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Statement of Work:

Nathan 

Nathan took on the majority of the work that involved UI and AWS. As a result, he built 
the AWS infrastructure necessary to receive, store, and send data in a database and alert users 
when there was a potential fire. He also individually coded the UI with the Angular framework. 
Achieving this required learning about various AWS services; Nathan utilized AWS lambda to 
programmatically process the data every time a POST request is made through AWS API 
Gateway. This POST request is also connected to the AWS SNS system, which would alert users
if sensors read incoming data and interpret potential danger for a fire. Also, the POST request 
that causes all of this also triggers the receiving and saving of data in the non-relational 
DynamoDB service. The webpage uses a Cognito identity pool to query the database for the 
information it needs. As the individual behind the AWS infrastructure, he also provided the 
microcontrollers’ means to update the database. He played a role in shaping the process for the 
firmware to make an update to the database.

Shreejan 

As program manager, Shreejan was in charge of constructing and maintaining the Gantt 
charts and the timeline throughout the semester. He was in charge of getting weekly updates and 
updating the current tasks’ status promptly. Besides holding the secondary role of a software 
architect, Shreejan also contributed to developing the visual dashboard in many ways. To begin, 
he aided in the blueprint for the visual dashboard for the proposal. He researched the tools 
(AWS, JavaScript, DynamoDB, etc.) to finalize the dashboard selection. He also implemented an
automated method to pipeline the data from the ESP8266 to the DynamoDB using AWS. Finally,
he also contributed to integrating the WiFi modules to the visual dashboard alongside Nathan 
and Tahmid. Shreejan’s contribution helped with the implementation and development of the 
graphical dashboard. It established the necessary pipeline to effectively transfer the data from the
sensors to the database, an essential requirement for the sensor system’s functionality. 

Tahmid 

As the primary lead on firmware for the microcontrollers, especially the wireless 
communication component, Tahmid was responsible for implementing the firmware that enabled
WiFi communication. He was also responsible for implementing the necessary firmware that 
allowed SSL encryption to securely connect and pipeline sensor data in JSON format to the 
AWS API that Nathan created via HTTPS POST requests. To accomplish this required learning 
from datasheets, SDKs, and software libraries, including the ESP8266 core for the Arduino IDE, 
and devising a way for SSL encryption to be implemented on the microcontroller to enable the 
POST request to be authenticated, encrypted, and sent via HTTPS. Furthermore, Tahmid also 
contributed to the development, testing, and debugging of the I2C firmware developed to extract 
data from the sensors, perform the necessary calculations, and gather sensor data on the 
microcontroller before being packetized and sent to the cloud API. 
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Alec 

Alec was primarily in charge of hardware design, component selection, and circuitry 
development. His responsibilities included constructing the schematics for the power and sensor 
subsystems using KiCad along with the composition of the PCB layout. He debugged and 
resolved many technical challenges throughout the development process, notably with the LDO 
issue. Acting as firmware support, Alec also contributed to the development of the sensor code to
fetch and store the data from the sensors through the I2C protocol working closely with Bill 
throughout the project. 

Bill 

Serving as the embedded system support, Bill was responsible for integrating the 
embedded system, guaranteeing both the hardware and firmware. Towards the beginning, Bill 
was mainly involved in the PCB design, including schematics and layout with Alec using KiCad,
double-checking the logic and the math. He was also responsible for budget supervision, parts 
ordering, and communication with WWW Electronics for proper PCB assembly. Throughout the 
hardware fabrication, Bill worked closely with Alec, especially during testing, notably solving 
both the “heatsink” and the “ohmmeter” issue of the LDO. Towards the end, Bill also pair-
programmed and peer-reviewed the sensor and the WiFi communication firmware code.
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Abstract 

The recent phenomenon known as the Internet of Things (IoT) shows us a glimpse into a 
future where people rely on smart connected devices to solve various problems. However, people
have used IoT devices primarily in dense, urban areas, and homes because they rely on existing 
electronic network technologies such as Ethernet, WiFi, and Bluetooth. These technologies 
depend on devices’ proximities to each other to transmit data reliably. However, with the 
emergence and ubiquity of novel wireless technologies such as Zigbee and LoRa (with the 
proper antennas) and ultra-low-power hardware, it is now possible to use IoT devices remotely in
rural areas to gather data from a broader geographical surface area. Doing so enables more 
excellent coverage and data acquisition from locations that were previously difficult to monitor. 
The emergence of these new technologies enables engineers to solve an even greater host of 
problems based on wireless technologies’ increased capabilities and reliability. The sensor 
system that we aim to design is a distributed IoT network that can detect and monitor hazardous 
conditions, such as wildfires, remotely to help humans respond to these threats and prevent large 
scale fires and other infrastructure damages.

Background 

The 2019-2020 bushfire season in Australia destroyed an estimated 46 million acres and 
close to 6000 buildings in a few months. Similarly, countless wildfires ravaged California areas, 
causing millions in damages while displacing many families and calling for massive evacuations.
A fast and reliable fire detection network can save countless lives and prevent millions of dollars 
in damages. There are currently many implementations of satellite systems to detect forest fires; 
however, all satellite-based observation has limitations, often leading to failure in the detection 
speed, the quality, or the running cost to produce effective control for forest areas [1]. It is also 
worth noting satellites orbiting thousands of miles above the Earth have deadends; they cannot 
provide “omniscient” coverage, hindering their ability to detect forest fires in their early stages. 
Another way that has come up is to utilize automatic smoke detection, but all current 
implementations will cost too much money to build and maintain [1].

