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Slowly adapting type I (SAI) afferents are gentle touch receptors that respond to a robust range of 

indentation with well-defined receptive fields, making them vital to discriminating shapes and textures.  

Despite its importance to our sense of touch, the SAI afferent’s transformation of skin indentation to 

neural signals is not fully understood. In particular, it is not known how the SAI afferent response is 

influenced by its end organ, a tree like structure where the afferent branches repeatedly to terminate at 

a number of sensory Merkel cells, nor is it known which aspects of this natural compound sensor might 

inform the design of artificial sensors. To address these gaps, this work develops models representing SAI 

end organs embedded in skin with finite element modeling (FEM), fitted functions, probabilistic noise 

distributions, and differential equations. The models can be configured to represent specific end-organ 

structures with a reconfigurable network of transduction functions, each representing a cluster of Merkel 

cell-neurite complexes providing receptor currents, and leaky integrate and fire models representing 

spike initiation zones. This approach circumvents the inability to obtain recordings of neural spike trains 

and reconstructions of end organ structure from the same SAI afferent. Simulation studies using these 

models indicate that 1) the grouping of Merkel cells to spike initiation zones impacts the SAI afferent 

response, and can obscure the impact of Merkel cell count, 2) while an increase in Merkel cells grouped 

to spike initiation zones – as the end organ remodels over the hair cycle – causes an increase in firing 

rate, a counteracting increase in skin thickness may help maintain the magnitude of the neural response, 

and 3) when mimicking the end organ to inform artificial compound sensors, the mechanism of resetting 

between multiple spike encoders is essential to providing durability to transducer failures, and this 

durability increases with the number of spike encoders but decreases with the number of transducers 

associated with each spike encoder. 
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1. Overview and Objectives 

The sense of touch is vital to human health and independent living. Without the sense of touch, 

it is difficult to perform tasks such as feeding oneself. The tactile perception of shape and pressure, 

essential to such tasks, is facilitated in part by the slowly adapting type I (SAI) afferent. Despite its 

importance to tactile perception, the link between the SAI afferent’s morphology and the 

transformation of skin indentation to neural spikes is not fully understood. Specifically, it is not yet 

known how the configuration of the SAI afferent’s compound end organ, where the afferent branches to 

contact multiple sensory Merkel cells, influences the pattern of neural spikes elicited. The work herein 

hypothesizes that the number and grouping of Merkel cells to spike initiation zones in the SAI end organ 

modulates spike firing. This central hypothesis is supported by three aims.  

The first aim seeks to account for differences in responses between SAI afferents as a function 

of end organ structure. To do so, a reconfigurable model of the SAI end organ is developed by combining 

finite element modeling (FEM), fitted functions, probabilistic noise distributions, and differential 

equations. These techniques allow modeling the transformation of skin indentation to strain energy 

density (SED), of SED to membrane current by receptor transduction, and of current to spike times by 

spike initiation. Models are configured to match representative groupings of Merkel cells to spike 

initiation zones as observed in SAI end-organ reconstructions, and modeled spike responses are fit 

against SAI spike recordings from mice using response surface methodology with space filling designs. 

After constraining prototypical end organ models, computational experiments are run to examine the 

impact of both the number of Merkel cells and the grouping of Merkel cells to spike initiation zones 

within the end organ. These experiments revealed that both the number of Merkel cells and the 

grouping of Merkel cells to spike initiation zones influences the SAI afferent response, in terms of both 
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absolute firing rates and sensitivity, and that the grouping of Merkel cells to spike initiation zones can 

obscure the impact of Merkel cell count.  

The second aim examines the impact of end organ remodeling on the SAI afferent stimulus-

response transformation during the hair cycle, and determines if increases in skin thickness can 

counteract the effect of increased Merkel-cell counts associated with remodeling. To do so, the model 

developed in aim 1 was configured for representative end organs of active and rest stages of the hair 

cycle, and finite element models were utilized covering the range of skin thicknesses for the same period 

of weeks. Computational experiments demonstrated the feasibility of increases in skin thickness 

counteracting the impact of increasing Merkel-cell counts as the end organ remodels, suggesting the 

interaction of skin and end organ may maintain homeostasis with respect to the SAI afferent stimulus-

response transformations. 

In addition to increasing our understanding of tactile sensing in the biology, this work sought to 

extend this knowledge to engineered systems. To do so, the third aim examines how mimicking aspects 

of the SAI afferent’s end organ, such as multiple transducers (Merkel cell-neurite complexes) and 

resetting between multiple spike encoders, may lead to more durable artificial sensors. Compound 

spiking sensors are modeled as a network of transduction functions and leaky integrate and fire models, 

using force transducer readings from an existing spiking sensor system. Simulations with this model 

reveal that resetting between multiple spike encoders allows a stable stimulus-response transformation 

as a number of transducers fail. Additionally, fault tree analysis indicates that compound sensor 

durability increases with the number of spike encoders (i.e. leaky integrate and fire model and 

associated transduction function), but decreases with the number of force transducers associated with 

each. Therefore, the most durable system invokes the use of multiple spike encoder–force transducer 

pairs, where spike encoders reset each other on spike initiation.   
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2. Background 

When we touch an object, a diverse group of mechanoreceptors in our skin respond with a 

series of neural action potentials, referred to as spikes, which the nervous system integrates to 

constitute our sense of touch. For example, spikes from Pacinian corpusle (PC) afferents facilitate 

perception of high frequency vibration while perception of low frequency vibration and slip are 

mediated by rapidly adapting afferents (RA) [1]. Spikes from the slowly adapting type I (SAI) afferents, in 

particular, facilitate the perception of sustained pressure, edges,  and curvature.  

SAI end organs are tree-like structures where the afferent branches repeatedly to terminate in a 

few to dozens of Merkel cell-neurite complexes (Fig 2.1), and are located in touch-sensitive regions of 

mammalian skin, including fingertips, whiskers, and touch domes [2][3]. When an object deforms the 

skin’s surface, mechanical distortions propagate to the end organ, located at the epidermal-dermal 

border, and Merkel cell-neurite complexes transform local distortions to ionic receptor currents that are 

then integrated by spike initiation zones. The resulting spikes then integrate along the branching 

structure to produce the SAI afferent response.  

Merkel cell

Heminode
Node
Unmyelinated
Myelinated

Site of Spike
Initiation

Source of
Receptor Current

 

Figure 2.1: SAI end organ where the afferent branches several times before terminating in a number of Merkel 
cells.  Current from Merkel cell – neurite complexes, where the Merkel cell is met by an unmyelinated neurite, 
drives spike initiation at heminodes (spike initiation zones).  
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Experimental approaches. Experimental approaches to studying the SAI afferent span multiple 

levels of tactile perception (Fig 2.2). For example, psychophysical experiments link mechanical stimuli 

such as points, gratings, and complex shapes with reported perceptions in human subjects [4]. Linking 

reported perceptions to neural signals from particular afferents has been accomplished, in part, with 

electrical stimulation experiments. For example, in agreement with perceptions elicited by mechanical 

stimulation, electrical stimulation of SAI afferents has been shown to produce the perception of 

sustained pressure [5]. While these approaches link mechanical stimuli and orthodromically induced 

neural signals to perceptions, single unit electrophysiological recordings can be used to understand how 

neural responses are elicited by mechanical stimuli.  

Peripheral Nervous System Central Nervous System

-Skin (accessory organ)

-Receptors

-Afferents

-Spinal cord and brain

-Signal integration

-Perception and Cognition

Single unit recordings Electrical stimulation

Psychophysics

Mechanical Stimulus Neural Response Perceived Stimulus

 

Figure 2.2: The role of the SAI afferent in touch sensation has been experimentally examined with psychophysics to 
link stimuli to perceptions, electrical stimulation to link neural signals to perceptions, and single-unit recordings to 
link mechanical stimuli to neural responses. 

SAI afferent recordings in mice, a genetically and experimentally tractable mammal, are often 

performed using ex-vivo skin-nerve preparations [6], in which a portion of the skin containing the SAI 

end organ is excised with the nerve intact (Figure 2.3A), and is placed in a recording chamber allowing 

the skin to be maintained at body temperature and perfused with synthetic interstitial fluid. By 

subdividing the nerve over a differential electrode, it is possible to record spikes from single SAI 

afferents as controlled displacements are applied to the skin (Figure 2.3B). Although the majority of ex-

vivo experiments mount the skin with the dermis facing up to aid in SIF perfusion, recent experiments 

with the epidermis facing up allow for more natural stimuli and accurate afferent classification [7]. 
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Importantly, epidermis-up preparations also allow observing the number of Merkel cells in a SAI 

afferent’s end organ with epiflourescent microscopy (Figure 2.3C). However, other end organ details 

such as the sites of spike initialization and the branching structure are unavailable.  

(A) (C)

(B)

 

Figure 2.3: Skin-nerve preparations (A) have been used extensively in recording SAI afferent responses (B). Recent 
epidermis-up procedures allow the number of Merkel cells in a given SAI afferent’s end organ to be obtained (C). 
Adapted from [7]. 

SAI end organ branching is available through other means, however. For example, as part of an 

effort to unambiguously confirm the SAI end organ as the source of slowly adapting type I responses, 

Woodbury and Koerber observed partial end organ branching using dye labeling and sectioning, but did 

not to recover the full structure, the arrangement of Merkel cells, or nodes [3]. Recently, these details 

have become available through 3D reconstructions using immunostaining methods, confocal imaging, 

and Neurolucida-based tracing [8]. These methods allow visualizing and quantifying entire SAI end 

organs (Fig 2.4). However, as it is not currently possible to obtain end-organ reconstructions and 

stimulus-response recordings for the same SAI afferent, understanding how the end organ structure and 

signal integration influences SAI afferent responses requires the use of modeling.  
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Figure 2.4: A) Projection of a immunostaining confocal image stack of a SAI end organ showing Merkel cells 
(Keratin 8; blue), myelinated afferents (Neurofilament-H; red), and Myelin (Myelin Basic Protein; green. B) 3D 
Neurolucida tracing of confocal stack in A showing SAI afferent (black), Merkel cells (green), nodes of Ranvier     
(red circles), heminodes (red half-circles). Adapted from [8]. © 2013, Marshall and Lumpkin. Used with permission. 

 

Modeling approaches. Modeling SAI responses, and the underlying signaling mechanisms of the 

skin and neuron, has been accomplished through a variety of techniques. One technique is to fit purely 

empirical models to stimulus-response data. In particular, Goodwin and Wheat have developed 

regression functions that represent a single SAI afferent’s response to specific stimuli. For example, they 

modeled the firing rate elicited by spherical stimuli as a two dimensional Gaussian function of sphere 

curvature and position relative to the receptor, multiplied by the sensitivity of the receptor [9]. Such 

single-receptor models have been developed and aggregated into receptor population simulations to 

examine the way a population might encode spheres, bars [10], and annular segments [11]. The SAI 

response to vibration has also been empirically modeled, where the impact of vibration frequency and 

amplitude on firing rate was examined with transfer functions taking power, exponential, and linear 



14 

 

forms [12]. Although purely empirical models have been useful, they abstract underlying physiological 

mechanisms and are typically tied to a predefined set of stimuli.  

In contrast, skin mechanics models accept a wider range of stimuli as input, and have 

investigated the underlying mechanisms of the SAI’s sensitivity to edges. These models represent the 

receptor as a stress/strain sensor embedded in an elastic matrix of skin, which is deterministically 

modeled with either continuum mechanics [13][14] or finite elements [15][16]. While skin is non-

homogeneous, anisotropic, and exhibits complex stress-strain relationships, simplifications are made to 

model the elastic behavior of skin.  For example, past models have used linear elastic approximations 

that obey Hooke’s Law [16]. While fast to compute, the linear elastic approximation is valid only for 

small displacements (5–10%). Hyperelastic material models, such as Ogden [17][18] and Mooney-Rivlin 

models, are a non-linear alternative and are appropriate for larger displacements (>10%) such as those 

examined herein [18][19][20][21]. When a displacement is held, skin exhibits creep and relaxation, 

which can be captured with viscoelastic models such as Prony series [18][22]. Regardless of the exact 

material properties formulation used, skin models predict distributions of stress and strain throughout 

the skin as a result of an applied indentation or force, and then a stress or strain quantity, such as strain 

energy density (SED), is converted to the firing rate of a single tactile afferent with a scaling function. 

While the predictions of skin mechanics models closely match in vivo data, these models have been 

largely limited to predicting firing rates, rather than individual spike times.   

To predict spike times, neural dynamics models can be used. Examples include the Hodgkin–

Huxley model, two-dimensional reductions of the Hodgkin–Huxley model, and leaky integrate-and-fire 

models [23][24]. Each of these models leverages one or more differential equations that are numerically 

evaluated with methods such as Runge-Kutta to describe the electrical properties of excitable 

membranes. For example, the Hodgkin-Huxley model combines four differential equations to describe 
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the time and voltage dependent nature of sodium and potassium conductances, allowing for accurate 

reproduction of both the timing and waveforms of spikes [23]. However, the spike waveform is not of 

interest in coding studies and the Hodgkin-Huxley model’s complexity often precludes its use in 

simulation [24]. Two-dimensional reductions of the Hodgkin-Huxley model, such as that derived by 

Izhikevich [25], decrease the required computation by approximating the Hodgkin-Huxley model with a 

system of two differential equations. These models are employed to efficiently reproduce diverse 

spiking behaviors in cortical simulations. Further abstraction yields the leaky integrate and fire model, 

which is composed of single differential equation. 

Specific to tactile afferents, specialized leaky integrate and fire (LIF) models have been used to 

investigate phase locking, phase retardation, and adaptation to sinusoidal vibration [26][27][28][29][30]. 

These models calculate SAI membrane potential as a function of vibration frequency and magnitude, 

and record a spike time when the membrane potential is driven to threshold. By sampling the threshold 

from a normal distribution over time, noise has been incorporated into these models. Although neural 

dynamics and skin mechanics are tied together in vivo, tactile afferent neural dynamics models and skin 

mechanics models have largely been used in isolation.  

To tie together neural dynamics and skin mechanics in silico as they are tied together in vivo, we 

previously developed a skin-receptor model that transforms skin indentation to spike times with three 

sub-transformations [31]. First, skin indentation is transformed to SED at the end organ with a two-

dimensional, linear elastic finite element model of the skin. Second, SED is transformed to receptor 

current with a fitted function of transduction modeled after transduction in pain receptors. Finally, 

receptor current is transformed to spike times with a leaky integrate and fire model of neural dynamics. 

