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Abstract of the dissertation

Hilbert-Kunz multiplicity is an invariant of a local ring containing a field of positive

characteristic. In this work, we study its continuity properties as a function on a

variety.

First, we develop a theory of equimultiplicity for Hilbert-Kunz multiplicity. Re-

markably, it is quite similar to the classical equimultiplicity. The theory is then

applied to show that a stronger form of upper semi-continuity does not hold.

Later, using uniform convergence ideas we prove that a weaker form of upper

semi-continuity holds. As an application, we obtain that the maximum value locus

of Hilbert-Kunz multiplicity is closed.
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Chapter 1

Introduction

1.1 On the title

Interest in asymptoptical behavior appears throughout all mathematics, and commu-

tative algebra is not an exception. Asymptotical nature appears in different forms

within commutative algebra and one of the most important sources is the collection of

the powers of an ideal and the Rees algebra of an ideal as a way to impose additional

structure on the powers. From this source stem many other instances of asymptotical

nature; in this work we will encounter Hilbert functions, (Hilbert-Samuel) multiplic-

ity, analytic spread, integral closure, and the Artin-Rees lemma.

These invariants have been known for many years, have been studied extensively,

and have had strong impact. The present definition of multiplicity was introduced

in 1951 by Samuel, as a generalization of an earlier work of Chevalley (1945). Multi-

plicity was introduced for geometrical purposes and served well these purposes. For

example, it found a use in Hironaka’s celebrated work on resolution of singularities.

Rees algebras were introduced by Rees in late 50s and have been useful, in particular,

for connections with integral closure. They also have a geometric side; the projec-
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tive scheme of the Rees algebra of an ideal is the blow-up of the spectrum along the

subvariety defined by the ideal.

Over a field of positive characteristic, there is a different driving force behind

asymptotical invariants: the Frobenius endomorphism. Given by a simple map x 7→

xp, it can be repeated over and over, and these iterations can be used in different

ways, leading to various invariants that express its asymptotical properties.

This thesis is devoted to one such invariant, Hilbert-Kunz multiplicity. The cor-

responding iterations were introduced by Kunz in 1969. His work was ahead of its

time and eventually led to various characteristic p methods in study of singularities.

Hilbert-Kunz multiplicity itself was defined by Monsky in 1983. However, the active

development started only in 90s, after Hochster and Huneke introduced the theory

of tight closure and gave a new momentum to the positive characteristic methods in

commutative algebra.

At the present moment, Hilbert-Kunz multiplicity is still a very mysterious in-

variant and there is much to understand. In this work, our main interest is its global

behavior: Hilbert-Kunz multiplicity is a local invariant defined at a point, and we

want to study it as a function on a variety. Namely, we will investigate its conti-

nuity properties as a way to understand the geometrical behavior of Hilbert-Kunz

multiplicity. Our source of motivation is the corresponding theory for Hilbert-Samuel

multiplicity that was developed after Hironaka’s work on the resolution of singulari-

ties.

While various forms of continuity represent a certain kind of uniform behavior, it

is not the uniformity that is referred to in the title. Since Hilbert-Kunz multiplicity
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is defined as a limit, analytic ideas related to convergence appear naturally. One such

idea is the idea of uniform convergence.

The theme of uniformity arises often in commutative algebra, and sometimes

yields good fruit. In tight closure theory, test elements were developed by Hochster

and Huneke and have led to spectacular developments. In this work, test elements

are necessary in Chapter 4. Another notable example is Kollár’s proof of an effective

Nullstellensatz using uniform annihilation of local cohomology.

For Hilbert-Kunz multiplicity this side of the story starts in the work of Tucker

where he established uniform convergence with respect to m-primary ideals. As a

consequence, Tucker obtained a “volume=multiplicity” kind of formula that allowed

him to prove the existence of F-signature, another new asymptotical invariant in

positive characteristic. We give another instances of uniform convergence and use

them to what we believe to be a great success.

Our main results stem from two very different instances of uniform convergence.

In this first instance (Chapter 4), we use it “locally” to interchange the limits of a

bisequence, thus giving a powerful formula that will be used as a first stone in our

theory of equimultiplicity. The second use of uniform convergence in Chapter 5 is

“global”, as we use it to control convergence rate at different points. This gives a

way to obtain a result about the limits from the information about the terms of the

corresponding sequences.

Together with Tucker’s original contribution, this demonstrates how powerful and

different are the uniform convergence methods in Hilbert-Kunz theory.
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1.2 Structure of the thesis

First, we review some prerequisites in Chapter 2. Chapter 3 can be seen as a somewhat

more technical extension of the introduction. There we discuss the classical theory of

equimultiplicity to motivate the main problem and discuss our approach.

The main goal of this work is to understand whether Hilbert-Kunz multiplicity is

upper semi-continuous. The main results of this thesis are in Chapters 4 and 5. In

Chapter 4 we build an equimultiplicity theory for Hilbert-Kunz multiplicity following

an outline that we gave for Hilbert-Samuel multiplicity. In the foundation, we use

our first uniform convergence result; and as a consequence of our theory, we show

that Hilbert-Kunz multiplicity need not be locally constant, which is a strong form

of semi-continuity.

In Chapter 5, we consider a weaker form of the question and show that Hilbert-

Kunz multiplicity is indeed upper semi-continuous under very minor technical as-

sumptions. Our main tool is a globalized version of uniform convergence for Hilbert-

Kunz multiplicity. We finish with a list of open questions related to our research in

Chapter 6.

Now, let us discuss the main chapters in more details.

1.2.1 Chapter 4

In Section 4.1, we establish uniform convergence of a certain bisequence (Theo-

rem 4.1.6) and use it to interchange the limits and obtain a very useful formula

(Corollary 4.1.9).
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We immediately apply our findings for a simple case of an one-dimensional ideal

in Section 4.2. Most of the results will be generalized later, but we establish the

foundation and obtain applications. The most important result for the following is

Proposition 4.2.7 that will be used to give our main counterexample and show that

Hilbert-Kunz multiplicity need not to be locally constant.

In Section 4.3, we continue to develop a general theory of equimultiplicity. Namely,

we define an ideal I to be equimultiple for Hilbert-Kunz multiplicity if there exists a

sequence x1, . . . , xm in R such that its image in R/I is a system of parameters and

eHK(I + (x1, . . . , xm)) =
∑

P∈Minh(I)

eHK((x1, . . . , xm), R/P ) eHK(I, RP ),

where Minh(I) denotes the set of minimal prime ideals P of I such that dimR/P =

dimR/I. In Theorem 4.3.5 and Theorem 4.3.7, we use tight closure to give a different

characterization of equimultiplicity. Building on this, in Proposition 4.3.10 we show

that our definition is independent of the sequence x1, . . . , xm.

The obtained result compares very well to the classical theory that will be dis-

cussed in Chapter 3.

1.2.2 Chapter 5

In this chapter, we will prove that Hilbert-Kunz multiplicity is upper semi-continuous

in a F-finite ring or an algebra of essentially finite type over an excellent local ring

(Theorem 5.4.3). Though that restriction is of technical nature, any affine algebra or

a complete ring satisfies it.

After the introduction, we establish two uniform convergence results that will help
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us to treat the two cases of the main theorem. In Section 5.2 we treat F-finite case and

in Section 5.3 we establish results that will be used for algebras of essentially finite

type over an excellent local ring. Then we employ these uniform convergence results

to reduce the problem from Hilbert-Kunz multiplicity as a limit of a sequence to a

fixed term of the sequence. And upper semi-continuity of a fixed term was established

by Kunz.
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Chapter 2

Preliminaries

In this chapter we discuss preliminaries needed later on. Most of the material here is

not new, and an experienced reader may want to proceed directly to the next chapter.

We assume that all rings are commutative and Noetherian. For a finite length

module M , we let λ(M) denote its length, i.e. the common length of its composi-

tion series. We assume basic understanding of commutative algebra on the level of

Matsumura’s book ([22]), but will try to refresh crucial notions.

2.1 Hilbert-Samuel multiplicity

We start with the classical theory of Hilbert-Samuel multiplicity.

2.1.1 Basic properties

Definition 2.1.1. Let (R,m) be a local ring of dimension d and I be an m-primary

ideal. Let M be a finitely generated R-module. The multiplicity of M with respect

of I is defined to be

e(I,M) = lim
n→∞

d!λ(M/InM)

nd
.
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In fact, λ(M/InM) is a polynomial in n (the Hilbert-Samuel polynomial) of degree

dimM for all n sufficiently large. Thus e(I,M) = 0 if and only if dimM < d. It is a

custom to denote e(I, R) as e(I).

Proposition 2.1.2. Let (R,m) be a local ring, and let I be an m-primary ideal. If

0 → K → L → M → 0 is a short exact sequence of finitely generated R-modules,

then e(I,M) = e(I,K) + e(I,N).

Proof. Tensoring the short exact sequence with R/In, we obtain an exact sequence

K/InK → L/InL→M/InM → 0.

Taking lengths, we get an inequality λ(L/InL) ≤ λ(K/InK) + λ(M/InM).

For the other direction, we note that the following sequence is exact

0→ K/(InL ∩K)→ L/InL→M/InM → 0.

Thus,

λ(L/InL) = λ(M/InM) + λ(K/(InL ∩K)) = λ(M/InM) + λ(K/(In−c(IcL ∩K))),

where the last equality holds since, by the Artin-Rees Lemma, there exists an integer

c such that InL∩K = In−c(IcL∩K) for all n ≥ c. Note that In−c(IcL∩K) ⊆ In−cK,

so λ(K/(InL ∩K)) ≤ λ(K/In−cK) and, combining all estimates, we get

λ(M/InM) + λ(K/In−cK) ≤ λ(L/InL) ≤ λ(M/InM) + λ(K/InK).

Since lim
n→∞

λ(K/In−cK)/nd = lim
n→∞

λ(K/InK)/nd, the claim follows.

In the next result Minh(R) denotes the set of all minimal prime ideals P of R

such that dimR/P = dimR.
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Proposition 2.1.3 (Associativity formula). Let (R,m) be a local ring, I be an m-

primary ideal, and M be a finitely generated R-module. Then

e(I,M) =
∑

P∈Minh(R)

e(I, R/P )λRP (MP ).

Proof. Let 0 = M0 ⊂ M1 ⊂ . . . ⊂ MN = M be a prime filtration of M , so there are

exact sequences

0→Mn−1 →Mn → R/Qn → 0

where Qn is a prime ideal. Using Proposition 2.1.2, we derive

e(I,M) = e(I,MN−1) + e(I, R/QN−1) = . . . =
N−1∑
n=0

e(I, R/Qn).

However, e(I, R/Qn) = 0 unless dimR/Qn = dimR, i.e. Qn ∈ Minh(R).

Let P ∈ Minh(R), we want to find how many times P appears among all Qn. To

do this, localize the prime filtration at P and note that λ((R/Qn)P ) = 1 if Qn = P

and is zero otherwise. Thus the factor R/P appears λRP (MP ) times in the filtration

and the claim follows.

The following simple observation is useful.

Lemma 2.1.4. Let (R,m) be a local ring of dimension d, M be a finitely generated

R-module, and I be an m-primary ideal. Then e(In,M) = nd e(I,M) for all n.

Proof. By definition,

e(In,M) = lim
m→∞

d!λ(M/InmM)

md
= nd lim

m→∞

d!λ(M/InmM)

(nm)d
= nd e(I,M).
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2.1.2 Multiplicity of parameter ideals

First recall the following definition.

Definition 2.1.5. Let (R,m) be a local ring of dimension d. A sequence of elements

x1, . . . , xd is called a system of parameters if (x1, . . . , xd) is an m-primary ideal.

An ideal I is called a parameter ideal if it can be generated by a system of

parameters.

Parameter ideals have some special properties, in particular, Lech ([20]) estab-

lished a special formula for the multiplicity of a parameter ideal. The following result

is usully called Lech’s lemma, nonetheless it appeared as Theorem 2 in [20].

Lemma 2.1.6. Let (R,m) be a local ring and let x1, . . . , xd be a system of parameters.

Then

e((x1, . . . , xd)) = lim
min(n1,...,nd)→∞

λ(R/(xn1
1 , . . . , x

nd
d ))

n1 · · ·nd
.

Similar to Lemma 2.1.4, we obtain the following consequence of Lech’s lemma.

Corollary 2.1.7. Let (R,m) be a local ring and let x1, . . . , xd be a system of param-

eters. Then for any vector (n1, . . . , nd) ∈ Nd

e((xn1
1 , . . . , x

nd
d )) = n1 · · ·nd e((x1, . . . , xd)).

Lech’s lemma was used to obtain the following variation of the associativity for-

mula for parameter ideals ([20, Theorem 1]). Recall that Minh(I) denotes the set of

all minimal primes P of an ideal I such that dimR/P = dimR/I.
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Proposition 2.1.8. Let (R,m) be a local ring and let x1, . . . , xd be a system of pa-

rameters. Then for any 0 ≤ i ≤ d

e((x1, . . . , xd)) =
∑

P∈Minh((x1,...,xi))

e((xi+1, . . . , xd), R/P ) e((x1, . . . , xi)RP ).

Also, when dealing with parameter ideals, we will often use the following “filtration

by the powers of x”.

Lemma 2.1.9. Let R be a ring of dimension 1 and x be a parameter. Then for any

positive integer n

λ(R/(xn)) = nλ(R/(x))−
n−1∑
k=1

λ

(
(0 : x)

xk(0 : xk+1)

)
.

In particular, λ(R/(xn)) ≤ nλ(R/(x)) and the equality holds for all n if and only

if x is not a zero divisor.

Proof. For any n we can surject R/(xn) onto R/(x) and obtain the exact sequence

0→ (x)/(xn)→ R/(xn)→ R/(x)→ 0.

Now note that we can surject R onto (x)/(xn) by mapping 1 7→ x+ (xn). The kernel

of this map is the ideal (xn) : x = (xn−1) + 0 : x. These observations imply that

λ(R/(xn)) = λ(R/(x)) + λ
(
R/((xn−1) + 0 : x)

)
,

so

λ(R/(xn)) = λ(R/(x)) + λ(R/(xn−1))− λ
(

(xn−1) + 0 : x

(xn−1)

)
.

Now,

(xn−1) + 0 : x

(xn−1)
∼=

(0 : x)

(xn−1) ∩ (0 : x)
=

(0 : x)

xn−1(0 : xn)
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and the claim follows by induction on n.

For the second part, we observe that 0 : xn form an ascending chain of ideals as n

increases, so it stabilizes and xk(0 : xk+1) = xk(0 : xk) = 0 for a large k. Therefore,

the equality holds if and only if 0 : x = 0.

Corollary 2.1.10. Let (R,m) be a local ring of dimension 1 and x be a parameter.

Then e(x) ≤ λ(R/(x)).

Moreover, the equality holds if and only if x is regular, i.e. R is Cohen-Macaulay.

Proof. By the definition and the lemma

e(x) = lim
n→∞

λ(R/(xn))

n
≤ lim

n→∞

nλ(R/(x))

n

and this shows the first part.

For the second part we note that, for any ideal I and an element t, I∩(t) = t(I : t),

thus (xk) ∩ (0 : x) = xk(0 : xk+1) for all k. Since (0 : xk) form an ascending chain of

ideals, it stabilizes, so xk(0 : xk+1) = xk(0 : xk) = 0 for any k sufficiently large, say,

for k ≥ N .

Therefore, the lemma above gives us the following estimate

λ(R/(xn)) = nλ(R/(x))−
N−1∑
k=1

λ((0 : x)/(xk) ∩ (0 : x))− (n−N + 1)λ(0 : x).

Hence, dividing by n and taking the limit, we obtain that

e(x) = λ(R/(x))− λ(0 : x),

and the claim follows.

Using the associativity formula we can generalize this result for higher dimension,

but, first, we need the following lemma.
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Lemma 2.1.11. Let (R,m) be a local ring and let x be a parameter. Suppose R/(x) is

Cohen-Macaulay and RP is Cohen-Macaulay for all minimal primes P of (x). Then

R is Cohen-Macaulay.

Proof. If dimR = 1, then m is a minimal prime of (x), and the assertion is trivial, so

we assume that dimR > 1.

After localizing if necessary, we can assume that Rp is Cohen-Macaulay for any

p 6= m and containing x. Then 0 : xn has finite length for any n, because if x /∈ p

then the image of x is invertible in Rp and if x ∈ p 6= m then x is regular in Rp.

Since (0 : xn) is a finite length submodule of R, for any element y ∈ m there is

a power N such that yN(0 : xn) = 0. But, since R/(x) is a Cohen-Macaulay ring of

dimension at least one, it has a regular element y, so the image of (0 : xn) in R/(x)

is zero, i.e. (0 : xn) ⊆ (x). Then one can easily check that 0 : xn = x(0 : xn+1).

Since 0 : xn is an ascending chain of ideals, it stabilizes for some n = N . Then

0 : xN = x(0 : xN), so, by Nakayama’s lemma, 0 : x = 0. Thus x is regular and R

Cohen-Macaulay.

Proposition 2.1.12. Let (R,m) be a local ring and x1, . . . , xd be a system of param-

eters. Then e((x1, . . . , xd)) ≤ λ(R/(x1, . . . , xd)).

Moreover, the equality holds if and only if R is Cohen-Macaulay.

Proof. We use induction on d, the base case is Corollary 2.1.10.



14

Now, by the associativity formula (Proposition 2.1.8) and the induction base,

e((x1, . . . , xd)) =
∑

P∈Minh(x1)

e((x2, . . . , xd), R/P ) e(x1RP )

≤
∑

P∈Minh(x1)

e((x2, . . . , xd), R/P )λ(RP/(x1)RP ).

Moreover, by the usual associativity formula,

∑
P∈Minh(x1)

e((x2, . . . , xd), R/P )λ(RP/(x1)RP ) = e((x2, . . . , xd), R/(x1)).

Thus, by the induction hypothesis for d− 1 elements in R/(x1)

∑
P∈Minh(x1)

e((x2, . . . , xd), R/P )λ(RP/(x1)RP ) ≤ λ(R/(x1, . . . , xd)).

Now, suppose that e((x1, . . . , xd)) = λ(R/(x1, . . . , xd)). By the first part of the

proof, we get that R/(x1) is Cohen-Macaulay, so Minh(x1) = Min(x1). Then the first

formula yields that RP is Cohen-Macaulay for all minimal primes P of x1 and we are

done by Lemma 2.1.11.

Last, suppose that R is Cohen-Macaulay. We use Lech’s lemma and filter by the

powers of xi by repeatedly applying Lemma 2.1.9

e((x1, . . . , xd)) = lim
n→∞

λ(R/(xn1 , . . . , x
n
d))

nd
= lim

n→∞

λ(R/(xn1 , . . . , x
n
d−1, xd))

nd−1
= . . .

= λ(R/(x1, . . . , xd)).

2.2 Rings of positive characteristic

For a prime number p, we say that a ring R has characteristic p if R is an algebra

over the prime field Z/pZ. The key characteristic of such rings is the Frobenius
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endomorphism φ : R→ R defined by a 7→ ap. Since p is the characteristic of the ring,

(a+ b)p = ap + bp, so φ is an endomorphism.

2.2.1 Frobenius endomorphism

Definition 2.2.1. Let R be a commutative ring of positive characteristic p and e be

a positive integer. Then the eth iteration of the Frobenius endomorphism gives R an

additional structure of an R-algebra, φe : R → R, a 7→ ap
e
. This R-algebra will be

denoted by F e
∗R.

More generally, let M be an R-module. Then we use F e
∗M to denote the R-

module obtained from M via restriction of scalars along the Frobenius iterated e

times. Namely, F e
∗M is isomorphic to M as an abelian group, but the action of R is

given by pe-powers, i.e. if m ∈M is considered as element of F e
∗M , then a ·m = ap

e
m.

Now, let us list some properties of F∗.

Proposition 2.2.2. 1. F∗ is an exact functor,

2. F∗ commutes with localization, i.e. F∗(S
−1M) ∼= S−1(F∗M) for any multiplica-

tively closed set S.

Proof. First, F∗ is exact, since it is a restriction of scalars.

For the second property, we observe that there is no difference between inverting

sp or s.

Remark 2.2.3. If R is a domain, we can define R1/p to be a subring of the algebraic

closure of the fraction field of R that consists of all elements a such that ap ∈ R.

Then R1/p is isomorphic to F∗R as an R-algebra.
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For example, if R = k[x1, . . . , xn] then F∗R ∼= R1/p = k1/p[x
1/p
1 , . . . , x

1/p
n ].

Definition 2.2.4. Let R be a commutative ring of characteristic p > 0 and I an

ideal in R. Let q = pe for some positive integer e, then I [q] is the ideal generated by

the image of I under the eth iterate of the Frobenius, i.e. I [q] = ({aq | a ∈ I}).

Proposition 2.2.5. Let R be a commutative ring of characteristic p > 0, M an

R-module, and I an ideal. Then R/I ⊗R F e
∗M
∼= F e

∗ (M/I [q]M).

Proof. Tensoring an exact sequence

0→ I → R→ R/I → 0

with F e
∗M , we obtain

I ⊗R F e
∗M → F e

∗M → R/I ⊗R F e
∗M → 0.

Note that the image of I⊗RF e
∗M in F e

∗M is I(F e
∗M) = F e

∗ (I
[q]M) by the definition of

the R-action on F∗M . Moreover, since F e
∗ is exact, F e

∗M/F e
∗ (I

[q]M) ∼= F e
∗ (M/I [q]M),

and the claim follows.

For the next result, we need a bit of notation.

Definition 2.2.6. Let R be a ring of characteristic p > 0. For a prime ideal p of R,

we denote α(p) = logp[k(p) : k(p)p], where k(p) = Rp/pRp is the residue field of p.

We understand how length changes under F e
∗ .

Proposition 2.2.7. Let (R,m, k) be a local ring of characteristic p > 0 and let M be

a finite length module. Then
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1. λR(M) = λF e∗R(F e
∗M).

2. λR(F e
∗M) = [k : kp

e
]λR(M) = peα(R) λR(M). So, if k is perfect, λR(F e

∗M) =

λR(M).