The project will explore a vast list of emerging technologies to construct an Internet of 
Things wireless network that utilizes sensors to collect and transmit data existing web 
technologies. These web technologies, which consist of databases and data visualization 
dashboards, create a robust and smart monitoring system for the early detection of wildfires. 
Aeris and LADSensors have implemented a similar implementation of our solution in the past, 
where metrics such as temperature, ambient CO2 levels, humidity, wind direction, and speed 
were measured to detect wildfires in early stages and predict their potential spread [2]. The 
sensors used in LADSensors send the data to a LoRa gateway connectivity, which are then 
processed with AI to provide a detailed and comprehensive view of conditions. LABSensors uses
LoRa similar to our design for data collection and remote long-distance connectivity. This 
project’s design varies from prior systems such that the operational and manufacturing costs will 
be substantially minimized while keeping performance as the top priority. One method of 
achieving this would be by integrating a recharging subsystem for the battery power supply.
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The project calls for prior knowledge from embedded systems courses (ECE 3430, ECE 
3501, ECE 3502), Digital Logic Design (CS/ECE 2330), Fundamentals of Electrical Engineering
I, II, and III (FUN I-ECE 2630, FUN II-ECE 2660, FUN III-ECE 3750), and Advanced Software
Development (CS 3240). Embedded C programming is required to connect all the sensors and 
the wireless microcontroller ESP8266 [3], which was introduced to the team in the embedded 
courses. To design the motherboard that integrates all the components needed to build the 
sensing nodes, the team used prior knowledge and skills, such as circuit design, testing, and 
fabrication skills, from the countless labs and projects from DLD and the FUN series. This 
design involves building an electrical interface between the ESP8266 microcontroller, the air 
quality sensor, the temperature and humidity sensor, and the wireless module, all of which will 
utilize SPI, I2C, and GPIO pins in the microcontroller. To build the data acquisition and 
visualization platform, prior knowledge in web application development skills were used. The 
team learned from a range of classes, including Advanced Software Development (CS3240), 
Program and Data Representation (CS2150), Cloud Computing (CS 4740), and the open-source 
software tools they worked with during their collective internships this summer. Overall, each 
member used their collective knowledge from numerous computer science courses over the last 
three years with specifics from the three classes listed above to complete the UI interface. These 
tasks include using the open-source database software (DynamoDB [4]) and understanding how 
to use modern Javascript libraries such as Angular [5] and  Chart.js [6].

Constraints

Design Constraints
Most of the product components, whether batteries, casing, electrical components, PCBs, 

or wires, etc., required for the device's construction, are relatively available and inexpensive. The
design cost will not be a considerable burden, ensuring that the device can be replicated easily 
for scalable production. The power supply and sensor subsystem are relatively easy to assemble, 
and materials are common. The availability of the components will not be an issue; however, the 
use of plastic and batteries at this stage will present the most concern for this design’s 
environmental impact. To minimize these risks, damaged or nonfunctional components will be 
donated to companies to recycle and dispose of [7] correctly.

To elaborate, the components necessary for the development of the power system, sensor 
system, and the WiFi module are readily available through DigiKey and Mouser, even 
considering supplies for mass production as indicated in Figures x and y in the Appendix. For the
PCB boards' assembly, the vendor of choice was WWW Electronics Inc, based in Charlottesville,
VA (3W). 3W imposed the following manufacturing restrictions: silkscreen standard requires 
that all writing is in the same orientation, and the font must be at least 0.06" or 1.5mm talk, with 
a preferred size of 0.08" or 2.0mm. The PCB board itself must be at most 30 square inches in 
size and with a maximum complexity of 2 layers. The PCB also needs to pass the FreeDFM 
inspection, where the entire layout must be within 100 mils of the board outline, and the units 
must be in metric upon submission. 
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In regards to the tools and resources for the development of the visual dashboard, 
concerns in the availability of the services required was not a significant concern as Amazon 
Web Services (AWS) provided the services (API Gateway [8], Lambda [9], DynamoDB [4], 
SNS [10]) with excellent reliability and low costs. 

Economic and Cost Constraints
The ESP8266 [3], which is the microcontroller that was utilized to enable collection and 

wireless transmission of sensor data, was designed to be a mass-market, low-cost option for IoT 
applications with a price tag of as low as $3/unit when purchased in bulk (the larger the quantity,
the lower the price) from international suppliers. If this device is implemented as a mass-market 
commercial product, its per-unit cost would steadily decrease as the manufacturing capacity 
increases per the economies of scale for constant cost products. ESP8266 would be the more 
viable option when targeting a larger quantity of sales over the MSP432 [11] (which was the 
prior microcontroller of choice) with a per-unit cost of $20-50 (the price includes the price of a 
separate network co-processor CC3120 [12]. In contrast, the ESP8266 integrates the 
microcontroller CPU and the network processor into one package).

Furthermore, free and open-source software avoids the reliance on potentially expensive 
multi-year software licensing contracts (the business model for a company like Texas 
Instruments). It ensures that the code will never become deprecated from changes in the 
manufacturer’s software development kit.