Although this model successfully reproduced SAI spike trains with firing rates matching those elicited by 

3 and 5 mm gratings, it does not account for the branching SAI end organ with its multiple sites of spike 
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initiation. Therefore, a more detailed model of the SAI end organ must be developed to understand how 

end organ structure modulates the SAI afferent response.  
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3. The Arrangement of Merkel Cells in the SAI Afferent End Organ Governs its 
Response Magnitude and Sensitivity 

 

Although differences in touch-sensitivity between SAI afferents are well known, the biological basis of 

these differences is currently unknown.  Here, we seek to account for differences in SAI afferent 

responsiveness and supra-threshold sensitivity by the SAI afferent’s end-organ structure, specifically the 

grouping of Merkel cell-neurite complexes to spike initiation zones.  We constructed computational 

models combining a finite element analysis of the skin with a reconfigurable network composed of fitted 

functions of receptor current transduction and leaky integrate and fire models of spike initiation.  This 

reconfigurable network allows for simulating differences in end-organ structure, in particular the 

allocation and connectivity of Merkel cells to spike initiation zones. Results suggest that firing rate 

increases with the number of Merkel-cells, but that this effect can be obscured by the grouping of 

Merkel-cells to spike initiation zones. For example, an increase from 17 to 24 Merkel cells causes the 

firing rate to increase 21% when Merkel cells were distributed more evenly {8, 6, 5, 5}, in contrast to the 

39% increase when Merkel cells were skewed toward larger groups {8, 8, 7, 1}. When the total number of 

Merkel cells is held constant, firing rates increased an average of 7.2% per Merkel cell as Merkel cells 

were shifted to the largest group, and an average of 2.8% per Merkel cell as Merkel cells were shifted to 

the second largest group. This explains how end organs with more Merkel cells may be less sensitive than 

end organs with fewer, for example a model configured with 12 Merkel cells and a Merkel-cell grouping 

of {10, 1, 1} is 50.2 spikes/s/mm more sensitive than a model configured with 20 Merkel cells and a 

Merkel-cell grouping of {4, 4, 4, 4, 4}. Therefore, this work indicates that the rates of neural spike firing, 

as well as sensitivity (i.e. the slope of the displacement-firing rate transformation), depend on both the 

number of Merkel cells per afferent as well as the grouping of Merkel cells per spike initiation zone.  
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3.1 Introduction 

There is a great deal of variation in firing rates from different SAI afferents for similar stimuli, 

both in overall responsiveness and sensitivity, and these differences have been observed across 

stimulation modalities. For example, sensitivity differences have been observed for vibrating edges [32] 

and gratings [33], as well as spheres [9], gapped bars [10], and annular segments [11]. Furthermore, 

differences in sensitivity between afferents may impact how a population of afferents is recruited [34]. 

Although of great interest, these differences have yet to be attributed to a particular biological variation, 

such as skin mechanics [35], the number of Merkel cell-neurite complexes innervated by an SAI afferent 

[36][37] [38], or the structure of the SAI afferent’s end organ [8]. 

As it is not possible to obtain electrophysiological recordings and end organ reconstructions for 

the same SAI afferent, and as signal transformations and integration are unobservable, models are 

required to investigate the link between biological mechanisms and SAI afferent responses. While finite 

element models are able to control for skin’s contribution to SAI afferent responses, understanding the 

contribution of the end organ has been limited to changing parameters in the scaling function [39][14]. 

Similarly, recent efforts to model both skin mechanics and spike initiation do not account for the 

branching SAI afferent end organ with its multiple sites of spike initiation.  

Here, we build novel models of the SAI afferent end organ to investigate the link of receptor 

architecture with SAI firing properties. In an initial analysis of electrophysiological recordings, we found 

that the total number of Merkel cells did not correlate with firing rate, which is perplexing given that the 

transduction of mechanical stimuli to receptor current is believed to take place at Merkel cell-neurite 

complexes. In light of this result, we combine imaging, electrophysiology, and novel computational 

models to test the hypothesis that variation in the end-organ structure of the SAI afferent, specifically the 
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grouping of Merkel cell-neurite complexes to each spike initiation zone, accounts for differences in firing 

rate.  

 3.2 Methods 

Computational Model. To test the hypothesis, we constructed computational models of the SAI 

afferent’s end organ embedded in skin, hereafter referred to as the “end-organ model”.  A novel aspect 

of this model is the ability to represent different end-organ structures with a reconfigurable network of 

transduction functions, each representing a cluster of Merkel cell-neurite complexes providing receptor 

currents to spike initiation zones, which are in turn represented with leaky integrate and fire models. In 

this way, four prototypical configurations of the model were specified, each fit to electrophysiological 

recordings from SAI afferents. These configurations were constrained by complete 3D confocal 

reconstructions of SAI end organs. For example, the model configuration for a reconstructed end organ 

with four spike initiation zones and associated Merkel-cell groupings of 8, 5, 3, and 1, is shown in Figure 

3.1A.  Furthermore, individual sub-models within the reconfigurable network capture the 

transformation of indentation to strain energy density by skin, of strain energy density to membrane 

current by receptor transduction, and of current to spike times by spike initiation (Fig. 3.1B).  
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Figure 3.1: The model reconfigures to match specific SAI afferent end organs by representing the number of spike 
initiation zones as well as the number of Merkel cells grouped to each (A). The transformation of indentation to 
spike times is broken into sub-transformations completed by a finite element model of the skin, transduction 
functions of receptor current, and leaky integrate and fire models of neural dynamics (B). A spike generated by any 
leaky integrate and fire model resets and initiates refractory periods of all leaky integrate and fire models, 
representing the expected effect of antidromic spike propagation in the end organ.  

 

The skin is represented with a hyperelastic (Mooney Rivlin) and viscoelastic (Prony Seies) finite 

element model. A two-dimensional axisymmetric mesh includes both the epidermis (17 µm thick) and 

dermis (224 µm thick) of the skin [35], as well as subcutaneous tissue (101 µm thick) and the elastic 

substrate upon which the skin rests in the experimental apparatus. Note that all skin layers and the 

subcutaneous tissue are modeled as having the same material properties, resulting in a homogeneous 

tissue layer (342 µm thick). ABAQUS Standard, version 6.6, was used to create the model’s geometry 

and mesh, and is used for the FE analysis. The mesh utilizes four-node, bilinear quadrilateral hybrid with 

constant pressure elements (ABAQUS type CAX4H). The mesh contains 11200 elements. Boundary 

conditions are imposed such that nodes along the bottom of the substrate are constrained in the X and 
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Y directions. Finite element model parameters were chosen from within bounds reported for various 

tissues to generate displacement-force curves in close agreement with those observed in ex-vivo skin-

nerve preparations. The resulting parameters were C10 = 14847 and C01 = 41410 for the Mooney Rivlin 

skin model, and E = 906098 for the linear elastic substrate. Prony parameters were g1 = 0.391, τ1 = 0.25, 

g2 = 0.226, and τ2 = 9.371. These parameters govern the model’s transformation of indentation into 

strain energy density (SED), a measure of tissue distortion thought to correlate with the SAI afferent 

response [15][16][40]. SED is sampled from two elements approximating the volume and location of the 

SAI afferent end organ, located beneath the cylindrical probe that contacts the model’s surface. This 

probe is specified as a rigid analytic surface with a friction coefficient of 0.3 between the probe tip and 

skin surfaces, and due to the large diameter of our blunt cylindrical probe (3 mm) relative to touch 

domes that contain the SAI afferent end organs (~0.1 mm), it is assumed that SED magnitude is uniform 

across Merkel cells in the end organ.  

Strain energy density from the finite element model serves as input to transduction functions 

representing numbers of Merkel cell-neurite complexes grouped to spike initiation zones. The 

transduction function is defined by equation 3.1, where I is current,   is SED,   is an offset, M is the 

number of Merkel cells in the cluster, and   and   are gains for SED and the first derivative of SED, 

respectively. Each time SED is sampled and converted to current, at a frequency of 1000 Hz resulting in 

one sample per millisecond, the deterministic current is modified with the addition of a sample from the 

noise distribution, ω. This noise distribution is a 7 point moving average of Gaussian noise with a mean 

of zero and a standard deviation set to reproduce variable inter-spike intervals characteristic of the SAI 

afferent. Gaussian deviates were obtained using the Box-Muller method [41]. An initial effort with pure 

Gaussian noise, assumed for simplicity, was unable to reproduce the SAI afferent’s characteristic ISI 

variability except with noise levels dominating all other current components. For this reason, time 
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correlations were introduced, similar to those observed in current for spinal sensory neurons [42]. Noise 

was added to the transduction function due to the assumption that variable inter spike intervals result 

from synaptic transmission from Merkel cells giving rise to noisy input to spike initiation [38]. While the 

modeled transduction function is linear, the true stimulus-current transformation is likely sigmoidal, as  

observed for nociceptors and hair cells [43][44].  While the simplifying assumption of a linear function is 

adequate for the stimuli used here, it would not be valid for stimuli eliciting responses approaching the 

SAI afferent’s saturation firing rate (~1000 spikes/sec), as the model would predict firing rates higher 

than would be generated by the SAI afferent.  


   


   


( ) ( ( ) ) ( )I t M t t

t
                                                  Eqn 3.1 

The current originating from the transduction functions serves as input to leaky integrate and 

fire models, representing spike initiation zones. Neural dynamics are abstracted to a single differential 

equation (Eqn 3.2), where R is resistance, C is capacitance, u(t) is membrane potential, and I(t) is 

current. When current drives the membrane potential to a spike initiation threshold, v , a spike time is 

recorded and a 1 ms absolute refractory period is entered. It is expected in vivo that a spike generated 

at one spike initiation zone would antidromically invade the other spike initiation zones, resetting them 

and initiating an absolute refractory period [38]. Thus, when a spike is generated by a given leaky 

integrate and fire model, that spike resets all other leaky integrate and fire models in the modeled end 

organ. Numeric evaluation of the leaky integrate and fire equation is performed with the fourth order 

Runge-Kutta method [41].  

    


  ( ) ( )
u

RC u t RI t
dt

                                                  Eqn 3.2  

Animal Procedures. All animal procedures for this work were conducted by Dr. Ellen Lumpkin’s lab 

according to the National Institutes of Health Guide for the Care and use of Laboratory Animals and 
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were approved by the Department of Defense and Institutional Animal Care and Use Committees of 

Baylor College of Medicine and Columbia University. Two classes of data were collected: 

electrophysiological recordings of SAI afferent responses elicited by sustained stimuli and confocal 

reconstructions of SAI afferent end organs. 

To constrain end-organ models, 16 representative touch domes were reconstructed.  These 

reconstructions allowed specifying end organs as a number of spike initiation zones with a number of 

Merkel cells grouped to each. Based on these reconstructions, for prototypical SAI end organs were 

modeled: {8, 5, 3, 1}, {7, 6, 4, 2, 1}, {6, 4, 3}, and {5, 4, 3, 1}, where each number within brackets 

indicates the number of Merkel cells grouped to a spike initiation zone.  For example, {8, 5, 3, 1} 

specifies four spike initiation zones, with 8, 5, 3, and 1 Merkel cells associated with each, respectively.  

While {8, 5, 3, 1} and {6, 4, 3} were chosen from the reconstructions, {7, 6, 4, 2, 1} and {5, 4, 3, 1} were 

defined to provide realistic end organ configurations representative of the range of observed variation.  

End-organ models were further constrained with electrophysiological recordings from SAI 

afferents, which provide firing rates with which to fit the models. Single-unit responses were recorded 

from hairy skin dissected from the mouse hind paw with a portion of the saphenous nerve intact, as 

described previously [7].  These ex-vivo skin-nerve preparations were pinned to a 5-mm thick silicone-

elastomer substrate within a two compartment organ chamber circulating synthetic interstitial fluid. 

After isolating a single SAI afferent, a mechanical indenter delivered controlled displacements, ranging 

from 0.012 to 0.362 mm with accelerations of 19.8, 81.1, and 1143.2 mm/s, to the receptive field while 

the elicited spikes and applied forces were recorded (Appendix A, B). Data was obtained from four 

female J2x-nEGFP mice, 13-17 weeks old and weighing 22-33 g. The firing rate in the hold phase of the 

stimulus was calculated by averaging the number of over a 2.5-s window starting 2 s after the probe had 

achieved its commanded depth.  Note that the responses of these four afferents well demonstrate the 
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SAI afferent’s characteristic variation in response for similar indentations, in terms of both absolute 

firing rates and sensitivities, and that responses do not correlate to total Merkel-cell number (Fig. 3.2A). 

For example, recordings A and D both have similar Merkel cell counts (13 and 12 Merkel cells, 

respectively), generate the highest and lowest firing rates for similar displacements, and are also the 

most and lease sensitive, respectively. Skin samples were consistent, as indicated by displacement-force 

relationships (Fig. 3.2B). 
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Figure 3.2: Firing rate (A) and force (B) vs. displacement for electrophysiological recordings from four SAI afferents. 
Note that Merkel-cell number does not correlate with sensitivity.  Means±SDs are plotted. Adapted from [8]. 
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Model Fitting. Fitting each end-organ model to the mean SAI afferent response involved three 

free parameters in the transduction function:  ,  , and  . These were selected with gradient free 

response surface methodology using Latin hyper-cube space filling designs, where each design was 

composed of 20 trial points (sampled using the LHS package in R). The start point was informed by a 

domain search utilizing 50 points in a space filling design [45]. In contrast, the skin-mechanics models 

were set as per the discussion above, and the leaky integrate and fire parameters were fixed at values of 

5 ms, 1e-8 mF,  and 30 mV for  , C , and v , respectively. As it is not currently possible to directly 

observe the electrical properties of SAI spike initiation zones, these values were assumed based on 

correspondence with Dr. Scott Wellnitz. Note that resting membrane potential is scaled to 0 mV, so that 

the 30 mV threshold represents a 30 mV change from resting.  

Each of the four end-organ model configurations were fit to the mean SAI afferent responses by 

maximizing the combined goodness of fit, measured as fractional sum of squares, between mean and 

predicted firing rates. This combined goodness of fit takes a value of 2 for a model that perfectly 

matches the mean response profile, and is described by equation 3.3, where ihfr , ihfr , irfr , irfr  are 

the mean experimentally observed hold phase firing rate, the predicted hold phase firing rate, the mean 

biological ramp phase firing rate, and the predicted ramp phase firing rate, respectively, for stimulus i. 

The index i spans from 1 to 75 due to 5 unique displacement depths and 3 accelerations giving 15 

unique stimulations, each of which was simulated 5 times for a given set of model parameters.   

