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Abstract

Computing resources are now ubiquitous and computational research techniques permeate all dis-

ciplines. However, exploiting available resources can be a much more complicated proposition.

There is no guarantee that one can simply use a compute resource with no more effort than copying

binaries and data. As computing resources are usually heterogeneous in both hardware and soft-

ware configurations, many requirements be matched to execute a computation on a new resource in

a new environment. The difficulties increase when dealing with parallel computations, which add a

layer of dependencies related to the Message Passing Interface (MPI) standard libraries.

Unfortunately, managing the migration process by using existing techniques is inadequate or

requires a non-trivial amount of effort and experience. In particular, schedulers are not generally

designed to capture a computation’s software-related requirements and, thus, depend on users to

configure such dependencies. Additionally, the set of possible sites where computations could be

scheduled is limited to where the computations are known to be able to run – a determination that

in the current state of the art is performed manually by the user. This process, which requires enu-

merating dependencies, checking and making them available in new environments, and potentially

recompiling the computation, can take many hours of labor. The difficulty is compounded by the

fact that many researchers in disciplines that were previously not traditionally compute-heavy may

not have experience with configuring a single environment, let alone with migrating a computation

from one environment to another.

An ideal solution for providing deployment and, therefore, scheduling freedom would allow

any computation to quickly and easily be run on computing resources with tuned performance.

Before addressing the difficult but secondary issues of automatic recompilation and tuning, the first
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step on the path toward an ideal solution is to consider how additional scheduling freedom could

be achieved with minimum interaction from the user but without modification of the computation

code. Such a solution would automatically enable application binaries to quickly and easily be run

on new resources. Our hypothesis is that methods for automatically gathering information about

execution requirements and composing site-specific instructions that configure the requirements at

target environments are more efficient than manual methods for the preparation of multiple shared

computing environments for the execution of MPI binaries. Achieving this initial solution alone

can dramatically improve the ability of researchers to take advantage of the variety of computing

resources available to them and, as a result, carry out more and better research.

Due to the additional requirements that arise when using MPI, our research specifically focuses

on enabling the deployment and, therefore, scheduling freedom of parallel computations encoded

using the MPI standard on high performance computing clusters. Specifically, to determine if a

binary will be able to run without modification, how to form predictions about execution readiness

was modeled and what execution-blocking issues could be resolved without recompilation was as-

sessed. The effectiveness of these methods was examined by testing their implementation. The as-

sumed difficulty of the migration process was also investigated by measuring how long researchers

take to get computations running at new computing sites. This baseline was used to quantify the

cost savings of the presented solution in terms of time.

The work presented in this dissertation is a first step toward an ideal solution of automatically

enabling the usage of various computing resources for computation. The evaluation demonstrated

the validity of the solution by providing correct predictions of execution readiness more than 90% of

the time and enabling 41% more successful executions via generation of site-specific configurations.

The effort analysis in terms of time exerted to use the solution predicts that the solution is, in the

best case, an order of magnitude more efficient over current manual methods and, in the worst case,

no less efficient.
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Chapter 1

Introduction

As computing advances have kept up with the pace predicted by Moore’s Law, computing resources

have become ubiquitous. Simultaneously, computational research techniques now permeate all

disciplines, from engineering and the sciences to economics and literature. As a result, researchers

are surrounded by computational resources, from laptops and department machines to university

clusters and national supercomputers. However, even though today’s computing infrastructures,

such as the Extreme Science and Discovery Environment (XSEDE), provide researchers with easy

access to a wide variety of computing resources, exploiting available resources can be a much more

complicated proposition.

In order to use various resources, computations must be able to execute at different sites. How-

ever, there is no guarantee that one can simply move from one resource to another with no more

effort than copying binaries and data. Computing resources are usually heterogeneous in both

hardware and software configurations. Even when keeping the processor and operating system

consistent, the environment, run-time libraries, and third-party software are likely to vary between

resources. Since computations often depend on the availability of such libraries and software, these

configurations must be matched to execute a computation on a new resource in a new environment.

The difficulties with exploiting resources increase when dealing with parallel computations.

When researchers want to maximize performance, they often turn to parallel computing to perform

more computations in a given amount of time or to perform a given amount of computation in

less time. Typically, parallel computations employ the Message Passing Interface (MPI) standard,

1



Chapter 1. Introduction 2

the standard for running parallel programs on distributed memory systems. Indeed, many com-

munity applications use MPI to enable more efficient larger scale experiments. Preparing to run

computations that use MPI adds a layer of dependencies related to the MPI libraries. Additionally,

virtualization technologies are especially inadequate for dealing with MPI parallel codes due to the

associated performance overhead.

A variety of tools and approaches exist to help deploy computations across various resources.

In particular, schedulers enable automatic selection of resources for running computations based on

user-specified requirements and preferences. Schedulers accomplish this by first assessing a set of

candidate hosts that meet the specified requirements and then scheduling the computation on one

of these matching hosts. Schedulers may also prepare the site for execution by staging in files and

data. However, schedulers are generally not designed to capture a computation’s software-related

requirements and, thus, depend on users to configure such dependencies. Additionally, the set of

possible sites where computations could be scheduled is limited to where the computations are

known to be able to run – a determination that in the current state of the art is performed manually

by the user. This process, which requires enumerating dependencies, checking and making them

available in new environments, and potentially recompiling the computation, can take many hours

of labor. The difficulty is compounded by the fact that many researchers in disciplines that were

previously not traditionally compute-heavy may not have experience with configuring a single envi-

ronment, let alone with migrating a computation from one environment to another. Unfortunately,

managing the migration process by using other existing techniques, described in Chapter 7, also

requires a non-trivial amount of effort and experience on the part of the researcher. Thus, while

more and faster resources should allow for more and better research to be carried out, the increase

in resources can just as easily stymie progress.

To illustrate the impact of the gap between accessible and exploitable resources on deployment

and, thus, also scheduling freedom, Figure 1.1 presents three diagrams. The diagrams depict the dif-

ference in size between the set of accessible and exploitable resources. In the initial case (depicted

in diagram (a)), the set of resources usable for application execution (i.e. the candidate host) is just

the resource on which an application currently runs. To approach the ideal case (depicted diagram
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Figure 1.1: Spectrum of scheduling freedom. These three diagrams depict the difference in size
between the set of accessible and exploitable resources. Initially – as shown in (a) – the set of
exploitable resources only contains the initial site where a computation is run. There may be many
more accessible sites but without configuration, they are not ready to run the computation. Ideally –
as show in (c) – the set of exploitable resources would coincide with the set of accessible resources.
One of the goals of this work was to explore automated methods to expand the candidate host set
from (a) to (b).

(c)) where the set of exploitable resources approaches the set of all accessible resources, currently

the user must manually prepare each execution site for execution. As a result, job management

systems can also only schedule applications to run at sites prepared by the user. Thus, deployment

and scheduling freedom is limited until the complications associated with exploiting resources are

handled. A solution that could relieve some of this effort from having to be performed manually

would more efficiently approach the ideal case and increase the number of resources where a job

could be executed to enable greater scheduling freedom (depicted in diagram (b)).

An ideal solution for providing deployment and, therefore, scheduling freedom would allow

any computation to quickly and easily be run on computing resources with tuned performance.

This would involve enabling a computation to run on resources with minimal interaction from the

user and running a version of the code tuned to perform well at each particular site. Reaching

the ideal is limited by the ability to automatically recompile and restructure source code to create

tuned binaries. Before addressing these difficult but secondary issues, the first step on the path

toward an ideal solution is to consider how additional scheduling freedom can be achieved with

minimum interaction from the user but without modifying the computation code. Such a solution

would automatically enable application binaries to quickly and easily be run on new resources. Our
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hypothesis is that methods for automatically gathering information about execution requirements

and composing site-specific instructions that configure the requirements at target environments are

more efficient than manual methods for the preparation of multiple shared computing environments

for the execution of MPI binaries. Achieving this initial solution alone would dramatically improve

the ability of researchers to take advantage of the variety of computing resources available to them

and, as a result, carry out more and better research.

Due to the additional requirements that arise when using MPI, our research specifically focuses

on enabling the deployment and, therefore, scheduling freedom of parallel computations encoded

using the MPI standard across high performance computing clusters. Specifically, to determine if a

binary will be able to run without modification, how to form predictions about execution readiness

was modeled and what execution-blocking issues could be resolved without recompilation was as-

sessed. The effectiveness of these methods was examined by testing their implementation. The as-

sumed difficulty of the migration process was also investigated by measuring how long researchers

take to get computations running at new computing sites. This baseline was used to quantify the

cost savings of the presented solution in terms of time.

1.1 Contributions

This dissertation is a first step toward an ideal solution of automatically enabling the usage of

computing resources for computation. The four specific contributions of this dissertation are sum-

marized in this section.

1.1.1 Investigating Migration Effort

Experiences with users and administrators of shared computing resources revealed that the chal-

lenges encountered when running computations on new resources can be a barrier to usability.

However, there was no experimental data documenting the effort that users put forth migrating their

computations to new computing sites. The first contribution of this dissertation is a user study de-

signed and carried out to quantify in terms of time the scale of the challenge that researchers face



Chapter 1. Introduction 5

when attempting to use new resources. The study provided a baseline of the time required for the

current manual migration approach carried out before new resources can be used directly or via

schedulers to run computations.

The study results emphasize the time consuming nature of preparing to run computations on

multiple new resources and the extra challenge encountered by less experienced users. It took the

25 participants on average 2.5 hours spread over three days to migrate one computation to a new

resource. The majority of the time was spent on learning, compiling, and debugging tasks. Less

experienced users took on average over three weeks to migrate their MPI applications to four new

computing sites. This was almost 50% longer than the results of expert participants.

1.1.2 Modeling Execution Readiness

The first step to using a new resource – whether directly or via a scheduler – involves learning

about the configurations of the new computing site. Indeed, this behavior was exhibited by all

participants in the user study. Once compatible settings for running a computation are discovered,

the computation can either be submitted for execution or, if source code is available, can first be

recompiled at the new site before attempting execution. Compilation takes more effort than simply

running a binary. However, if a binary is not well matched for a computing site, uncovering the

issues by debugging, often cryptic, output errors can be as time consuming as setting and debugging

compilation configurations. Thus, the cost of simply finding out whether a computation will run

on new resources can discourage utilization of otherwise easily accessible sites. If it were known

whether recompilation will be needed before execution, researchers and schedulers could better

choose between multiple new computing locations and computations could be run more quickly at

sites where recompilation is not required. The second contribution of this dissertation is a model

for predicting whether an MPI binary is ready to execute at a computing site.

The model is based on examining four factors - MPI stack, shared libraries, hardware architec-

ture, and system configuration - related to MPI binaries and computing environments. The model

describes the relevance of these factors and outlines - independently of implementation and without

running the binary - what information needs to be gathered to make a determination about execution
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readiness.

1.1.3 Implementing Execution Prediction

To test the execution prediction model, an implementation called FEAM (a Framework for Effi-

cient Application Migration) was created for Unix-based computing environments. Unix-based

environment were chosen as the focus as these dominate shared computing clusters and are most

commonly used for running computations parallelized with MPI. FEAM uses Unix-based tools to

gather information about the execution factors identified by the model. In addition to predicting

execution readiness, the gathered information is used to compose site-specific configurations that

incorporate a scheme for resolving execution-blocking issues. The third contribution of this dis-

sertation is FEAM, a tool that automates the prediction of execution readiness and composition

of site-specific configurations. FEAM allows researchers and schedulers to increase scheduling

freedom by automatically determining whether sites are ready to execute MPI binaries.

1.1.4 Evaluation Techniques

The effectiveness of the proposed solution was determined by evaluating the implementation using

multiple criteria. The accuracy of FEAM’s predictions and resolution techniques was measured.

FEAM’s time and space requirements were also calculated. Finally, how much more efficiently

FEAM enables the preparation of environments for application execution was analyzed by compar-

ing the effort to use FEAM versus manual methods. The fourth contribution of this dissertation is

an evaluation of the model for predicting execution readiness and of the methods for composing

site-specific configurations.

The evaluation demonstrated the validity of the execution prediction model with FEAM cor-

rectly predicting over 90% of execution failures. The resolution scheme composed by FEAM was

found to automatically enable 41% more successful executions. Overall, running FEAM was as-

sessed to require minimal disk space and compute time. Finally, the analysis of the effort required to

use FEAM found that utilizing FEAM is, in the best case, an order of magnitude more efficient over

manual methods and, in the worst case, no less efficient. The efficiency analysis put into perspective
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the savings in terms of time associated with using FEAM. The analysis simultaneously captures by

how much using FEAM decreases the barriers that otherwise must be manually performed before

new computing sites can be used to execute applications.

1.2 Outline

The remainder of the dissertation is organized as follows. Chapter 2 presents the design and results

of the study of the process of migrating MPI applications to multiple new computing sites. Chap-

ter 3 presents the model for predicting whether an MPI binary can execute on a resource without

recompilation. Chapter 4 describes FEAM, a UNIX-based implementation of the model that in-

corporates resolution of execution-blocking issues. Chapters 5 and 6 present the evaluations of the

solution in terms of accuracy, effectiveness, overhead, and efficiency. Chapter 7 discusses related

work. Finally, Chapter 8 offers conclusions and presents directions for future work.



Chapter 2

The Study

This chapter presents a user study of the process of migrating MPI applications. The goal of the

study was to gather experimental data about the process that researchers go through to run MPI

applications at new computing sites. The motivation for the study was to quantify in terms of time

the scale of the challenge that researchers face when attempting to use new resources so that this

baseline data could be used for the evaluation of the proposed solution. The study additionally

identified how much time researchers spent performing various types of tasks and how the amount

of their computational experience affected migration time. The study results confirmed that mi-

grating to multiple new computing sites is time consuming and that experience decreases migration

time. To our knowledge, this is the first study of this kind conducted on supercomputing resources.

The study results serve as a baseline for the time required (also referred to as the duration) for the

process of migrating MPI applications. The study design serves as a template for other studies with

large time commitments averaging tens of hours spread over many days per participant.

The study design is discussed in Section 2.1. Study participants and migrated MPI applications

are profiled in Sections 2.2 and 2.3. Migration results are presented in Section 2.4.

2.1 Study Design

This section presents the various aspects of the study design. The targeted participants and migra-

tion targets are described. The quantities the study was designed to measure are discussed. The

8
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protocol for each of the four study phases is outlined along with the compensation scheme used to

incentivize study participation and completion.

2.1.1 Participant Selection

In order to also study the impact of experience on migration time, the aim was to recruit partic-

ipants with different levels of computing and MPI experience. Thus, recruitment for the study

targeted undergraduate and graduate students as well as professors and research scientists. The

only prerequisite for participants was that they be end-users of an MPI application. This did not

have to be an application they had authored but it did need to be a non-toy application that they

had experience executing. By already being users of MPI applications, participants had access to

a familiar application to migrate for the study. Also, by having previously run an MPI application,

participants were guaranteed to have the basic computing skills to complete the tasks associated

with the study.

To increase the likelihood of finding participants with various computing backgrounds, recruit-

ing was done not only at the University of Virginia. The study was also announced to the national

computational science community via the XSEDE Campus Champions and XSEDE Student net-

works [19]. This recruiting tactic also geographically diversified the participant pool.

In order to produce meaningful results, the aim was to recruit at least 25 participants. As sum-

marized by Macefield, power analyzes of comparative studies recommend using 8 to 25 participants

to likely produce statistically significant findings [36]. The study’s estimated time commitment of at

least three to five hours distributed over multiple days was anticipated to be a limiting recruiting fac-

tor. Thus participation was incentivized with a compensation scheme commensurate to the study’s

time commitment. The solicitation for participation received over 50 responses, 34 of which met

the screening criteria of being MPI end-users of real applications. Of these 34 eligible responses,

29 agreed to participate in the study while 25 actually completed the study.
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Table 2.1: Migration site characteristics. This table lists basic information about the six XSEDE
computing sites used as migration destinations for the study.

SYSTEM NAME INSTITUTION where located CORES OS
Blacklight Pittsburgh Supercomputing Center 4,096 SUSE ES
Forge National Center for Supercomputing Applications 576 RedHat ES
Gordon Compute San Diego Supercomputing Center 16,384 Linux/Rocks
Kraken National Institute for Computational Sciences 112,896 Cray Linux
Ranger Texas Advanced Computing Center 62,976 CentOS
Steele Purdue University 6,496 RedHat ES

2.1.2 Migration Resources

While participants selected the MPI applications to migrate during the study, all participants used

the same migration destinations. For easier management of access to multiple resources, the

set of migration destinations was composed of computing sites from the XSEDE infrastructure,

which includes resources at over ten supercomputing centers accessible via a web-based access

point [21]. Computing sites were chosen from different institutions to create a mix of diverse

computing environments. The study was awarded computing cycles on six XSEDE resources:

PSC’s Blacklight [1], NCSA’s Forge [2], SDSC’s Gordon Compute [6], NICS’s Kraken [8], TACC’s

Ranger [15], and Purdue’s Steele [14]). The basic characteristics of each site are listed in Table 2.1.

To use these resources, participants applied for XSEDE Portal accounts and then managed access

to all six resources via one central administration point.

2.1.3 Measurement Gathering

The goal of the study was to investigate the effort involved in migrating MPI applications and the

impact of experience on the process. The study was designed to quantify migration effort in terms

of time while assessing participants’ experience. Correlations between levels of experience and

migration time were investigated along with any other characteristics shared by participants with

similar migration times per site. This section discusses how the study was designed to collect these

quantities.
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MIGRATION LOG
TIME (minutes & date)
====

TYPE (consult list)
====

DESCRIPTION (provide a clear idea of what you were doing)
===========

RATINGS (1 low - 5 high)
=======
Difficulty:
Tediousness:

Figure 2.1: Migration log template. Study participants documented the tasks they performed while
migrating MPI applications using the template outlined in this figure.

Migration Task Categories
LEARNING: XSEDE portal, new computing site
COMPILING: application
DEBUGGING: errors related to compilation/execution
ENVIRONMENT SETTING: setting modules/compilers/libraries/variables
REQUESTING ASSISSTANCE: colleagues, online help
SUBMITTING: creating submit script, submitting jobs
TESTING: application, submission script
OTHER: explain

Figure 2.2: Migration task categories. Study participants used the types in this figure to categorize
the migration tasks they documented in log entries.

2.1.3.1 Migration Durations

To measure migration time, participants documented the migration process. Participants created

log entries about the activities they performed during migration. An example log entry is shown in

Figure 2.1. Each log entry described performed tasks, categorized tasks (according to the types in

Figure 2.2), and documented the time spent on tasks. Log entry descriptions were used to confirm

that the selected activity type(s) matched the performed tasks. The logged activity descriptions were

used to identify the common tasks involved in the migration process. The logged timing information

was used to determine how long participants took to complete migration tasks. For each log entry,

participants also rated the perceived tediousness and difficultly of the associated tasks. The ratings

were used to identify particularly difficult and tedious tasks.
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Table 2.2: Experience categories. This table presents the guidelines used to categorize participants’
experience level (as advanced or novice) based on reported computational experiences.

EXPERIENCE YEARS of COMPUTATIONAL NUMBER of COMPUTING
CATEGORY RESEARCH EXPERIENCE SITES where MPI USED
Advanced 3+ 4+
Novice 1-2 1-3

2.1.3.2 Computational Experiences

To quantify computational experience, participants completed an evaluation of as well as self-

assessed their abilities. A questionnaire (located in Appendix A.2) asked information such as since

when, how often, and how confidently participants performed various computational tasks. A test

(located in Appendix A.5) asked multiple choice questions about MPI, queuing systems, and run-

ning jobs.

Based on the reported experiences, participants were categorized as having different levels of

experience as outlined in Table 2.2. Participants were classified as having an advanced level of

experience if they had at least three years of computational research experience and had run MPI

applications at more than three computing sites. The participants who did not meet this criteria were

classified as a novice level of experience. The threshold of three years and four computing sites was

chosen to ensure familiarity with running MPI computations in various environments while having

experienced the changes that occur as machines and MPI changes over a multiple year period.

The scheme for categorizing participant’s levels of experience resulted in nine advanced and

sixteen novice participants. Only these categories were used for grouping of participants in order to

still extract likely statistically significant findings from the subgroups per Macefield’s recommen-

dation of having subgroups of size no less than eight [36].

2.1.3.3 Other

The study did not only measure migration times and assess participants’ computing experiences.

It also collected background information about participants such as their place of employment,
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gender, and job title. Participants described the application they migrated in terms of qualities such

as what it computes, who created it, what MPI type it uses, and what programming language it was

written in. This information was used to create general profiles of participants and applications.

2.1.4 Phase Protocol

The study protocol was designed as a sequence of four phases to be completed using any computer

with an internet connection. Participants were emailed instructions as they progressed through

each phase at their own pace. This section describes the tasks performed during each phase. (All

described study materials were distributed and returned as email attachments. They appear in the

appendix.)

2.1.4.1 Phase One: Experience Assessment

The goal of the first phase of the study was to gather information about participants’ computational

experiences and their MPI application. Participants self-assessed their experiences in one ques-

tionnaire and described the MPI application they would be migrating in a second questionnaire.

Participants also took a timed pretest about their computational experiences.

2.1.4.2 Phase Two: Migration Logging

The goal of the second phase of the study was to document the migration process as described in

Section 2.1.3. Participants were asked to migrate their MPI applications to at least two computing

sites. Participants choose how many migrations to perform from the set of available computing sites

described in Section 2.1.2. To mitigate fatigue effects, participants were restricted to attempting at

most two migrations per day. To investigate whether earlier migrations took participants more time

to complete than later migrations independent of migration location, participants were asked to

migrate to sites in a predefined order that was randomly selected for each participant.
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2.1.4.3 Phase Three: Study Reflections

The goal of the third phase of the study was to assess participants’ migration experiences and

gather background information about participants. Participants provided this information in two

questionnaires. Additionally, participants were asked to take a posttest that evaluated the same

concepts as the pretest to determine whether participants learned any of the tested concepts while

completing the study.

2.1.4.4 Phase Four: Concluding Discussion

The goal of the final phase of the study was to hold a concluding discussion with participants. The

discussion provided an opportunity to ask tailored questions specific to participant experiences as

well as any additional questions added to the study as it progressed. The concluding discussion was

held in person, on the phone, or using video conferencing software.

2.1.5 Compensation

Participants were incentivized to complete the study with a compensation scheme that increased

with the amount of time spent on the study. E-readers, a popular consumer electronic of the time,

were used as the compensation prize. The quality of the e-readers that participants received was

increased with the number of migrations completed and the time spent on the study. For example,

participants were eligible to receive an e-reader worth $70 for completing two successful migrations

or an e-reader worth $200 for completing five successful migrations. The four levels of compensa-

tion are outlined in Figure 2.3.

A budget of $5,000 was allocated for compensation prizes to target at least 25 participants.

As not all participants completed the maximal number of migrations, the final cost of the com-

pensation prizes was $3670. With a total of 218 hours of documented migrations plus at least an

additional hour spent by each participant filling out the questionnaires and tests, the study compen-

sation equated to around $15 per hour.
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COMPENSATION OPTIONS
Definitions
Site: resource where application has not previously been run
Migration Success: application runs correctly
Migration Attempt: at least 2 hours spent trying to run application

BASIC: successful migration to 2 sites or attempts to run at 4 sites
=====

Amazon Kindle, Amazon Kindle Touch, or Barnes & Noble NOOK Simple Touch

MID: successful migration to 3 sites or attempts to run at 5 sites
===

Amazon Kindle Keyboard 3G or Barnes & Noble NOOK Simple Touch with GlowLight

HIGH: Successful migration to 4 sites or attempts to run at 6 sites
====

Amazon Kindle Touch 3G or Barnes & Noble NOOK Color

FULL: Successful migration to 5 sites or attempts to run at 7 sites
====

Amazon Kindle Fire or Barnes & Noble NOOK Tablet

Figure 2.3: Study compensation options. This figure outlines the compensation options that partic-
ipants were offered for completing the study. Participants were offered compensation at one of four
levels depending on the number of successful migrations and migration attempts (of at least two
hours). For example, a participant who completed three successful migrations was able to choose a
prize at the “mid” (or lower) compensation level.

2.2 Participant Profiles

This section highlights information about study participants. The participants are profiled in terms

of their academic backgrounds, computational experiences, and views about migration. The full set

of results is available the appendix.

2.2.1 Background

Figure 2.4 highlights participants’ general background information summarizing their research ar-

eas, places of employment, job titles, ethnicity, and gender. Participants represented 11 disciplines

at 13 institutions across 11 states. 44% of the participants were students and faculty at the Uni-

versity of Virginia. Participants consisted of a mix of undergraduate and graduate students as well

as professors and scientists with over half of the participants being graduate students. The demo-

graphics of the participants were representative of the computing field in general with the majority

being male and of white or Asian ethnicity.
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Figure 2.4: Profile of participants. These figures profile general background information about the
participants. Graph (a) presents the participants’ areas of research, graph (b) presents the partici-
pants’ places of employment, graph (c) presents the participants’ job titles, graph (d) presents the
participants’ ethnicities, and graph (e) presents the participants’ gender. The quantities are pre-
sented as percentages of the total number of participants.
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2.2.2 Experiences

Figure 2.5 highlights participants’ computational experiences summarizing how participants

learned to do computational research, for how many years they have been doing computational

research, and whether they had used XSEDE resources previously as well as how many comput-

ing sites and what MPI implementations participants use for their research. Participants were well

distributed in the number of years of experience they had in doing computational research. About

a third reported having less than three years of experience, another third between three and five

years of experience, and the remaining third having more than five years of experience. Similarly,

participants were well distributed in the number of computing sites they had used for their research.