Accounting Costs

This project’s initial budget is $500 to ensure its timely completion and professional 
production. Regarding the breakdown of all the individual components and parts, their running 
total accounts are listed below:

1. PCB Board(s) Production ($36 x2)~ $72 (Two prototypes were made in total)
2. MSP432 ($23.99 x3) ~ $71.97 (Initial choice of microcontroller)
3. WiFi Module TI CC3120 Booster Pack ($35.99 x3) ~ $107.97
4. Hardware Components ~ $69.97 (Two orders in total)

a. Batteries, Connectors, Electrical components, Sensors, and USB Charger
b. Casing ~ $10 (Out of pocket)

5. PCB Assembly (By “3W Electronics”) ~ $21.60 (Two boards in total)
6. Software ~ $50 (Out of pocket)

a. Database, cloud storage, external applications, etc.
7. Remaining Fund ~ $106.79
8. ESP8266 ($10 x3) ~ $30 (Final choice for WiFi microcontroller) 

a. Paid out of pocket; not included for the final accounting cost

As seen above, the accounting cost of designing and implementing the systems for this 
project fell within the specified budget constraints of $500. Major expenses include the PCB 
fabrication and components (namely the sensors), the wireless communication modules, and the 
TI MSP432 launchpads. After making the switch to the ESP8266 as the WiFi microcontroller of 
choice, team member Tahmid had three microcontrollers in possession, so no further expenses 
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were incurred from the allocated budget since these were paid for out of pocket. Due to the 
project timeline and other circumstance constraints, only two prototypes were produced at the 
end; thus, a sizable “emergency fund” is left for future endeavors.

External Standards
When defining the project’s requirements, it was determined that to build a system that is 

both low power, able to connect to the internet, and can do so wirelessly, Wi-Fi would be the 
ideal protocol of choice (outweighing ZigBee and LoRa at the end). The choice for the 
embedded system (eventually the ESP8266 microcontroller [3]) was made on the premise that it 
utilizes 2.4Ghz Wi-Fi to communicate with the internet, a feature core to our product since the 
sensor data was collected and pipelined to AWS cloud services through this communication 
channel. Wi-Fi, which was standardized as IEEE 802.11 b/g/n, can perform WLAN (wireless 
local area network) services [13]. Through the use of SDKs [14][15] available for the embedded 
system, a custom firmware was developed to use the HTTP and TCP/IP network stack to 
packetize the sensor data collected and subsequently connect to AWS cloud computing services 
to store collected data onto the cloud. The IEEE 802.11 standard [13] enabled the 
implementation of the functionality mentioned above while also keeping the devices wireless and
battery-powered (reasonably low power consumption), leaving the design to meet all of the 
initial specifications.

Tools Employed
Power and Sensor Subsystem

- Code Composer Studio [17] -  Code Composer Studio (CCS) IDE was initially utilized 
to develop and test the WiFI modules and the sensor subsystems. CCS includes a large 
array of tools, such as C/C++ compiler, source code editor, debugger, and much more, for
which we had to improve upon skills from prior classes to take full advantage of during 
the development of the project. 

- KiCad [18] - KiCad was the schematic and PCB layout editor used in the power and 
sensor subsystems’ design. This tool was also utilized in the testing and debugging 
phases for the remainder of the project to resolve any issues that arose during the 
development and integration of the systems, namely, challenges with the proper LDO 
function and I2C bus interference. By and large, prior knowledge and experience were 
used; new software features such as assembly printout and automatic Digikey footprint 
library integrations were explored during the project. 

- Multisim [19] - Multisim’s circuit simulator feature was utilized during the design and 
verification phases of the power and sensor subsystems to ensure all of the components 
function as intended and no unexpected reading during the systems’ manufacturing. Prior
knowledge from courses was primarily employed in the use of Multisim for this project. 

WiFi Communication Subsystem

- ESP8266 Libraries for Arduino IDE [14][15][16] - The open-source Github repository 
and subsequent documentation containing the SDK allowed the Arduino IDE to write all 
the functionality to enable Wi-Fi on the ESP8266. This includes setting the board as a 
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client, connecting it to a WPA2 encrypted access point with credentials, assembling an 
HTTP packet, and then authenticating using SSL certificates (in the form of a verifiable 
SHA-1 thumbprint) that is sent as part of the HTTPS request. Prior skills were improved 
upon throughout the project throughout the development process and implementation of 
the Wi-Fi modules, particularly HTTPS communication and the AWS cloud integration 
aspect when writing the firmware for wireless data transmission.

- Arduino IDE [20] - Arduino IDE was the development environment used in conjunction 
with the ESP8266 core to develop the firmware for the Wi-Fi subsystem. This includes a 
UART terminal, firmware flashing functionality, and a code editor where all the firmware
was written. Most of the skills were improved upon throughout the project, testing and 
debugging new errors.

Database and Notification System

- AWS DynamoDB [4] - The NoSQL database option on AWS was used to store the data 
for the different sensing nodes. Like Lambda, there was minimal exposure to it, and the 
research in accessing and inserting items into it in programs was something learned for 
this project. Skills revolving around DynamoDB were discovered while implementing the
data transfer pipeline for the visualization feature.

- AWS API Gateway [8] - This service was used to create a POST endpoint that would 
trigger the aforementioned Lambda. Unlike the other Amazon Web Services, the API 
Gateway was something researched and learned all from scratch. Skills surrounding the 
API Gateway were obtained during the development of the visual dashboard as well.

- AWS Lambda [9] - Lambda is a service in AWS that works based on events and 
triggers, and it was used to call other services to update the database and send 
notifications. Knowledge of AWS Lambda was minimal and needed to be learned about 
integrating it with other services with the python library boto3. However, there was 
minor exposure to it in previous classes. Most of the features utilized were from prior 
knowledge gained from university courses; however, new skills were obtained working 
with AWS throughout the project. 

- Amazon SNS [10] - Amazon’s Simple Notification Service was a tool used for sending 
alerts about potential wildfires. As a part of AWS, it was reasonably straightforward to 
implement with the other Amazon Web Services and required additional research to 
utilize. With no prior knowledge of Amazon SNS, skills revolving around implementing 
the warning system were learned during the project. 