 
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i ii i
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       Eqn  3.3 

After fitting, parameters took values shown in table 3.1 for each model configuration. These 

values were used for the first two computational experiments, where results were generated for each 
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prototypical end organ. In contrast, model parameters for the two end organ configurations in the third 

computational experiment (Merkel-cell grouping obscuring Merkel-cell number) were set as the 

parameter averages of  = 5.658 x10-8 mA,  = 2.545 x10-14 mA/Pa, and  = 5.882 x10-11 mA∙ms/Pa. For 

additional details and intermediate results, see Appendix C. 

 
Table 3.1: Transduction parameters for four model configurations.   

Configuration  (mA)  (mA/Pa)  (mA∙ms/Pa) 

{8, 5, 3, 1} 5.643x10
-8

 2.539x10
-14

 5.833x10
-11

 

{7, 6, 4, 2, 1} 5.648x10
-8

 2.386x10
-14

 4.994x10
-11

 

{6, 4, 3} 5.669x10
-8

 2.612x10
-14

 6.211x10
-11

 

{5, 4, 3, 1} 5.672x10
-8

 2.641x10
-14

 6.491x10
-11

 

 

After model fitting, three experiments were conducted to test the hypothesis that variation in 

the grouping of Merkel cells to each spike initiation zone accounts for differences in firing rates between 

SAI afferents.  

Grouping of Merkel cells to spike initiation zones. To examine how variation in the grouping of 

Merkel cells to spike initiation zones could explain differences in SAI afferent responses, predictions 

from the four end-organ models were examined as their Merkel-cell grouping to spike initiation zones 

was varied. Specifically, changes to firing rates were observed while the largest (primary) and second 

largest (secondary) cluster of Merkel cells were systematically varied such that alternate groupings of 

Merkel cells to spike initiation zones (i) keep Merkel-cell number and spike initiation zones constant for 

each comparison, (ii) hold secondary cluster constant when changes to primary cluster are examined 

and vice-versa, and (iii) have identical changes to primary and secondary cluster sizes within a starting 

configuration. To examine the impact of the primary and secondary clusters, respectively, for the          

{8, 5, 3, 1} end organ model, comparisons were made of {10, 5, 1, 1} vs. {6, 5, 3, 3} and of {8, 7, 1, 1} vs.          

{8, 3, 3, 3}. Similarly, to examine the impact of the primary and secondary clusters for the {7, 6, 4, 2, 1} 
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end organ model, comparisons were made of   {9, 6, 3, 1, 1} vs. {6, 6, 4, 2, 2} and of {7, 7, 4, 1, 1} vs.       

{7, 4, 4, 3, 2}. For the {6, 4, 3} end organ model, comparisons of {7, 4, 2} vs. {5, 4, 4} and of {6, 6, 1} vs.  

{6, 4, 3} were made. Finally, for the {5, 4, 3, 1} end organ model, comparisons of {6, 4, 2, 1} vs. {4, 4, 3, 2} 

and of {5, 5, 2, 1} vs. {5, 3, 3, 2} were made.  

These comparisons evaluated the change in firing rate as a percentage, calculated by dividing 

the difference in summed firing rates between the two configurations by the lowest summed firing rate 

of the two. This is described by equation 3.4, where aifr and bifr are firing rates generated by the two 

configurations for stimulation i. The index i spans from 1 to 75 due to 5 unique displacement depths at 3 

accelerations giving 15 unique stimulations, each of which was simulated 5 times.  This provides a metric 

for comparing the overall response magnitudes of different configurations. However, averaging across 

different stimulus parameters obscures details of the stimulus-response transformation. For this reason, 

supra-threshold sensitivity was also examined, defined as the slope of a line fit through the firing rates 

generated by the three greatest displacements, as these points were unambiguously supra-threshold. 
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                  Eqn 3.4 

 

Interaction of Merkel-cell grouping and number. A second computational experiment was run 

where the number of Merkel cells in four representative end organs was increased from the original 

number.  This was done to examine the impact of Merkel-cell number, and to determine whether this 

impact might be obscured by the effect of Merkel-cell grouping. For each Merkel-cell increase simulated 

for the four prototypical end organs, two groupings of Merkel cells to spike initiation zones were used 

where cluster sizes were limited to the size of the largest cluster: a Merkel-cell grouping that increased 
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the second largest cluster first and a Merkel-cell grouping that increased the smallest cluster first. Taking 

the starting end organ of {8, 5, 3, 1} for example, the second largest first end organ for 18 Merkel cells is 

{8, 6, 3, 1} while the smallest first end organ is {8, 5, 3, 2}.  

 
Merkel-cell grouping obscuring Merkel-cell number. A third computational experiment 

examined how an SAI afferent with fewer Merkel cells produce a greater firing rate than one with more 

Merkel cells. To allow the size of the primary cluster to vary independent of Merkel-cell number, the 

number of spike initiation zones was allowed to vary. Models of two end organ configurations were 

instantiated. The first model {10, 1, 1} had 12 Merkel cells, 3 spike initiation zones, with the largest 

cluster being size 10. The second model {4, 4, 4, 4, 4} had 20 Merkel cells, 5 spike initiation zones, with 

the largest cluster being size 4.  These were chosen such that Merkel cell count and the size of the 

largest cluster would have opposite effects on the predicted response. Although the number of Merkel 

cells, size of the largest cluster, and number of spike initiation zones for these two configurations falls 

within the ranges observed though reconstructions, these specific groupings were not observed 

experimentally. 

 

3.3 Results 

Grouping of Merkel cells to spike initiation zones. The results of these comparisons (table 3.2) 

indicate that when the number of Merkel cells is held constant, firing rates increase with the size of the 

largest Merkel-cell cluster (white row for each Merkel-cell number), and to a lesser degree, with the size 

of the second largest Merkel-cell cluster (grey shaded row for each Merkel-cell number). On average, 

firing rates increased with the size of the largest Merkel-cell cluster 7.2 % per Merkel cell, and with the 

size of the second largest Merkel cell cluster 2.8 % per Merkel cell. These changes in firing rate appear to 
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increase with displacement depth, indicating corresponding changes in sensitivity (table 3.3), as shown 

for varying the primary (Fig 3.3A) and secondary (Fig 3.3B) cluster of the {8, 5, 3, 1} base configuration.  

Table 3.2: Changes in firing rate as the largest (white rows) and second largest (colored 
rows) clusters of Merkel cells are varied, while keeping the total number of Merkel cells 
constant.  

Grouping MC number ∆Largest ∆Second largest % Firing Rate Change 

{10, 5, 1, 1} 
17 4 0 39% 

{6, 5, 3, 3} 

{8, 7, 1, 1} 
17 0 4 15% 

{8, 3, 3, 3} 

{9, 6, 3, 1, 1} 
20 3 0 18% 

{6, 6, 4, 2, 2} 

{7, 7, 4, 1, 1} 
20 0 3 9% 

{7, 4, 4, 3, 2} 

{7, 4, 2} 
13(a) 2 0 14% 

{5, 4, 4} 

{6, 6, 1} 
13(a) 0 2 5% 

{6, 4, 3} 

{6, 4, 2, 1} 
13(b) 2 0 12% 

{4, 4, 3, 2} 

{5, 5, 2, 1} 
13(b) 0 2 4% 

{5, 3, 3, 2} 

 
 
Table 3.3: Changes in sensitivity as the largest (white rows) and second largest (colored 
rows) clusters of Merkel cells are varied, while keeping the total number of Merkel cells 
constant.  

Grouping Sensitivity (Spikes/sec/mm) Change In Sensitivity (Spikes/sec/mm) 

{10, 5, 1, 1} 113.00 
40.0 

{6, 5, 3, 3} 72.97 

{8, 7, 1, 1} 98.81 
13.4 

{8, 3, 3, 3} 85.37 

{9, 6, 3, 1, 1} 95.28 
25.0 

{6, 6, 4, 2, 2} 70.26 

{7, 7, 4, 1, 1} 83.08 
20.0 

{7, 4, 4, 3, 2} 63.10 

{7, 4, 2} 81.48 
13.2 

{5, 4, 4} 68.26 

{6, 6, 1} 81.58 
9.5 

{6, 4, 3} 72.11 

{6, 4, 2, 1} 66.80 
6.5 

{4, 4, 3, 2} 60.35 

{5, 5, 2, 1} 68.92 
10.1 

{5, 3, 3, 2} 58.80 
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Figure 3.3: Firing rates for {8, 5, 3, 1} end-organ model while primary (A) and secondary (B) clusters are varied 
while holding the total Merkel-cell number at 17.  Error bars denote +/- 1 standard deviation. 

 

Interaction of Merkel-cell grouping and number. For each of the four end-organ configurations, 

an increase to its Merkel-cell number resulted in an increased firing rate (Fig. 3.4); however, given an 

increase in Merkel-cells, Merkel-cell groupings with larger cluster sizes resulted in higher firing rates 

than the Merkel-cell groupings with smaller cluster sizes.  For example, with a base configuration of     

{8, 5, 3, 1} (Fig 3.4A), increasing the Merkel-cell number from 17 to 24 produces a 39% firing rate 

increase for a Merkel-cell grouping of {8, 8, 7, 1} and a 21% firing rate increase for a Merkel-cell grouping 

of {8, 6, 5, 5}. Furthermore, the impact of Merkel-cell grouping in a cluster appears to obscure the 
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impact of Merkel-cell increase in some cases. For example, with a base configuration of {8, 5, 3, 1} (Fig 

3.4A), increasing the Merkel-cell number from 17 to 20 with a grouping of Merkel cells to spike initiation 

zones of {8, 8, 3, 1}, produced similar increase in firing rate as a Merkel-cell increase from 17 to 24 with 

a grouping of Merkel cells to spike initiation zones of {8, 6, 5, 5}.  
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Figure 3.4: Changes in firing rate as Merkel-cell number is increased for each of the four end-organ model 
configurations of {8, 5, 3, 1} (A), {7, 6, 4, 2, 1} (B), {6, 4, 3} (C), and {5, 4, 3, 1} (D). Each Merkel-cell increase is 
performed under two policies: increasing the second largest cluster first, causing larger clusters (solid line, triangle 
markers), and increasing the smallest cluster first, causing smaller clusters on average (dashed line, circle markers). 
Percent firing rate increases are in comparison to the base configurations.  
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Merkel-cell grouping obscuring Merkel-cell number. The configuration {10, 1, 1} generated 

higher firing rates at the upper end of the displacement range, despite having eight fewer Merkel cells 

than the {4, 4, 4, 4, 4} configuration (Fig. 3.5). Although firing rates appear slightly higher for the            

{4, 4, 4, 4, 4} configuration for the lower displacements (p=0.002), resulting in roughly 3 more spikes 

over the static hold, overall the {10, 1, 1} configuration corresponds to a 10% firing rate increase.  Note 

the increased sensitivity of 119.0 spikes/s/mm for the {10, 1, 1} afferent, as compared to 68.8 

spikes/s/mm for the {4, 4, 4, 4, 4} afferent, a difference of 50.2 spikes/s/mm.  
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Figure 3.5: Firing rates for configurations of {10, 1, 1} and {4, 4, 4, 4, 4}.  Error bars denote +/- 1 std. 

 

3.4 Discussion 

The work in Aim 1 develops a computational model of the end organ of the SAI afferent 

embedded in skin, informed by confocal imaging and electrophysiology.  To the best of our knowledge, 

this represents the first effort to account for multiple spike initiation zones, associations of spike 

initiation zones with clusters of Merkel cells, and variations in the number of Merkel cells. This work was 

motivated, in part, by our observation that the sensitivity of the SAI afferent did not correlate with 

Merkel-cell number in our electrophysiological recordings. For example, recordings A and D in figure 3 
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have similar Merkel-cell counts, 13 and 12 respectively, but are the most and least responsive of the 

four recordings, respectively. Furthermore, if one were to observe only recordings A, B, and C, he or she 

might be lead to believe that responsiveness is inversely related to Merkel-cell number. This is 

perplexing given that the transduction of mechanical distortion to receptor current is believed to take 

place at Merkel cell-neurite complexes, though at the Merkel cell or neurite is unresolved [36]. The 

simulation results presented here may explain this paradox by demonstrating that although Merkel-cell 

number does impact SAI afferent sensitivity, a second factor that can neither be observed nor controlled 

in electrophysiological recordings obscures this relationship. This second factor is the grouping of Merkel 

cells to spike initiation zones. In particular, the size of the largest cluster of Merkel cells seems to have a 

large impact on the response. For example, a model configured with 17 Merkel cells and a Merkel-cell 

grouping of {10, 5, 1, 1} generates 39% higher firing rates that a model configured with 17 Merkel cells 

and a Merkel-cell grouping of {6, 5, 3, 3}. This demonstrates how end organs with the same number of 

Merkel cells can exhibit quite different responses. Furthermore, a model configured with 12 Merkel cells 

and a Merkel-cell grouping of {10, 1, 1} generates 10% higher firing rates and is 50.2 spikes/s/mm more 

sensitive than a model configured with 20 Merkel cells and a Merkel-cell grouping of {4, 4, 4, 4, 4}, 

demonstrating how end organs with more Merkel cells may be less sensitive than end organs with 

fewer.  

Consequentially, this work suggests that the most sensitive SAI afferent would cluster all Merkel 

cells to a single spike initiation zone, or, given a number of spike initiation zones, have a skewed 

distribution where all but one was associated with a single Merkel cell. Interestingly, this is not the case 

in vivo. In a survey of 16 SAI afferent end organs, which were reconstructed with whole-mount 

immunostaining, all had three to five spike initiation zones with asymmetric clusters [8].  It is possible 

that SAI afferents innervate multiple Merkel cells for increased robustness to injury, in addition to 
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increased sensitivity [46], and that the grouping of Merkel cells to spike initiation zones mediates a 

tradeoff between these two competing factors. It is also possible that asymmetric clusters could extend 

the SAI afferent’s range of sensory coding [47].  

It should be noted that the model abstracts the neurite length between Merkel cells and spike 

initiation zones. However, based on an observed average neurite diameter of 1 µm and a specific 

resistance of 25500 Ω∙cm2, representing a midpoint between a range in other neurons [48], the neurite 

length constant would be around 714 µm, an order of magnitude greater than the mean path length 

35.26 µm, SD=10.93 µm (N=12, taken from {8, 5, 3, 1} reconstruction). Similarly, the model assumes 

equivalent Merkel cell-neurite complexes. However, transduction units tuned to different stimulus 

features may underlie the encoding of both dynamic and static stimuli, as proposed for muscle-spindle 

afferents [49][50].  