Proof. Consider a composition series of M

0 = M0 ⊂M1 ⊂ . . . ⊂Ml = M,

where the factors Mn+1/Mn
∼= k. Since F e

∗ is an exact functor and F e
∗k is the residue

field of F e
∗R, applying F e

∗ to the original series we obtain a composition series for

F e
∗M and the first claim follows.

The second claim also follows after taking the length overR of the new composition

series, note that F e
∗k
∼= k1/pe , so λR(F e

∗k) = [k1/pe : k] = [k : kp
e
] since the Frobenius

is a field isomorphism of k and kp.

2.2.2 F-finite rings

Definition 2.2.8. Let R be a ring of characteristic p > 0. We say that R is F-finite

if F∗R is a finitely generated R-module.

A quotient of an F-finite ring is F-finite, since F∗(R/I) is a quotient of a finitely

generated module R/I ⊗ F∗R ∼= F∗(R/I
[p]). A localization of a F-finite ring is F -

finite since F∗ respects localization. Thus, from Remark 2.2.3 we obtain that any

affine algebra over an F-finite (e.g. perfect) field is F-finite.

We will need the following result of Kunz ([19, Proposition 2.3]).
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Proposition 2.2.9. Let R be F-finite and let p ⊆ q be prime ideals. Then α(p) =

α(q) + dimRq/pRq.

This result allows us to control the change in length between M and F∗M in

localizations. For example, the next corollary shows that we can compute the rank

of F∗M .

Corollary 2.2.10. Let (R,m) be a reduced F-finite local ring of dimension d and M

be a finitely generated R-module. Then for any minimal prime p ∈ Minh(R) of R the

modules M⊕pα(R)+d

p and (F∗M)p are isomorphic.

In particular, if R is equidimensional and M has rank r, then the rank of F∗M is

rpα(R)+d.

Proof. By Proposition 2.2.9, α(p) = α(R) + d for any p ∈ Minh(R). Note that by

Proposition 2.2.7

λRp(F∗(Mp)) = pα(p) λRp(Mp).

Since R is reduced, Rp is a field, hence the vector spaces F∗(Mp) and ⊕pα(P )Mp are

isomorphic. Last, recall that F∗(Mp) ∼= (F∗M)p since F∗ commutes with localization.

F-finite rings have a few nice properties. Most importantly, F-finite rings are

excellent by a theorem of Kunz ([19, Theorem 2.5]). Let us recall the definition of an

excellent ring. We refer the reader to Chapter 13 of Matsumura’s book ([22]) for a

detailed treatment.

Definition 2.2.11. Let R be a Noetherian ring. We say that R is excellent if the

following conditions hold.
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1. Any finitely generated R-algebra is catenary.

2. The formal fibers of R are geometrically regular, i.e. for any prime p and for

every finite field extension L of Rp/pRp the ring R̂p ⊗Rp L is a regular ring.

3. For every finitely generated R-algebra B, the set of all prime ideal P such that

BP is regular (the regular locus of B) is open.

The definition of an excellent was made to make it satisfy geometric properties of

most “naturally appearing” rings. In particular, complete rings and affine algebras

are excellent. The class of excellent rings is stable under localization, taking quotients,

and finite extensions.

Remark 2.2.12. Besides the properties given in the definition, excellent rings also have

well-behaved completions.

For example, if R is excellent and reduced, then R̂ is also reduced, i.e. R is

analytically unramified. If R is excellent and equidimensional (Minh(R) = Min(R)),

then R̂ is also equidimensional, i.e. R is formally equidimensional.

The regular locus of an excellent ring is open by the definition. However, it

happens that many other loci are also open. We will only need the following result

([9, 7.8.3(iv)]).

Proposition 2.2.13. Let R be an excellent ring. Then the Cohen-Macaulay locus of

R

{p ∈ SpecR | Rp is Cohen-Macaulay}

is an open subset of SpecR.
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Even if R is not F-finite we can often pass to an F-finite ring via the following

recipe.

Remark 2.2.14. Let (R,m) be a local ring of characterstic p > 0.

By Cohen’s structure theorem ([22, page 265]), R̂ has a coefficient field k. So, if

x1, . . . , xn are the generators of mR̂, there is a surjection k[[T1, . . . , Tn]] → R̂ where

T1 are indeterminates and the map acts by Ti 7→ xi.

Let S = R̂⊗k[[T1,...,Tn]] k
∞[[T1, . . . , Tn]], where k∞ is the perfect closure of k. Then

R → S is faithfully flat as a composition of faithfully flat maps R → R̂ → S.

Moreover, S is complete with a perfect residue field, so, since it is a homomorphic

image of the power series ring over a perfect field, it is F-finite.

Also, note that mS is the maximal ideal of S. So by the lemma below, we obtain

that S preserves length, and therefore eHK(I,M) = eHK(I, S⊗RM) for any m-primary

ideal I and finitely generated module M .

Lemma 2.2.15. Let (R,m) be a local ring and let (S, n) be a flat local R-algebra such

that dimS = dimR (equivalently, mS is n-primary). Then for any R-module M of

finite length, λS(M ⊗R S) = λR(M)λS(S/mS).

Proof. Consider a composition series of M

0 = M0 ⊂M1 . . . ⊂ML = M.

Since S is flat, tensoring the composition series above with S we obtain a filtration

of M ⊗R S:

0 = M0 ⊗R S ⊂M1 ⊗R S . . . ⊂ML ⊗R S = M ⊗R S.
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Because the original filtration was a composition series, for each quotient

(Mn+1 ⊗R S)/(Mn ⊗R S) ∼= Mn+1/Mn ⊗R S ∼= R/m⊗R S = S/mS

and the claim follows.

2.3 Hilbert-Kunz multiplicity

For convenience we will denote q = pe where e may vary.

Definition 2.3.1. Let (R,m) be a local ring of characteristic p > 0, I be an m-

primary ideal, and M a finitely generated R-module. The (normalized) Hilbert-Kunz

function of M with respect to I is the sequence

q 7→ λq(I,M) :=
λ(M/I [q]M)

qdimR
.

The Hilbert-Kunz multiplicity of M with respect to I is defined to be

eHK(I,M) = lim
q→∞

λq(I,M) = lim
q→∞

λ(M/I [q]M)

qdimR
.

If M = R, we will omit it, and will write eHK(I) for eHK(I, R). Also, eHK(m) is

often denoted by eHK(R) and called the Hilbert-Kunz multiplicity of R.

The study of Hilbert-Kunz function starts in the work of Kunz ([18, 19]), while

Monsky showed that the limit exists in [24]. We will provide a generalization of

Monsky’s argument later in Section 4.1, see Remark 4.1.7.

In general, λ(M/I [q]M) is not a polynomial, so it is much trickier to prove the

existence of the limit. In fact, the known proof only establishes that the sequence is

Cauchy (see Remark 4.1.7) and does not give a way to compute it. Thus, computation
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of Hilbert-Kunz multiplicity is a challenge: there is no algorithm to compute it even

for hypersurfaces. Even more, it is usually very hard to calculate it by hand, so only

a handful of examples are known.

Example 2.3.2. First, the two theories agree if dimension is at most one. This fol-

lows from the inequalities e(R)/d! ≤ eHK(R) ≤ e(R) that will be established in

Remark 3.1.14 and the proof of Lemma 2.3.12.

For an Artinian local ring (R,m), this can be observed very easily. Namely,

m[q] = mn = 0 for all large n and q, so eHK(m) = e(m) = λ(R).

However, in general, the multiplicities do not have to be equal. In the following

example, eHK(R) = 168/61 while e(R) = 4.

Example 2.3.3. In [10] Han and Monsky have computed the Hilbert-Kunz function of

a hypersurface

R = Z/5Z[[x1, x2, x3, x4]]/(x4
1 + . . .+ x4

4).

They obtained that

λq(R) =
168

61
53e − 107

61
3e

which is not a polynomial in q = 5e.

Remark 2.3.4. This example shows another difference between two multiplicities:

Hilbert-Kunz multiplicity need not be an integer. In fact, recently, Brenner ([1])

was able to show that Hilbert-Kunz multiplicity could be even irrational. However,

his proof is not constructive and we do not have an explicit example. On the other

hand, there is a conjectured example of transcendental Hilbert-Kunz multiplicity due

to Monsky.
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There is an another characterization of eHK(m). Suppose that k, the residue field

of R, is perfect. Then, by Proposition 2.2.7,

λR(k ⊗R F e
∗R) = λR(F e

∗ (R/m
[q])) = λR(R/m[q]),

so λR(R/m[q]) is the minimal number of generators of F e
∗R (as an R-module). Thus,

Hilbert-Kunz multiplicity measures the asymptotic number of generators of F e
∗R.

Using this characterization, Kunz ([18, Proposition 3.2]) observed the following.

Lemma 2.3.5. Let (R,m) be a local ring of dimension d. Then λq(R) ≥ 1 for all q.

In particular, eHK(R) ≥ 1.

Proof. Using Remark 2.2.14, it is enough to assume that R is complete with a perfect

residue field. Now, in p ∈ Minh(R), then λ(R/m[q]) ≥ λ(R/(m[q] + p)), so λq(R) ≥

λq(R/p). So we may assume that R is a complete local domain.

We claim that the minimal number of generators of M is greater or equal than

the rank of M for any finitely generated module M . To see this we note that the

surjection Rm →M → 0 induces a surjection Lm →M ⊗R L→ 0.

Using the claim for M = F e
∗R, we obtain that λ(R/m[q]) ≥ qd by Corollary 2.2.10.

2.3.1 Properties

Now, we want to discuss some basic properties of Hilbert-Kunz multiplicity. First,

as a corollary to Lech’s lemma (2.1.6), we obtain that for parameter ideals the two

multiplicity theories are same.
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Corollary 2.3.6. Let (R,m) be a local ring of characteristic p > 0 and let x1, . . . , xd

be a system of parameters. Then

eHK((x1, . . . , xd)) = e((x1, . . . , xd)).

Example 2.3.7. Let (R,m) be a regular local ring of characteristic p > 0. Then

e(R) = eHK(R) since m is generated by a system of parameters. Moreover, a repeated

application of Lemma 2.1.9 shows that λq(m) = qdimR, so, e(R) = eHK(R) = 1.

We establish two easy lemmas on “iteration” of Frobenius powers.

Lemma 2.3.8. Let (R,m) be a local ring of characteristic p > 0, J be an m-

primary ideal, and M a finitely generated R-module. Then for any q, eHK(J [q],M) =

qdimR eHK(J,M).

Proof. Observe that

eHK(J [q],M) = lim
q′→∞

λ(M/J [qq′]M)

(q′)dimR
= lim

(qq′)→∞
qdimRλ(M/J [qq′]M)

(qq′)dimR
= qdimR eHK(J,M).

Lemma 2.3.9. Let (R,m) be an F-finite local ring of characteristic p > 0, J be an m-

primary ideal, and M a finitely generated R-module. Then for any e, eHK(J, F e
∗M) =

pe(dimR+α(R)) eHK(J,M).

Proof. By definition and Proposition 2.2.5,

eHK(J, F e
∗M) = lim

e′→∞

λ(R/J [pe
′
] ⊗R (F e

∗M))

pe dimR
= lim

e′→∞

λ(F e
∗ (M/J [pe+e

′
]M))

pe dimR
.

Now, by Proposition 2.2.7,

λ(F e
∗ (M/J [pe+e

′
]M)) = peα(R) λ(M/J [pe+e

′
]M)
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and the claim follows.

Hilbert-Kunz multiplicity satisfies many properties of the classical multiplicity.

For example, it is additive.

Proposition 2.3.10. Let (R,m) be a local ring of characteristic p > 0, and let J be

an m-primary ideal. If 0 → K → L → M → 0 is a short exact sequence of finitely

generated R-modules, then eHK(J, L) = eHK(J,K) + eHK(J,M).

Proof. First, by Remark 2.2.14, we can assume that R is F-finite.

As it will be observed in Remark 4.1.5, eHK(J,M) = eHK(J,N) if M and N are two

modules such that MP
∼= NP for any minimal prime P such that dimR/P = dimR.

If R is reduced, RP is a field for any minimal prime P of R. Thus, LP ∼= KP ⊕MP

as vector spaces of same dimension. Therefore, the observation helps us to show that

eHK(L) = eHK(K ⊕M) = eHK(K) + eHK(M), where the last equality readily follows

from additivity of length and the definition of Hilbert-Kunz multiplicity.

If R is not reduced, its nilradical is nilpotent, so there exists an e such that the

nilradical acts as zero on F e
∗L. Thus, we obtain an exact sequence of R/

√
0-modules,

0→ F e
∗K → F e

∗L→ F e
∗M → 0

and the argument above showes that eHK(J, F e
∗L) = eHK(J, F e

∗K) + eHK(J, F e
∗M).

Moreover, by Lemma 2.3.9, eHK(J, F e
∗L) = pe(dimR+α(R)) eHK(J, L) and the assertion

follows.

From additivity, the proof Proposition 2.1.3 derives the associativity formula.
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Proposition 2.3.11. Let (R,m) be a local ring of characteristic p > 0, I be an

m-primary ideal, and M be a finitely generated R-module. Then

eHK(I,M) =
∑

P∈Minh(R)

eHK(I, R/P )λRP (MP ).

Hilbert-Kunz multiplicity also detects dimension of a module.

Lemma 2.3.12. Let (R,m) be a local ring, M a finitely generated R-module, and I

be an m-primary ideal. Then eHK(I,M) = 0 if and only if dimM < dimR.

Proof. Recall that dimM = dimS for S = R/0 :R M . So, if dimS < dimR, then we

observe that

eHK(IS,M) = lim
q→∞

λ(M ⊗S S/I [q]S)

qdimS
= lim

q→∞

λ(M ⊗R R/I [q])

qdimS

exists, so eHK(I,M) = 0.

For the other direction, we use that I [q] ⊆ Iq for all q, so eHK(I,M) ≥ e(I,M)/d!.

Now, the claim follows from the analogous property of Hilbert-Samuel multiplicity.

The following result is due to Kunz ([19, Proposition 3.2]). It also has a corre-

sponding result for Hilbert-Samuel multiplicity, but we will not need it.

Proposition 2.3.13. Let (R,m) be a local ring and let x be an element of a system

of parameters. Then eHK(R) ≤ eHK(R/(x)).

Proof. Since xq ∈ m[q], we use Lemma 2.1.9 to obtain that

λ(R/m[q]) ≤ q λ(R/(m[q] + (x))).
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Now, since x is a part of a system of parameters, dimR/(x) = dimR − 1, and the

claim follows, after dividing both sides with qdimR and taking the limit.

Hilbert-Kunz multiplicity behaves well with respect to completion.

Lemma 2.3.14. Let (R,m) be a local ring, I be an m-primary ideal, and M a finitely

generated R-module. Then eHKR(I,M) = eHKR̂(IR̂, M̂).

Proof. This follows from Lemma 2.2.15.

The following bound is quite useful.

Lemma 2.3.15. Let (R,m) be a local ring of characteristic p > 0. Then for any

m-primary ideal I and every q

λ(R/I [q]) ≤ λ(R/I)λ(R/m[q]).

In particular, eHK(I) ≤ λ(R/I) eHK(m).

Proof. Let l = λ(R/I) and consider the composition series of R/I:

I = I0 ⊂ I1 ⊂ . . . ⊂ Il = R,

so In+1/In ∼= R/m for all l > n ≥ 0, i.e. we have In+1 = (In, xn) and In : xn = m.

Consider the filtration

I [q] = I0
[q] ⊂ I1

[q] ⊂ . . . ⊂ Il
[q] = R.

This may not be a composition series anymore, but we can bound the length of each

factor

In+1
[q]

In
[q]

=
(In

[q], xqn)

In
[q]

∼=
(xqn)

(xqn) ∩ In[q]
∼=

R

In
[q] : xqn

.
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Since mxn ⊆ In, we get that m[q]xqn ⊆ In
[q], thus λ(R/In

[q] : xqn) ≤ λ(R/m[q]) and the

claim follows.

2.4 Tight closure

Tight closure was introduced by Hochster and Huneke and has a tremendous number

of applications. For our goals, we do not need to dig deep, but we still need discuss

some aspects of the theory. For a more detailed exposition we refer a curious reader

to [12].

Definition 2.4.1. Let R be a ring and let I be an ideal of R. Let R◦ denote

R \ ∪P∈Min(R)P . The tight closure I∗ of I consists of all elements x of R such that

there exists a fixed element c ∈ R◦ (i.e. not contained in any minimal prime of R),

such that

cxq ∈ I [q]

for all sufficiently large q.

Now we explore some of the properties of tight closure. First, we will need the

following form of prime avoidance. The proof is taken from Kaplansky ([17, Theo-

rem 124]).

Lemma 2.4.2. Let P1, . . . , Pn be prime ideals in a commutative ring R, and let I be

an ideal in R. Suppose x ∈ R is such that (I, x) is not contained in ∪Pi, then there

exists an element a ∈ I, such that x+ a /∈ ∪Pi.
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Proof. We can assume that no two of Pi are comparable, because if Pk is contained

in some other prime, then the union will not change after ommiting it.

After relabeling, we assume that x ∈ P1, . . . , Pk but x is not contained in any of

Pk+1, . . . , Pn. If k = 0, then x + 0 is the required element, so assume k > 0. By our

assumption on (I, x), there exists an element b ∈ I \ {P1 ∪ . . . ∪ Pk}. Also, by the

classical prime avoidance, there exists an element c ∈ (Pk+1∩ . . .∩Pn)\{P1∪ . . .∪Pk}.

Last, one can easily check that x+ bc satisfies the assertion.

Proposition 2.4.3. Let R be a ring and let I, J be ideals of R.

(1) I∗ is an ideal.

(2) (I∗)∗ = I∗,

(3) If I ⊆ J then I∗ ⊆ J∗.

(4) For all q (I∗)[q] ⊆ (I [q])∗.

(5) x ∈ I∗ if and only if the image of x is in (IR/P )∗ for all minimal primes P .

(6) I∗ is the preimage of (IRred)
∗ in R.

Proof. The first four properties are straightforward.

For (5), if x ∈ I∗ then the tight closure equations still hold true modulo a minimal

prime, so one direction follows. Let Pi be minimal primes, then there are ci /∈ Pi,

such that for all q >> 0

cix
q ∈ I [q] + Pi.
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By Lemma 2.4.2, we can find representatives for ci in R◦. Now choose arbitrary ti

contained in all minimal primes except for Pi. Set c =
∑

i tici, then for all q >> 0

cxq =
∑

ticix
q ∈ I [q] + ∩Pi.

Now, the nilradical is nilpotent, so (∩Pi)[q′] = 0 for some q′, and thus for all q >> 0

cq
′
xqq

′ ∈ I [qq′],

so x ∈ I∗.

For (6), its easy to see that every element in I∗ is in the preimage. If c̄ ∈ (Rred)
◦

than its preimage is in R◦, so if x̄ ∈ (IRred)
∗, then we have an equation for its

preimage

cxq ∈ I [q] +
√

0.

But as in the previous property, we can raise the whole equation to the power q′ such

that (
√

0)[q′] = 0 and obtain that x is in the tight closure of I.

2.4.1 Test Elements

A notable difference between theories of tight and integral closure is our ability to

find a uniform element that tests tight closure for all ideals (and, even, modules).

Definition 2.4.4. Let R be a Noetherian ring of characteristic p > 0. We say that

an element c ∈ R◦ is a test element, if, for every ideal I and element x ∈ R, x ∈ I∗ if

and only if cxq ∈ I [q] for all q.

Test elements make tight closure to be a very powerful tool and have had a great

use. Even more, the test ideal (the ideal generated by test elements) became a subject
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of separate research due to its fantastic connections with birational geometry. After

a tremendous amount of work in [13], Hochster and Huneke obtained the following

existence theorem.

Theorem 2.4.5. Let R be reduced and either F-finite or of essentially finite type over

an excellent local ring. Then R has a test element.

Now, let us show some of the remarkable properties that test elements give to

tight closure.

Lemma 2.4.6. Let (R,m) be a local ring of positive characteristic with a test element

c. If I and J are two ideals then

I∗ = ∩q(I, J [q])∗ = ∩n(I, Jn)∗.

Proof. This easily follows from the definition: if x belongs to the intersection, then

cxq
′ ∈ ∩n(I, Jn)[q′] (or ∩q (I, J [q])[q′])

and we are done by Krull’s intersection theorem.

As an easy consequence of this result, we obtain that tight closure of any ideal is

the intersection of tightly closed m-primary ideals. However, we do not need R to be

local for this.

Lemma 2.4.7. Let R be a ring characteristic p > 0 with a test element c. Then for

any ideal I

I∗ =
⋂
m

⋂
n

(I + mn)∗
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where the first intersection is taken over all maximal ideals m.

In particular, I∗ is the intersection of tightly closed ideals primary to maximal

ideals.

Proof. Clearly, I∗ ⊆
⋂

m

⋂
n(I + mn)∗. Let x be an element of the intersection. If

x /∈ I∗, then, since c is a test element, cxq /∈ I [q] for some q. Therefore, there exists a

maximal ideal m such that non-inclusion still holds inRm. Then by Krull’s intersection

theorem applied in Rm, cxq /∈ I [q] + mn for some n. In particular, x /∈ (I + mn)∗, a

contradiction.

2.4.2 Connection with Hilbert-Kunz multiplicity

Now we discuss a very useful connection between Hilbert-Kunz multiplicity and tight

closure. For two ideals I ⊂ J , it is easy to see that eHK(I) ≥ eHK(J), but an equality

may hold despite that the two ideals are distinct. The following theorem, due to

Hochster and Huneke, describes when does it happen.

Recall that a local ring is formally unmixed if Ass(R̂) = Minh(R̂). For example,

a complete domain is formally unmixed.

Theorem 2.4.8. Let (R,m) be a formally unmixed local ring and I ⊆ J are ideals.

Then J ⊆ I∗ if and only if eHK(I) = eHK(J).

The proof of the “if” direction is quite involved, so we do not present it. The

following lemma shows that the Hilbert-Kunz multiplicity can be computed using the

filtration (I [q])∗, it can be thought of as a generalization of the “only if” direction. We
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are interested in this filtration, since it is often more useful then the usual filtration

I [q].

