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Abstract

With the historic detection of gravitational waves (GWs) by the LIGO and Virgo

collaborations (LVC) in 2015, an era of GW astronomy began. Almost fifty binary

merger events have been detected from the first two and a half observing runs of

LVC. Ripples in the curvature of spacetime created by coalescing compact binaries

allowed us to perform tests of gravity in strong and dynamical field regimes that

were previously unexplored. Testing gravity in such a field regime is of particular

importance to probe modified theories of gravity, which are viable modifications to

general relativity (GR), motivated from both theoretical and observational aspects.

This thesis considers both theory-agnostic and theory-specific approaches for testing

a number of modified theories of gravity with GWs.

Theory-agnostic or model-independent tests have the advantage over theory-specific

tests, as one can map the results of one particular test to several theories. Adopting

parametrized post-Einsteinian formalism, we introduce generic deviations to the am-

plitude and phase of gravitational waveforms from those of GR. We derive analytic

expressions of such deviations in a number of theories. We further perform numerical

analyses with GW events GW150914 and GW151226 to achieve bounds on such devi-

ations. Finally, we map such bounds to some modified theories of gravity to achieve

constraints on those theories. A critical feature of our work is that we keep non-GR

deviations in both phase and amplitude of the waveform while performing numerical

analyses, while most works done previously focused on corrections to the GW phase

only.
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For theory-specific cases, we first consider higher-dimensional scenarios. One of

the many avenues of modifying the four-dimensional theory of GR is to introduce

extra dimensions. Such modifications are motivated by string theories in order to

achieve a quantum theory of gravity. We study theories that contain extra dimen-

sions compactified on circles. In particular, we compute modifications induced by

compact extra dimensions to the binding energy of binaries and the luminosity of

GWs generated by them. We compute the GW phase using such quantities and

compare it with GW and binary pulsar observations. Such comparisons show incon-

sistency between the prediction of our model and the observations, which rules out

the class of simple compactified higher-dimensional models.

Finally, we study GW memory effects, a set of strong-field GW phenomena yet to

be detected. Such effects manifest as permanent changes in the GW strain and its time

integrals after the passage of GWs. They are closely related to asymptotic symmetries

of the spacetime and corresponding conserved charges. GW memory effects are well

studied in GR but need to be carefully investigated in theories beyond GR. To do so,

we consider Brans-Dicke theory which contains a massless scalar field nonminimally

coupled to gravity. GWs in Brans-Dicke theory can have three polarizations— two

tensor modes (which are present in GR) and one scalar or breathing mode. We

study Brans-Dicke theory in Bondi-Sachs framework and derive asymptotically flat

solutions, asymptotic symmetries, and associated fluxes of conserved charges. We find

that the connection between symmetries and memory effects in Brans-Dicke theory is

different from that of GR. In particular, the symmetries are the same as those of GR,

but there are two memory effects associated with the non-GR breathing polarization

not related to spacetime symmetries.
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We further implement the connection between memory effects and fluxes of con-

served charges to compute GW memories associated with tensor polarizations in

Brans-Dicke theory. We derive memory effects generated by quasi-circular nonprecess-

ing binaries and find that tensor memories in Brans-Dicke theory have two unique

features. First, they depend on the sky angles differently from those of GR, which

can potentially constrain Brans-Dicke theory with future space-based GW detectors.

Second, in terms of binary’s relative velocity, they start at a lower order than those

of GR.
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Chapter 1

Introduction

The most successful theory of gravitation so far is general relativity (GR), put forth

by Albert Einstein in 1915, which describes gravity as a curvature of spacetime. The

theory is appreciated for its elegant mathematical structure and solid conceptual

foundation and has passed all the tests with high precision [2]. Nevertheless, some

theoretical and observational motivations lead to the demand for a modification to

GR. Regarding theoretical reasons, GR is a purely classical theory and incompatible

with quantum mechanics, which describes microscopic phenomena. Quantum effects

can be important in the case of strong gravitational fields at Planck scale [3,4], such

as in the vicinity of black holes (BHs) and the very early universe. A complete de-

scription of such scenarios requires a consistent theory of quantum gravity. On the

observational side, the accelerated expansion of the universe [5–12] and anomalous

galactic rotation curves [13–19] suggest that one may need to go beyond GR to ex-

plain such cosmological phenomena 1. Many theories of gravity have been proposed
1Alternatively, one can introduce dark energy or dark matter and work in the framework of GR.

However, the states of dark matter and dark energy are currently unknown.

1
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which modify the known theory of GR, for example, by introducing additional fields,

interactions, or extra dimensions. Collectively such theories are dubbed as modified

theories of gravity [20–22].

One of the many remarkable predictions of GR which is also shared by modified

theories of gravity is the existence of gravitational waves (GWs): ripples in spacetime

that are produced by explosive events such as coalescing binary black holes (BBHs)

or neutron stars. In 2015, the Laser Interferometer Gravitational-Wave Observatory

(LIGO) Scientific Collaborations and the Virgo Collaboration (LVC) detected GWs

from a pair of black holes (BHs) for the first time [23,24]. This historic event opened

new possibilities for testing gravity in the strong-field and dynamical regime [25–27].

During the first three observing runs LVC detected fifty BBH merger events and two

binary neutron star (BNS) events [28,29], furthering the advance of the relatively new

field of GW astronomy [30–35].