About a third of participants had used only one site, another third used two to three sites, and

the remaining third used four or more sites. Only half of participants reported having learned to

do computational research in a formal course setting. The majority of participants reported that

they had taught themselves, learned informally from others, and consulted online documentation.

MPICH was the most widely used MPI implementation with 88% of participants reporting having

used this implementation. Around half of the participants had previously used XSEDE resources.

One third of the participants had no coding experience.

Figure 2.6 summarizes the participants’ test scores. Average scores overall and by problem type

are presented for all participants and for participants with different experience levels. Regardless

of the type of question, the highest scorers were the advanced participants who had more years

of experience with computational research and reported being more comfortable performing tasks

such as compiling and running parallel applications. On retaking the same test after completing

their migrations, participants corrected about a third of the problems they had initially missed.

This result suggests that completing the study helped participants learn or relearn some knowledge

related to running computations. By examining the answers to questions on practical concepts

relating to using shared computing systems, it was found that many of the novice participants were

not familiar with the *NIX tools to gather information relevant for execution.
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Figure 2.5: Computational experiences. The graphs highlight five dimensions of participants’
computational experiences. Graph (a) presents the participants’ years of computing experience.
Graph (b) presents whether participants had previous experience with XSEDE resources. Graph (c)
presents the number of sites participants had experience using for computation. Graph (d) presents
the MPI implementation types that participants had experience using to run applications in parallel.
Graph (e) presents how participants had learned about computation. All quantities are presented as
percentages of the total number of participants.
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Figure 2.6: Test scores. The graph summarizes participants’ scores on a test that assessed partic-
ipants’ knowledge about computational topics such MPI, queuing systems, and running jobs. Av-
erage overall scores are presented as well as scores by problem type. The graph also distinguishes
how scores differed for participants with different levels of experience.

2.2.3 Perspectives on Migration

Participants evaluated their previous experiences with and perceptions of migrating applications to

new computing sites. The most common reasons listed for migrating applications were running

jobs on resources with more compute power or memory, better hardware, and better availability.

The most common reasons listed for not migrating applications were the long setup process and

large learning curve. The most difficult challenge with migrations listed was debugging issues at

new computing sites.

2.3 Application Profiles

This section presents information about the MPI applications that participants migrated during the

study. Figure 2.7 summarizes who wrote the applications, what programming languages were used

to write the applications, what MPI implementations were used to run the applications, and at how

many sites the applications were previously compiled and run. The authors of applications were
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Figure 2.7: Profile of migrated applications. The graphs highlight five dimensions about the mi-
grated applications. Graph (a) presents who wrote them. Graph (b) presents the programming
language in which they were written. Graph (c) presents what MPI implementation was used to
run them. Graphs (d) and (e) present at how many sites participants had compiled and run them,
respectively. All quantities are presented as percentages of the total number of applications.
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well distributed between being written by the participants, by colleagues, or by the community. The

programming languages used to write the applications were well distributed between C, C++, and

FORTRAN. MPICH was the most widely used MPI implementation by the applications. Almost

half of the applications had only been run at one site while the rest of the applications were well

distributed between having been run at two, three, and more than four sites. Of the applications that

had only been run at one site, the main reason for not using more sites was reported by 60% of the

participants to be lack of access to more sites. While all but two participants had compiled their

MPI application previously, only around half of the participants had experience compiling their

application at more than one site. This is in contrast to only two thirds of the participants having

programming experience.

2.4 Migration Results

This section summarizes the results gathered about the migration process. As described in Sec-

tion 2.1.3, participants documented the migration process using logs. From these logs, information

was gathered about the duration of migrations and the types of tasks performed during the process.

An analysis of the duration of migrations is followed by an analysis of the tasks performed during

migration. The results are presented for all participants and for participants subdivided by expe-

rience level. The results are also presented as averages across all migration locations and across

individual migration locations.

2.4.1 Migration Durations

The amount of effort associated with migrations is quantified in terms of the amount of time par-

ticipants spent migrating their applications to different computing sites. To better compare results

between participants who performed different numbers of migrations, the time for all migrations

as well as the average time per one migration was considered. Timing results are reported as the

number of hours spent on migration tasks as well as the number of days over which migrations took
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Table 2.3: Migration duration summary. This table summarizes the average migration timing results
across all migration sites for all participants as well as by experience levels. The standard deviations
are presented along with each statistic. For instance, advanced participants spent on average 1.6
hours spread over 2 active and 3 consecutive days to perform one migration while overall taking
on average 8.4 hours spread over 13 consecutive days to complete 5 migrations and succeeded at
getting their applications running for 100% of their migrations.

Exper Hours per Active Days Consec Days Total Total Total Success
Level Migration per Migration per Migration Hours Days Migs Rate (%)
All 2.5 3 7 8.8 18 4 80

σ = 1.3 σ = 2 σ = 6 σ = 3.8 σ = 14 σ = 2 σ = .3
Novice 3.0 4 8 9.0 20 4 70

σ = 1.3 σ = 2 σ = 7 σ = 3.6 σ = 16 σ = 2 σ = .4
Adv 1.6 2 3 8.4 13 5 100

σ = 0.8 σ = 1 σ = 3 σ = 4.4 σ = 8 σ = 1 σ = .1

place. Timing results are also reported in relation to each migration location to identify which sites

required more time to complete migrations.

2.4.1.1 Averages over all Migrations

Table 2.3 summarizes the durations of migrations as averages across all migration locations. The

distribution of the results is presented in Figures 2.8, 2.9, and 2.10. The migration durations are

presented as averages per one migrations and as the totals to complete all migrations. Durations are

presented in terms of hours, consecutive days (from the start to end of migrations), and active days

(not necessarily consecutive days when migrations were actually being performed). The number of

sites to which participants migrated is also presented as the total number of attempted migrations

and as the percentage of successful migrations.

The results show that on average participants spent 18 consecutive days on the migration phase

of the study and in that time period spent 8.8 hours performing four migrations. When considering

the average time per one migration, participants spent 2.5 hours over 3 (not necessarily consecutive)

days to complete one migration. To mitigate fatigue effects, participants had been instructed to

perform no more than two migrations per day. Even with this restriction, given the average time per

one migration, the entire migration process could have been completed in less than one week instead



Chapter 2. The Study 23

6543210

9

8

7

6

5

4

3

2

1

0

Average Hours Per Migration

F
re
q
u
e
n
c
y

(a) Durations in Hours

20151050

9

8

7

6

5

4

3

2

1

0

Active Days Spent Per Migration

F
re
q
u
e
n
c
y

(b) Durations in Days: Consecutive

87654321

9

8

7

6

5

4

3

2

1

0

Average Days Per Migration

F
re
q
u
e
n
c
y

(c) Durations in Days: Active

Figure 2.8: Average durations for one migration. The histogram graphs present the average duration
per one migration. Graph (a) presents the durations in terms of hours. Graph (b) presents the
durations in terms of the number of consecutive days to perform one migration. Graph (c) presents
the durations in terms of the number of active days to perform one migration.
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Figure 2.9: Total durations for all migrations. The histogram graphs present the total durations to
complete all migrations. Graph (a) presents the durations in terms of hours. Graph (b) presents the
durations in terms of the number of consecutive days to perform all migrations.
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Figure 2.10: Number of migrations performed. The histogram graphs present the number of migra-
tions each participant performed. Graph (a) presents the number of total migrations while graph (b)
presents the percentage of successful migrations.
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of more than two. As less than 25% of migrations were unsuccessful, the results were not greatly

skewed toward the two hour minimum migration attempt time counted toward compensation. The

overall migration duration results show that while migrations in general did not take many hours,

for whatever reason participants spread the work over many days as they managed the process.

Thus, the time to get applications running manually at multiple sites can be quite long.

The results also show that the amount of time participants spent on migrations was higher for

participants with less experience. Less experienced participants spent more hours to perform each

migration and spread the migration process over more days. Compared to advanced participants,

novice participants spent 87% more hours per migration (1.4 extra hours over two extra days). Ad-

ditionally, novice participants spent 53% more total days (an extra week) than advanced participants

to complete all their migrations, even while migrating to less sites on average during that time.

2.4.1.2 Averages by Location

To investigate whether any migration location was particularly time consuming, the migration dura-

tion results were subdivided by computing site. Figure 2.11 highlights the results with two graphs.

Figure 2.11(a) presents the number of hours spent on average on one migration while Figure 2.11(b)

presents the number of (not necessarily consecutive) days over which the migration occurred. The

migration durations are presented for all participants as well as for participants subdivided by ex-

perience level. (At least six data points were collected for each duration average when subdivided

by participants’ experience level.)

The results spotlight a difficult to use system. On average, participants took closer to two hours

over two days to perform one migration at most locations. However, migrations at the Kraken

system took around 50% longer at closer to three hours over three day. This result supports Kraken’s

notoriety for being one of the more difficult to use XSEDE resources.

The results also illustrate the effect of experience on migration durations. At all migration

locations novice participants took more hours to perform migrations than advanced participants.

Experience had a consistent impact on the migration process.
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Figure 2.11: Migration durations by location. These graphs present the average duration of migra-
tions at each migration location. Graph (a) presents how many hours were spent on average on one
migration while graph (b) presents over how many days on average those hours were distributed.
Results are presented for all participants as well as for participants by experience level.

2.4.1.3 Migration Order

Participants performed four migrations on average. To investigate whether earlier migrations took

participants more time to complete than later migrations, the average durations of migrations were

grouped by migration number. Participants migrated to sites in a randomly selected, predefined

order. Each participant’s migrations were numbered in the order in which they were begun. The

durations of migrations with the same migration number were averaged to determine how long

it took on for participants to complete migrations with the same order number. The results are

presented in Figure 2.12. (The figure does not present results by experience level for the sixth

migration due to a lack of data points. As only eight participants performed this migration overall,

subdividing further would provide few data points for averages by experience level.)

The results show that for novice participants, the effort to start the migration process was espe-

cially larger than the effort to perform additional migrations. The first two migrations, independent

of location as it was randomly varied for each participant, took novice participants more than 50%

longer to perform than later migrations. For advanced participants, the effort to perform migrations

did not decrease significantly as more migrations were performed. Overall, the duration of the

non-initial migrations averaged at 1.6 hours.
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Figure 2.12: Migration durations by migration order. Migration durations were ordered according
to when they were begun as each participant migrated to sites in a randomly selected, predefined
order. The graph presents the average durations of migrations grouped by migration order.

2.4.2 Migration Tasks

The time participants spent on different types of migration tasks was analyzed to identify the most

time consuming and common tasks. The duration of different types of tasks when performing one

migration was calculated as an average at each migration location and for all locations. Ratings of

tediousness and difficulty were also analyzed to identify the most tedious and difficult task types

overall and at specific locations.

2.4.2.1 Task Durations

The migration timing results were subdivided to analyze the amount of time participants spent on

the seven task types described in Figure 2.2. The durations of each migration task are presented

in Figures 2.13 and 2.14. Figure 2.13 presents the results averaged across all migration sites while

Figure 2.14 presents the results averaged individually for each migration site. Each figure presents

the results for participants overall and by experienced level.

When considering the activities of all participants, the results in Figure 2.13(a) show that the

majority of each migration was spent performing tasks related to learning, compiling, and debug-

ging while the least amount of time was spent requesting assistance. When considering the activities
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(a) Decomposition of Time Spent on One Migration by Types of Tasks Performed
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Figure 2.13: Migration task durations. These graphs present the durations of the seven types of
migration tasks as averages across all migration locations. Graph (a) shows what percentage of one
migration each task type took on average. Graph (b) shows how the average durations of each task
type differed for participants with different levels of experience.
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(a) Durations of All Participants
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(b) Durations of Advanced Participants
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(c) Durations of Novice Participants

Figure 2.14: Migration task durations by location and experience. The graphs present the durations
of the seven types of migration tasks as averages for participants overall and by experience level at
each migration location.
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of participants subdivided by experience level, the results in Figure 2.13(b) show that the four most

time consuming tasks for participants regardless of level of experiences were learning, compiling,

debugging, and environment setting.

When considering the results by participants’ experience levels, the most time consuming tasks

for novice participants become especially apparent. While novice participants spent longer than

advanced participants on the majority of tasks, they spent almost 100% longer on learning and

debugging. Advanced participants spent more than 50% longer on learning and compiling than on

other types of migration tasks.

When considering the activities of all participants at different migration locations, the results

in Figure 2.14(a) show that, except for two task types at one site, each task type took participants

about the same amount of time to perform regardless of location. The two exceptions were again

on the Kraken system where compiling and environment setting took almost twice as long. When

considering the results in Figures 2.14(b) and 2.14(c) further subdivided by participants’ experi-

ence, the location where it took the shortest time to complete each task type varied for advanced

and novice participants. However, for both the majority of tasks types took the longest to perform

on Kraken. This results again supports Kraken’s notoriety for being a more difficult to use system.

2.4.2.2 Task Ratings

Ratings of the tediousness and difficulty of each of the seven task type documented during the

migration process are presented in Figure 2.15. Graph 2.15(a) presents the ratings averaged across

all migrations. Graphs 2.15(b) and 2.15(c) present ratings of difficulty and tediousness, respectively,

at each migration location.

When considering all migrations, the results in Figure 2.15 show that the average difficulty and

tediousness ratings of tasks types were similar. While debugging and requesting assistance were

rated as slightly more tedious, debugging was rated as 20% more difficult on average than the other

task types. When considering the results subdivided by location, tasks of any type were consistently

rated as more difficult and tedious at one site in particular. As shown in Figure 2.15(b), the difficulty

ratings of all task types were highest for the Kraken system. Similarly, as shown in Figure 2.15(c),
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(b) Difficulty Ratings by Migration Location
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(c) Tediousness Ratings by Migration Location

Figure 2.15: Ratings of migrations’ tediousness and difficulty. The graphs present the average
ratings of the tediousness and difficulty of each task type performed during the migration process.
Graph (a) presents the average ratings across all migration locations. Graphs (b) and (c) present the
average ratings for different migration locations.
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the tediousness ratings for the majority of task types were also highest for the Kraken system.

Again, this result supports the notoriety of Kraken as a more difficult to use system.

2.5 Summary

The study aimed to quantify the effort end-users put forth to get their MPI applications running at

new computing sites. The study was conducted using XSEDE resources with participants from in-

stitutions across the United States. Common tasks involved in the process of migrating applications

to new sites were confirmed and how much time was spent on them was quantified. How various

levels of experience affect end-users attempts to migrate their MPI applications to new computing

environments were also investigated.

The study results indicate that manually migrating applications to multiple targets is a time

consuming process. While the results illustrate that the migration process takes less time after one

migration is performed, the average durations of migrations did not significantly decrease after

the initial migration. The documented duration of one migration averaged two and a half hours

but the completion of this work was on average spread over several days and lead to multiple

weeks being required to perform multiple migrations. The results also repeatedly showed that

less experienced participants spend more time on migrations than more experienced participants.

Novice participants spent almost 50% more time per migration than advanced participants both in

terms of hours (equating to one and a half extra hours of work) and in terms of the days (equating to

one extra week) over which they spread out their migrations. These findings were consistent when

analyzing the results by migration location.

The analysis of task types showed that the majority of each migration was spent performing

tasks related to learning, compiling, and debugging. The results also clearly illustrated the diffi-

culties associated with one particular migration location. Migrations to the Kraken system took

noticeably longer. All participants regardless of experience took longer to perform the majority

of task types on Kraken and rated all tasks on Kraken as more difficult and tedious than at other

locations.
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The study has provided concrete experimental data documenting the migration process for re-

searchers with various levels of experience. The results provide a baseline for the duration of the

process that currently must be completed before a new resource can be used directly or via a sched-

uler to run a computation. The results clearly support that migrating to multiple sites is a time

consuming process and that experience impacts migration time. The gathered migration duration

results are used in the evaluation of the proposed solution in Chapter 6. Clearly methods that help

identify sites where applications can run without much user effort would be useful to decrease the

amount of time it takes end-users to get their applications running at multiple sites, especially for

users with less computational expertise. Simultaneously, job management systems could benefit

from such methods to increase the set of candidate hosts where an application can be scheduled to

run without additional user intervention. Such additional scheduling freedom could decrease queue

wait times and increase job throughput.



Chapter 3

The Model

This chapter describes the execution readiness prediction (ERP) model, a model for predicting

whether an MPI binary is ready to execute at a computing site. By knowing whether recompilation

will be needed to utilize new resources, researchers and schedulers can better choose execution

locations. Job management systems are enabled to schedule computations at a larger assortment

of locations if it can be determined without user intervention where the binary can run without

recompilation. Also, researchers can directly choose to run on resources where their computations

can run with low start-up effort when they know whether recompilation will be needed. To enable

this scheduling freedom, a model was formed to describe the relationships between information

relevant for execution.

The ERP model serves as a high-level prescription for implementing predictions of execution

readiness. Execution readiness refers to an application’s ability to run at a computing site suc-

cessfully. The model highlights factors related to applications and computing environments that

are highly relevant for execution. The model also outlines the conditions for predicting how these

factors influence the execution readiness of an application at a particular computing site.

Migrating binaries instead of source code to new computing sites can be beneficial when tuned

performance is not a concern. In this manner, researchers can avoid long compile times or compiling

unfamiliar codes like community applications. By knowing that recompilation does not have to

occur, researchers can – directly or via schedulers – gain use of new sites quickly enough to react

to changing characteristics such as queue delay times.

35
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Section 3.1 begins with a discussion of the requirements that guided the design of the ERP

model. Section 3.2 describes the factors that form the model’s basis for assessing execution readi-

ness while Section 3.3 presents the guidelines for assessing the influence of each factor on execution

readiness. Section 3.4 concludes with a discussion of the order in which the assessments should

occur to form the final prediction of execution readiness.

3.1 Model Requirements

The ERP model was designed to meet two basic requirements. First, the model is intended to be

simple. A simple model is more easily understood, is applicable to a wider range of computing

systems and applications, and helps facilitate its implementation. Second, the model was to be

language and operating system independent. The ERP model defines at a high level the factors that

influence application execution, and defines when these factors are satisfied, but it does not rely

on or prescribe any particular underlying technology for its implementation. Again, this makes the

model applicable to more applications and computing sites, and avoids coupling the model with the

characteristics of a programming language, architecture, or operating system.

3.2 Execution Factors

Whether an application binary will execute at a particular computing site depends on whether the

computing site satisfies the application’s execution requirements. Many of an application’s execu-

tion requirements are formed at compile time. The ERP model identifies four factors as particularly

relevant for execution: 1) the MPI stack, 2) shared libraries, 3) the hardware architecture, and 4)

the system configuration. This section describes each of these execution factors.

The execution factors for the ERP model were identified by performing an exploratory survey

of the issues that arise when migrating MPI programs [23]. Six MPI implementations were ana-

lyzed across eight computing environments. The computing environments were chosen such that

a diverse test set was created in terms of the operating system, hardware architecture, network in-

terconnect, and MPI implementation. Of the systems studied, four were part of XSEDE (Kraken,
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Ranger, Lincoln, and Ember), two were part of FutureGrid (India and Xray), and two were from the

University of Virginia (ITS Elder and CS Centurion). For each MPI implementation type at each

computing site, MPI programs were compiled and observations were made about what issues, if

any, arose when attempting to execute the programs at different sites.

3.2.1 MPI Stack Requirements

The MPI stack is an important factor that influences the execution of applications that use the MPI

standard. As MPI is only an interface specification, the standard specifies a library interface, not

a link level interface. An implementation of the MPI standard consists of a library (i.e. Open

MPI) that can have various dependencies especially since each implementation may realize the

standardized interfaces using different data strutures and communication protocols. Accordingly,

an application compiled with a particular MPI implementation inherits the set of dependencies

related to that MPI implementation type. Therefore, in order for a dynamically linked application

to execute, the necessary MPI library needs to be available at a computing site along with the MPI

implementation related dependencies.

3.2.2 Shared Library Requirements

Shared libraries are collections of object code that can be shared and used by multiple programs.

There are two ways in which programs can be linked to shared libraries. In static linking, the object

code used by a program is included in the program’s executable. In dynamic linking, the object

code is loaded when the program is executed. Shared libraries that can be used for static linking are

called static libraries and are commonly identified with a .a file extension. Shared libraries that can

be used for dynamic linking are called dynamically linked libraries and are commonly identified

with a .so or .dll file extension. In the exploratory survey, the MPI configurations at the majority of

the computing sites were found to be setup only with shared libraries for dynamic linking. At these

sites, the only option for creating MPI binaries was with dynamically linked libraries.

The availability of shared libraries at computing sites influences the execution of any dynami-

cally linked application. If an application’s shared library requirements are not met at a new com-
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puting site, the application will not be able to execute as it will be missing access to code provided

by the shared libraries. In particular, C standard library compatibility is a major determinant in the

ability of an application to execute at a new computing site. As a very large and commonly-used

shared library, the C standard library is dynamically linked to by most applications, as well as their

shared library dependencies.

3.2.3 Hardware Architecture Requirements

Hardware architecture is a very basic determinant for the execution of all applications. Every ap-

plication is compiled for a specific instruction set architecture (e.g. PowerPC, x86) and a certain

word-length (i.e. 32-bit, 64-bit).

3.2.4 System Configuration

Even when all execution factors are satisfied, an application may still fail to execute at a computing

site due to system configuration errors. These system errors can be caused by misconfigurations

that affect the execution process. For example, an MPI implementation may have been updated

incorrectly and cause binaries that depend on that MPI implementation to not be able to execute.

The ERP model considers system configurations related to execution as a determining factor for

predicting execution readiness.

3.3 Assessing Compatibility

The key to execution prediction is assessing whether an application’s execution requirements are

satisfied at a computing site. The section provides guidelines for determining whether each of the

four factors identified as particularly relevant for execution is met at a computing site.

3.3.1 MPI Stack Compatibility

To assess if an MPI stack requirement is satisfied, the compatibility of MPI implementation types

needs to be determined. Only MPI implementations of the same type are considered to be compat-
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Table 3.1: Identifying libraries of MPI implementations. The link-level shared library dependencies
associated with a specific MPI implementation type can be used to identify an application’s MPI
implementation type requirement.

MPI Implementation Library Dependencies
MPICH2 libmpich/libmpichf90 (and not other identifiers)
MVAPICH2 libmpich/libmpichf90, libibverbs, libibumad
Open MPI libnsl, libutil

ible. A MPI application binary has been linked against the dependencies of a specific MPI type.

Thus, in order for the application to execute, these dependencies need to be present at a computing

site. To determine compatibility, the MPI type with which the application was compiled needs to be

matched against the MPI types available at a computing site. For example, an application compiled

with Open MPI is compatible with Open MPI but not with MVAPICH.

Matching the MPI implementation is important as computing sites often provide access to multi-

ple MPI stacks. In the exploratory survey, each computing site was found to have multiple versions

of two to three MPI implementations available along with at least two compiler options. Thus,

relying on a computing site’s default MPI configuration will likely not result in a compatible en-

vironment state. Indeed, during the exploratory survey tests, applications were able to execute at

computing sites using the default MPI implementation settings less than 2% of the time.

To determine compatibility, the ERP model does not consider the version of the MPI implemen-

tation type. Different version numbers do not necessarily imply incompatibility or compatibility as

there are no universal guidelines regarding backwards compatibility and releases of MPI implemen-

tations.

To perform the compatibility assessment, an application’s MPI implementation type require-

ment must be known. In order to not require the user to provide this information, it must be ex-

tracted from the binary. A scheme was developed to uniquely identify the MPI implementation

type used to compile an application. The link-level shared library dependencies associated with

each MPI implementation type were used to make the identification. These MPI implementation

identifiers are listed in Table 3.1.
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3.3.2 Shared Library Compatibility

Shared library compatibility is assessed by considering name and version conventions as well as

word-length (32 vs. 64-bit). All shared libraries have a special name called the soname. Files

containing shared library code are named using the following convention that consists of the soname

followed by a period and a version number. This sequence can optionally be followed by another

period and a release number.

lib<soname>.so.<version#>.<release#>

Following this convention, the shared library name libmpichf90.so.1.2 indicates that it is the

second release of the first version of the MPICH library for Fortran90. As the version number of

shared libraries is incremented when non-backward compatible changes occur in a library’s applica-

tion binary interfaces (ABI), shared library compatibility is defined based on this version number.

A computing site’s shared library is defined to satisfy an application’s shared library execution

requirement if it has the same soname, version number, and word-length format as the required

library.

