

Due to the diversity of sensors, some paragraphs are not enough to cover a particular 

selection process. Details about the types of sensors available for each one of the measurements 
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mentioned here, with descriptions of their main technical features are found in [60]. However, 

some important points to consider when selecting sensors for a test rig are: 

 

 The voltage and current required by the sensors. Two alternatives may be considered: to 

include some transformer(s) in the design scope, or to include the power supply items 

within the scope of the purchased sensor(s). 

 Characteristics of the sensor output. Most sensors typically provide their output as a 4-20 

mA dc signal or as a 0-10 vdc signal, though some may use a different scale. Determining 

these outputs is important to specify the required acquisition system (DAQ). 

 The range of measurement of the sensors should meet the specified range of 

measurements. For example, if displacements of 25.5 μm are specified, then the 

displacement sensor should be able to reliably capture displacements in that range. 

 The expected level of accuracy in the measurement. Selected sensors should meet this 

expected accuracy, without magnification, as increased accuracy is typically more 

expensive. 

 The dynamic response of the sensor. A test rig will experience excitations in a frequency 

range from 0 -500 H, and the related sensors should reliably capture those signals. 

 

Finally, details of installation and location are also a consideration. Capacitive sensors are 

one available technology for measuring dynamic displacements in clean environments, with 

enhanced resolutions (1.0 nm) but small measurement ranges (200 μm). On the other hand, eddy 

current sensors operate reliably in oily environments with a range approximately 1,000 times 

larger, but a resolution 50 times larger. It is important that the selected axial location of the sensor 

is not at or close to a nodal location of the mode shape, otherwise the displacement 

measurements will not be significant with respect to the excitation. Ideally, sensors should be 

located close to the midplane of the bearing to avoid issues with the rotor flexibility; however, this 
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is not always achievable, but this situation can be controlled with a suitable identification method 

that includes the rotor flexibility and this miscollocation. Two orthogonal sensors, at one axial 

location, are enough for identifying eight dynamic coefficients with two rounds of excitation; 

however, additional sensors at different locations provide flexibility and the opportunity to confirm 

the repeatability of the identified coefficients. These examples show that a simple selection is not 

always possible; however, additional tools such as the new identification method in chapter 3 and 

the uncertainty analysis in [42] will certainly provide further guidance for comparing cases with 

different locations and technology for the sensors. 

 
4.3.7 Lubrication system(s) 
 

This system supplies the lubricant(s) to all equipment and components of the rig. It is ideal to 

have a single system with a unified lubricant, otherwise the cost increases. Detailed 

recommendations for lubrication systems in [61] should be a starting point for the development of 

particular specifications for the required system(s). These specifications determine the scope of 

the supply and assembly by specialized manufacturers. It is recommended to include in the supply 

the following components: 

 

 A stainless-steel reservoir with at least one breather. 

 A lubricant pump. The required flowrate will be variable depending on the bearing and test 

conditions and solutions should be considered for this situation; for example, a variable 

speed pump or less efficient valve regulation. 

 A check valve and an outlet valve at the pump discharge. 

 A pressure relief / safety valve system. 

 A lubricant heat exchanger. 

 An exchanger fan (in case the exchanger is not water-lubricant type). 

 An adequate lubricant filter. 
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 A heater to supply oil at 120 F. 

 A Temperature Control Valve (TCV) at the inlet to the cooler. 

 Flow control valves to regulate flowrate to the required final points. 

 

Furthermore, the following instrumentation is also recommended for the system(s): 

 

 A level gauge and a temperature indicator in the reservoir. 

 A pressure indicator at the discharge of the pump(s). 

 A temperature transmitter downstream of the exchanger, which will also control the 

operation of the cooler fan. 

 A pressure differential indicator for the filter. 

 Flow meters to confirm the flowrate delivered to each final point. 

 A pressure indicator at the input port to the test bearing. 