Before the detection of GWs, tests of gravity were performed predominantly by

solar system experiments, observations of radio pulsars, cosmological observations,

and table-top experiments. Each such observation explores a particular regime of

field strength and length scale. For example, solar system experiments constrain

gravity in the weak-field and slow-motion environment, allowing one to probe only

first order relativistic corrections to Newtonian dynamics [2,36]. As with pulsar timing

observations of neutron stars (NSs), we can achieve both strong-field and weak-field

tests of gravity to some extent [37–46]. This is because NSs are compact objects that
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are sources of strong-field gravity; however, the separation between the NSs in a binary

pulsar is large, and thus the binary components are slowly moving. Cosmological

observations can test gravity at length scales that are many orders of magnitude larger

compared to other tests, although in weak-field regime [21, 36, 47–49]. Such tests of

gravity include observations of cosmic microwave background (CMB) radiation [50,51,

51–54], studies of Big Bang Nucleosynthesis [55–61], weak gravitational lensing [62–66]

and observations of galaxies [36]. Table-top experiments take place in a weak-field

regime and have been able to probe deviation to gravitational inverse-square law to a

micrometer scale [67,68]. Probing gravity with GW observations is unique compared

to all other tests, as GWs originate from strong and highly dynamical field regimes

of colliding compact objects (see figure 1.1). In particular, accessing such a regime

is vital to constrain modified theories of gravity. Many viable modified theories of

gravity coincide with GR in the weak-field and slow-motion regime, making strong-

field tests the most promising sector for exploring their predictions.

With GW events detected so far, several tests of GR in strong-field regimes have

been performed [25,27,30–34,69,70]. For example, model-independent tests of gravity

with BBH mergers have been carried out by evaluating the amount of residuals in the

detected signals from best-fit waveforms [25, 32]. Consistency tests of GR between

inspiral and post-inspiral phases were also performed, by measuring the remnant

BH’s mass and spin independently from the two phases [25, 35]. Adding the Virgo

detector to GW observations let us search for non-tensorial polarizations [32, 70].
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Figure 1.1: Curvature-potential phase space probed by various experiments that
test gravity. The vertical axis shows the inverse of characteristic curvature length,
and the horizontal axis shows the characteristic gravitational potential. M and L
denote typical mass and size of the system being probed. GW150914 [23] and
GW151226 [24] sample a curvature regime and gravitational potential that is strong
(and dynamical, illustrated by the finite range the curves take over). The finite
region of the pulsar timing array is because of the range in GW frequency and total
mass of supermassive BBHs such arrays possibly detect in the future. (Image taken
from Ref. [27])
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With the BNS merger event GW170817, the arrival time difference between GWs and

electromagnetic (EM) waves has been utilized to constrain the violation of Lorentz

invariance and to execute a new test of the equivalence principle through the Shapiro

time delay [71]. A constraint on the propagation speed of GWs with the same event

has been used to rule out several modified theories of gravity that aim to explain the

accelerating expansion of the universe [72–79]. An analysis of 31 BBH merger events

constrained modified dispersion relation and graviton mass [69]. GW observations

have also been used to constrain extra dimensional models and time-varying Planck

mass [69,80]. This thesis will present several works that contributed to probing strong-

field gravity with GWs, including both theory-specific tests and theory-agnostic or

model-independent tests.

The central part of this thesis consists of four main projects: (1) probing modified

theories of gravity in a model-independent way with GWs [26,81], (2) probing compact

extra dimensions with GWs [80], (3) asymptotically flat solutions, asymptotic symme-

tries, and GW memory effects in Brans-Dicke theory [82], (4) gravitational memory

waveforms generated by quasi-circular nonprecessing binaries in Brans-Dicke theory.

We now provide an introduction to the topics covered by the above projects before

we summarize important results in section 1.1.

Let us first discuss theory-agnostic or model-independent approaches of probing

gravity with GWs. A model-independent approach of probing modified theories of

gravity parametrizes the deviation of the gravitational waveform from that of GR
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in a theory-agnostic way. It is possible to derive gravitational waveform in each

theory and compare it with GW observations; nevertheless, a more effective way is

to conduct theory-agnostic tests at first and subsequently map the information to

specific non-GR theory parameters. Some early works in this direction were done in

Refs. [83–85] where the authors considered post-Newtonian 2 (PN) terms in the GR

waveform as independent of each other and proposed to study the consistency among

them. However, one shortcoming of such an approach is that it cannot accommodate

the non-GR effects entering at PN orders absent in GR, such as −1PN order which

occurs in, e.g., scalar-tensor theories. A new framework called parametrized post-

Einsteinian (PPE) formalism was proposed by Yunes and Pretorius, which overcome

such shortcomings by introducing generic corrections at any PN order to both the

phase and the amplitude [86,87] (see figure. 1.2). Such a formalism was later extended

to include time domain waveforms [88], eccentric binaries [89], and a sudden turn

on of non-GR effects [90, 91]. A model-independent data analysis pipeline named

TIGER was also developed in Refs. [92, 93]. The LVC implemented the generalized

IMRPhenom (gIMR) waveform model, which has a one-to-one correspondence with

the PPE framework in the inspiral part of the waveform phase, to carry out tests of

gravity with the GW phase [25,27,30,32,71,94].

In our work [26,81], we aim to carry out model-independent tests of gravity with

both amplitude and phase corrections, and as such, we implement the PPE formal-
2A post-Newtonian (PN) expansion of the gravitational waveform is an expansion in the small

parameter v2/c2, where c is the speed of light, and v is the typical velocity of binary components.



Chapter 1. Introduction 7

Figure 1.2: Gravitational waveform in GR and a PPE waveform with non-GR
corrections injected at -1PN order. PPE formalism can capture non-GR effects that
enter in the waveform at a PN order absent in GR. (Image taken from Ref. [95])

ism [86,87]. Most works done previously in testing gravity with GWs focused on cor-

rections to the GW phase only, given that the matched filtering technique is more sen-

sitive to phase corrections than amplitude ones. However, there are scenarios where

probing the amplitude correction is beneficial, such as the parity-violating theories,

which predict amplitude birefringence 3 [96–99]. Probing amplitude corrections is also

important in constraining theories that predict stochastic GW backgrounds [100,101].

Moreover, theories with flat extra dimensions [102], Horndeski gravity [103], and f(R)

gravity [104] predict possible amplitude damping that scales with the cosmological

distance. Finally, if the waveform template does not accommodate a non-GR effect

in amplitude, it may cause systematic errors in other parameters like the luminosity
3In some parity-violating theories, one of the circularly-polarized modes is amplified while the

other one is suppressed. Such an effect is called amplitude birefringence and enters only in circularly-
polarized modes.
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distance.