Execution may also be possible with a different version of a shared library than what an appli-

cation was linked against. The highest version of a particular library that a binary’s symbols require

can be determined by examining an executable. This is termed the required version of a shared

library. Execution may be possible if a computing site’s shared library version is equal to or greater

than an application’s required shared library version. This is of particular interest when matching

versions of the widely used C standard library. Different versions of the C library are often found

at computing sites as a result of the library being updated at different times during the lifetime of

systems.

3.3.3 Hardware Architecture Compatibility

To assess hardware architecture compatibility, the format into which an application has been com-

piled is compared against the format supported by the hardware architecture of a computing site.
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The instruction set architecture and binary format such as word-length need to match in order for a

binary to execute at the computing site.

3.3.4 System Configuration Compatibility

Whether a computing site is properly configured for execution can be assessed by attempting to run

a program that should execute. This process tests the system’s configuration of the job submission

process and the job management system. To also test whether a particular MPI stack is functioning,

a simple MPI program can be created using the MPI stack under investigation and used for testing

the execution process. If the process succeeds without errors, then the system can be assessed to

have a functioning configuration for the execution of programs that depend on that MPI stack.

3.4 Prediction Forming

To form a final prediction about the execution readiness of an application at a computing site, the or-

der in which the compatibility of each execution factor is assessed matters. An evaluation ordering

is created that considers the dependence of factors as well as the complexity of assessment. Hard-

ware architecture compatibility is checked first as it dictates whether an application will be able to

execute at a computing site from the basic hardware perspective. The system configuration func-

tionality is checked last as this factor cannot be fully assessed until the relevant site configurations,

such as the MPI implementation type, have been assessed. MPI implementation compatibility can

be checked before shared library compatibility as it should be a shorter assessment than checking

the compatibility of a potentially large number of shared libraries.

A flowchart depicting the ordering of the prediction forming process is presented in Figure 3.1.

First, the hardware architecture compatibility is assessed. If an application is not compiled into

a format that can be executed at the computing site from the hardware architecture perspective,

then the model predicts execution will not be possible. Otherwise, the MPI stack requirements are

assessed. Again, if these requirements are not met because no compatible MPI implementation is

available at the computing site, then the model predicts execution will not be possible. Otherwise,
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Figure 3.1: Prediction decision tree. This flowchart depicts an ordering when serially assessing each
execution factor during the process of forming a prediction of an application’s execution readiness.
The ordering is based on the magnitude of each incompatibility in terms of affecting execution as
well as the complexity of assessing each factor so as to arrive at a prediction more quickly.

the shared library requirements are assessed. If compatible versions of required shared libraries

are not present at the computing site, execution is predicted to not be possible. Otherwise, the

functionality of the system configuration is lastly assessed. If the configuration is found to not be

functional, then execution is predicted to not be possible. Otherwise, execution is predicted to be
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possible.

3.5 Summary

This chapter has presented the execution readiness prediction (ERP) model, a model for determining

whether an MPI binary is able to execute at a computing site. The model focuses on four execution-

influencing factors: MPI stack, shared libraries, hardware architecture, and system configuration.

To form a prediction, the ERP model provides guidelines for assessing compatibility between an

application’s execution requirements and the configurations of a computing site. The prediction is

formed without running the application binary.

Automatically forming execution readiness predictions is the basis for enabling deployment

freedom. The predictions can provide researchers and schedulers with a determination of whether

applications can run at new computing sites without recompilation. In this way, the ERP model

provides an approach for automatically determining whether a computing site is a good fit for

running a computation.
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Implementation

This chapter describes a concrete implementation of predicting execution readiness for MPI ap-

plications on Unix-based computing systems. FEAM, or a Framework for Efficient Application

Migration, implements the ERP model described in Chapter 3 while additionally incorporating a

scheme for resolving execution-blocking issues. As such, FEAM can be used by users and sched-

ulers to identify computing sites that are ready to execute MPI binaries and form site-specific con-

figurations for running those binaries. An overview of FEAM and its four components is pre-

sented in Section 4.1 followed by a description of FEAM’s resolution scheme in Section 4.2. Then

Sections 4.3 through 4.6 explain how FEAM determines an application’s execution readiness and

composes a resolution scheme in terms of the work done by each of FEAM’s components.

4.1 Overview

FEAM is composed of four components that work together to form an execution readiness predic-

tion and resolution scheme. Two components gather information about the factors relevant for de-

termining execution readiness as outlined by the ERP model. The Binary Description Component

gathers information about the application binary, while the Environment Description Component

gathers information about the computing site. The third component, the Resolution Component,

gathers information for realizing the resolution scheme that FEAM implements in addition to pre-

dicting execution readiness. The fourth component, the Target Evaluation Component, assesses

44
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compatibility and forms a final execution readiness prediction according to the guidelines of the

ERP model. The Target Evaluation Component also creates a script with site-specific configura-

tions, a description with any detected issues, and a resolution scheme when applicable. For porta-

bility between Unix-based sites, FEAM and each of its components is implemented using bash

scripts. To account for techniques that do not work equally well on different Unix-based systems,

FEAM’s components use multiple methods to discover relevant information about application bi-

naries and computing sites.

FEAM differentiates between two location types: 1) a target site and 2) a guaranteed execution

site. A target site is a computing site where an application binary is to be run while a guaranteed

execution site is a computing site where an application is known to already run successfully. The

guaranteed execution site may be the site from where the application is being migrated and/or it

may be the site where the application was compiled. To make a prediction, FEAM must be run at a

target site. To form a better prediction and to create a resolution scheme, FEAM can be additionally

run at guaranteed execution site.

FEAM also differentiates between two computing node types: 1) a head node and 2) a compute

node. The head node refers to the front end node that users traditionally log into and submit jobs

from when using Unix-based clusters. The compute node refers to a back end node where jobs are

traditionally executed in Unix-based clusters. While FEAM is designed to be always invoked from

a head node, FEAM can execute directly on the head node or form a submission script to execute on

a compute node. If the head and compute nodes of a system have the same configurations in terms

of the filesystem, runtime environment, and architecture, FEAM can execute on the head node to

assess the majority of the ERP model’s execution factors as well as to form a resolution scheme.

However, to evaluate each of the ERP model’s execution components, FEAM must execute on a

compute node. In particular, the system configuration of a target site can only be evaluated by

running on a compute node.

Where FEAM is run determines which FEAM components are executed. Figure 4.1 illustrates

which FEAM components are executed in relation to location and node type. To gather informa-

tion about a new computing environment, FEAM’s Environment Description Component must run
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Figure 4.1: FEAM overview. FEAM, a Framework for Efficient Application Migration, implements
the Execution Readiness Prediction Model on Unix-based computing systems and incorporates a
resolution scheme. This diagram depicts an overview of how FEAM runs at different site locations
along with the corresponding inputs and outputs. FEAM must be run at a target site to form a
prediction and FEAM may additionally be run at a guaranteed execution site to enable resolution
and improve prediction capabilities. (The asterisk indicates the FEAM component that requires to
be executed on a compute node. The remaining components may be run on a head node assuming
that head and compute node configurations are identical.)

at a target site. To gather information about the application binary, FEAM’s Binary Description

Component can run at either at a target or guaranteed execution site. To gather information rele-

vant for the resolution scheme, FEAM’s Resolution Component must run at a guaranteed execution

site. Similarly, to gather information for enhanced system configuration testing, FEAM’s Binary

Description Component must run at a guaranteed execution site. To make an evaluation of the sys-

tem configuration execution factor, FEAM’s Target Evaluation Component must run on a compute

node.
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The location where FEAM is run also determines FEAM’s inputs and outputs (also depicted

in Figure 4.1). In addition to specifying the location and node type, FEAM requires information

about 1) the application binary and 2) a site’s job submission syntax. The binary location is simply

specified as input to FEAM while a site’s job submission syntax is specified by filling out a template

file. Because it can vary greatly from site to site, the submission format is the only site-related

information that is not automatically discovered by FEAM. The general syntax for invoking FEAM

follows along with an example invocation. In the example, FEAM is invoked at a guaranteed

execution site for a binary located at /path/binary.sh and a template file called geSyntax.

./feam <binary/bundle path> <job template path> <site type> [head node only]

./feam /path/binary.sh geSyntax -ge

The output of running FEAM at a guaranteed site, as in the above invocation, is a bundle of

the gathered information. To enable FEAM to use this information at target sites, this bundle is

provided as input to FEAM instead of a binary location. As a consequence, the binary does not

need to be made available at target sites. An example invocation of FEAM on the compute node of

a target site using a bundle called feam-bundle.tar.gz and a template file called targetSyntax follows:

./feam feam-bundle.tar.gz targetSyntax -t -h

The output of running FEAM at a target site, as in the above invocation, is a prediction of

execution readiness, a summary of discovered information and errors as well as a site-specific con-

figuration script that incorporates a resolution scheme when possible. Examples of FEAM’s outputs

are presented during the Target Evaluation Component description in Section 4.6. An example job

submission syntax template is presented in Figure 4.2.

4.2 Resolution Scheme

In addition to implementing execution readiness prediction, FEAM incorporates a scheme for re-

solving some execution-blocking issues. Specifically, FEAM resolves shared library requirements.
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Job Submission Template
# job submission command
qsub

# script type
bash

# combine stderr and stdout
#PBS -j oe

# name output file
#PBS -N <NAME>

# select 10 minute runtime
#PBS -l walltime=00:10:00

# select 2 nodes
#PBS -l nodes=2

#select queue
#PBS -q batch

#start job in submission dir
cd $PBS_O_WORKDIR

#other
. /opt/Modules/default/init/sh

#mpi command specification
mpiexec <BINARY>

Figure 4.2: Example job submission template. A site’s job submission syntax is specified by filling
out a template file. This figure presents an example of a completed template. Because it can
vary greatly from site to site, the submission format is the only site-related information that is not
automatically discovered by FEAM.
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This scheme was created by considering how the execution factors of the ERP model could be

influenced to enable execution. If the application binary is not to be modified, then the only way

to affect the compatibility of execution factors is to change the configurations of the target site.

Installing a missing MPI stack or emulating a mismatched instruction set is beyond the scope of

what most users are allowed to do at a target computing site. In contrast, copying binaries, such

as shared libraries, and making them available for use at runtime requires no special privileges or

infrastructure.

Resolution of missing shared libraries by copying requires access to shared library binaries that

will execute at the target site. Whenever there is access to an application’s guaranteed execution

site, there is also access to the shared libraries required by the application. Barring licensing issues,

these shared libraries can be copied for use at other computing sites. However, these shared libraries

will not necessarily be able to execute at a target site for the same reasons that any binary may not

be able to run at a new computing site. To determine if a shared library copy can be used for

resolution at a target site, a prediction of execution readiness can be formed. This process may

include recursively resolving missing shared libraries.

Thus, FEAM incorporates a scheme for determining whether missing shared library require-

ments are resolvable along with implementing execution readiness predictions. First, FEAM gath-

ers copies of shared libraries at guaranteed execution sites. Second, FEAM determines whether the

library copies will execute at the target site. If this analysis predicts that the library copies are ready

to execute at the target site, FEAM concludes that the missing shared library requirements are not

execution-blocking.

4.3 Binary Description Component

The FEAM Binary Description Component (BDC) gathers information about the application binary

to create an application description. An example description is presented in Figure 4.3. The BDC

investigates the execution factors (hardware architecture, MPI stack, and shared libraries) outlined

by the ERP model as relevant for execution prediction from the perspective of the requirements
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APPLICATION DESCRIPTION
BINARY 107-in.omp-i.binary
FORMAT ELF
ISA x86
BITS 64
LIBC-REF x
SO libmpi_f90.so.0 mpi_f90 0 x
SO libmpi_f77.so.0 mpi_f77 0 x
SO libmpi.so.0 mpi 0 x
SO libopen-rte.so.0 open-rte 0 x
SO libopen-pal.so.0 open-pal 0 x
SO libdl.so.2 dl 2 x
SO libnsl.so.1 nsl 1 x
SO libutil.so.1 util 1 x
SO libgfortran.so.1 gfortran 1 x
SO libm.so.6 m 6 2.2.5
SO libgcc_s.so.1 gcc_s 1 x
SO libpthread.so.0 pthread 0 x
SO libc.so.6 c 6 2.2.5
LIBC-SO-REF 2.2.5
MPISTACK omp
LANGUAGE c
COMPILER gcc

Figure 4.3: Example application description. The FEAM Binary Description Component discov-
ers information about an MPI application binary. The resulting application description contains
information about the execution factors outlined by the ERP model from the perspective of the ap-
plication. In this example, the application was found to have 13 shared library dependencies, to be
formatted for an x86 64-bit architecture, and to be compiled with Open MPI.

of an application binary. This section presents the techniques the FEAM BDC employs to gather

information about the execution factor and for realizing the resolution scheme.

4.3.1 Hardware Architecture Requirements

The FEAM BDC aims to discover for what type of hardware architecture the application binary

was created. Two tools are used to investigate a binary’s file format: the *NIX file utility and

the GNU binutils [4] program objdump. The file utility classifies a file’s type while objdump

displays information about object files. Specifically, objdump is called with the -f option to view

the binary file’s file header contents. Example output from file and objdump is displayed in

Figure 4.4. From this information, a determination is made into what file format (i.e. the executable

and linkable format ELF), for what instruction set architecture (i.e. x86), and for how many bits

(i.e. 64) the binary was compiled.
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EXAMPLE OUTPUT: FILE
ELF 64-bit LSB executable,
AMD x86-64, version 1 (SYSV),
for GNU/Linux 2.6.9,
dynamically linked (uses shared libs),
not stripped

EXAMPLE OUTPUT: OBJDUMP
file format elf64-x86-64,
architecture: i386:x86-64,
flags 0x00000112: EXEC_P, HAS_SYMS, D_PAGED
start address 0x0000000000404040

Figure 4.4: Example analysis of application binary’s hardware architecture requirements. The
FEAM BDC determines for what type of hardware architecture an application was created by em-
ploying the *NIX file utility and the GNU binutils objdump program to examine the format of
the binary. In this example, the binary is a 64-bit ELF executable created for the x86 architecture.

EXAMPLE OUTPUT: READELF
String dump of section ’.comment’:
[ 1] GCC: (GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu3)

Figure 4.5: Example analysis of ELF application binary. The GNU Utility readelf is used to po-
tentially determine what operating system and compiler were used to create the application binary.
In this example, the binary was compiled on an Ubuntu Linux system.

The application binary is additionally examined to determine information about the operating

system and the compiler used to create it. When dealing with binaries in the ELF file format (the

executable and linkable format: the standard binary format for Unix-like systems on x86 architec-

tures), the GNU binutils readelf program is called with the -p .comment option to display the

binary’s comment section header. This optional binary file section may contain compiler and linker

specific version control information. Example output produced by readelf in this way is displayed

in Figure 4.5. Any discovered information is output as a supplemental description of the application

binary.

4.3.2 Shared Library Requirements

The FEAM BDC aims to discover an application binary’s shared library requirements. Two tools

are used to investigate these dependencies: the *NIX utility ldd and the GNU binutils program

objdump. The ldd utility, when called with the -v option, prints the shared libraries required by

a program along with their locations in the local filesystem and symbol version information. The
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objdump program, when called with the -p option, prints file format specific information includ-

ing shared library dependencies and symbol versioning information. Example output from ldd

and objdump called in this way is displayed in Figure 4.6. This information is used to determine

the sonames and linked-against versions of the shared libraries required by the application binary.

In the objdump output, the shared library dependencies are listed as “needed components” in the

“dynamic section”. Information about the version requirements of the binary’s shared library de-

pendencies is listed under the “version definition” and “version reference” sections. Each shared

library’s required version (as defined by the ERP model in Section 3) is determined by locating the

newest version of each library, and, in particular, the C standard library, required by the binary’s

symbols. Analogous information is determined using the ldd utility.

4.3.3 MPI Stack

The FEAM BDC aims to discover with what MPI implementation (i.e. MVAPICH) an application

binary was compiled. This information is determined by examining the list of the application’s

shared library dependencies discovered per the methods explained in Section 4.3.2. The shared

library dependencies will include the link-level dependencies associated with a particular MPI im-

plementation type. That MPI implementation type is identified by searching for dependencies that

are also MPI implementation identifiers as per the identification guidelines presented by the ERP

model in Section 3.3.1. For example, in Figure 4.4, the description is of an application that depends

on the nsl and util shared libraries, which are identifiers for the MPI implementation type Open

MPI.

4.3.4 System Configuration

The FEAM BDC also aims to gather information that will help determine the functionality of a

target site’s execution configuration. When FEAM runs at a guaranteed execution site, the BDC

compiles test MPI programs using the MPI implementation type required by the application binary.

These programs are run by the FEAM Target Evaluation Component (as described in Section 4.6.5)
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EXAMPLE OUTPUT: LDD
libmpi_f90.so.0 => /opt/openmpi-1.4.3-intel/lib/libmpi_f90.so.0
libmpi_f77.so.0 => opt/openmpi-1.4.3-intel/lib/libmpi_f77.so.0
libmpi.so.0 => /opt/openmpi-1.4.3-intel/lib/libmpi.so.0
libopen-rte.so.0 => /opt/openmpi-1.4.3-intel/lib/libopen-rte.so.0
libopen-pal.so.0 => /opt/openmpi-1.4.3-intel/lib/libopen-pal.so.0
libdl.so.2 => /lib64/libdl.so.2
libnsl.so.1 => /lib64/libnsl.so.1
libutil.so.1 => /lib64/libutil.so.1
libgfortran.so.1 => /usr/lib64/libgfortran.so.1
libm.so.6 => /lib64/libm.so.6
libgcc_s.so.1 => /lib64/libgcc_s.so.1
libpthread.so.0 => /lib64/libpthread.so.0
libc.so.6 => /lib64/libc.so.6

Version information:
libc.so.6 (GLIBC_2.2.5) => /lib64/libc.so.6
libm.so.6 (GLIBC_2.2.5) => /lib64/libm.so.6

EXAMPLE OUTPUT: OBJDUMP
Dynamic Section:
NEEDED libmpi_f90.so.0
NEEDED libmpi_f77.so.0
NEEDED libmpi.so.0
NEEDED libopen-rte.so.0
NEEDED libopen-pal.so.0
NEEDED libdl.so.2
NEEDED libnsl.so.1
NEEDED libutil.so.1
NEEDED libgfortran.so.1
NEEDED libm.so.6
NEEDED libgcc_s.so.1
NEEDED libpthread.so.0
NEEDED libc.so.6

Version References:
required from libc.so.6:
0x09691a75 0x00 03 GLIBC_2.2.5

required from libm.so.6:
0x09691a75 0x00 02 GLIBC_2.2.5

Figure 4.6: Example analysis of application binary’s shared library requirements. The FEAM BDC
determines an application’s shared library requirements by employing the *NIX utility ldd and the
GNU binutils program objdump to examine the binary’s dependencies. In this example, output
from the tools shows the sonames and the version requirements for each of the binary’s 13 shared
library dependencies.
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to assess the ability of a target site’s MPI stack to run a program created by an MPI stack that was

able to run the application.

4.4 Resolution Component

The FEAM Resolution Component (RC) aims to collect information to support the resolution of

missing shared library requirements at target sites. Specifically, the FEAM RC creates a store of an

application’s shared library dependencies along with their application descriptions to be later used

by the FEAM Target Evaluation Component to form an execution readiness prediction (as explained

in Section 4.6).

The FEAM RC gathers copies of an application’s shared library dependencies from a guaranteed

execution site. (Licensing issues are outside the scope of this work.) To be able to make copies of

the libraries, they must be first located in the local filesystem. If available, the libraries are found

using the location information provided by the ldd utility (as described in section 4.3.2). Otherwise,

files with matching filenames are searched for. If available, the locate utility is used to perform

the search. Alternately, the find utility is used to search at specific locations. These include the

paths specified in the LD LIBRARY PATH environment variable, the list of directories consulted

by the dynamic loaders in search of shared objects. Other locations where shared libraries are

typically found on *NIX systems (i.e. /lib) are also searched. A list of search locations is specified

in a configuration file that can be augmented by the user. The search list includes system-specific

shared library locations identified by examining the locations of dependencies of locally-compiled

MPI applications.

Once copies of an application’s shared library dependencies have been collected, an application

description is created for each copy by employing the FEAM BDC described in Section 4.3. When

target sites are found to be missing shared library dependencies, these descriptions provide the

FEAM Target Evaluation Component information for making execution readiness predictions about

the copies according to the resolution scheme (as described in Section 4.6).
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ENVIRONMENT DESCRIPTION
--Hostname: i134 **USER-ENVIRONMENT MANAGEMENT TOOLS
--Binary: mpi.out --Environment Modules: V 3.2.8

--SoftEnv: no
**ARCHITECTURE
--ISA: x86 **MPI STACKS
--Bits: 64 --Default: none

--Available:
**OS /opt/mpich2/1.4
--Name: Red Hat Enterprise Linux Server /opt/mvapich2/1.7a2
--Version: 5.7 /opt/openmpi-1.4.3-intel

/N/soft/openmpi/1.4.2
**LIBC /opt/openmpi-1.4.3-gnu
--Location: /lib64/libc.so.6
--Version: 6 **MISSING SHARED LIBRARIES
--Release Version: 2.5 --Soname: libmpich
--Compiled with CC version: 4.1.2 20080704 --Version: 1.2
(Red Hat 4.1.2-51)

Figure 4.7: Example environment description. The FEAM Environment Description Component
discovers information about a computing site. The resulting environment description contains in-
formation about the hardware architecture, MPI implementations, and shared libraries present at
the computing site. For instance, the computing site in this example is described as having an x86
64-bit architecture and supporting three MPI implementation types.

4.5 Environment Description Component

The FEAM Environment Description Component (EDC) gathers information about a computing

site to create an environment description. An example description is displayed in Figure 4.7. The

EDC investigates the factors (hardware architecture, MPI stack, shared libraries, and system con-

figuration) outlined by the ERP model as relevant for execution prediction from the perspective of a

computing site. This section presents the techniques the FEAM EDC employs to gather information

about the execution factors.

4.5.1 MPI Stack

The FEAM EDC aims to discover what MPI stack combinations are available at a computing site

as well as what MPI stack combination, if any, the computing site is configured for by default. To

determine if any MPI stacks match the application binary’s requirements, the MPI stacks available

at a computing site must be identified. A site’s default MPI configuration is investigated in order

to form guidelines for how a site’s configuration should be modified to prepare it for application
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ENVIRONMENT MODULES
$module list
1) torque/2.5.5 2) moab/5.4.0 3) openmpi/1.4.3-gnu

$module avail
------------------ /opt/Modules/3.2.8/modulefiles/applications -----------------
R/2.11.1(default) mpich2/1.4 soapdenovo/1.04
git/1.7.8.3 mpiexec/0.84 velvet/1.0.15
gromacs/4.0.7(default) mvapich2/1.7a2 wgs/6.1
hpcc/1.3.1(default) ncbi/2.2.23(default)
hsi/3.5.3 ruby/1.9.3
-------------------- /opt/Modules/3.2.8/modulefiles/compilers ------------------
cmake/2.8.1(default) intel/11.1(default) java/1.6.0-x86_64(default)
intel/10.1 java/1.6.0-i586
-------------------- /opt/Modules/3.2.8/modulefiles/libraries ------------------
intelmpi/4.0.0.028(default) openmpi/1.4.3-multi-threads
mkl/10.2.5.035(default) otf/1.7.0(default)
openmpi/1.4.2 unimci/1.0.1(default)
openmpi/1.4.3-gnu(default) vampirtrace/intel-11.1/5.8.2
openmpi/1.4.3-intel

Figure 4.8: MPI stack discovery with environment modules. When possible, the EDC employs
user-environment management tools, like Environment Modules, to determine a computing site’s
available and default MPI configurations. In this example, two Environment Module commands
reveal that the site supports three MPI implementations and is configured by default for Open MPI.

execution.

The FEAM EDC first attempts to employ user-environment management tools for MPI stack

discovery. User-environment management tools, such as Environment Modules [10] and Soft-

Env [11], help manage a shell environment and support the discovery of software packages. They

provide a means to alter and set environment variables in order to configure the shell for a particu-

lar usage, such as compiling an application with a specific compiler or using a specific version of a

shared library. To determine if user-environment management tools are present at a computing site,

a search is performed for tool-specific configuration files (i.e. .modules for Environment Module).

If present, the tool’s search mechanisms for examining software packages is used to investigate

what MPI stacks are available at the computing site in general (i.e. module avail for Environ-

ment Module). The tool’s mechanisms is also used for identifying the current site configuration to

investigate if the site is configured for any MPI stack by default (i.e. module list for Environ-

ment Module). Example output from examining a site’s available software packages and default

configuration with Environment Modules is depicted in Figure 4.8.
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If user-environment management tools are not available at a site, the EDC attempts to discover

information about the site’s MPI configurations by searching for MPI libraries and wrapper compil-

ers. Shared libraries associated with MPI implementations are searched for in order to find installed

MPI implementations. The library search methods are applied to locate the MPI implementation

identifying libraries outlined by the ERP model in Table 3.1. Commonly-used wrapper compilers

are also identified. Wrapper compilers for MPI programs, such as mpicc, transparently augment a

compilation command with relevant compiler and linker flags necessary for MPI program compi-

lation and then invoke the specified compiler. The versioning information of these compilers can

reveal what MPI implementations are available at a computing site. To determine if any MPI stack

is configured by default at a site, the paths specified by the PATH and LD LIBRARY PATH envi-

ronment variables are examined to identify whether they correspond to the locations of any of the

MPI identifying libraries and wrapper compilers.