Remark 2.4.9. If R has a test element c, then, by definition, c
√

0 = c0∗ = 0. Since

c does not belong to any minimal prime, it follows that RP is reduced for any min-

imal prime P of R. Therefore the dimension of the nilradical of R is less than

dimR. Now, from the additivity of Hilbert-Kunz multiplicity on exact sequences and

Lemma 2.3.12, we obtain that eHK(I,M) = eHK(I, Rred ⊗R M) for any m-primary

ideal I and module M .

Lemma 2.4.10. Let (R,m) be a local ring of characteristic p > 0, I be an m-primary

ideal, and M a finitely generated R-module. If R has a test element c, then

lim
q→∞

1

qd
λ(M/(I [q])∗M) = eHK(I, Rred ⊗RM) = eHK(I,M).

Proof. First, by definition and (6) of Proposition 2.4.3, c is still a test element in

Rred. Also, Proposition 2.4.3 shows that R/(I [q])∗ ∼= Rred/(I
[q]Rred)

∗, and, using the

previous remark, we assume that R is reduced.

Now, consider an exact sequence

R
c−→ R→ R/(c)→ 0.

Since c(I [q])∗ ⊆ I [q], we obtain that the sequence

R/(I [q])∗ ⊗RM
c−→ R/I [q] ⊗RM → R/(c, I [q])⊗RM → 0.

is still exact. Together with inclusion I [q] ⊆ (I [q])∗ this shows that

λ(M/(I [q])∗M) ≤ λ(M/I [q]M) ≤ λ(M/(I [q])∗M) + λ(M/(c, I [q])M).



34

Since c is not contained in any minimal prime, dimM/cM ≤ dimR/(c) < dimR.

Therefore eHK(I,M) = lim
q→∞

1
qd
λ(M/(I [q])∗M).

We will need the following corollary to deal with localization of tight closure.

Unfortunately, tight closure does not commute with localization, but there is still an

inclusion I∗Rp ⊆ (IRp)
∗, where the first closure is taken in R and the second is in

Rp. Thus, the corollary allows us to compute the Hilbert-Kunz multiplicity of Rp by

taking the filtration (p[q])∗Rp.

Corollary 2.4.11. Let (R,m) be a local ring of characteristic p > 0 with a test

element c. If Iq is a sequence of ideals such that m[q] ⊆ Iq ⊆ (m[q])∗ then

lim
q→∞

1

qd
λ(R/Iq) = eHK(R).

Proof. The claim follows from Lemma 2.4.10, since the inclusions m[q] ⊆ Iq ⊆ (m[q])∗

give that

eHK(R) ≥ lim
q→∞

1

qd
λ(R/Iq) ≥ lim

q→∞

1

qd
λ(R/(m[q])∗) = eHK(R).

More importantly, there is a partial converse to this inequality. It will useful later,

as it provides us a way to detect when a filtration is in tight closure.

Lemma 2.4.12. Let (R,m) be an formally unmixed local ring of characteristic p > 0

and I be an m-primary ideal. If Iq is a sequence of ideals such that I [q] ⊆ Iq, I
[q′]
q ⊆ Iqq′

for all q, q′, and

lim
q→∞

λ (R/Iq)

qd
= eHK(I),

then Iq ⊆ (I [q])∗ for all q.
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Proof. By the assumptions on Iq,

I [qq′] ⊆ I [q′]
q ⊆ Iqq′ .

Therefore, by Lemma 2.3.8

qd eHK(I) = eHK(I [q]) ≥ eHK(Iq) ≥ lim
q→∞

λ (R/Iqq′)

(q′)d
= qd eHK(I),

so eHK(I [q]) = eHK(Iq). Hence by Theorem 2.4.8, Iq ⊆ (I [q])∗.

The following lemma helps us to understand what it means for an element to be

regular modulo tight closures of consecutive powers. Recall that for an ideal I and

element x /∈ I we denote I : x∞ =
⋃
n I : xn.

Lemma 2.4.13. Let R be a local ring of characteristic p > 0, I be an ideal, and x

an element. Suppose R has a test element c, then the following are equivalent:

(a) x is not a zero divisor modulo (I [q])∗ for any q,

(b) I [q] : x∞ ⊆ (I [q])∗ for all q,

(c) for all q there are ideals Iq such that x is not a zero divisor modulo Iq and

I [q] ⊆ Iq ⊆ (I [q])∗.

Proof. (a) ⇒ (b) since I [q] : x∞ ⊆ (I [q])∗ : x∞. (b) ⇒ (c) trivially. For the last

implication, we observe that if ax ∈ (I [q])∗ for some q, then caq
′
xq
′ ∈ I [qq′] for all

q′ >> 0. But, since xq
′

is not a zero divisor modulo Iqq′ ,

caq
′ ∈ Iqq′ ⊆ (I [qq′])∗.

Since R has a test element, these equations imply that a ∈ (I [q])∗.



36

Corollary 2.4.14. Let (R,m) be a local ring of positive characteristic and p be a

prime ideal. Let Lq = p[q]Rp ∩ R be the p-primary component of p[q]. If R has a test

element c, the following are equivalent:

(a) (p[q])∗ is p-primary for any q,

(b) Lq ⊆ (p[q])∗ for all q,

(c) for all q there exist p-primary ideals Iq such that p[q] ⊆ Iq ⊆ (p[q])∗.

Proof. Clearly, Iq = Lq yields (b)⇒ (c).

For an ideal I such that
√
I = p, we can characterise its p-primary part as the

smallest among the ideals containing I and such that any element x /∈ p is not a zero

divisor modulo that ideal. Thus, for (c) ⇒ (a), we note that p[q] : x∞ ⊆ Iq and use

the lemma above.

For the last implication, we just note that p[q]Rp ∩R ⊆ (p[q])∗Rp ∩R.
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Chapter 3

Multiplicities and Singularities

3.1 Introduction

An important stimulus for the development of multiplicity theories is their applica-

tions in singularity theory. Hilbert-Samuel theory enjoyed a growth spurt in 60-70s

due to its appearance in the celebrated work of Hironaka on resolution of singularities

in characteristic 0. It is impossible to give even a modest overview in a few pages, so

we restrict ourselves to earlier foundations.

The first step was made by Nagata ([26, Theorem 40.6]).

Theorem 3.1.1. Let (R,m) be a formally unmixed local ring. Then e(R) = 1 if and

only if R is regular.

We recall that a local ring is formally unmixed if Ass(R̂) = Minh(R̂), i.e. for every

associated prime P of R̂, dim R̂/P = dimR. Since the completion of a regular ring

is still regular and a regular local ring is a domain, a regular local ring is formally

unmixed. This assumption is needed to guarantee that there are no low dimensional

components, as they do not contribute to the limit.

Example 3.1.2. For example, let R = k[[x, y]]/x(x, y). Then R is not regular, but
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e(R) = 1. Note that R has an embedded prime ideal (x, y).

Nagata’s result was extended to Hilbert-Kunz multiplicity by Watanabe and

Yoshida ([33]). In fact, since eHK(R) ≤ e(R) (see Remark 3.1.14), this result is

stronger than Nagata’s characterization.

Theorem 3.1.3. Let (R,m) be a formally unmixed local ring of characteristic p > 0.

Then eHK(R) = 1 if and only if R is regular.

Of course, it is nice to have an invariant that detects regularity, but more is needed

if we hope to use it in an algorithm for a resolution of singularities.

Let us give a naive approach to a resolution of singularities. First, we look for the

set of the “worst” singularity measured by the maximal value of an invariant on the

variety. Since we would like to blow-up along this set, the set had better be closed.

During this procedure, we want the maximal value to decrease considerably, so after

finitely many steps we will get a regular scheme.

So, very roughly, we want an invariant that detects regularity, whose maximal

value locus is closed, and that behaves quite well under a blow-up (or, perhaps, under

a “good” blow-up).

This strategy can be made to work in characteristic 0 with multiplicity used as

a part of the controlling invariant. However, the proof fails badly in characteristic p

and the problem is wide open.

The following property guarantees us that the maximal value set is closed.

Definition 3.1.4. Let X be a topological space and f : X → R be a function. We
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say that f is locally constant if for every a ∈ R, the set

X≤a = {x ∈ X | f(x) ≤ a}

is open.

Remark 3.1.5. Let us briefly review Zariski’s topology on the spectrum and set up

some notation. We refer to Chapter 1 of [22] for more details.

For a ring R, we can make SpecR into a topological space by setting the closed

sets to be of the form

V (I) = {p ∈ SpecR | I ⊆ p}

for an arbitrary set (or, equivalently, ideal) I. Naturally, V (I) can be identified with

the spectrum of R/I.

The open sets are defined as complements, but any open set is a (possibly, infinite)

union of principal open sets

Ds = {p ∈ SpecR | s /∈ p}

for an element s ∈ R. A principal open set Ds can be identified with SpecRs, so if

we restrict our attention to Ds, we may aswell consider prime ideals in Rs.

Since the spectrum X = SpecR of a Noetherian ring is Noetherian, the ascending

chain (as a increases) of open sets X≤a stabilizes, so a locally constant function f

attains its maximum. Furthermore, this property provides a stratification of SpecR

by locally closed sets X=a = X≤a ∩X≥a. We note that the set X≥a is closed as the

intersection of closed sets X>b for all b > a.
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We can consider any kind of multiplicity as a function on the spectrum, by setting

e(p) = e(Rp) for any prime p. In [26, Theorem 40.3] Nagata showed that Hilbert-

Samuel multiplicity satisfies the desired property.

Theorem 3.1.6. Let R be an excellent locally equidimensional ring. Then the Hilbert-

Samuel multiplicity is locally constant on SpecR.

We are going to put some effort into proving this theorem, as it will allow us to

develop results that will further guide us in our quest in Hilbert-Kunz theory. First

of all, we will need Nagata’s criterion ([22, 22.B]), a common tool used to prove that

something is open.

Proposition 3.1.7. Let R be a ring. A subset U of SpecR is open if and only if the

following two conditions are satisfied:

1. U is stable under generalization, i.e. if q ∈ U and p ⊆ q, then p ∈ U ,

2. U contains a nonempty open subset of V (p) for any p ∈ U .

The first condition is verified via the following result ([26, Theorem 40.1]).

Proposition 3.1.8. Let (R,m) be a formally equidimensional local ring and p be a

prime ideal.

e(p) ≤ e(m).

Now, we are left to check the second condition. First of all, it is enough to consider

only principal open sets. So, we need to show that there exists s /∈ p such that

Ds ∩ V (p) ⊆ X≤a whenever e(p) ≤ a. Second, if e(p) = a, the previous proposition
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shows that the only way to enforce the inclusion above is to force multiplicity to be

constant on Ds ∩ V (p).

Thus we just showed that the following assertion is equivalent to Theorem 3.1.6.

Theorem 3.1.9. Let R be an excellent locally equidimensional ring. Then for any

prime ideal p, there is an element s /∈ p, such that multiplicity is constant on V (p) ∩

Ds, i.e. for every prime ideal q ⊇ p, e(q) = e(p) provided that s /∈ q.

This naturally leads to study prime ideals p such that e(p) = e(q) for every prime

q containing p. We will call this property “equimultiplicity”.

3.1.1 Analytic Spread and Equimultiplicity

We will need some results of the theory of integral closure and analytic spread. For

an in-depth treatment, a good reference is the monograph devoted to the subject by

Swanson and Huneke ([30]).

Definition 3.1.10. Let I be an ideal in ring R. An element x ∈ R is integral over I

if it satisfies an equation of the form

xn + a1x
n−1 + . . .+ an = 0

where for all i the coefficient ai belongs to I i.

The set of all elements of R that are integral over I is called the integral closure

of I and is denoted I. It can be verified that I is an ideal that coincides with its

integral closure.



42

Definition 3.1.11. Let (R,m) be a local ring and let I be an ideal. The analytic

spread of I, `(I), is the Krull dimension of the ring

R[It]/mR[It] ∼= R/m⊕ I/mI ⊕ I2/mI2 ⊕ . . . .

The following result ([30, Proposition 8.3.7] gives us a relation between integral

closure and analytic spread.

Proposition 3.1.12. Let (R,m) be a local ring with an infinite residue field and let

I be an ideal. Then `(I) is the minimal number of elements needed to generate I up

to integral closure, i.e. the minimum among numbers of generators of ideals J such

that J = I.

If the residue field is finite, then assertion holds for some power of I.

The analytic spread is naturally bounded ([30, Corollary 8.3.9]).

Lemma 3.1.13. Let R be a ring and I an ideal in R. Then ht I ≤ `(I) ≤ dimR.

Remark 3.1.14. There is a powerful connection between Hilbert-Samuel multiplicity

and integral closure. In fact, Theorem 2.4.8 was modeled after the corresponding

results for integral closure.

Let us sketch an easy application of the theory. Let (R,m) be a local ring of

positive characteristic with an infinite residue field. Then `(m) = dimR by the

preceeding lemma, so Proposition 3.1.12 asserts that there is a parameter ideal J

such that J = m. Also, m = m since m is maximal. This forces e(J) = e(m), since

multiplicity does not change within the integral closure, similarly to Theorem 2.4.8.
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On the other hand, since J ⊆ m, eHK(m) ≤ eHK(J). But since J is a parameter

ideal, eHK(J) = e(J) by Corollary 2.3.6, so eHK(m) ≤ e(m).

In fact, we could extend the residue field using a suitable flat extension, so the

result holds in full generality.

Definition 3.1.15. Let R be a ring, I an ideal, and x1, . . . , xr elements of R. We

say that x1, . . . , xr are a system of parameter modulo I, if the images of x1, . . . , xr in

R/I are a system of parameters.

We will need the following result of Rees ([28]) that characterizes analytic spread

using integral closures of the consecutive powers.

Lemma 3.1.16. Let (R,m) be a formally equidimensional local ring and I be an ideal.

Then `(I) ≤ dimR − r if and only if there exists a system of parameters x1, . . . , xr

modulo I such that for all 0 ≤ i < r and for all n

xi+1 is not a zero divisor modulo (I, x1, . . . , xi)n = (In, xn1 , . . . , x
n
i ).

Proof. We will use the result of Burch ([4]): if x is regular modulo In for all n, then

`((I, x)) = `(I) + 1.

Suppose `(I) ≤ dimR−r. We use induction on r. The base case of r = 0 is trivial.

Now, if `(I) < dimR, a result of McAdam and Ratliff ([23], [27], [30, Theorem 5.4.6])

states that m is not an associated prime of In for all n. Since
⋃
n Ass(In) is finite

(Brodmann, [3]), by prime avoidance, there is an element x regular modulo In for all

n. Now, the assertion follows by induction applied to (I, x).

For the other direction, we use the result of Burch to obtain that `(I) + r =

`((I, x1, . . . , xr)) ≤ dimR.
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This can be considered as an Auslander-Buchsbaum type formula, where analytic

spread plays the role of projective dimension and a regular sequence is considered

“up to integral closure”. Such a sequence was called an asymptotic prime sequence

by Rees.

Theorem 3.1.17. Let (R,m, k) be a formally equidimensional local ring. For an

ideal I in R the following conditions are equivalent:

(a) `(I) = ht(I),

(b) for every (equivalently, some) parameter ideal J modulo I

e(I + J) =
∑

P∈Minh(I)

e(J,R/P ) e(I, RP ),

(c) if k is infinite, there is a system of parameter J = (x1, . . . , xr) modulo I which

is a part of a system of parameter is R, and such that

• if r < dimR then
∑

P∈Minh(I) e(J,R/P ) e(IRP ) = e(IR/J)

• if r = dimR then
∑

P∈Minh(I) e(J,R/P ) e(IRP ) = e(J),

(d) for every (equivalently, some) system of parameters (x1, . . . , xr) modulo I, all

0 ≤ i < r, and all n

xi+1 is regular modulo (I, x1, . . . , xi)n.

Proof. For the equivalence of the first three conditions we refer the reader to Lipman’s

survey ([21, Theorem 4]).

Now, (d) implies (a) by the lemma above. The converse follows from the proof

of Lemma 3.1.16. Namely, observe that `(IRP ) = ht(IRP ) for any prime ideal P
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containing I. It follows that In has no embedded associated primes (this was noted

by Ratliff in [27, Corollary 11]), thus we can take any parameter in the proof of

Lemma 3.1.16.

Remark 3.1.18. It is important to note that the equivalent characterizations represent

extremal conditions. For example, (a) asserts that the analytic spread attains its

minimal possible value (Lemma 3.1.13). Similarly, via Lemma 3.1.16, r is the maximal

length that we could hope for in (d). With a bit more work one can show that, in

general, e(I+J) ≥
∑

P∈Minh(I) e(J,R/P ) e(I, RP ), so (b) is also an extremal condition.

An ideal I satisfying the equivalent conditions of the theorem is called equimultiple.

This is motivated by the following special case ([21, Corollary, p. 121]).

Corollary 3.1.19. Let (R,m) be a formally equidimensional local ring and let p be

a prime ideal such that R/p is a regular. The following are equivalent:

1. e(p) = e(m),

2. `(p) = ht(p),

3. for every (equivalently, some) parameter ideal J modulo p

e(p + J) = e(J,R/p) e(p),

4. for every (equivalently, some) system of parameters (x1, . . . , xr) modulo p, for

all 0 ≤ i < r, and all n

xi+1 is regular modulo (p, x1, . . . , xi)n.
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Now, we can sketch the proof of Theorem 3.1.9.

Proof. If p is a maximal ideal, there is nothing to prove, so assume that it is proper.

Since R/p is an excellent domain, its regular locus is open and non empty, so there

is an element f /∈ p such that Rf/pRf is regular.

Now, by Lemma 3.1.13, `(pRp) = dimRp = ht p := h. Since p is a proper

prime ideal, the residue field Rp/pRp is infinite. Thus by Proposition 3.1.12 there

are elements x1, . . . , xh ∈ Rp such that (x1, . . . , xh) = pRp. Now, we can collect

denominators and invert an element s to guarantee that Rs contains all xi and all

coefficients of some integral dependence equations of a system of generators of p.

Therefore, (x1, . . . , xh) = pRs, and the claim follows from the characterization in

Corollary 3.1.19.

3.2 Hilbert-Kunz functions

Inspired by the classical results of Hilbert-Samuel multiplicity, we want to understand

whether the theory translates to positive characteristic. We hope that the new multi-

plicity could be useful for resolution of singularities as it captures more information.

Let us illustrate it with the following example.

Example 3.2.1. Let us list Hilbert-Kunz multiplicities of the well-known class of Du

Val (ADE) singularities. Du Val surfaces have many amazingly different character-

izations, for example, they classify rational double points in characteristic zero or

p > 5. Thus all of them have multiplicity two. However, Watanabe and Yoshida

([33]) obtained the following Hilbert-Kunz multiplicities:
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(An) eHK (k[[x, y, z]]/(zn+1 + xy)) = 2− 1
n+1

,

(Dn) eHK (k[[x, y, z]]/(x2 + zy2 + zn−1)) = 2− 1
4n−8

for p > 2,

(E6) eHK (k[[x, y, z]]/(x2 + y3 + z4)) = 2− 1
24

for p > 3,

(E7) eHK (k[[x, y, z]]/(x2 + y3 + xz3)) = 2− 1
48

for p > 3,

(E8) eHK (k[[x, y, z]]/(x2 + y3 + z5)) = 2− 1
120

for p > 5.

Another characterization of Du Val singularities comes from invariant theory. Over

k = C, the hypersurfaces listed above arise as the completions of invariant rings of

C[x, y] by the action of a finite subgroup G ⊂ SL2(C). Then the Hilbert-Kunz

multiplicities above are computed by the formula 2 − 1/|G|, thus providing us with

more information than the usual multiplicity.

The first step was made by Kunz, who started to study behavior of a fixed Hilbert-

Kunz function λq(p) = λ(Rp/p
[q]Rp)/q

ht p. In [19, Proposition 3.3] Kunz obtained

the following result that verifies the first condition of Nagata’s criterion (Proposi-

tion 3.1.7). The proof below is due to Huneke and Yao ([16]).

Theorem 3.2.2. Let (R,m) be a local ring and p be a prime ideal such that ht p +

dimR/p = dimR. Then for all q

λq(p) ≤ λq(m).

Proof. By induction, it is enough to consider the case when dimR/p = 1.

Let f ∈ m\p be arbitrary. First, by Corollary 2.1.10 and the associativity formula

(Proposition 2.1.3), for all q we have

λ(R/((p, f)[q])) = λ(R/(p[q], f q)) ≥ e(f q, R/p[q]) = e(f q, R/p)λRp(Rp/p
[q]Rp).
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By Lemma 2.1.4 and Corollary 2.1.10,

e(f q, R/p) = q e(f,R/p) = q λ(R/(p, f)).

So, combining this with the previous formula, we see that

λ(R/((p, f)[q])) ≥ q λ(R/(p, f))λRp(Rp/p
[q]Rp).

Moreover, by Lemma 2.3.15, λ(R/m[q])λ(R/(p, f)) ≥ λ(R/(p, f)[q]), so combining

our findings we obtain that λ(R/m[q]) ≥ q λ(Rp/p
[q]Rp). Now the result follows after

dividing by qdimR and noting that dimR = dimRp + 1 by the assumption.

By taking limits, we obtain the following corollary.

Corollary 3.2.3. Let R be an equidimensional catenary ring. Then for all q and for

all prime ideals p ⊆ q

eHK(p) ≤ eHK(q).

And the second part of Nagata’s criterion can be verified fairly easily. Kunz did

it in [19, Corollary 3.4] and Shepherd-Barron ([29]) obtained a different proof that

we present below.

Theorem 3.2.4. If R is an excellent locally equidimensional ring, then for any fixed

q the qth Hilbert-Kunz function λq is locally constant on SpecR.

Proof. We use Nagata’s criterion. Theorem 3.2.2 verifies the first condition. So, we

want to show that for an arbitrary prime ideal p there is an element s /∈ p such that

λq is constant on V (p) ∩Ds.
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Take an arbitrary prime filtration of R/p[q]:

0 ⊂M1 ⊂ . . . ⊂Mi ⊂ . . .MN = R/p[q],

where Mi+1/Mi
∼= R/Pi. By prime avoidance there is an element s ∈

⋂
Pi 6=p Pi \ p,

so the original prime filtration of R/p[q] induces a prime filtration of Rs/p
[q]Rs where

Rs/pRs is the only prime factor. Thus the length of this filtration is λ(Rp/p
[q]Rp).