Visual Dashboard 

- Visual Studio Code [21] - VSCode was the code-editor used to program the dashboard 
and iterations of the Lambda functions. Prior knowledge obtained throughout college 
courses were used in this project. 
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- Angular [5] - The web framework is used to create the dashboard. While Angular was 
not new, using the javascript library for AWS and integrating it into the dashboard’s 
dependencies was troubleshot and researched to make it functional. For the large part, 
previous knowledge around the tool was utilized for the project; however, there were 
small improvements that were made. 

- GitHub Pages [22] - The platform that currently hosts the dashboard. Prior knowledge 
about GitHub Pages were used for the use of this tool. 

Ethical, Social, and Economic Concerns

Environmental Impact
The device will be exposed to various environmental forces during its operational phases.

Given the chances of high heat and fire exposure in the field, the device’s burning due to a fire 
can release toxins from the plastic and the batteries. Another concern would be that we may need
to build the required infrastructure to be connected and fully functional for the network to 
operate. To combat the risks and challenges with the disposal of the damaged or unusable 
devices, recycling centers and technology companies can be called upon to dispose of these 
components [7] correctly.

Sustainability
With the mission of saving the environment, the device itself will not be harmful to the 

environment. The components used are durable and meant to operate for long periods without 
maintenance. The biggest concern will be the usage of the plastic casing and batteries for the 
current implementation, which, as mentioned previously, will be recycled safely.

Health and Safety
If a microcontroller and its respective components are successful in detecting a fire, it 

may be imminent that it catches on fire and burns; the destruction of the case and electronic 
components may release harmful fumes that could be a concert to human health. The electrical 
components on board do not pose any harm to humans.

Manufacturability
The larger components and the unique casing design for the device can limit the device’s 

manufacturability. Though in the short run, a fixed budget and better can further implicate the 
case. Proper long term production analysis will lead to a significantly reduced cost and more 
feasible manufacturability. 

Ethical Issues
With a highly integrated and connected network, the biggest concern will be data and 

privacy in general. This device will be capable of gathering an immense amount of information, 
and the question of making this data public or not for the welfare of other countries will be 
explored down the road.
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Intellectual Property Issues
Overall, given the use of open-source software (from GitHub and the Arduino SDK) 

within the firmware architecture for sensors and the WiFi modules, the current implementation 
of this project is not patentable [14][15]. Furthermore, as referenced in the patent 
CN104658156A, Claim 1 states the following: “a forest fire monitoring system, is characterized 
in that: comprising: multiple sensors (3) be installed in the forest, multiple centers with several 
sensors (3) are base station (2), the Surveillance center (1) of fixed point; Described sensor (3) 
comprises wireless communication module (4), smoke transducer (5), the pyroelectric sensor (6) 
of detection of fires, processor, battery; Wireless communication module (4) and the base station 
(4) wireless connections of the described sensor (3); Smoke transducer (5), pyroelectric sensor 
(6), a wireless communication module (4) is connected with the processor, described processor 
carries out logical operation and Logic judgment to the data of smoke transducer (5), the data of 
pyroelectric sensor (6), and judged result is transferred to the base station (2) by wireless 
communication module (4); Described base station (2) and Surveillance center (1) wireless 
connections” [25].  After dissecting this dependent claim, it can be concluded the characteristics 
of using multiple sensors and wireless communication modules and to a processor to carry out 
logical operation and judgments is a similar implementation to the data collection and transfer 
pipelines used in this project. 

In addition, a forest fire monitoring and early warning system based on IoT has already 
been documented. Specifically, Claim 2, which is dependent on Claim 1 of the patent, states the 
following: “The forest fire monitoring early warning system based on Internet of Things 
according to claim 1; It is characterized in that described sensing terminal node comprises a 
plurality of sensors and sensing terminal ZigBee module; Each sensor is as the signal input of 
forest fire monitoring early warning system; Be used to gather the environmental information of 
woodland to be monitored; The signal output part of each sensor links to each other with the 
respective signal input end of sensing terminal ZigBee module, and sensing terminal ZigBee 
module links to each other with corresponding routing node through wireless network” [26]. This
particular system uses terminal nodes composed of ZigBee modules, which is analogous to the 
proposed sensor module in the initial technical description of the project and the construction of 
the sensor node implemented with Wi-Fi modules is similar enough to make the project not 
patentable. 

Furthermore, the monitoring system detailed in US6624750B1 further decreases the 
patentability of the project as the patent’s documentation provides in-depth analysis for the use 
of IoT technologies. These include but are not limited to Bluetooth, ZigBee, LoRA, Wi-Fi, radio 
frequency identification (RFID), and much more within “a management system and method for 
automatically monitoring and dynamically reacting to events and reconstructing application 
systems” [27]. As stated in claim 7, which is a dependent claim for the prior claims in the patent, 
states the following: “The system of claim 7 in which the multiple sensor devices are fire, smoke,
or intrusion sensor devices that further comprise associated speakers and in which one of the 
multiple sensor devices transmits an alarm condition message signal to which the base station 
responds by transmitting a speaker activating message instructing the multiple sensor devices to 
vocally announce a location of the sensor transmitting the alarm condition message and whether 
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the alarm condition is a fire, smoke, or intrusion alarm condition.” The idea for an alarm 
condition message was seen in the project’s implementation for the visual dashboard. Additional 
features to this system are outlined in the patent as well, which further decreases the project's 
patentability. 

Detailed Technical Description of Project
The project is a distributed IoT network consisting of many sensor nodes that collect and 

pipeline the data to a cloud service terminal and display the data on a graphical user interface. In 
large, the system is made up of a microcontroller with wireless communication capability, a PCB
of sensors, a PCB of a battery power supply, an independent recharging module, and a software 
cloud-based service. Each subsystem is discussed in technical detail in the following sections. 