4.5.2 Shared Libraries

The FEAM EDC aims to discover what shared libraries are present at a computing site. However,

instead of collecting information about all the shared libraries present at a computing site, the focus

is on discovering information about the application binary’s shared library dependencies. Specif-

ically, missing libraries are identified along with the versions of available libraries with matching

sonames. Making an exhaustive list of shared libraries that are available at a computing site is im-

practical as shared libraries can be installed at various locations and their versions are often updated.

However, when using FEAM often at a target site to make execution readiness predictions for var-

ious binaries, the search process could be refined to consult a cache of shared libraries previously

discovered to exist at the site.

If the application binary is present at a target site, the GNU Utility ldd is employed to identify

which of the application’s shared library dependencies are missing. The tool indicates with a “not

found” message when it is unable to locate a dependency in the local filesystem. If the application

binary is not available at the target site, the library search methods are applied. In either case, the

GNU Utility objdump is used to determined the version information of found shared libraries as
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EXAMPLE OUTPUT: UNAME
Linux i136 2.6.18-308.11.1.el5 #1 SMP x86_64 x86_64 x86_64 GNU/Linux

Figure 4.9: Example analysis of a computing site’s hardware architecture. The FEAM EDC deter-
mines a computing site’s hardware architecture configuration by employing the *NIX utility uname.

described in Section 4.3.2.

Instead of searching for the C standard shared library (as many libraries begin with the name

libc), an investigation is made into what version of the library is running at the computing site.

This is done via the C standard library application programming interface. Specifically, the

gnu get libc version function is called. Alternately, the C library binary is invoked to print

general information about the library including its version. In this case, the library binary is located

using the library search methods.

4.5.3 Hardware Architecture

The FEAM EDC aims to discover a computing site’s hardware architecture configurations. The

*NIX utility uname is employed for this task. The utility is called with the -a option to view all

system information. An example of the output produced by uname in this way is displayed in

Figure 4.9.

Additional information is gathered about a computing site’s operating system. By convention

in Unix-based systems, information about the operating system type and version can be found in

files under the /proc and /etc directories. Any discovered information is output as a supplemental

description of the computing site. If registries of site information are known to exist, they could be

used to augment this description. None of this information is necessary for the operation of FEAM.

It is gathered as supplemental information for the user.

4.6 Target Evaluation Component

The FEAM Target Evaluation Component (TEC) forms a prediction of execution readiness based

on the ERP model and resolution scheme. Compatibility is assessed for the application binary and

the execution site according to the ERP model guidelines by analyzing the information captured
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in the application and environment descriptions. If FEAM previously executed at a guaranteed

execution site, the resolution scheme is applied as appropriate. This section describes the process

by which the FEAM TEC arrives at a final prediction of an application’s execution readiness.

4.6.1 Hardware Architecture Requirements

An application description contains information that the FEAM BDC discovered (as described in

Section 4.3.1) about the hardware architecture of an application binary. An environment description

contains information that the FEAM EDC discovered (as described in Section 4.5.3) about the

hardware architecture of a target site. To determine if the hardware architecture execution factor is

satisfied, the number of bits and the ISA for which an application was compiled is matched against

the corresponding computing site information. To be considered compatible, there must be an exact

match of the ISA type and the required number of bits must be less than or equal to the available

number of bits. If both conditions are met, the hardware architecture requirements are satisfied as

per the ERP model compatibility guidelines in Section 3.3.3.

4.6.2 C Library Version Requirements

An application description contains information that the FEAM BDC discovered (as described in

Section 4.3.2) about the C library version required by an application binary. An environment de-

scription contains information that the FEAM EDC discovered (as described in Section 4.5.2) about

the version of the C library installed at a target site. A determination is made about whether the

C library version found to be installed at the computing site is equal to or greater than the version

found to be required by the application binary. If so, then the C library version requirement is

satisfied as per the ERP model compatibility guidelines in Section 3.3.2. A differentiation is made

between an exact match of the major versions which guarantees full compatibility and a mismatch

between the major versions that may result in some compatibility issues.
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4.6.3 MPI Stack Requirements

An application description contains information discovered by the FEAM BDC (as described in

Section 4.3.3) about the MPI stack used to compile an application binary. An environment descrip-

tion contains information discovered by the FEAM EDC (as described in Section 4.5.1) about the

MPI stacks available at a target site. To determine whether a compatible MPI stack is available

at the target site, the MPI implementation type required by the application is matched against the

types found to exist at the target site. If at least one matching MPI type is found, the MPI stack

requirement is satisfied per the ERP model compatibility guidelines in Section 3.3.1. If no match-

ing MPI stacks are accessible at the target site by default, a note is made about how to make the

configuration either via user-management tools or by setting environment variables.

4.6.4 Shared Library Requirements

An environment description lists which of an application’s required shared libraries the FEAM EDC

found (as described in Section 4.5.2) to be missing at a target site. If no shared library dependencies

were found to be missing, the shared library requirements are met as per the ERP model compatibil-

ity guidelines in Section 3.3.2. Otherwise, an attempt is made to resolve the missing dependencies.

However, resolution schemes can only be applied if FEAM was previously run at a guaranteed ex-

ecution site and gathered the additional input needed for this task. This input consists of copies and

application descriptions of all of an application binary’s shared library dependencies. Thus, if the

input is available, the TEC locates each missing library copy and determines if it can execute at

the computing site by recursively applying the ERP model. If all missing shared library copies are

predicted to be ready for execution, the missing shared library dependencies are resolvable and the

application’s shared library requirements are met by the target site. A note is made of the configu-

ration details for making these libraries accessible for use at runtime by adding their location to the

LDD LIBRARY PATH environment variable in the site-specific configuration script.
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4.6.5 System Configuration Requirements

The functionality of the system configuration for job execution is assessed by running a series of

tests. Tests are performed for each compatible MPI stack as described in Section 4.6.3. Test MPI

programs are compiled using the compatible MPI stack and execution of each resulting binary is

attempted. If execution succeeds, the MPI stack and system configuration requirements are satisfied

as per the ERP model compatibility guidelines in Section 3.3.4. If execution fails, the errors are

examined for cause indicators that may generalize to any MPI execution.

If an input bundle was provided from running FEAM at a guaranteed execution site, the test MPI

programs generated at the guaranteed execution site (as described in Section 4.3.4) are also run. The

successful execution of these tests will further support compatibility between the target site’s MPI

stacks and the application’s MPI stack requirements. Similarly, if errors are detected, they are

examined for cause indicators that may affect the execution of any binary from that guaranteed

execution site.

Running MPI test programs on compute nodes requires knowing the execution command that

corresponds to the selected MPI stack. As the syntax of a submission script for parallel execution

may vary greatly between computing sites due to customized configurations, this syntax is not

automatically detected. Rather, it is specified by the user in a template as described in Section 4.1.

4.6.6 Prediction

The TEC makes the final prediction that an application is ready for execution at a target site if all

of the execution factors are found to be satisfied according to the ERP model. Example predictions

are illustrated in Figure 4.10. When predicting a binary is unable to execute at a target site, the TEC

forms a description of the detected issues. An example error report is presented in Figure 4.11. This

information is output along with the general binary and environment descriptions created by the

other FEAM components. Additionally, the TEC generates a script with site-specific configuration

details that incorporates a resolution scheme when possible. An example configuration script is

presented in Figure 4.12.
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PREDICTIONS
POSITIVE PREDICTION
Ready to execute

NEGATIVE PREDICTION
Not ready to execute:
Missing shared libraries

Figure 4.10: Example predictions. FEAM’s TEC forms the final prediction about whether an ap-
plication is ready to execute at a target site. These examples illustrate the high-level prediction
summaries of readiness and failure output by FEAM.

ERROR REPORT
*Architecture Bitness Mismatch
--Required: 64
--Available: 32

*MPI Mismatch
--Required: mva
--Available:
mpich2/1.4
openmpi/1.4.3-intel
openmpi/1.4.2(default)
openmpi/1.4.3-gnu

*C Library Version Mistmatch
--Required: 2.12
--Available: 2.11.1

*Missing Shared Libraries
libpthread.so.0
librt.so.1
libc.so.6

Figure 4.11: Example error report. FEAM’s TEC forms an error report of detected issues when
predicting a binary is unable to execute at a target site. This report example presents a mismatch in
the architecture, MPI, C library version, and shared library requirements.
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SITE-SPECIFIC CONFIGURATION SCRIPT
#!/bin/bash

# Job Sumbission Script
# Autogenerated by FEAM’s Submission Script Creator
# at HOST

#PBS -j oe
#PBS -o <NAME>
#PBS -l walltime=00:10:00
#PBS -l nodes=2:ppn=1

cd $PBS_O_WORKDIR

module load mpich2/1.4

export LD_LIBRARY_PATH=/path/TEC-resolution:/path/lib

mpiexec <BINARY>

Figure 4.12: Example configuration script. In addition to a prediction of the execution readiness of
an application binary, FEAM outputs site-specific configuration details for setting up a target site
for the execution of the binary.

4.7 Summary

This chapter presented FEAM, an implementation of the execution readiness prediction model for

Unix-based systems. FEAM’s components employ Unix-based techniques to discover information

about application binaries and computing sites. In addition to predicting execution readiness as

per the ERP model, FEAM incorporates a scheme for resolving execution-blocking issues related

to shared library dependencies. FEAM can be used by users and scheduler to improve scheduling

freedom. The next chapters present an evaluation of FEAMs effectiveness.



Chapter 5

Performance Evaluation

The performance of FEAM was evaluated in terms of three metrics: (1) prediction accuracy, (2) res-

olution effectiveness, and (3) footprint. Prediction accuracy measured FEAM’s ability to correctly

predict execution readiness. Resolution effectiveness measured FEAM’s ability to enable execution

readiness using resolution schemes. FEAM’s footprint in terms of time and space usage was also

examined. The evaluation results indicate that FEAM is a lightweight framework that provides

accurate predictions of execution readiness while enabling more successful executions overall via

resolution schemes. As such, FEAM was shown to be ready to be of value to users and schedulers

to increase deployment freedom.

The applications and computing sites used for the evaluation are discussed first in Section 5.1

followed by a description of the prediction accuracy evaluation in Section 5.2 and the resolution

effectiveness evaluation in Section 5.3. FEAM’s footprint in terms of time and space requirements

is discussed in Section 5.4.

5.1 Test Set Description

The evaluation was conducted using 13 applications across five computing sites. The test set was

created to consist of a diverse set of applications and computing sites. Diversity of applications

was sought in terms of programming languages, scientific domains, and algorithms. Diversity of

computing environments was sought in terms of parallel architecture, operating system, and MPI

64
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implementation. The applications and computing sites selected for the evaluation are described in

this section.

Table 5.1: Test site characteristics. The five computing sites used for the evaluation were chosen for
their hardware and software configuration diversity. This table lists the sites’ parallel architecture
type, operating system, C library version, compilers, and MPI implementations.

Computing Site Operating C Library MPI Type
(Type - Cores) System & Compiler (Compilers:gnu, intel, pgi)

XSEDE Ranger at Texas LibC v2.3.4 Open MPI v1.3 (g,i,p)
Advanced Computing CentOS v4.9 GNU CC v3.4.6 MVAPICH2 v1.2 (g,i,p)
Center (MPP - 62,976) Intel v10.1

XSEDE Forge at National Red Had LibC v2.12 Open MPI v1.4 (g,i)
Center for Supercomputing Enterprise Linux GNU CC v4.4.5 MVAPICH v1.7rcl(i)
Applications (Hybrid - 576) Server v6.1 Intel v12

XSEDE Blacklight at SUSE Linux LibC v2.11.1
Pittsburgh Supercomputing Enterprise Server GNU CC v4.4.3 Open MPI v1.4 (g,i)

Center (SMP - 4,096) v11 Intel v11.1
FutureGrid India at Red Hat LibC v2.5 Open MPI v1.4 (g,i)
Indiana University Enterprise Linux GNU CC v4.1.2 MVAPICH v1.7a2 (i)

(Cluster - 920) Server v5.6 Intel v11.1 MPICH2 v1.4 (i)
ITS Fir at University LibC v2.5 Open MPI v1.4 (g,i, p)

of Virginia CentOS v5.6 GNU CC v4.1.2 MVAPICH2 v1.7a (g,i, p)
(Cluster - 1,496) Intel v12 MPICH2 v1.3 (g,i, p)

5.1.1 Computing Sites

The computing site test set consisted of the five systems listed in Table 5.1. Three state-of-the-art

high performance computing systems were chosen from the XSEDE infrastructure [20] to represent

the main types of parallel architectures found at national supercomputing centers. Ranger [15] at

the Texas Advanced Computing Center is a massively parallel processing (MPP) system. Forge [2]

at the National Center for Supercomputing Applications was a hybrid CPU/GPU system. Blacklight

[1] at the Pittsburgh Supercomputing Center is a symmetric multiprocessing (SMP) system. Two

mid-sized university clusters were also selected. India is part of the FutureGrid Project [3] test-bed

while Fir is a University of Virginia resource [17].
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The test set sites have diverse software configurations. The chosen systems run different ver-

sions of three Linux operating system variants: RedHat, CentOS, and SUSE. Their installed stan-

dard C library versions ranged from 2.3 to 2.12 with only two of the systems being configured with

the same version. Each site supports at least one version of the three most popular open-source

MPI implementations (MVAPICH, MPICH, and OpenMPI). The sites also support a wide variety

of compilers and shared libraries. Table 5.1 lists more details about the characteristics of the five

computing sites used for the evaluation.

5.1.2 Applications

The set of MPI application binaries used for the evaluation consisted of 13 applications from two

benchmarks suites: the NAS Parallel Benchmarks [48] suite and the SPEC MPI2007 [39] bench-

mark suite. The NAS Parallel Benchmarks (NPB) suite consists of applications derived from com-

putational fluid dynamics. The SPEC MPI2007 benchmark suite was developed from native MPI-

parallel end-user applications. The evaluation used version 2.4 of the MPI reference implementation

of the NPB suite and version 2.0 of the SPEC MPI2007 benchmark suite with medium sized inputs.

To create the test set of MPI application binaries, the benchmark codes were compiled using

various MPI stacks at the five selected test sites. The number of binaries created using the bench-

mark codes varied depending on whether compilation was successful with each MPI stack available

at a test site. Binaries that would not execute at their compilation site were discarded. As a result,

the final set of binaries used for the evaluation consisted of a subset of the chosen benchmark codes.

In total, the final application test set included 110 NPB and 147 SPEC MPI2007 binaries. From

the NPB suite, the final test set consisted of four kernels (integer sort, embarrassingly parallel, con-

jugate gradient, and multi-grid on a sequence of meshes) as well as three pseudo applications (block

tri-diagonal solver, scalar penta-diagonal solver, and lower-upper Gauss-Seidel solver). From the

SPEC MPI2007 benchmark suite, the final test set consisted of a quantum chromodynamics code,

two computational fluid dynamics codes (107.leslie3d and 115.fds4), a parallel ray tracing code

(122.tachyon), a molecular dynamics simulation code (126.lammps), a weather prediction code

(128.GAPgeofem), and a 3D Eulerian hydrodynamics code (129.tera tf). Tables 5.2 and 5.3 de-
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tail the final application test set in terms of which MPI stacks were used to compile the benchmark

codes at each test site.

5.2 Prediction Accuracy

The aim of the prediction accuracy evaluation was to measure FEAM’s ability to correctly predict

execution readiness. The evaluation considered FEAM’s prediction accuracy with and without

the incorporation of a resolution scheme. In this section, the setup for the prediction accuracy

evaluation is discussed along with the evaluation results.

5.2.1 Methodology

The accuracy of FEAM’s predictions was investigated using information from target and guaranteed

execution sites. FEAM was used to predict execution readiness and form a resolution scheme when

applicable for each binary and site in the test set. Each binary was also executed at each site.

Accuracy was calculated by comparing the predictions of execution readiness with the execution

results.

To gather execution results, target sites had to be configured with MPI implementations that

matched the requirements of each binary. As the MPI implementation often affects the format of

a job submission script, execution results could only be gathered after selecting the correct MPI

implementation. For example, for binaries compiled with MVAPICH2 at the Ranger site, execution

results could only be evaluated at the Forge, India, and Fir sites where MVAPICH2 is available.

For sites with no matching MPI implementation, an execution result of failure was recorded. These

failure results were confirmed by attempting to run the applications with non-matching MPI im-

plementations. An additional set of execution results was collected to evaluate the accuracy of

FEAM’s resolution schemes. For the set of tests that were predicted to be able to execute if a reso-

lution scheme was applied, execution results were gathered anew after incorporating the resolution

schemes into the job configurations. All of these execution results are presented in Figure 5.1.
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Table 5.2: SPEC application test set. This table indicates the MPI stack combinations used to com-
pile the SPEC MPI2007 benchmark suite at five sites to create the binaries used for the evaluations.
(C:successful, X: discarded due to compile or execution issues, -: unavailable)

Benchmark Code Test Site MVAPICH Open MPI MPICH
(Application Area) g i p g i p g i p

SPEC milc
Blacklight - - - C C - - - -

Fir C C C C X C C C C
Forge - C - C C - - - -

(quantum chromodynamics)
India - C - C C - - C -

Ranger C C C C C C - - -

SPEC leslie3d
Blacklight - - - X C - - - -

Fir C C C C C C C C C
Forge - C - C C - - - -

(computational fluid dynamics)
India - C - C C - - C -

Ranger C C C C C C - - -

SPEC fds4
Blacklight - - - X C - - - -

Fir X C C X C C X C C
Forge - C - C C - - - -

(computational fluid dynamics)
India - X - X X - - X -

Ranger C C C C C C - - -

SPEC tachyon
Blacklight - - - C C - - - -

Fir C C C C X C C C C
Forge - C - C C - - - -

(parallel ray tracing)
India - C - C C - - C -

Ranger C C C C C C - - -

SPEC lammps
Blacklight - - - C C - - - -

Fir C C C C X X C C C
Forge - C - C C - - - -

(molecular dynamics)
India - C - C C - - C -

Ranger X X X C C C - - -

SPEC GAPgeofem
Blacklight - - - X C - - - -

Fir C C C C C C C C C
Forge - C - C C - - - -

(weather prediction)
India - C - C C - - C -

Ranger C C C C C C - - -

SPEC tera tf
Blacklight - - - X C - - - -

Fir C C C C C C C C C
Forge - C - X C - - - -

(3D Eulerian hydrodynamics)
India - C - C C - - C -

Ranger X C C X C C - - -
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Table 5.3: NAS application test set. This table indicates the MPI stack combinations used to com-
pile the NAS Parallel Benchmark suite at four site to create the binaries used for the evaluations.
(C:successful, X: discarded due to compile or execution issues, -: unavailable)

Benchmark Code Test Site MPICH MVAPICH Open MPI
g g g i

NAS bt

Fir C X C C
India C C C X

Lincoln - C X C
Ranger - C C C

NAS cg

Fir C X C C
India C C C C

Lincoln - C X C
Ranger - C C C

NAS ep

Fir C X C C
India C C C C

Lincoln - C X C
Ranger - C C C

NAS is

Fir C X C X
India C C C C

Lincoln - C C C
Ranger - C C C

NAS lu

Fir C X C C
India C C C C

Lincoln - C C C
Ranger - C C C

NAS mg

Fir C X C C
India C C C C

Lincoln - C X C
Ranger - C C C

NAS sp

Fir C X C C
India C C C C

Lincoln - C C C
Ranger - C C C

To gather predictions, FEAM was run at target and guaranteed execution sites (using job sub-

mission templates based on the submission scripts used to gather execution results). Two types

of predictions were formed: (1) basic and (2) extended. FEAM formed basic predictions using

information gathered only at target sites. FEAM formed extended predictions by additionally in-

corporating information gathered at guaranteed execution sites. (Each binary’s compilation site was
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Figure 5.1: Test set execution results. The results of running each test case were recorded. This
figure presents the percentage of tests that succeeded as well as the percentage of tests that failed
(decomposed by the cause of failure). The tests that initially failed but run successfully using
FEAM’s resolution scheme are also noted.

used as the guaranteed execution site.) As described in Section 4.1, running FEAM at a guaranteed

execution site enables the formation of resolution schemes and enhanced compatibility testing at

target sites. In this way, the accuracy evaluation differentiates FEAM’s performance for when there

is and is not access to a guaranteed execution site, a particularly relevant consideration for users

of community applications that may be distributed as binaries. The accuracy of both types of pre-

dictions was evaluated by comparing against the corresponding execution result. These accuracy

results are presented in Figure 5.2.

5.2.2 Result Analysis

The accuracy evaluation shows that FEAM is able to recognize a variety of execution-blocking

issues and, as a result, produce correct predictions of execution readiness. Regardless of whether

formed using information from target sites or also from guaranteed execution sites, the prediction

accuracy evaluation measured FEAM’s predictions as more than 90% accurate. The evaluation also

illustrated how execution is influenced by the ERP model’s execution factors.
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Figure 5.2: FEAM’s prediction accuracy. FEAM’s accuracy at predicting execution readiness was
calculated by comparing predictions with execution results. Basic predictions were formed using
information gathered only at target sites while extended predictions were formed by additionally
incorporating information gathered at guaranteed execution sites. This figure presents the accuracy
of both prediction types as percentages over all tests. The figure also presents the accuracy of
resolution schemes in terms of enabling successful executions when applied. These results are
listed as percentages of formed resolutions.

The accuracy results (presented in Figure 5.2) show that FEAM correctly predicted execution

readiness for more than 90% of the tests regardless of prediction type. Extended predictions pro-

duced more accurate results (95% vs 93%). The increase in accuracy was a consequence of the

additional compatibility tests that these extended predictions were able to run using information

gathered at guaranteed execution sites. For example, by running MPI test programs compiled at

guaranteed execution sites, FEAM was able to detect floating point errors and application binary

interface (ABI) incompatibilities in shared libraries.

FEAM’s inaccurate predictions were all of execution readiness. These false positives were a

result of errors that FEAM was not able to recognize. For example, FEAM incorrectly predicted

applications would successfully execute when instead they failed due to MPI daemons failing to

spawn and communication timeouts. The errors that FEAM was unable to recognized were mostly

related to system configurations. A minority of the errors were related to issues with shared li-

braries. FEAM was 100% accurate at identifying issues related to the MPI stack and hardware

architecture requirements.
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The evaluation of the accuracy of FEAM’s resolution schemes found that FEAM was 39% inac-

curate at predicting whether applying the schemes would lead to successful execution. FEAM made

these false positive predictions of execution readiness when it did not recognize other causes of fail-

ure. These failures are most prevalent in the accuracy evaluation of FEAM’s resolution schemes

because in this case the other execution factors are all satisfied. When FEAM detects issues with

the ERP model’s execution factors, it forms an accurate prediction of execution failure regardless of

whether there are additional masked failure causes. To predict that a resolution scheme will enable

successful execution, FEAM must have already determined that all other execution factors have

been satisfied. Thus, the failures that FEAM is not able to detect become apparent. While about

half of FEAM’s false positive predictions occurred in these circumstances, overall these inaccurate

predictions made up less than 5% of the tests.

The execution results used to validate FEAM’s predictions of execution readiness (presented

in Figure 5.1) show that about a third (35%) of the tests executed without errors when the only

configuration in place to gather these results was the selection of a matching MPI implementation.

About another quarter (26%) of the tests failed due to target sites lacking matching MPI imple-

mentations. The majority of the remaining 39% of the tests failed due to missing shared libraries.

Other failure causes included incompatible C library versions, floating point exceptions, and system

errors. These results emphasize that choosing a target site based only on the existence of a match-

ing MPI implementation is not enough to guarantee successful execution. To enable the execution

of an application binary without recompilation, it is especially important to handle missing shared

libraries.

5.3 Resolution Effectiveness

The aim of the resolution effectiveness evaluation was to measure the ability of FEAM’s resolu-

tion schemes to enable successful executions. FEAM composes resolution schemes upon detecting

missing shared libraries during its evaluation of shared library compatibility for execution readiness

prediction. Resolution schemes, as described in Section 4.2, determine if missing shared libraries
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can be made available at target sites using library copies gathered at guaranteed execution sites. In

this section, the setup of the resolution effectiveness evaluation is discussed along with the evalua-

tion results.