We next consider probing extra dimensions with GWs. Extra dimensions arise in

string theories that aim to achieve a quantum theory of gravity, and such dimensions

can leave an imprint on GWs. For instance, in flat (non-compact) D-dimensional

spacetime, GWs decay as 1/R(D−2)/2 [102], where R is the distance travelled by GWs.

Constraints on such models have also been computed with GW observations [31,105].

In our work, we consider GWs in a 5d spacetime, with the fifth dimension being

compactified on a circle (see figure 1.3) and with the matter constrained on the 4d

spacetime called “brane”. Such a model of gravity is called the Kaluza-Klein (KK)

theory [106]. In a KK theory, one considers Einstein-Hilbert action in 5d. One

can further adopt a metric that is periodic in the extra dimension since the extra

dimension is compactified on a circle. Plugging the metric in Einstein-Hilbert action,

it is possible to integrate out the extra dimension to obtain an effective 4d action.

Such a procedure is called KK reduction, and the effective 4d action represents a

theory containing tensor, vector, and scalar fields, known as Einstein-Maxwell-dilaton

(EMD) theory [107–110].

In warped or compactified extra dimensional models, KK compactification leads to

scalar polarizations (due to massless scalar fields), as well as massive KK modes with

frequencies much higher than the range of ground-based detectors [111,112]. Such KK

modes can produce a stochastic GW background [113] and modify quasinormal modes

after binary mergers [114, 115]. Furthermore, in the RS-II braneworld model [116],
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Time3-space

Extra dimension

Figure 1.3: An extra dimension compactified on a circle. The flat surface represents
4d spacetime or “brane” that we live in. The fifth dimension is small and curled up,
and can be visualized as a circle at each point of the flat spacetime.

BHs can evaporate classically [117, 118], modifying the orbital evolution of BHs and

changing the waveform from that of 4d GR. Such cases have been considered to place

bounds on the size of the extra dimension with GW150914 [27], although the bounds

are much weaker than the current most stringent bound obtained from table-top

experiments [67, 68]. Tidal deformabilities of BHs and NSs have been computed in

braneworld models and have been used to constrain the brane tension with GW170817

[119,120]. Finally, one can consider yet another fact that GWs can propagate through

the higher dimensional bulk, while EM waves are constrained to travel on a brane. The

difference in the propagation of such two waves can probe the extra dimensions [121–

125], and such a case has been applied to GW170817 [126–129], although the bounds

are much weaker than those of table-top experiments.

We next explore GW memory effects in a modified theory of gravity. To under-
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Figure 1.4: Supertranslations represented in a conformally compactified spacetime.
I+ and I− denote future and past null infinity, respectively. A green circle denotes
a 2-sphere at future null infinity. Under a supertranslation, each point on the
2-sphere is shifted independently along the direction of retarded time, as indicated
by red arrows. On the other hand, under an ordinary (Poincaré) translation, each
point would be shifted by the same amount.

stand our work, let us first introduce memory effects and related formulations in GR.

GW memory effects are enduring changes in the GW strain and its time integrals

after bursts of GWs [130–132]. Such effects are too small to be detected from an

individual event with current ground-based GW detectors; nevertheless, they could

be detected from a population of BBH mergers observed by the Advanced LIGO and

Virgo detectors for several years [133–135]. On the other hand, future space-based

detector LISA holds promise to detect such effects from a single event [136, 137].

Third-generation ground-based detectors such as Einstein Telescope or Cosmic Ex-

plorer [138] can potentially detect such effects as well.

Memory effects in GR are closely linked to symmetries of asymptotically flat

spacetime. The asymptotic symmetry group of such a spacetime consists of a semidi-
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rect product of Lorentz group and an infinite dimensional subgroup of translations

called the supertranslations (see figure 1.4), forming the Bondi-Metzner-Sachs (BMS)

group [139–141]. The Lorentz part of the BMS group can also be extended to in-

clude all conformal Killing vectors on the 2-sphere called superrotations (or super-

boosts) [142–145] or all smooth vector fields on the 2-sphere [146, 147], and the re-

sultant group is the extended BMS group. There are conserved charges associated

with BMS symmetries 4 [148–151]. Charges conjugate to superstranslation symme-

tries are termed as supermomenta. The ones corresponding to Lorentz symmetries

are six components of the relativistic angular momentum, which can be divided into

center-of-mass (CM) and spin parts. In the case of the extended BMS group, charges

corresponding to the Lorentz part are super CM and super spin charges (or super-

angular momenta) [152,153].

As mentioned, there are memory effects corresponding to asymptotic symmetries,

and they can be computed from associated fluxes of conserved charges or BMS flux

balance laws [152,154]. Supertranslation symmetries are associated with displacement

memory effects predicting that after a burst of GWs, the separation between two dis-

tant initially comoving observers will have a permanent shift [153,155] (demonstrated

in figure 1.5). On the other hand, Super CM and super spin charges are related to

center-of-mass and spin memory effects, respectively. Such effects predict changes in

the separation that grows linearly with time for two observers with an initial relative
4These charges are conserved in the sense that the difference in the charges between two times is

equal to the flux of the quantity between these two times.
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velocity [152, 154, 156]. In the case of GWs generated by compact binaries, the dis-

placement memory effect enters as a shift in GW strain, while CM and spin memory

effects enter in the time integral of the strain. BMS flux balance laws provide an

efficient way of computing GW memory effects from waveforms without memories.

Such a technique makes use of both Bondi gauge and harmonic gauge quantities and

has been implemented to derive displacement, spin, and CM memory waveforms from

compact binaries in GR [154, 157–162]. On the other hand, it is possible to capture

memory effects working in harmonic gauge alone, but it requires one to go to a suffi-

ciently high PN order in the waveform (2.5PN order in case of displacement memory

waveforms in GR [163,164]).