On the microcontroller, the firmware implemented to enable wireless communication via 
2.4Ghz WiFi utilizes the open-source Arduino SDK built for the ESP8266 microcontroller [14]
[15]. This includes the use of the base ESP8266WiFi library and the ESP8266HTTPClient, and 
the WiFiClientSecureBearSSL libraries. The way that the firmware was designed is listed in the 
following steps. In the setup stages, the microcontroller utilizes the SSID and password 
credentials to connect to the access point. Then the HTTP client constructs a packet containing 
the sensor information in the form of a JSON payload in addition to other relevant HTTP 
headers. To enable this packet to be transmitted and securely received by AWS, the BearSSL 
library [16] allows using an SHA-1 fingerprint to enable the sending of HTTPS POST requests 
by taking care of the authentication. The firmware is designed to perform this process on the 
microcontroller every 15 minutes and send the data gathered to the AWS pipeline, picked up by 
the AWS API Gateway. 

When a POST request is made, it is made to an AWS API Gateway endpoint [8] set up to
trigger an AWS Lambda function [9] created to parse and process the data sent. When activated, 
this function parses the POST request’s payload, which contains the sensor information and 
readings, and puts it into the database. The lambda function also checks to see if the sensor 
readings indicate a potential wildfire. If so, it will send a notification to all users who have 
subscribed to notifications. The integration of the database and SNS capabilities is possible by 
leveraging various services of AWS. The database used is DynamoDB [4], Amazon’s NoSQL 
database, a strong choice for unfiltered, constant data. The notification service is Amazon’s 
Simple Notification Service [10], which can be programmatically accessed to send notifications. 
Programmatically modifying the database and notification service is done through the Lambda 
function using the boto3 library in Python. Furthermore, email notifications are enabled to alert 
the user to abnormal temperature readings. The notification occurs when the Lambda function is 
executed. As the data is processed and put into the database, they are also checked for 
irregularities, spikes, and dips in temperature and humidity.

In terms of the hardware, the design initially contained both the power and the sensors on
one board. During phase one testing, the LDO’s heat dissipation quickly became a big issue. 
Later, it was found out that this LDO required a specific heatsink layout design to function in the
“normal range.” The power supply eventually moved onto its separate board partly for 
debugging purposes. On the second prototype PCB, larger copper pads were added surrounding 
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the LDO and managed to dissipate excess energy. It is also worth noting that multiple LEDs and 
connectors were added to help identify and isolate electrical issues. A p-channel and an n-
channel MOSFET along with multiple resistors were also added as an additional output to 
measure the power supply’s voltage. Figure #1 is the top-level schematic of the power 
subsystem, whereas Figure #2 delves deeper into the voltage measurement subcircuit. 

Figure #1: Battery Power System Schematic

Figure #2: The Battery Level Indicator Schematic 

Much remained the same as the original design on the sensor board, except for the 
additional debugging LEDs, load resistors, and connectors. Figure #3 shows the top-level 
schematic of both the humidity and the gas sensor. At the same time, Figure #4 takes a closer 
look inside the humidity sensor's hierarchical block and explores the gas sensor’s inner circuit. 
Both sensors communicate through the I2C bus and therefore require the same pull-up resistors 
and bypass capacitors. It was realized not until phase two testing, unfortunately, the two sensors 
could not be connected to the I2C bus simultaneously; physical isolation was needed to avoid 
interference. The result became a small change to the original sensor node design; the gas sensor 
was cut out for the humidity sensor to function correctly. Figure #9 in the appendix shows a 
printout of the PCB layout.
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Figure #3: Sensor Subsystem Schematic

Figure #4: Sensor Configuration Schematics

The webpage (found at https://ndd7xv.github.io/This-ButterBeWorth-It/) is hosted on 
GitHub pages [22] and was created with the Angular [5] framework and Chart.js library [6]. For 
security, it accesses the database of sensing data through a federated Cognito identity for AWS 
DynamoDB [4] read permissions. It queries the database mentioned above for each node’s past 
ten readings, which comes in 15-minute increments. Note that the dashboard will only display 
data when a sensor is running.
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Figure #5: Lambda Visualization and Code

Figure #6: Visual Dashboard of Sensor Data

Using a  POST request to transmit data was a choice between ease of security and 
implementation/scalability. In the future, both factors could be improved. For the sake of time 
constraints and troubles integrating embedded firmware into AWS, the POST request was the 
most feasible approach to take. Using GitHub Pages to host the dashboard was chosen over an 
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AWS Elastic Compute Cloud (EC2) instance [23] because of cost. Still, AWS’s extensive use 
was a decision made while keeping software/processing capabilities in mind. The ease of 
implementing variously related tasks like receiving, processing, and storing data, sending 
subscribers alerts, and getting the data onto a web page made Amazon Web Services the best 
suite of tools for the software challenges.

Project Timeline
ThThe Gantt chart from the initial proposal and the final chart can be seen in Figures #7 

and 8 below. The final chart was more detailed than the one seen in the proposal as more definite
tasks were added and outlined as the semester progressed. Furthermore, the outline for tasks, 
completed in parallel and a serial manner, was also determined in the final chart, which cannot 
be seen in the initial diagram. Additionally, throughout the semester, tasks that were not 
completed as expected on their end date were highlighted in red and were completed on the dates
marked by the “extended” cell. 
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Figure #7: Initial Project Timeline 

Figure #8: Final Project Timeline 

Parallel tasks were executed alongside each other for the same timeframe; these tasks can
be distinguished by reading the final chart vertically and finding tasks that overlap for the 
specific period. For example, it can be seen that the following tasks were completed in a parallel 
manner as their time frame (9-15-2020 to 9-29-2020) overlap with each other: Sensor Selection, 
PF Protocol Selection, Node Synchronization Scheme, Firmware Architecture, Multisim/KiCad 
Symbol, Footprint Create, and Visual Dashboard Architecture. Serial tasks were initiated upon 
completing a prerequisite task; these can be distinguished in the final chart by looking at the end 
date (extended included) for a given task followed immediately by a start date for a new task. For
example, completing the Circuit Design task on 9-15-2020 initiated the new task for Sensor 
Selection (9-15-2020 to 9-29-2020). 