5.3.1 Methodology

The effectiveness of FEAM’s resolution scheme was evaluated by determining how often the

schemes were created and how often they enabled enabled successful execution over the test set. To

assess the prevalence of resolution schemes, FEAM’s extended predictions were examined. (FEAM

composes resolution schemes only when forming extended predictions as scheme creation requires

library copies to have been gathered at guaranteed execution sites.) Only full schemes that resolved

all missing shared libraries were counted. The success of the schemes was assessed by measuring

the results of execution attempts that incorporated the resolution schemes.

The effectiveness evaluation analyzed the formation of FEAM’s resolution schemes in relation

to the need for resolution schemes. How often FEAM was able to compose full schemes was

contrasted with how often shared libraries were missing. (FEAM only considers forming resolution

schemes when required shared libraries are identified as missing at target sites.) To express how

effective FEAM was at forming schemes to handle the issue of missing shared libraries, a measure

of coverage was calculated as the percentage of the tests with missing shared libraries for which full

resolution schemes were formed. This calculation is expressed per the following equation where

the quantity PMissingLibs denotes the number of extended predictions of failure due to missing shared

library requirements and the quantity PResolved denotes the number of extended predictions for which

FEAM composed full resolution schemes to resolve missing shared library requirements:

Coverage= PResolvable/PMissingLibs

The effectiveness evaluation also analyzed the success of FEAM’s resolution schemes in rela-

tion to the execution results. To express how effective FEAM’s resolution schemes were at enabling

execution, an analysis of impact was calculated as the percentage of executions that were impacted

by resolution schemes. The impact was additionally calculated in terms of the percentage increase
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in the number of successful executions and decrease in the number of failures. These relationships

were calculated per the following equations where TAll denotes all the executions, TSuccess f ul denotes

the successful executions, TFailed denotes the failed executions, and TResolved denotes the tests that

were able to execute successfully as a result of applying FEAM’s resolution schemes:

Overall Impact= TResolved/TAll

Success Impact= TResolved/TSuccess f ul

Failure Impact= TResolved/TFailed

Figure 5.3 presents the results of the effectiveness evaluation of FEAM’s resolution schemes

both in terms of coverage and impact over the MPI application binaries and computing sites in the

test set.

5.3.2 Result Analysis

The evaluation of FEAM’s resolution scheme showed that while the scheme had limited effective-

ness, it enabled significantly more successful executions over the test set. Overall, 14% of the test

cases were impacted favorably by resolution schemes. This equated to a third more successful

executions being enabled over the test set by FEAM’s resolution schemes.

As the coverage results show, FEAM was able to compose full resolution schemes for 89%

of the tests that were missing shared libraries. Resolution schemes were not composed for the

other tests with missing libraries due to limitations of the scheme. FEAM’s resolution scheme

takes advantage of shared library present at guaranteed execution sites but it is also limited by

the dependencies of those copies, which are just binaries. The most frequent causes of FEAM

not being able to compose full resolution schemes were mismatches between the versions of the

C library required by library copies and the versions available at target sites. Note, that FEAM’s

composition of a full resolution scheme does not equate to FEAM forming a prediction of execution

readiness. FEAM may detect other execution-blocking issues, such as an incompatible MPI stack,

that will prevent execution regardless of the resolution of missing shared libraries.
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(b) Impact

Figure 5.3: Resolution effectiveness. The effectiveness of FEAM’s resolution scheme was eval-
uated using two metrics: coverage and impact. The coverage evaluation, presented in figure (a),
analyzed the formation of resolution schemes in relation to the need for resolution schemes. The
impact evaluation, presented in figure (b), analyzed the success of resolution schemes in relation to
the execution results.
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As the impact results show, applying FEAM’s resolution scheme favorably impacted 14% of

the test set by increasing the number of successful executions by 41% and decreasing the number of

failures by 28%. These gains were able to occur without any additional effort other than applying

the configuration script composed by FEAM’s resolution scheme. With only 35% of the tests exe-

cuting successfully initially (when not applying any configurations related to resolution schemes),

a favorable impact of 14% represents a substantial increase in the number of successful executions

without having to recompile the application or make any heavyweight changes to the execution

environment at the target site.

5.4 Footprint

The aim of the footprint evaluation was to determine FEAM’s time and space usage. The time to run

FEAM and the amount of disk space used during the process was measured using *NIX operating

system commands. The time command was used to record the amount of system resources used by

FEAM for each test. The command du was used to determine the amount of disk space used to run

FEAM. This evaluation showed that running FEAM requires on the order of minutes of compute

time and MBs of disk space. The timing measurements recorded that FEAM used less than five

minutes of compute time to run all of its components on target and guaranteed execution sites.

The wall clock time varied with the amount of time spent waiting in the queue to run on a compute

node. The space measurements recorded that less than 100 MBs of disk space where needed to store

FEAM’s inputs, outputs, and installation files as well as the files created during FEAM’s execution.

The majority of the space was for storing shared library copies used by FEAM’s resolution scheme.

5.5 Summary

In this chapter, three evaluations of FEAM, the implementation of the execution readiness predic-

tion model with a resolution scheme, were presented. The accuracy prediction evaluation showed

that FEAM is able to recognize the vast majority of execution failures to produce a correct predic-

tion of execution readiness with more than 90% accuracy. The resolution effectiveness evaluation



Chapter 5. Performance Evaluation 77

showed that while FEAM’s resolution schemes positively impacted only 14% of tests, they targeted

a prevalent execution-blocking issue whose resolution increased successful executions by 41% and

decreased failures by 28%. The footprint evaluation showed that FEAM is a lightweight framework

that takes on the order of minutes to execute and uses on the order of MBs of disk space. FEAM

performed well enough to be useable to increase deployment freedom for users and schedulers.



Chapter 6

Efficiency Evaluation

This chapter presents an evaluation of how much more efficient the preparation of environments for

application execution can be when utilizing FEAM, the Framework for Efficient Application Mi-

gration. A prediction of the speedup associated with using FEAM is formed by comparing the effort

in terms of time of using FEAM versus manual methods. Expenditures of time are analyzed using

the Keystroke Level Model [28] as well as data from the user study (from Chapter 2) and the eval-

uations of FEAM’s performance (from Chapter 5). The analysis shows that FEAM provides more

than an order of magnitude of speedup in the best case and no significant slowdown over manual

methods in the worst case. Additionally, using FEAM potentially eliminates tedious debugging by

providing site-specific information about execution factors. The analysis puts into perspective by

how much using FEAM decreases the barriers that otherwise must be manually overcome before

new computing sites can be used to execute applications.

Section 6.1 first analyzes the effort exerted to use FEAM. Section 6.2 then quantifies the effort

spent to manually prepare environments for application execution. Section 6.3 follows by quan-

tifying the overall effort spent to prepare environments for execution when utilizing FEAM. The

resulting speedup estimates are presented in Section 6.4 followed by an analysis of the calculations

in Section 6.5.

78
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6.1 FEAM Effort

This section presents an analysis of how much effort is exerted to use FEAM in terms of time.

Running FEAM involves installing FEAM, preparing a set of inputs, and issuing a start command.

This effort is termed TFEAM. An estimate of TFEAM is created by using the Keystroke Level Model

(KLM) while gathering experimental data to confirm the efficacy of the encodings. This section

first introduces the KLM and then presents KLM encodings of each of the subtasks of the process

of using FEAM before presenting an overall estimate of TFEAM.

6.1.1 Keystroke Level Model

Effort is analyzed in terms of time by applying the principles of the Keystroke-Level Model. This

model was first developed in the 1980s and, with over six hundred citations, has since been widely

used in different variations and extensions to estimate human-computer interaction execution times.

The model provides guidelines for predicting the time it takes expert users to perform a specific task

on a computer system. Per the KLM, a task is expressed as a set of small, cognitively manageable

unit tasks. The KLM provides guidelines to predict the duration of each unit task in terms of the

sequence of system commands at the keystroke level used to execute the tasks. The KLM encodes

the execution of tasks using four physical-motor operators - keystroking, pointing, homing, and

drawing - along with a mental operator and a response operator. The execution time of a task is

predicted by summing the execution time of the operators used to encode its execution with constant

time estimates used for each operators duration as developed for the KLM. [28]

The analysis of FEAM encodes tasks using the KLM’s keystroke (K), response (R), and mental

(M) operators. The keystroke operator K refers to keystrokes or button pushes on a keyboard and is

determined based on the typing rate. The K operator time is estimated as 0.2 seconds for an average

skill typist of 55 wpm. The response operator (R) refers to the amount of time users have to wait

for an operation to complete before they can continue performing their task. Each R operator is

estimated by measuring the system response time for the task being waited on. The M operator

refers to the time users spend mentally preparing to execute an operator such as a keystroke. The M
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operator time is estimated using the KLM suggested mental preparation time of 1.35 seconds based

on experimental results of expert users. To place M operators in relation to K operators, the KLM’s

heuristic rules are used. They amount to placing Ms in front of all Ks belonging to one cognitive

unit that is not anticipated and not a redundant terminator. Choosing how many Ms to place is the

most difficult part of using the KLM. [47]

6.1.2 Method for Task “Install FEAM”

First the time to install FEAM at a computing site is analyzed. The FEAM installation consists

of unpacking a downloadable tarball. This task does not need to occur if FEAM was previously

installed at a computing site such as after it had been used to predict the execution readiness of

another binary. This section models the execution time of the task of installing FEAM at a site by

using the wget and tar commands.

The sequence of commands at the keystroke level to acquire a file using the wget command

consist of typing the command followed by the URL of the file to be acquired and terminated via

the ENTER key. The sequence of commands to extract a tarball consists of typing the tar command

followed by a set of flags and an argument and terminated via the ENTER key. These operations

are encoded using the KLM’s K, R, and M operators. For the argument specifying the URL of the

FEAM framework, a length of 39 characters is specified as per a possible online location of the

tarball. For the argument specifying the location of the downloaded tarball in the local file system,

a length of 11 characters is specified as per the name of the tarball. Download and extraction times

are also taken into account in the encoding even though during this time the user is not exerting extra

effort. These times are too short for the user to overlap them with other tasks. A file sized at less

than 10 MB will take less than 90 seconds to download with a 1 Mbps or faster connection while a

file sized at less than 10MB will take less than one second to extract. The encoding also includes

basic preparatory actions such as creating a new directory for the installation and confirming the

files extracted. An estimate of 15 characters is used to specify path locations. Table 6.1 presents the

encoding of these operations in sequence along with descriptions and examples.

Using the encoding in Table 6.1 and the operator times proposed by the Keystroke Level Model,
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Table 6.1: Method for Task “Install FEAM”

DESCRIPTION ENCODING EXAMPLE
Create new directory 2M 22K mkdir /home/path/new <ENTER>
Navigate to new directory 2M 19K cd /home/path/new <ENTER>
Start wget command M 3K wget
Specify URL M 39K www.cs.virginia.edu/ kas9ud/feam.tar.gz
Terminate command K <ENTER>
Wait for download R(90s) -
Start tar command M 3K tar
Specify flags M 3K xzf
Specify tarball M 11K feam.tar.gz
Terminate command K <ENTER>
Wait for tar command to finish R(1s) -
Navigate to FEAM directory 2M 9K cd feam <ENTER>
Confirm installation M 3K ls <ENTER>
TOTAL Operators in Encoding 12M 114K R(91) -

a prediction was formed of the time to execute the method for installing FEAM:

TInstallFEAM = 12∗ tM +114∗ tK +91 = 130 seconds

Thus the task of installing FEAM at a new site was predicted to take around 2.2 minutes assum-

ing use of the wget and tar commands, typing at a speed of 55 wpm, path lengths of 15 characters,

and a mental preparation of 1.35 seconds per cognitive unit. The confirmation of the efficacy of this

KLM encoding (by measuring the time it took one expert user to perform the same task sequence)

found that the time prediction was accurate to within 2 seconds when discounting variance due to a

faster download time.

6.1.3 Method for Task “Invoke FEAM”

This section models the time to invoke FEAM while the next two sections consider the time to

prepare the inputs for this task. The sequence of commands at the keystroke level to start FEAM

consists of typing the FEAM command followed by four arguments and terminated via the ENTER

key. This method is encoded using the KLM’s K and M operators. The arguments were estimated
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Table 6.2: Method for Task“Invoke FEAM’

DESCRIPTION ENCODING EXAMPLE
Navigate to FEAM directory 2M 19K cd /home/path/FEAM <ENTER>
Confirm FEAM directory contents M 3K ls <ENTER>
Confirm location of binary/bundle 2M 19K ls /home/path/binary.sh <ENTER>
Confirm location of template 2M 19K ls /home/path/template.sh <ENTER>
Call FEAM start command M 10K FEAM start
Specify binary/bundle location M 15K /home/path/binary.sh
Specify template location M 15K /home/path/template.sh
Specify site and node type 2M 4K ge c
Terminate command K <ENTER>
TOTAL Operators in Encoding 12M 105K -

at 15 characters long to specify the location of a file in a NIX operating system. The encoding also

include basic operations such as navigating to the FEAM directory and confirming the locations

of the arguments. Table 6.2 lists the encoded operations in sequence along with descriptions and

examples.

The duration of FEAM’s execution was not incorporated into the encoding as the aim was to

only capture the time to invoke FEAM. FEAM’s execution time is incorporated into the overall

effort estimates of TFEAM in Section 6.1.6.

Using the encoding Table 6.2 and the operator times proposed by the Keystroke Level Model, a

prediction was formed of the time to execute the method for invoking FEAM:

TInvokeFEAM = 12∗ tM +105∗ tK = 37.2 seconds

Thus the task of issuing the command to start FEAM was predicted to take 0.6 minutes assuming

typing at 55 wpm, path lengths of 15 characters, and a mental preparation of 1.35 seconds per

cognitive unit. The confirmation of the efficacy of this KLM encoding (by measuring the time

it took one expert user to perform the same task sequence) found that the time prediction were

accurate to within 5 seconds.
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6.1.4 Method for Task “Prepare Access to Binary Info”

This section analyzes the time required to compose the input to FEAM that specifies information

about the MPI application binary. The exact file provided as input can vary based on the run location

(target vs. guaranteed execution site). Access to the MPI application binary can always be specified.

Alternately, when FEAM has already run at a guaranteed execution site, the resulting output bundle

can be made accessible at target sites instead of the binary. The output bundle includes additional

information related to the binary that enables FEAM to form better execution readiness predictions

at target sites. Whether in the form of the binary or bundle, this input can be made accessible to

FEAM by transferring files from another location. This task does not occur at guaranteed execution

sites as the MPI application binary already resides there locally and is ready to be specified as input.

This section models the execution time of the task of making the input - whether in the form of a

binary or a bundle file - available at target sites by transferring the file using the scp command.

Using other commandline transfer protocols would result in a similar sequence of commands.

The sequence of commands at the keystroke level to execute file transfer using scp consists of

typing the command followed by two arguments and terminated via the ENTER key. This method

is encoded using the KLM’s K, R, and M operators. For the first argument to scp specifying the

originating location of the file to be transferred, a length of 50 characters is assumed as this string

includes the username, hostname, and path to the file. For the second argument specifying the

destination of where the file is to be transferred, a length of 15 characters is assumed as this string

consists of a location in the local file system. An estimate of 90 seconds is used as the time to

complete the file transfer. The encoding also incorporates confirming that the file has transferred.

If the time to complete the file transfer is any longer, it is assumed this time will be overlapped with

the start of another task. Table 6.3 presents the encoding of these operations in sequence along with

descriptions and examples.

Using the encoding in Table 6.3 and the operator times proposed by the Keystroke Level Model,

a prediction was formed of the time to execute the method for preparing access to a file:

TPrepareAccessToFile = 5∗ tM +88∗ tK +90 = 114.35 seconds
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Table 6.3: Method for Task “Prepare Access to Binary Info’

DESCRIPTION ENCODING EXAMPLE
Start command M3K scp
Specify origin M50K user1@host.cs.edu:/home/path/file
Specify destination M15K binary.sh
Terminate command K <ENTER>
Wait for transfer completion R(90s) -
Confirm file transferred 2M19K ls /home/path/file <ENTER>
TOTAL Operators in Encoding 5M 88K R(90s) -

Thus the task of transferring a file to a new computing site - be it an MPI application binary

or a FEAM output bundle - is predicted to take 1.9 minutes assuming use of the scp command,

typing at 55 wpm, argument lengths of 50 and 15 characters, and a mental preparation time of 1.35

seconds per cognitive unit. The confirmation of the efficacy of this KLM encoding (by measuring

the time it took one expert user to perform the same task sequence) found that the time prediction

were accurate to within 2 seconds when discounting variance in download time.

6.1.5 Method for Task “Specify Job Submission Info”

This section analyzed the time required to compose FEAM’s input that specifies the location of a

template for job submission. As this syntax is site dependent, it must be specified at any location

where FEAM is to be run. Because it can vary greatly from site to site due to job manager type and

local customized settings, the submission format is the only site information that is not automati-

cally discovered by FEAM. This task does not need to to occur if FEAM was previously installed

and used at a computing site as this template – whether created by a user or administrator – will

already exist and be ready for use. This section models the execution time of the task of creating

such a template using the VI commandline editor. Regardless of what commandline editor is used,

the sequence of commands would be similar.

The sequence of commands at the keystroke level to create a template consists of opening

the sample template document provided with every FEAM installation and inputting the required

information. The template consists of nine pieces of information about job submission as outlined
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Table 6.4: Method for Task “Specify Job Submission Info”

DESCRIPTION ENCODING EXAMPLE
Open template sample file M 17K vi qsub-template <Return>
Navigate to edit location M 2K <DownArrow><DownArrow>

Specify script type 2M 4K bash
Navigate to edit location M 2K <DownArrow><DownArrow>

Specify node selection 5M 17.5K #PBS -l select=$NODE
Navigate to edit location M 2K <DownArrow><DownArrow>

Specify queue 4M 6K #PBS -q batch
Navigate to edit location M 2K <DownArrow><DownArrow>

Specify runtime 5M 23.5K #PBS -l walltime=10:00:00
Navigate to edit location M 2K <DownArrow><DownArrow>

Specify job starting location 2M 14.5K cd $PBS O WORKDIR
Navigate to edit location M 2K <DownArrow><DownArrow>

Specify error and output joining 4M 9.25K #PBS -j oe
Navigate to edit location M 2K <DownArrow><DownArrow>

Specify output filename 4M 18.75K #PBS -N $OUTNAME
Navigate to edit location M 2K <DownArrow><DownArrow>

Specify MPI start command 4M 7.25K mpiexec $BINARY $ARGS
Navigate to edit location M 2K <DownArrow><DownArrow>

Specify other information 3M 20.5K . /opt/Modules/default/init/sh
Save and quit M 5K ESC :wq <Return>
TOTAL Operators in Encoding 44M 161.25K -

in Figure 4.2. To determine how many keystrokes each operation typically requires, job submission

templates were consulted from test set of computing sites (listed in Section 5.1). The average length

of the inputs in these templates was used to encode each operation using the KLM’s K operator. The

average number of logical pieces of the input was used to encode each operation using the KLM’s

M operator. Table 6.4 presents the encoding of these operations in sequence along with descriptions

and examples.

Using the encoding in Table 6.4 and the operator times proposed by the Keystroke Level Model,

a prediction was formed the time to execute the method for creating a submission template:

TPrepareTemplate = 44∗ tM +161.25∗ tK = 91.65 seconds

Thus, the task of creating a submission template was predicted to take around 1.5 minutes as-
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suming input lengths as estimated from averages over the computing site test set, typing at 55 wpm,

and a mental preparation time of 1.35 seconds per cognitive unit. This estimate assumes an expert

user who does not spend extra time consulting documentation to input the required information into

the template. The time to look up submission syntax information is incorporated into this estimate

in Section 6.3. The confirmation of the efficacy of this KLM encoding (by measuring the time it

took one expert user to perform the same task sequence) found that the time prediction was accurate

to within 20 seconds. While this is a higher degree of fluctuation, the confirmation still attests to

the validity of the encoding as providing a prediction at the correct order of magnitude of how long

it takes to complete the task.

6.1.6 Method for Task “Use FEAM”

This section analyzes the overall task of using FEAM. A timing estimate is formed for this task

by combining the timing predictions of the subtasks involved in the process (i.e. installing FEAM,

preparing the two inputs, and issuing the start command) and calculating how many minutes as

well as days they will take to complete. How the timing estimate is affected when FEAM is already

installed is also considered.

An encoding of the process of using FEAM is presented in Table 6.5. The four subtasks of

the process are listed along with their predicted durations (as derived in Sections 6.1.2 to 6.1.5).

The table also distinguishes subtasks whose execution depends on FEAM’s run location (i.e. target

or guaranteed execution site) and whether FEAM has already been installed there. One subtask,

issuing the start command, must always be executed to run FEAM. Two of the subtasks, FEAM’s

installation and the creation of a job submission template, only need to be executed when the frame-

work does not already exists at a site. The fourth subtask of using FEAM is executed depending

on the run location. Binary information only needs to be prepared via file transfer when FEAM is

executing at target sites where neither the MPI application binary or a FEAM output bundle created

for that binary are available.

A typical use of FEAM will involve executing FEAM at a guaranteed execution site followed

by executing FEAM at a target site. Thus, the effort to use FEAM, TFEAM, can be described as the



Chapter 6. Efficiency Evaluation 87

Table 6.5: Method for Task “Use FEAM”. The table presents an encoding of the process of using
FEAM where the subtasks marked with * are only executed at sites where FEAM is not already
installed and the subtask marked with ** is only executed at target sites.

SUBTASK DESCRIPTIONS DURATION
Install FEAM* 130 s
Prepare access to binary info** 37.2 s
Prepare submission template* 114.35 s
Invoke FEAM 91.65 s

sum of the effort to use FEAM at a guaranteed execution site (which is termed TFEAM:geSite) and the

effort to use FEAM at a target site (which is termed TFEAM:tSite). However, the subtasks involved

in TFEAM:geSite and TFEAM:tSite will differ as already described depending on whether FEAM has

already been installed at each site. When FEAM has been previously used to predict the execution

readiness of other MPI application binaries, it can be assumed that the framework will already be

installed at the guaranteed execution site and target sites. These relationships are expressed with

the following equations (where T ∗ is used to denote effort that only occurs when FEAM is not

installed):

TFEAM = TFEAM:geSite +TFEAM:tSite where

TFEAM:geSite = T ∗
InstallFEAM +T ∗

PrepareTemplate +TInvokeFEAM and

TFEAM:tSite = T ∗
InstallFEAM +TPrepareFileAccess +T ∗

PrepareTemplate +TInvokeFEAM

These equations do not take into account the time for FEAM to complete execution. The foot-

print evaluation in Section 5.4 found that FEAM used less than five minutes of compute time to run

while the wall clock time varied with the amount of time spent waiting in a queue to be scheduled

to run. These compute and wait times can be accounted for by estimating the effort to use FEAM

at the granularity of days. Often sites will have a special queue with a short wait time for short and

small jobs like running FEAM. Queues rarely have wait times longer than a day and typically range

between minutes to hours. Thus, in the duration of a day, FEAM should be able to run both at a

guaranteed execution site and at a target site with plenty of time to allow for queue delays.
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As a natural use of FEAM is to analyze the execution readiness of a computation at various

computing sites, the effort of using FEAM at multiple target sites is also estimated. Specifically,

the case of migrating to five computing sites is considered as this is the number of sites to which the

most advanced participants migrated to on average during the user study. FEAM can be deployed

at multiple target sites simultaneously. However, before running at any target site, FEAM must

complete execution at the guaranteed site so that the resulting bundle of information about the

binary can be used to form predictions. Thus, the effort of using FEAM at five target sites (which

is termed T (5)FEAM) will still take one day and the effort estimated at the granularity of minutes is

expressed by the following equation:

T (5)FEAM = TFEAM:geSite +5TFEAM:tSite

Using the equations and the KLM time predictions of the subtasks listed in Table 6.5, estimates

were formed of the effort to use FEAM at one and five target site at the granularity of minutes

and days. The resulting time predictions, which also distinguish between the case when FEAM is

already installed, are summarized in Table 6.6. Running FEAM at five sites takes about three times

as much effort as running FEAM at one site. Similarly, running FEAM for the first time also takes

three times as much effort as running FEAM using a preexisting installation.

Specifically, it will take 11.8 minutes to use FEAM to predict execution readiness at one com-

puting site when using FEAM for the first time versus 3.7 minutes when using a preexisting instal-

lation of FEAM. Similarly, it will take 36.7 minutes to use FEAM to predict execution readiness

at five computing sites when using FEAM for the first time versus 12.3 minutes when using a pre-

existing installation. In either case, the effort to use FEAM is spread over one day to account for

queue delays.

The estimates in minutes are closer to a lower bound prediction as the analysis models the time

an expert user would take to gather and analyze the information related to execution prediction. As

the KLM notes, less experienced users typically spend more time mentally preparing to execute

physical operators when doing things like deciding which command to call or manually searching

files for information instead of using scripted search commands. At the same time, the estimates at
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Table 6.6: FEAM Effort Summary. The table summarizes the estimates of the effort to use FEAM.
Estimates are presented at the granularity of minutes and days for one and five target sites with
consideration for whether FEAM was previously installed at the sites (denoted by *).