Since R/p is an excellent domain, its regular locus is open and non-empty, so there

exists an element f /∈ p such that Rf/pRf is regular. Let m ∈ V (p) ∩ Dsf . Then

mRm = (p, x1, . . . , xr)Rm for a regular sequence x1, . . . , xr modulo p. Note that

Rm/m
[q]Rm = Rm/(p

[q], xq1, . . . , x
q
r)Rm

∼= Rm/p
[q]Rm ⊗Rm Rm/(x1, . . . , xr)

[q]Rm,

so, tensoring the prime filtration above with Rm/(x1, . . . , xr)
[q], we obtain

λRm(Rm/m
[q]Rm) ≤ λ(Rp/p

[q]Rp)λRm

(
Rm/pRm ⊗Rm Rm/(x1, . . . , xr)

[q]Rm

)
.

Because x1, . . . , xr is a regular sequence in Rm/pRm, it follows from Lemma 2.1.9 that

λRm

(
Rm/(p, (x1, . . . , xr)

[q])
)

= qdimRm/pRm λRm (Rm/(p, x1, . . . , xr)) = qdimRm/pRm .

Thus, the previous estimate shows that λq(m) ≤ λq(p), so, by Theorem 3.2.2, λq(m) =

λq(p). Note that ht p + dimRm/p = dimRm since R is catenary and locally equidi-

mensional.

3.3 Equimultiplicity theory for Hilbert-Kunz mul-

tiplicity

Motivated by Theorem 3.1.9 we may ask whether Theorem 3.2.4 extends for the limit.
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Question 3.3.1. Let R be an excellent locally equidimensional ring. Is the Hilbert-

Kunz multiplicity locally constant on SpecR?

As a first step, if we try to follow the treatment of Hilbert-Samuel multiplicity

from Section 3.1, we see that the first condition of Nagata’s criterion is still satisfied

by Corollary 3.2.3. So, we need to translate Theorem 3.1.9 and, again, we need to

study equimultiplicity, this time in Hilbert-Kunz theory.

A curious reader may wonder if the preceeding theorem can be used to answer

this question. A natural approach would be to hope that we can ever make the total

Hilbert-Kunz functions to be equal, but this is hardly possible. The devil hides in the

need to invert an element to force constancy of λq for a fixed q. So we have infinitely

many open sets Dsq whose intersection might not be open. This suggest that we need

to study the behavior of Hilbert-Kunz functions more deeply.

In fact, it is quite easy to precisely characterize the constancy of a fixed Hilbert-

Kunz function. This characterization can be also used to give a different proof of

Theorem 3.2.4; this time we use that the Cohen-Macaulay locus is open in excellent

rings (Proposition 2.2.13).

Proposition 3.3.2. Let (R,m) be a local ring of characteristic p > 0 and p be a

prime ideal of R such that R/p is regular and ht p + dimR/p = dimR. Then, for a

fixed q, λq(m) = λq(p) if and only if R/p[q] is Cohen-Macaulay.

Therefore the (normalized) Hilbert-Kunz functions of m and p coincide for all q if

and only if R/p[q] are Cohen-Macaulay for all q.

Proof. Let x1, . . . , xm be a minimal system of generators of m modulo p. By the
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associativity formula, Corollary 2.3.6, and Lemma 2.3.8

e((x1, . . . , xm)[q], R/p[q]) = e((x1, . . . , xm)[q], R/p)λRp(Rp/p
[q]Rp) = qm λRp(Rp/p

[q]Rp).

Since qm λRp(Rp/p
[q]Rp) = qdimR λq(p), we obtain by Proposition 2.1.12 that

qdimR λq(m) = λ(R/(p[q], xq1, . . . , x
q
m)) ≥ e((x1, . . . , xm)[q], R/p[q]) = qdimR λq(p).

Thus, λq(m) = λq(p) if and only if λ(R/(p[q], xq1, . . . , x
q
m)) = e((x1, . . . , xm)[q], R/p[q]).

However, by Proposition 2.1.12, the latter holds if and only if R/p[q] is Cohen-

Macaulay.

While the characterization is simple and natural, it is not clear whether it could

be used for our modest needs, i.e. a generalization of the proof of Theorem 3.1.9. We

do not see a way to force this condition by inverting an element, since, again, we need

to intersect infinitely many open sets.

This is why we need to go further and try to characterize equality of Hilbert-Kunz

multiplicities. It will be much harder to achieve, and the next chapter is devoted to

this problem. This characterization will be of similar spirit to Proposition 3.3.2, and,

having a better control over Hilbert-Kunz multiplicity, we will learn that, in fact, the

conditions of Proposition 3.3.2 cannot be forced for all q by inverting a single element.
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Chapter 4

Equimultiplicity for Hilbert-Kunz
multiplicity

In this chapter we will derive a Hilbert-Kunz analogue of Theorem 3.1.17. As a

consequence, we are able to characterize a prime ideal p in a local ring (R,m) such

that R/p is regular and eHK(m) = eHK(p) similarly to Corollary 3.1.19. Later, we will

use our findings to obtain a negative answer to Question 3.3.1.

First, we need a uniform convergence result to derive a critical formula. We closely

follow the uniform convergence method of Kevin Tucker ([31]), tayloring the estimates

for our purpose.

4.1 A uniform convergence result

4.1.1 Overview of the proof

Before proceeding to technicalities, let us sketch the ideas of the proof. Over a local

ring (R,m) we are going to prove uniform convergence (with respect to q) of the

bisequence

λ(M/(I [q] + J [qq′])M)

qdimRq′dimR/I
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where I is an ideal, M is a finitely generated module, and J is an m-primary ideal.

Observe that for I = 0 and q′ = 1 we recover the usual Hilbert-Kunz function. After

establishing uniform convergence, we use it to interchange the limits (with respect to

q and q′) of the bisequence.

Uniform convergence will be established by showing that the sequence is Cauchy

with an appropriate estimate; to do the bookkeeping of estimates we follow Tucker’s

treatment in [31]. Tucker’s proof can be viewed as a careful adaptation of the original

proof of existence of Hilbert-Kunz multiplicity by Monsky ([24]).

With the exception of minor tweaks and variations, Monsky’s approach is the only

known proof of the existence of Hilbert-Kunz multiplicity. In the proof he uses the

idea of Proposition 2.2.5 to compare

λ(M/(I [q] + J [qq′])M) and λ(R/(I [q] + J [qq′])⊗R F∗M)

instead of directly comparing two consecutive terms of the bisequence. This requires

R to be F-finite, but we can reduce to this situation via Remark 2.2.14.

4.1.2 A variation of Tucker’s result

We start with an upper bound for a function that we study.

Lemma 4.1.1. Let (R,m) be a local ring and I be an ideal. Then there exists a

constant C such that

λ(R/(I [q] + m[qq′])) ≤ Cq′ dimR/IqdimR

for all q, q′.
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Proof. Let x1, . . . , xh be elements of R such that their images form a system of pa-

rameters in R/I. Then

λ(R/(I [q] + m[qq′])) ≤ λ(R/(I [q] + (x1, . . . , xh)
[qq′])) = λ(R/(I [q] + (xqq

′

1 , . . . , xqq
′

h ))).

Filtering by the powers of xqi (i.e. repeatedly applying Lemma 2.1.9), we get that

λ(R/(I [q] + (xqq
′

1 , . . . , xqq
′

h ))) ≤ (q′)h λ(R/(I, x1, . . . , xh)
[q]).

Since (I, x1, . . . , xh) is an m-primary ideal, it contains a system of parameters, say,

y1, . . . , yd. Then, filtering by the powers of yi, we obtain that

λ(R/(I, x1, . . . , xh)
[q]) ≤ λ(R/(y1, . . . , yd)

[q]) ≤ qd λ(R/(y1, . . . , yd)).

Last, let C = λ(R/(y1, . . . , yd)) and observe that d = dimR and h = dimR/I.

Corollary 4.1.2. Let (R,m) be a local ring, let J be an m-primary ideal, and I be

an arbitrary ideal. If M is a finitely generated R-module, then there exists a constant

D (independent of q′) such that for all q, q′

λ(M/(I [q] + J [qq′])M) ≤ Dq′ dimR/IqdimM .

Proof. Since J is m-primary, m[q0] ⊆ m for some q0, thus if the result holds for J = m

λ(M/(I [q] + J [qq′])M) ≤ λ(M/(I [q] + m[qq′q0])M) ≤≤ (DqdimM
0 )q′dimR/IqdimM .

Therefore we assume that J = m.

Let K be the annihilator of M and let n be the minimal number of generators

of M . Then there exists a surjection (R/K)n → M → 0, so, after tensoring with
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R/(I [q] + m[qq′]), we obtain from Lemma 4.1.1 the estimate

λ(M/(I [q] + m[qq′])M) ≤ nλ(R/(K + I [q] + m[qq′])) ≤ nCq′ dimR/(I+K)qdim(R/K)

≤ nCq′ dimR/IqdimM .

Remark 4.1.3. Suppose for two R-modules, M and N , MP
∼= NP for any minimal

prime P ∈ Minh(R). If R is reduced, we want to observe that S−1M ∼= S−1N where

S is the complement to the union of all primes in Minh(R). This follows from the

isomorphism S−1R ∼=
∏

P∈Minh(R)

RP .

Lemma 4.1.4. Let (R,m) be a local ring, let J be an m-primary ideal, and I be

an arbitrary ideal. Let M,N be finitely generated R-modules. Moreover, suppose

MP
∼= NP for any minimal prime P such that dimR/P = dimR. Then there exists

a constant C independent of q′ and such that for all q, q′

|λ(M/(I [q] + J [qq′])M)− λ(N/(I [q] + J [qq′])N)| < Cq′dimR/IqdimR−1.

Proof. Let S = R \ ∪Minh(R)P . By the previous remark, S−1M = S−1N , so, since

S−1 HomR(M,N) = HomS−1R(S−1M,S−1N), there exist homomorphisms M → N

and N →M that become isomorphisms after localization by S. Thus we have exact

sequences

M → N → K1 → 0,

N →M → K2 → 0

where dimK1, dimK2 < dimR, since S−1K1 = S−1K2 = 0.
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Tensoring the first exact sequence with R/(I [q] + J [qq′]) and taking length, we

obtain that

λ(N/(I [q] + J [qq′])N) ≤ λ(M/(I [q] + J [qq′])M) + λ(K1/(I
[q] + J [qq′])K1),

while the second sequence yields

λ(M/(I [q] + J [qq′])M) ≤ λ(N/(I [q] + J [qq′])N) + λ(K2/(I
[q] + J [qq′])K2).

By Corollary 4.1.2, there are constants C1 and C2 such that λ(K1/(I
[q] +J [qq′])K1) ≤

C1q
′ dimR/IqdimR−1 and λ(K2/(I

[q] + J [qq′])K2) ≤ C2q
′ dimR/IqdimR−1. Combining the

estimates together, we derive that

|λ(N/(I [q] + J [qq′])N)− λ(M/(I [q] + J [qq′])M)| ≤ max(C1, C2)q′dimR/IqdimR−1.

Remark 4.1.5. Provided that Hilbert-Kunz multiplicity exists, Lemma 4.1.4 shows

that if M and N are two modules and MP
∼= NP for any minimal prime P such that

dimR/P = dimR, then eHK(J,M) = eHK(J,N) for any m-primary ideal J .

Theorem 4.1.6. Let (R,m) be a reduced F-finite local ring of dimension d, J an

m-primary ideal, and I be an ideal. Then for any finitely generated R-module M

there exists a constant C such that

|λ(M/(I [q] + J [qq′])M)− qd eHK(I + J [q′],M)| < Cqd−1q′ dimR/I

for all q, q′. In particular, the bisequence

λ(M/(I [q] + J [qq′])M)

qdimRq′dimR/I

converges uniformly with respect to q.
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Proof. By Corollary 2.2.10, (F∗M)P and M⊕pα(R)+d

P are isomorphic for any minimal

prime P ∈ Minh(R). Thus, we can apply Lemma 4.1.4 to M⊕pα(R)+d
and F∗M and

get that

|pα(R)+d λ(M/(I [q] + J [qq′])M)− λ(F∗M/(I [q] + J [qq′])F∗M)| < Cq′dimR/Iqd−1

for any q, q′ and a constant C depending only on M and I. By Proposition 2.2.7,

λ(F∗M/(I [q] + J [qq′])F∗M) = pα(R) λ(M/(I [qp] + J [qpq′])M).

Therefore, using that p−α(R)C ≤ C,

|pd λ(M/(I [q] + J [qq′])M)− λ(M/(I [qp] + J [qpq′])M)| < Cq′dimR/Iqd−1. (4.1.1)

Now, we prove by induction on q1 that for all q, q′

|(q1)d λ(M/(I [q] + J [qq′])M)− λ(M/(I [qq1] + J [qq1q′])M)| < Cq′ dimR/I(qq1/p)
d−1 q1 − 1

p− 1
.

(4.1.2)

The induction base of q1 = p is (4.1.1). Now, assume that the claim holds for q1 and

we want to prove it for q1p.

First, (4.1.1) applied to qq1 gives

|pd λ(M/(I [qq1]+J [qq1q′])M)−λ(M/(I [qq1p]+J [qq1pq′])M)| < Cq′ dimR/I(qq1)d−1, (4.1.3)

and, multiplying the induction hypothesis by pd, we get

|(q1p)
d λ(M/(I [q]+J [qq′])M)−pd λ(M/(I [qq1]+J [qq1q′])M)| < Cq′dimR/I(qq1)d−1 q1p− p

p− 1
.

(4.1.4)
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Using that pd λ(M/(I [qq1] +J [qq1q′])M) appears in both (4.1.3) and (4.1.4), one obtains

|(q1p)
d λ(M/(I [q] + J [qq′])M)− λ(M/(I [qq1p] + J [qq1pq′])M)| <

< Cq′dimR/I(qq1)d−1

(
q1p− p
p− 1

+ 1

)
= Cq′dimR/I(qq1)d−1

(
q1p− 1

p− 1

)
,

and the induction step follows.

Now, dividing (4.1.2) by qd1 , we obtain

|λ(M/(I [q]+J [qq′])M)− 1

qd1
λ(M/(I [qq1]+J [qq1q′])M)| < Cqd−1 · q1 − 1

p− 1
· 1

q1pd−1
≤ Cqd−1.

Thus, if we let q1 →∞ and note that eHK(I [q] + J [qq′],M) = qd eHK(I + J [q′]), we

get that

|λ(M/(I [q] + J [qq′])M)− qd eHK(I + J [q′],M)| < Cqd−1,

and the claim follows.

Remark 4.1.7. The equation

|λ(M/(I [q] + J [qq′])M)− 1

qd1
λ(M/(I [qq1] + J [qq1q′])M)| < Cqd−1

yields (for I = 0 and q′ = 1) that the sequence λ(M/J [q])M)/qd is Cauchy. This shows

the limit in Definition 2.3.1 exists if R is F-finite and the next corollary establishes

it in full generality.

Corollary 4.1.8. Let (R,m) be a local ring of dimension d, J an m-primary ideal,

and I be an aribtrary ideal. Then there is a q0 such that for any finitely generated

R-module M there exists a constant C such that

|λ(M/(I [q] + J [qq′])M)− qd eHK(I + J [q′],M)| < Cqd−1q′ dimR/I
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for all q′ and all q ≥ q0. In particular, the bisequence

λ(M/(I [q] + J [qq′])M)

qdimRq′dimR/I

converges uniformly with respect to q.

Proof. First, we reduce to the case where R is F-finite. Using the recipe in Re-

mark 2.2.14, we can find a faithfully flat F-finite extension S of R such that mS is

the maximal ideal of S. Hence, for any Artinian R-module A, λS(A⊗R S) = λR(A).

Now, there is q0 = pe0 such that (
√

0S)q0 = 0. Naturally, N = F e0
∗ (S ⊗R M) is a

Sred-module, where Sred = S/
√

0S. Since Sred is reduced and F-finite, we can apply

Theorem 4.1.6 and find a constant C such that

|λS(Sred/(I
[q] + J [qq′])Sred ⊗Sred N)− qd eHK((I + J [q′])Sred, N)| < Cqd−1 (4.1.5)

for all q, q′.

Now, observe that

Sred
(I [q] + J [qq′])Sred

⊗Sred N ∼=
S

(I [q] + J [qq′])S
⊗S N ∼= F e0

∗

(
S ⊗RM

(I [qq0] + J [qq0q′])(S ⊗RM)

)
∼= F e0

∗

(
M

(I [qq0] + J [qq′q0])M
⊗R S

)
.

So,

λS

(
N

(I [q] + J [qq′])N

)
= λS

(
M

(I [qq0] + J [qq′q0])M
⊗R S

)
= λR(M/(I [qq0] + J [qq′q0])M).

Therefore, by definition,

eHK((I + J [q′])Sred, N) = eHK((I + J [q′])[q0],M) = qd0 eHK(I + J [q′],M)

and we can rewrite (4.1.5) as

|λR(M/(I [qq0] + J [qq0q′])M)− (qq0)d eHK(I + J [q′],M)| < Cqd−1 ≤ C(qq0)d−1.
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By setting q = qq0, we get that for all q ≥ q0 and all q′

|λR(M/(I [q] + J [qq′])M)− qd eHK(I + J [q′],M)| < Cqd−1.

Now, we can establish the main result of this section, which will be the basic tool

of our theory of equimultiplicity.

Corollary 4.1.9. Let (R,m) be a local ring, and J be an m-primary ideal. If I is an

ideal such that dimR/I + ht I = dimR, then

lim
q′→∞

eHK(I + J [q′],M) =
∑

P∈Minh(I)

eHK(JR/P,R/P ) eHK(IRP ,MP ).

Proof. We have proved that the double sequence

λ(M/(I [q] + J [qq′])M)

qdimRq′dimR/I

converges uniformly with respect to q. Moreover, the limit with respect to q′ exists

for any q since

lim
q′→∞

λ(M/(I [q] + J [qq′])M)

qdimMq′ dimR/I
=

eHK(J [q]R/I [q],M/I [q]M)

qdimR
,

where eHK(J [q]R/I [q],M/I [q]M) is taken over the ring R/I [q]. Thus, we the iterated

limits of the double sequence are equal, i.e.

lim
q′→∞

eHK(I + J [q′],M)

q′ dimR/I
= lim

q′→∞
lim
q→∞

λ(M/(I [q] + J [qq′])M)

qdimRq′dimR/I

= lim
q→∞

lim
q′→∞

λ(M/(I [q] + J [qq′])M)

qdimRq′dimR/I
= lim

q→∞

eHK(J [q]R/I [q],M/I [q]M)

qdimR
.

By Lemma 2.3.8, eHK(J [q]R/I [q],M/I [q]M) = qdimR/I eHK(JR/I [q],M/I [q]M). Note

that
√
I =
√
I [q], so dimR/I = dimR/I [q] and Minh(I) = Minh(I [q]). Moreover, by
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the associativity formula,

eHK(JR/I [q],M/I [q]M) =
∑

P∈Minh(I)

eHK(JR/P,R/P )λRP (MP/I
[q]MP ).

Hence

lim
q→∞

eHK(J [q]R/I [q],M/I [q]M)

qdimR
= lim

q→∞

eHK(JR/I [q],M/I [q]M)

qht I

=
∑

P∈Minh(I)

eHK(JR/P,R/P ) lim
q→∞

λRP (MP/I
[q]MP )

qht I

and the claim follows, since ht I = htP .

Corollary 4.1.10. Let (R,m) be a local ring, J an m-primary ideal, and p be a prime

ideal such that dimR/p + ht p = dimR. Then

lim
q→∞

eHK(p + J [q])

qdimR/p
= eHK(JR/p, R/p) eHK(Rp).

When R/p is regular, this corollary will help us to connect eHK(m) to eHK(p).

4.2 Equimultiplicity for ideals of dimension one

We will start developing the theory in the easiest case. Some of the results obtain

here will be used later; moreover, it will help us to highlight some connections.

Lemma 4.2.1. Let (R,m) be a local ring, I be an ideal, and x be a parameter modulo

I. Suppose dimR/I = dimR− 1. Then

1

n
λ(R/(I, xn)) ≥ 1

n+ 1
λ(R/(I, xn+1)).
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Proof. Observe that

I + (xk)

I + (xk+1)
∼=

(xk)

(xk) ∩ I + (xk+1)
∼=

R

I : xk + (x)
.

Thus we get the formula

λ

(
R

(I, xk+1)

)
= λ

(
R

(I, xk)

)
+ λ

(
R

I : xk + (x)

)
.

First of all, setting n = k in the formula, we see that it is enough to show that

λ(R/(I, xn)) ≥ nλ (R/(I : xn + (x))). Second, using the formula above for consecu-

tive values of k, we obtain that

λ (R/(I, xn)) = λ (R/(I, x)) +
n−1∑
k=1

λ
(
R/(I : xk + (x))

)
≥ nλ (R/(I : xn + (x))) ,

where the last inequality holds since I : xk ⊆ I : xn for all 0 ≤ k ≤ n.

Corollary 4.2.2. In the setting of the lemma, we have

1

n
eHK(I + (xn)) ≥ 1

n+ 1
eHK(I + (xn+1)).

Proof. Apply the lemma to I [q] and xq and take the limit as q →∞.

Recall that a discrete valuation ring (DVR) is a regular local ring of dimension

one. A DVR is a principal ideal domain.

Corollary 4.2.3. Let (R,m) to be a local ring of characteristic p > 0. Let p be a

prime ideal in R such that R/p is a DVR and ht p = dimR − 1. If x is a parameter

modulo p then the sequence

1

n
eHK(p + (xn))

monotonically decreases to its limit λ(R/(p, x)) eHK(p).
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Proof. By Corollary 4.2.2, the sequence of positive reals 1
n

eHK(p+(xn)) is decreasing,

hence converges. Moreover, by Corollary 4.1.10,

lim
q′→∞

eHK(p + (xq
′
))

q′
= eHK(x,R/p) eHK(p) = λ(R/(p, x)) eHK(p),

where the last equality holds since R/p is regular.

