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Abstract 

Tracking human activity and fitness have been the latest trends in the world of wearable technology. 

Inertial sensors offer a practical and low cost method for objectively monitoring human movements, and 

particularly have the applicability to monitor free-living subjects. Shoes, smart phones, watches and other 

wearables equipped with inertial sensors are able to capture human motion in a non-obtrusive way. 

Similar sensors are placed on several positions on the human body to monitor a range of different 

movements, including gait, sit-to-stand transfers, postural sway and limb movements. Inertial sensors 

have provided a simple and reliable approach to collect human kinematics data. The inertial data collected 

by these sensors contains valuable information related to human movements, which can be used to 

monitor and assess the health of a person. But the field of wearable technology still struggles to develop a 

methodology which can derive relevant information, from the raw inertial data, to aid in health 

assessment. 

This work presents a framework to extract information from raw inertial data corresponding to human 

motion. The framework is a sequential learning process coupled with application-specific knowledge. 

This framework has three stages: data preparation, feature engineering and information extraction. The 

first stage converts the raw data into usable data, the second stage extracts relevant attributes from the 

data and the third stage derives information from these attributes to aid health assessment. A number of 

techniques can be used at each of the stages, and the appropriate ones are chosen by employing 

application-specific knowledge as the cornerstone. 

I will be implementing the framework on two real world case studies; one studies the relationship 

between inertial features and gait pathology in Multiple Sclerosis and the other one deals with 

classification of head impacts in contact sports using inertial sensors. The information derived from both 

the case studies has the potential to serve as a tool to monitor the health of a person.   
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Chapter 1  

1   Introduction  

Over the past decade, the use of mobile sensors has become an integral part of the modern lifestyle. With 

the advent of micro-electro-mechanical systems (MEMS), the physical size of sensors was reduced to the 

order of millimeters, thereby making them easier to integrate with systems. Systems are able to analyze 

situations and make decisions with help of sensors, thereby transforming them into smart systems. 

Sensors are now employed in a wide range of applications from detecting DNA sequences to monitoring 

the environmental conditions on Mars. 

One of the applications, where sensors have been immensely useful is fitness tracking of human subjects. 

Over the past few years, kinematic measurements have been widely used by clinicians for medical 

diagnosis[1]–[5]. Such measures are used to quantify both normal and pathological movements, quantify 

the degree of impairment, plan rehabilitation strategies and assess the effect of various interventions. 

Small, low-powered inertial sensors have helped with the collection of kinematic measurements from 

human motions and provided the potential for dynamic three-dimensional motion analysis. These sensors 

measure rigid kinematic motion, such as acceleration by accelerometers and angular velocity by 

gyroscope. They are currently used in real world scenarios to gather accurate and high resolution data 

corresponding to human motion. 

Inertial sensors are used to study human kinematics for a wide variety of applications [1]. Lieber et al [4] 

described the role played by accelerometers in recording and predicting falls, recording and predicting 

freezing of gait, and evaluating postoperative recovery of subjects. Goodwin et al [6] developed a 

dynamical system using inertial sensors to study the spinal motion. Jamsa et al [7] showed that there 

exists a significant relationship between accelerometer-based data and proximal femur bone mineral 
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density. Wong et al [8] monitored the human trunk movements using inertial sensors. Daukantas et al [9] 

utilized an accelerometer based sensor for extracting information related to the performance of a 

swimmer. Gong and Lach [10]  employed inertial sensors to enhance the robotic surgical training process. 

The location of the sensors and the information extracted from the inertial data are different across 

applications, but they share elements such as noise and human motion data. This noise may be due to 

improper placement of the sensor, infidelity of sensor recordings, unpredictable real-world scenarios or 

the large degree of freedom human action possesses.  Thus, identifying subtle human movements and 

deriving corresponding information to address a problem is an arduous task. In order to tackle this issue a 

framework which incorporates domain-specific knowledge should be used.  

A general framework for extraction of information from raw inertial data is already established for human 

activity recognition. There has been a lot of research done in this area and some of the highly cited papers 

in this domain are [11]–[15]. Randell et al [11] computed 4 features and employed neural networks to 

cluster the activities. Bao et al [13] used decision tree classifier with temporal features like mean, energy, 

frequency-domain entropy, and correlation of acceleration data as features to classify activities. 

Laerhoven Van et al [12] employed an algorithm which takes the sensor data as input and generates a 

probability/confidence value for a particular activity. Similarly, Kern et al [14] exploited bayes classifier 

with the raw sensor data as input to recognize activities. Ward et al [15] used the number of peaks within 

a 100 ms sliding window, the mean amplitude of these peaks, and the raw x-axis data as features for a 

hidden Markov model to classify activities. All these papers tend to follow a common procedure for 

activity recognition, i.e. feature engineering followed by implementation of a classifier. The authors tend 

to do an exhaustive search within the available features and the classifiers to choose the right ones. But 

they do not discuss the reasons behind choosing the specific features or the specific classifier.  

In this work, I will integrate application-specific knowledge into the framework to derive features and 

utilize machine learning techniques which are coherent with the problems statement. I will demonstrate 

the working of the framework and simultaneously implement it on two different case studies. The 
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framework I utilize is a sequential learning process, where investigation follows a logical stepwise path to 

find solutions. The sequential learning framework (SLF) in my work consists of three steps; data 

preparation, feature engineering and information extraction. The SLF coupled with application-specific 

knowledge will address the two case studies mentioned below. 

1.1  Case Study 1 

Preface 

Multiple sclerosis (MS) is a chronic progressive neurological disorder affecting about 2.5 million people 

globally [16]. Impaired mobility is a common symptom of MS even at lower levels of the disease and has 

significant negative effects on quality of life [17]. As a result, walking assessment is critical in tracking 

the progression of the MS disease.  

There are various techniques to study human gait that are often quick and simple to use; however, such 

systems often lack valuable kinematic data. Tape measures and goniometers provide information in single 

planes and only for static positions. Electro-goniometers and inclinometers offer solutions for more than 

one plane, as well as provide dynamic data; however, the physical design of such sensors can restrict 

motion. Therefore, because of measurement drawbacks, it remains difficult for the clinician to gain 

information about dynamic three-dimensional movements. In contrast, laboratory systems are complex 

and expensive, but are capable of capturing high quality three-dimensional movements. Two laboratory 

systems commonly found within the literature to study gait are force plate systems[18]–[20] and video-

based optoelectronic systems[2], [5], [21], but both the systems are time-consuming and complex [22]. 

Thus, employing inertial sensors is a better alternative to study gait with higher precision, compared to the 

aforementioned systems. Inertial sensors are portable, inexpensive and can record high resolution gait 

data. Figure 1 shows some of the inertial sensors that are used to study human gait. 
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Figure 1: Examples of commonly used inertial sensors for human motion tracking 

 

Recently, the gait impairment in MS subjects has been measured by performing the Six Minute Walk 

(6MW) Test. Under the 6MW, the subject is asked to walk for six minutes as swiftly as possible to 

identify motor fatigue. Chetta et al [23] focused on the cardiorespiratory response during the 6MW in 11 

MS subjects with mild disability. The authors showed that 6MW distance correlated to disability score, 

but not subjective fatigue. Goldman et al [24] evaluated a modified 6MW in MS subjects with varying 

disability and controls to assess test reliability. The authors also assessed 6MW distance correlation to 

subjective measures of fatigue, physical function and ambulation. However, the correlation of 6MW 

distance was limited to certain physiological parameters, and there remains a need to identify other gait 

features from 6MW that may provide additional insight into gait impairment in MS. In order to address 

this issue, the motion of the subjects during the 6MW must be monitored with a higher precision. 

The next chapters will explain the techniques that were incorporated into the sequential learning 

framework (SLF) to extract gait features from 6MW and determine their physiological significance. 

Data 

The gait and mobility of 115 participants were assessed at the University Of Virginia Department Of 

Neurology. There were 86 MS subjects and 29 controls. The subjects were asked to perform the 6MW in 
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a hallway with an inertial sensor attached to their dominant hip. For this study, an off the shelf inertial 

sensor was used to collect the gait data, namely, Actigraph [25]. This inertial sensor has a triaxial 

accelerometer with a sampling frequency of 30 Hz. The clinicians recorded the distance covered by the 

subjects for each minute manually, which is the average walking speed for the corresponding minute. The 

clinicians also conducted three clinical tests, for every 6MW, which include patient-completed 

questionnaires and functional tests. The three clinical assessments were: 

1. The Expanded Disability Status Scale (EDSS) [26] is a ten-point scale, where zero indicates a 

normal neurological exam and a ten indicates death from MS. This physician-assessed composite 

score is based on walking ability and neurological examination of seven functional systems: 

pyramidal, cerebellar, brainstem, sensory, vision, bowel and bladder, and cognitive.  

2. The Multiple Sclerosis Walking Scale (MSWS) [27] is a self-reported measure of the impact of 

MS on walking ability consisting of 12 physical items. The total score ranges from 0 to 100, with 

higher values indicating greater impairment.  