This joint modeling and experimental effort fits within the emerging paradigm of using 

computational methods to gain insight into perceptual mechanisms not amenable to direct observation. 

For example, mechanics modeling has investigated the link of experimentally unobservable mechanical 

states within the skin of primates [39][16] or the tactile hairs of spiders [51] and neural responses.  

Similar methods have been used to investigate the role of end organ morphology for the Pacinian 

corpuscle, and demonstrate that the external shape of the corpuscle is likely irrelevant to the neural 

response, suggesting that the internal layered structure of the corpuscle is of primary importance [52]. 

While these investigations have primarily been mechanical in nature, others have attempted to link end-

organ mechanics with spike initiation to create a more unified understanding of tactile sensation [53]. 

The work presented here complements these efforts by also considering internal electrical structure, 

which is of particular importance for the SAI afferent’s branched end organ. 



35 

 

Finally, ever since touch domes were identified as a source of slowly adapting responses that 

contain innervated Merkel cells, understanding the role of Merkel cells in the SAI afferent response has 

been a central question [2]. Recently, Merkel cell-neurite complexes were definitively confirmed as the 

source of SAI afferent responses through a combination of ex-vivo recording, neuronal tracing, and post 

hoc histological analysis [3]. Furthermore, Atoh1 knockout mice, devoid of Merkel cells, have been 

shown to lack SAI afferent responses through ex-vivo recordings [54]. The work described here 

complements these efforts, which demonstrate that Merkel cells are essential to SAI afferent responses, 

by beginning to explore how the complement of Merkel cell-neurite complexes mediate the input-

output relationship of the SAI afferent.  
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4. Changes to SAI Afferent Responses due to End Organ Remodeling may be Mitigated 
by Skin Thickness Changes During the Mouse Hair Cycle 

 

Immunostaining experiments have recently shown that the number of Merkel cells in an end organ 

increases by roughly 42% over a period of weeks with the hair cycle (Unpublished, Marshall and 

Lumpkin)[55]. Here, we seek to understand the impact of such a change on the SAI afferent response, 

and determine if the expected impact could be counteracted by a simultaneous change in skin thickness, 

which varies from 147 to 433 µm over the same time frame. To do so, we utilize computational models of 

the SAI end organ composed of transduction functions representing groups of Merkel cells and leaky 

integrate and fire models representing spike initiation zones, combined with multiple finite element 

models, each of which reflects a different skin thickness within an experimentally observed range.  

Simulation results indicate that while the increasing number of Merkel cells causes an increase in firing 

rate, a simultaneous increase in skin thickness causes a counteracting decrease. For example, if a change 

in skin thickness is not accounted for, end organ remodeling resulted in an average firing rate increase of 

37% and a supra-threshold sensitivity change of 32.2 spikes/sec/ms, compared to an average of just 1% 

and 1.3 spikes/sec/ms when a change in skin thickness is modeled.  Therefore, this work indicates that 

simultaneous variation in the SAI afferent end organ and the skin in which it is embedded may maintain 

homeostasis with respect to SAI afferent responses.  

 

 

 

 



37 

 

 4.1 Introduction 

Little is known about how the stimulus-response transformation of individual SAI afferents may 

vary with time, although biological mechanisms underlying touch sensation, such as the SAI afferent end 

organ and skin, change over time. For example, during the hair cycle, where hair follicles grow (anagen), 

regress (catagen), and enter a state of quiescence (telogen) over a period of weeks [56], both the end 

organ and skin change [55][56][57]. While this process is mosaic in humans, the synchronized hair cycles 

in mice provide an experimentally tractable model for examining how the end organ and skin may 

interact over time. In mice, skin thickness changes such that during active stages (anagen + catagen) it is 

significantly thicker than during rest stages (telogen) [56][57]. Similarly, immunostaining reconstruction 

experiments have recently shown that the SAI end organ appears to structurally remodel between rest 

and active stages of the hair cycle such that the number of Merkel cells increases by 42%, while the 

number of spike initiation zones remains unchanged (Unpublished, Marshall and Lumpkin)[55]. Given 

that Merkel cell configuration is tied with the neural response, this paradoxically suggests that the input-

output relationship of the SAI afferent, in terms of both response magnitude and supra-threshold 

sensitivity, may vary with the hair cycle.  

Currently, it is not possible to record from an individual SAI afferent over a period of weeks, nor 

have skin thickness measurements and end-organ reconstructions been obtained from the same skin-

nerve preparation. However, computational modeling may facilitate our understanding of how changes 

to the skin and end organ impact the SAI afferent response over time. Previous modeling efforts have 

either focused on how skin mechanics and structure shape the neural response [13][16][40] or on how 

the structure of the SAI end organ influences afferent-to-afferent variability [8]. Here, we combine 

computational models of the SAI end organ with recent measurements of skin thickness to test the 
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hypothesis that the thickening of the skin between rest and active stages mitigates the impact on neural 

firing that might be induced by remodeling of the end organ, thereby promoting homeostasis.  

4.2 Methods 

To test this hypothesis, we model SAI end-organs as a reconfigurable network of transduction 

functions and leaky integrate and fire models, and model the skin with multiple finite element models, 

each of which represents a different thickness covering the observed range for rest (9.0 - 11.1 weeks of 

age) and active (5.7 – 6.9 weeks of age) stages over a hair cycle. Using these tools, three computational 

experiments are run to 1) examine how the range of skin thicknesses impacts the SAI response, 2) test 

whether the expected change in firing properties between rest and active stage end organs might be 

counteracted by a concurrent thickening of the skin, and 3) examine the expected mitigation of end-

organ remodeling should skin change between median thickness values for rest and active stages rather 

than values dependent on the end organ.  

The first computational experiment examines the feasibility that between rest and active stages, 

increasing skin thickness impacts firing rate. To do so, four prototypical rest stage end-organ models 

were run with six finite element models of differing skin thickness.  Skin thickness from 147 to 433 µm 

were simulated with 57 µm increment changes to thickness. This range was experimentally observed for 

rest and active stages over a period of five weeks [57]. 

The second computational experiment tested whether increasing skin thickness can counteract 

the impact of increased Merkel cell count in active stage end organs.  Comparisons were first made 

between firing rates for the four rest stage end-organ models and 3 randomly generated active stage 

end organs for each, all using the same finite element model. This provided an indication of the degree 

to which firing rate may change due to end organ remodeling, ignoring the impact of skin. Second, the 
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active stage end organ models were run with skin thicknesses within the range examined in the first 

computational experiment, where thicknesses were selected to reduce the percent change in firing rate 

to within 5% without overcorrecting. Note that in addition to the finite element models in the first 

computational experiment, finite element models of 404 µm and 347 thick skin were also used to 

provide intermediate values when the adjacent thickness values either over or under compensated.  

The third computational experiment examines the effect of skin changing between median 

values for rest and active stages, i.e. as expected should skin change independently, in contrast to the 

previous experiment where skin changed dependent on the end organ. Two finite element models are 

utilized, reflecting the median values for rest (225 µm) and active stages (331 µm)[57]. Rest and active 

stage end organs are then simulated with these skin thicknesses.  

In each of the three computational experiments, different skin thicknesses are reflected through 

the use of multiple finite element meshes. Overall, ten finite element models were variously employed 

over the three computational studies, as described in table 4.1. Each finite element model represents 

skin (with all tissue layers combined) with hyperelastic (Mooney Rivlin) and viscoelastic (Prony Seies) 

material models analyzed with ABAQUS Standard, version 6.6. Based on previous work [8],  parameters 

were C10 = 14847 and C01 = 41410 for the Mooney Rivlin skin model, E = 906098 for the linear elastic 

substrate, and g1 = 0.391, τ1 = 0.25, g2 = 0.226, and τ2 = 9.371 for the Prony series. Each two-dimensional 

axisymmetric mesh contains 11200 four-node, bilinear quadrilateral hybrid with constant pressure 

elements (ABAQUS type CAX4H). Meshing was performed such that element sizes in the sampling region 

were identical between meshes, and boundary conditions are imposed such that nodes along the 

bottom of the substrate are constrained in the X and Y directions. A friction coefficient of 0.3 between 

the rigid analytic probe and skin surfaces was specified.  
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Table 4.1: Summary of 10 meshes used, including skin thickness 
reflected and which computational experiments it contributed to  

FEM Skin Thickness (µm) Utilized in Experiment(s) 

1 147 1, 2 

2 204 1 

3 261 1 

4 318 1, 2 

5 375 1, 2 

6 433 1, 2 

7 404 2 

8 347 2 

9 225 3 

10 331 3 

 

Four rest-stage end organs with Merkel cell groupings of {11, 7, 2}, {9, 7, 3}, {7, 5, 2}, and {5, 5, 3} 

were chosen from immunostaining reconstructions to cover a representative range of primary cluster 

sizes. The number of spike initiation zones was fixed at three, as we have observed it to be the most 

common number. Three active stage end organs were generated for each of the four rest stage end 

organs by increasing the Merkel cell count 42%, as determined by comparisons of 9 rest stage and 8 

active stage end organs (Unpublished, Marshall and Lumpkin)[55]. Merkel cells were added randomly to 

the three spike initiation zones with equal probability. Based on previous work [8], leaky integrate and 

fire parameters were  =5 ms, C =1e-8 mF, and v =30 mV, and transduction parameters were             

 = 5.658 x10-8 mA,  = 2.545 x10-14 mA/Pa, and  = 5.882 x10-11 mA∙ms/Pa, for all end organ models.  

Predicted firing rates were evaluated in terms of both sensitivity and response magnitude. 

Response magnitude was evaluated as the percentage change in firing rate, calculated by dividing the 

difference in summed firing rates between two cases by the base case compared to. Supra-threshold 

sensitivity was defined as the slope of a line fit through the firing rates generated by the three greatest 

displacements, as these points were unambiguously supra-threshold.  
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4.3 Results 

The results of the first computational experiment indicate that as skin thickness increases, hold 

phase firing rate magnitude decreases (table 4.2), and that there is a corresponding decrease in 

sensitivity to supra-threshold stimuli (table 4.3). On average, firing rate decreased 30% as skin thickness 

increased between 147 and 433 µm. These changes were fairly linear, with each 57 µm increase in 

thickness resulting in a roughly 6% drop in firing rate. Over the range of skin thicknesses, supra 

threshold sensitivity changed, on average, 36 spikes/sec/mm. These results are illustrated in plots of 

predicted firing rate vs. displacement for 147 and 433 µm thick skin (fig. 4.1).   

Table 4.2: Percent firing rate change as skin thickens for four prototypical rest stage end organs.  

Skin Thickness {11, 7, 2} {9, 7, 3} {7, 5, 2} {5, 5, 3} 

147 µm 0 %  0 % 0 % 0 % 

204 µm -8 % -7 % -8 % -6 % 

261 µm -14 % -14 % -15 % -13 % 

318 µm -19 % -19 % -21 % -19 % 

375 µm -26 % -24 % -24 % -21 % 

433 µm -30 % -28 % -32 % -29 % 

 
Table 4.3: Supra-threshold sensitivity (spikes/sec/mm) as skin thickens for four prototypical rest stage end organs  

Skin Thickness {11, 7, 2} {9, 7, 3} {7, 5, 2} {5, 5, 3} 

147 µm 168.2 153.7 102.6 85.9 

204 µm 161.4 138.6 93.8 68.2 

261 µm 151.3 131.4 89.4 67.1 

318 µm 144.7 117.8 82.7 62.8 

375 µm 142.1 107.8 72.6 59.0 

433 µm 134.4 105.5 73.3 51.4 
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Figure 4.1: Firing rate for four prototypical rest stage end organs as skin thickness changes from 147 to 433 µm. 
Error bars denote +/- 1 standard deviation.   

 

The results of the second computational experiment suggest that while the increasing number of 

Merkel cells causes an increase in firing rate,  simultaneous increase in skin thickness causes a 

counteracting decrease (table 4.4), and also reduces the change in supra-threshold sensitivity (table 

4.5). When the skin is held constant, changing from rest to active end organs resulted in an average 

firing rate increase of 37%.  Conversely, when skin thickness varied with end organ, firing rate increased 

just 1% on average. The percent firing rate change is 36% less when the skin varies, as compared to 

when it remains constant. On average, supra-threshold sensitivity changed 32.2 spikes/sec/ms when the 
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skin remained constant, as compared to an average of 1.3 spikes/sec/ms when the skin varies. Note that 

firing rates when the skin varies (dotted line) are in close agreement with the firing rates from rest stage 

end organ models (lower solid lines) (Fig 4.2). These results suggest that skin thickness and the number 

of Merkel cells in the SAI end organ may interact, maintaining homeostasis.  

Table 4.4: Percent firing rate change as the end organ transitions from rest stage to active stage. 
Results are shown for skin held constant, and for when skin changes.  

Rest Organ Active Organ Skin Constant Skin Changes Skin Thickness Changed to 

{11, 7, 2} 

{15, 10, 3} 36% 2% 404 µm 

{13, 11, 4} 29% 1% 347 µm 

{12, 12, 4} 26% 2% 318 µm 

{9, 7, 3} 

{13, 10, 4} 46% 2% 433 µm 

{11, 8, 8} 31% 1% 375 µm 

{10, 10, 7} 29% 0% 375 µm 

{7, 5, 2} 

{10, 7, 3} 45% 1% 433 µm 

{9, 7, 4} 35% 0% 375 µm 

{9, 6, 5} 34% 1% 375 µm 

{5, 5, 3} 

{8, 6, 4} 49% 0% 433 µm 

{7, 7, 4} 45% 1% 404 µm 

{7, 6, 5} 38% 1% 404 µm 

 
 

Table 4.5: Change in supra-threshold sensitivity (spikes/sec/mm) as the end organ transitions from 
rest stage to active stage. Results are shown for skin held constant, and for when skin changes.  

Rest Organ Active Organ Skin Constant Skin Changes Skin Thickness Changed to 

{11, 7, 2} 

{15, 10, 3} 35.2 -0.6 404 µm 

{13, 11, 4} 17.2 -10.0 347 µm 

{12, 12, 4} 18.1 1.1 318 µm 

{9, 7, 3} 

{13, 10, 4} 45.6 9.7 433 µm 

{11, 8, 8} 29.1 -4.2 375 µm 

{10, 10, 7} 29.8 7.8 375 µm 

{7, 5, 2} 

{10, 7, 3} 44.1 -2.2 433 µm 

{9, 7, 4} 27.7 -6.0 375 µm 

{9, 6, 5} 29.4 2.8 375 µm 

{5, 5, 3} 

{8, 6, 4} 35.9 7.2 433 µm 

{7, 7, 4} 41.1 -1.3 404 µm 

{7, 6, 5} 33.4 11.2 404 µm 
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Figure 4.2: Firing rate vs. displacement for rest stage organs, active stage organs with skin thickness held constant, 
and active stage organs with skin that varies to mitigate the increased firing rate due to end-organ changes. Error 
bars denote +/- 1 standard deviation.   