The tasks were allocated among the team members based on their primary roles and 
secondary roles. As Nathan held the primary role of software architect and firmware support's 
secondary role, he contributed to the following tasks: Visual Dashboard Architecture, Firmware 
Architecture, Visual Dashboard Development, WiFi Integration with ESP8266 microcontroller, 
and WiFi Integration with Visual Dashboard. As Shreejan acted as the primary program 
manager, he was in charge of constructing and maintaining the Gantt charts and the timeline 
throughout the semester. Besides holding the secondary role of a software architect, Shreejan 
also contributed to the following task: Visual Dashboard Architecture, Visual Dashboard 
Development, and WiFi Integration with Visual Dashboard. Tahmid’s primary role was 
firmware architect; thus, he contributed to the following task: Node Synchronization Scheme, 
Firmware Architecture, and WiFi Integration with ESP8266 microcontroller. Alec’s primary role
and Bill’s second role were hardware architect; as such, they contributed to the following tasks: 
Circuit Design, PF Protocol Selection, Multisim/KiCad Symbol, and Footprint Creation, 
Multisim Development, Power Subsystem Integration with ESP8266 microcontroller, and Power
Subsystem Integration with Sensors. Bill’s primary responsibility dealt with embedded systems 
and design; thus, he contributed to Embedded Development. 

Finally, all team members contributed to the remainder of the tasks as they met on call 
for substantial hours, all contributing to the final result. This includes the initial proposal, the 
final proposal, generating the components and constraints list, making system test plans, and the 
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submission documents (the presentation deck also includes the midterm review, the final 
demonstration, and the final report). 

Test Plan
The test plans for the power subsystem, sensor subsystem, Wi-Fi firmware, and the visual

dashboard can be referenced in Figures #12, #13, #14, and #15, respectively, in the Appendix. 
These test plans were developed as flow charts with two outcomes for each action, yes or no. 
Based on the test result in the current step, the corresponding path to the next step was followed. 
If any issues or errors were found, incident responses were handled accordingly at that time to 
ensure appropriate steps were followed afterward.  

Power Subsystem: 

The initial test plan seen in Figure #12 was followed through without much alteration; 
voltage (and current, if the voltage is inaccurate) was measured at both the input and the LDO 
output. However, during the prototype’s testing, a significant heat dissipation design flaw was 
found on the LDO and nearly led to a device change. Eventually, consultations led to close re-
examinations of the datasheet, specifically at the recommended layout. Large copper pads were 
added to the PCB for the subsequent design in response to the findings. In addition, multiple 
diodes were added to prevent current backflow from endangering the battery, and LEDs were 
attached at critical input and output joints to facilitate the testing. The final prototype 
successfully solved the heat dispersion problem but produced the side-effect of “unlimited heat 
sink,” where solder became a lot more difficult to melt. This negative externality generated by 
the copper pads unsurprisingly led to connectivity issues with the LDO’s ground pin. Ultimately,
this problem was solved with the extensive usage of an ohmmeter, and the power system finally 
began to deliver the desired 3.3V output. The circumstance caused considerable delays in the 
sensor configuration progress, but no deadline was changed to the timeline to stay on track. 

Sensor Subsystem:

Though the power system’s complication caused a delay in the sensor development, the 
test plan was unchanged and followed through. As seen in Figure 13 in the proposed test plan, 
addressing and power are the two critical components for running the sensors. After the input 
voltage to the sensors from the power system was confirmed, the sensors were turned on from 
the microcontroller. The sensors’ data outputs were first measured using the NI VirtualBench 
digital analyzer to verify the reading. The incorrect addressing and significant noise interference 
led to cutting one of the sensors because this design did not have any isolation techniques 
between the sensors sharing the same I2C bus. Once the gas sensor was clipped and the humidity 
sensor was correctly verified functioning, the rest of the issues were addressed based on the 
microcontroller’s UART terminal’s output.

WiFi-Firmware: 
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As seen in Figure #14, the original test plan included the use of MSP as the 
microcontroller for the Wi-Fi module. However, after initial success testing Wi-Fi capabilities 
with the MSP, errors were found integrating to the AWS IoT Core and subsequently AWS API 
Gateway to complete the visualization data pipeline. After countless attempts to resolve the 
errors, the decision was made to make the switch from the MSP432 to ESP8266. This decision 
was made as Tahmid, the firmware architect, had more experience working with the ESP 
microcontroller and developed more features with data transfer, including email notifications and
SSL encryption from the Wi-Fi modules, AWS API Gateway, and IFTTT. Changes to the 
technical project, test plans, budget were made accordingly to account for this change. No 
significant changes to the timeline were made because the main functionalities left to be 
implemented the same as with the MSP microcontroller. 