3. The Modified Fatigue Impact Scale (MFIS) [28] is another self-reported measure concerning the 

impact of fatigue on daily life. The total score is the sum of the scores for the 21 items, each 

ranging from 0 to 4. Individual subscale scores for physical, cognitive, and psychosocial 

functioning can also be generated by calculating the sum of specific sets of items. 

Contribution 

I derived metrics based on the subtle variations among the gait cycles across the six minutes and later 

established a relationship between the metrics and the gait pathology of the subject. 
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1.2  Case Study 2 

Preface 

Concussions* are common in contact sports such as football, soccer and lacrosse, with approximately 1.6 

– 3.8 million sport-related concussions reported in the USA annually [29]. In many cases, concussions are 

caused by a blow to the head or the head and upper body being violently shaken. Concussion symptoms 

include headache, lack of concentration, and loss of memory, judgment, balance, and/or coordination. 

Every concussion incurs injures the brain to some extent [30]. Previously, research found statistically 

significant correlation between the number of head impacts and the resulting neurophysiological deficit 

[31]. Furthermore in [32], authors showed that repeated sub-concussive impacts have also been associated 

with blood-brain barrier disruption, indicating elevated risks for cognitive deficits. However, the exact 

etiology of concussion is unclear.  

The identification of risk factors that predispose an athlete to concussion will help medical experts 

understand the underlying mechanisms of concussion and aid in the improvement of prevention strategies. 

One way to identify the root cause of concussions is by identifying the relation between number of direct 

hits to the player’s head and brain injury. In order to study this, there is a need to find the number of direct 

hits to the head (true hits) a player sustains during a game/season. A simple and straightforward way to 

check the number of true hits is by watching the game and manually counting the hits. But it requires a 

significant amount of human effort to monitor every player on field and keep track of the hits. So, an 

automated way to identify the true hits will be effective.  

An inertial sensor can be used to collect motion data of players’ heads and an automated algorithm can be 

implemented to differentiate the true hits from clacks†. There is no available work in the literature, to the 

best of the author’s knowledge, which tried to identify the true hits from real world accelerometer data. 

                                                      
* Concussion is a traumatic brain injury characterized by immediate and transient alteration in brain function. 
† Shaking of head due to impacts, which are not related to play, such as kicking and jumping are called clacks.  
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So, establishing a technique for detecting the true head impacts will serve as research tool to help 

investigate relationship between direct head impacts and concussions experienced by a player.  

Upon investigating several temporal features, the estimation of stimuli* was regarded as the best feature to 

identify true hits. This is because the manner in which players react after sustaining a similar impact to 

the head can be quite varied. This reaction of the players depends on a several human factors like their 

age, physical fitness, impact preparedness, etc. Thus, the inertial data may not be the same if two players 

sustain the same hit. In this work, I will present an algorithm using SLF for estimating the stimuli of the 

impacts. 

Data 

An off the shelf inertial sensor, X2 Biopatch [33], was used to track and record the acceleration of the 

head of the players. The sensor was placed on the mastoid process part of the skull, rather than on a 

helmet [34]. A helmet does not provide a clear picture of the motion of the skull because of the various 

protective layers embedded in them. Placing a sensor on the mastoid process gives us more precise 

motion data of the skull and will not obstruct game play. Figure 2 shows the sensor placed on a person. 

The sampling frequency of the sensor was 1000 Hz. The data collection study took place at Lynchburg 

College, where 16 players from Women Lacrosse team participated in the study.  

 

Figure 2: X2 Biopatch placed on the players' head 

 

                                                      
* A stimulus is the event that causes the head motion. Later sections will explain its significance and derivation. 
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The sensor was used for 51 sessions, including games and practice sessions. The video footage was 

provided for some games and practice sessions, which was used to label the impacts as true hits and 

clacks. The X2 Biosystems software computed the following the metrics, which were available for 

analysis:  

1. Peak linear acceleration (PLA) 

2. Peak rotation acceleration (PRA)  

3. Peak linear velocity (PLV)  

Contribution 

I have estimated the stimuli (that causes the head movement) of the recorded head impacts. Further, I 

built a classifier using this estimated signal to differentiate the true hits from clacks and compared the 

performance with other features. 

1.3  Thesis Outline 

Given the outlook and impact of this research, a summary of the thesis can be stated as follows: 

This work utilizes a framework incorporated with application-specific knowledge to extract the 

meaningful information from raw inertial data corresponding to human motion. This framework is 

implemented on two medical case studies to derive information which can aid in health assessment.  

The rest of this thesis is organized as follows: After the introduction of the framework and the case 

studies in Chapter 1, the steps taken to convert the raw data into usable data are presented in Chapter 2. 

Then, Chapter 3 contains the techniques employed to extract the features in both the case studies. Chapter 

4 studies the relationship between the derived features and the available ground truth using machine 

learning techniques. Chapter 5 will conclude the thesis and layout the future work. 
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Chapter 2  

2   Data Preparation 

2.1  Background 

In order to analyze data for making predictions/classification, one of most important and strenuous step is 

data preparation. Data Preparation is the process of collecting, cleaning, and consolidating data into 

usable files or data tables for use in analysis. The process of preparing data generally entails correcting 

any errors (typically from human and/or machine input), filling in nulls and incomplete data, and 

transforming data into the desired format for analysis. The eventual output of the step is to have corrected 

data along with the corresponding ground truth. 

Data preparation is a common step in big data analysis [35], web usage mining [36] and text mining [37]. 

Cooley et al [36] proposed data  preparation  techniques  and  algorithms  to  convert  raw  web  server  

logs  into  user  session  files  in  order  to  perform  web  usage  mining .  The authors presented  models  

to  encode  both  the  web  site  developers’  and  users’ view  of  how  a  web  site  should  be  used  to  

identify  web  site  users,  user  sessions,  and  page  accesses  that  are  missing  from  a  web  server  log. 

Mclellan et al [37] employed data preparation techniques, developed for several Centers for Disease 

Control and Prevention, to organize textual data. The authors laid out a set of rules and considerations for 

managing text data.  

There is far lesser focus on this step when dealing with human motion data. While handling inertial data, 

the biggest task lies in segmenting the required data and labelling them accordingly. This step plays an 

important role when the data collection happens in the real world as most often the ground truth is not 

available in the desired format.  
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In this chapter, for case study 1, the 6MW data was derived from the raw accelerometer data and the 

clinical scores were assigned to the respective 6MW test. For case study 2, the impacts recorded by the 

sensor were labelled as a true hit/clack for analysis. 

2.2  Case Study 1 

The accelerometer data, walking speed and clinical scores were manually surveyed to find missing data 

and other errors. Subjects with missing clinical scores and walking speed data were not included in the 

analysis. So that the clinical scores and walking speed associated with the accelerometer data, is available 

for analysis.  

The first task was to extract the 6MW walking data from the accelerometer data. Since the sensors start 

recording the data even before the subjects start walking, it tends to collect data which is not related to the 

6MW test. In order to extract the 6MW data from the accelerometer data, a GUI was developed in 

MATLAB® to manually separate the region of interest. The user had to manually mark the start point and 

the end point of the 6MW using the cursor. Figure 3 displays the screenshot of the GUI. 6MW inertial 

data was extracted for all the subjects using this GUI. 
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Figure 3: The left image shows the GUI interface where the perpendicular lines are used select the start 

and the end points of the 6MW and the red dotted lines in the right image encompass the region of 

interest. 

 

Once the 6MW accelerometer data was obtained, all the gait cycles had to be extracted to identify the 

subtle variations among gait cycles. Gait is comprised of sequential gait cycles and each such gait cycle is 

composed of a sequence of events that mark the transition from one gait phase to another. In terms of 

temporal domain parameters, the two most relevant events in a normal gait cycle are the initial heel 

contact or heel strike (HS) and terminal contact or toe off (TO). So detecting HS and TO accurately is of 

vital importance in clinical gait analysis to study the variation of gait patterns in high resolution. The gait 

patterns of the subjects in our study are quite variable, as shown in Figure 4, due to the heterogeneity of 

gait pathology in MS.  
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Figure 4: Magnitude* of six minute walk accelerometer data. (a) and (b) show 1000 data points from two 

different subjects. 

 

In order to handle the wide variety of the gait patterns, our gait cycle extraction algorithm employs 

Fourier analysis to derive the gait cycles from the 6MW inertial data. Walking is predominantly a low 

frequency activity and, as such, Fourier coefficients representing high frequency signal content have very 

low amplitude. Most of the useful information closely related to the impact acceleration is contained in 

the band below 17 Hz [38]. Moreover, frequencies greater than 0.25 Hz enable us to effectively separate 

body acceleration (BA) and gravity acceleration (GA) components [39]. For our purpose, a bandpass filter 

with the frequency range 1 – 3 Hz is applied to the 6MW accelerometer data. Figure 5 shows the 

frequency spectrum of the 6MW data after bandpass filtering. 

                                                      
* Magnitude = √𝑥2 + 𝑦2 + 𝑧2 
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Figure 5: Frequency of 6MW after applying the bandpass filter for the data sample shown in Figure 4. 