Although Memory effects and their correspondence with symmetries and con-

served charges are well studied in GR, there remain open questions regarding memo-

ries in a non-GR theory. Are symmetries of asymptotically flat spacetimes in modified

theories of gravity the same as those of GR? As there are additional polarizations in

modified theories of gravity [2, 87, 165], one expects additional memory effects. Do

the additional memories have a similar relationship with asymptotic symmetries as

those of GR? To answer such questions, we pick one of the simplest possible modified

theory of gravity: Brans-Dicke (BD) theory [166]. BD theory is a scalar-tensor theory

with a single massless scalar field nonminimally coupled to gravity [36]. Scalar-tensor

theories emerge in the contexts of string theories, inflation [21, 167], and the cosmic

acceleration of the Universe [168–170]. The massless scalar field in BD theory leads to
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Figure 1.5: Displacement memory effect presented in a conformally compactified
spacetime. A pair of initially comoving detectors near future null infinity undergo a
temporary oscillation when GWs pass by them. After the passage of GWs, the
separation between the detectors is shifted permanently due to the displacement
memory effect.
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an additional breathing type polarization of GWs that produces a relative contraction

and expansion of a freely falling ring of particles in the plane transverse to the direc-

tion of GW propagation. We will explore asymptotically flat solutions, asymptotic

symmetries, and GW memory effects in BD theory, as well as gravitational memory

waveforms generated by compact binaries in such a theory.

1.1 Executive Summary

We now move on to explaining the primary outcomes of this thesis briefly. A more

in-depth summary of each project can be found in the concluding sections of chapters

covered by the project. Theory-agnostic tests of gravity with GWs are considered

in chapters 2 and 3. Chapter 4 explores GWs in higher dimensional gravity with

compact extra dimensions. Chapter 5 studies BD theory in Bondi-Sachs form, while

chapter 6 presents displacement and spin memory waveforms generated by compact

binaries in BD theory.

1.1.1 Model-independent tests of modified theories of gravity

Let us summarize the model-independent works considered in this thesis. First, we

compute analytic expressions of PPE waveforms (the deviation from GR phase and

amplitude in a PPE foramlism are called the PPE phase and amplitude parame-

ters, respectively, and the waveform is called the PPE waveform) in terms of theory

parameters in a collection of modified theories of gravity [81]. The theories we con-
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sider include scalar-tensor theories [171,172], Einstein-dilaton-Gauss-Bonnet (EDGB)

gravity [173], dynamical Chern-Simon (DCS) gravity [27, 174], Einstein-Æther the-

ory [175], Khronometric gravity [175], noncommutative gravity [176], and varying-G

theories [81, 177]. Each such theory violates one or more fundamental pillars of GR

(parity invariance, strong equivalence principle, Lorentz invariance, absence of ex-

tra dimensions etc.) predicting a small non-GR deviation in GWs. The analytical

expressions of PPE parameters are summarized in table 2.1 and table 2.2 in chapter 2.

Theories Repr. Parameter

Constraints

GW150914 GW151226

Phase Amplitude Combined Phase Amplitude Combined

EDGB [173]

√
|ᾱEDGB| [km] (50.5) (76.3) (51.5) 4.32 10.5 4.32

ζEDGB 3.62 32.4 3.91 0.0207 0.709 0.0207

Scalar-Tensor [171,172]
|Φ̇| [104/sec] (3.64) (7.30) (3.77) 1.09 (5.60) 1.09

|m1Φ̇| 6.87 16.4 7.15 0.688 3.66 0.688

Varying-G [81, 177] |Ġ0/G0| [106/yr] 7.30 137 7.18 0.0224 0.382 0.0220

Table 1.1: 90% credible constraints on representative parameters of various modified
theories of gravity from GW150914 and GW151226. For each of the GW events,
“phase” and “amplitude” correspond to the cases where we include non-GR
corrections only to the GW phase and amplitude respectively, while “combined” is
the case where we include both corrections in the waveform and reduce the two
constraints to a single one according to Sec. 3.2. ᾱEDGB is the EDGB coupling
parameter which is related to the dimensionless coupling by ζEDGB ≡ 16πᾱ2

EDGB/M
4
t

with Mt being the total mass of the binary. m1Φ̇ corresponds to a dimensionless
parameter in scalar-tensor theories where m1 is the mass of the primary BH while Φ
is the scalar field. The bounds are derived by assuming subdominant non-GR
corrections, which is realized whenever ζEDGB � 1 (m1Φ̇� 1) in EDGB
(scalar-tensor) gravity. Numbers inside brackets mean such criterion is violated and
the constraints are unreliable. G is the gravitational constant with the subscript 0
representing the time of coalescence. An overhead dot denotes a derivative with
respect to time.
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Next, we perform numerical analyses (Fisher analyses with Monte-Carlo simula-

tions) implementing PPE waveforms and utilizing LIGO/Virgo posterior samples of

the first two GW events: GW150914 and GW151226. Through Fisher analyses with

Monte-Carlo simulations, we obtain bounds on PPE parameters at various PN or-

ders [26]. Mapping such bounds to specific theories, we achieve constraints on EDGB

gravity, scalar-tensor theories, and varying-G theories from GW observations, which

we present in table 1.1. In particular, we obtain a reliable bound on the time-evolution

of a scalar field in a scalar-tensor theory from GW observations for the first time. We

derive constraints from the GW phase, GW amplitude and combining those from

phase and amplitude for each theory. By comparing such constraints, we conclude

that bounds coming from amplitude corrections can be comparable to those from

the phase corrections for massive binaries like GW150914. Furthermore, a combined

constraint differs from that coming from phase only at most by 4%, which validates

many previous studies that focused on GW phase only.

1.1.2 Probing compact extra dimensions with GWs

To probe compact extra dimensions with GWs, we work in the formalism of GR in

5d instead of considering the effective 4d theory. This is because it is much easier

to work with one tensor field (metric) than a collection of tensor, scalar, and vector

fields. Besides, we wish to extend our work to an arbitrary number of compact extra

dimensions, which is possible if we work in the higher dimensional framework. We
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assume that binaries are point-like sources located on a 4d brane, and the extra di-

mension is much smaller compared to binary separation. Through direct integration

of relaxed Einstein equations (DIRE) 5 [178] procedure, we compute GW perturba-

tions, modified Kepler’s law, and GW luminosity. Finally, with the help of modified

Kepler’s law and GW luminosity, we derive the GW phase in the frequency domain

and compare it with observations [80].