 
4.4 ASSEMBLY OF THE COMPONENTS OF THE RIG 
 

Once the individual components of the rig have been designed/selected, the designer should 

consider their assembly and confirm their harmonious integration by running the analyses 

described in this section. 

 
4.4.1 Modal analysis 
 

The test rig will be subjected to harmonic loads and a modal analysis assisted by an 

engineering software such as Ansys or Autodesk Inventor provides resonant frequencies and 

mode shapes. The objective of the analysis is to find possible interferences in the expected range 

of dynamic frequencies to be applied. The input for this analysis is a geometric model of the 

assembly of the rig. This model should include the designed components and representations of 
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the selected equipment, with the location on the baseplate or the foundation. The more detailed 

the model is, the more meaningful the output it provides for design or selection modifications. 

Figure 4.6, for example, shows a lateral resonant mode of the test section, with respect to the 

rotor. The design in figure 4.6 was expected to be excited with frequencies from 0-500 Hz. The 

following observations can be made: 

 

 Different software and modeling approaches may provide different predictions for the 

same mode, so resonant frequencies should be considered as a range, rather than an 

exact value. Critical modes in the operating range of the machine should be examined 

carefully and safety factors may be necessary to ensure adequate separation from the 

resonance. 

 Some sections of the geometrical model may seem to be prone to certain independent 

resonant modes. However, it is recommended not to make that assumption and always 

analyze with a model as complete and detailed as possible. For the example in figure 4.9, 

the lateral mode at 452 Hz seemed to be affected only by the pieces in the figure; however, 

when the concrete foundation was included in the analysis, the prediction was 

unexpectedly reduced to 403 Hz, indicating a strong influence of the foundation on that 

mode. 

 In case of doubts or noticeable non-repeatability in the results, apply mesh refinement to 

critical sections of the model and evaluate the convergence of results. 
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Figure 4.9: Lateral resonant mode for a test pedestal 

 

The recommended time to perform the modal analysis is before any manufacturing process 

has begun to have the possibility for design modifications that eliminate or reduce unwanted 

issues. 

 
4.4.2 Torsional rotordynamic analysis 
 

A torsional analysis should be performed once all rotating pieces of equipment have been 

defined during the design stage. Dimensional and torsional information is required, so data from 

manufacturers is needed (motor, gearbox, coupling). 

 

 

Figure 4.10: A rotating train for a torsional rotordynamic analysis 

 

Once the information of these pieces is available, a lumped torsional model can be generated 

[1], and the critical torsional speeds can be calculated. Figure 4.10 shows an example of a rotating 
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train subject to a torsional analysis. Results are shown as a Campbell diagram, as seen in figure 

4.11. These results indicate a first mode at around 4,000 rpm, which happens coincides with the 

maximum speed of the low-speed section; hence, some action, such as stiffening the softest 

component (coupling), is required to move this mode out of the operating range of the machine. 

 

 

Figure 4.11: Campbell diagram from a rotordynamic analysis 

 

 
4.4.3 Uncertainty analysis 
 

The excitation frequency, the sensors resolution, the rotor flexibility, and the location of the 

sensors affect the accuracy of the obtained dynamic coefficients by producing a window of 

uncertainty. An uncertainty analysis [42] will show if the estimated uncertainties for the designed 

assembly are within the expectations of the customer or modifications should be implemented. 

An uncertainty analysis integrates the lateral rotordynamic model of the test rotor, the expected 

dynamic characteristics of the test bearing, the characteristics (resolution, calibration) of the 

sensors to measure the applied dynamic forces and the subsequent vibration, and the sensor 

location. Changing the model or technology of the sensors and/or their location is typically a direct 

way to reduce uncertainty. 
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4.5 CONCLUSIONS 
 

This chapter has developed a methodology to design a rig by proceeding in four stages: from 

defining customer needs for a test rig, to defining design requirements, then to design and 

selection of components for the rig, to finally performing several design verifications of the rig as 

a unit (with components assembled) to ensure that the design will meet the requirements. 