 

The maximum peak of the frequency spectrum was considered as the fundamental cycle frequency. This 

fundamental frequency is directly related to the average step rate of the six-minute walk. The gait length 

was calculated by dividing the sampling frequency of the accelerometer by the fundamental frequency of 

the 6MW. To reduce computational complexity, data segments of twice the corresponding gait length 

were extracted, with no overlap, from 6MW inertial data. Later, these segments of data were considered 

as the gait cycles. The gait cycles for each of minute from 6MW were obtained and stored. Figure 6 

shows the gait cycles extracted using this technique. 
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Figure 6: Gait cycle chunks from data samples shown in Figure 4. 

 

For measuring the variability between gait cycles, the cycles should be in-phase. In other words, the gait 

cycles should start from the same instance such as heel strike. But the drawback of this gait cycle 

extraction technique is that all the extracted gait cycles might not be in-phase. Some gait cycles may start 

with heel strike and others with toe off. This inconsistency across gait cycles is solved in chapter 3 by 

aligning the gait cycles using a phase invariant DTW method. 

2.3  Case Study 2 

For recording the head impacts in lacrosse, players were equipped with a X2 Biopatch sensor throughout 

the game. The sensor continuously reads the values from the accelerometer, and saves the data if the 

acceleration is above a threshold (i.e. 10g). The sensor saves the ten samples prior and eighty-nine 

samples post to the threshold point. The recorded 100 samples of data are called impacts. For each of the 

impacts, the X2 Biosystems software computed the PLA, PRA and PLV values. There were 1862 impacts 

recorded in total and the video footage was used to label each impact. But out of the 51 sessions, video 
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footage for just 40 sessions was available. Labelling each of the impacts required manual effort due to 

inconsistent timing, poor video quality, absence of players in the video frame, etc. These issues were 

addressed through manual supervision, and finally achieved 252 labelled impacts which could be used for 

analysis. Out of the 252 impacts, 214 were true hits and 38 were clacks. Figure 7 shows an example of a 

true hit and clack*.  

The stimulus for each of the labelled impacts is estimated in the next chapter using a linear dynamical 

model (LDM). 

 

 

Figure 7: Sensor output of (a) true hit and (b) clack. 

 

  

                                                      
* Shaking of head due to impacts, which are not related to play, such as kicking and jumping are called clacks. 
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Chapter 3  

3   Feature Engineering 

3.1  Background 

A feature is a piece of information that can be used for prediction/classification. The features derived 

from the data will influence the results that are achieved from the predictive models. The process of using 

domain knowledge of the data to create attributes is called feature engineering. There are a number of 

feature extraction tools available in the literature which can be applied to inertial data. 

In [40]–[42], authors derived time-domain features from inertial data which include the mean, median, 

variance, skewness, kurtosis and inter- quartile  range. Aminian et al [43] computed the cross-correlation 

coefficients between accelerometer axis. Foerster et al [44] employed fast Fourier transform (FFT) to 

calculate the median of the spectral distribution, whereas Preece et al [45] used a subset of the FFT 

coefficients as features. Huynh et al [46] derived the spectral energy, which is the sum of the squared FFT 

coefficients, whereas Bao et al [13] computed the frequency-domain entropy,  which is the normalized 

information entropy of the FFT components. In [38], [47], [48] authors used wavelet analysis, on inertial 

data, to calculate wavelet parameters based on the sum of the squares or RMS* of specific detail 

coefficients. Similarly, Wang et al [49] derived wavelet parameters using simple statistical measures, such 

as standard deviation and RMS, of specific approximation and detail coefficients.  

In this chapter, for case study 1, features which measured the variability of the gait cycles across 6 

minutes were computed. For case study 2, upon examining the temporal features derived from the inertial 

                                                      
* RMS stands for Root Mean Square 
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data and understanding the complexity of the problem, the stimuli of the impacts were estimated using a 

linear dynamical model. 

3.2  Case Study 1 

To study the subtle changes in gait cycles across the six minutes, the gait cycles from minutes 2 – 6 were 

compared with the gait cycles of minute 1. The changes of gait patterns were studied for every subject, 

rather than comparing gait cycles across subjects as walking patterns vary amongst subjects. The most 

common way to compare two sequences is by computing the Euclidean distance. But Euclidean distance 

is ineffective when the sequences are temporally scaled. Thus to avoid this issue, we employed an 

alternative algorithm, dynamic time warping (DTW), to measure the similarity between two temporal 

sequences which may vary in speed. An example of showing the difference between the working of DTW 

and Euclidean distance is shown in Figure 8. Assume that the green and blue curves are two different 

sequences. The black lines show how the two distances compare the signals. Euclidean distance follows a 

linear temporal mapping between the two sequences, whereas DTW distance adopts a non-linear temporal 

mapping. 

 

Figure 8: (a) represents Euclidean distance and (b) represents DTW 
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DTW is commonly used to analyze temporal sequences of video, audio, and graphics data. A well-known 

application is in automatic speech recognition [50], to cope with different speaking speeds. The algorithm 

determines an optimal match between two given sequences and returns a distance measure known as the 

DTW distance. The sequences are warped nonlinearly in the time dimension to match each other as 

closely as possible. We have defined the number of warps to align both the sequences as the warping 

length. 

Since the gait cycles from a particular 6MW were of the same length, let’s consider P and Q to be two 

gait cycles of length n each. 

𝑃 =  [ 1p , 2p , 3p , … , np ] 

𝑄 =  [ 1q , 2q , 3q , … , nq ] 

where ip and iq are 3-dimensional vectors with x, y and z acceleration values respectively. 

These two sequences P and Q were provided as inputs to the DTW algorithm and the outputs were the 

DTW distance between P and Q and the warped sequences 
wP  and

wQ , given by the following:  

wP  = [( 1p ) 1a
,( 2p ) 2a

,( 3p )
3a
…..( np ) na

] 

wQ  = [ )( 1q 1b
,( 2q )

2b
,( 3q )

3b
 …..( nq ) nb

] 

where (s)
k

 means k repetitions of the sample s. 

The DTW distance is the Euclidean distance between 
wP  and

wQ , shown in (1). The warping length 

between the sequences was computed using the equation (2), 

DTW Distance =  |𝑃𝑤 − 𝑄𝑤|2 (1) 
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Warping Length = 
2

1
(  

j

j

i

i ba ) (2) 

 

 

The hurdle of misalignment of gait cycles, as mentioned in chapter 2, was tackled using a phase-invariant 

implementation of dynamic time warping (DTW). To make sure the gait cycles are in-phase, one of the 

gait cycles (either P or Q) was shifted in a cyclic manner till the best match was found, before running the 

DTW algorithm. Keogh lower bounding and early DTW termination were used to find a computational 

optimal solution [51].   

For each subject, all the gait cycles from the first minute were matched with every other gait cycle from 

rest of the minutes using the DTW algorithm explained above. For instance, to compute the DTW score 

and Warp score for second minute, all the gait cycles from minute 2 were matched with all the cycles 

from minute 1. Now each gait cycle from minute 2 has a DTW distance and a warping length with respect 

to each gait cycle from minute 1.  The least DTW distance and warping length were chosen for each gait 

cycle from minute 2. Then, the corresponding medians across all the chosen DTW distances and warping 

lengths are computed respectively and considered as “DTW score” and “Warp Score” related to minute 2. 

The same approach was repeated for rest of the minutes. Following this procedure, the DTW score and 

Warp score for minutes 2 to 6 were computed with respect to first minute for every 6MW. 

The gait features (DTW score and Warp score), the walking speed and the clinical scores of every 6MW 

were used for analysis in the next chapter to determine the physiological significance of the gait features. 
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3.3  Case Study 2 

A number of linear and non-linear features* like mean, standard deviation, skew, energy, etc. were 

extracted from the impacts’ data. Figure 9 shows the boxplots for a few of the features and there is high 

overlap between both classes (true hits/clacks). 

 

Figure 9: Boxplots of temporal features. (a) and (b) correspond to minimum and kurtosis of the 

acceleration, whereas (c) and (d) correspond to mean and skew of the gradient of acceleration. 

 

The boxplots of the software computed PLA, PRA and PLV can be viewed in Figure 10. There is very 

little separation between the classes. 

                                                      
* Refer to Table 6 
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Figure 10: Boxplots of (a) PLA, (b) PRA and (c) PLV of the impacts 

 

There was no distinction between the true hits/clacks using temporal features such as PLA, PRA, PLV, 

minimum and kurtosis of the acceleration, and mean and skew of the gradient of acceleration. One of the 

reasons for the lack of separation between the classes might be due to the dynamic environment on the 

field - the players’ heads move rigorously while running, jumping, attacking, throwing and defending. 

Though the true hits and clacks occur due to two different motives, the inertial data corresponding to the 

both of them possess similar characteristics. So it can be assumed that the human factors play a major 

role, in converting the driving forces into sensor recordings. Thus, the driving forces/stimuli* would be 

the key to differentiate the true hits from clacks. 