5 6 7 8 9 10
Number of Dimensions (D)

0

0.2

0.4

0.6

δφ̂

Figure 1.6: The fractional difference (δφ̂) of the GW phase with respect to that of
the 4d GR as a function of the number of dimensions (D), represented by the solid
red curve [80]. The blue dashed line shows the upper bound placed on δφ̂ from the
combined events of the first and second observing runs of the LIGO/Virgo [32].

Our work shows that in the 5d case, leading order GW luminosity and waveform
5DIRE approach is a framework for computing GW emission from isolated gravitating sources in

PN approximation [2,178]. In such an approach, the Einstein equations are cast into flat spacetime
wave equations along with a harmonic gauge condition, and the source term contains both matter
and GW stress-energy pseudotensor. The equations are then integrated over the past light cone
to obtain GW perturbations by splitting the integration regime into the near zone and far zone.
We implement the DIRE approach because the conventional quadrupole formula of gravitational
radiations does not hold in the presence of compact extra dimensions [80].
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phase differs from that of a 4d binary of same masses and separation distance con-

sidered in GR by 20.8% and 26% respectively. Because there is a degeneracy of the

leading order non-GR phase correction with the chirp mass, it is difficult to disprove

the theory with GW observations alone. However, one can consider binary pulsar

observations where additional measurements of post-Keplerian parameters break this

degeneracy, and one can rule out this theory by comparing it with such observations.

Furthermore, gravitational waveforms in the corresponding effective 4d theory (EMD

theory) have been derived previously [108–110]. We compare our results with that

of the EMD theory and find that the results are consistent with each other. We fur-

ther generalize our work to an arbitrary number of extra compact dimensions, which

shows that the discrepancy of the calculated GW phase with the GW and pulsar

observations increases with the number of dimensions (shown in figure 1.6), which

effectively rule out this class of theories that contain extra dimensions compactified

on circles.

1.1.3 Asymptotically flat solutions, asymptotic symmetries,

and GW memory effects in Brans-Dicke theory

We study BD theory in the Bondi-Sachs framework [139,140] 6 in chapter 5 and derive

the asymptotically flat solutions, asymptotic symmetries and associated conserved

charges, and GW memory effects [82]. We find that in such a theory, the asymptotic
6Bondi-Sachs framework is a metric-based formulation of gravity where coordinates are well suited

to the null hypersurfaces and the null geodesics of the spacetime.
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symmetry group is interestingly the same as GR, i.e., the BMS group. We further

study the effect of GWs and scalar waves on freely falling observers and find two

new memories in addition to memories present in GR [82]. These two memories

are related to the additional breathing polarization and are called scalar memories

(to distinguish them from tensor memories of GR). One of the scalar memories is

a displacement memory effect explained in figure 1.7, and the other one depends

on the initial relative velocity of test masses and grows linearly with time. Since the

number of spacetime symmetries remains the same as that of GR, new scalar memories

cannot be computed from fluxes of conserved charges (or BMS flux balance laws),

which constrain only tensor memories. Nevertheless, the tensor memories themselves

receive non-GR contributions from the scalar energy flux, and we can compute those

contributions, which we discuss next.

1.1.4 GW memory effects generated by compact binaries in

Brans-Dicke theory

Implementing the results of chapter 5, we study memory effects in gravational wave-

forms in Brans-Dicke theory in chapter 6. Scalar and tensor wave solutions for com-

pact binaries in BD theory have already been computed in harmonic gauge coordi-

nates using the DIRE approach previously [179, 180]. However, similar to the case

of GR, one needs to go to sufficiently high PN order in the waveforms to capture

memory effects in such an approach. Ref. [179] found displacement memory effect
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Figure 1.7: Displacement memory effect associated with the scalar or breathing
polarization. The figures on the top show the effect of scalar polarization on a ring
of particles without taking into account memory effects. GWs and scalar waves
propagate into the page, and the evolution of the ring of particles with time is
shown from left to right. The ring of particles expands and contracts sequentially
and is left in the initial circular shape once the waves have passed. The figures on
the bottom show the same scenario but with a scalar displacement memory effect.
A lasting uniform expansion (or contraction) occurs, and the ring of particles
retains an expanded (or contracted) shape after the waves have left.
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in the tensor waveform in BD theory using such an approach at 1.5PN, which after

integrating over binary’s history becomes effectively -1PN order. We adopt the alter-

native approach of using relatively low PN order waveforms found in harmonic gauge

to BMS flux balance laws in Bondi gauge that we derived in chapter 5. To do so,

we perform coordinate transformation from Bondi gauge to harmonic gauge. Such

a transformation allows us express Bondi gauge quantities in BMS balance laws in

terms of the harmonic gauge quantities already available in Refs. [179, 180]. Next,

we evaluate the BMS balance laws to obtain displacement and spin memory effects

in BD theory for a quasi-circular nonspinning binary. The waveforms we compute in

this approach are complete to Newtonian order (0PN), valid under the assumption

that non-GR BD corrections to waveforms are small compared to GR contributions.

There are two features of tensor memory waveforms in BD theory that are differ-

ent from their GR counterparts. First, the leading PN order of such waveforms is

at -1PN due to the scalar dipole radiation. Second, the 0PN part of such wave-

forms has a dependence on the inclination angle that is different from those of GR.