 
The results of the third computational experiment indicate that even if the skin varies 

independent of the end organ, it does mitigate the change in firing rate as the end organ remodels. This 

can be seen for both response magnitude (table 4.6) and supra-threshold sensitivity (table 4.7). When 

the end organs transition between rest and active stages, the firing rate changes an average of 34% if 

the skin does not change, compared to an average of 18% when it does. On average, supra-threshold 

sensitivity changed 38.6 spikes/sec/ms when the skin remained constant, as compared to an average of 

21.6 spikes/sec/ms when the skin changed. Graphically, the displacement-firing rate curves  for active 
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stage organ models using the active stage FEM fall between the simulated rest stage, and the simulated 

active stage end organ for when skin is constant and has no impact (fig 4.3).  

Table 4.6: Percent firing rate change as the end organ transitions from rest stage 
to active stage. Results are shown for skin held constant at median thickness for 
rest stage, and for when skin changes to median thickness for active stage.  

End-Organ Change Skin Constant Skin Changes 

{11, 7, 2} -> {13, 11, 4} 29% 16% 

{9, 7, 3} -> {11, 8, 8} 28% 15% 

{7, 5, 2} -> {9, 7, 4} 38% 19% 

{5, 5, 3} -> {7, 7, 4} 42% 20% 

 
Table 4.7: Change in supra-threshold sensitivity (spikes/sec/mm) as the end organ 
transitions from rest stage to active stage. Results are shown for skin held 
constant at median thickness for rest stage, and for when skin changes to median 
thickness for active stage. 

End-Organ Change Skin Constant Skin Changes 

{11, 7, 2} -> {13, 11, 4} 33.9 13.5 

{9, 7, 3} -> {11, 8, 8} 34.3 21.4 

{7, 5, 2} -> {9, 7, 4} 43.3 28.6 

{5, 5, 3} -> {7, 7, 4} 42.7 22.9 
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Figure 4.3: Firing rate vs. displacement for rest stage organs, active stage organs with skin held constant, and active 
stage organs with skin that varies to the median active stage value. Error bars denote +/- 1 standard deviation.   

 

4.4 Discussion 

This work combines computational models of the SAI end organ and multiple finite element 

models, each representing a different skin thickness, constrained by reconstructions of SAI end organs 

and skin thickness measurements. To the best of our knowledge, this is the first effort to simultaneously 

consider the impact of skin and end organ, as well as the first effort to consider changes to individual SAI 

afferent stimulus-response transformations over time.  This was motivated by the observation that SAI 
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end organs remodel with the hair cycle such that there is a 42 percent increase in Merkel cells in the 

active stage as compared to the rest stage, and by the fact that our previous modeling efforts suggest 

such changes would significantly alter the SAI afferent’s stimulus-response transformation.  

The simulation results presented here demonstrate that while the increasing number of Merkel 

cells in active-stage end organs causes an increase in firing rate, a simultaneous increase in skin 

thickness causes a corresponding decrease. For example, a simulated end organ with a Merkel cell 

grouping of {7, 5, 2} experiences a 32 % drop in firing rate with a corresponding 29.3 spike/sec/mm 

decrease in supra-threshold sensitivity when modeled skin thickness changes from 147 µm to 433 µm, 

comparable with the 35 % increase in firing rate when the number of Merkel cells increased 42% to a 

grouping of {9, 7, 4}. Even if skin thickness varies independently from the end organ (though on the 

same time scale), results indicate that changes in skin thickness mitigate the impact of end organ 

remodeling. For example, simulations indicate that as an end organ remodels from a configuration of  

{7, 5, 2} to {9, 7, 4}, there would be a 38% change in firing rate and a 43.3 spike/sec/mm change in 

supra-threshold sensitivity if the skin had no impact, compared to a 19% increase in response magnitude 

and a 28.6 spike/sec/mm change in supra-threshold sensitivity due to median changes in skin thickness.  

It should be noted that variation between SAI afferents is, in general, greater than the variation 

explored here. For example, in the electrophysiological data examined previously [8], supra-threshold 

sensitivities ranged from 21 to 202 spikes/second/mm, and firing rates differed by 120 to 665%,  as 

compared to the least responsive SAI afferent. In contrast, changes to supra-threshold sensitivities were 

on the order of tens of spikes/sec/mm, and firing rates differed by up to 49%. However, that is not to 

say the variation explored here is insignificant. For example, if the skin does not vary, models predict 

equal or higher firing rates for 0.31 mm indentations during the active stage than 0.36 mm indentations 

during the rest stage. While high afferent to afferent variability requires upstream mechanisms to 
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compensate at a population level, perhaps by differently weighting afferents, temporal variability in 

individual afferents suggests that either the mechanisms compensating for afferent to afferent 

variability themselves vary with time, or homeostasis is somehow maintained in the periphery.  

For interactions between skin and the end organ to promote homeostasis, coordination is 

required either between the SAI end organ and the surrounding tissue, or both the skin and end organ 

must be influenced by common signaling pathways. Signaling appears to take place between hair 

follicles and their local environment during the hair cycle, as follicles synchronize in spatial domains, and 

can be reset by pregnancy [58]. Indeed, researchers are beginning to uncover the underlying signals 

regulating follicle regeneration [59]. Determining if such mechanisms mutually influence the skin and 

end organ is beyond the scope of this work, but these studies are suggestive that coordination between 

the skin, follicle, and end organ may exist.  

Though the skin and end organ were examined within the context of the hair cycle, this study 

also provides general insight into their interaction. In general, thicker skin yields lower mechanical 

quantities local to the SAI end organ, resulting in lower firing rates, while increased Merkel cell counts or 

larger clusters result in higher firing rates. A similar effect is expected where increased skin stiffness 

yields higher mechanical quantities local to the SAI end organ, and therefore higher firing rates. While 

skin stiffness does not seem to depend on hair cycle stage [57], changes in skin stiffness have been 

observed over longer time periods with age [60][2]. Similarly, recent reconstructions reveal the SAI end 

organ’s arbor simplifies with age (Unpublished, Marshall and Lumpkin) [55]. It is not yet known how age 

related changes to the end organ and skin interact.  

The role of skin mechanics in the SAI afferent response has been a central question for more 

than 30 years. For example, Johnson demonstrated that the way in which skin focuses mechanical 
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stresses/strains along edges helps to embed spatial information in the SAI afferent response [33][13]. 

More recently, skin mechanics modelers have sought to understand the link between SAI afferent 

responses and nonlinear skin mechanics [18], skin macrostructure [16] , and skin microstructure [40]. 

The work described here complements these efforts, which demonstrate that the skin and SAI afferent 

are intertwined, by exploring how skin mechanics and end organ structure may interact to promote 

homeostasis.  
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5. Mimicking the SAI Afferent End Organ Increases Artificial Touch Sensor Durability 

 

Recent interest in building sensors that mimic natural tactile afferents has led to the combination of 

single force transducers with computational models of neural spike generation. As an extension, such 

sensors might leverage the compound nature of the slowly adapting type I (SAI) afferent end organ.  By 

mimicking its structural elements, specifically multiple sites of spike initiation that reset each other, gains 

in durability may be obtained. Therefore, this work develops models of compound spiking sensors using a 

computational network of transduction functions and leaky integrate and fire models (together a spike 

encoder, the software element of a compound spiking sensor), informed by the output of an existing 

force transducer (hardware sensing elements of a compound spiking sensor). Force transducer failures 

are simulated with and without resetting between spike encoders to test the importance of resetting and 

configuration on compound spiking sensor durability. Fault tree analysis and discrete event simulation 

are used to gain a probabilistic and temporal understanding of optimal compound sensor configurations 

and, in specific, their effects upon durability. It was determined that the resetting of spike encoders, upon 

the firing of a spike by any one, was essential for allowing a compound sensor’s input-output relationship 

to remain consistent in the face of transducer failures. Further analysis indicates that the durability of the 

compound sensor increases with the number of spike encoders, but decreases with the number of force 

transducers associated with each spike encoder. Use cases simulate how 1) a compound spiking sensor 

can be designed to reach a target lifetime with a defined probability and 2) how to schedule 

maintenance to best control the probability of unexpected failure.  
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5.1 Introduction  

Through the application of biomimetic design, our understanding of biological sensing may help 

inform newly engineered systems. Recent examples in this growing field include understanding how 

insects use optic flow to inform navigation of unmanned aerial vehicles [61], understanding how rats 

move their whisker arrays to design shape extraction algorithms [62], and understanding how skin 

ridges interact with tactile afferents to design robotic grip control [63] and texture sensing [64]. 

Similarly, neural spike-based output and processing has been investigated for both rapid processing of 

sparse signals for image classification [65] and future interfaces between the nervous system and 

advanced prosthetic arms [66].  

Recent work has developed a spike-based sensor system that mimics the SAI afferent with a 

force transducer embedded in artificial skin, coupled to a virtual spike encoder composed of a 

transduction function and leaky integrate and fire model [67]. Similarly, these approaches have 

produced spiking sensors mimicking responses of SAI, PC, and RA afferents to vibration [66].  Despite the 

formers success in mimicking SAI afferent force–spike transformations, for use in neural prosthetics or 

biomimetic robotics, the system couples a single transducer to a single spike encoder. In contrast, the 

SAI end organ couples multiple transducer elements (Merkel cell–neurite complexes) with multiple spike 

encoders (spike initiation zones) [8]. These multiple spike encoders are thought to reset each other, i.e. 

a spike generated at any spike encoder antidromically propagates to all other spike encoders, initiating 

absolute refractory periods and restarting the process of spike initiation [38]. A likely benefit of the SAI 

end organ’s compound nature has been suggested as increasing the durability of the natural 

mechanosensory unit [68]. 
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For artificial sensors, durability can be defined as the ability to perform the same input-output 

transformation despite some level of damage to the sensor. In terms of a compound spiking sensor, 

where physical force transducers are tied to an A/D converter to provide input to virtual spike encoders, 

durability can be defined as the ability to produce the same output for a given stimulus, even though a 

number of the physical force transducers have failed.  

Here, we model compound spiking sensors, based upon the SAI end organ, seeking to obtain 

design patterns for increased durability. We hypothesize that resetting between spike encoders will be 

an essential mechanism to durability, and that of the repeated elements in the compound spiking 

sensor, the number of spike encoders will be of greatest importance, compared to the number of 

transducers grouped to each spike encoder.  

5.2 Methods 

This work develops models of compound spiking sensors using a computational network of 

transduction functions and leaky integrate and fire models, driven by an existing force transducer. To 

test our hypothesis that resetting and the number of spike encoders are essential to compound sensor 

durability, we use this model to simulate random transducer failures with and without resetting. Next, 

we examine the simulation results to derived rules governing compound sensor failure, and analyze 

these rules with fault trees to gain a probabilistic understanding of how a compound sensor’s 

configuration influence its durability. Finally, we use discrete event simulation derived from the fault 

tree to illustrate example cases of compound sensor design and use.  

 Compound sensors.  A diagram comparing the single spiking sensor of Kim and Gerling [67] and 

the compound sensors simulated here is shown in figure 5.1. Force readings from a single transducer are 

used here, and the simplifying assumption of identical behavior is used in simulating multiple force 
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transducers. Data from one or more force transducers then serves as input to multiple spike encoders, 

each composed of a transduction function (Eqn. 3.1) and leaky integrate and fire model (Eqn. 3.2). 

Except when disabled, a generated spike causes all leaky integrate and fire models to reset and enter a 1 

ms refractory period. In contrast, when resetting is disabled, the output of the compound spiking sensor 

is the superposition of spiking from all associated spike encoders. Leaky integrate and fire parameters 

were  =71.409 ms, C =9.7e-7 mF, and v =47.3 mV, matching those in the single spiking sensor [67], and 

transduction parameters were set such that the summed current from multiple transducers would 

produce identical spiking. Therefore, all simulated sensor configurations, when undamaged, perform 

identical input-output transformations. The resulting transduction parameters for configurations used 

here are given in table 5.1. 

(FT) Force

Transducer
A/D Transduction LIF

Spike Encoder

Spikes

Hardware Software

(A)

FT 1.1

A/D

Spike Encoder 1

(B)

FT 1.M

Spike Encoder 2

Spike Encoder N

Spikes

...

...

...

FT N.1

FT N.M

...

Transduction LIF

Resetting

{

 
Figure 5.1: Diagram of Kim and Gerling’s spiking sensor (A) where a force transducer embedded in artificial skin 
connected to an analog to digital converter drove a spike encoder running in software that was composed of a 
transduction function and leaky integrate and fire model. A comparable compound sensor is shown in (B), where 
N spike encoders receiving input from M transducers each. In the simulations run here, duplicates of the force 
readings from the hardware portion of (A) served as inputs to the software portion of (B).   A/D represents the 
analog to digital converter. 
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 Table 5.1: Transduction parameters for each compound sensor configuration for 
output identical to that of Kim and Gerling for the same input.  

Configuration  (mA)  (mA/N)  (mA∙S/N) 

{12} 2.72 x10-8 0.5167 x10-7 0.22583 x10-4 

{6, 6} 2.72 x10-8 1.0333 x10-7 0.45167 x10-4 

{4, 4, 4} 2.72 x10-8 1.5500 x10-7 0.67750 x10-4 

{3, 3, 3, 3} 2.72 x10-8 2.0667 x10-7 0.90333 x10-4 

 

Simulating transducer failures with and without resetting. To test the importance of resetting 

and to gain insight into how the grouping of transducers to spike encoders influences compound sensor 

durability, simulations were run for four spiking sensor configurations: {12},   {6, 6}, {4, 4, 4}, and           

{3, 3, 3, 3}, where the notation represents compound spiking sensors with 1, 2, 3, and 4 spike encoders, 

each of which is linked to 12, 6, 4, and 3 force transducers, respectively. Even distributions of 

transducers to spike encoders, as compared to the uneven distribution of Merkel cells to spike initiation 

zones in the SAI end organ, are assumed for the artificial sensor systems simulated here. For each of the 

four configurations, models with and without resetting were examined. Note that the model configured 

{12} is identical with or without resetting, as there is a single spike encoder. Transducers were simulated 

as randomly failing one at a time, up to 6 failures in total, where a failure is defined as a transducer no 

longer outputting analog voltage to the A/D converter. A compound sensor failure was defined as any 

change in its input-output relationship. This was repeated five times for each configuration, with a 

different random set. If resetting is an essential mechanism in the durability of a compound spiking 

sensor, then a single transducer failure with resetting disabled would result in a changed input-output 

transformation (a compound sensor failure). Similarly, if the configuration of the compound sensor 

influences its durability, then some spiking sensor configurations should be able to tolerate more 

transducer failures than others before failing.  
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Analyzing the impact of compound sensor configuration on durability. To determine how 

compound sensor durability is influenced by a compound sensor’s configuration, the simulation results 

were further examined to determine rules governing the maximum and minimum number of 

transducers that can fail before the overall compound sensor fails. These rules were then visualized 

through fault trees to give a probabilistic understanding of how the number of spike encoders and 

transducers associated with each influences compound sensor durability.  