This chapter provides technical recommendations for the designer in each of the four stages, 

while also providing independent background information and references, so the designer 

understands key considerations and keeps the autonomy to deviate with confidence from the 

recommendations, whenever a different choice is more suitable for the design. 

Performing a detailed design of the components of a rig, that will cost hundreds of thousands 

of dollars, without benchmarks from industry or previous experience could become quite 

expensive in terms of effort, time, and money, due to the lack of certainty. Therefore, this chapter 

provides as many benchmarks as possible, based on industrial recommendations and the 

experience of the authors. References are also given, for the designer interested in getting more 

illustration. It is the purpose of this article to guide the detailed design with reference points so 

that the designer has more technical confidence and can proceed more efficiently. 

Some important points for the design of a test rig for obtaining dynamic coefficients can be 

summarized as: 

 

 The decision of having a floating or fixed bearing housing is usually left to the designer, 

and it will impact the type of the exciter system, the selection of important sensors, and 

the design of the baseplate and the foundation. Therefore, it is a critical decision and the 

designer should reflect on the advantages and disadvantages, including cost and technical 

impact, of each alternative. 



106 
 

 
 

 As the rotating speed is higher and the journal diameter is larger, the rig will demand more 

power, and it is more important to confirm the available utilities and support infrastructure 

that can be supplied. 

 Modern TEHD bearing codes are a useful tool to estimate the behavior of bearings and 

define design requirements. However, results should be considered with an uncertainty 

window, due to the lack of validation, and for design purposes the use of a reasonable 

safety factor is recommended. 

 The drive train must provide the power required by the test bearing, but their rated power 

should not be excessive or the life of the driver could be reduced and the equipment will 

always operate at less than optimal efficiency. 

 The baseplate may seem to be a structure to provide support. However, the modal 

analysis shows the significant influence of the baseplate and the foundation on the 

dynamic characteristic of the rig. It is recommended to do the modal analysis during the 

design stages, when modifications can still be performed, and before any manufacturing 

begins. 

 The rotordynamic analysis is a critical validation of the design, because torsional vibration 

is not typically monitored. Fortunately, couplings are normally the softest torsional element 

and the designer may modify their stiffness to displace the resonant frequencies away 

from operating speeds. 
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CHAPTER 5 
 

 

 

CONCLUSIONS 
 

This dissertation has developed three objectives that have led to analyses and methods to 

increase the accuracy of experimentally identified dynamic coefficients of fluid film journal 

bearings. Chapter 2 presented analyses on uncertainty estimations applicable to experimental 

dynamic coefficients obtained by single-sample single-frequency dynamic tests. Chapter 3 

considered how the experimental identification of the dynamic coefficients of a fluid film journal 

bearing is affected by test rotor flexibility and the location of the displacement sensors, which are 

usually not located at the midplane of the bearings. Finally, Chapter 4 developed a set of 

guidelines for researchers involved in the design of a test rig for the dynamic characterization of 

radial fluid film bearings. 

The conclusions of this dissertation are presented in this chapter, divided in three groups 

according to the chapters and objectives to which they refer. Recommendations for possible 

research lines that extend these objectives are presented at the end. 
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5.1 RESEARCH CONCLUSIONS 
 

This section presents the conclusions applicable to the analyses and the method proposed in 

Chapter 2, related to the uncertainty estimation of experimental dynamic coefficients obtained by 

single-sample single-harmonic frequency tests. 

 

1. The non-linear nature of the dynamic coefficients produces detectable inaccuracies in 

uncertainty estimations generated by the Taylor Series Method (TSM), despite the TSM being 

the most prevalent method to estimate uncertainties for dynamic coefficients obtained by 

single-sample single-frequency dynamic tests. 