Visual Dashboard 

As seen in Figure #15, preliminary testing was conducted with dummy test values to 
ensure functional connection from the microcontroller to AWS's database. After establishing a 
successful connection, storing the data into the database was tested. At this step, few errors were 
encountered, such as loss in data and undesirable format. These errors were fixed after changing 
the structure for the sensor data's primary keys, and little changes were made to the overall 
process and test plan. In addition, testing the data transfer pipeline from the database to the visual
database also threw minor syntax and logical errors and were resolved quickly. As stated above, 
a switch in microcontroller choice was made (from MSP432 to ESP8266), which subsequently 
resulted in the switch from using AWS IoT Core to integrate the data transfer pipeline to using 
AWS API Gateway using HTTPS POST requests. 

Final Results
The success criteria defined in the proposal can be seen in Figure #19 in the appendix. 

All expectations were met in each category's highest level in the implementation of the sensor 
monitoring system. The overall device was able to function solely on the power subsystem with a
rechargeable battery. The power supply consistently delivers a 3.3 V output and draws no more 
than 500 mA of current, satisfying all requirements for successfully powering the entire unit 
described in the proposal. 

Regarding the Data Acquisition and Transmission, information from the sensors was 
indeed gathered from the sensors, processed by the microcontroller, packetized into JSON, sent 
via Wi-Fi (using an HTTPS POST request) to AWS Cloud API, and then correctly channeled to 
the database using the implemented transfer pipeline. This firmware category lies in this project's
heart, and it is the cornerstone of the entire system. Though one of the two sensors (the gas 
sensor) was ultimately not included in the finished prototype, this design met the primary 
communication goal over the I2C bus. A battery level indicator was added as an essential feature 
indicating any device's state. A bonus feature was added in battery indication, that the indicator 
would output a voltage of “0” when the device is charging. 

The data collected was successfully visualized in the dashboard in real-time and in a clear
and easily readable manner. The visual dashboard also included a warning system (involving the 
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email notification system as seen in our video demonstration) for any measurements that crossed 
the predefined thresholds, thus satisfying all the requirements outlined in the rubric for this 
category. 

Costs
The cost and bill of materials for the hardware subsystems can be found in Figures 16, 

17, and 18 in the Appendix. As indicated in the budget breakdown (Figure #16), the total cost for
the project came to approximately $394, while the total cost of the build for two units 
(microcontrollers with Wi-Fi modules, sensors and power system, assembly labor cost, and cloud
service) was approximately $334. This resulted in an average of $167 in total per unit, including 
the cloud service fee. The average cost may seem jaw-dropping at first, but this conservative 
calculation represented the total cost of the entire project, and the average per unit took into 
account the loud service’s fixed cost. In reality, the average cloud service fee would only 
decrease as the quantity of units increases, rendering it insignificant in the long run. The total 
production cost of the two sensor nodes in this project, excluding the cloud fee, comes down to 
$283, averaging around $142 each. However, this average still seems exceptionally high for a 
supposedly low-power and low-cost device, and that is because half of this cost is from the 
MSP432 and its CC3120 Wi-Fi Booster Pack. Different microcontroller choices will 
significantly impact the average cost per unit. Looking at the PCB boards only, the two 
prototypes cost around $164, averaging $82 each. With further breakdown, the PCB fabrication 
was $36 each, the assembly fee totaled approximately $63, averaging to less than $32 each, 
while the BoM for each unit came just above $41 buying in cut-tape. 

For the production of large quantities, such as 10,000 units of sensor nodes (including the
power supply and the sensor module), however, could tremendously decrease the cost. Not only 
does DigiKey offer a lower unit price for reel-tape per BoM, but finding an appropriate long 
term production point would also adjust PCB fabrication and assembly labor accordingly. The 
BoM’s estimations for mass production can be seen in Figure #17 below based on Digikey’s 
pricing. A conservative estimate of the PCB fabrication and assembly labor should cut their 
current cost in half, averaging a total just shy of $50 per sensor unit. 

The switch from MSP32 and CC3120 to ESP8266 is an even more cost-saving measure 
as the per-unit cost of an ESP8266 is only around $3~$6. In contrast, the MSP432 and CC3120 
(requiring the integration of 2 processors into the custom PCBs) came up to a total of around 
$14~16 in reel-tape. Furthermore, all the firmware running on the embedded system utilized free 
and open-source libraries, averting potentially expensive multi-year SDK contracts with 
companies like Texas Instruments. Doing so also ensured the possibility to maintain the 
firmware even if the companies were to abandon their SDK. Besides, improvements in 
manufacturing and the increase in automation would also decrease each sensor node's unit cost. 
To come up with an exact estimate for these changes would require much more research about 
the manufacturer and the market beyond this project's scope. 

IRegarding the visual dashboard, the highest cost would be for the use of AWS cloud 
services (storage, read and write to DynamoDB, etc.), along with external applications required 
for the implementation of the data transfer pipeline. For this project, $50 was allocated towards 
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the complete development of the visual dashboard. But realistically, improvements and 
maintenance for a sizable sensor system will most likely see a substantial increase in the cost 
and, therefore, will need to be accounted for in the long-term planning to find the optimal 
production point on the cost curve. 

Future Work
In retrospect, there were a variety of pitfalls and difficulties completing the project. 

While the established goals were achieved, a lot of time and effort was spent to address a variety 
of problems that, while seemingly inevitable, could have been anticipated and mitigated. This 
project's underlying concept and the system can be expanded upon, howbeit its standing 
professionality, in terms of costs, security, and performance/power efficiency to be less of a 
proof-of-concept and more of a commercialized product. 