Discrete event simulation of use cases. The understanding obtained through the fault tree 

analysis was used in discrete event simulations of two cases where compound spiking sensors may be 

used. These cases illustrate how understanding the durability of a compound spiking sensor as 

transducers fail can inform 1) the number of transducers a compound spiking sensor requires to reach a 

target lifetime, and 2) how often to schedule maintenance to control the probability of failure. These 

use cases illustrate the temporal aspects of compound spiking sensor durability.  

 Use case simulations were coded in python, and each transducer in the simulated compound 

spiking sensor drew its time to failure from an exponential distribution using the built in random library. 

Based on the fault tree analysis, the lifetime of the compound spiking sensor was defined as the 

maximum life of the associated transducers. Probabilities of reaching target lifetimes were obtained by 

observing the outcome of 100,000 trials.   

5.3 Results 

Simulations of transducer failures with and without resetting. When resetting between spike 

encoders is disabled, a single transducer failure changes the input-output transformation of the 

compound sensor, regardless of configuration (Fig 5.2). This suggests resetting between spike encoders 

is an essential mechanism for compound spiking sensors to be robust to transducer failures. Note that 
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the response actually increases for the initial transducer failures. This is due to spikes that would have 

been masked in the undamaged case becoming discernible in the output when one or more spike 

encoders are firing at different frequencies (Fig 5.3). In contrast, resetting allows more than one 

transducer to fail before the compound spiking sensor fails for configurations of {6, 6}, {4, 4, 4}, and     

{3, 3, 3, 3}, Specifically, 1, 2, and 3 transducers could fail, respectively, before the compound sensor’s 

input-output transformation changed (Fig 5.4). Note the configuration of {12}, with one spike encoder, 

exhibited changes in its input-output relationship with a single transducer failure.  
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Figure 5.2: Percent undamaged response vs. number of transducer failures for 4 compound spiking sensor 
configurations when resetting between spike encoders is disabled. Results are averaged over 5 random orders of 
transducer failure. Note that the output changes with a single transducer failure regardless of configuration.  
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Figure 5.3: Example of how simultaneous spikes mask each other when resetting is disabled, underlying an 
increase in firing rate when transducers are damaged as the spike encoder with one fewer functioning transducer 
fires out of sync with the spike encoders with undamaged complements of transducers. 
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Figure 5.4: Percent undamaged response vs. number of transducer failures for 4 compound spiking sensor 
configurations. Results are averaged over 5 random orders of transducer failure. Note that 100% indicates no 
change in output while 0% indicates no output. Note that configurations of {12}, {6, 6}, {4, 4, 4} and {3, 3, 3, 3} do 
not have altered output until 1, 2, 3, and 4 transducers are damaged, respectively, and that this matches the 
associated number of spike encoders.  
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Examining the configurations before and after the overall failure for the five random orders of 

transducer failure indicates that a compound sensor with resetting does not fail until each spike encoder 

has had its functioning number of transducers reduced (table 5.2).  In other words, as long as there is 

one spike encoder with an undamaged complement of transducers, the compound spiking sensor’s 

input-output relationship remains unchanged.  

 
Table 5.2: Transition points for simulated compound spiking sensors as transducers fail, showing the complement 
of transducers per spike encoder before the compound sensor output changes, and after. The spike encoder where 
the instigating transducer failed is underlined. Results are shown for the five random orders of sensor failure. Note 
that the third random order for the starting configuration of {3, 3, 3, 3} had a spike encoder with three associated 
transducers after six transducer failures, and that as a result the compound sensor’s output did not change.  

{6, 6} {4, 4, 4} {3, 3, 3, 3} 

Before After Before After Before After 

{5, 6} {5, 5} {3, 4, 3} {3, 3, 3} {3, 2, 2, 2} {2, 2, 2, 2} 

{6, 4} {5, 4} {4, 2, 2} {3, 2, 2} {3, 2, 2, 1} {2, 2, 2, 1} 

{5, 6} {5, 5} {3, 4, 3} {3, 3, 3} {1, 2, 0, 3} NA 

{6, 3} {5, 3} {4, 1, 2} {3, 1, 2} {3, 1, 1, 2} {2, 1, 1, 2} 

{4, 6} {4, 5} {2, 4, 2} {2, 3, 2} {2, 2, 3, 2} {2, 2, 2, 2} 

 

Analyzing the impact of compound sensor configuration on durability. Recall that simulations 

indicate that a compound spiking sensor fails after each spike encoder has had at least one associated 

transducer fail. This result suggests that for a compound spiking sensor with N spike encoders, each of 

which receives input from M transducers: 1) a minimum of N transducers must fail before the 

compound sensor fails, and 2) a maximum of M(N-1) transducers can fail before the compound sensor 

fails. This can be visualized as a fault tree for a compound sensor with N spike encoders each with M 

transducers (Fig. 5.5). If a single transducer is associated with each spike encoder, a simplified fault tree 

is obtained (Fig. 5.6).  
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...
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Transducer N.M fails
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Figure 5.5: Fault tree for compound spiking sensor with N spike encoders receiving input from M transducers each. 

 

Transducer 1 fails

Transducer N fails

... IO Change for

Spiking Sensor

 

Figure 5.6: Fault tree for a compound sensor with N spike encoders receiving input from one transducer each. 

 

Inspection suggests that the more spike encoders the more durable the compound sensor, but 

the more transducers associated with each spike encoder the less durable the compound sensor.  For 

example, if the probability of a transducer failing is 0.01, then the probability of failure for a compound 

spiking sensor with two spike encoders, each with two transducers, is given by equation 5.1, where 

P(x.y) denotes the probability of failure for transducer y of spike encoder x. This results in a 0.000396 

probability of failure for the compound spiking sensor.  

( ) ( (1.1) (1.2) (1.1 1.2)) ( (2.1) (2.2) (2.1 2.2))     P compound fail P P P and P P P and  Eqn 5.1 

  Alternatively, if one transducer is associated with each spike encoder, then the overall 

probability of failure is given by equation 5.2, resulting in a 0.0001 probability of failure.  

( ) (1.1) (2.1) P compound fail P P  Eqn 5.2 
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In this case, doubling the number of transducers grouped to each spike encoder increased the 

overall probability of failure almost fourfold. Therefore, it is recommended that a single transducer be 

linked to each spike encoder in practice.  

Use Case Simulation 1: Designing for a target lifetime. A mars rover is being designed using spike 

based sensing and will have a mission of three years. A robotic arm for sample collection will be 

instrumented with a compound spiking sensor providing feedback on grip force. If the force transducers 

available have exponentially distributed lives with expectations of of 2, 3, and 4 years, how many 

transducers of each type would be required for a compound spiking sensor to achieve a 3 year lifetime 

with 99% confidence?  

Discrete event simulation reveals that for transducers with expected lives of 2, 3, and 4 years, 8, 

11, and 19 are required for the compound sensor to last the three year mission with a 0.99 percent 

certainty (Fig 5.7).  
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Figure 5.7: Probability of a compound spiking sensor lasting through the three year mission as a function of the 
number of transducers (and therefore spike encoders) used. Results are shown for transducers with expected lives 
of 2, 3, and 4 years. The horizontal dashed line denotes a probability of 0.99.  

 

Use Case Simulation 2: Scheduling maintenance. An upper limb neural prosthesis provides 

tactile feedback using a compound spiking sensor on the thumb. Due to size constraints, only 4 force 

transducers can be used for this sensor. If force transducer lives are exponentially distributed with an 

expected lifetime of 2 years, how often should maintenance be scheduled? Maintenance must be 

scheduled often enough that there is a low probability that artificial touch will fail at a critical time, such 

as while holding a child, but not so often as to be an inconvenience  or unnecessary expense to the 

prosthetic user.  

Discrete event simulation can illicit options for the prosthetic user to consider. For example, to 

have no unexpected failures between scheduled maintenance with probabilities of 0.99, 0.95, and 0.90, 

maintenance should be scheduled for every 9, 15, and 19 months, respectively (Fig 5.8).  
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Figure 5.8: Probability of the prosthetic’s compound spiking sensor surviving the interval between scheduled 
maintenance as a function of months between maintenance. The horizontal dashed lines denote probabilities of 
0.99, 0.95, and 0.90. 

 

5.4 Discussion 

This work simulates compound spiking sensors as a more durable alternative to single spiking 

sensors [67],  and indicates that when designing artificial sensors that mimic the compound nature of 

the SAI end organ, the most important design elements are multiple spike encoders and resetting 

between them. In terms of resetting, simulations revealed that when multiple spike encoders in a 

compound sensor reset each other, more than one transducer can fail before the compound sensor 

fails. Alternatively, when resetting is disabled, a single transducer failure results in a compound sensor 

failure. In terms of the configuration of a compound spiking sensor influencing its durability, fault tree 

analysis revealed that the while the probability of a compound spiking sensor failing decreases with the 

number of spike encoders, it increases with the number of transducers grouped to each spike encoder.  
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Note that compound spiking sensors are distinct from using a population of single spiking 

sensors. While compound spiking sensors, as discussed here, provide a single reading on the force value 

at a single location, a population of single spiking sensors provides multiple readings which require more 

extensive processing to interpret. Additionally, while populations of single spiking sensors could be 

arranged such that they provide multiple readings at the same location, populations of sensors are more 

likely to be leveraged to obtain spatial information for shape or texture discrimination, similar to 

populations of tactile afferents [69][70].  

This biomimetic work is inspired by the compound nature of the SAI end organ. Guclu 

speculated that SAI afferents innervate multiple Merkel cells so SAI afferents can continue responding to 

stimuli despite the loss of one or more of these biological transducers [68]. Furthermore, 

immunostaining reconstructions reveal multiple biological spike encoders (spike initiation zones) [8]. 

While this work focused on using the SAI end organ as inspiration for more durable spiking sensors, it 

raises the question: if more transducers connected to spike encoders decrease a compound spiking 

sensor’s durability, why would multiple Merkel cells be grouped to spike initiation zones in the biology?  

In the case of artificial sensors explored here, it is possible to arbitrarily change the parameters of the 

transduction function in order to obtain the desired input-output relationship, regardless of how many 

transducers are grouped to a spike encoder. This may not be the case biologically, and there may be a 

tradeoff where multiple Merkel cells increases sensitivity, but at the cost of reduced robustness.  
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6. Conclusions and Future Directions 

This work developed reconfigurable models of the SAI afferent end organ embedded in skin by 

combining leaky integrate and fire models of spike initiation, transduction functions representing 

clusters of Merkel cells, and finite element models representing the skin in which they are embedded. 

This approach allowed combining recent results from electrophysiological recordings of SAI afferent 

stimulus-response transformations and 3D confocal reconstructions of SAI end organ structure. To the 

best of our knowledge, this represents the first effort to model the end organ structure of the SAI 

afferent as well as its interaction with skin.  

Using this model, two studies were undertaken to increase our understanding of how end organ 

structure and skin properties interact to influence the SAI afferent response. First, we investigated how 

the SAI stimulus-response transformation is influenced by the number of Merkel cells in its end organ as 

well as their grouping to spike initiation zones. Results indicated that SAI afferent firing rates increase 

with the number of Merkel cells in the end organ, but that this effect can be obscured by the grouping 

of Merkel cells to spike initiation zones. Specifically, firing rate appears to increase with the size of the 

largest cluster of Merkel cells, regardless of the total number of Merkel cells. Second, we investigated 

how changes to the SAI end organ and the skin thickness over the hair cycle impact the SAI afferent 

response. It was found that while firing rate increases due to active-stage end organs having more 

Merkel cells than rest-stage end organs, a corresponding decrease is caused by active-stage skin being 

thicker than rest-stage skin, suggesting skin and end organ interactions may stabilize SAI afferent 

stimulus-response transformations.  

While the model developed here reflects the number of Merkel cells and spike initiation zones 

in a SAI end organ, as well as the grouping of Merkel cells to spike initiation zones, there are structural 

aspects of the SAI end organ not modeled here. For example, the SAI end organ has multiple nodes of 
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Ranvier, downstream from spike initiation zones and located at points of convergence in the SAI afferent 

arbor. Future work could extend the end organ model described here to reflect these propagation 

nodes, perhaps through adding a network of Spike Response Models which readily accept spikes as 

input [23]. This may allow investigating the contribution of SAI end organ structure on inter-spike 

interval irregularity [38]. Furthermore, reconstruction experiments reveal that the arbor simplifies with 

age (Unpublished, Marshall and Lumpkin) [55], the impact of which is not currently understood.  

In addition to increasing our understanding of tactile sensing in the biology, this work sought to 

extend this knowledge to engineered systems. Specifically, we investigated how mimicking structural 

elements of the SAI end organ, such as multiple transducers and spike encoders, may lead to more 

durable spiking sensors. It was found that compound sensor durability increased with resetting and the 

number of spike encoders, but decreases with the number of transducers associated with each. Though 

this modeling effort was informative, future efforts in compound spiking sensor construction and 

application will be required to elicit practical considerations.  

Using computational methods to gain insight into biological mechanisms that cannot yet be 

directly observed, is an emerging paradigm, one this work fits well in. Such explorations in modeling 

space provide predictions to test as hypotheses in empirical space. Therefore, future work may 

empirically test the impact of Merkel-cell grouping on the SAI afferent response, perhaps through 

developing a method to perform electrophysiological recordings followed by end-organ reconstructions 

for the same SAI afferent. While the focus of this work was to understand the role of the end organ in 

SAI afferent responses, the modeling approaches may be of broader interest. For example, there is 

evidence that both muscle spindles and tendon organs have multiple spike initiation zones[50][71][72], 

similar to the SAI end organ, and may be similarly modeled.  