2. The non-linearity of the dynamic coefficients produces asymmetric uncertainty bounds, 

whereas the uncertainty estimations by the TSM assume symmetric bounds. 

3. Neglecting higher order terms in the uncertainty analysis, as is typically done with the TSM 

can lead to significant errors in the uncertainty estimates for the dynamic bearing coefficients. 

For the examples evaluated in this work, 2nd order terms were found to range from 18% to 

45% of the most significant 1st order term for each coefficient. 

4. The Monte Carlo Method (MCM) is presented as an alternative method to estimate the 

uncertainties in experimentally derived dynamic coefficients. Uncertainty estimations by the 

MCM more accuratetly represent the nonlinearities and asymmetries of the dynamic 

coefficients, without any additional correction or inspection of accuracy. 

5. Transforming the random uncertainty of sensors from the time domain to the frequency 

domain significantly reduces the uncertainty estimations of the dynamic coefficients. 

Traditional uncertainty analyses apply the random uncertainty of the sensors in the time 

domain. For the examples in this dissertation, this produced uncertainty estimations from 5 to 

82%. However, from the same input data and conditions, the use of the novel method 

proposed here produces uncertainty estimations of less than 6% for the coefficients, and less 
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than 2% for Kyy and Cxx, which is certainly a remarkable improvement in the accuracy of the 

coefficients. 

 

This section now covers the conclusions related to the new method proposed in Chapter 3 to 

allow a more accurate identification of the eight dynamic coefficients of a fluid film journal bearing. 

 

1. The novel method in this dissertation assumes that the dynamic displacement of the rotor at 

any axial location is a function of the dynamic bearing coefficients. Therefore, this method 

improves the accuracy of the identified dynamic coefficients by accounting for the location of 

the displacement sensors and eliminates errors due to the sensors not being located at the 

bearing midplane. 

2. This proposed method also has the advantageous of not being restricted to only one rotor-

bearing(s) configuration and has been applied by numerical simulation to three different rotor-

bearing configurations. The first is a single floating test bearing around a flexible test rotor, 

which is a very common configuration in test rigs, and requires the identification of four direct 

and four cross-coupled dynamic coefficients. The second configuration is two identical test 

bearings supporting a flexible test rotor, which again requires the identification of four direct 

and four cross-coupled dynamic coefficients. The third configuration is two different test 

bearings supporting a flexible rotor, which requires the identification of eight direct and eight 

cross-coupled coefficients. The second and third configurations are common arrangements 

for rotating machinery. In numerical simulations of all three cases, the proposed method was 

used to identify all direct and cross-coupled dynamic coefficients with an error of less than 

0.001%. 

3. The identification method, as proposed, requires the application of two independent harmonic 

excitations as may be applied by magnetic bearings or shakers, or in the form of unbalance 

masses or impact forces with instrumented hammers. Additionally, different testing conditions, 
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as given by the combination of excitation methods and sensor location lead to different 

condition numbers for the matrix [Δ]. The identification method is sensitive to this condition 

number and large condition numbers may produce difficulties with convergence and 

identification of the right dynamic coefficients or to an excessive amplification of signal noise 

in experimental measurements that will finally lead to a non-convergence of the method. 

4. The ability of the method to keep the uncertainty of the identified coefficients within acceptable 

bounds was tested by performing uncertainty analyses that propagated values of random 

error in the displacement sensors. 30 out of the 32 identified dynamic coefficients, during the 

numerical validation had values of uncertainty smaller than 20%. This included the cross-

coupled coefficients, which are highly sensitive to signal noise and measurement errors. 

 

Finally, this section presents the conclusions of the work developed in Chapter 4. 

 

1. This dissertation has developed a methodology for designing a test rig by proceeding in four 

stages: from the customer needs, to defining design requirements, to design and selection of 

the rig components, to finally performing design verifications of the rig as a unit (with 

components assembled) and validating that the design meets the requirements. 