Our waveforms can potentially be used to constrain BD theory with memory effects,

e.g., by considering projected events with the space-based detector LISA [181], or by

stacking multiple signals from projected events with LIGO/Virgo or third-generation

detectors [182,183]. Especially, the difference in the dependence on inclination angle

between BD theory and GR can be implemented to constrain BD theory through a

hypothesis test described in Ref. [184].
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1.2 Organization and conventions

Let us present a brief outline of this thesis. Chapters 2 and 3 focus on model-

independent tests of gravity. In particular, in chapter 2 we present the analytical

results of PPE waveforms in various modified theories of gravity. In chapter 3, we

perform data analyses with events GW150914 and GW151226 in a theory-agnostic

approach and then map the bounds to specific theories. Chapter 4 discusses GWs

in theories with compact extra dimensions, focusing on modified Kepler’s law, GW

perturbations, GW luminosity, and GW phase in such theories. In chapter 5, we

study BD theory in the Bondi-Sachs framework and present asymptotically flat so-

lutions, asymptotic symmetries, and associated conserved charges, and GW memory

effects. Using the results of chapter 5, in chapter 6. we compute gravitational mem-

ory waveforms in BD theory generated by quasi-circular nonspinning binaries in PN

approximations. At the end of each chapter, we present a concluding section high-

lighting the important results of that chapter. We relegate some of the more technical

details to Appendices.

Throughout this thesis, we use units in which the speed of light c = 1, and we

use the conventions for the metric and curvature tensors given in [185]. Greek indices

(µ, ν, α, . . . ) represent four-dimensional spacetime indices, while indices with circum-

flex diacritic (e.g., α̂) represent those of an orthonormal tetrad. Lower case Latin

indices (i, j, k, . . . ) denote spatial indices in quasi-Cartesian harmonic coordinates

in four-dimensional spacetime. Uppercase Latin indices A,B,C, . . . , H represent in-
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dices on the 2-sphere. On the other hand, uppercase Latin indicesM,N, . . . , S denote

spacetime indices in a higher-dimensional scenario, while I, J,K, L denote spatial in-

dices in the same setup.



Chapter 2

PPE Waveforms in Various Modified
Theories of Gravity

2.1 Introduction

In this chapter, we derive PPE waveforms in various modified theories of gravity 1.

Many of previous literature focused on deriving phase corrections since matched filter-

ing is more sensitive to such phase corrections than to amplitude corrections. Having

said this, there are situations where amplitude corrections are more useful to probe,

such as amplitude birefringence in parity-violating theories of gravity [96–99] and test-

ing GR with astrophysical stochastic GW backgrounds [100]. We first derive PPE

amplitude and phase corrections in terms of generic modifications to the frequency

evolution and Kepler’s third law that determine the waveform in Fourier domain. For

our purpose, this formalism is more useful than that in [87], which derives the ampli-

tude and phase corrections in terms of generic modifications to the binding energy of

a binary and the GW luminosity. We follow the original PPE framework and focus
1This chapter is based on the following paper:Parameterized Post-Einsteinian Gravitational

Waveforms in Various Modified Theories of Gravity ; Tahura, Sharaban; Yagi, Kent; Phys. Rev.
D 98, 084042 (2018)

24
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on deriving leading PN corrections in tensorial modes only [86, 186]. Non-tensorial

GW modes also typically exist in theories beyond GR, though at least in scalar-tensor

theories, the amplitude of a scalar polarization is of higher PN order than amplitude

corrections to tensor modes [87,187].

Non-GR corrections can enter in the gravitational waveform through activation of

different theoretical mechanisms, which can be classified as generation mechanisms

and propagation mechanisms [27]. Generation mechanisms take place close to the

source (binary), while propagation mechanisms occur in the far-zone and accumulate

over distance as the waves propagate. In this chapter, we focus on the former2. The

PPE parameters in various modified theories of gravity are summarized in Tables 2.1

(phase corrections) and 2.2 (amplitude corrections). Some of the amplitude correc-

tions were derived here for the first time. We also correct some errors in previous

literature.

The rest of the chapter is organized as follows: In Sec. 2.2, we revisit the standard

PPE formalism. In Sec. 2.3, we derive the PPE parameters in some example theories

following the formalism in Sec. 2.2. In Sec. 2.4, we derive the PPE parameters in

varying-G theories. We summarize our work and discuss possible future prospects in

Sec. 2.5. Appendix A discusses the original PPE formalism. In App. B, we derive the

frequency evolution in varying-G theories from the energy-balance law. We use the

geometric units G = c = 1 throughout this chapter except for varying-G theories.
2PPE waveforms due to modifications in the propagation sector can be found in [27, 188, 189],

which have been used for GW150914, GW151226 [27] and GW170104 [94] to constrain the mass of
the graviton and Lorentz violation.
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Theories PPE Phase Parameters Binary TypeMagnitude (βPPE) Exp. (b)

Scalar-Tensor [171,172] − 5

7168
η2/5(α1 − α2)2 −7 Any

EDGB [173] − 5

7168
ζEDGB

(m2
1s̃

EDGB
2 −m2

2s̃
EDGB
1 )

2

M4
t η

18/5
−7 Any

DCS [27,174]

481525

3670016
η−14/5ζDCS

[
−2δmχaχs +

(
1− 4992η

19261

)
χ2
a

+

(
1− 72052η

19261

)
χ2
s

] −1 BH/BH

Einstein-Æther [175] − 5

3584
η2/5 (sEA

1 − sEA
2 )2

[(1− sEA
1 )(1− sEA

2 )]4/3

[
(c14 − 2)w3

0 − w3
1

c14w3
0w

3
1

]
−7 Any

Khronometric [175]
− 5

3584
η2/5 (skh

1 − skh
2 )2

[(1− skh
1 )(1− skh

2 )]4/3
√
ᾱkh

×
[

(β̄kh − 1)(2 + β̄kh + 3λ̄kh)

(ᾱkh − 2)(β̄kh + λ̄kh)