Corollary 4.2.4. Let (R,m) to be a local ring of characteristic p > 0. Let p be a

prime ideal in R such that R/p is a DVR and ht p = dimR − 1. Then the following

are equivalent:

1. eHK(m) = eHK(p),

2. eHK(p + (xn)) = n eHK(m) for all n and for all (equivalently, some) minimal

generators x of m/p,

3. eHK(p + (y)) = λ(R/(p, y)) eHK(m) for any (equivalently, some) element y /∈ p.

Proof. First, since R/p is a DVR, any parameter is a product of an invertible element

and a power of a minimal generator, so the last two claims are equivalent.

The previous corollary shows that the sequence eHK(p + (xn))/n is monotonically

decreasing to its limit eHK(p). Since m = p + (x), the equality between the first term

and the limit holds if and only if the sequence is constant.

Now, we summarize our results in a criterion for equimultiplicity similar to Corol-

lary 3.1.19. Recall that a formally unmixed (Ass(R̂) = Minh(R̂)) local ring is formally

equidimensional (Min(R̂) = Minh(R̂)), thus for any prime ideal p in R we must have

ht p + dimR/p = dimR (for example, see [30, Lemma B.4.2]).
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Theorem 4.2.5. Let (R,m) be a formally unmixed local ring of characteristic p > 0

and p be a prime ideal such that R/p is a DVR. Furhermore, suppose that R has a

test element. Let Lq = p[q] : m∞ to denote the saturation of p[q].

Then the following are equivalent:

(a) eHK(m) = eHK(p),

(b) for any (equivalently, some) element x /∈ p

eHK(p + (x)) = λ(R/(p, x)) eHK(m),

(c) For all n and some (all) x /∈ p,

lim
q→∞

1

qd
λ(R/(p[q] : xnq + (xq))) = λ(R/(p, x)) eHK(m),

(d) For some (all) x /∈ p, lim
q→∞

1
qd
λ(R/(Lq + (xq))) = λ(R/(p, x)) eHK(m),

(e) (p[q])∗ is p-primary for any q.

Proof. The first two conditions are equivalent by Corollary 4.2.4. Since

λ(R/(p[q], x(n+1)q)) = λ(R/(p[q], xnq)) + λ(R/(p[q] : xnq + (xq)))

we get that (b) and (c) are equivalent.

On the other hand, since xq is not a zero-divisor modulo Lq, Corollary 2.1.10 gives

that

λ(R/(Lq, x
q)) = e(xq, R/Lq) = q e(x,R/p)λRp(Rp/p

[q]).

So, the limit exists and is equal λ(R/(p, x)) eHK(p). Therefore, (d) and (a) are equiv-

alent too.
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By Lemma 2.4.12, (d) implies that Lq ⊆ (p[q], x)∗ for any parameter x, hence

Lq ⊆ (p[q])∗ by Lemma 2.4.6. Moreover, since dimR/p = 1, Lq is also the p-primary

part of p[q], so Corollary 2.4.14 shows that (d) implies the last condition. And the

converse holds by Lemma 2.4.10.

Remark 4.2.6. We want to point out a direct analogy between Proposition 3.3.2 and

equivalence of (a) and (e) in the theorem.

Now, let us recover condition (c) of Theorem 3.1.17.

Proposition 4.2.7. Let (R,m) be a formally unmixed local ring with a test element

c. Let p be a prime ideal of R such that R/p is a regular ring. Then the following are

equivalent

1. eHK(p) = eHK(R/(x)) for some minimal generator x of m modulo p,

2. eHK(p) = eHK(R/(y)) for some parameter y of m modulo p,

3. eHK(p) = eHK(m).

Proof. (1) ⇒ (2) is obvious. By Proposition 2.3.13, eHK(R) ≤ eHK(R/(y)) for any

parameter y in R. Thus, we always have inequalities eHK(p) ≤ eHK(m) ≤ eHK(R/(y)),

and (2) ⇒ (3) follows.

Now, we proceed to the last implication. First, suppose that dimR/p = 1. If

dimR = 1, p is a minimal prime. By the associativity formula, using Lemma 2.3.5

we observe that

eHK(m) =
∑

P∈Min(R)

eHK(m, R/P )λ(RP ) ≥ λ(Rp) = eHK(p).
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But eHK(p) = eHK(m), so p is the unique minimal prime. Take a minimal generator x

of m modulo p. Since R is unmixed, x is not a zero divisor. Then, by the associativity

formula and Corollary 2.1.10, we derive that

eHK(R/(x)) = λ(R/(x)) = e(x,R) = e(x,R/p)λ(Rp) = eHK(p).

Now, suppose that dimR ≥ 2. Then, by prime avoidance, there exists a minimal

generator x of m modulo p such that x does not belong to any minimal prime of (c).

We claim that

lim
q→∞

1

qd−1
λ(R/((p[q])∗, x)) ≥ eHK(R/(x)).

To see this, we tensor the exact sequence

R
c−→ R→ R/(c)→ 0

with R/(p[q], x) and observe that c((p[q])∗, x) ⊆ (p[q], x). Hence the sequence

R/((p[q])∗, x)
c−→ R/(p[q], x)→ R/(c, x, p[q])→ 0

is also exact. Note that dimR/(x, c) = dimR/(x) − 1. Therefore, taking the limit,

we get that lim
q→∞

1
qd−1 λ(R/((p[q])∗, x)) ≥ eHK(R/(x)).

Since eHK(p) = eHK(m), (p[q])∗ are p-primary for all q. Hence the minimal gener-

ator x is not a zero divisor modulo (p[q])∗ and, by Corollary 2.1.10,

λ(R/m[q]) ≥ λ(R/((p[q])∗, xq)) = q λ(R/((p[q])∗, x)).

It follows that eHK(p) = eHK(m) ≥ eHK(R/(x)), but eHK(m) ≤ eHK(R/(x)) by Propo-

sition 2.3.13.



67

For the general case, we induct on dimR/p. Let y be a minimal generator of m

and let q = (p, y), then R/q is a regular ring, so q is prime. Note that eHK(q) =

eHK(m) and dimR/q < dimR/p, so, by the induction hypothesis, eHK(p) = eHK(q) =

eHK(mR/(x)) for some minimal generator x of m modulo p.

Remark 4.2.8. In many cases, we should be able to choose any minimal generator of

m modulo p in the lemma above. Namely, this will hold if the ideal generated by test

elements has height at least two; for example, if R is a an excellent normal domain. In

this case we will be able to choose a test element c such that dimR/(c, x) ≤ dimR−2.

We point an easy consequence of the previous proof.

Corollary 4.2.9. Let (R,m) be a formally unmixed local ring and p be a prime ideal

of R such that R/p is a regular ring. Suppose that x is an element of R such that

R/(x) has a test element. If eHK(m) = eHK(p) then eHK(R/(x)) = eHK(p).

Proof. The proof is essentially same as in the proposition, except that we derive

lim
q→∞

1

qd−1
λ(R/((p[q])∗, x)) = eHK(R/(x))

by directly applying Lemma 2.4.10.

4.2.1 On the difference between consecutive terms

First we would like to recall the following definition.

Definition 4.2.10. Let (R,m) be a local ring and M an R-module. The 0th local

cohomology of M with the support in m is defined to be

H0
m(M) = {x ∈M | mnx = 0 for some n} = ∪n(0 :M mn).
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If M is finitely generated, H0
m(M) is the maximal finite length submodule of M .

In this case, mN H0
m(M) = 0 for all large N .

If M = R/I for some ideal I, then one can easily verify that

H0
m(R/I) ∼=

I : m∞

I
,

where I : m∞ is the largest term of the ascending chain of ideals I : mn. Moreover, if

dimR/I = 1, then I : m∞ = I : x∞ for any parameter x modulo I. This follows from

m-primarity of (I, x), so m and (x) are cofinal modulo I.

We can estimate the difference between the consecutive terms in the following

way.

Proposition 4.2.11. Let (R,m) to be a local ring of characteristic p > 0 and p be

a prime ideal of height dimR − 1 and such that R/p is a DVR. Let x be a minimal

generator of m modulo p. Then for all n

eHK(p + (xn+1)) ≥ eHK(p + (xn)) + eHK(p).

Moreover, if there exists a constant c such that mcq H0
m(R/p[q]) = 0 for all q, then

eHK(p + (xn+1)) = eHK(p + (xn)) + eHK(p) for all n ≥ c.

Proof. From the isomorphism R/(p[q] : xnq + (xq)) ∼= p[q]+(xnq)

p[q]+(x(n+1)q)
, we get

λ
(
R/(p[q], x(n+1)q)

)
= λ

(
R/(p[q], xnq)

)
+ λ

(
R/(p[q] : xnq + (xq))

)
.

Therefore,

eHK(p + (xn+1))− eHK(p + (xn)) = lim
q→∞

1

qd
λ
(
R/(p[q] : xnq + (xq))

)
.
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Furthermore, by Corollary 2.1.10 and the associativity formula,

λ
(
R/(p[q] : xnq + (xq))

)
≥ e

(
xq, R/(p[q] : xnq)

)
= q λRp

(
Rp/(p

[q] : xnq)Rp

)
e(x,R/p).

Since (p[q] : xnq)Rp = p[q]Rp, by taking the limit in the inequality above, we derive

that

lim
q→∞

1

qd
λ
(
R/(p[q] : xnq + (xq))

)
≥ eHK(p).

Hence eHK(p + (xn+1)) ≥ eHK(p + (xn)) + eHK(p).

For the second assertion, we note that our assumption gives that p[q] : xnq = p[q] :

x∞ for n ≥ c. Since x is not a zero divizor modulo p[q] : x∞, by Corollary 2.1.10 and

the associativity formula,

λ
(
R/(p[q] : xnq + (xq))

)
= e

(
xq, R/(p[q] : xnq)

)
= e(xq, R/p)λRp(Rp/p

[q]Rp).

Moreover, using that R/p is regular, we observe that

λ
(
R/(p[q] : xnq + (xq))

)
= e(xq, R/p)λRp(Rp/p

[q]Rp) = q λRp(Rp/p
[q]Rp),

and the assertion follows after taking the limit.

Remark 4.2.12. We want to remark that it is believed that for any ideal I there exists

c such that

mcq H0
m(R/I [q]) = 0.

However, the only known case is the case of a homogeneous ideal I in a graded ring

R (with the maximal homogenenous ideal m) such that dimR/I = 1 (Huneke, [15]).

Corollary 4.2.13. Let (R,m) be a local ring of characteristic p > 0 and let p be a

prime ideal in R such that R/p is a DVR and ht p = dimR − 1. If x is a minimal
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generator of m modulo p, then eHK(m) = eHK(p) if and only if for some (equivalently,

all) n eHK(p + (xn)) = n eHK(p).

In other words, eHK(m) = eHK(p) if and only if the sequence 1
n

eHK(p + (xn))

stabilizes.

Proof. By Corollary 4.2.3, n eHK(m) ≥ eHK(p + (xn)) ≥ n eHK(p), so one direction

follows.

We prove the other direction by reverse induction on n, and the base case of n = 1

is trivial. By Proposition 4.2.11 and our assumption, we have

n eHK(p) = eHK(p + (xn)) ≥ eHK(p + (xn−1)) + eHK(p) ≥ (n− 1) eHK(p) + eHK(p).

Thus, eHK(p + (xn−1)) = (n− 1) eHK(p).

Corollary 4.2.14. Let (R,m) be a local ring and p be a prime ideal of height dimR−1

such that R/p is a DVR. Suppose there exists a constant c such that mqc H0
m(R/p[q]) =

0. Then eHK(m) = eHK(p) if and only if lim
q→∞

λ(H0
m(R/p[q]))
qd

= 0.

Proof. Let x be a minimal generator of m modulo p. By our assumption, p[q] : x∞ =

p[q] : xcq, so

(xcq)∩ (p[q] : xcq) = (xcq)
(
(p[q] : xcq) : xcq

)
= (xcq)

(
p[q] : x2cq

)
= (xcq)(p[q] : xcq) ⊆ p[q].

Thus

p[q] : xcq + (xcq)

p[q] + (xcq)
∼=

p[q] : xcq

p[q] + (xcq) ∩ (p[q] : xcq)
∼=

p[q] : xcq

p[q]
=

p[q] : x∞

p[q]
∼= H0

m(R/p[q]),

and we obtain that

λ(R/(p[q] + (xcq))) = λ(R/(p[q] : xcq + (xcq))) + λ(H0
m(R/p[q])).
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Again, since x is regular on p[q] : x∞ = p[q] : xcq, Corollary 2.1.10 implies that

λ(R/(p[q] : xcq + (xcq))) = e(xcq, R/p[q]),

and we can rewrite the formula above as

λ(R/(p[q] + (xcq))) = e(xcq, R/p[q]) + λ(H0
m(R/p[q])). (4.2.1)

By the associativity formula, e(xcq, R/p[q]) = cq e(x,R/p[q]) = cq λRp(Rp/p
[q]Rp), so

dividing (4.2.1) by qd and taking the limit we obtain

eHK(p + (xc)) = c eHK(p) + lim
q→∞

λ(H0
m(R/p[q]))

qd
.

Now the assertion follows from the previous corollary.

4.3 The general case

In this section, we study equimultiple ideals for Hilbert-Kunz multiplicity. We will

find that these should be ideals I such that for any (or, as we will show, some) system

of parameters J = (x1, . . . , xm) modulo I

eHK(I + J) =
∑

P∈Minh(I)

eHK(J,R/P ) eHK(I, RP ).

This could be seen as a direct analogue of condition (b) of Thereom 3.1.17.

4.3.1 Preliminaries

First, we observe that this condition is extremal.
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Lemma 4.3.1. Let (R,m) to be a local ring of characteristic p > 0 and let I be an

ideal such that ht I + dimR/I = dimR. Then for any parameter ideal J modulo I

eHK(I + J) ≥
∑

P∈Minh(I)

eHK(J,R/P ) eHK(IRP ).

Proof. First, by Proposition 2.1.12 and Corollary 2.1.7,

λ(R/(I + J)[q]) ≥ e(J [q], R/I [q]) = qdimR/I e(J,R/I [q]).

So, by the associativity formula,

eHK(I + J) ≥ lim
q→∞

∑
P∈Minh(I)

1

qht I
e(J,R/P )λ(RP/I

[q]RP )

and the claim follows.

To make our notation less cumbersome, in the following we are going to write

eHK(I, x1, . . . , xm) instead of eHK((I, x1, . . . , xm)).

Proposition 4.3.2. Let (R,m) to be a local ring of characteristic p > 0 and let I

be an ideal in R such that ht I = dimR − dimR/I. If x1, . . . , xm are a system of

parameters modulo I then

lim
min(ni)→∞

1

n1 · · ·nm
eHK(I, xn1

1 , . . . , x
nm
m ) =

∑
P∈Minh(I)

eHK((x1, . . . , xm), R/P ) eHK(IRP ).

Proof. Let (n1, . . . , nm) ∈ Nm be an arbitrary vector and let n = min(n1, . . . , nm) and

N = max(n1, . . . , nm). Then Corollary 4.2.2 shows that

1

Nm
eHK(I, xN1 , . . . , x

N
m) ≤ 1

n1 · · ·nm
eHK(I, xn1

1 , . . . , x
nm
m ) ≤ 1

nm
eHK(I, xn1 , . . . , x

n
m).

Therefore,

lim
min(ni)→∞

1

n1 · · ·nm
eHK(I, xn1

1 , . . . , x
nm
m ) = lim

n→∞

1

nm
eHK(I, xn1 , . . . , x

n
m).
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Moreover, by Corollary 4.2.2, the sequence 1
nm

eHK(I, xn1 , . . . , x
n
m) is monotonically

decreasing, so its limit exists and computed by looking at a subsequence. But, by

Corollary 4.1.9,

lim
q′→∞

1

q′m
eHK(I, xq

′

1 , . . . , x
q′

m) =
∑

P∈Minh(I)

eHK((x1, . . . , xm), R/P ) eHK(IRP ).

Corollary 4.3.3. In the assumptions of Proposition 4.3.2, if

eHK(I, x1, . . . , xm) =
∑

P∈Minh(I)

eHK((x1, . . . , xm), R/P ) eHK(IRP )

then for any vector (n1, . . . , nm) ∈ Nm

eHK(I, xn1
1 , . . . , x

nm
m ) =

∑
P∈Minh(I)

eHK((xn1
1 , . . . , x

nm
m ), R/P ) eHK(IRP ).

Proof. By Corollary 4.2.2,

eHK(I, x1, . . . , xm) ≥ eHK(I, xn1
1 , . . . , x

nm
m )

n1 · · ·nm
.

Moreover, by Lemma 4.3.1 and Corollary 2.1.7,

eHK(I, xn1
1 , . . . , x

nm
m )

n1 · · ·nm
≥

∑
P∈Minh(I)

eHK((xn1
1 , . . . , x

nm
m ), R/P )

n1 · · ·nm
eHK(IRP )

=
∑

P∈Minh(I)

eHK((x1, . . . , xm), R/P ) eHK(IRP ) = eHK(I, x1, . . . , xm).

Corollary 4.3.4. Let (R,m) to be a local ring of characteristic p > 0 and p be a

prime ideal in R such that R/p is a regular local ring and ht p = dimR − dimR/p.

Then the following are equivalent:
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(i) eHK(m) = eHK(p),

(ii) eHK(p, xn1
1 , . . . , x

nm
m ) = n1 · · ·nm eHK(m) for all vectors (n1, . . . , nm) and any

system of minimal generators x1, . . . , xn of m modulo p,

(iii) eHK(p + I) = λ(R/(p + I)) eHK(m) for any system of parameters I modulo p.

Proof. Clearly, (iii)⇒ (ii)⇒ (i). For (i)⇒ (iii), first, by Lemma 4.3.1, eHK(p+I) ≥

λ(R/(p + I)) eHK(p). On the other hand, Lemma 2.3.15 gives that

eHK(p + I) ≤ λ(R/(p + I)) eHK(m) = λ(R/(p + I)) eHK(p).

After some preliminary results, we are going to strengthen the proposition and

show that the equality eHK(p+I) = λ(R/(p+I)) eHK(p) for some system of parameters

I forces eHK(m) = eHK(p).

4.3.2 Main results

The next fundamental theorem can be seen as an analogue of implication (b) ⇒ (e)

of Theorem 3.1.17.

Theorem 4.3.5. Let (R,m) be a formally unmixed local ring of characteristic p > 0

with a test element c. Let I be an ideal and suppose for some system of parameters

J = (x1, . . . , xm) modulo I,

eHK(I + J) =
∑

P∈Minh(I)

eHK(J,R/P ) eHK(I, RP ).

Then (I, x1, . . . , xi−1)[q] : x∞i ⊆ (I [q], x1, . . . , xi−1)∗ for all q and 1 ≤ i ≤ m.
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In particular, xi is not a zero divisor modulo ((I, x1, . . . , xi−1)[q])∗ for all i and q.

Proof. First, observe that the second claim follow from the first via Lemma 2.4.13.

Let d be the dimension of R. For a fixed k, let L = (x1, x2, . . . , xi−1, x
k
i+1, . . . , x

k
m).

For any n, q, q′ we have inclusions

(
I, L, xki

)[qq′] ⊆
(

(I, x1, . . . , xi−1)[q] : xnqi

)[q′]

+
(
L, xki

)[qq′] ⊆ (I, L)[qq′] : xnqq
′

i +
(
xkqq

′

i

)
.

(4.3.1)

Hence, after dividing by q′d and taking the limit, we obtain that

eHK

(
(I, L, xki )

[q]
)
≥ eHK

(
(I, x1, . . . , xi−1)[q] : xnqi + (L, xki )

[q]
)

≥ lim
q′→∞

1

(q′)d
λ

(
R

(I, L)[qq′] : xnqq
′

i + (xkqq
′

i )

)
.

(4.3.2)

By Corollary 4.3.3 and Corollary 2.1.7, for all n

eHK(I, L, xni ) = n
∑

P∈Minh(I)

e((xi, L), R/P ) eHK(I, RP ).

In particular, using Lemma 2.3.8 we obtain that

eHK

(
(I, L, xki )

[q]
)

= qd eHK

(
I, L, xki

)
= kqd

∑
P∈Minh(I)

e((xi, L), R/P ) eHK(I, RP ).

Moreover, from the isomorphism R/((I, L)[q] : xnqi , x
kq
i ) ∼= (I, L, xni )[q]/(I, L, xn+k

i )
[q]

,

we get the exact sequence

0→ R/((I, L)[q] : xnqi , x
kq
i )→ R/(I, L, xn+k

i )
[q] → R/(I, L, xni )[q] → 0.

Together with the previous computation, the sequence gives that for all n and k

lim
q→∞

1

qd
λ

(
R

(I, L)[q] : xnqi + (xkqi )

)
= k

∑
P∈Minh(I)

e((xi, L), R/P ) eHK(I, RP ),
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so, we compute

lim
(qq′)→∞

qd

(qq′)d
λ

(
R

(I, L)[qq′] : xnqq
′

i + (xkqq
′

i )

)
= kqd

∑
P∈Minh(I)

e((xi, L), R/P ) eHK(I, RP ).

Thus, by (4.3.1) and (4.3.2)

eHK

(
(I, x1, . . . , xi−1)[q] : xnqi , (L, x

k
i )

[q]
)

= eHK

(
(I, L, xki )

[q]
)
.

Therefore, by Theorem 2.4.8, (I, x1, . . . , xi−1)[q] : xnqi ⊆
(

(I, L, xki )
[q]
)∗
. Now, since n

is arbitrary, we have

(I, x1, . . . , xi−1)[q] : x∞i ⊆
⋂
k

(
(I, x1, . . . , xi−1, x

k
i , . . . , x

k
m)

[q]
)∗

and the assertion follows from Lemma 2.4.6.

Now, we can establish the converse to Theorem 4.3.5. But first we will need the

following definition.

Definition 4.3.6. Let R be a ring and c ∈ R◦. We say that c is a locally stable test

element if the image of c in RP is a test element for any prime P .

While this condition is stronger than that of a test element, in fact, the known

results on existence of tests elements provide us locally stable test elements. In

particular, Theorem 2.4.5 asserts that locally stable test elements exists for F-finite

domains and algebras of essentially finite type over an excellent local domain.