67 

 

Appendix A: A Computerized Displacement Controlled Indenter. 

At the start of our collaboration with Dr. Ellen Lumpkin’s lab, there was a need for repeatable 

mechanical stimulation with a range of displacement depths and ramp-times. To address this, I 

designed, constructed, and integrated a computer controlled indenter with the existing apparatus at Dr. 

Lumpkin’s Lab. In addition to eliciting constraints and requirements for the initial design through 

discussion, refinement and integration of the indenter was informed by a lab exchange for observing the 

existing surgical and electrophysiological workflow. This indenter has proven invaluable to the joint 

efforts between the labs of Dr. Ellen Lumpkin and Dr. Gregory Gerling [67][7][54][73][74][75]. 

The indenter mounts a 3 mm diameter MACOR (corning) filleted cylinder to a motorized Z-stage 

driven by a linear actuator (Model D-A.25AB-HT17-2-BR/4; Ultra Motion) wired in parallel to a stepper 

motor controller (Model 3540i; Applied Motion Products) configured for 2x104 steps per revolution. The 

indenter has a maximum travel of 50 mm and moves in 0.32 µm increments. Accelerations up to 1.27 

µm/ms2 can be commanded. A digital signal from the motor controller was sampled to mark the onset 

and termination of probe movement. During mechanical stimulation, the applied force is monitored by a 

load cell mounted inline with the probe tip (Model 31; Honeywell) and amplified via an inline amplifier 

(Model 060-6827-02; Honeywell). The indenter is controlled via handheld remote or custom software.  

Due to the large amount of EMF a stepper motor and controller can generate, and the sensitivity 

of the electrophysiological recording equipment the indenter is integrated with, shielding was a 

significant concern. The motor controller and power supply are mounted in a metal enclosure which is 

grounded, as is the Z-stage and stepper motor. When possible, shielded cable was used. When shielded 

cable could not be used, for the preexisting wires connecting directly to the motor for example, 

unshielded wire was wrapped in metalized cloth tape with pig-tail grounding wires along the length.  
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In operation, the experimenter first uses the user interface to place the indenter in manual 

mode, which allows using the handheld remote to position the probe at the skin surface. After using the 

handheld remote to exit manual mode, the experimenter then uses the user interface to back the probe 

off the skin a distance specified by the experimental protocol, 0.5 mm for the experiments here. At this 

point the user uses the user interface to specify stimuli to run. When the user initiates a specified 

stimulation in the user interface, the software communicates over a RS 232 serial connection with the 

motor controller. Commands from the control software first pause execution of the motor controller’s 

command queue, buffers the SCI commands required for the specified indentation, then resumes 

execution of the command queue. The motor controller provides the appropriate signals to the motor 

and provides a signal to the recording apparatus signifying the start and stop of all movements.  Figure 

A.1 shows the integration of the indenter with the existing apparatus (A), and an image of the motorized 

Z stage with probe and inline force transducer.  

A

 
Figure A.1: (A) Diagram of computerized indenter (composed of the Z-stage, force transducer (FT), motor 
controller, and motor (M)) integrated with existing electrophysiology apparatus. (B) Photo of motorized Z-stage 
with probe and inline force transducer. Image adapted from [7]. 

 
The user interface for the indenter control software was composed of three panels: the logging 

panel (fig A.2A), the Fine control panel (fig A.2B), and the standard stimuli panel (fig A.2C). The logging 
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panel allows the experimenter to start automatic timekeeping and logging of stimuli. The fine control 

panel allows arbitrary probe movements to be specified, and also facilitates entering manual mode. 

Finally, the standard stimuli panel presents standard options for the experimental protocol used here, 

allowing for simpler control with less risk of user error. Stimuli are specified as a displacement and 

acceleration. The control software was written in C# using sharp develop version 2.2.1, build 2648, and 

an executable was compiled for use on the experimenter computer.  

 
(A) (B)

(C)

 
Figure A.2: User interface for indenter, showing the logging panel (A), fine control panel (B), and standard stimuli 
panel (C). 

 
 
 

The indenter is an open loop system, and deviations may exist between commanded and 

achieved displacements. Factors such as deformation of the load cell, fluid levels, and motor 

performance may contribute to such slack, making it necessary to estimate achieved displacements for 

use in the skin model. Initially, displacements were estimated using stimulus ramp times derived from 
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force traces, and the assumption that the commanded acceleration was achieved. However, initial laser 

measurements of probe movement brought the assumption of commanded acceleration into question. 

To address this, an experiment was run to determine the actual accelerations the indenter achieves, 

allowing better displacement estimates for use in our skin models.  

In this experiment, a laser measurement device was installed (optoNCD 1402-5, Micro-Epsilon), 

and a family of displacements representative of those used in the electrophysiological recordings were 

tracked.  Commanded displacements ranged from 1.4 to 1.8 mm in 0.1 mm increments, starting from a 

0.5 mm offset from the skin. Accelerations of 0.0000254 mm/ms2, 0.0001016 mm/ms2, and 0.00127 

mm/ms2 were used, identical to those in question. Each unique displacement-acceleration pair was 

repeated three times, for a total of 45 stimulations.  

For each stimulation, the ramp time, i.e. the time from the probe contacting the skin to reaching 

its final indentation depth, was estimated from the force trace (t). Using the start and stop times of the 

stimulus ramp, the achieved displacement into the skin (d) was obtained from the laser measured 

displacement trace. Using t, d, and the assumption of constant acceleration (deceleration into the skin), 

the estimated acceleration for each stimulation was obtained from equation A.1 (table A.1).  


2

2d
a

t
   Eqn A.1 
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Table A.1 Estimated accelerations for each stimulus type. Standard deviation shown in parenthesis.  

Cmd d (mm) Cmd a (mm/ms
2
) Msrd t (ms) Msrd d (mm) Calc a (mm/ms

2
) 

1.4  0.0000254  221    (0.58) 0.48  (0.0033) 1.97x10
-05

 (2.20x10
-07

) 

1.5  0.0000254  235    (1.53) 0.55  (0.0059) 2.01x10
-05

 (1.87x10
-07

) 

1.6  0.0000254  254    (1.73) 0.64  (0.0232) 1.97x10
-05

 (4.48x10
-07

) 

1.7  0.0000254  267    (1.73) 0.71  (0.0191) 2.00x10
-05

 (2.84x10
-07

) 

1.8  0.0000254 281    (0.58) 0.77  (0.0030) 1.95x10
-05

 (1.22x10
-07

) 

1.4  0.0001016  112    (0.58) 0.51  (0.0054) 8.25x10
-05

 (6.28x10
-07

) 

1.5  0.0001016  118    (0.58) 0.59  (0.0060) 8.46x10
-05

 (6.64x10
-08

) 

1.6  0.0001016  127    (0.58) 0.66  (0.0020) 8.28x10
-05

 (6.22x10
-07

) 

1.7  0.0001016  137    (0.00) 0.73  (0.0022) 7.83x10
-05

 (2.38x10
-07

) 

1.8  0.0001016 144    (1.15) 0.81  (0.0089) 7.74x10
-05

 (3.85x10
-07

) 

1.4  0.00127  28    (0.58) 0.48  (0.0128) 1.21x10
-03

 (1.95x10
-05

) 

1.5  0.00127  30    (0.00) 0.55  (0.0092) 1.23x10
-03

 (2.05x10
-05

) 

1.6  0.00127  35    (0.00) 0.64  (0.0113) 1.05x10
-03

 (1.84x10
-05

) 

1.7  0.00127  36    (1.00) 0.70  (0.0071) 1.09x10
-03

 (5.03x10
-05

) 

1.8  0.00127  38    (0.71) 0.80  (0.0042) 1.14x10
-03

 (3.69x10
-05

) 

 
Calculated accelerations for each stimulus were averaged by commanded acceleration to obtain 

the accelerations used in this body for work for displacements estimates. Calculated achieved 

accelerations were 0.0000198, 0.0000811, and 0.0011432 mm/ms2, corresponding to commanded 

accelerations of 0.0000254, 0.0001016, and 0.0012700 mm/ms2, respectively. These achieved 

accelerations yield displacement estimates much closer to laser recorded displacement traces than 

displacement estimates based on commanded accelerations (Fig A.3-A.5).  
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Figure A.3: Three measured ramps for stimuli with commanded accelerations of 0.0000254 mm/ms

2
 and 

commanded displacements of 1.4 mm (black lines), simulated displacement trace using commanded acceleration 
(red line), and simulated displacement trace using achieved acceleration value obtained in this effort (blue line).  
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Figure A.4: Three measured ramps for a stimuli with commanded accelerations of 0.0001016 mm/ms

2
 and 

commanded displacements of 1.6 mm (black lines), simulated displacement trace using commanded acceleration 
(red line), and simulated displacement trace using achieved acceleration value obtained in this effort (blue line).  
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Figure A.5: Three measured ramps for a stimuli with commanded accelerations of 0.0012700 mm/ms

2 
and 

commanded displacements of 1.8 mm (black lines), simulated displacement trace using commanded acceleration 
(red line), and simulated displacement trace using achieved acceleration value obtained in this effort (blue line).  

 
 

In addition to obtaining accelerations for use in displacement estimates, this experiment 

allowed examining the assumption that displacement is consistent and independent of acceleration. The 

results suggest that variation in estimated displacements is introduced during the estimation, as total 

displacements, which can be more directly measured, are quite consistent (Fig A.6). This estimation is 

necessary, however, as laser measurements were not available when the electrophysiology for the work 

was conducted.  While the effective displacements into the skin in the laser measurement experiments 

are greater here than in the electrophysiology for this work, it is expected that the derived accelerations 

are correct. This discrepancy in displacements may result from differences in initial stimulus positioning, 

and it should be noted that the laser measurement experiments were conducted by a different 

experimenter than the electrophysiological experiments.  
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Figure A.6: Measured total displacement vs. commanded displacement.  
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Appendix B: Contact Detection and Displacement Estimates  

Ideally, it would be possible to obtain the displacement into the skin by subtracting the initial 

0.5 mm probe offset from the commanded displacement. However, due to factors such as variation in 

initial stimulus positioning and differences in ideal vs. actual motor performance, it is necessary to 

estimate the effective displacements into the skin. It is assumed the difference in ideal vs. actual motor 

performance is constant across preparations and sufficiently characterized in appendix A. Initial probe 

positioning is performed once per prep, making its impact on effective displacements constant for a 

single SAI afferent. Therefore, it is assumed that effective displacements into the skin are consistent for 

a given preparation, and can be estimated on preparation to preparation basis.   

To estimate displacements, we use the accelerations obtained in appendix A, with ramp times 

obtained by noting the signal from the motor controller indicating the end of probe movement, and by 

estimating contact from the associated force traces. Though from different sources, these signals were 

both sampled with the same A/D card (DT304; Data Translation) and stored using the same clock via. 

recording software (SciWorks Experimenter 6.0; DataWave Technologies). Probe contact times were 

estimated from force traces through examining a 50 ms window and visually taking the first point that 

rose above noise. Ramp times are expected to be consistent for a given displacement, acceleration, and 

preparation, with variation introduced through the estimation. This allowed for examining ramp times 

by stimulus, then re-estimating the contact times associated with ramp times that differed. The 

standard deviation of resulting ramp times, by stimulus, was under 2 ms (Tables B1, B3, B5, and B7).  

The probes movement is sigmoidal, i.e. for the first half of movement the probe is accelerating 

and for the second half it is decelerating. As the time from probe movement to contact is consistently 

larger than the time from contact to when the probe stops, it is expected that as the probe is moving 
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into the skin, it is constantly decelerating. This suggests simple kinematics with constant acceleration 

can be used in estimating displacements from ramp times. The displacement of a probe contacting the 

skin with an initial velocity Vi and decelerating with acceleration a for a period of time t is given by 

equation B.1.  

  21

2
id Vt at    Eqn B.1 

Note that at the end of t, the probe stops moving and comes to rest at its final displacement. The 

problem of estimating displacement can therefore be simplified due to symmetry. We can obtain d by 

solving the problem of how far the probe would move out of the skin from rest, with the same 

acceleration. This gives equation B.2, which was used in estimating displacements using t defined as the 

difference in probe stop times and estimated contact times, and using the accelerations obtained in 

appendix A.   

 21

2
d at    Eqn B.2 

The results of these displacement estimates are shown for the four skin-nerve preparations 

used in this work (Tables B1, B3, B5, and B7). Recall that displacements differ from commanded 

displacement, but are consistent for a given preparation and are independent of acceleration. 

Therefore, displacements were averaged across accelerations for each preparation (Tables B2, B4, B6, 

and B8). Displacement estimates cluster fairly well, and while there are some differences in estimates by 

acceleration, it is expected that these are introduced by the estimation procedure (Fig B1, B2, B3, and 

B4).  
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Table B.1 Estimated displacement by stimulus type for fiber 290509 (Recording D). Standard deviation shown in 
parenthesis.  

Commanded Disp (mm) Acceleration (mm/ms
2
) N Ramp Time (ms) Estimated Disp (mm) 

1.4  0.0000198 1 73 (NA) 0.05        (NA) 

1.5  0.0000198 4 116 (1.91) 0.13 (0.0044) 

1.6  0.0000198 4 145 (1.15) 0.21 (0.0033) 

1.7  0.0000198 4 168 (1.73) 0.28 (0.0058) 

1.8  0.0000198 2 186 (0.71) 0.34 (0.0026) 

1.4  0.0000811 1 34 (NA) 0.05        (NA) 

1.5  0.0000811 4 61 (1.50) 0.15 (0.0074) 

1.6  0.0000811 4 76 (1.73) 0.24 (0.0108) 

1.7  0.0000811 4 88 (0.58) 0.32 (0.0041) 

1.8  0.0000811 2 94 (0.00) 0.36 (0.0000) 

1.4  0.0011432 1 10   (NA) 0.06        (NA) 

1.5  0.0011432 4 16 (0.82) 0.15 (0.0149) 

1.6  0.0011432 4 20 (0.96) 0.23 (0.0219) 

1.7  0.0011432 4 24 (0.00) 0.33 (0.0000) 

1.8  0.0011432 2 26 (0.71) 0.37 (0.0206) 
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Figure B.1: Estimated vs. commanded displacement for fiber 290509.  

 
 
Table B.2 Estimated displacements averaged over commanded displacement for fiber 290509 (Recording D). 
Standard deviation shown in parenthesis. 