TERM TARGET SITES EFFORT (mins) EFFORT∗ (mins) EFFORT SPREAD (days)
T (1)FEAM 1 11.8 3.7 1
T (5)FEAM 5 36.7 12.3 1

Table 6.7: Manual Effort Summary. The table presents a summary of the estimates of the overall
effort exerted by expert users to manually prepare to execute an MPI computation at new computing
sites. Estimates are presented in hours and days for one and five target sites.

TERM TARGET SITES EFFORT (hrs) EFFORT SPREAD (days)
T (1)Manual 1 1.6 3
T (5)Manual 5 8.4 13

the granularity of days is closer to an upper bound as the queue wait time is likely to be on the order

of minutes, especially when using a queue for short jobs.

6.2 Manual Effort

This section quantifies the amount of effort exerted to manually prepare to execute computations

at new computing sites. This effect is termed TManual . An estimate of TManual is formed by using

the timing results from the user study in Chapter 2. The study measured how much time users with

differing levels of experience spent on various tasks (i.e. learning, submitting, compiling) while

migrating MPI applications to new computing sites. As the KLM encoding estimates of the effort

involved with using FEAM assumed expert users, the manual effort estimates are also based on

the results of the study participants that were classified as experts. The estimates of the effort to

manually prepare to execute MPI computations at new computing sites are summarized in Table 6.7.

As reported in Table 2.3, on average it took the most advanced participants 1.6 hours of effort

spread over a three day time period to get an MPI application running at one new computing site.

This result is used as the estimate for T (1)Manual , the effort to manually prepare to run an MPI



Chapter 6. Efficiency Evaluation 90

computation at one new location.

As the effort of using FEAM was estimated at multiple target sites, the manual effort to migrate

to multiple sites is also estimated. To account for the overlapping of effort at the granularity of

days as well as general learning effects, the study results are consulted instead of using multiples

of the estimate of the effort for one site. As also reported in Table 2.3, on average it took expert

participants 8.4 hours of effort performed over a 13 day time period to get an MPI application

running at five new computing sites. This result is used as the estimate for T (5)Manual , the effort to

manually prepare to run an MPI computation at five new computing sites.

6.3 Automated Effort

This section quantifies how much effort is exerted to prepare to execute MPI computations at new

computing sites while partially automating the process by utilizing FEAM. This effort is termed

TAutomated . Estimates of TAutomated are formed by combining estimates of the time to use FEAM

(TFEAM from Section 6.1.6) with results from the user study of application migration (presented in

Chapter 2) and the evaluations of FEAM (presented in Chapter 5). How the TAutomated effort was

quantified is explained before the resulting timing estimates are presented.

6.3.1 Descriptions

The steps to prepare to execute a computation vary depending on FEAM’s prediction about the com-

putation’s readiness to execute. If FEAM predicts an MPI computation is ready to execute without

recompilation (a case termed TAutomated:Success), then the application binary can simply be submitted

for execution with appropriate site-specific settings (that may include a resolution scheme). This

submission effort is termed TSubmitComputation. Alternately, if FEAM predicts recompilation is re-

quired (a case that termed TAutomated:Failure), then the full manual effort (i.e. TManual) of preparing to

execute a computation at a new site must occur.

Before FEAM can be utilized to make predictions about a computation’s execution readiness,

the submission script syntax of the target site must be learned (so that it can be provided as input
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to FEAM). This effort is termed TLearnSubmissionSyntax. When recompilation must occur, this effort

will already be accounted for as part of the manual effort estimate (which includes learning to run

at a site). However when recompilation is not necessary, learning the submission syntax must be

separately accounted for unless FEAM has already been installed and a submission template already

exists. This effort only occurs at target sites as users are assumed to already be familiar with how

to run jobs at guaranteed execution sites.

The following equations use the defined terms to summarize the effort associated with utilizing

FEAM at n target sites in relation to whether recompilation occurs (where T ∗ indicates effort that

only occurs when FEAM is not already installed):

T (n)Automated:Success = nTLearnSubmissionSyntax ∗+T (n)FEAM +nTSubmitComputation

T (n)Automated:Failure = T (n)FEAM +T (n)Manual

An estimate of TLearnSubmissionSyntax and TSubmitComputation is created using one of the tasks iden-

tified during the user study. As part of the submission task, participants created a submission

script at their target computing site. This effort corresponds to TLearnSubmissionSyntax. Also as part

of the submission task, participants incorporated settings specific for their computation into the

submission script to run their application. This effort corresponds to TSubmitComputation. Thus, the

time participants took to perform the submission task during the study can be used to estimate

TLearnSubmissionSyntax and TSubmitComputation. As reported in Table 2.13(b), the submission task took

expert participants on average 13 minutes to complete per one migration. This result is used as

an estimate for TLearnSubmissionSyntax and TSubmitComputation and is termed TSubmission. In the case when

FEAM has already been installed and TLearnSubmissionSyntax does not need to occur as a template

submission file already exists, TSubmission is estimated as 6.5 minutes, half of the duration of the

submission task. Thus, the equation of TAutomated:Success can be rewritten using TSubmission as follows:

T (n)Automated:Success = nTSubmission +T (n)FEAM

where TSubmission = 6.5 or 13 mins depending of whether FEAM has or has not been installed



Chapter 6. Efficiency Evaluation 92

To quantify TAutomated in terms of TAutomated:Success and TAutomated:Failure requires considering how

often MPI computations are ready to execute at new computing sites without recompilation. This

probability is termed PRecompilation. The performance evaluations of FEAM found that the test cases

were able to execute without recompilation 49% of the time. Specifically, Table 5.1 presents the

findings that 35% of the applications executed with only MPI configuration settings while Table 5.3

presents the results that FEAM’s resolution techniques enabled 14% more executions without re-

compilation. Thus, one estimate of PRecompilation based on the results gathered is 51%. However,

how often a MPI computation is ready to execute at new target sites without recompilation can vary

drastically depending on the computation’s requirements and the site’s characteristics. Thus, the

analysis of TAutomated considers the full range of possibilities with PRecompilation values of 0%, 50%,

and 100%. When all computations are predicted to be ready for execution (i.e. PRecompilation = 0%),

TAutomated equals TAutomated:Success and when no computations are predicted to be ready for execu-

tion (i.e. PRecompilation = 100%), TAutomated equals TAutomated:Failure. These relationships between

TAutomated and TAutomated:Success, TAutomated:Failure, and PRecompilation are described in the following

equation:

T (n)Automated = ((1−PRecompilation)T (n)Automated:Success)+(PRecompilationT (n)Automated:Failure)

6.3.2 Estimates

The equations presented in the previous section are evaluated to quantify the TAutomated effort. Ad-

ditionally, to quantify the effort at the granularity of days, whether the effort of the different parts of

the equations can be overlapped is considered. For the no recompilation case (i.e. TAutomated:Success),

the submission related tasks that are performed in addition to using FEAM do not add any extra days

of effort. These submission related tasks (i.e. TSubmission) that TAutomated:Success incorporates are short

enough to be completed on the same day as when using FEAM. For the recompilation case (i.e.

TAutomated:Failure), using FEAM also does not add any days to the manual effort estimate. Initially

invoking FEAM and gathering the prediction that recompilation is necessary can be overlapped

with the start of the manual effort.
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Table 6.8: Automated Effort Summary. The table presents a summary of the estimates of the
effort to utilize FEAM to prepare to execute MPI computations at new computing sites in relation
to the probability that the computation is ready to execute without recompilation. Estimates are
presented at the granularity of hours and days for one and five target sites using three probabilities
of application recompilation with consideration for whether FEAM was previously installed at the
sites (denoted by *).

TERM and RECOMPILATION EFFORT EFFORT∗ EFFORT SPREAD
TARGET SITES PERCENTAGE (hrs) (hrs) (days)
T (1)Automated:Success 0% 0.4 0.2 1
T (1)Automated 50% 1.1 0.9 2
T (1)Automated:Failure 100% 1.8 1.7 3
T (5)Automated:Success 0% 1.7 0.7 1
T (5)Automated 50% 5.4 4.7 7
T (5)Automated:Failure 100% 9.0 8.6 13

The resulting timing estimates of TAutomated along with TAutomated:Success and TAutomated:Failure are

presented in Table 6.8. Estimates are listed for one and five target sites and distinguish whether

FEAM is being used for the first time or whether the framework was already installed. The calcu-

lations predict TAutomated to take on average 1.1 hours over 2 days for one target site and 5.4 hours

over 7 days for five target sites. If FEAM is already installed, the effort is reduced by around 10%

on average. While installing FEAM has a large impact at decreasing the amount of time involved

with using FEAM, these savings are dwarfed in the calculations of TAutomated by the amount of

time associated with submission tasks and manual effort. When no recompilation is necessary, the

consideration of varying recompilation probabilities produces estimates as low as 0.4 hours at one

site and 1.7 hours at five sites over one day. When recompilation is necessary, the estimates are as

high as 1.8 hours over three days at one site and 9.0 hours over 13 days for five sites. The next

section considers these calculations in relation to manual effort by estimating the relative speedup

achievable by using FEAM.
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Table 6.9: Speedup of Using FEAM. The table presents estimates of the speedup of using FEAM
to automate the process of preparing to execute MPI computations at new computing sites over per-
forming the task manually. Estimates of speedup are presented at the granularity of hours and days
for one and five target sites using three probabilities of application recompilation with consideration
for whether FEAM was previously installed at the sites (denoted by *).

TARGET RECOMPILATION SPEEDUP SPEEDUP∗ SPEEDUP
SITES PERCENTAGE (over hrs) (over hrs) (over days)

1 0% 3.9x 9.4x 3.0x
1 50% 1.4x 1.7x 1.5x
1 100% .89x .96x 1.0x
5 0% 5.0x 11.3x 13.0x
5 50% 1.6x 1.8x 1.9x
5 100% .93x .98x 1.0x

6.4 Speedup

The amount of effort associated with preparing to execute MPI computations at new computing

sites manually as well as when utilizing FEAM to partially automate the process has been quan-

tified so far. This section uses these quantities to calculate the speedup associated with utilizing

FEAM. Speedup is defined as the ratio of the effort to prepare to execute MPI computations at new

computing sites manually (TManual) versus when utilizing FEAM (TAutomated):

Speedup = TManual
TAutomated

Table 6.9 presents the speedup calculations. As with TAutomated , a range of estimates varying

with the probability that the MPI computation has to be recompiled is presented. Speedup for one

and five computing sites is presented using effort estimations in days as well as in hours while

distinguishing whether FEAM was already installed.

6.5 Analysis

The average speedup of effort in hours is very close for one and five target sites. Even though

the estimates of TManual and TAutomated were derived separately for one and five sites, they scaled
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similarly with the increase in sites. The resulting calculations predict that utilizing FEAM produces

about 1.5x speedup on average. This equates to just under an hour of effort saved per target site.

The speedup of effort in days shows 1.5x speedup in the number days needed to prepare to execute

at one target site and a larger speedup of 1.9x when preparing to execute at multiple target sites.

Thus, utilizing FEAM enables more efficient preparation for execution especially by decreasing the

number of days to get a computation running at multiple execution locations.

In the case when FEAM predicts a computation needs to be recompiled to execute, a small

overhead of no more than 11% results due to using FEAM before beginning the manual preparation

process. This overhead, which equates to less than ten minutes of effort, may be offset by enabling

less time to be spent on learning about target sites and their configurations as this information

will have been automatically reported on using FEAM. Thus, while in the worst case the speedup

calculations estimate a small overhead, in reality the overhead may be eliminated by providing

useful site-specific information such that a small speedup may even be produced, especially at sites

where the framework is already installed.

In the case when FEAM predicts a computation is ready for execution without recompilation,

the speedup calculations show how significantly more efficient utilizing FEAM can be over recom-

pilation. The speedup of the effort in hours ranges from 3.9x to 11.3x depending on whether FEAM

is already installed. This speedup equates to at least two hours of effort saved per site. The speedup

of the effort in days ranges from 3x to 13x depending on the number of target sites. This speedup

equates to at least two days of effort saved per site.

One alternate to using FEAM to predict the execution readiness of MPI computations is for

users to directly run their binaries at target sites and check the output to determine if execution

occurred without recompilation. Let us term this process direct execution. As when using FEAM,

direct execution requires the submission script syntax of the target sites to be learned along with

any site-specific settings for application execution. According to the estimates of this submission

process, direct execution will take less than 20 minutes of effort spread over a day to incorporate

queue delay and job execution time. However, if the job fails, the user must spend additional effort

to determine the cause, which may be binary or configuration related. This debugging process can
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be prolonged by queue delay times and drag over days as the job is resubmitted for execution. If in-

stead an additional 10 minutes of effort are spent to use FEAM (or less than five minutes if FEAM is

preinstalled), FEAM will provide a prediction of the computation’s execution readiness along with

site information and site-specific configurations that can resolve some execution-blocking issues.

Thus, in comparison to direct execution, using FEAM adds little effort in terms of minutes and no

effort in terms of days while potentially eliminating tedious debugging.

6.6 Summary

This chapter has presented an evaluation of the increase in efficiency associated with using FEAM

to automate the process of preparing to execute MPI computations at new computing sites. The

increase in efficiency was analyzed by comparing the effort associated with manually performing

the process versus when using FEAM. Manual effort was quantified by using data about expert

participants from the user study. The effort to use FEAM was quantified by modeling the use

of FEAM with the Keystroke Level Model and incorporating learning time from user study data.

The resulting calculations predict that using FEAM results in around a 1.5x speedup on average

or just under an hour of effort saved per new computing site. However, when considering effort

at the granularity of days, using FEAM saves more than two day of effort per site. In cases when

recompilation is not required, using FEAM can be an order of magnitude faster over typical manual

preparation methods and more insightful than brute-force direct submission attempts. Thus, this

chapter’s efficiency evaluations show that even for experts utilizing FEAM enables more efficient

preparation of computations for execution, decreasing hours of effort and the number of days to get

a computation running at multiple computing sites. Overall, the evaluation illustrates how much

more efficient automated methods can be over manual methods. These automated methods will

lend themselves especially well to being used without user intervention by schedulers to increase

the pool of candidate hosts on which applications can be scheduled.



Chapter 7

Related Work

This chapter presents a discussion of technologies related to the recognition, representation, and

resolution of factors relevant for application execution. Package managers, virtual machines, and

standardized representations, along with grid infrastructures, build tools, schedulers, and program-

ming languages are discussed. However, none of these technologies automatically identify and

describe application information related to execution. It is assumed that application developers or

users can fully describe these application characteristics. Similarly, none of these technologies auto-

matically compose site-specific instructions for application execution. It is assumed that application

developers or users will develop the deployment procedures for target sites. As such, these existing

technologies cannot be utilized efficiently by researchers for the preparation of various computing

environments for application execution. The one notable exception is the CDE system which can

be used to address a part of the problem that is the focus of this dissertation but for a different a set

of applications and with a different set of assumptions. This chapter begins with a discussion of the

CDE system followed by an overview of the other related technologies.

Currently, there is no one general method used to deploy applications at computing sites. The

process is a manually coordinated mixture of methods often specialized for target sites and appli-

cations. It was recorded in our study that users spend non-trivial amounts of time distributed over

several days learning about and setting site configurations, a process that must be accomplished

before most existing deployment techniques can be applied. Performing this process along having

with an understanding of application dependencies are barriers to the use of otherwise easily acces-

97



Chapter 7. Related Work 98

sible resources. The methods presented in this dissertation free users from being the bottleneck to

using new resources. Instead of users manual labor, FEAM can be used to automatically predict

whether an application is ready to execute at a computing site and with what site-specific config-

urations, thus enabling direct usage of resources or more scheduling freedom for job management

systems. This chapter compares FEAM to related work.

7.1 CDE

The Code, Data, and Environment (CDE) system was created to seamlessly migrate applications

to different machines [32]. CDE monitors an application’s execution using ptrace to identify the

code, data, and environment that it uses for execution. The system automatically creates a package

containing the components required for an application to run. This package is used at target sites to

run the application without having to recompile, reinstall, or setup dependencies. However, CDE

does not guarantee that all of a binary’s dependencies will be identified and packaged. Also, migra-

tion can only occur between target sites with compatible architectures and Linux kernel versions.

CDE specifically focuses on Linux binaries compiled for the x86 architecture.

While both CDE and FEAM make migrations of applications between computing sites more

efficient, the two solutions differ in many ways. Most notably, CDE can not be used to migrate

MPI applications. The MPI stack is not something that can be configured at a computing site by

copying files. This is why FEAM determines what available, already configured, MPI stacks are

present at target sites. In general, FEAM can be used with a broader set of applications and target

sites than CDE as FEAM is not limited to x86 architectures. Also, in terms of usage differences,

FEAM does not require the binary to be executed while CDE does to perform its runtime analysis

of dependencies.

7.2 Package Managers

Package management systems provide methods related to the representation and resolution of fac-

tors relevant for application execution to address a different general problem. Package managers



Chapter 7. Related Work 99

provide a centralized mechanism for the management of software on computer systems by keeping

track of software in the form of packages. This includes providing tools for installing, uninstalling,

verifying, querying, and updating packages. The most widely used package format, RPM [25], is

associated with the RPM Package Manager for GNU/Linux systems. Packages consist of the piece

of software being managed along with metadata such as a version number, description, and list of

dependencies on other packages. Meta-package managers, such as Yum [22] and SmartPM [13],

can provide dependency resolution by computing dependencies and automatically installing, unin-

stalling, or updating the relevant set of packages.

Package management systems are not suited for managing many of the applications of re-

searchers due to setup costs and deployment limitations. Only dependencies that are packages

can be automatically resolved by package managers. Methods to resolve any other dependencies

must be provided by the package creator. However, the target package creators are not application

consumers who only have a basic familiarity of the components, such as third-party codes, their

applications may be using along with no familiarity with the target environments. Such users may

not be aware of what dependencies need to be handled. In contrast, FEAM automatically composes

configurations that select the required MPI stack and resolve missing shared libraries while only

requiring users to specify the job submission syntax. Package creators not only have to specify ev-

ery command that is to be issued to install an application and prepare a target environment but they

also have to describe every file that is to be installed. Thus, package managers provide automatic

recompilation at the cost of requiring the process to be initially fully specified. This involves a great

deal of effort with a steep learning curve. For community codes or big science applications, this

is an acceptable cost while for many other projects, it is just too expensive. Additionally, using a

package manager to install software or initiate package creation requires root privileges for most

package managers including RPM. As users of computing resources, researchers do not have root

access in their computing environments. In contrast, using FEAM does not require any special

privileges.
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7.3 Virtual Machines

Virtualization technologies provide methods to handle the representation and resolution of factors

relevant for application execution. Instead of trying to homogenize target environments, virtual ma-

chines (VMs) can be used to mask the heterogeneity of the underlying system. As an encapsulation

of the application in its execution environment, a VM instance is a representation of all an applica-

tion and all of its execution requirements. The infrastructure that starts a VM instance provides the

means of making the execution requirements accessible at target sites. Invigo [24] is one example

of a virtualization infrastructure that creates grids of virtual resources. Currently, OpenStack [12]

and VCL [18] are commonly used for large-scale cloud deployments.

To be able to use VMs requires not only that target sites support virtualization but that they

support the type of VM being used as there is more than one type of VM. Even though VMs mask

the heterogeneity of the underlying system, VM users still have to handle the heterogeneity be-

tween different VM platforms. FEAM does not require any particular infrastructure to be in place

other than the lightweight copy of its scripts on a resources head node. Also, unless an appli-

cation is developed in a VM environment, the VM environment will still need to be configured

for application execution. Not only does a starting VM instance need to be selected but also any

missing requirements must be installed, a more involved task than selecting from preinstalled con-

figurations on shared resources. Virtualization technologies do not provide methods for identifying

information relevant for application execution to setup a VM. Thus, to setup VMs involves the same

time-consuming tasks that are such a barrier to the use of shared resources.

VM technologies have raised performance concerns in the HPC community. [49] measured that

parallel programs written in MPI perform similarly in the virtualized and non-virtualized environ-

ments only when there is little communication between processes and little IO access. Most parallel

programs written using MPI do not satisfy either of these assumptions. [33] measured that near-

native performance can be achieved for communication between VMs only when they are based on

the same physical host and the VMs are able to communicate via shared memory. This assumption

would limit possible target environments to computing systems based on shared-memory archi-
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tectures or cores residing on an individual processor. Using virtualization technologies can have

performance ramifications for researchers running applications that use MPI. In contrast FEAM

does not affect the binarys performance as FEAM performs its evaluation independently without

running the binary.

7.4 Representation Standards

The Configuration Description, Deployment, and Lifecycle Management (CDDLM) framework and

the Solution Deployment Descriptor (SDD) are examples of technologies that provide a standard-

ized syntax for describing software to enable automatable lifecycle management. These technolo-

gies provide different representations of factors relevant for application execution. However, they

do not provide any means for discovering the information that is to be described. While FEAM does

not encode the information it gathers in any specific representation standard, a translation could be

made into such a standard to utilize FEAM as an automatic discovery mechanism.

7.4.1 SDD

SDD [37] is an emerging standard from the Organization for the Advancement of Structured In-

formation Standards. SDD defines an XML-based format for describing characteristics of an in-

stallable unit of software and its components as relevant for deployment, configuration, and main-

tenance. How the information is gathered, how an application is actually deployed, or how that

automation occurs is beyond the scope of the SDD.

7.4.2 CDDLM

CDDLM [29] is an Open Grid Forum standard for deployment and lifecycle management of dis-

tributed software systems using Web Services. The CDDLM standard defines two description lan-

guages for representing application components and configuration parameters. The deployment

aspect of the standard that is concerned with consuming the standardized descriptions is discussed

in the next section.
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7.5 Grid Frameworks

Various grid-based technologies have been developed to aid with application deployment. Each

of the technologies uses a unique representation for an application’s execution requirements (some

based on standards) and provides an infrastructure for resolving the described dependencies. For

each of these technologies, all possible target hosts must be managed by a specific framework.

This is the way that FEAM works except FEAM is not specific to grids and does not require a

heavyweight setup. Also unlike with FEAM, none of the existing technologies provide any means

for discovering the information that is to be described. However, some of the frameworks divide the

responsibility of providing information about applications between application consumers, system

administrators, and software developers. The basic information that FEAM requires (binary name

and job submission syntax) could be provided by any of these individuals. For the researcher

or a scheduler, the existing technologies do not provide efficient methods for preparing a variety

of environments for application execution because of the setup effort and application familiarity

required to apply them.

7.5.1 DistributedAnt

DistributedAnt [30] depends on application consumers to provide the information for application

deployment. DistributedAnt supports application deployment in grids by automating file trans-

port, installation, and configuration. DistributedAnt runs an extended version of Ant on remote

machines. To use Distributed Ant, the steps for application deployment have to be known for all

target environments. As with package managers and build tools, DistributedAnt enables automatic

recompilation after the process is fully specified. For DistributedAnt, this information is described

using extensions to Ant, a widely used Java tool for managing the application build process. De-

ployment clients then coordinate the deployment process with remote deployment servers based on

the description. Thus, the infrastructure to use DistributedAnt is not lightweight.
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7.5.2 CDDLM

The CDDLM standard described in the previous section also depends on application consumers to

provide the information for application deployment. The CDDLM standard defines a framework,

consisting of a deployment API and a component model, for automatically deploying applications

on Grid resources. However, CDDLM is not an efficient mechanism for researchers or schedulers

todeploy binaries at new sites. In addition to creating a description, the CDDLM user has to imple-

ment the functionality associated with each interface to the component model. Once these pieces

have been created, any CDDLM compliant framework can be used to deploy the application. Thus,

unlike for FEAM, the overhead to begin to use CDDLM is large requiring the specification of the

interaction of each step of the deployment process.

7.5.3 GLARE

GLARE [46] depends on application developers as well as consumers to provide information for

application deployment. The GLARE framework facilitates the execution of workflows on grids for

a variety of target environments by automating the configuration of dependencies needed to execute

workflow components. Application developers register their applications with the GLARE frame-

work and provide installation procedures for their application for every possible target environment.

By providing this information, GLARE is even able to enable automatic recompilation if the pro-

cess has been specified as part of a registration. Users identify the types of activities present in their

workflows. GLARE then hides deployment details from the user by transparently mapping activity

types to deployments. If users are trying to deploy custom or self-created activities that do not have

existing registrations, the responsibility of creating the registration falls to the user. With FEAM,

such issues do not occur. Regardless of whether administrators, users, or schedulers provide the

initial basic information to use FEAM, no extra responsibilities will fall to the user regardless of

the type of computation that is to be deployed.
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7.5.4 UNICORE IDB

The UNICORE Grid’s Incarnation Database (IDB) [16] depends on system administrators as well as

application consumers to provide information for application deployment. The IDB maps abstract

application locations to site-specific implementations. Client resource requests are checked against

the IDB before being scheduled. It is the responsibility of administrators setting up the UNICORE

grid to update the IDB with site-specific information. In this way, users can easily access pre-

deployed applications. The setup effort is transferred from the user to the administrators. However,

this solution is not general like FEAM and does not address deploying other applications.