Models like Hidden Markov Models (HMMs) [52] can be used to estimate the stimuli of the impacts but 

these models experience an exponential increase in parameters as more signal history is encoded. Thus 

dynamical models were used to estimate the stimuli. In this work, human motion analysis was viewed as a 

                                                      
* A stimulus is the event that causes the head motion.  
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blind system identification where head motion is an unknown dynamical model driven by an unknown 

input. Intuitively, the dynamical model represents physical characteristics of an actor, such as mass and 

inertia, whereas the input represents the driving signal, a signature of the action.  

The dynamical model used for estimation of stimuli from the inertial data has been inspired from Raptis’ 

work [53]. The model, proposed in [53], falls into the class of linear dynamical models, where the task of 

motion modeling has been posed as a system identification problem under bounded energy and sparsity 

constraints [54]. The motivations to employ this model are two-fold. Firstly, the inertial data observed 

from human actions is non-stationary and is multivariate time series. This model accommodates such 

non-stationary and multivariate time series data. Secondly, the core hypothesis of this model is that 

multivariate time series 𝑧(𝑡) are outputs of a linear time invariant dynamical system driven by a one 

dimensional sparse and bounded input 𝑢(𝑡). But the human actions are non-linear and cannot be modelled 

by linear equations. Since the impacts recorded in our data were of just 0.1 seconds duration, the human 

actions were assumed to be linear in such small durations and abide the hypothesis of the model [55]. 

Thus, 𝑢(𝑡) is considered as the stimulus for the impact 𝑧(𝑡). 

Generally, when the sensor records an impact with high acceleration values for a very few samples it 

corresponds to a direct impact to the head. Figure 7, shows an example of a true hit and clack. A good 

way to take advantage of these high acceleration values over short intervals is by computing the gradient 

of the signal. 

So deriving the jerk signal from the raw inertial signal will amplify the sudden movements of the skull 

across all the directions. Thus, the jerk signal 𝑦(𝑡) is considered as the output of the linear dynamical 

model, which is driven by 𝑢(𝑡). The jerk signal is computed by taking the gradient of the raw 

accelerometer signal 𝑧(𝑡), which is shown below: 

𝑦(𝑡) =  𝛻𝑥,𝑦,𝑧 𝑧(𝑡) 
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where 𝛻𝑥,𝑦,𝑧 stands for first order derivative of each of the axes x, y and z. Figure 11 displays the jerk 

signal of the accelerometer data shown in Figure 7.  

 

Figure 11: Gradient of the accelerometer signal shown Figure 7 

 

The linear dynamical model was defined by the system matrices 𝐴, 𝐵, 𝐶 and a state vector 𝑥(𝑡). The 

model can be expressed as follows: 

         ||𝑢(. )||𝑙0
≤ 𝑘 

|𝑢(𝑡)| < 1 

Σ𝑡||𝐶𝐴𝑡𝐵||
1

 ≤  𝜇 

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) 

(3) 

 

 

where ||𝑢||
𝑙0

is the number of nonzero elements in the sequence 𝑢. 
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One aspect of the model that plays an important role is bounding the input signal. This forces variables 

such as the amplitude of an action into the system matrices, thus resulting in inputs 𝑢 that are more 

comparable across individuals. An expectation – maximization (EM) algorithm [53] was applied to 

estimate the 𝐴, 𝐵, 𝐶, and 𝑥 matrices under the assumption of system linearity and time invariance. 

Initially, 𝑢 was randomly chosen abiding to the conditions in (3) and then 𝐴, 𝐵, 𝐶, and 𝑥 were estimated. 

Then the sequence 𝑢 was updated using the estimated 𝐴, 𝐵, 𝐶, and 𝑥 matrices. This process iteratively 

continued until error between the estimated 𝑦 and the actual 𝑦 was reduced. Once the error converged, the 

input sequence 𝑢 was obtained, which is the stimulus for the reaction 𝑧. Figure 12 displays an example of 

the estimated stimulus for an impact. The stimuli for all the verified impacts were computed using this 

linear dynamical model* approach. 

 

Figure 12: The 𝑢(𝑡) of the linear dynamical model where (a) and (b) correspond to a true hit and clack 

respectively. 

In the next chapter, a classifier was trained to differentiate the true hits from clacks using the estimated 

stimuli. The performance of the estimated stimuli was compared with several other features.  

                                                      
* The linear dynamical model was built in MATLAB® R2013b (Intel i7-4770 CPU, 8GB RAM). The average 

computation time for each stimulus was 6.91 seconds. The algorithm is computationally expensive, so it will require 

additional constraints to implement on a smaller processor for real-time applications. 
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Chapter 4  

4   Information Extraction 

4.1  Background 

Information, in simple words, is the answer to a question. Information extraction is the process of finding 

factual evidence, by identifying instances and relationships between entities, to solve a problem. This step 

in SLF focuses on modeling and knowledge discovery for predictive/classification purposes using the 

features derived from the earlier step. Information extraction exploits machine learning techniques and 

statistical analysis to build models that learn from and make predictions on the data. Machine learning 

techniques exploits algorithms that iteratively learn from data and allows computers to find hidden 

insights without being explicitly programmed where to look. These techniques are used for classification, 

regression, clustering, dimensionality reduction and density estimation. 

Previously, several machine learning and statistical measures were exploited to understand relationships 

between human motion and inertial features. In [11], [41] and [56] authors employed neural networks to 

identify human actions like walking, standing,  running,  sitting,  walking  upstairs and downstairs. Jamsa 

et al [7] used pearson’s correlation coefficients to study the association between acceleration peaks and 

bone mineral density changes. Wang et al [49] exploited multi-layer perceptron neural networks to 

differentiate walking patterns. Maurer et al [40] adopted online nearest neighborhood and linear 

discriminant analysis to differentiate human activities like walking, standing,  running,  sitting,  ascending 

and descending. Kern et al [14] employed Bayes classifier to recognize activities like walking, sitting, 

standing, typing and writing. Herren et al [42] exploited multiple regression analysis to predict the incline 

and the speed of the runner. Parkka et al [57] utilized decision trees to identify rowing, cycling and more. 
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The type of information to be derived depends on the application itself. For my work, the extracted 

information will have to actionable and useful for the medical experts. This way, the information acts as a 

tool for the clinicians for assessing and tracking the health of subjects.  

In this chapter, for case study 1, the correlation between DTW based scores and gait pathology was 

determined. For case study 2, a classifier was modelled to differentiate the true hits from the clacks using 

the estimated stimuli and was compared with other features.  

4.2  Case Study 1 

In this section, a model was developed to find the relation between the gait features, walking speed and 

the clinical scores. In order to show that the gait features are closely related with the clinical scores 

(MFIS, EDSS, MSWS) and significant than walking speed, three sets of six separate models were built. 

These models were implemented using a least squares regression model. A linear regression model is an 

approach for modeling the relationship between a scalar dependent variable (𝑌) and one or more 

explanatory variables (or independent variables) denoted by 𝑋. In my case, the dependent variable (or 

response variable) represented one of the clinical scores and the independent variables corresponded to 

the derived gait features or walking speed. Each set of models represented one of the clinical scores with 

six different combinations of DTW score, Warp score and walking speed. Table 1 shows all the different 

models. 

A linear regression model can be represented as follows: 

𝑌 =  𝑤1𝑋1 + 𝑤2𝑋2 + ⋯ + 𝑤𝑝𝑋𝑝 

In matrix form, 

𝑌 = 𝑤𝑋 

where 𝑤 is the weights vector which has to be estimated using the 𝑌 and 𝑋 matrices. 𝑌 is the column 
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vector with the clinical scores and 𝑋 is the matrix with the features. This method was followed to build 

the models (𝐹𝑖
𝑛) in Table 1, where 𝑖 belongs to each of the clinical scores, i.e. EDSS, MSWS and MFIS 

and 𝑛 is the model number. 

Table 1: Linear Regression Models 

Model No. Features 

𝐹𝑖
1 DTW Score (2,3,4,5,6) 

𝐹𝑖
2 Warp Score (2,3,4,5,6) 

𝐹𝑖
3 Walking Speed (1,2,3,4,5,6) 

𝐹𝑖
4 Walking Speed (1,2,3,4,5,6) + DTW Score (2,3,4,5,6) 

𝐹𝑖
5 Walking Speed (1,2,3,4,5,6) + Warp Score (2,3,4,5,6) 

𝐹𝑖
6 

Walking Speed (1,2,3,4,5,6) + DTW Score (2,3,4,5,6) + 

Warp Score (2,3,4,5,6) 
 

 

The set of weights 𝑤 are chosen to minimize the sum of squared errors between the estimate of clinical 

score, �̂� , and the true clinical score, y. The ordinary least squares solution is given in (4), 

𝑤 =  (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (4) 

 

Once the weights were estimated for the all models in all the different sets, model performance was 

evaluated to determine the best model which explains the MS clinical scores. The following statistical 

performance metrics* were computed: Adjusted R squared, Akaike information criterion (AIC), Bayesian 

information criterion (BIC) and 𝑝 significance value. 