]3/2 −7 Any

Noncommutative [176] − 75

256
η−4/5(2η − 1)Λ2

NC −1 BH/BH

Varying-G [177]
-

25

851968
η
3/5
0 ĠC,0[11Mt,0 + 3(s1,0 + s2,0

−δĠ)Mt,0 − 41(m1,0s1,0 + m2,0s2,0)]
−13 Any

Table 2.1: PPE corrections to the GW phase δΨp ≡ βPPEu
b in Fourier space in

various modified theories of gravity. u ≡ (πGCMchf)1/3, whereMch and η are the
chirp mass and the symmetric mass ratio of the binary respectively, and GC is the
conservative gravitational constant appearing in Kepler’s third law. We adopt the
unit GC ≡ 1 in all theories except for the varying-G ones. The mass, sensitivity, and
scalar charge of the Ath binary component are represented by mA, sA, and αA
respectively. ζEDGB and ζDCS are the dimensionless coupling constants in EDGB and
DCS gravity respectively. s̃EDGB

A are the spin-dependent factors of the scalar charges
in EDGB gravity, given below Eq. (2.29) for BHs while 0 for ordinary stars. χs,a are
the symmetric and antisymmetric combinations of dimensionless spin parameters
and δm is the fractional difference in masses relative to the total mass Mt. The
amount of Lorentz violation in Einstein-Æther theory and khronometric gravity is
controlled by (c1, c2, c3, c4) and (ᾱkh, β̄kh, λ̄kh) respectively. ws is the propagation
speed of the spin-s modes in Einstein-Æther theory given by Eqs. (2.36)-(2.38), and
c14 ≡ c1 + c4. The representative parameter in noncommutative gravity is ΛNC. The
subscript 0 in varying-G theories denotes that the quantity is measured at the time
of coalescence t0, while a dot refers to a time derivative. δĠ is the fractional
difference between the rates at which conservative and dissipative gravitational
constants change in time. The former is GC as already explained while the
dissipative gravitational constant is defined as the one that enters in the GW
luminosity through Eq. (2.8). The boldface expression indicates that it has been
derived here for the first time.
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Theories PPE Amplitude Parameters
Magnitude (αPPE) Exponent (a)

Scalar-Tensor [87,187,190] − 5

192
η2/5(α1 − α2)2 −2

EDGB − 5

192
ζEDGB

(m2
1s̃

EDGB
2 −m2

2s̃
EDGB
1 )

2

M4
tη

18/5
−2

DCS
57713

344064
η−14/5ζDCS

[
−2δmχaχs +

(
1− 14976η

57713

)
χ2
a +

(
1− 215876η

57713

)
χ2
s

]
+4

Einstein-Æther [175] − 5

96
η2/5

(sEA
1 − sEA

2 )2

[(1− sEA
1 )(1− sEA

2 )]4/3

[
(c14 − 2)w3

0 −w3
1

c14w3
0w

3
1

]
−2

Khronometric [175] − 5

96
η2/5

(skh
1 − skh

2 )2

[(1− skh
1 )(1− skh

2 )]4/3
√
ᾱkh

[
(β̄kh − 1)(2 + β̄kh + 3λ̄kh)

(ᾱkh − 2)(β̄kh + λ̄kh)

]3/2
−2

Noncommutative −3

8
η−4/5(2η − 1)Λ2

NC +4

Varying-G [177] 5

512
η
3/5
0 ĠC,0 [−7Mt,0 + (s1,0 + s2,0 − δĠ)Mt,0 + 13(m1,0s1,0 + m2,0s2,0)] −8

Table 2.2: PPE corrections to the GW amplitude |h̃| = |h̃GR|(1 + αPPEu
a) in Fourier

space in various modified theories of gravity with the magnitude αPPE (second
column) and the exponent a (third column), and |h̃GR| representing the amplitude in
GR. The meaning of other parameters are the same as in Table 2.1. The expressions
in boldface correspond to either those derived here for the first time or corrected
expressions from previous literature.

2.2 PPE Waveform

We begin by reviewing the PPE formalism. The original formalism (that we explain

in detail in App. A) was developed by considering non-GR corrections to the binding

energy E and GW luminosity Ė [86,87]. The former (latter) correspond to conserva-

tive (dissipative) corrections. Here, we take a slightly different approach and consider

corrections to the GW frequency evolution ḟ and the Kepler’s law r12(f), where r12 is

the orbital separation while f is the GW frequency. This is because these two quan-

tities directly determine the amplitude and phase corrections away from GR, and

hence, the final expressions are simpler than the original ones. Moreover, non-GR

corrections to ḟ and r12(f) have already been derived in previous literature for many
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modified theories of gravity.

PPE gravitational waveform for a compact binary inspiral in Fourier domain is

given by [86]

h̃(f) = h̃GR(1 + αPPE u
a)eiδΨp , (2.1)

where h̃GR is the gravitational waveform in GR. αPPE u
a corresponds to the non-GR

correction to the GW amplitude while δΨp is that to the GW phase with

u = (πMchf)
1
3 . (2.2)

Mch = (m1m2)3/5/(m1 +m2)1/5 is the chirp mass with component masses m1 and m2.

u is proportional to the relative velocity of the binary components. αPPE represents the

overall magnitude of the amplitude correction while a gives the velocity dependence

of the correction term. In a similar manner, one can rewrite the phase correction as

δΨp = βPPE u
b . (2.3)

αPPE, βPPE, a, and b are called the PPE parameters. When (αPPE, βPPE) ≡ (0, 0),

Eq. (2.1) reduces to the waveform in GR.

One can count the PN order of non-GR corrections in the waveform as follows.

A correction term is said to be of n PN relative to GR if the relative correction is

proportional u2n. Thus, the amplitude correction in Eq. (2.1) is of a/2 PN order.

On the other hand, given that the leading GR phase is proportional to u−5 (see

Eq. (A.12)), the phase correction in Eq. (2.3) is of (b+ 5)/2 PN order.
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As we mentioned earlier, the PPE modifications in Eq. (2.1) enter through cor-

rections to the orbital separation and the frequency evolution. We parameterize the

former as

r12 = rGR
12 (1 + γru

cr) , (2.4)

where γr and cr are non-GR parameters which show the deviation of the orbital

separation r away from the GR contribution rGR
12 . To leading PN order, rGR

12 is simply

given by the Newtonian Kepler’s law as rGR
12 = (Mt/Ω

2)
1/3. Here Mt ≡ m1 + m2 is

the total mass of the binary while Ω ≡ πf is the orbital angular frequency. The

above correction to the orbital separation arises purely from conservative corrections

(namely corrections to the binding energy).