7.6 Build Tools

Build tools provide methods that handle recognition, representation, and resolution of factors rele-

vant for application execution. Build tools create binaries and, as such, are part of the recompilation

process that FEAM does not address. These tools, like the GNU Autoconf [5] package, aid with

the building of software on a single system or across multiple platforms. These tools can perform

dependency checks for requirements needed by an application to build. This is similar to the dis-

covery process that FEAM performs. However, build tools do not prepare computing environments

for application execution and often specify other execution requirements left to be resolved by the

user in a README file.

Only applications whose source code is available can be configured using Autoconf. Thus the

set of applications with which build tools can be used are different than the set of applications with

which FEAM can be used. An application’s build dependencies are specified in a set of files that

are then transformed into configuration scripts. This process is involved, requiring many steps. The

target audience of build tools differs from the target audience of FEAM as build tools are meant

to be used by developers not users of codes. The resulting configuration scripts are Autoconf’s

representation of an applications build requirements. These scripts can be run in target environments

to produce customized binaries. Just as FEAM checks if a target meets run dependencies, the scripts

check whether a target meets compile dependencies. If any dependency is found to be missing, the
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build fails unless some resolution mechanism has been implemented by the Autoconf script creator.

As with FEAM, an error report is provided to the user. Autoconf scripts can be extended to perform

dependency checking and resolution if application requirements and resolution steps are known.

Thus, as with package managers and DistributedAnt, Autoconf enables automatic recompilation

after the process is fully specified.

Tools have also been created for determining the build information of program binaries after the

compilation process. This is a subset of the type of information that FEAM automatically gathers.

Work by Rosenblum et al. presents machine learning models for inferring compiler provenance

[41]. Work by Le et al. presents methods that identify what compilers and libraries a binary uses

using signature-based detection [35]. Such methods can be used to help describe a specific subset

of dependencies of existing binaries. FEAM does not currently use these methods but could apply

them to further diversity how it automatically gathers information.

7.7 Programming Languages

Specialized programming languages are a solution that is applied from computation encoding to

deployment. One example of high level languages developed to handle both construction and man-

agement of applications are the Module Interconnection Languages (MIL)These programming lan-

guages, including Polylith, Conic, Darwin and Olan [26, 27], can be used to describe applications

in terms of their software components. The programmer identifies an application’s components and

describes their interconnections and communications. The description is platform independent so

that it can be consumed automatically to deploy applications on environments where MIL runtime

support is available. The MILs provide representations of application execution requirements and

support for resolving the requirements on targets with MIL runtime environments. Thus, as with

other solutions, using these specialized programming languages requires non-trivial setup effort to

encode an application and its requirements appropriately as well as to deploy the supporting infras-

tructure at target sites. Additionally, there is no support for automatically discovering any of the

information that is to be described. The responsibility falls to the users, developers, or administra-
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tors. By not requiring such detailed descriptions, FEAM addresses a subset of the problem but with

minimal user intervention.

7.8 Job Management Systems

Job management systems manage sets of resources and distribute jobs amongst them. These ser-

vices can automatically select the target environment for a job based on user-specified requirements

and preferences. However, these requirements tend to be hardware and not software oriented. With

traditional schedulers, such as PBS, Platform LSF, or IBM LoadLeveler, users select a specific tar-

get resource [40]. With grid-based schedulers, such as Condor-G, Moab, or GridWay, users can

target a variety of resources for job execution [7, 34]. It is the responsibility of the user to ensure

that applications are ready to be run at any potential resource as job management systems do not

address the resolution of missing dependencies and only provide the possibility to express a limited

set of application execution requirements. These tools do not provide matching at a fine enough

granularity to be able to determine whether MPI dependencies are met.

The predictions and resolutions provided by FEAM could be used by job management systems

to increase the set of potential execution targets without requiring users to ensure each new site is

ready for application execution. Instead FEAM could be used to investigate whether a site is ready

for execution and provide the site-specific configurations to run at that site. In this way FEAM

could work with job management systems to enable greater scheduling freedom so that jobs could

run when any matching resource is available, regardless if it has been examined manually by a user.

7.9 User-Environment Management Tools

User-environment management tools, such as Environment Modules [10] and SoftEnv [11], can be

used to manage a shell environment and support the discovery of software packages. They provide

a means to alter and set environment variables in order to dynamically configure a user’s computing

environment for a particular usage, such as compiling an application with a specific compiler or

using a specific version of a shared library. These tools are deployed by system administrators to
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encapsulate all the configuration steps needed to prepare to run particular applications or access

particular libraries [38]. The Lmod implementation of environment modules [9] even provides a

mechanism for handling dependencies between configurations, which is especially useful for man-

aging access to multiple MPI stacks of shared library and compiler combinations. However, to use

user-environment management tools, users must be aware of the dependencies that their software

requires or the software must be already supported at a given computing site. Our study found that

most participants consulted user-environment management tools to help with site configurations.

FEAM also consults user-environment management tools as part of the automated discovery of

MPI stacks and shared libraries at target sites. Having discovered information about an applications

requirements, FEAM knows what to look for using the tools. User-environment management tools

help with one piece of the configuration process when preparing to run applications at computing

sites.
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Conclusions and Future Work

This dissertation presented a first step toward an ideal solution providing deployment and, there-

fore, scheduling freedom to allow computations parallelized with MPI to quickly and easily be run

on computing resources. The solution focused on determining if a preexisting MPI application

binary could be made to execute on a given resource without recompilation. The hypothesis was

that methods for automatically gathering information about execution requirements and composing

site-specific instructions that configure the requirements at target environments are more efficient

than manual methods for the preparation of multiple shared computing environments for the exe-

cution of MPI binaries. The presented work supports this hypothesis. The user study established

a baseline of the time to manually coordinate the migration of MPI applications to new computing

sites, capturing the current manual state of the art methods for preparing to use sites directly or via

schedulers. The Execution Readiness Prediction model described the application and environment

information relevant for determining whether binaries will execute at computing sites without re-

compilation. The resolution methods were able to resolve some of the execution-blocking issues to

further broaden the set of potential execution sites. These developed methods were shown be appli-

cable automatically in FEAM, the Unix-based implementation of the solution. FEAM’s evaluation

demonstrated that the implementation was accurate, effective, and light-weight. A further analysis

of FEAM’s efficiency applied the baseline gathered from the user study to predict the speedup gains

of using FEAM to automate the MPI binary migration process. As such, FEAM can be used by re-

searchers and schedulers to increase scheduling freedom. Thus, the contributions of this disseration
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include the first study to collect timing information regarding the effort to migrate MPI applications

to new computing sites, a model for predicting execution readiness of MPI application binaries,

an implementation that automatically makes predictions and composes site-specific configurations,

and an evaluation analysis of efficiency in terms of time expenditures.

We began with a presentation of a study to measure the time required to manually coordinate

the migration of MPI computations. The study results gathered from 25 participants quantified the

intensiveness of the process that serves as a barrier for deploying applications quickly and easily at

new computing sites. While the documented average duration of one migration was 2.5, the process

was on average spread over several days and lead to multiple weeks being required to perform

multiple migrations. The majority of the time was found to be spent on learning, compiling, and

debugging. However, less experienced participants took almost 50% more time and overall spread

their effort across more days. Consequently, it took them on average three weeks to migrate their

MPI computations to four new computing sites. The study results emphasized that less experienced

researchers can especially benefit from techniques for more efficient application migration. More

importantly, the study results provide a baseline for the magnitude of the barrier that users face to be

able to use new resources when applying the current manually coordinated methods for migrating

MPI applications.

Next, the model for predicting whether an MPI application binary can execute at a new com-

puting site without recompilation was presented. The model provides guidelines for evaluating

four factors - MPI stack, shared libraries, hardware architecture, and system configuration - related

to MPI applications and computing environments that are highly relevant for execution. When

tuned performance is not key, being able to quickly identify where an application binary can, or

why it cannot, execute provides a more efficient way to get running at multiple new sites. The

model outlines what information needs to be gathered to make this determination independently of

implementation details and without running the application binary. Automatically gathering this

information and forming a prediction is the basis for enabling deployment freedom.

Next, FEAM, the Unix-based implementation of the execution readiness prediction model

that additionally composes application specific-site configurations and a scheme for resolving
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execution-blocking issues was presented. FEAM discovers information about application bina-

ries and computing environments in an automated fashion and then applies the guidelines of the

prediction model to form a prediction about execution readiness. FEAM also utilizes the discov-

ered information about application dependencies and site configurations to develop a scheme for

resolving shared library requirements when possible. In this way, FEAM is additionally providing

an assessment of how much effort will be required to get an application running at a new computing

environment. FEAM, the implementation of the developed solution, can be used by users directly

or via schedulers to identify computing sites on which MPI computations are ready to execute. To

assess the effectiveness of our methods, FEAMs ability to make predictions and resolve issues was

evaluated. The evaluation results of 13 applications across five computing sites showed that the

methods and their implementation are accurate, effective, and efficient. With an accuracy of more

than 90%, FEAM correctly predicted the majority of execution failures and demonstrated the valid-

ity of the prediction model. FEAM’s resolution scheme was found to be effective by enabling 41%

more successful executions. Running FEAM had a small footprint with execution time on the order

of minutes and disk usage on the order of MBs. The evaluation showed that FEAM is ready to be

of value to users directly or via schedulers to identity sites that are ready to execute MPI binaries.

The efficiency of applying the developed methods was also analyzed to put into perspective

the savings in terms of time associated with using FEAM. It was found that using FEAM is more

than an order of magnitude faster in the best case and no significantly slower over manual methods

in the worst case. This speedup was calculated by estimating the duration of operations at the

keystroke granularity involved in running FEAM versus performing the equivalent tasks manually

as measured during the study.

8.1 Future Work

The main direction of the proposed future work stemming from this dissertation deals with expand-

ing the model and implementation while incorporating user feedback to evaluate and fine tune the

enabling of scheduling freedom for job management systems. The developed solution could be
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deployed on a system that coordinates job submission between various resources. A system with

such a meta-queue would be a good testing ground for the existing methods as well as conductive

for researching extensions to the work. The framework could be used to determine which resources

are ready to execute an MPI job and to provide configuration suggestions for running the job. For

example, if a meta-queue consisted of 14 target sites, the queue could sent out short probe jobs that

would run FEAM at each site and predict whether a binary could execute there in order to establish

a broader set of candidate sites for scheduling the binary. The site-specific configuration script gen-

erated by FEAM would then be used to run the job. Users would not need to provide any additional

input to take advantage of these features as the binary location and submission template for sites

could be determined from information already known by or provided to the meta-queue. Direct

user feedback as well as traces of usage gathered by the queue could be collected to determine the

usefulness of the framework, areas for improvement, and directions for future expansions. Deploy-

ment with a meta-queue could also be used to improve the accuracy of predictions, tune overall

performance, and create new implementations of the prediction model as driven by application

characteristics and user experience.

Another avenue of future work is to apply insights gained from this research to analyze the

difficulties associated with automatic recompilation. Due to a lack of generality, creating an auto-

mated model for binary recompilation is difficult. Instead, the types of difficulties users experience

during the compilation and debugging process at new computing sites could be more clearly iden-

tified. The study found that these two tasks were the most consuming for users when migrating

their applications to new computing sites. By modeling the specific types of issues, automatable

parts could be determined to make the process more efficient for less experienced users. While the

automation of the entire recompilation process may not be feasible in general, research on solutions

to common issues could make the task less time consuming while moving closer to an ideal solution

of deployment freedom.



Appendix A

Study Materials and Results

This appendix contains the study materials that were distributed as part of the user study of the

migration process described in Chapter 2. This includes surveys about the migrated applications

and the participants’ computational experiences, general background and experiences with the mi-

gration process as well as the test of participants’ computational experiences. Each section first

presents the questions and then presents a summary of the responses for each question for each

of the 25 participants. The appendix concludes with a summary of the migration data for each

computing site in terms of the duration spent on each task type by each participant.

A.1 Application Survey

This section presents the study survey that asked participants to describe the applications they mi-

grated in terms of qualities such as what it computes, who created it, what MPI type it uses, and

what programming language it was written in. This resulting answers were used to profile the

applications, as summarized in Figure 2.7.

A.1.1 Questions

1. What is the MPI application’s general field of study? (i.e. astronomy, economics, material

science, etc.)

2. Briefly describe what the MPI application is computing.
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3. Who wrote the majority of the MPI application code?

(a) myself

(b) colleagues

(c) community

(d) unsure

(e) other:

4. What programming language(s) is the MPI application written in?

• C

• C++

• Fortran

• unsure

• other:

5. List any community codes that you are aware the MPI application uses.

6. List any libraries that you are aware the MPI application uses.

7. What MPI implementations do you or have you used to run this MPI application?

• MPICH/MPICH2

• MVAPICH/MVAPICH2

• OpenMPI

• unsure

• other:

8. Are you able to compile this MPI application?

Yes - I have access to the source code
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Have you ever compiled the application at a site other than where you currently

run it?

Yes No

No - I only have access to a binary.

No - I have access to the source code but I do not compile the code myself.

unsure

other:

9. At how many computing sites have you run the MPI application?

1

What are the reasons, if any, that you are not running at more sites?

2

3

4

More than 4

10. Please describe what a successful run of this MPI application looks like. Please include

example job output. (This description will be used to validate your successes during the

migration phase of the study.)

A.1.2 Participant Answers
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Table A.1: Application Survey Answers: Participants 1 to 12

PARTICIPANT ID
Question 1 2 3 4 5 6 7 8 9 10 11 12

3 a a c c d c b c b d d a
4a x x x x x
4b x x
4c x x x x x x
4d x
7a x x x x x x x
7b x x x x
7c x x x x x x x
7d x x
8 1 1+ 1 1+ No 1+ 1 1+ 1+ 1+ 1+
9 2 5+ 1 4 5+ 5+ 3 1 2 3 5+ 2

Table A.2: Application Survey Answers: Participants 13 to 25

PARTICIPANT ID
Question 13 14 15 16 17 18 19 20 21 22 23 24 25

3 d a a b a b c c b b d a a
4a x x x x
4b x x x x x x
4c x x x x x x x
4d
7a x x x x x x x x x x
7b x x
7c x x x x
7d
8 1+ 1+ 1 1 1 1 1 1 1 1+ 1 1+ 1+
9 2 3 1 1 1 1 1 1 1 2 1 2 3
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A.2 Experience Survey

This section presents the study survey that participants completed to self-assess their computational

experiences such as since when, how often, and how confidently participants performed various

computational tasks. This resulting answers were used to categorize participants’ level of experi-

ence as outlined in Table 2.2.

A.2.1 Survey Questions

1. How long have you been doing computational research?

0 - 6 months

6 months - 1 year

1 year - 3 years

3 - 5 years

More than 5 years

2. How long have you been using shared computing resources (i.e. clusters, supercomputers)?

0 - 6 months

6 months - 1 year

1 year - 3 years

3 - 5 years

More than 5 years

3. How long have you been using MPI?

0 - 6 months

6 months - 1 year

1 year - 3 years

3 - 5 years
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More than 5 years

4. How did you learn to do computational research (writing code, using shared resources, etc)?

(Check all that apply)

(a) Self-taught

(b) Online reference documentation (i.e. user manuals and reference guides)

(c) Workshops/Webinars/Courses

(d) Self-paced online training (interactive modules, tutorials, etc)

(e) Informally from others

(f) Via online help (information about a specific task delivered on request)

(g) Other

5. Please indicate your experience with the following tasks on a scale of 1 (Novice) to 4 (Expe-

rienced).

(a) How experienced are you with running serial jobs on a shared computing resource?

(b) How experienced are you with running parallel jobs on a shared computing resource?

(c) How experienced are you with using MPI?

(d) How experienced are you with running serial applications on different shared computing

resources?

(e) How experienced are you with running parallel applications on different shared com-

puting resources?

6. Please indicate how often you perform / have performed the following tasks on a scale of 1

(Never) to 4 (Frequently) or mark “unsure”.

(a) How often do you install software related to your computational research?

(b) How often do you run MPI applications via a queue manager?

(c) How often do you compile MPI applications?
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(d) How often do you use environment modules?

7. Please indicate how comfortable you are with performing the following tasks on a scale of 1

(Not Very) to 4 (Very) or mark “unsure”.

(a) How comfortable are you with installing software related to your computational re-

search?

(b) How comfortable are you with running parallel jobs via a queue manager?

(c) How comfortable are you with compiling MPI applications?

(d) How comfortable are you with loading environment modules?

8. What MPI implementations have you used before? Mark all that apply.

(a) MPICH/MPICH2

(b) MVAPICH/MVAPICH2

(c) OpenMPI

(d) Unsure

(e) Other

9. What shared resource managers have you used? Mark all that apply.

(a) Portable Batch System (PBS)

(b) Sun Grid Engine (SGE)

(c) Simple Linux Utility for Resource Management (SLURM)

(d) Moab Workload Manager or Maui Cluster Scheduler with TORQUE

(e) Platform LSF Workload Manager

(f) Other

10. How many computing sites have you used for your computational research?

1
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2

3

4

More than 4

11. List anything that you find challenging, difficult, tedious, or time consuming about running

jobs on shared resources. (Enumerated answers were provided by participants.)

(a) bad environment

(b) special compiler settings

(c) lacking licenses

(d) queue delay

(e) compiling/debugging

(f) failing cluster

(g) submission details

(h) lacking resources

12. List any reasons why you may or may not move an MPI application to run at a new computing

site. (Enumerated answers were provided by participants.)

(a) inefficient access

(b) less powerful

(c) failure resiliency

(d) run larger jobs (more compute/memory, newer hardware)

(e) long setup/steep learning curve

(f) data movement

(g) small allocation
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(h) better software

13. Please indicate if you have run any jobs before at the following computing sites:

(a) Blacklight at the Pittsburgh Supercomputing Center:

(b) Forge at the National Center for Supercomputing Applications:

(c) Gordon Compute at the San Diego Supercomputing Center:

(d) Kraken at the National Institute for Computational Sciences:

(e) Ranger at the Texas Advanced Computing Center:

(f) Steele at the Rosen Center for Advanced Computing at Purdue University:

14. Have you used the XSEDE or TeraGrid portal before?

(a) Yes as XSEDE

(b) Yes as TeraGrid

(c) No

15. Why have you used more than one site? (Enumerated answers were provided by participants.)

(a) testing portability/resiliency

(b) collaboration

(c) more resources

(d) better performance

(e) shorter queue time

(f) more user friendly environment

(g) more cost effective

A.2.2 Participant Answers
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Table A.3: Experience Survey Answers: Participants 1 to 12, Questions 1 to 8

PARTICIPANT ID
Question 1 2 3 4 5 6 7 8 9 10 11 12

1 6+ 6+ 6+ 6+ 6+ 6+ 6+ 6+ 6+ 3-5 3-5 3-5
2 6+ 6+ 6+ 6+ 6+ 6+ 1-3 3-5 6+ 3-5 3-5 3-5
3 6+ 6+ 6+ 6+ 6+ 6+ 3-5 0-1 6+ 1-3 3-5 3-5
4a x x x x x x x x x
4b x x x x x x x x x x x
4c x x x x x x
4d x x
4e x x x x x x x x x x x x
4f x x
5a 4 3 1 4 1 4 2 3 4 2 3 3
5b 4 3 3 4 4 4 1 2 4 3 3 3
5c 4 3 2 2 3 4 2 2 2 2 3 3
5d 4 3 1 4 1 4 1 1 1 1 3 2
5e 4 3 2 3 1 4 1 1 1 2 3 2
6a 4 2 2 4 1 4 4 1 4 2 2 2
6b 4 4 4 2 3 4 2 3 4 4 2 3
6c 4 4 2 2 2 4 1 3 3 2 2 3
6d 4 3 2 3 2 4 1 4 3 3 4 1
7a 4 2 2 4 2 4 3 3 4 3 3 4
7b 4 4 3 4 4 4 3 3 4 3 4 4
7c 4 4 1 3 2 4 1 4 4 2 3 4
7d 4 3 2 4 3 4 1 4 4 3 4 1
8a x x x x x x x x x x
8b x x x x x
8c x x x x x x x
8d
8e x x x



Appendix A. Study Materials and Results 122

Table A.4: Experience Survey Answers: Participants 1 to 12, Questions 9 to 15

PARTICIPANT ID
Question 1 2 3 4 5 6 7 8 9 10 11 12

9a x s x x x x x x x x
9b x s x x
9c x x
9d x x
9e x x x
9f x x
10 5+ 4 1 5+ 5+ 5+ 3 2 3 4 5+ 4
11a x
11b x x
11c x
11d x
11e x x x x x
11f x
11g
11h
12a x
12b x
12c x
12d x x x
12e x x x
12f x
12g
12i
13a x
13b
13c
13d x
13e x x x x
13f
14a x x x x
14b x x x x
14c x x x x x x x
15a x x
15b x
15c x x
15d x x
15e x x
15f x
15g
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Table A.5: Experience Survey Answers: Participants 13 to 25, Questions 1 to 8

PARTICIPANT ID
Question 13 14 15 16 17 18 19 20 21 22 23 24 25

1 3-5 3-5 3-5 3-5 1-3 1-3 1-3 1-3 1-3 1-3 0-1 0-1 0-1
2 3-5 3-5 1-3 3-5 1-3 3-5 1-3 0-1 1-3 1-3 0-1 0-1 0-1
3 3-5 3-5 1-3 3-5 1-3 1-3 0-1 0-1 1-3 1-3 0-1 0-1 0-1
4a x x x x x x x x x x x
4b x x x x x x x x x x x x
4c x x x x x x
4d x x x
4e x x x x x x x x x x
4f x x x
5a 4 3 4 1 4 4 2 3 1 3 1 1 3
5b 4 2 3 3 3 3 2 2 3 3 1 3 3
5c 4 2 3 3 3 3 1 1 3 2 1 3 2
5d 3 1 1 1 1 3 1 1 1 3 1 1 2
5e 3 1 1 1 1 2 1 1 1 3 1 1 2
6a 4 2 3 2 4 2 2 1 4 2 1 3 2
6b 3 4 3 3 4 2 4 3 4 2 4 4 3
6c 4 4 3 2 4 2 2 2 2 2 4 4 3
6d 2 2 3 3 4 1 4 2 2 2 2 3 3
7a 4 1 3 2 4 4 1 2 4 2 1 3 3
7b 4 3 2 3 3 4 4 3 3 2 3 3 3
7c 4 3 2 3 2 3 1 1 2 2 2 3 3
7d 4 2 2 3 1 1 4 2 2 3 2 3 3
8a x x x x x x x x x x x x
8b x x x x x
8c x x x x x x x x
8d
8e x
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Table A.6: Experience Survey Answers: Participants 13 to 25, Questions 9 to 15

PARTICIPANT ID
Question 13 14 15 16 17 18 19 20 21 22 23 24 25

9a x x x x x x x x x x
9b x x x
9c x
9d x x x
9e
9f x
10 5+ 3 1 1 1 3 1 1 1 3 1 3 3
11a
11b x x
11c
11d x x x
11e x x x x x x
11f
11g x x x
11h x
12a x x
12b
12c
12d x x x
12e x x x x
12f x
12g x
12i x
13a
13b x
13c x
13d x x
13e x x x x
13f
14a x x x x x x x
14b x x x x
14c x x x x
15a
15b x
15c x
15d x
15e x
15f
15g x
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A.3 Background Survey

This section presents the study survey that collected background information about participants

such as their place of employment, gender, and job title. The results were used to create profiles of

the participants as summarized in Figure 2.4.

A.3.1 Survey Questions

1. What is your area of research?

2. What is your job title?

Faculty

Researcher

Post doc

IT administrator

Graduate student

Undergraduate student

Other:

3. Please describe your place of employment. (Select all that apply)

Industry

Government laboratory

Research focused

Teaching focused

Baccalaureate granting institution

Master’s granting institution

Doctorate granting institution

Associate college
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Minority serving institution

Other:

4. Please estimate the size of your place of employment in terms of number of employees.

5. Gender

6. Race/Ethnicity

White

Asian

Black/African American

Spanish/Hispanic/Latino

American Indian/Alaska Native

Native Hawaiian/Pacific Islander

Other:

A.3.2 Participant Answers
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Table A.7: Background Survey Answers

Job Title Place of Employment Gender Race Area
faculty university Male White Materials Science
grad university Male White Materials Science
grad university Male White Other
grad university Male Asian Computer Science

post doc university Male Asian Biology
faculty university Male Asian Mechanical Engineering

post doc university Female Asian Chemistry
grad university Male Moroccan Computer Science

faculty university Female White Geology
grad university Male White Materials Science

post doc university Male Asian Materials Science
grad university Male Asian Physics
grad university Male White Computer Science
grad university Male White Computer Science
grad university Male White Physics

post doc university Male Asian Chemistry
grad government Male Asian Economics
grad university Male Asian Mechanical Engineering

undergrad university Male Black Computer Science
engineer industry Male White Environmental Engineering

undergrad university Male White Physics
grad university Male Asian Mathematics
grad university Female White Biomedical Engineering

faculty university Male White Biology
mathematician government Male White Environmental Engineering
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A.4 Post Migration Survey

This section presents the study survey that was conducted to assess participants’ experiences during

the migration process. The results were used to clarify the documented migration log data and

direct conversation during the exit interview.