Theorem 4.3.7. Let (R,m) be a formally unmixed local ring of characteristic p > 0

with a locally stable test element c. Let I be an ideal and J = (x1, . . . , xm) be a system

of parameters modulo I. Then

eHK(I + J) =
∑

P∈Minh(I)

eHK(J,R/P ) eHK(I, RP )
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if and only if xi is not a zero divisor modulo ((I, x1, . . . , xi−1)[q])∗ for all i and q.

Proof. One direction follows from Theorem 4.3.5.

For the converse, we use induction on m. If m = 1, then by Proposition 2.1.12

and by the associativity formula (Proposition 2.1.3)

λ
(
R/((I [q])∗, xq1)

)
= q e(x1, R/(I

[q])∗) = q
∑

P∈Minh(I)

e(x1, R/P )λ(RP/(I
[q])∗RP ).

So, by Lemma 2.4.10, eHK(I, x1) ≤
∑

P∈Minh(I) e(x1, R/P ) e(I, RP ) and the converse

holds by Lemma 4.3.1.

Now, by the induction hypothesis,

eHK(I+J) = eHK((I, x1)+(x2, . . . , xm)) =
∑

Q∈Minh((I,x1))

eHK((x2, . . . , xm), R/Q) eHK((I, x1), RQ).

Since c is locally stable, by Corollary 2.4.11 ((I [q])∗, xq1)RQ still can be used to compute

eHK((I, x1), RQ). Thus, same way as in the first step, we obtain

eHK((I, x1), RQ) =
∑

P∈Minh(IRQ)

e(x1, RQ/PRQ) eHK(I, RP ).

Combining these results, we get

eHK(I+J) =
∑

Q∈Minh((I,x1))

e((x2, . . . , xm), R/Q)
∑

P∈Minh(IRQ)

e(x1, RQ/PRQ) eHK(I, RP ).

Observe that Minh(IRQ) = Min(IRQ), since x1 is a parameter modulo I and RQ/IRQ

has dimension 1. Hence, any prime P ∈ Minh(IRQ) is just a minimal prime of I

contained in Q.

Therefore, we can change the order of summations to get

eHK(I + J) =
∑

P∈Min(I)

eHK(I, RP )
∑

P⊂Q∈Minh((I,x1))

e(x1, RQ/PRQ) e((x2, . . . , xm), R/Q),
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where the second sum is taken over all primes Q ∈ Minh((I, x1)) that contain P . For

such Q we must have dimR/P ≥ dimR/Q+ 1 = dimR/I, because x1 is a parameter

modulo I. So, in fact, the first sum could be taken over Minh(I). Furthermore,

since x1 is a parameter modulo I and P ∈ Minh(I), x1 is a parameter modulo

P and dimR/(I, x1) = dimR/(P, x1). Hence, the second sum is taken over Q ∈

Minh((P, x1)), and we rewrite the formula as

eHK(I + J) =
∑

P∈Minh(I)

eHK(I, RP )
∑

Q∈Minh((P,x1))

e(x1, RQ/PRQ) e((x2, . . . , xm), R/Q).

Last, by the associativity formula for parameter ideals (Proposition 2.1.8), for any P

eHK(J,R/P ) =
∑

Q′∈Minh((P,x1))

e((x2, . . . , xm), R/Q′) e(x1, R
′
Q/PR

′
Q),

and the claim follows.

Corollary 4.3.8. Let (R,m) be a formally unmixed local ring of positive characteristic

with a locally stable test element c. Let I be an ideal and J = (x1, . . . , xm) be a system

of parameters modulo I. If

eHK(I + J) =
∑

P∈Minh(I)

eHK(J,R/P ) eHK(I, RP )

then for any 0 ≤ k ≤ m

eHK(I + J) =
∑

Q∈Minh((I,x1,...,xk))

eHK((xk+1, . . . , xm), R/P ) eHK((I, x1, . . . , xk), RQ).

Proof. First, by Theorem 4.3.5, xi is not a zero divisor modulo ((I, x1, . . . , xi−1)[q])∗ for

all i and q. Now, since this holds for all i ≥ k, Theorem 4.3.7 shows the assertion.

For the next result, we record the following consequence of Lemma 2.4.2.
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Corollary 4.3.9. Let (R,m) be a local ring and let x1, . . . , xd and y1, . . . , yd be two

systems of parameters. Then there exists a linear combination x′ = xd + a1x1 +

. . .+ ad−1xd−1 with coefficients in R such that x1, . . . , xd−1, x
′ and y1, . . . , yd−1, x

′ are

systems of parameters.

Proof. First, it is easy to see that x1, . . . , xd−1, x
′ is still system of parameters for any

choice of the coefficients ai.

Second, we let P1, . . . , Pn be the minimal primes of (y1, . . . , yd−1) and use the

avoidance lemma above for x = xd and I = (x1, . . . , xd−1).

After all the preliminary work, we can establish that our definition of an equimul-

tiple ideal is independent on the choice of a parameter ideal.

Proposition 4.3.10. Let (R,m) be a formally unmixed local ring of characteristic

p > 0 with a locally stable test element c and let I be an ideal. If for some system of

parameters J = (x1, . . . , xm) modulo I

eHK(I + J) =
∑

P∈Minh(I)

eHK(J,R/P ) eHK(I, RP ),

then same is true for all systems of parameters.

Proof. We use induction on m and Theorem 4.3.7. If dimR/I = 1, then, by Theo-

rem 4.3.5, our assumption shows that R/(I [q])∗ is Cohen-Macaulay for any q, so any

parameter is regular.

Let (y1, . . . , ym) be an arbitrary system of parameters modulo I. Then using Corol-

lary 4.3.9, we can find an element of the form x′ = xd+a1x1+. . .+am−1xm−1 such that
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y1, . . . , ym−1, x
′ is still a system of parameters modulo I. Note that (x1, . . . , xm−1, x

′) =

(x1, . . . , xm) = J , so the original formula still holds. By Corollary 4.3.8, we get that

eHK(I+J) = eHK(I, x′, x1, . . . , xm−1) =
∑

Q∈Minh((I,x′))

eHK((x1, . . . , xm−1), R/Q) eHK((I, x′), RQ),

so, by the induction hypothesis aplied to (I, x′),

eHK(I, x′, y1, . . . , ym−1) =
∑

Q∈Minh((I,x′))

eHK((y1, . . . , ym−1), R/Q) eHK((I, x′), RQ).

Using Theorem 4.3.5 on (I, x′), we get that yi is regular modulo ((I, x′, y1, . . . , yi−1)[q])∗

for any i and q. But since x′ is also regular modulo (I [q])∗ for all q, Theorem 4.3.7

implies that

eHK(I, x′, y1, . . . , ym−1) =
∑

P∈Minh(I)

eHK((x′, y1, . . . , ym−1), R/P ) eHK(I, RP ).

After permuting the sequence, and using Theorem 4.3.5 we see that x′ is not a zero

divisor modulo ((I, y2, . . . , yn)[q])∗ for all q. Now, again, both x′ and ym are parameters

modulo ((I, y1, . . . , ym−1)[q])∗, so ym is regular too.

Motivated by Proposition 4.3.10 and Theorem 4.3.7, we introduce the following

definition.

Definition 4.3.11. Let (R,m) be a local ring and let I be an ideal. We say that

I satisfies colon capturing, if for every system of parameters x1, . . . , xm in R/I, for

every 0 ≤ i < m, and every q

((I, x1, . . . , xi)
[q])∗ : xi+1 ⊆ ((I, x1, . . . , xi)

[q])∗.

The well-known result of tight closure theory asserts that unders mild conditions,

0 satisfies colon capturing. We note that the tight closure is taken in R, so this

property is different from colon capturing in R/I.
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Remark 4.3.12. The colon capturing property asserts that any system of parameters

in R/I is “regular up to tight closure” modulo I. So it not very surprising that it

could be checked for a single system of parameters.

With this definition, we can summarize our findings in an analogue of equivalence

(b) and (d) of Theorem 3.1.17.

Theorem 4.3.13. Let (R,m) be a formally unmixed local ring of characteristic p > 0

with a locally stable test element c and let I be an ideal. Then the following are

equivalent:

1. I satisfies colon capturing,

2. for some (equivalently, every) ideal J which is a system of parameters modulo

I,

eHK(I + J) =
∑

P∈Minh(I)

eHK(J,R/P ) eHK(I, RP ).

Proof. This was proved in Theorem 4.3.7 and Proposition 4.3.10.

In the special case of prime ideals with regular quotients we obtain the following

characterization.

Corollary 4.3.14. Let (R,m) be an formally unmixed local ring of characteristic

p > 0 with a locally stable test element c and let p be a prime ideal such that R/p is

a regular local ring. Then the following are equivalent:

(a) eHK(m) = eHK(p),
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(b) For any (equivalently, some) system of parameters J modulo p

eHK(p, J) = λ(R/(p, J)) eHK(m),

(c) For any (equivalently, some) system of parameters J modulo p

eHK(p, J) = λ(R/(p, J)) eHK(p),

(d) p satisfies colon capturing.

Proof. The first two conditions are equivalent by Corollary 4.3.4, (a), (c), (e) are

equivalent by the previous theorem.

This theorem has a notable corollary. First, recall that a ring R of characteristic

p > 0 is called weakly F-regular if I∗ = I for every ideal I in R. For example, any

regular ring is weakly F-regular and direct summands of weakly F-regular rings are

weakly F-regular.

Corollary 4.3.15. Let (R,m) be a weakly F-regular excellent local domain and let p

be a prime ideal such that R/p is regular. Then eHK(m) = eHK(p) if and only if the

Hilbert-Kunz functions of R and Rp coincide.

Proof. Since all ideals in R are tightly closed, from the preceeding theorem we obtain

that R/p[q] is Cohen-Macaulay for all q. Hence the assertion follows from Proposi-

tion 3.3.2.

4.3.3 Further generalizations

We will develop some general reductions for the equimultiplicity condition and use

them to generalize the obtained results.
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First, we show that equimultiplicity can be checked modulo minimal primes.

Lemma 4.3.16. Let (R,m) be a local ring of characteristic p > 0 and p be a prime

ideal such that ht p + dimR/p = dimR. Then eHK(m) = eHK(p) if and only if

Minh(R) = Minh(Rp) and eHK(mR/P ) = eHK(pR/P ) for any P ∈ Minh(R).

In particular, if R is catenary, then eHK(m) = eHK(p) if and only if P ⊆ p and

eHK(mR/P ) = eHK(pR/P ) for all P ∈ Minh(R).

Proof. If Q ∈ Minh(Rp), by definition, dimRp/QRp = ht p, so Q ∈ Minh(R) by

the assumption on p. Moreover, if R is catenary, it is easy to check that, in fact,

Minh(Rp) = {P ∈ Minh(R) | P ⊆ p}.

By the associativity formula we have:

eHK(m) =
∑

P∈Minh(R)

eHK(m, R/P )λ(RP ),

and, also by Corollary 3.2.3,

eHK(p) =
∑

Q∈Minh(Rp)

eHK(p, Rp/QRp)λ(RQ) ≤
∑

Q∈Minh(Rp)

eHK(m, R/Q)λ(RQ).

Since the second sum is contained in the sum appearing in the expression for eHK(m),

the claim follows.

The lemma can be easily generalized, but we decided to leave the special case for

clarity. A more general lemma can be found right after the following easy corollary.

Corollary 4.3.17. Let (R,m) be a local ring of characteristic p > 0 and p be a

prime ideal such that ht p + dimR/p = dimR. Then eHK(m) = eHK(p) if and only if

eHK(mRred) = eHK(pRred).
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Proof. Since Minh(R) = Minh(Rred), this immediately follows from the previous

lemma applied to R and Rred.

Lemma 4.3.18. Let (R,m) be a local ring of characteristic p > 0 and I be an ideal

such that ht I + dimR/I = dimR. Let J be a system of parameters modulo I. Then

eHK(I + J) =
∑

Q∈Minh(I)

eHK(J,R/Q) eHK(IRQ)

if and only if the following two conditions hold:

(a) Minh(I + P ) ⊆ Minh(I) for all P ∈ Minh(R),

(b) eHK(I + J,R/P ) =
∑

Q∈Minh(IR/P ) eHK(J,R/Q) eHK(IRQ/PRQ) for all P ∈

Minh(R).

Proof. First, observe that if P ∈ Minh(R) and Q ∈ Minh(I) such that P ⊆ Q, then

dimR/I ≥ dimR/(I+P ) ≥ dimR/Q = dimR/I, so Q ∈ Minh(I+P ) and the image

of Q in R/P is in Minh(IR/P ). Moreover, in this case, dimR/(I +P ) = dimR/I, so

Minh(I + P ) ⊆ Minh(I). And the converse is also true: if Minh(I + P ) ⊆ Minh(I)

then P is contained in some Q ∈ Minh(I).

By the associativity formula for eHK(IRQ)

∑
Q∈Minh(I)

eHK(J,R/Q) eHK(IRQ) =
∑

Q∈Minh(I)

eHK(J,R/Q)
∑

P∈Minh(RQ)

eHK(IRQ/PRQ)λ(RP ).

If P ∈ Minh(RQ), by definition, dimRQ/PRQ = htQ. So, since Q ∈ Minh(I) and

dimR/I + ht I = dimR, P ∈ Minh(R).

Let Λ = ∪Minh(RQ) ⊆ Minh(R) where the union is taken over all Q ∈ Minh(I).
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In the formula above, we change the order of summations to obtain

∑
Q∈Minh(I)

eHK(J,R/Q) eHK(IRQ) =
∑
P∈Λ

λ(RP )
∑

Q∈Minh(I)
P∈Minh(RQ)

eHK(J,R/Q) eHK(IRQ/PRQ).

By the observation in the beginning of the proof,

∑
Q∈Minh(I)
P∈Minh(RQ)

eHK(J,R/Q) eHK(IRQ/PRQ) =
∑

Q′∈Minh(IR/P )

eHK(J,R/Q′) eHK(IR′Q/PR
′
Q).

If the first sum is not empty (i.e. P ⊆ Q for some Q ∈ Minh(I)), then J is still a

system of parameters modulo I + P because it is a system of parameters modulo Q.

Thus, in this case, by Lemma 4.3.1,

∑
Q∈Minh(I)
P∈Minh(RQ)

eHK(J,R/Q) eHK(IRQ/PRQ) ≤ eHK(I + J,R/P ).

But now, we can use the associativity formula for I + J , so

∑
Q∈Minh(I)

eHK(J,R/Q) eHK(IRQ) =
∑
P∈Λ

λ(RP )
∑

Q∈Minh(I)
P∈Minh(RQ)

eHK(J,R/Q) eHK(IRQ/PRQ)

≤
∑

P∈Minh(R)

λ(RP ) eHK(I + J,R/P ) = eHK(I + J),

which finishes the proof.

Corollary 4.3.19. Let (R,m) be a local ring of characteristic p > 0 and I be an ideal

such that ht I + dimR/I = dimR. Let J be a system of parameters modulo I. Then

eHK(I + J) =
∑

Q∈Minh(I)

eHK(J,R/Q) eHK(IRQ)

if and only if

eHK(I + J,Rred) =
∑

Q∈Minh(I)

eHK(J,R/Q) eHK(I(Rred)Q).
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Proof. This follows from Lemma 4.3.18, since both conditions are equivalent for R

and Rred.

Equimultiplicity is stable under completion.

Lemma 4.3.20. Let (R,m) be a local ring of positive characteristic p > 0 and I be

an ideal such that ht I + dimR/I = dimR. Let J be a system of parameters modulo

I. Then

eHK(I + J) =
∑

Q∈Minh(I)

eHK(J,R/Q) eHK(IRQ)

if and only if

eHK((I + J)R̂) =
∑

P∈Minh(IR̂)

eHK(JR̂/P, R̂/P ) eHK(IR̂P ).

Proof. Let Q ∈ Minh(I). Since R̂/Q = R̂/QR̂, eHK(J,R/Q) = eHK(JR̂/Q, R̂/Q) by

Lemma 2.3.14. So, using the associativity formula for eHK(JR̂/Q, R̂/Q),

eHK(J,R/Q) = eHK(JR̂/Q, R̂/Q) =
∑

P∈Minh(QR̂)

eHK(JR̂/P, R̂/P )λ(R̂P/QR̂P ).

Since there is a flat map RQ → R̂Q → R̂P , it follows from Lemma 2.2.15 that

eHK(IRQ)λ(R̂P/QR̂P ) = eHK(IR̂P ). Therefore

∑
Q∈Minh(I)

eHK(J,R/Q) eHK(IRQ) =
∑

Q∈Minh(I)

∑
P∈Minh(QR̂)

eHK(JR̂/P, R̂/P ) eHK(IR̂P ).

Moreover, ∪Q Minh(QR̂) = Minh(IR̂), because dimR/I = dim R̂/IR̂ = dim R̂/QR̂.

Thus we obtain that

∑
Q∈Minh(I)

eHK(J,R/Q) eHK(IRQ) =
∑

P∈Minh(IR̂)

eHK(JR̂/P, R̂/P ) eHK(IR̂P ).

Last, by Lemma 2.3.14, eHK(I + J) = eHK((I + J)R̂) and the claim follows.
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Corollary 4.3.21. Let (R,m) be an excellent equidimensional local ring of charac-

teristic p > 0 and let I be an ideal. Then the following are equivalent:

1. I satisfies colon capturing (as in Definition 4.3.11),

2. for some (equivalently, every) ideal J which is a system of parameters modulo

I,

eHK(I + J) =
∑

P∈Minh(I)

eHK(J,R/P ) eHK(I, RP ).

Proof. By Proposition 2.4.3 and Corollary 4.3.19, both conditions are independent

of the nilradical. Thus we can assume that R is reduced, so since R is excellent, by

Theorem 2.4.5, it has a locally stable test element. Last, since R is an excellent equidi-

mensional reduced ring, it is formally unmixed and we can apply Theorem 4.3.13.

Corollary 4.3.22. Let (R,m) be a local ring of positive characteristic p > 0 and

I be an ideal such that ht I + dimR/I = dimR. If for some system of parameters

J = (x1, . . . , xm) modulo I,

eHK(I + J) =
∑

P∈Minh(I)

eHK(J,R/P ) eHK(I, RP ),

then same is true for all systems of parameters.

Proof. First, we use Lemma 4.3.20 to reduce the question to the completion of R,

note that ht IR̂ + dim R̂/IR̂ = dim R̂. Thus we assume that R is complete.

Now, condition (a) of Lemma 4.3.18 is independent of J . So, it is enough to show

that the claim holds in a complete domain. But a complete domain has a locally stable

test element by Theorem 2.4.5 and the claim follows from Proposition 4.3.10.
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4.4 Applications

First, we note the following consequence of our machinery.

Proposition 4.4.1. Let (R,m) be a formally unmixed local ring of characteristic

p > 0 with a locally stable test element c. Moreover, let p be a prime ideal of R such

that R/p is regular and eHK(m) = eHK(p). Then (p[q])∗ are p-primary for all q.

Proof. Suppose q is an embedded prime of (p[q])∗ for some q. By definition, there

exists u /∈ (p[q])∗ such that uq ∈ (p[q])∗, i.e.

cuq
′
q[qq′] ⊆ p[qq′].

Let x ∈ q be a parameter modulo p. Then, by Theorem 4.3.5, Cq = p[q] : x∞ ⊆ (p[q])∗.

Therefore, since p[qq′] ⊆ Cqq′ and x is a nonzerodivizor on Cqq′ , it follows from the

tight closure equation above that

cuq
′ ∈ Cqq′ ⊆ (p[qq′])∗.

Now, multiplying by c again,

c2uq
′ ∈ c(p[qq′])∗ ⊆ p[qq′],

hence u ∈ (p[q])∗, a contradiction.

In the excellent case, we do not need to assume existence of a test element.

Corollary 4.4.2. Let (R,m) be an excellent equidimensional local ring of character-

istic p > 0 and p be a prime ideal such that R/p is a regular ring. If eHK(m) = eHK(p),

then (p[q])∗ are p-primary for all q.
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Proof. Suppose there exists an embedded prime q of (p[q])∗. Then we have an inclusion

qu ⊆ (p[q])∗ for some u /∈ (p[q])∗. We know that an element is in tight closure if and

only if it is in tight closure modulo minimal primes (Proposition 2.4.3). Therefore for

some minimal prime pi, u /∈ (p[q]R/pi)
∗ but qu ⊆ (p[q]R/pi)

∗. Now, by Lemma 4.3.16,

eHK(Rm/pi) = eHK(Rp/pi) and Proposition 4.4.1 finishes the proof.

4.4.1 Equimultiplicity and localization of tight closure

We start with well-known lemmas.

Lemma 4.4.3. Let R be a ring of positive characteristic and S a multiplicatively

closed subset of R. Then every element of (S−1R)◦ is the product of a unit in S−1R

and element in the image of R◦.

Proof. Let P1, . . . Pn be the minimal primes of R and assume P1, . . . , Ph are the only

minimal primes that meet S. If h = n, then S−1R = 0, and the claim is not

interesting. Let c ∈ (S−1R)◦. After multiplication by a unit S−1R, we assume

that c ∈ R.

Let I = Ph+1 ∩ . . . ∩ Pn. Note that the image of I in S−1R is the nilradical of

S−1R. Let N be such that INS−1R = 0. Using that c is not contained in Ph+1, . . . , Pn

and prime avoidance, one can check that (c, IN) is not contained in the union of the

minimal primes of R. Thus by Lemma 2.4.2, there exists v ∈ IN , such that c+v ∈ R◦.

Moreover, the image of v in S−1R is zero, so c + v and c have same image and the

claim follows.
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It is known that tight closure does not commute with localization even for hyper-

surfaces. The localization problem has attained much attention from the early days

of the theory, and a positive answer was attained in special cases, e.g. in the next

lemma. However, Brenner and Monsky have recently obtained a counterexample in

[2], we will discuss it in more details shortly.

Lemma 4.4.4. Let R be a ring of characteristic p > 0 with a test element c and I

be an ideal of R. Then I∗S−1R = (IS−1R)∗ for any multiplicatively closed subset S

disjoint from
⋃
q Ass(R/(I [q])∗).