Table 2 shows these performance metrics for all the models. From Table 2, the linear regression model  

𝐹6 best fits the EDSS clinical score. Similarly, 𝐹5 and 𝐹4 best fit the clinical scores MSWS and MFIS 

respectively. The diagnostic curves† of the models 𝐹6, 𝐹5 and 𝐹4corresponding to EDSS, MSWS and 

MFIS respectively are shown in Figure 13. The residuals vs fitted and the scale-location plots for all the   

                                                      
* See Appendix A for definitions 
† See Appendix C for definitions 
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(a) (b) 

  

(c) 

 

Figure 13: Diagnostic curves of the linear models (a) 𝐹𝐸𝐷𝑆𝑆
6 , (b) 𝐹𝑀𝑆𝑊𝑆

5  and (c) 𝐹𝑀𝐹𝐼𝑆
4  
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three models do not possess any patterns, which indicates that models abide the linearity and 

homoscedasticity assumptions. In the normal Q-Q plot for all the three models, the residuals are lined 

well with the dotted line, which is evidence that the distribution of observations is Gaussian.  The 

residuals vs leverage plot shows that the cook’s distance scores of all the observations is less than 1, 

suggesting that there are no influential points which can manipulate the regression model. All the 

diagnostic curves provide evidence that the models fit the data well. 

 The predictors of the best models, that fit the clinical scores, are a combination of walking speed, DTW 

score and Warp score. This suggests that the walking speed along with DTW score and Warp score 

perform better in all the three cases, when compared with walking speed alone. Thus, DTW Score and 

Warp score encompass certain domains of the MS clinical scores that walking speed does not.  

Now, to understand what DTW scores and Warp scores explain which walking speed does not, the 

direction of inference was reversed by evaluating the contribution of various clinical measures to the 

DTW Score, Warp Score, and walking speed. In other words, DTW score, Warp score and walking speed 

will act as the response variable and the clinical scores as the independent variables. 

Three models were employed to analyze the physiological significance of our features. All models 

utilized stepwise regression, in which significant features were selected to best explain the dependent 

variable. Stepwise regression is an approach to select a subset of features for a regression model. It is a 

semi-automated process of building a model by successively adding or removing features based on the 

AIC performance metric of the model and the t-statistic of the feature. The focus of stepwise regression is 

to find the best combination of independent features to fit the dependent variable. Each of the MS clinical 

scores (EDSS, MFIS and MSWS) are composite scores of individual sub scores [26]–[28]. All these sub-

scores of the MS clinical scores (EDSS, MFIS and MSWS) were the features to all the three models, 

whereas, the two gait features and the walking speed were the dependent variable for each of the models 

respectively. The model variables are mentioned in Table 3 where t is 1, 2, 3, 4, 5, 6 minutes. 
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Table 2: Performance Metrics of the Linear Regression Models 

 

EDSS MSWS MFIS 

Adj. 
2R  

AIC BIC p 
Adj. 

2R  
AIC BIC p Adj. 

2R  AIC BIC p 

𝐹1 0.23 432.5 451.5 <0.001 0.24 885.78 904.75 <0.001 0.11 965.94 984.78 <0.01 

𝐹2 0.42 401.4 420.4 <0.001 0.51 837.88 856.85 <0.001 0.20 954.87 973.71 <0.001 

𝐹3 0.66 343.1 364.9 <0.001 0.71 783.11 804.86 <0.001 0.38 932.77 953.77 <0.001 

𝐹4 0.68 326.8 345.6 <0.001 0.73 747.92 761.33 <0.001 0.43 890.05 906.03 <0.001 

𝐹5 0.70 322.4 341.2 <0.001 0.77 731.76 745.17 <0.001 0.41 891.70 905.02 <0.001 

𝐹6 0.71 320.1 344.1 <0.001 0.77 731.73 753.28 <0.001 0.43 890.07 912.01 <0.001 
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Table 3: Stepwise Regression Models 

Response Variable Features 

𝐷𝑇𝑊 𝑆𝑐𝑜𝑟𝑒 𝑡 EDSS + MFIS + MSWS 

𝑊𝑎𝑟𝑝 𝑆𝑐𝑜𝑟𝑒 𝑡 EDSS + MFIS + MSWS 

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑 𝑡 EDSS + MFIS + MSWS 
 

 

The technique shown in the flowchart in Figure 14 was exploited to find the clinical scores that are 

closely related to the gait features and the walking speed. The DTW score, Warp Score and walking speed 

for every minute was considered as a dependent variable for the stepwise regression model. The reason 

for considering each minute separately is because previously in [24], it was shown that the pattern of 

distance covered through each minute in 6MW was related to the severity in MS. So, the clinical scores 

that are considered significant for a minute might not be the same for a different minute. For this reason, 

the composite value of the clinical scores was not considered. The “Z” in the flow chart corresponds to 

one of the following features, DTW Score, Warp Score and Walking speed. Since the DTW algorithm of 

the 6 minutes was computed with respect to the first minute, the Warp Score and the DTW Score for 

minute one do not exist. Once the significant clinical scores for each minute were obtained from the 

model, the most frequently occurring clinical scores* over all the six minutes were selected. 

                                                      
* The statistical measures of the clinical scores are shown in Appendix D. 
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Figure 14: Stepwise Regression Flowchart 

 

Table 4 shows the significant clinical scores that best fit each response variable. The questionnaires and 

functional tests, that were conducted, are related to cognitive thinking, physical fatigue, balance, 

coordination, and other symptoms. Gait pathology can be related to muscle weakness, stiffness, and 

spasticity. For simplicity, all questions and functional tests have been segregated into 3 categories, 

namely, “Balance”, “Physical Fatigue” and “Others”. The category “Balance” relates to stability while 

walking, whereas “Physical Fatigue” relates to declining walking performance brought on by exertion. 

Questions relating to cognitive fatigue were included in the “Others” category. The last column in Table 4 

specifies the category corresponding to each clinical score.  
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Table 4: Clinical Scores Correlated with Gait Features 

Gait Features Clinical Scores Category 

Warp Score 

MSWS Limited your balance when standing or walking? Balance 

MSWS Made it necessary for you to use support when walking outdoors? Balance 

EDSS Gait ataxia, limb ataxia, tandem walking, etc. Balance 

EDSS Urinary incontinence, bowel dysfunction, etc. Others 

MFIS I have had difficulty paying attention for long periods of time Others 

MFIS I have been less motivated to do anything that requires physical effort Physical Fatigue 

MFIS I have had difficulty making decisions Others 

DTW Score 

MSWS Limited your ability to run? Physical Fatigue 

MFIS I have been less motivated to do anything that requires physical effort Physical Fatigue 

MFIS I have had trouble maintaining physical effort for long periods. Physical Fatigue 

MFIS I have had difficulty making decisions. Others 

MFIS My muscles have felt weak. Physical Fatigue 

MFIS I have needed to rest more often or for longer periods. Physical Fatigue 

Walking Speed 

MSWS Made it necessary for you to use support when walking outdoors Balance 

MSWS Affected how smoothly you walk? Balance 

EDSS Urinary incontinence, bowel dysfunction, etc. Others 

EDSS Hearing loss, dysphagia, etc. Others 

MFIS I have been unable to think clearly. Others 

MFIS I have been forgetful. Others 

MFIS I have been limited in my ability to do things away from home Others 

MFIS My muscles have felt weak. Physical Fatigue 

MFIS My thinking has been slowed down. Others 

MFIS I have needed to rest more often or for longer periods. Physical Fatigue 
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Figure 15 shows the contributions of the three categories. This shows that walking speed has the highest 

contribution from the category “Others”, including several symptoms of cognitive fatigue, whereas the 

DTW Score and Warp Score have the highest contribution from “Physical Fatigue” and “Balance” 

respectively. This shows that the walking speed relates to many diverse clinical variables, whereas the 

DTW Score and Warp Score are primarily a function of gait impairment. 

Figure 15: Contributions of the clinical categories to the DTW Score, Warp Score and Walking Speed 

 

 

 

 

4.3  Case Study 2 

A classifier was trained to identify the true hits from the clacks. In machine learning, classification is the 

problem of identifying to which category a new observation belongs, on the basis of a training set of data 

containing observations (or instances) whose categories are known. Classification is considered an 

instance of supervised learning, i.e. learning from a set of correctly identified observations and labelling 

the unidentified observations. Two types of classifiers were implemented: 
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 Probabilistic Classifier 

This type of classifiers learns the probability distribution over the set of classes and uses that to 

make predictions. 

 Non-Probabilistic Classifier 

This type of classifiers does not attempt to model the underlying probability distributions, but 

tries to build the decision curve itself to make predictions. 

One probabilistic classifier and two non-probabilistic classifiers were implemented, which can be found 

in Table 5. 