To elaborate on improvement and expansions, it is essential to establish that this project 
involved creating a system for wildfire detection using sensing nodes composed of 
microcontrollers. In achieving this, hardware was designed to develop a sensing node, embedded
firmware was programmed to obtain temperature/gas data, and cloud infrastructure was created 
to receive information and display it on a webpage. To make a commercially viable product, 
however, improvements to reducing each sensing node's cost would be necessary. In the same 
vein, securing transmitted data and the cloud infrastructure that supports the processing and 
storage of said data would also need to be deliberately designed. While having a cloud-native 
environment makes the system optimal for scalability, further changes to the firmware and the 
cloud database and API would be required to support a more extensive network of sensors and 
data. 

In addition, the physical capabilities of the system were also minimal; while it can be 
incredibly insightful to know the gas and temperature information around a node, the use of 
machine learning to process such data can be used to make informed decisions about where and 
when a fire might occur. Besides, if physically independent, additional sensors (such as the 
second initial gas sensor) can also be added to the system, providing even more informative data.
The system also uses Wi-Fi, which has a more limited range and greater power consumption than
some other communication protocols, like Zigbee or LoRa. The high power usage was made 
more problematic because each sensing node is powered by a battery, which would need to be 
replaced once it has been drained. Therefore, in future iterations of the system, it could be 
beneficial to look into renewable energy sources, such as solar power. 

Ultimately, all of these concerns could be addressed if a future group of students wanted 
to create a similar project based on this one; the challenges encountered with this project came 
more from designing and implementing things from scratch than power, security, and capability 
issues. Regardless of specifications, any similar project should expect to run into all sorts of 
problems. The trouble with advising future groups of students on the tribulations encountered 
during this project is that there are many variables at play simultaneously, and it is impossible to 
say what specific parts of a project will throw what error when. A perfect example is the I2C bus 
configuration; multiple sensors cannot talk to the microcontroller simultaneously. Though this is 
well-known, it is often hard to pinpoint the issue in an integration environment. While all groups 
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were warned that hardware and software problems would be inevitable and time-consuming, 
such problems that ended up using more time troubleshooting than anticipated still occurred. For 
example, connecting the webpage to the database took less time than perceived, and connecting 
the device to the internet took a lot longer than planned. Being conscious of the constraints and 
the realisticness of a situation is a must. There were various ways to transmit sensor information 
to the database, and the final choice to implement was ultimately due to the time and design 
constraints. 

Finally, it is also helpful to have a fleshed-out game plan initially, but it is also necessary 
to be flexible and assume anything can go wrong because it will. With so many potential 
problems and so many different solutions with various limitations, one should never take for 
granted that the final product will be the way it was envisioned in the beginning. It is crucial to 
think, design, and solve like an engineer, after all. 
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Appendix

Figure #9: PCB Design

Figure #10: 200 HTTP Response in UART Terminal
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Figu
re #11: Project Design Overview
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Figure #12: Power Subsystem Test Plan
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Figure #13: Sensor Subsystem Test Plan

Figure #14: Firmware Test Plan
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Figure #15: Visual Dashboard Test Plan
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Figure #16: Budget Breakdown

Figure #17: DigiKey Bill of Materials

Figure #18: Mouser Bill of Materials 
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Figure #19: Proposal Expectations (Rubric) 

import json
import datetime
import boto3
import dateutil.tz

def lambda_handler(event, context):
sns = boto3.client('sns')
dynamodb = boto3.client('dynamodb', region_name = 'us-east-1')
eastern = dateutil.tz.gettz('US/Eastern')

    
data = event

    
# Parse Information from the Payload (temperature, gas, humidity data, device ID)
temperature = data["Temperature"]
gas = data["Gas"]
humidity = data["Humidity"]
device_id = data["Device ID"]

    
# Create additional attributes (like date/time)
time = str(roundTime(datetime.datetime.now(tz=eastern), roundTo=15*60).strftime("%H:%M:%S"))
date = str(datetime.datetime.now(tz=eastern).strftime("%b %d %Y"))
primary_key = device_id + "-" + time + "-" + date

message = "Temperature: " + temperature + "\n" + "Gas: " + gas + "\n" + "Humidity: " + humidity + "\n" + "Device ID: " + device_id + "\n"
+ "Time: " + str(time) + "\n" + "Primary Key: " + primary_key

message = "You are receiving this message because some readings in the wildfire detection threshold were reached. See details below. \n\n"
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+ message

# Send a notification if forest fire could happen
if(float(temperature) > 125):

        response = sns.publish(
                TopicArn='arn:aws:sns:us-east-1:064764567903:This_ButterBeWorth_It',
                Message= message,
                Subject='Lambda Triggered with the API Gateway',
        )

    
# Update the database
add_to_db = dynamodb.put_item(

    TableName = 'test',
    Item = {
            'primaryKey' : {'S': primary_key},
            'time' : {'S': time},
            'deviceID' : {'S': device_id},
            'date' : {'S': date},
            'temp' : {'S': temperature},
            'humidity' : {'S': humidity},
            'gas' : {'S': gas},
    })

return {
        'statusCode': 200,
        'body': json.dumps('Hello from Lambda!')

}

def roundTime(dt=None, roundTo=60):
   if dt == None : dt = datetime.datetime.now()
   seconds = (dt.replace(tzinfo=None) - dt.min).seconds
   rounding = (seconds+roundTo/2) // roundTo * roundTo
   return dt + datetime.timedelta(0,rounding-seconds,-dt.microsecond)

Figure #20: Lambda Function and Dashboard Code*

 *For the sake of readability, the code for the dashboard is not all listed out. It can be found at 
https://github.com/ndd7xv/This-ButterBeWorth-It - the most important files are src/app and are 
linegraph/linegraph-component.ts, app.component.ts, app.component.html and data.service.ts.
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Figure #21: Firmware Code for WiFi/HTTPS Communication & I2C Sensor Integration
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