Proof. Since I∗S−1R ⊆ (IS−1R)∗ always, we need to show the opposite inclusion. If

x/s ∈ (IS−1R)∗ for x ∈ R, by definition, for all sufficient large q

d
xq

sq
∈ I [q]S−1R,

where we can choose d ∈ R◦ by the previous lemma. After collecting the denominators

we observe that there are elements sq ∈ S such that

dsqx
q ∈ I [q] ⊆ (I [q])∗,

for all sufficiently large q.

By the assumption on S, sq is not a zero divisor modulo (I [q])∗ for all q, so dxq ∈

(I [q])∗ for all sufficiently large q. Therefore, cdxq ∈ I [q] and the claim follows.

Lemma 4.4.5. Let R be a ring of characteristic p > 0. Suppose R has a test element

c. The following are equivalent:

(a) (p[q])∗ are p-primary for all q,
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(b) (p[q]Rq)
∗ are p-primary for all q and all prime ideals q ⊇ p,

(c) (p[q]Rm)∗ are p-primary for all q and all maximal ideals m that contain p.

Proof. The previous lemma shows (a)⇒ (b) and (b) clearly implies (c). So, we need

to show (c)⇒ (a).

Suppose there exists an embedded prime ideal q. Then there is u such that

qu ⊆ (p[q])∗, but u /∈ (p[q])∗. By Lemma 2.4.7, p[q] is contained in an ideal J primary

to some maximal ideal m and such that u /∈ J∗. Now the previous lemma shows that

(J)∗Rm = (JRm)∗, so

up′Rm ⊆ (p[q])∗Rm ⊆ (p[q]Rm)∗ ⊆ (JRm)∗ = J∗Rm.

On the other hand, u /∈ J∗Rm since J is m-primary. Thus u /∈ (p[q]Rm)∗ and hence p′

consists of zero divisors on (p[q]Rm)∗.

Now, we can globalize Corollary 4.4.2.

Corollary 4.4.6. Let R be a locally equidimensional ring and let p be a prime ideal

such that R/p is regular. If eHK(m) = eHK(p) for all maximal (equivalently, all prime)

ideals m containing p, then (p[q])∗ are p-primary for all q.

The following result is a global version of Theorem 4.2.5.

Corollary 4.4.7. Let R be an excellent domain and let p be a prime ideal such that

R/p is a regular ring of dimension one. Then eHK(m) = eHK(p) for all maximal ideals

m containing p if and only if (p[q])∗ is p-primary for all q.
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Remark 4.4.8. It seems that equimultiplicity is a very strong condition.

For simplicity, suppose R is an excellent domain and p is a prime ideal of dimension

1. Then by the previous corollary, if there exists an open equimultiple subset of

Max(R/p), then we can find an element f /∈ p such that (p[q]Rf )
∗ is p-primary for

all q. In view of Lemma 4.4.4, this forces tight closure of all p[q]Rf to commute with

localization at any multiplicatively closed set.

Since tight closure does not commute with localization in general, we would like

to check what happens in the known counterexample.

4.4.2 The Brenner-Monsky example

Now it is time to apply our results to get a negative answer to Question 3.3.1.

First, let us introduce the Brenner-Monsky hypersurface

R = F [x, y, z, t]/(z4 + xyz2 + (x3 + y3)z + tx2y2),

where F is an algebraic closure of Z/2Z. Since R is a quotient of a polynomial ring

over an algebraically closed field, it is F-finite. Also, R is a domain, so, in particular,

any localization of R has a test element.

Let P = (x, y, z) then R/P ∼= F [t] is a regular ring and P is prime. In [2],

Brenner and Monsky showed that tight closure does not commute with localization

at P . Namely, they showed that y3z3 /∈ (P [4])∗, but the image of y3z3 is contained in

(P [4]S−1R)∗ for S = F [t] \ {0}.

We want to understand the values of Hilbert-Kunz multiplicity on the maximal

ideals containing P . First, we will need the following result of Monsky.
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Theorem 4.4.9. Let K be an algebraically closed field of characteristic 2. For α ∈ K

let Rα = K[[x, y, z]]/(z4 + xyz2 + (x3 + y3)z + αx2y2). Then

1. eHK(Rα) = 3 + 1
2
, if α = 0,

2. eHK(Rα) = 3 + 4−m, if α 6= 0 is algebraic over Z/2Z, where m = [Z/2Z(λ) :

Z/2Z] for λ such that α = λ2 + λ

3. eHK(Rα) = 3 if α is transcendental over Z/2Z.

Proof. The last two cases are computed by Monsky in [25]. For the first case, we note

that in characterstic 2 we can factor

z4 + xyz2 + (x3 + y3)z = z(x+ y + z)((x+ y + z)2 + zy).

Thus by the associativity formula,

eHK(R0) = eHK(K[x, y])+eHK(K[x, y, z]/(x+y+z))+eHK(K[x, y, z]/((x+y+z)2+zy))

and the claim follows.

Using the developed machinery we derive the following result from Monsky’s com-

putations.

Proposition 4.4.10. Let R = F [x, y, z, t]/(z4 + xyz2 + (x3 + y3)z + tx2y2), where F

is the algebraic closure of Z/2Z. Then eHK(P ) = 3 for a prime ideal P = (x, y, z) in

R, but eHK(m) > 3 for any maximal ideal m containing P .

Proof. First of all, in the notation of the preceeding theorem, Cohen’s structure

theorem ([22, p.211]) shows that R̂P
∼= Rt for K = F (t), so, by Lemma 2.3.14,

eHK(RP ) = 3.
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Second, since F is algebraically closed, all maximal ideals containing P are of the

form (P, t−α) for α ∈ F . By Monsky’s result, eHK(Rm/(t−α)) > 3 = eHK(P ), since α

is algebraic. So, since R/(t−α) is reduced, eHK(m) > eHK(P ) by Corollary 4.2.9.

Thus, we obtain that Hilbert-Kunz multiplicity is not locally constant.

Corollary 4.4.11. The set {q | eHK(q) ≤ 3} is not open.

Proof. If the set was open, its intersection with V (P ) should be open and non-empty.

In particular, all but finitely many maximal ideals m containing P should belong to

the open set.

Another application of our methods is a quick calculation of the associated primes

of P [q]. Using the calculations that Monsky made to obtain Theorem 4.4.9, Dinh ([5])

proved that
⋃
q Ass(P [q]) is infinite. However, he was only able to show that the

maximal ideals corresponding to the irreducible factors of 1 + t+ t2 + . . .+ tq appear

as associated primes, while our methods give all associated primes of the Frobenius

powers and their tight closures.

Proposition 4.4.12. In the Brenner-Monsky example,

⋃
q

Ass(P [q])∗ =
⋃
q

Ass(P [q]) = SpecR/P .

In particular, it is infinite.

Proof. Clearly, P is an associated prime, so we need to check the maximal ideals.

First, we prove that any prime m that contains P is associated to some (P [q])∗.

If not, then (P [q])∗Rm are P -primary for all q. Note that (P [q])∗Rm ⊆ (P [q]Rm)∗, thus
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by Corollary 2.4.14 (P [q]Rm)∗ is P -primary for any q. Therefore, by Theorem 4.2.5,

eHK(m) = eHK(P ), a contradiction.

For the second claim, let m be any maximal ideal containing P . Since eHK(P ) <

eHK(m) and R/P is regular, m is an associated prime of (P [q]Rm)∗ for some q. Thus,

there exists u /∈ (P [q]Rm)∗ such that

cuq
′
m[q′] ⊆ P [qq′]Rm.

Now, if m is not an associated prime of any P [qq′], then we would have u ∈ (P [q]Rm)∗,

a contradiction.

Remark 4.4.13. The presented example shows that Hilbert-Kunz multiplicity need not

to be locally constant if tight closure does not commute with localization. However,

it is not clear whether it should be locally constant if we assume that tight closure

commutes with localization. Even in this case,
⋃
q Ass(p[q])∗ might be infinite, and it

is not clear why the intersection of the embedded primes must be greater than p.
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Chapter 5

Upper semi-continuity of
Hilbert-Kunz multiplicity

5.1 Introduction

In the previous chapter (Corollary 4.4.11) we have shown that Hilbert-Kunz multi-

plicity is not locally constant. However, we may ask whether there is a weaker notion

of continuity that still holds.

Definition 5.1.1. Let X be a topological space. A real-valued function f is upper

semi-continuous if for any a ∈ R the set {x ∈ X | f(x) < a} is open in X.

Remark 5.1.2. While this condition is weaker and does not provide a nice stratifica-

tion, its maximum value locus is still closed. Namely, when a is increasing the open

sets X<a = {x ∈ X | f(x) < a} form an ascending chain. Since R is Noetherian, the

chain stabilizes, thus giving that supX f(x) = M is finite. Moreover, as n increases

X<M−1/n is also an ascending chain of open sets, so the supremum must be attained.

Then X=M = X \X<M is closed.

It should be noted that the two continuity notions agree for “discrete” functions.
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For example, since Hilbert-Samuel multiplicity is integrally valued, we have equality

{p ∈ SpecR | e(p) ≤ n} = X≤n = X<n+1 = {p ∈ SpecR | e(p) < n+ 1}

which shows that the two notions coincide in this case. Thus, in the literature, upper

semi-continuity often denotes the stronger propery of locally constancy.

Motivated by Theorem 3.1.6 and this observation, we now ask if Hilbert-Kunz

multiplicity is upper semi-continuous. And since we are able to prove this in almost

full generality, we boldly call it a conjecture.

Conjecture 5.1.3. Let R be an excellent locally equidimensional ring of character-

istic p > 0. Then the Hilbert-Kunz multiplicity is upper semi-continuous on SpecR.

This question was asked by Enescu and Shimomoto in [6], although it seems that

the authors meant locally constancy in their question.

As in Chapter 3, we need to show openness of certain sets, so Nagata’s criterion

(Proposition 3.1.7) will be helpful. By Corollary 3.2.3, the first condition of Nagata’s

criterion is satisfied. So, following the treatment of Section 3.1, we can restate the

condition of upper semi-continuity in the following form.

Proposition 5.1.4. Let R be a locally equidimensional ring. Then the Hilbert-Kunz

multiplicity is upper semi-continuous on SpecR if and only if for any prime ideal p

and any ε > 0 there exists s /∈ p such that for all prime ideals q ∈ Ds ∩ V (p)

eHK(q) < eHK(p) + ε.

It is also easy to show that we can restrict ourselves to domains.
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Proposition 5.1.5. Let R be a locally equidimensional ring. If the Hilbert-Kunz

multiplicity is upper semi-continuous in R/p for all minimal primes p of R, then the

Hilbert-Kunz multiplicity is upper semi-continuous in R.

Proof. Given ε, we want to find an element s /∈ p, such that for any ideal q containing

pRs of Rs, eHK(q) < eHK(p) + ε.

For i = 1 . . . n let pi be the minimal primes of R. Inverting an element, we may

assume that all pi are contained in p. By the assumption, there exist elements si /∈ p,

such that in the corresponding subsets of SpecR/pi,

eHK(qR/pi) < eHK(pR/pi) + ε/(nλRpi
(Rpi)) .

Now, if we invert the product s of si, we obtain that for any ideal q of Rs that contains

p, by the associativity formula for Hilbert-Kunz multiplicity (Proposition 2.3.11),

eHK(q) =
n∑
i=1

eHK(qR/pi)λRpi
(Rpi) <

<
n∑
i=1

(
eHK(pR/pi) +

ε

n λRpi
(Rpi)

)
λRpi

(Rpi) = eHK(p) + ε.

Corollary 5.1.6. Hilbert-Kunz multiplicity is upper semi-continuous in locally equidi-

mensional excellent rings if and only if for any excellent domain R, prime ideal p of

R, and ε > 0, there exists s /∈ p such that for all prime ideals q ∈ V (p) ∩Ds

eHK(q) < eHK(p) + ε.

Proof. We just note that a quotient of an excellent ring is excellent.
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Now, let us give a quick overview of the proof of the main theorem. We will

verify the condition of Proposition 5.1.4, by reducing the problem to a fixed Hilbert-

Kunz function λq and using Theorem 3.2.4. To do the reduction, we will establish a

uniform convergence result: we will show that one can choose s /∈ p and control the

convergence rate on Ds ∩ V (p). Thus, there is a such q that λq is sufficiently close to

eHK on Ds ∩ V (p).

In the next two sections we will prove the uniform convergence results needed for

the proof. Section 5.2 will deal with F-finite rings and more technical Section 5.3 will

be needed to work with algebras of essentially finite type over an excellent local ring.

5.2 Globally uniform Hilbert-Kunz estimates for

F-finite rings

In this section, we once again rebuild Tucker’s uniform Hilbert-Kunz estimates from

[31] in order to control the rate of convergence of the Hilbert-Kunz function globally.

To make the proof less cumbersome, we use notation ht p/I = dimRp/IRp for a

prime ideal p and an ideal I.

Lemma 5.2.1 (Key lemma). Let R be an excellent ring of characteristic p > 0 and p

a prime ideal of R. Let M be a finitely generated R-module. There exists a constant

C (depending only on M and p) and an element s /∈ p, such that for any prime ideal

q ∈ Ds ∩ V (p) and for all q, we have

λRq

(
Mq/q

[q]Mq

)
≤ CqdimMq .
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Proof. Assume that M = R/P is a cyclic module for a prime ideal P . If p does not

contain P , we can invert any s ∈ P \ p, so Ms = 0 and the assertion is trivially true.

Hence, assume P ⊆ p.

First, invert an element to make R/p regular; this is possible since R/p is an

excellent domain. Let S = R/P , then S/pS ∼= R/p is regular too. The assertion is

also trivial if p is a maximal ideal, so, by the proof of Theorem 3.1.9, we can invert an

element outside of pS and assume that pS contains a parameter ideal y = (y1, . . . , yh)

where h = ht pS. Since S/y is excellent, we can make it Cohen-Macaulay after

inverting another element. And since (S/y)p is Artinian, so Cohen-Macaulay, the

element could be chosen outside of p.

Let q be an arbitrary prime ideal in the obtained localization that contains p. Since

Rq/pRq is a regular local ring, there exists a system of parameters x = (x1, . . . , xm)

that generates qRq modulo pRq. Since (y, x)[q]Sq ⊆ q[q]Sq, Lemma 2.1.9 shows that

λSq

(
Sq/q

[q]Sq

)
≤ λSq

(
Sq/(y, x)[q]Sq

)
≤ qht q/P λSq

(
Sq/(y, x)Sq

)
.

Moreover, using the associativity formula (Proposition 2.1.3), we get

λSq

(
Sq/(y, x)Sq

)
= e (x, Sq/pSq)λSp

(
Sp/ySp

)
= λSp

(
Sp/ySp

)
.

Note that e(x, Sq/pSq) = 1, since x generates the maximal ideal of a regular local

ring Sq/pSq. Therefore, we obtain that

λSq

(
Sq/q

[q]Sq

)
≤ qht q/P λSp

(
Sp/(y)Sp

)
= λSp

(
Sp/(y)Sp

)
qdimMq

and we proved the assertion for the constant C = λSp

(
Sp/(y)Sp

)
independent of q.
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By choosing a prime filtration of M over R, we can reduce the general case to

M = R/P . Namely, if Pi are prime ideals appearing in the prime filtration, then

λRq

(
Mq/q

[q]Mq

)
≤
∑
i

λRq

(
(R/Pi)q/q

[q](R/Pi)q
)
.

Since there are finitely many primes Pi, we can invert finitely many elements in order

to force the claim for all R/Pi. Also, note that dimMq is the maximum of dimRq/PiRq

over the primes in a prime filtration. So,

λRq

(
Mq/q

[q]Mq

)
≤
∑
i

λRq

(
Rq/(Pi + q[q])Rq

)
≤
∑
i

Ciq
ht q/Pi ≤

(∑
i

Ci

)
qdimMq .

Now, we derive from the Key lemma the following result.

Corollary 5.2.2. Let R be an excellent ring of characteristic p > 0 and p be a prime

ideal of R. Suppose M and N are finite R-modules such that their localizations at

every minimal prime are isomorphic. Then there exists a constant C and an element

s /∈ p, such that for any prime ideal q ∈ Ds ∩ V (p) and for all q, we have

|λRq

(
Mq/q

[q]Mq

)
− λRq

(
Nq/q

[q]Nq

)
| ≤ Cqht q−1.

Proof. By the assumptions, we have an exact sequence

N →M → K → 0,

where KP = 0 for every minimal prime P . By Lemma 5.2.1, we can find an element

s1 such that for some constant C1 and all q ∈ Ds1 ∩ V (p)

λRq

(
Mq/q

[q]Mq

)
− λRq

(
Nq/q

[q]Nq

)
≤ λRq

(
Kq/q

[q]Kq

)
≤ C1q

dimKq .
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Since KP = 0 for any minimal prime P , dimKq ≤ ht q− 1.

To finish the proof, we switch M and N in the first part of the argument, i.e.

apply it to the sequence

M → N → L→ 0.

Hence, by inverting an element s2, we will get

λRq

(
Nq/q

[q]Mq

)
− λRq

(
Mq/q

[q]Mq

)
≤ λRq

(
Lq/q

[q]Lq

)
≤ C2q

dimLq ≤ C2q
ht q−1,

and the claim follows for C = max(C1, C2) and s = s1s2.

Theorem 5.2.3. Let R be an F-finite domain and let p be an arbitrary prime ideal.

Then there exists an element s /∈ p such that for any ε > 0 there is q0 such that for

all q > q0 ∣∣λRq

(
Rq/q

[q]Rq

)
/qht q − eHK(q)

∣∣ < ε

for all prime ideals q ∈ Ds ∩ V (p).

Proof. By Corollary 2.2.10, R⊕p
α(0)

and R1/p are isomorphic localized at the minimal

prime 0. So, by Corollary 5.2.2, we can invert an element and obtain a global bound

∣∣∣λRq

(
R⊕p

α(0)

q /q[q]R⊕p
α(0)

q

)
− λRq

(
R1/p

q /q[q]R1/p
q

)∣∣∣ < Cqht q−1,

for an arbitrary prime ideal q containing p.

As in the proof of Theorem 4.1.6, by Proposition 2.2.9 and Proposition 2.2.7, we

obtain from the formula above the estimate

∣∣pht q+α(q) λRq

(
Rq/q

[q]Rq

)
− pα(q) λRq

(
Rq/q

[qp]Rq

)∣∣ < Cqht q−1, so

∣∣pht q λRq

(
Rq/q

[q]Rq

)
− λRq

(
Rq/q

[qp]Rq

)∣∣ < p−α(q)Cqht q−1 ≤ Cqht q−1. (5.2.1)
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Now, we prove by induction on q′ that

∣∣∣(q′)ht q λRq

(
Rq/q

[q]Rq

)
− λRq

(
Rq/q

[qq′]Rq

)∣∣∣ < C(qq′/p)ht q−1 q
′ − 1

p− 1
. (5.2.2)

The induction base of q′ = p is (5.2.1). Now, assume that the claim holds for q′ and

we want to prove it for q′p.

First, (5.2.1) applied to qq′ gives

∣∣∣pht q λRq

(
Rq/q

[qq′]Rq

)
− λRq

(
Rq/q

[qq′p]Rq

)∣∣∣ < C(qq′)ht q−1, (5.2.3)

and, multiplying the induction hypothesis by pht q, we get

∣∣∣(q′p)ht q λRq

(
Rq/q

[q]Rq

)
− pht q λRq

(
Rq/q

[qq′]Rq

)∣∣∣ < C(qq′)ht q−1pq
′ − p
p− 1

. (5.2.4)

Combining (5.2.3) and (5.2.4) results in

∣∣∣(q′p)ht q λRq

(
Rq/q

[q]Rq

)
− λRq

(
Rq/q

[qq′p]Rq

)∣∣∣ < C(qq′)ht q−1

(
q′p− p
p− 1

+ 1

)
,

and the induction step follows.

Now, dividing (5.2.2) by q′ht q, we obtain

∣∣∣∣λRq

(
Rq/q

[q]Rq

)
− 1

q′ ht q
λRq

(
Rq/q

[qq′]Rq

)∣∣∣∣ < Cqht q−1 · q
′ − 1

p− 1
· 1

q′pht q−1
≤ Cqht q−1.

Thus, if we let q′ →∞, we get that

∣∣λRq

(
Rq/q

[q]Rq

)
− qht q eHK(q)

∣∣ < Cqht q−1,

and the claim follows.
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5.3 Uniform estimates for a flat extension

In this section we prove convergence estimates of Theorem 5.2.3 for algebras of essen-

tially finite type over a complete domain. To do so, we use existence of a faithfully

flat F-finite extension, and we relativize the estimates of the previous section to use

in the extension.

Lemma 5.3.1. Let R be a locally equidimensional excellent ring and S be an R-

algebra. Let I be an ideal in R, M be an S-module such that SuppM ⊆ V (IS), and

p be a prime ideal of R. Then there exists an element s /∈ p and a constant C such

that for any prime ideal q ∈ V (p) ∩ D(s) and for any prime ideal Q in S minimal

over qS

λSQ
(
MQ/q

[q]MQ

)
≤ Cqht q/I λSQ (SQ/qSQ) .

Proof. If I is not contained in p we can invert an element and make M to be zero.

So assume I ⊆ p.

Since R is excellent, by the proof of Lemma 5.2.1, we can invert an element s /∈ p

to assume that R/p regular and there is a parameter ideal y in R/I such that pR/I

is the only minimal prime of y and R/(y + I) is Cohen-Macaulay. We claim that the

required bound holds for this s.

Similarly to the proof of Lemma 5.2.1, by taking a prime filtration of M we reduce

the statement to M = S/J , where J is a prime ideal in S that contains IS. So

λSQ
(
SQ/(q

[q]S + J)SQ
)
≤ λSQ

(
SQ/(q

[q] + I)SQ
)
.
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By tensoring a composition series of Rq/(q
[q] + I)Rq with SQ, we get

λSQ(SQ/
(
q[q] + I)SQ

)
≤ λRq

(
Rq/(q

[q] + I)Rq

)
λSQ (SQ/qSQ) .