Table 5: Classifiers* 

Probabilistic Classifier Quadratic Discriminant Analysis 

Non- Probabilistic Classifier 
Support Vector Machine 

Logistic Regression 
 

 

The performance of the classifiers was validated using a variant of exhaustive cross validation called 

leave-one-out cross-validation (LOOCV).  This cross validation technique uses one observation as the 

testing set and the remaining observations as the training set. This is repeated until all the observations 

have been used as the testing set. This validation technique was chosen due to the small dataset available. 

It uses the available data more efficiently when compared to other cross validation methods, as only one 

observation is omitted at each step. All the above classifiers were trained using LOOCV with four 

different sets of features which are mentioned below: 

 Set A: Magnitude 

- The magnitude of the raw inertial data obtained from the sensor 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  √𝑥2 + 𝑦2 + 𝑧2 

                                                      
* All the classifiers were built in RStudio. Packages ‘MASS’, ‘e1071’ and ‘nnet’ were used to implement QDA, 

SVM and logistic regression respectively. 
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- 100 available features for each observation 

 Set B: Jerk Signal 

- The magnitude of the gradient of the raw inertial data from the sensor 

- 99 features available for each observation 

 Set C: Temporal Features 

- 18 different temporal features are computed from the magnitude of the jerk signal and original 

accelerometer data: 

Table 6: Temporal features 

Mean {.} Variance {.} Max {.} 

Min {.} Skew {.} Kurtosis {.} 

Energy {.} Variance [.] Max [.] 

Min [.] Kurtosis [.] Skew [.] 

Mean [.] Energy [.] Mahalanobis Distance* [.] 

PLA† PRA† PLV† 

 

 

α{.} refers to computing the feature “α” from the magnitude of the original accelerometer data 

α[.] refers to computing the feature “α” from the magnitude of the jerk signal 

 Set D: Stimuli 

- The 𝑢 which is the estimated stimuli using LDM. 

- 99 features available for each observation 

Initially, a simple linear regression model was employed to study the significance of the four feature sets. 

The labels of the impacts were used as the response variable of the model. Table 7 shows the performance 

metrics for all the feature sets. The original feature set D has the highest R squared and adjusted R 

squared values, whereas the feature set C has the least AIC and BIC values. This infers that the feature set 

D encompasses the variance of the dataset but due to the large number of features it tends to have higher 

                                                      
* Mahalanobis distance is the ratio of the difference between the max and mean values to the standard deviation of 

the signal. 
† Refer to section 1.2 
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AIC and BIC value. Since the feature set C has fewer features compared to set D, it has a lesser AIC and 

BIC metric. This suggests that there might be a number of redundant features or features that are 

correlated with each other in the feature sets A, B and D. Ideally, one feature is required to differentiate 

two classes. But feature set A, B and D have approximately 100 features each for classification.  

To eliminate the insignificant features, stepwise regression model was chosen. A stepwise regression 

model chooses the significant features by computing the AIC of the model and the t statistic of the 

features. After using the stepwise regression model, the feature set A, B and D contain 35, 31 and 28 

number of features respectively. Table 7 shows the performance metrics of the linear regression model 

with the original set and selected set of features.  

Table 7: Performance metrics of the original set and selected set of features from sets A, B and D 

 

𝑹𝟐 Adj. 
2R  AIC BIC 

Original 

features 

Selected 

features 

Original 

features 

Selected 

features 

Original 

features 

Selected 

features 

Original 

features 

Selected 

features 

Set A 0.37 0.30 ~ 0 0.19 281 180 641 310 

Set B 0.37 0.28 ~ 0 0.18 279 177 635 294 

Set C 0.04 - ~ 0 - 226 - 297 - 

Set D 0.45 0.35 0.11 0.27 244 145 601 251 
 

 

The 𝑅2 metric is higher for the original set of features because of the higher number of features when 

compared to the selected features. But the adjusted 𝑅2 metric is higher for the selected set of features 

because this metric penalizes the model for having redundant features. The AIC and BIC values are lower 

for the selected features as well. This suggests that the reduced number of features contain less noise. 

Thus, these reduced set of features were used to train the classifiers.  

Moreover, the feature set D has the best performance metric compared to the other feature sets, which 

suggests that it may be a good predictor of true hits.  
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Quadratic Discriminant Analysis 

Quadratic Discriminant Analysis (QDA) is a general discriminant function with a quadratic decision 

boundary which can be used to classify datasets with two or more classes. QDA assumes that the 

distribution of classes to be Gaussian. A Discriminant analysis technique models the underlying 

distributions of the classes and assigns the new observation to the class with least the Mahalanobis 

distance. QDA exploits the variance amongst the classes along with the Mahalanobis distance to classify 

the test observations.  

Previously, Liu et al [58] used QDA in their algorithm to detect backward falls, prior to the impact, in 

elderly population. Palmerini et al [59] tested QDA to analyze postural instabilities in subjects suffering 

from Parkinson’s disease using inertial data. Rebersek et al [60] adopted QDA to detect the onset of gait 

initiation, the first heel-off and the first toe-off. Ganea et al [61] utilized QDA to investigate the alteration 

of the gait pattern in children with Duchenne muscular dystrophy, using body-worn inertial sensors. 

QDA, with the four feature sets, was implemented on the labelled impacts and the posterior probability 

for each of the test instances was calculated. Figure 16 shows the distribution of the posterior probabilities 

all the impacts. 
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Set A 

 

Set B 

 

Set C 

 

Set D 

 

Figure 16: Density plot of posterior probabilities computed using QDA 
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The posterior probabilities computed using QDA for set A, B and D lie near 0. For feature set C, the 

probabilities look spread out but a distinct separation between true hits and clacks cannot be identified 

with the naked eye.  In order to compare the performance of the feature sets with QDA, ROC* curves 

were examined along with the area under the curves (AUROC*), which are shown in Table 8.  

The AUROC values for all the feature sets are lesser or nearly 0.5, which shows that these features with 

QDA are no better than random guessing. Also, the ROC curve is completely blue in color for feature sets 

A, B and D which shows that all the posterior probabilities for true hits and clacks lie near 0. 

Overall the QDA performs poorly; it might be due to the overlap between the distributions of the two 

classes. For this reason, the non-probabilistic classifiers were employed to avoid the modelling of 

distributions of the classes. 

                                                      
* See Appendix B for definitions 
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Table 8: ROC and AUROC v  alues of QDA for feature set A, B, C and D 

Feature Set Set A Set B 

ROC 

   

AUROC 0.56 0.24 

Feature Set Set C Set D 

ROC 

  

AUROC 0.36 0.53 
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SVM 

Support Vector Machine (SVM) performs classification by finding the hyperplane that maximizes the 

margin between the two classes. The vectors (cases) that define the hyperplane are the support vectors. 

An SVM model maps the points in space so that the points of the separate categories are divided by a 

clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to 

belong to a category based on which side of the gap they fall on. To assign probabilities for the test 

instances Platt Scaling [62] was integrated with SVM. Platt’s probabilistic outputs for Support Vector 

Machines have been popular for applications that require posterior class probabilities. The algorithm 

approximates the posterior probability using a sigmoid function. 

Previously, [63]–[65] adopted SVM to identify human activities using inertial data. Patel et al [66] 

implemented SVM to estimate the severity of tremor, bradykinesia and dyskinesia using accelerometer 

data. Kumar et al [67] incorporated SVM into their technique to predict the National Institute of Health 

Stroke Scale (NIHSS) stroke index of post-acute stroke patients using inertial data. Shibuya et al [68] 

adopted SVM to build a real time fall detection system. 

The SVM algorithm was trained and tested on the labelled dataset along with Platt scaling to obtain the 

posterior probabilities for all the impacts. Figure 17 shows the distribution of the posterior probabilities of 

the true hits and the clacks. 
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Set A 

 

Set B 

 

Set C 

 

Set D 

 

Figure 17: Density plots of the posterior probabilities computed using SVM 
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For set C, the density plot is a sharp spike because the posterior probability values for all the test impacts 

are in the range of 0.96 – 0.97. There is little or no separation between the true hits and clacks using the 

four feature sets, as shown in Figure 17. For this reason, the best feature set and the optimal threshold 

cannot be chosen by looking at the plots with the naked eye. In order to handle this issue, ROC* curves 

were examined along with the area under the curves (AUROC*).  

The ROC curves for all the feature sets and the AUROC metrics are shown in the Table 9. The AUROC 

value for feature set C is less than 0.5, which means that SVM classifier with this feature set was not good 

than random guessing. This was no surprise because the probability distributions of the true hits and the 

clacks were overlapping, as shown in Figure 17. The SVM classifier with set B has the highest AUROC 

value when compared with other feature sets. Thus, SVM classifier performed best with the feature set B.  

The optimal threshold to classify the impacts is decided after examining the metrics from the logistic 

regression classifier. 

 

 

                                                      
* See Appendix B for definitions 
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Table 9: ROC and AUROC values of SVM for feature set A, B, C and D 

Feature Set Set A Set B 

ROC 

 

 

AUROC 0.65 0.79 

Feature Set Set C Set D 

ROC 

  

AUROC 0.45 0.75 
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Logistic Regression 

Logistic regression predicts the probability of an outcome that can only have two values (i.e. a 

dichotomy). The difference between a linear regression and logistic regression is that the former assumes 

a linear relationship between the response variable and features, whereas the latter assumes a linear 

relationship between natural logarithm of odds of the response variable and the features.  Figure 18 gives 

a pictorial view of the difference between linear and logistic regression decision curves. 