2. Technical recommendations are provided for the designer for each of the four stages, but it is 

also intended to provide independent background, so the designer understands key 

considerations and maintains the autonomy to deviate with confidence from the 

recommendations where a different choice is more suitable for the design. 

3. Detailed design of the components of a rig that meets current industrial needs will likely cost 

on the order of hundreds of thousands of dollars. Without benchmarks from industry or 

previous experience, this effort could become quite expensive in terms of effort, time, and 

money, due to the lack of certainty. Therefore, this dissertation provides as many benchmarks 

as possible, based on industrial recommendations and the experience of the authors. It is an 
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intent of this guideline to provide reference points so that the designer has more technical 

confidence and can proceed more efficiently. 

4. Specific technical points for the design of a test rig for obtaining dynamic coefficients can be 

summarized as: 

 

 The decision to have a floating or fixed bearing housing is usually left to the designer, and 

will impact the type of exciter system, selection of important sensors, and design of the 

baseplate and foundation. Therefore, it is a major decision and the designer should reflect 

on the advantages and disadvantages, including cost and technical impact, of each 

alternative. 

 As the rotating speed is higher and the journal diameter is larger, the rig will demand more 

power, and it is important to confirm the available utilities and support infrastructure. 

 Modern TEHD bearing codes are a useful tool for estimating the behavior of bearings and 

defining design requirements. However, results should be considered with an uncertainty 

window, due to the lack of validation, and for design purposes the use of a reasonable 

safety factor is recommended. 

 The drive train must provide the power required by the test bearing, but it should not be 

excessively oversized, or the life of the driver could be reduced and the equipment will 

always operate at far lower than optimal efficiency. 

 The baseplate is, at first sight, a structure to provide support. However, the modal analysis 

reveals the significant influence of the baseplate and the foundation on the dynamic 

characteristic of the rig. It is recommended to perform a modal analysis during the design 

stages, when modifications can still be made, and before any manufacturing begins. 

 The rotordynamic analysis is a critical validation of the design, because torsional vibration 

is not typically monitored. Fortunately, the couplings are normally the softest torsional 
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element and the designer may modify their stiffness to displace the resonant frequencies 

away from the operating speeds. 

 

5.2 RECOMMENDATIONS / FUTURE WORK 
 

Based on the major findings of this dissertation, the following recommendations for future work 

are presented: 

 

1. The analyses of uncertainty estimations, as developed in Chapter 2, have been proven here 

for dynamic coefficients obtained by single-sample single-frequency dynamic tests. However, 

an extension of these analyses should confirm if these results are also applicable to other 

techniques of dynamic testing; for example, multi-sample multi-frequency. 

2. The new method, proposed in Chapter 2, to find the uncertainty estimations of dynamic 

coefficients was presented for specific sampling rates, and for time periods that are exactly 

an integer multiple of the period of the analyzed harmonic signal. However, more general 

conditions, including different sampling rates and different time periods are also possible. 

Analyzing these results under more general test conditions could provide additional insight 

into the behavior of this new method. 

3. The new method, proposed in Chapter 3, to identify the dynamic coefficients of fluid film 

journal bearings is sensitive to the condition number of the matrix [Δ]. Therefore, more 

exhaustive research on preconditioning methods, that do not modify the behavior of [Δ] but 

improve its condition number, could expand the applicability of the method to more general 

test conditions and possibly make it simpler, for example, by reducing the required number of 

harmonic excitations to apply. 

4. The new method, proposed in Chapter 3, to identify the dynamic coefficients of fluid film 

journal bearings has been validated numerically. However, additional comparisons to 
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experimental data would provide valuable data on the experimental behavior of the method 

before using it as a primary method. 

5. The guideline for the design of a test rig, presented in Chapter 4, covers the main components 

and the most relevant background required by a designer. However, this guideline could be 

expanded with more details by including future stages of construction, installation and start 

up. 
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