Since R/p is regular, we can write qRq = (p + (x))Rq, where x is a system of

parameters of q/p. Because (y, x)[q] ⊆ q[q], Lemma 2.1.9 gives

λRq

(
Rq/

(
q[q] + I

)
Rq

)
≤ λRq

(
Rq/

(
(y, x)[q] + I

)
Rq

)
≤qht p/I+ht q/p λRq

(
Rq/

(
y, x, I

)
Rq

)
≤ qht q/I λRq

(
Rq/

(
y, x, I

)
Rq

)
.

Now, since R/(y + I) is Cohen-Macaulay,

λRq

(
Rq/

(
y, x, I

)
Rq

)
= e

(
x,Rq/(y, I)Rq

)
and, by the associativity formula,

e
(
x,Rq/(y, I)Rq

)
= e

(
x,Rq/pRq

)
λRp

(
Rp/(y, I)Rp

)
= λRp

(
Rp/(y, I)Rp

)
,

where e
(
x,Rq/pRq

)
= 1 due to the choice of x.

Combining the inequalities, we obtain

λSQ(SQ/
(
q[q] + I)SQ

)
≤ λRq

(
Rq/(q

[q] + I)Rq

)
λSQ (SQ/qSQ)

≤ qht q/I λRp

(
Rp/(y, I)Rp

)
λSQ (SQ/qSQ)

and the claim holds for a constant C = λRp

(
Rp/(y, I)Rp

)
independent of q and q.

Remark 5.3.2. In Remark 2.2.14, we found that every local ring has a faithfully flat F-

finite extension. However, due to its inseparability, certain properties of this extension

could be very difficult to control, in particular, the extension is almost never reduced.

In the proof of Theorem 2.4.5 Hochster and Huneke had to overcome these difficulties
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in order to translate their results from F-finite rings to algebras of finite type over a

local ring. The following method is usually called the Gamma construction.

Let B be a complete local ring of positive characteristic p > 0 with the residue

field K. By Cohen’s structure theorem ([22, page 265]), there is a surjection from a

power series ring A = K[[x1, . . . , xn]] onto B.

The key idea is to modify the recipe of Remark 2.2.14 and use an intermediate

field extension instead of the whole perfect closure of K. Namely, let Λ be a p-basis

([22, p. 269]) of K, and Γ be a subset of Λ such that Λ\Γ is finite. For a fixed integer

e consider KΓ
e = K[λ1/pe | λ ∈ Γ] and define

AΓ =
⋃
e

KΓ
e [[x1, . . . , xn]].

One can show that AΓ is a Noetherian complete local ring. Moreover, KΓ
e [[x1, . . . , xn]]

is faithfully flat and purely inseparable over A for any e, so the direct limit AΓ is

faithfully flat and purely inseparable. With a bit more work, one can show that AΓ

is F-finite and for this we need Λ \ Γ to be finite.

Now, we can define BΓ = B ⊗A AΓ. Then, by the base change, BΓ is an F-finite

purely inseparable faithfully flat B-algebra. More importantly, certain properties of

B or a fixed ideal of B can be preserved by avoiding finitely many elements of Λ, i.e.

by a suitable choice of Γ. The next lemma ([13, Lemma 6.13]) is an application of

this strategy.

Lemma 5.3.3. Let B be a complete local domain and S be a B-algebra of essentially

finite type. If S is a domain then there exists a purely inseparable faithfully flat

F-finite B-algebra BΓ such that S ⊗B BΓ is a domain.
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Theorem 5.3.4. Let B be a complete local domain. Let R be a domain that is a

B-algebra of essentially finite type and p be an arbitrary prime ideal in R. Then there

exists an element s /∈ p such that for any ε > 0 there is q0 such that for all q > q0

∣∣λRq

(
Rq/q

[q]Rq

)
/qht q − eHK(q)

∣∣ < ε

for all prime ideals q ∈ Ds ∩ V (p).

Proof. We apply Lemma 5.3.3 to the quotient field L of R and obtain a B-algebra

BΓ. Note that S = R⊗B BΓ is F-finite, so S1/p is a finitely generated S-module.

By Lemma 5.3.3, S ⊗R L ∼= BΓ ⊗B R ⊗R L ∼= BΓ ⊗B L is a domain. Since BΓ is

purely inseparable over B, BΓ ⊗B L is integral over a field L, so it is a field. Since R

is a subring of S, L the quotient field of R, and S ⊗R L is a field, then S ⊗R L must

be the quotient field of S. Thus, by definition, the rank of the S ⊗R L-vector space

(S ⊗R L)1/p is pα(0).

Moreover, since taking p-roots commutes with localization, (S)1/p ⊗R L ∼= (S ⊗R

L)1/p, so it is a free module over the field S ⊗R L ∼= BΓ ⊗B L. Hence, we can invert

an element f of R to make S
1/p
f be a free module over Sf . Lifting this isomorphism,

we obtain maps

0→ S1/p → S⊕p
α(0) →M → 0

and

0→ S⊕p
α(0) → S1/p → N → 0

such that SuppM, SuppN ⊆ V (fS).

Using Lemma 5.3.1 to M and N , we can invert an element s and obtain that, for

any prime q containing p and for any minimal prime Q of qS, λSQ
(
MQ/q

[q]MQ

)
≤
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C1q
ht q/(f) λSQ (SQ/qSQ) and λSQ

(
NQ/q

[q]NQ

)
≤ C2q

ht q/(f) λSQ (SQ/qSQ). Now we

use the exact sequences above to estimate

λSQ

(
S⊕p

α(0)

Q /q[q]S⊕p
α(0)

Q

)
− λSQ

(
S

1/p
Q /q[q]S

1/p
Q

)
≤ λSQ

(
MQ/q

[q]MQ

)
,

λSQ

(
S

1/p
Q /q[q]S

1/p
Q

)
− λSQ

(
S⊕p

α(0)

Q /q[q]S⊕p
α(0)

Q

)
≤ λSQ

(
NQ/q

[q]NQ

)
.

Thus, by taking C = max(C1, C2) and noting that ht(f) = 1, we obtain

∣∣∣λSQ (S⊕pα(0)Q /q[q]S⊕p
α(0)

Q

)
− λSQ

(
S

1/p
Q /q[q]S

1/p
Q

)∣∣∣ < Cqht q−1 λSQ (SQ/qSQ) .

So, since α(0) = htQ+ α(Q) by Proposition 2.2.9, Proposition 2.2.7 gives

x‘
∣∣phtQ+α(Q) λSQ

(
SQ/q

[q]SQ
)
− pα(Q) λSQ

(
SQ/q

[qp]SQ
)∣∣ < Cqht q−1 λSQ (SQ/qSQ) .

Note that SQ is flat over Rq and qSQ is Q-primary. Hence for any artinian Rq-module

M ,

λSQ
(
M ⊗Rq SQ

)
= λRq(M)λSQ (SQ/qSQ) .

Therefore, the estimate above can be rewritten as

∣∣phtQ+α(Q) λRq

(
Rq/q

[q]Rq

)
− pα(Q) λRq

(
Rq/q

[qp]Rq

)∣∣ < Cqht q−1.

Since S is flat htQ = ht q, so we obtain Equation 5.2.1 from Theorem 5.2.3:

∣∣pht q λRq

(
Rq/q

[q]Rq

)
− λRq

(
Rq/q

[qp]Rq

)∣∣ < Cp−α(Q)qht q−1 ≤ Cqht q−1;

and the proof follows the argument in Theorem 5.2.3.
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5.4 Proof of the main result and concluding re-

marks

Now, we want to finish the proof of upper semi-continuity of the Hilbert-Kunz multi-

plicity for F-finite rings and algebras of essentially finite type over an excellent local

ring. To do this, we verify the second statement of Proposition 5.1.4.

First, we need two auxillary results that will help us apply Section 5.3. The

upper bound of the following lemma is a slight improvement of a result of Kunz ([19,

Proposition 3.9]) and the lower bound is due to Hanes ([11, Corollary IV.1]).

Lemma 5.4.1. Let (R,m) be a local ring and let (S, n) be a faithfully flat extension.

Then eHK(R) ≤ eHK(S) ≤ eHK(S/mS) eHK(R).

Proof. We prove the upper bound first. Consider a composition series of R/m[q]

0 = M0 ⊂ . . . ⊂Mlq = R/m[q]

for lq = λR(R/m[q]). After breaking the composition series, we get exact sequences

0→Mn →Mn+1 → R/m→ 0.

Now, applying ⊗RS/n[q], we obtain the exact sequences

Mn ⊗R S/n[q] →Mn+1 ⊗R S/n[q] → S/(mS + n[q])→ 0.

Thus, it follows after taking lengths that

λS(S/n[q]) = λS(R/m[q]⊗RS/n[q]) ≤ lq λS(S/(m+n[q])) = λR(R/m[q])λS(S/(m+n[q])).
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Since S is faithfully flat, dimS = dimR + dimS/mS, so

eHK(S) ≤ lim
q→∞

λR(R/m[q])

qdimR
lim
q→∞

λS(S/(m + n[q]))

qdimS/mS
= eHK(R) eHK(S/mS).

For the lower bound, first suppose that dimR = dimS. Then, we can compute

λS(S/m[q]S) = λR(R/m[q])λS(S/mS) by Lemma 2.2.15, and, therefore, eHK(mS, S) =

eHK(R)λS(S/mS). Moreover, by Lemma 2.3.15, eHK(mS, S) ≤ eHK(S)λS(S/mS) and

the claim follows.

For the general case, by flatness of S, dimS = htmS + dimS/mS. So, there

exists a minimal prime Q of mS such that dimS/Q = dimS/mS. Thus, we can use

Theorem 3.2.2 and get that eHK(S) ≥ eHK(SQ). Now, dimSQ = dimR and we are

done by the first case.

The second lemma allows us to descend semi-continuity from a flat extension in

a special case.

Lemma 5.4.2. Let R be a ring and f : R → S be a faithfully flat R-algebra. More-

over, suppose f has regular fibers. Then the Hilbert-Kunz multiplicity is upper semi-

continuous in S if and only if it is upper semi-continuous in R.

Proof. Let Q be any prime in S and let p = Q ∩ R. Note that Rp → SQ is faithfully

flat with regular fibers, so, by Lemma 5.4.1, eHK(Rp) = eHK(SQ). Thus, under our as-

sumption, the Hilbert-Kunz multiplicity is constant in fibers, i.e. eHK(Rp) = eHK(SQ)

for any prime ideal p of R and any prime ideal Q of S such that Q ∩R = p.

Suppose upper semi-continuity holds in S. Let a be any real number and consider

the closed set V (I) = {Q | Q ∈ SpecS, eHK(Q) ≥ a}. The argument above tells us
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that for any Q ∈ V (I) any minimal prime of (Q ∩R)S is also in V (I). Hence we get

that V (I) = V (JS) where J = I ∩R.

We claim that V (J) = {p | p ∈ SpecR, eHK(p) ≥ a}. Note that J ∈ p if and only

if JS ⊆ Q for any prime Q in S that contracts to p, i.e. eHK(p) = eHK(Q) ≥ a.

For the other direction, note that f ∗ : SpecS → SpecR is surjective, so, since eHK

is constant in fibers, we obtain that

{Q | Q ∈ SpecS, eHK(Q) < a} = (f ∗)−1{p | p ∈ SpecR, eHK(p) < a}.

Hence it is open.

Theorem 5.4.3. Let R be a locally equidimensional ring. Suppose that R is either

F-finite or is an algebra of essentially finite type over an excellent local ring B. If p

be a prime ideal of R, then for any ε > 0 there exists s /∈ p, such that for all prime

ideals q ∈ Ds ∩ V (p)

eHK(q) < eHK(p) + ε.

Proof. If R is not F -finite, first, consider the extension R → R ⊗B B̂. Since B

is excellent, the natural map B → B̂ is regular. So, by [22, Lemma 4, p. 253],

R → R ⊗B B̂ satisfies the conditions of Lemma 5.4.2. Hence, by Proposition 5.1.4

and Lemma 5.4.2, we may assume that B is complete.

Note that the classes of rings that we consider are stable under taking quotients.

So, by Proposition 5.1.5, we can assume that R is a domain.

By Theorem 5.2.3 and Theorem 5.3.4, there exists an element s /∈ p and a fixed
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power q0 = pe, such that for all q ∈ Ds ∩ V (p)

∣∣∣λRq

(
Rq/q

[q0]Rq

)
/qht q

0 − eHK(q)
∣∣∣ < ε/2.

In particular, ∣∣∣λRp

(
Rp/p

[q0]Rp

)
/qht p

0 − eHK(p)
∣∣∣ < ε/2.

Now, we can use Theorem 3.2.4, and obtain a non-empty subset p ∈ U ⊆ V (p)

open in V (p) such that for any q ∈ U ,

λRq

(
Rq/q

[q0]Rq

)
/qht q

0 = fq0(q) = fq0(p) = λRp

(
Rp/p

[q0]Rp

)
/qht p

0 .

Thus, we obtain that on U ∩ Ds, λRp

(
Rp/p

[q0]Rp

)
/qht p

0 is within ε/2 from both

eHK(p) and eHK(q) and the statement follows.

Corollary 5.4.4. Let R be a locally equidimensional ring. Moreover, suppose that

either R is F-finite or is an algebra of essentially finite type over an excellent local

ring B. Then the Hilbert-Kunz multiplicity is upper semi-continuous on SpecR.

We would like to remark again that the assumptions are not very restrictive and

any affine or complete domain satisfies them.

We note the following corollary of semi-continuity.

Corollary 5.4.5. Let R be a Noetherian ring and suppose the Hilbert-Kunz multiplic-

ity is upper semi-continuous on SpecR. Then the Hilbert-Kunz multiplicity satisfies

the ascending chain condition on SpecR, i.e. any increasing sequence e1 = eHK(p1) ≤

e2 = eHK(p2) ≤ . . . stabilizes.

Proof. Since eHK is upper semi-continuous Ui = {p | eHK(p) < ei} form an increasing

sequence of open sets, so it stabilizes.
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Let us state the corollary discussed in Remark 5.1.2.

Corollary 5.4.6. Let R be a locally equidimensional ring. Suppose that R is either

F-finite or is an algebra of essentially finite type over an excellent local ring B. Then

the maximum value locus of Hilbert-Kunz multiplicity is closed.

Since Hilbert-Kunz multiplicity is upper semi-continuous but need not to be lo-

cally constant, it may attain infinitely many values. We will use the example of

Proposition 4.4.10.

Corollary 5.4.7. Let R = F [x, y, z, t]/(z4 + xyz2 + (x3 + y3)z + tx2y2), where F is

the algebraic closure of Z/2Z. Then eHK attains infinitely many values on SpecR.

Proof. Let P = (x, y, z). As we seen in Proposition 4.4.10, eHK(P ) = 3 and eHK(Q) >

3 for any maximal ideal Q containing P . On the other hand, by upper semi-continuity,

the set Xn = {Q ∈ SpecR | eHK(Q) < 3 + 1/n} is open. In particular, it contains

infinitely many maximal ideals containing P . Thus it easily follows that Hilbert-Kunz

multiplicity attains infinitely many values on V (P ).
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Chapter 6

Questions

6.0.1 Further directions in Equimultiplicity

We would like to compare better the two equimultiplicity theories. There are many

possible questions, but let us focus on the most interesting direction. Namely, we

would like to know how does equality eHK(p) = eHK(m) affect the Hilbert-Samuel

multiplicity.

First, one could hope that, it should imply the classical equimultiplicity, e(p) =

e(m). Another direction to explore, is reduction to positive characteristic: what is a

relation between the classical equimultiplicity in characteristic zero and Hilbert-Kunz

equimultiplicity in reductions?

6.0.2 Equimultiplicity and Cohen-Macaulayness of closures

In view of Corollary 4.3.14, it is natural to ask whether equimultiplicity is in fact

equivalent to R/(p[q])∗ be Cohen-Macaulay, perhaps, for large q. Even more, by

Proposition 3.3.2, we ask if R/(p[q])∗ is forced to be Cohen-Macaulay if R/p[q] is

Cohen-Macaulay for all q. This seems to be unlikely, but the author does not have a

counterexample.
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Also, motivated by Corollary 3.1.19, we could ask same questions about the inte-

gral closure of the powers of an ideal.

6.0.3 Analytic spread in tight closure theory

In view of Theorems 4.3.13 and 3.1.17, we would like to ask whether there is a

correspondening notion of analytic spread for tight closure.

Epstein and Vraciu started to develop a theory of *-spread as an analogue of the

size of a minimal reduction ([7, 32, 8]). However, it seems that this notion cannot

provide a characterization in the spirit of laconic `(I) = ht(I), as it seems to be too

weak.

Namely, Epstein and Vraciu in [8, Lemma 1] provided us with the following ob-

servation.

Lemma 6.0.8. Let R be a Noetherian local ring of characteristic p > 0, let f1, . . . , fn

be ∗-independent elements generating an ideal K, and let x be a parameter modulo

K. Assume that R has a weak test element. Then there is some positive integer t

such that f1, . . . , fn, x
t are ∗-independent.

Together with [7, Proposition 2.3] and [32, Proposition 3.3], this gives us that,

quite generally, for an arbitrary ideal I and a parameter x modulo I, `∗((I, xt)) =

`∗(I)+1 for some t. This is quite pathological compared to Lemma 3.1.16, as xt need

not to be regular modulo I.

One may speculate that the size of a minimal reduction is not the “right” definition

of analytic spread, since they are not equal if the residue field is finite. So, the author
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hope that there is a definition of analytic spread for tight closure that will generalize

Lemma 3.1.16.

6.0.4 Hilbert-Kunz multiplicity and blowing-up

After we have showed semicontinuity of Hilbert-Kunz multiplicity, the next natural

direction is to study its behavior under blow-ups. Of course, this is likely a hard

question, but there is still a lot to explore.

First, as usually in Hilbert-Kunz theory, we need more examples. At the present

moment, we do not have a single non-trivial computation of the maximum value locus

of Hilbert-Kunz multiplicity. The structure of the locus will be certainly important

for the main question.

6.0.5 Uniform annihilation of local cohomology

We want to finish with the most important and, possibly, the most difficult of our

questions. As we discussed in Remark 4.2.12, it is believed that the following conjec-

ture is true.

Conjecture 6.0.9. Let (R,m) be a local ring of characteristic p > 0. Then for any

ideal I there exists a constant C such that for all q

mCq H0
m(R/I [q]) = 0.

This conjecture is quite strong and, for example, implies that a localization of

a weakly F-regular ring is still weakly F-regular. In fact, to show this it is enough

to establish the conjecture only for ideals of dimension one (e.g. discussion after



117

Corollary 3.2 in [15]). Also, via the work of Hochster and Huneke ([14]), it will tell

us more explicitly why tight closure does not localize.
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Briançon-Skoda theorem. J. Amer. Math. Soc., 3(1):31–116, 1990.

[13] Melvin Hochster and Craig Huneke. F -regularity, test elements, and smooth

base change. Trans. Amer. Math. Soc., 346(1):1–62, 1994.

[14] Melvin Hochster and Craig Huneke. Localization and test exponents for tight

closure. Michigan Math. J., 48:305–329, 2000. Dedicated to William Fulton on

the occasion of his 60th birthday.

[15] Craig Huneke. The saturation of Frobenius powers of ideals. Comm. Algebra,

28(12):5563–5572, 2000. Special issue in honor of Robin Hartshorne.

[16] Craig Huneke and Yongwei Yao. Unmixed local rings with minimal Hilbert-Kunz

multiplicity are regular. Proc. Amer. Math. Soc., 130(3):661–665, 2002.



120

[17] Irving Kaplansky. Commutative rings. The University of Chicago Press, Chicago,

Ill.-London, revised edition, 1974.

[18] Ernst Kunz. Characterizations of regular local rings of characteristic p. Amer.

J. Math., 91:772–784, 1969.

[19] Ernst Kunz. On Noetherian rings of characteristic p. Amer. J. Math., 98(4):999–

1013, 1976.

[20] Christer Lech. On the associativity formula for multiplicities. Ark. Mat., 3:301–

314, 1957.

[21] Joseph Lipman. Equimultiplicity, reduction, and blowing up. In Commutative

algebra (Fairfax, Va., 1979), volume 68 of Lecture Notes in Pure and Appl.

Math., pages 111–147. Dekker, New York, 1982.

[22] Hideyuki Matsumura. Commutative algebra, volume 56 of Mathematics Lecture

Note Series. Benjamin Cummings Publishing Co., Inc., Reading, Mass., second

edition, 1980.

[23] Stephen McAdam. Asymptotic prime divisors and analytic spreads. Proc. Amer.

Math. Soc., 80(4):555–559, 1980.

[24] Paul Monsky. The Hilbert-Kunz function. Math. Ann., 263(1):43–49, 1983.

[25] Paul Monsky. Hilbert-Kunz functions in a family: point-S4 quartics. J. Algebra,

208(1):343–358, 1998.



121

[26] Masayoshi Nagata. Local rings. Interscience Tracts in Pure and Applied Math-

ematics, No. 13. Interscience Publishers a division of John Wiley & Sons New

York-London, 1962.

[27] L. J. Ratliff, Jr. Note on asymptotic prime divisors, analytic spreads and the

altitude formula. Proc. Amer. Math. Soc., 82(1):1–6, 1981.

[28] D. Rees. Rings associated with ideals and analytic spread. Math. Proc. Cam-

bridge Philos. Soc., 89(3):423–432, 1981.

[29] N. I. Shepherd-Barron. On a problem of Ernst Kunz concerning certain charac-

teristic functions of local rings. Arch. Math. (Basel), 31(6):562–564, 1978/79.

[30] Irena Swanson and Craig Huneke. Integral closure of ideals, rings, and modules,

volume 336 of London Mathematical Society Lecture Note Series. Cambridge

University Press, Cambridge, 2006.

[31] Kevin Tucker. F -signature exists. Invent. Math., 190(3):743–765, 2012.

[32] Adela Vraciu. ∗-independence and special tight closure. J. Algebra, 249(2):544–

565, 2002.

[33] Kei-ichi Watanabe and Ken-ichi Yoshida. Hilbert-Kunz multiplicity and an in-

equality between multiplicity and colength. J. Algebra, 230(1):295–317, 2000.