Commanded Disp (mm) N Estimated Disp (mm) 

1.4 3 0.052  (0.0052) 

1.5 12 0.144  (0.0113) 

1.6 12 0.227  (0.0189) 

1.7 12 0.309  (0.0217) 

1.8 6 0.357  (0.0168) 
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Table B.3: Estimated displacement by stimulus type for fiber 220509 (Recording C). Standard deviation shown in 
parenthesis.  

Commanded Disp (mm) Acceleration (mm/ms
2
) N Ramp Time (ms) Estimated Disp (mm) 

1.4 0.0000198 3 113 (0.58) 0.13 (0.0013) 

1.5 0.0000198 3 135 (0.00) 0.18 (0.0000) 

1.6 0.0000198 3 168 (1.00) 0.28 (0.0033) 

1.7 0.0000198 3 189 (1.00) 0.35 (0.0037) 

1.4 0.0000811 3 55 (0.58) 0.12 (0.0026) 

1.5 0.0000811 3 70 (0.00) 0.20 (0.0000) 

1.6 0.0000811 3 85 (1.15) 0.30 (0.0080) 

1.7 0.0000811 3 96 (0.00) 0.37 (0.0000) 

1.4 0.0011432 3 15 (0.58) 0.12 (0.0096) 

1.5 0.0011432 3 18 (1.53) 0.19 (0.0324) 

1.6 0.0011432 4 23 (0.82) 0.30 (0.0215) 

1.7 0.0011432 3 25 (0.00) 0.36 (0.0000) 

 

1.40 1.45 1.50 1.55 1.60 1.65 1.70

0
.0

0
.1

0
.2

0
.3

0
.4

Commanded Displacement (mm)

E
s
ti
m

a
te

d
 D

is
p
la

c
e
m

e
n
t 

(m
m

)

Acc: 0.0000198 mm/ms2

Acc: 0.0000811 mm/ms2

Acc: 0.0011432 mm/ms2

 
Figure B.2: Estimated vs. commanded displacement for fiber 220509 

 
 

Table B.4:  Estimated displacements averaged over commanded displacement for fiber 220509 (Recording C). 
Standard deviation shown in parenthesis. 

Commanded Disp (mm) N Estimated Disp (mm) 

1.4 9 0.125 (0.0053) 

1.5 9 0.191 (0.0181) 

1.6 10 0.294 (0.0166) 

1.7 9 0.362 (0.0095) 
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Table B.5 Estimated displacement by stimulus type for fiber 200209 (Recording B). Standard deviation shown in 
parenthesis.  

Commanded Disp (mm) Acceleration (mm/ms
2
) N Ramp Time (ms) Estimated Disp (mm) 

1.4 0.0000198 1 55 (NA) 0.03      (NA) 

1.6 0.0000198 3 107 (1.15) 0.11  (0.0024) 

1.8 0.0000198 3 162 (1.00) 0.26  (0.0032) 

1.4 0.0000811 2 8 (0.71) 0.00  (0.0004) 

1.6 0.0000811 3 54 (0.00) 0.12  (0.0000) 

1.8 0.0000811 3 82 (0.58) 0.27  (0.0038) 

1.6 0.0011432 3 15 (0.00) 0.13  (0.0000) 

1.8 0.0011432 3 21 (0.58) 0.26  (0.0142) 
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Figure B.3: Estimated vs. commanded displacement for fiber 200209 

 
 

Table B.6: Estimated displacements averaged over commanded displacement for fiber 200209 (Recording B). 
Standard deviation shown in parenthesis. 

Commanded Disp (mm) N Estimated Disp (mm) 

1.4 3 0.012  (0.0160) 

1.6 9 0.120  (0.0071) 

1.8 9 0.264  (0.0092) 
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Table B.7 Estimated displacement by stimulus type for fiber 180209 (Recording A). Standard deviation shown in 
parenthesis. 

Commanded Disp (mm) Acceleration (mm/ms
2
) N Ramp Time (ms) Estimated Disp (mm) 

1.2 0.0000198 1 31 (NA) 0.01 (NA) 

1.4 0.0000198 3 45 (0.58) 0.02 (0.0005) 

1.6 0.0000198 3 107 (1.15) 0.11 (0.0024) 

1.8 0.0000198 3 154 (0.58) 0.23 (0.0018) 

1.4 0.0000811 3 15 (0.58) 0.01 (0.0007) 

1.6 0.0000811 3 58 (0.58) 0.13 (0.0027) 

1.8 0.0000811 3 84 (0.58) 0.29 (0.0040) 

1.4 0.0011432 3 6 (1.00) 0.02 (0.0069) 

1.6 0.0011432 3 15 (1.15) 0.12 (0.0198) 

1.8 0.0011432 3 21 (0.00) 0.25 (0.0000) 
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Figure B.4: Estimated vs. commanded displacement for fiber 180209 

 
Table B.8: Estimated displacements averaged over commanded displacement for fiber 180209 (Recording A). 
Standard deviation shown in parenthesis. 

Commanded Disp (mm) N Estimated Disp (mm) 

1.2 1 0.010 (NA) 

1.4 9 0.017 (0.0066) 

1.6 9 0.124 (0.0135) 

1.8 9 0.258 (0.0242) 
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Appendix C: Model Fitting  

Recall that the four end organ models in aim 1 were fit to the mean in-vivo displacement-firing 

rate relationship using gradient free response surface methodology where starting regions were 

informed by a domain search using 50 trial points. The boundaries of the parameter domain searched 

are defined in table C.1, and were identical for each model configuration. After each domain search, 

three iterative experimental regions consisting of 20 trial points were examined. Between iterations, 

new experimental regions were centered on the best point from the previous experimental region, and 

the ranges of individual parameters were reduced to 50% what they were. Note that the center of the 

first experimental region differed from the best point of the domain search, in particular for , as 

additional points were taken into consideration in choosing the starting region. All space filling designs, 

for both the domain searches and experimental regions, were sampled via the LHS package in R. 

                                     Table C.1: Bounds of domain searches used to inform starting regions 

Parameter Min Max 

 (mA) 5.000x10
-8

 6.000x10
-8

 

 (mA/Pa) 1.000x10
-14

 9.000x10
-14

 

 (mA∙ms/Pa) 1.000x10
-11

 9.000x10
-11

 

 
The resulting parameter values and combined fractional sum of squares are shown in table C.2. 

Fits ranged from 1.91 to 1.94. Intermediate results are shown in tables C.3, C.5, C.7, C.9 for fitting model 

configurations {8, 5, 3, 1}, {7, 6, 4, 2, 1}, {6, 4, 3}, and {5, 4, 3, 1}, respectively. Note there is some 

oscillation in the parameters. Experimental regions used in fitting are detailed in tables C.4, C.6, C.8, and 

C.10 for fitting model configurations {8, 5, 3, 1}, {7, 6, 4, 2, 1}, {6, 4, 3}, and {5, 4, 3, 1}, respectively. 

Overall, the resulting output was in agreement with the mean response profile fit to, and fell within the 

range defined by the most and least responsive SAI (Fig C1, C2, C3, and C4).  
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Table C.2: Final parameters and combined fractional sum of squares from model 
fitting. Results are shown for four model configurations specified in Aim 1.  

Configuration  (mA)  (mA/Pa)  (mA∙ms/Pa) Combined FSS 

{8, 5, 3, 1} 5.643x10
-8

 2.539x10
-14

 5.833x10
-11

 1.91 

{7, 6, 4, 2, 1} 5.648x10
-8

 2.386x10
-14

 4.994x10
-11

 1.92 

{6, 4, 3} 5.669x10
-8

 2.612x10
-14

 6.211x10
-11

 1.94 

{5, 4, 3, 1} 5.672x10
-8

 2.641x10
-14

 6.491x10
-11

 1.93 

 

Fitting Results for Configuration {8, 5, 3, 1}: 
 
   
Table C.3: Best parameters from domain search and three experiment regions for model configured {8, 5, 3, 1} 

Design  (mA)  (mA/Pa)  (mA∙ms/Pa) Static FSS Dynamic FSS Combined FSS 

Domain Search 5.565x10
-8 

3.573x10
-14

 5.620x10
-11

 0.82 0.96 1.78 

Region 1 5.633x10
-8

 2.666x10
-14

 6.239x10
-11

 0.92 0.95 1.87 

Region 2 5.645x10
-8

 2.366x10
-14

 6.023x10
-11

 0.96 0.95 1.91 

Region 3 5.643x10
-8

 2.539x10
-14

 5.833x10
-11

 0.96 0.96 1.91 

 
  Table C.4: Design ranges for three experimental regions used in fitting model configured {8, 5, 3, 1} 

Design  Min  Max  Min  Max  Min  Max 

Region 1 5.555x10
-8

 5.680x10
-8

 2.510x10
-14

 4.500x10
-14

 4.000x10
-11

 7.000x10
-11

 

Region 2 5.602x10
-8

 5.664x10
-8

 2.166x10
-14

 3.166x10
-14

 5.489x10
-11

 6.989x10
-11

 

Region 3 5.629x10
-8

 5.661x10
-8

 2.116x10
-14

 2.616x10
-14

 5.648x10
-11

 6.989x10
-11
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Figure C.1: Resulting displacement vs. firing rate for model configured {8, 5, 3, 1}. Note the resulting input-output 
relationship is in agreement with the baseline response fit to (dashed line). The most (A) and least (D) responsive 
SAI afferents recorded from are displayed for context, and the modeled output falls within the observed range. 
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Fitting Results for Configuration {7, 6, 4, 2, 1}: 
 
Table C.5: Best parameters from domain search and three experiment regions for model configured {7, 6, 4, 2, 1}. 

Design  (mA)  (mA/Pa)  (mA∙ms/Pa) Static FSS Dynamic FSS Combined FSS 

Domain Search 5.678x10
-8

 2.000x10
-14

 3.509x10
-11

 0.90 0.90 1.80 

Region 1 5.638x10
-8

 2.220x10
-14

 5.150x10
-11

 0.96 0.96 1.92 

Region 2 5.636x10
-8

 2.403x10
-14

 5.229x10
-11

 0.96 0.96 1.92 

Region 3 5.648x10
-8

 2.386x10
-14

 4.994x10
-11

 0.96 0.96 1.92 

 
 
Table C.6: Design ranges for three experimental regions used in fitting model configured {7, 6, 4, 2, 1} 

Design  Min  Max  Min  Max  Min  Max 

Region 1 5.610x10
-8

 5.741x10
-8

 1.000x10
-14

 3.000x10
-14

 3.000x10
-11

 4.000x10
-11

 

Region 2 5.607x10
-8

 5.669x10
-8

 1.720x10
-14

 2.720x10
-14

 4.400x10
-11

 5.900x10
-11

 

Region 3 5.620x10
-8

 5.652x10
-8

 2.153x10
-14

 2.653x10
-14

 4.854x10
-11

 5.604x10
-11
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Figure C.2: Resulting displacement vs. firing rate for model configured {7, 6, 4, 2, 1}. Note the resulting input-
output relationship is in agreement with the baseline response fit to (dashed line). The most (A) and least (D) 
responsive SAI afferents recorded from are displayed for context, and the modeled output falls within the 
observed range. 
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Fitting Results for Configuration {6, 4, 3}: 
 
Table C.7: Best parameters from domain search and three experiment regions for model configured {6, 4, 3} 

Design  (mA)  (mA/Pa)  (mA∙ms/Pa) Static FSS Dynamic FSS Combined FSS 

Domain Search 5.700x10
-8

 2.477x10
-14

 3.132x10
-11

 0.86 0.85 1.71 

Region 1 5.676x10
-8

 2.763x10
-14

 6.349x10
-11

 0.94 0.97 1.90 

Region 2 5.665x10
-8

 2.593x10
-14

 6.515x10
-11

 0.97 0.97 1.94 

Region 3 5.669x10
-8

 2.612x10
-14

 6.211x10
-11

 0.97 0.96 1.94 

 
 
Table C.8: Design ranges for three experimental regions used in fitting model configured {6, 4, 3} 

Design  Min  Max  Min  Max  Min  Max 

Region 1 5.600x10
-8

 5.725x10
-8

 2.400x10
-14

 4.400x10
-14

 4.000x10
-11

 7.000x10
-11

 

Region 2 5.645x10
-8

 5.707x10
-8

 2.263x10
-14

 3.263x10
-14

 5.599x10
-11

 7.099x10
-11

 

Region 3 5.649x10
-8

 5.681x10
-8

 2.343x10
-14

 2.843x10
-14

 6.140x10
-11

 6.890x10
-11
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Figure C.3: Resulting displacement vs. firing rate for model configured {6, 4, 3}. Note the resulting input-output 
relationship is in agreement with the baseline response fit to (dashed line). The most (A) and least (D) responsive 
SAI afferents recorded from are displayed for context, and the modeled output falls within the observed range. 
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Fitting Results for Configuration {5, 4, 3, 1}: 
 
Table C.9: Best parameters from domain search and three experiment regions for model configured {5, 4, 3, 1} 

Design  (mA)  (mA/Pa)  (mA∙ms/Pa) Static FSS Dynamic FSS Combined FSS 

Domain Search 5.700x10
-8

 2.477x10
-14

 3.132x10
-11

 0.82 0.79 1.61 

Region 1 5.665x10
-8

 2.964x10
-14

 6.034x10
-11

 0.97 0.95 1.91 

Region 2 5.668x10
-8

 2.850x10
-14

 6.306x10
-11

 0.97 0.95 1.92 

Region 3 5.672x10
-8

 2.641x10
-14

 6.491x10
-11

 0.97 0.96 1.93 

 
Table C.10: Design ranges for three experimental regions used in fitting model configured {5, 4, 3, 1} 

Design  Min  Max  Min  Max  Min  Max 

Region 1 5.638x10
-8

 5.763x10
-8

 1.477x10
-11

 3.477x10
-11

 5.000x10
-11

 7.500x10
-11

 

Region 2 5.634x10
-8

 5.696x10
-8

 2.465x10
-11

 3.465x10
-11

 5.284x10
-11

 6.784x10
-11

 

Region 3 5.652x10
-8

 5.684x10
-8

 2.600x10
-11

 3.100x10
-11

 5.931x10
-11

 6.681x10
-11
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Figure C.4: Resulting displacement vs. firing rate for model configured {5, 4, 3, 1}. Note the resulting input-output 
relationship is in agreement with the baseline response fit to (dashed line). The most (A) and least (D) responsive 
SAI afferents recorded from are displayed for context, and the modeled output falls within the observed range. 
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