 

Figure 18: The linear regression and logistic regression decision curves 

 

Since the number of classes is two, the logistic regression assumes that the instances have a Bernoulli 

distribution and produces a logistic curve, which is limited to values between 0 and 1. The logistic 

regression model can be represented as shown in (5), 

log (
𝑝

1 − 𝑝
) = ∑ 𝑤𝑖𝑥𝑖 (5) 

 

 

where 𝑝, 𝑤 and 𝑥𝑖  refers to probability, 𝑖th weights and 𝑖th predictor variable.  

Previously, [69], [70] implemented logistic regression to recognize human activity from inertial data. 

Knighten et al [71] used logistic regression to identify social gestures of humans using wrist-worn smart 

band. Masse et al [72] adopted logistic regression and inertial sensors to improve postural transition 

recognition mobility-impaired stroke patients. 
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Set A 

 

Set B 

 

Set C 

 

Set D 

 

Figure 19: Density plots of the posterior probabilities computed using logistic regression 
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Logistic regression was tested on all the feature sets and the posterior probabilities were computed for all 

the impacts. Figure 19 shows the probability distribution of true hits and clacks. The overlap between the 

distribution of true hits and clacks was highest for feature set C, when compared to feature sets A, B and 

D. The feature sets A, B and D have a similar distribution, where the true hits were accumulated near 1 

and the clacks were evenly spread-out. But the feature set D had more true hits near 1 compared to A and 

B. The posterior probability distribution of the true hits, for the feature set D, is high near 1, whereas for 

the clacks it is spread out evenly from 0 through 1.For deciding the best feature set and the optimal 

threshold, the ROC curves were examined along with the AUROC values. 

The ROC curves and the AUROC metrics generated for the available feature sets using a logistic 

regression are shown in Table 10.  

Though the AUROC of set C with logistic regression was higher compared with SVM, it was still low 

when matched with AUROC values from other feature sets. So the feature set C with all classifiers (i.e. 

QDA, SVM and Logistic regression) performs poorly. The logistic regression along with set D has the 

highest AUROC.  
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Table 10: ROC and AUROC values of logistic regression for feature set A, B, C and D 

Feature Set Set A Set B 

ROC 

 

 

AUROC 0.76 0.79 

Feature Set Set C Set D 

ROC 

 

 

AUROC 0.52 0.83 
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Table 11 shows the AUROC values for all the combinations between the feature sets and the two non-

probabilistic classifiers. The feature set D with logistic regression is the best classifier, among all the 

possible combinations, with highest AUROC value. 

Table 11: Comparison of the AUROC metrics 

Feature Set Classifier AUROC 

Set A SVM 0.65 

Set B SVM 0.79 

Set C SVM 0.45 

Set D SVM 0.75 

Set A Logistic Regression 0.76 

Set B Logistic Regression 0.79 

Set C Logistic Regression 0.52 

Set D Logistic Regression 0.83 
 

 

Now the optimal threshold for the logistic regression classifier with set D has to be computed to classify 

the true hits from clacks. There are several ways to decide the optimal threshold for a classifier; a few 

ways are when the threshold: 

a. Maximizes (Sensitivity* + Specificity*)/2 

b. Has Sensitivity = Specificity 

c. Maximizes Accuracy 

d. Has Sensitivity = 90 % 

e. Has Specificity = 80 % 

Figure 20 shows the classification metrics like sensitivity, specificity, accuracy and the average of 

sensitivity and specificity for varying thresholds. The thresholds were chosen between 0 and 1, and the 

corresponding classification metric can be viewed in Figure 20. 

                                                      
* See Appendix B for definitions 
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Figure 20: Classification measures with varying thresholds 

 

The thresholds and the corresponding classification metrics for the 5 cases are shown in Table 12. Now, 

to choose the right threshold, the expertise of a clinician was required. As it is necessary to know what of 

the measures in Table 12 weigh higher in the clinical domain. After consulting a medical expert, case d 

was chosen as it is important not to have a large number of false negatives. In other words, it is important 

to identify most of the true hits at the cost of sometimes labelling clacks as hits as well. So, 0.63 was 

chosen as the optimal threshold to classify the true hits from clacks for the women lacrosse data; it 

achieves 90%, 55.26% and 85.31% as sensitivity, specificity and accuracy respectively. 

Table 12: Threshold and Classification measures for the different cases 

Case Threshold Sensitivity Specificity Accuracy (Sensitivity + Specificity)/2 

a.  0.96 68.69 84.21 71.42 76.45 

b.  0.91 73.68 73.68 74.63 73.68 

c.  0.36 94.85 42.11 87.31 68.48 

d.  0.63 90 55.26 85.31 72.72 

e.  0.45 70.79 80 72.61 75.39 
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Chapter 5  

5   Conclusion 

A sequential learning framework (SLF) integrated with application specific knowledge works towards 

knowledge discovery at each step, which is an essential process to derive relevant information from raw 

inertial data. The information generated at each stage is passed through the framework and eventually 

builds a concrete solution to address the problem. All the three stages defined in the SLF have their own 

significance, as studied in both case studies. In case study 1, firstly, the gait cycles corresponding to each 

minute of the 6MW were extracted and the clinical scores were tagged to the respective 6MW. Secondly, 

DTW based metrics were computed based on the changes in gait cycles across six minutes. Finally, using 

linear regression and stepwise regression models it was shown that DTW-based scores are a primary 

representation of gait pathology. In case study 2, firstly, the impacts were labelled as true hit or clack with 

the help of the video footage. Secondly, the stimuli of the impacts were estimated using a linear 

dynamical model. Finally, a classifier was developed using the stimuli along with logistic regression to 

differentiate the true hits from clacks. All the steps, employed in the framework, refined and transformed 

the data in their respective way to provide meaningful information, which eventually addressed the 

problems. The information derived from both case studies has the potential to be used as a tool to monitor 

and assess the health of a person. The subsections below will summarize the information derived from the 

case studies. 

5.1  Case Study 1 

Walking speed, DTW Score, and Warp Score are closely related to several patient-reported and exam-

defined outcome measurements. The traditional objective measure, walking speed, has the best 
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correlation with overall disability as it correlates with cognitive fatigue, bladder function, and other more 

general symptoms of disease progression. The DTW Score and Warp Score are solely representative of 

the gait pathology as DTW Score is primarily a measure of physical fatigue and, the Warp Score 

measures balance and physical fatigue.  As a result, DTW-based features are a promising tool for gait 

assessment in other pathologies causing physical fatigue and/or poor balance. Further, predictive models 

can be built to estimate the gait pathology of a subject by analyzing their respective DTW Score and 

Warp Score. These new features initially intended for persons with MS can now be applied to a wide 

variety of gait-related disorders, giving care providers a precise new tool to quantify specific aspects 

walking impairment.  

5.2  Case Study 2 

The estimated stimulus is the best performing feature for differentiating the true hits from the clacks. This 

feature had better classification metrics than features such as original accelerometer signal, jerk signal and 

the temporal features. This shows that the stimulus, estimated using a linear dynamical model, provides 

us with a good discrimination between impacts. The rigorous motion of the players’ heads causes the true 

hits and the clacks to have the same temporal characteristics even though the driving motives for true hits 

and clacks are different. For this reason, the stimuli perform better than the temporal features. Thus, the 

linear dynamical model has been able to successfully estimate the driving force using the inertial data. 

Moreover, a logistic regression model with the estimated stimuli, as input, is the best classifier for 

differentiating the true hits from the clacks. This classifier achieves an overall accuracy of 85.31%, 

sensitivity of 90%, and specificity of 55.26% with 0.63 as a threshold. This classifier also provides a 

flexibility to manipulate the performance measures by changing the threshold value. If a higher specificity 

is required, a higher threshold can be chosen. The true hits identified by the classifier can be used to study 

the relation of direct hits to the head with concussions and brain injury. Furthermore, this classifier can be 
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extended to identify true hits in other contact sports like soccer, football, etc. It also has the potential to be 

incorporated into on-field screening devices for real-time identification of true hits. 

5.3  Future Work 

The framework presented in this work can be incorporated into a wide range of sensor-based applications 

for information extraction. However, there are a few aspects of this work, which can be revisited, such as 

building data preparation standards and evaluating the framework itself. Firstly, standards for data 

preparation will reduce time and effort for cleaning and labelling the raw data. This will also make 

sharing data easier and algorithms can be implemented across datasets seamlessly. A few precautionary 

steps that should be taken during data collection procedure, which will help reduce effort during data 

preparation, are time synchronization amongst modules, reliable calibration of the sensors, and 

consistency while recording values manually. Secondly, standards for framework evaluation are required 

because currently, the correlation between the extracted information and the clinical scores is used as a 

metric to evaluate the framework. However, this new information may provide a new dimensional 

solution to the problem which the clinical scores may not consider. Also, “gold standard” clinical scores 

are not available for most of the health applications. So having a standard to evaluate frameworks would 

be a good way to judge the credibility of the information. 