A.4.1 Survey Questions

Questions 1 to 5 ask about your experience at each of the possible migration sites.

1. Did you try to execute your MPI application at this site? If not, please explain why.

(a) Blacklight:

(b) Forge:

(c) Gordon Compute:

(d) Kraken:

(e) Ranger:

(f) Steele:

2. Did your MPI application execute successfully at this site? If not, please explain why.

(a) Blacklight:

(b) Forge:

(c) Gordon Compute:

(d) Kraken:

(e) Ranger:

(f) Steele:

3. If you did not successfully execute your MPI application at this site, did you spend long

enough at the site for it to qualify as a “migration attempt”. If not, explain why.

(a) Blacklight:
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(b) Forge:

(c) Gordon Compute:

(d) Kraken:

(e) Ranger:

(f) Steele:

4. What task type(s), if any, would you rate as the most difficult to perform at this site? Please

use examples.

(a) Blacklight:

(b) Forge:

(c) Gordon Compute:

(d) Kraken:

(e) Ranger:

(f) Steele:

5. What task type(s), if any, would you rate as the most tedious to perform at this site? Please

use examples.

(a) Blacklight:

(b) Forge:

(c) Gordon Compute:

(d) Kraken:

(e) Ranger:

(f) Steele:

6. Describe any characteristics of your MPI application that slowed down or made the migration

process more difficult. (i.e. parallelization technique, required library, version dependency,

lack of source code)
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7. Describe any characteristics of the migration sites that slowed down or made the migration

process more difficult. (i.e. lack of software, lack of documentation, misconfigured MPI

libraries)

8. Describe any other characteristics that slowed down or made the migration process more

difficult. (i.e. XSEDE portal interface, delay with assistance, lack of experience)

9. Describe your experience with using the XSEDE portal for the migrations. (What was help-

ful/difficult/awkward/tedious?)

10. A follow-on to this study could involve us asking for a copy of your code so that we could

try migrating it automatically with a tool we are developing. Do you think members of your

community would be willing to participate in such a study? If not, please explain to help

guide us.

11. Did you find participating in this study useful in any way? Please explain.

A.5 Test

This section presents the test that participants completed to evaluate their computational experiences

with MPI, queuing systems, and running jobs. The resulting scores were used to profile participants

as summarized in Figure 2.6.

A.5.1 Test Questions

1. What is MPI? (Mark all that apply)

UNFAMILIAR

a library

a programming language

a specification



Appendix A. Study Materials and Results 131

2. MPI implementations are: (Check one)

UNFAMILIAR

libraries invoked from traditional sequential languages

programming language extensions

complete parallel programming models

3. List some MPI implementations:

UNFAMILIAR

4. Can code compiled with one MPI implementation be run with a different MPI implementa-

tion? Why or why not?

UNFAMILIAR

5. How would you determine the location and version of the MPI implementation your applica-

tion is using?

UNFAMILIAR

6. How would you determine what MPI implementations are available at a computing site?

UNFAMILIAR

7. How would you determine what compilers are available at a computing site?

UNFAMILIAR

8. What is a queue manager?

UNFAMILIAR

9. Outline the parts of a file used to submit a job to a queue manager.

UNFAMILIAR

10. What command is used to submit a job to a queue manager?

UNFAMILIAR
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11. What command is used to check the status of a job?

UNFAMILIAR

12. What command starts an MPI job?

UNFAMILIAR

13. Name at least one UNIX shell.

UNFAMILIAR

14. What are typical parallel programming communication models that differ in how parallel

tasks communicate?

UNFAMILIAR

shared memory/message passing models

task/channel models

data/task models

Gustafson-Barsis/Karp-Flatt models

15. Which parallel programming communication model is MPI based on?

UNFAMILIAR

16. What are typical paradigms for paralleling programs that differ in what they focus on dis-

tributing across computing nodes?

UNFAMILIAR

shared memory/message passing models

task/channel models

data/task models

Gustafson-Barsis/Karp-Flatt models
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17. Distinguish between statically and dynamically linked libraries.

UNFAMILIAR

18. What is a shared library?

UNFAMILIAR

19. What environment variable(s) influence the paths that are used at runtime to resolve shared

library dependencies?

UNFAMILIAR

20. What command(s) can be used to check the shared library dependencies of a binary?

UNFAMILIAR

21. What command(s) can be used to check the file format of a binary?

UNFAMILIAR

22. What are environment modules and how are they used?

UNFAMILIAR

23. What is an example of an MPI function that can be used to send messages between two

specific processes (a.k.a. point to point communication)?

UNFAMILIAR

24. What is an example of an MPI function that can be used to send messages between all pro-

cesses in a process group (a.k.a. collective communication)?

UNFAMILIAR

Consider the following error messages (in questions 25-32) returned by a queue manager in a

job output file. Provide a short guess at their possible causes and solutions.

25. “cannot execute binary file”

UNFAMILIAR
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26. “/usr/bin/ld: cannot find -lrdmacm”

UNFAMILIAR

27. “gcc versions do not match”

UNFAMILIAR

28. “error while loading shared libraries: libmpich.so.1.2: cannot open shared object file: No

such file or directory”

UNFAMILIAR

29. “load failed: Executable file is not a 32-bit ELF file”

UNFAMILIAR

30. “Floating point exception”

UNFAMILIAR

31. “Symbol ‘ompimpicommworld’ has different size in shared object, consider re-linking”

UNFAMILIAR

32. “mpiexec: Error: gethosts: PBS reports more tasks 4 than TM 4”

UNFAMILIAR

End Time:

Did you consult references? Yes No

A.5.2 Test Scores

The test scores indicate whether each participant answered each questions correctly (y), incorrectly

(n), or as unsure (u).
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Table A.8: Test Scores: Participants 1 to 12

PARTICIPANT ID
Question 1 2 3 4 5 6 7 8 9 10 11 12

1 y y y y y n y y n n n n
2 y y n y n n n n y n n y
3 y y y y y y y y y n n y
4 y n y y u y y u y u y y
5 y y y y u y y u u y y y
6 y y y y y y y y y y y y
7 y y y y y y y y y y y y
8 y y y y y y y y u y y y
9 y y n y y y y y y y y y

10 y y y y y y y y y y y y
11 y y y y y y y y y y y y
12 y y n y y y y y y y y y
13 y y y y y y y y y y y y
14 y y u n u u y y y u u y
15 y y u n u u y u u u u y
16 n y u n u u n n u n u n
17 y y u y y y y y y u u y
18 y n u y y y y y y u y y
19 y y u y y y y y y u u y
20 y u y y u y y y y u n u
21 y u y y u y y u y u u u
22 y y u y n y y y y y u u
23 y y y u u u y y y u u y
24 y y y u n u y y y y u y
25 y y y y y y y y y u y y
26 y y y y y y y u y u u y
27 y y y y y y y y y y y y
28 y y y y y y y u y y u y
29 y y n y y y y u y u u u
30 y y y y y n y u y u y y
31 y u u y u y y u y u u u
32 y u u y u n u u u u u u
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Table A.9: Test Scores: Participants 13 to 25

PARTICIPANT ID
Question 13 14 15 16 17 18 19 20 21 22 23 24 25

1 n y y y y n n y y y y n n
2 n n y y y y y u y y u y n
3 y u y y y y y y y y y y y
4 y u u u n y n u y n y y y
5 y u n u u y y u y y u u u
6 y u y y u u y y y y u y y
7 y u y y u y y y y y y y y
8 y y y y y y y y y y y y y
9 y y y y u y y y y y y y y

10 y y y y y y y y y y y y y
11 y y y y u y y y y y y y y
12 u y y y y y y y y y u y y
13 n y y n u y y y y y y y y
14 u u u y n y y u y y y u n
15 u u u u n y y u u y u u u
16 u u u n u u n u n y u u u
17 u y y y u y u u n y u u y
18 u y u u u n u u n n u u n
19 u u u u u y y u y y u y u
20 u u u u u y u u u u u y u
21 u u u u u y u u u u u y u
22 u n u y u u y y y y u n n
23 u u n y y y y u u y y y y
24 u u y y u u y y u y y y y
25 u y y y y y y y y y y y y
26 u u y y u y y y y y u y u
27 y y u y u y y u y y u y y
28 y u y u y u y y y y y y y
29 u u u u y u u u y y y y y
30 u y y u y u y u y y y y u
31 u u u u y u y u u u u u y
32 u u y u u u y u y u y y u
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Table A.10: Migration Durations: Blacklight, Participants 1 to 12

PARTICIPANT ID
BLACKLIGHT 1 2 3 4 5 6 7 8 9 10 11 12
Learning 10 2 70 7 10 30 5 18 21

Difficulty 1 2 2.5 5 1 2 1 4 1
Tediousness 1 2 3 5 2 3 3 3 2.9

Compiling 10 1 10 168 10 30 10 18 1
Difficulty 1 2 1 4 1 2 2 4 1

Tediousness 1 2 2 3 1 3 3 3 1
Debugging 5 2

Difficulty 1 4
Tediousness 2 4

Environment Setting 10 2 60 21 15 30 30 18 8
Difficulty 1 2 3.8 5 1 1 2 4 2

Tediousness 1 2 3.8 5 1 1 3 3 1
Requesting Assistance 9

Difficulty 4
Tediousness 3

Submitting 5 8 20 7 30 3 27 26
Difficulty 1 2 1 3 3 4 4 1.5

Tediousness 1 2 2 1 1 4 3 1.5
Testing 5 30 7 40 3

Difficulty 1 1 3 3 4
Tediousness 2 2 1 2 4

Total Time (mins) 45 13 190 210 75 60 90 23 90 56
Consecutive Days 2 1 3 7 1 2 1 9 1 2
Active Days 2 1 3 2 1 2 1 5 1 2
Migration Order Number 1 2 1 1 3 3 2 6 5 1

A.6 Migration Log Summaries

This section presents the summary of the contents of each participant’s migration logs (per the

example shown in Figure 2.1). The summaries are presented for each migration site (described in

Section 2.1.2) in terms of the amount of time (in minutes) spent on each category of task and the

average tediousness and difficulty rating (on a scale of 1 (low) to 5 (high)) for that task. Each table

also presents the number of consecutive and active days each participant spent on the migration at

the particular site and each migration’s order number (as defined in Section 2.4.1.3).
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Table A.11: Migration Durations: Blacklight, Participants 13 to 25

PARTICIPANT ID
BLACKLIGHT 13 14 15 16 17 18 19 20 21 22 23 24 25
Learning 20 10 40 28 20 18 30 45 25

Difficulty 1 2 1.5 3.9 1 1 2 2.0 3
Tediousness 2 2 2 5 2 2 2 3.3 3

Compiling 15 10 1 25 8 20 30 20 45
Difficulty 2 4 1 2 2 2 2.0 3 3

Tediousness 2 5 1 3 1 2 3.0 3 1
Debugging 25 80 28 60 160 45

Difficulty 1.8 4 1 2 2.0 3
Tediousness 2.4 5 5 2 4.0 1

Environment Setting 10 10 32 41 35 10 45
Difficulty 1 1 1 1 2 2 3

Tediousness 2 2 4 3 3 1 1
Requesting Assistance 40 16

Difficulty 5 1
Tediousness 5 5

Submitting 20 60 12 5 7 10 20 15 45
Difficulty 1.5 5 1 1 1 2 2.0 1 3

Tediousness 2.5 5 5 1 2 2 0.4 2 1
Testing 50 15

Difficulty 2 1
Tediousness 2.3 2

Total Time (mins) 90 120 212 126 100 43 120 255 60 180
Consecutive Days 1 5 10 22 4 1 3 2 4 1
Active Days 1 3 7 5 2 1 2 2 2 1
Site Order Number 2 3 1 1 3 4 5 1 4 1
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Table A.12: Migration Durations: Forge, Participants 1 to 12

PARTICIPANT ID
FORGE 1 2 3 4 5 6 7 8 9 10 11 12
Learning 2 25 2 10 15 18 40

Difficulty 2 2 3 1 3 4
Tediousness 2 3 3 2 3 3

Compiling 9 1 20 20 75 30 10 27 5
Difficulty 1 2 1 1 3 1 2 4

Tediousness 1 2 2 3 3 1 3 3
Debugging 10 30 22

Difficulty 1 5 3.5
Tediousness 3 1 3.1

Environment Setting 3 2 10 3 15 15 18 15
Difficulty 1 2 2 3 1 1 4

Tediousness 1 2 3 3 1 5 3
Requesting Assistance 7 10

Difficulty 1 3
Tediousness 1 3

Submitting 9 10 20 10 90 30 27 30
Difficulty 1 1 1.5 3 3.0 3.4 4

Tediousness 1 2 1.5 3 3.0 2.9 3
Testing 9 15 10 10 115 13 10

Difficulty 1 1 2 3 3 3.2
Tediousness 1 2 2 3 2 3.2

Total Time (mins) 30 5 80 60 107 170 145 90 90 100
Consecutive Days 1 1 2 1 3 1 1 9 1 5
Active Days 1 1 2 1 2 1 1 4 1 3
Migration Order Number 2 3 2 2 3 4 4 1 6 2
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Table A.13: Migration Durations: Forge, Participants 13 to 25

PARTICIPANT ID
FORGE 13 14 15 16 17 18 19 20 21 22 23 24 25
Learning 60 25 30 180 30 5 15 30

Difficulty 3 2.4 2 2.2 1 1 2.0 2
Tediousness 1.67 3.6 4 3.3 2.3 1 4.0 5

Compiling 35 55 90 5 15 30 5 30
Difficulty 3 3.5 3 1 3 2.0 1 2

Tediousness 4 4 4 1 4 4.0 3 3
Debugging 20 160 30 13 45 90 30

Difficulty 5 3 3 2 1 2.0 2
Tediousness 5 4 3 2 4 4.0 3

Environment Setting 15 3 20 15 20 40 30 30
Difficulty 2 1 1 1 3 2.0 2 2

Tediousness 2 1 3 1 3 4.0 3 3
Requesting Assistance 5 45 25 30 25

Difficulty 1 1.3 1 3 2
Tediousness 1 3.3 3 4 4

Submitting 15 5 15 18 10 20 10 30
Difficulty 2 1 1 1.7 3 2.0 2 2.0

Tediousness 3 2 1 1.6 3 4.0 5 3.0
Testing 40 5

Difficulty 1 1
Tediousness 3 2

Total Time (mins) 150 70 318 210 185 56 115 195 80 120
Consecutive Days 2 5 27 18 9 1 2 2 1 1
Active Days 2 3 12 3 2 1 2 2 1 1
Site Order Number 3 4 2 1 4 5 6 2 1 2
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Table A.14: Migration Durations: Gordon Compute, Participants 1 to 12

PARTICIPANT ID
GORDON COMPUTE 1 2 3 4 5 6 7 8 9 10 11 12
Learning 2 12 20 20 2.4 5 120 9

Difficulty 1 4.5 2 3 3 1 4 1
Tediousness 3 4.5 2 3 3 3 3 2.4

Compiling 5 1 20 78 75 10 60 1
Difficulty 1 1 2.5 3 1.4 2 4 1

Tediousness 2 1 3 3 1.67 3 3 1
Debugging 3 30 230 2

Difficulty 1 4 5 4
Tediousness 3 4 1 4

Environment Setting 5 2 40 25 3.6 30 10 60 6
Difficulty 1 2 2 3 3 1 4.6 4 1

Tediousness 3 2 3 3 3 1 1.8 3 1
Requesting Assistance 7 10

Difficulty 3 4
Tediousness 3 3

Submitting 2 5 10 30 12 10 30 23
Difficulty 1 2 1 2 3 3.3 4 2

Tediousness 3 2 2 4 3 2.6 3 3
Testing 8 10 25 24 5 3 30 10

Difficulty 1 1 2 3 1 4 4 1
Tediousness 2.5 2 4 3 2 4 3 2

Total Time (mins) 25 20 130 100 127 110 250 30 300 49
Consecutive Days 1 1 1 1 5 1 27 6 2 1
Active Days 1 1 1 1 2 1 7 3 2 1
Migration Order Number 3 4 3 1 4 1 5 2 1 3
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Table A.15: Migration Durations: Gordon Compute , Participants 13 to 25

PARTICIPANT ID
GORDON COMPUTE 13 14 15 16 17 18 19 20 21 22 23 24 25
Learning 20 15 25

Difficulty 1 1.7 2
Tediousness 1 1.7 2

Compiling 5 10 10 50
Difficulty 1 1 2 3

Tediousness 1 2 2 3
Debugging 30 60 95

Difficulty 3 5 4.8
Tediousness 3 5 3

Environment Setting 10 20 10 20 5
Difficulty 1 5 1 2 1

Tediousness 1 5 1 2 1
Requesting Assistance 50

Difficulty 4.4
Tediousness 4.4

Submitting 10 50 10 15
Difficulty 2 3.8 2 2

Tediousness 2 2.8 2 2
Testing 30 15

Difficulty 3 2
Tediousness 2 4

Total Time (mins) 75 165 90 45 190
Consecutive Days 1 8 5 1 2
Active Days 1 4 3 1 2
Site Order Number 4 5 3 5 1
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Table A.16: Migration Durations: Kraken, Participants 1 to 12

PARTICIPANT ID
KRAKEN 1 2 3 4 5 6 7 8 9 10 11 12
Learning 60 40 5 5 30 88

Difficulty 2 4 5 1 5 1.6
Tediousness 3 4 5 3 3 3.05

Compiling 25 20 210 92 10 45 2
Difficulty 3.6 1 3.5 5 2 5 1

Tediousness 4.8 2 5 5 3 3 1
Debugging 85 2 15

Difficulty 3.9 4 3.33
Tediousness 3.5 4 2.33

Environment Setting 40 75 94 15 8
Difficulty 2.8 3 5 5 1.5

Tediousness 2.9 3.5 5 3 1.5
Requesting Assistance 10 45

Difficulty 1 5
Tediousness 2 3

Submitting 20 15 24 3 15 18
Difficulty 1 3 5 4 5 2.88

Tediousness 2 4 5 4 3 16.33
Testing 60 30 7 3

Difficulty 2 3 5 4
Tediousness 3 4 5 4

Total Time (mins) 280 155 255 222 23 150 131
Consecutive Days 7 2 5 10 2 6
Active Days 2 2 1 2 5 2 4
Migration Order Number 4 4 3 6 3 2 6
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Table A.17: Migration Durations: Kraken, Participants 13 to 25

PARTICIPANT ID
KRAKEN 13 14 15 16 17 18 19 20 21 22 23 24 25
Learning 35 24 58 60 50 15

Difficulty 2.3 5 1.7 3.5 1.4 2
Tediousness 2.3 5 2.1 3.5 1.5 5

Compiling 25 20 20 25 360
Difficulty 3 3 2 2 5

Tediousness 3 4 2 2 5
Debugging 45 123

Difficulty 5 3.3
Tediousness 5 2.8

Environment Setting 10 36 80 60 20
Difficulty 1 5 2.7 3 1

Tediousness 2 5 2.3 4 5
Requesting Assistance 5 60 15 25 15 10

Difficulty 1 5 1.0 2 2 1
Tediousness 3 5 2.0 4 2.3 4

Submitting 10 30 28 65
Difficulty 1 3 2.0 3

Tediousness 2 4 2.1 4
Testing 30 50 5

Difficulty 3 3.8 1
Tediousness 4 2.9 2

Total Time (mins) 130 180 374 105 215 410
Consecutive Days 2 1 32 8 5 8
Active Days 2 1 5 3 4 4
Site Order Number 5 6 1 2 1 2
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Table A.18: Migration Durations: Ranger, Participants 1 to 12

PARTICIPANT ID
RANGER 1 2 3 4 5 6 7 8 9 10 11 12
Learning 5 55 35 5 15 11

Difficulty 4 3 7.3 1 2 3
Tediousness 5 3 2 3 3 3

Compiling 3 10 110 60 90 10 15 5
Difficulty 1 1 4 3 2.3 2 2 1

Tediousness 2 2 5 1 1.75 3 3 1
Debugging 50 90 70 12 20

Difficulty 3 4 1 3.2 4
Tediousness 2 4 8.4 3.2 3

Environment Setting 4 30 18 15 15 10
Difficulty 1 1 4 1 2 1

Tediousness 2 2 5 2 3 1
Requesting Assistance 30 25

Difficulty 2 1
Tediousness 1.5 1

Submitting 10 5 22 30 13 15 20
Difficulty 3 1 4 1 3.2 2 3

Tediousness 2 1 5 2 3.2 3 3
Testing 3 5 66 10 13

Difficulty 1 1 4 1 3.2
Tediousness 2 1 5 1 3.2

Total Time (mins) 70 50 221 235 250 78 60 66
Consecutive Days 1 1 1 28 8 6 1 3
Active Days 1 1 1 4 8 3 1 3
Migration Order Number 5 5 2 1 1 4 3 5
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Table A.19: Migration Durations: Ranger, Participants 13 to 25

PARTICIPANT ID
RANGER 13 14 15 16 17 18 19 20 21 22 23 24 25
Learning 20 10 80 15 5 25 35 25

Difficulty 2 3 0 2 1 1 3 1
Tediousness 3 3 1.3 2 1 2 3 2

Compiling 10 30 90 15 120 10 15 5 30
Difficulty 2 4 0 5 2 2 2 1 1

Tediousness 2 3 0 5 4 1 2 1 5
Debugging 45 20 120 5 30

Difficulty 4 2 2 1 1
Tediousness 4 2 3 2 5

Environment Setting 15 15 30 50 10 5 30
Difficulty 2 3.7 1 2 2 2 1

Tediousness 3 3.0 1 5 1 2 5
Requesting Assistance 5

Difficulty 3
Tediousness 3

Submitting 5 60 15 20 20 30
Difficulty 1 3.2 1 2 1 1

Tediousness 1 2.5 2 4 2 5
Testing 20

Difficulty 2
Tediousness 2

Total Time (mins) 95 120 200 50 315 65 70 55 120
Consecutive Days 1 2 15 1 2 1 7 4 1
Active Days 1 2 4 1 2 1 3 2 1
Site Order Number 6 1 1 4 2 2 3 2 3
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Table A.20: Migration Durations: Steele, Participants 1 to 12

PARTICIPANT ID
STEELE 1 2 3 4 5 6 7 8 9 10 11 12
Learning 17 2 10 33 5 15 15

Difficulty 4 2 1 1.5 1 3 2
Tediousness 4 2 2 1.9 3 3 2

Compiling 5 1 24 20 10 18 10 15 1
Difficulty 1 2 2 1 5 1 2 3 1

Tediousness 2 2 2 1 1 1 3 3 1
Debugging 20 2

Difficulty 2 5 4
Tediousness 2 1 4

Environment Setting 2 4 15 40 33 15 10
Difficulty 2 2 1 2 1 3 2

Tediousness 2 2 1 2 1 3 2
Requesting Assistance 7

Difficulty 2
Tediousness 2

Submitting 5 4 110 43 3 15 10
Difficulty 2 2 4 1 4 3 1.5

Tediousness 2 2 1 1.8 4 3 1.5
Testing 5 4 15 33 3 5

Difficulty 1 2 1 1 4 1
Tediousness 2 2 2 2.1 4 1

Total Time (mins) 10 25 45 60 180 160 23 60 41
Consecutive Days 1 1 2 1 12 7 9 2 2
Active Days 1 1 2 1 4 3 4 2 2
Migration Order Number 6 1 5 2 2 1 5 4 4
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Table A.21: Migration Durations: Steele, Participants 13 to 25

PARTICIPANT ID
STEELE 13 14 15 16 17 18 19 20 21 22 23 24 25
Learning 45 69 50 75 30 12 15 60

Difficulty 2 4.7 1 1 1 1.6 2 3.5
Tediousness 2 5.0 2 3 3 1.4 3 3.5

Compiling 45 5 1 30 7 10 45
Difficulty 2 5 1 3 1 1 3

Tediousness 2 5 1 3 2 2 2
Debugging 30 50 135 30 15 60 60 45

Difficulty 2 3 1 3 1 2 3 3
Tediousness 2 4 5 5 2 3 4 2

Environment Setting 40 36 15 29 5 12 20 45
Difficulty 3 5 1 1 1 2 2 3

Tediousness 2 5 5 3 3 1 3 2
Requesting Assistance 25 25 10 20 30 22

Difficulty 1 4.4 1 1 3 1.3
Tediousness 1 5.0 5 5 5 1.7

Submitting 30 19 20 15 5 45
Difficulty 2 1 1 2 2 3

Tediousness 3 5 2 2 3 2
Testing 1 5

Difficulty 1 1
Tediousness 1 2

Total Time (mins) 215 130 130 280 150 68 100 145 180
Consecutive Days 1 2 9 22 9 1 2 3 1
Active Days 1 2 4 7 2 1 2 3 1
Site Order Number 1 2 5 2 1 3 4 3 4
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