The methodology built for case study 1 can be extended to other medical domains where gait pathology is 

a symptom such as rehabilitation, Parkinson’s disease, cerebellar ataxia and many others. The DTW 

based metrics can be tested in these domains to understand gait disorders. Currently MS subjects visit the 

hospital every six months for disability assessment. However, this methodology will enable care 

providers to remotely monitor gait pathology on an ongoing basis. 

The approach of case study 2 can be implemented across other sports such as soccer and football, so that 

every true hit a player sustains during any activity is accounted. This way the relation between true hits 

and brain trauma injury can be analyzed. Upon understanding the relationship, predictive models can also 
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be built to foresee the brain health of players before games. This will also make sure that players’ are able 

to recover from brain injuries between games.  
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Appendix 

A. Performance Metrics 

R2 

Coefficient of determination (R2) is a number that indicates the proportion of the variance in the 

dependent variable that is predictable from the independent variable. Values of R2 are generally in the 

range from 0 to 1, where a value closer to 1 indicates that the unexplained variance is less.  

Let 𝑦 be the dependent variable and �̂� be the estimated 𝑦 by the model. 

𝑅2 = 1 −
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
= 1 −

∑ (𝑦𝑖 − �̂�)2
𝑖

∑ (𝑦𝑖 − �̅�)2
𝑖

 

where  �̅� =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 

In simple linear regression, an R2 of 1 indicates that the regression line perfectly fits the data. 

Adjusted R2 

The adjusted R2 takes into account the phenomenon of the R2 automatically and spuriously increasing 

when extra independent variables are added to the model. The adjusted R2 penalizes additional 

independent variables by considering the number of independent variables in the model and the number 

of data points. Its value will always be less than or equal to that of R2. 

Adjusted 𝑅2 = 1 − (1 − 𝑅2)
𝑛 − 1

𝑛 − 𝑝
 

where n is the number of instances and p is the number of independent variables.  
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Akaike information criterion (AIC) 

AIC is a measure of the relative quality of statistical models for a given set of data. Given a collection of 

models for the data, AIC estimates the performance of each model, relative to each of the other models. 

Hence, AIC provides a means for model selection. 

𝐴𝐼𝐶 = −2. ln(𝐿) + 2𝑘 

where L is the maximum of the likelihood function for the model and 𝑘 is number of estimated 

parameters in the model. 

The model with least AIC is preferred. AIC rewards the goodness of fit (as assessed by the likelihood 

function), but it also includes a penalty that increases with the number of estimated parameters. 

Bayesian information criterion (BIC) 

BIC is a criterion for model selection among a finite set of models; the model with the lowest BIC is 

preferred. It is closely related to AIC, but BIC penalizes the complexity of the model more.  

𝐵𝐼𝐶 = −2. ln(𝐿) + 𝑘. ln (𝑛) 

where L is the maximum of the likelihood function for the model, 𝑘 is number of estimated parameters in 

the model and n is the number of observations.  

The BIC generally penalizes free parameters more strongly than the AIC. Lower BIC implies either fewer 

explanatory variables, better fit, or both.  

p value 

The p-value is used for null hypothesis testing. The p value is the probability of finding the observed 

results when the null hypothesis is true. A null hypothesis proposes that there is no relation between the 

response variable and features. So, if the p value is less than a significant value it means that the null 



58 

 

hypothesis can be rejected. In other words, it says that there exists a relationship between the features and 

the response variable. 

B. Classification Metrics 

Sensitivity 

Sensitivity is a statistical measure of the performance for a binary classifier test. It refers to the test's 

ability to correctly detect the positive cases. In the example of a medical test used to identify a disease, 

the sensitivity of the test is the proportion of people who test positive for the disease among those who 

have the disease.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑐𝑎𝑠𝑒𝑠
 

Specificity 

Specificity is a statistical measure of the performance for a binary classifier test. It relates to the test's 

ability to correctly detect the negative cases. Consider the example of a medical test for diagnosing a 

disease. Specificity of a test is the proportion of identified true negatives to the total number of healthy 

patients known not to have the disease.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
 

ROC & AUROC 

Receiver Operating Characteristic (ROC) curve, is a graphical plot that illustrates the performance of a 

binary classifier system as its discrimination threshold is varied. The curve is created by plotting the true 

positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The true-positive 

rate is also known as sensitivity; and the false-positive rate is the fall-out (i.e. 1 – specificity). The ROC 

curve is thus the sensitivity as a function of fall-out. 



59 

 

Area under the Receiver Operative Characteristic (AUROC) curve is a measure that is related to the 

accuracy of a classifier. AUROC is the area under the curve in a ROC plot. An area of 1 represents a 

perfect classifier; an area of 0.5 represents random guessing. 

C. Diagnostic Curves 

Diagnostic curves are used to evaluate the model assumptions and investigate whether or not there are 

observations with a large, undue influence on the analysis. 

Residuals vs Fitted 

This plot shows if residuals have non-linear patterns. There could be a non-linear relationship between 

predictor variables and an outcome variable and the pattern could be visible in this plot. If there are 

equally spread residuals around a horizontal line without distinct patterns, it indicates that they do not 

have non-linear relationships. 

Normal Q-Q 

The normal Q-Q plot, or quantile-quantile plot, is a graphical tool used to assess if a set of data plausibly 

came from a normal distribution. A Q-Q plot is a scatterplot created by plotting two sets of quantiles 

against one another. If both sets of quantiles came from the same distribution, the points form a line that 

is marginally straight. 

Scale-Location 

This plot shows if the residuals are spread equally along the ranges of predictors. This is used to check the 

assumption of equal variance (homoscedasticity). The model is homoscedastic if the points are equally 

(randomly) spread out in the plot. 
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Residuals vs Leverage 

This plot is used to identify the influential observations. These observations could be very influential in 

manipulating the model even when they contain reasonable range of the values. These observations can 

alter the results if excluded from analysis. 

D. Statistical measures of the clinical scores 

Initially, the t and p statistics of the clinical scores from the stepwise regression model were calculated. 

Then the absolute average of t values and the average of  p values, corresponding to the frequently 

occurring clinical scores across the stepwise regression models, were computed.  

 

Table 13: Statistical measures of the clinical scores 

Gait 

Features 
Clinical Scores 

Absolute average 

t value 

Average p 

value 

Warp Score 

MSWS 
Limited your balance when standing or 

walking? 
3.27 < 0.05 

MSWS 
Made it necessary for you to use support 

when walking outdoors? 
4.45 < 0.05 

EDSS 
Gait ataxia, limb ataxia, tandem walking, 

etc. 
2.35 < 0.05 

EDSS 
Urinary incontinence, bowel dysfunction, 

etc. 
1.99 0.05 

MFIS 
I have had difficulty paying attention for 

long periods of time 
2.7 < 0.05 

MFIS 
I have been less motivated to do anything 

that requires physical effort 
1.82 0.07 

MFIS I have had difficulty making decisions 2.18 < 0.05 

DTW Score 

MSWS Limited your ability to run? 3.04 < 0.05 

MFIS 
I have been less motivated to do anything 

that requires physical effort 
1.98 0.05 

MFIS 
I have had trouble maintaining physical 

effort for long periods. 
2.03 < 0.05 

MFIS I have had difficulty making decisions. 2.13 < 0.05 

MFIS My muscles have felt weak. 2.32 < 0.05 

MFIS 
I have needed to rest more often or for 

longer periods. 
2.74 < 0.05 
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Walking 

Speed 

MSWS 
Made it necessary for you to use support 

when walking outdoors 
2.42 < 0.05 

MSWS Affected how smoothly you walk? 2.24 < 0.05 

EDSS 
Urinary incontinence, bowel dysfunction, 

etc. 
1.81 0.07 

EDSS Hearing loss, dysphagia, etc. 4.23 < 0.05 

MFIS I have been unable to think clearly. 1.92 0.05 

MFIS I have been forgetful. 2.03 < 0.05 

MFIS 
I have been limited in my ability to do 

things away from home 
1.88 0.06 

MFIS My muscles have felt weak. 2.33 < 0.05 

MFIS My thinking has been slowed down. 3.37 < 0.05 

MFIS 
I have needed to rest more often or for 

longer periods. 
2.99 < 0.05 

 

A clinical score with a higher t statistic has a stronger relationship with the gait feature. The absolute 

average of the t statistic for all the clinical scores, mentioned in Table 13, are approximately equal to or 

higher than 2. The corresponding p values were derived to identify the “strength” of the relationship 

between the clinical scores and the respective gait features. If the p value is less than 0.05, there is more 

than 95 % chance that a statistically significant relationship exists between the clinical score and the gait 

feature. The average p values of the clinical scores shown in Table 13 are nearly equal to or less than 

0.05, which provides evidence that the clinical scores are related to the respective gait features. 
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