Similarly, we parameterize the GW frequency evolution with non-GR parameters

γḟ and cḟ as

ḟ = ḟGR

(
1 + γḟu

cḟ
)
. (2.5)

Here ḟGR is the frequency evolution in GR which, to leading PN order, is given

by [191,192]

ḟGR =
96

5
π8/3M5/3

ch f
11/3 =

96

5πM2
ch

u11 . (2.6)

Unlike the correction to the orbital separation, the one to the frequency evolution

originates corrections from both the conservative and dissipative sectors.

Below, we will derive how the PPE parameters (αPPE, βPPE, a, b) are given in terms

of (γr, cr) and (γḟ , cḟ ). We will also show how the amplitude PPE parameters (αPPE, a)
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can be related to the phase PPE ones (βPPE, b) in certain cases. We will assume that

non-GR corrections are always smaller than the GR contribution and keep only to

leading order in such corrections at the leading PN order.

2.2.1 Amplitude corrections

Let us first look at corrections to the waveform amplitude. Within the stationary

phase approximation [193,194], the waveform amplitude for the dominant quadrupo-

lar radiation in Fourier domain is given by

Ã(f) =
A(t̄)

2

√
ḟ
. (2.7)

Here A is the waveform amplitude in the time domain while t̄(f) represents time at

the stationary point. A(t̄) can be obtained by using the quadrupole formula for the

metric perturbation in the transverse-traceless gauge given by [195]

hij(t) ∝ G

DL

d2

dt2
Qij . (2.8)

Here DL is the source’s luminosity distance and Qij is the source’s quadruple moment

tensor.

For a quasi-circular compact binary, Ã in Eq. (2.7) then becomes

Ã(f) ∝ 1√
ḟ

G

DL

µr2
12f

2 ∝ r2
12√
ḟ
, (2.9)

where µ is the reduced mass of the binary. Substituting Eqs. (2.4) and (2.5) into
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Eq. (2.9) and keeping only to leading order in non-GR corrections, we find

Ã(f) = ÃGR

(
1 + 2γru

cr − 1

2
γḟu

cḟ

)
, (2.10)

where ÃGR is the amplitude of the Fourier waveform in GR. Notice that this expression

is much simpler than that in the original formalism in Eq. (A.7).

Let us now show the expressions for the PPE parameters αPPE and a for three

different cases using Eq. (2.10):

• Dissipative-dominated Case

When dissipative corrections dominate, we can neglect corrections to the binary

separation (γr = 0) and Eq. (2.10) reduces to

Ã(f) = ÃGR

(
1− 1

2
γḟu

cḟ

)
. (2.11)

Comparing this with the PPE waveform in Eq. (2.1), we find

αPPE = −
γḟ
2
, a = cḟ . (2.12)

• Conservative-dominated Case

When conservative corrections dominate, cr = cḟ and there is an explicit relation

between γr and γḟ . Though finding such a relation is quite involved and one

needs to go back to the original PPE formalism as explained in App. A. Non-GR

corrections to the GW amplitude in such a formalism is shown in Eq. (A.14).
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Setting the dissipative correction to zero, one finds

αPPE = −γr
a

(a2 − 4a− 6) , a = cr = cḟ . (2.13)

• Comparable Dissipative and Conservative Case

If dissipative and conservative corrections enter at the same PN order, we can

set cr = cḟ in Eq. (2.10). Since there is no generic relation between γr and γḟ

in this case, one simply finds

αPPE = 2γr −
γḟ
2
, a = cr = cḟ . (2.14)

Example modified theories of gravity that we study in Secs. 2.3 and 2.4 fall into either

the first or third case.

2.2.2 Phase corrections

Next, let us study corrections to the GW phase. The phase Ψp in Fourier domain is

related to the frequency evolution as [196]

d2Ψp

dΩ2
= 2

dt

dΩ
, (2.15)

which can be rewritten as

d2Ψp

dΩ2
=

2

πḟ
. (2.16)
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Substituting Eq. (2.5) to the right hand side of the above equation and keeping only

to leading non-GR correction, we find

d2Ψp

dΩ2
=

2

πḟGR

(1− γḟu
cḟ ) . (2.17)

Using further Eq. (2.6) to Eq. (2.17) gives

d2Ψp

dΩ2
=

5

48
M2

ch u
−11(1− γḟu

cḟ ) . (2.18)

We are now ready to derive Ψp and extract the PPE parameters βPPE and b. Using

Ω = πf , we can integrate Eq. (2.18) twice to find

Ψp = ΨGR −
15γḟ

16(cḟ − 8)(cḟ − 5)
ucḟ−5 (2.19)

for cḟ 6= 5 and cḟ 6= 8. Here we only keep to leading non-GR correction and ΨGR is the

GR contribution given in Eq. (A.12) to leading PN order. Similar to the amplitude

case, the above expression is much simpler than that in the original formalism in

Eq. (A.11). Comparing this with Eqs. (2.1) and (2.3), we find

βPPE = −
15γḟ

16(cḟ − 8)(cḟ − 5)
, b = cḟ − 5 . (2.20)

The above relation is valid for all three types of corrections considered for the GW

amplitude case.

In App. A, we review δΨp derived in the original PPE formalism, where we

show dissipative and conservative contributions explicitly. In particular, one can

use Eq. (A.15) to find βPPE for all three cases separately.
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2.2.3 Relations among PPE parameters

Finally, we study relations among the PPE parameters. From Eqs. (2.12)–(2.14)

and (2.20), one can easily see

b = a− 5 , (2.21)

which holds in all three cases considered previously. Let us consider such three cases

in turn below to derive relations between αPPE and βPPE.

• Dissipative-dominated Case

When dissipative corrections dominate, we can use Eqs. (2.12) and (2.20) to

find αPPE in terms of βPPE and a as

αPPE =
8

15
(a− 8)(a− 5) βPPE . (2.22)

• Conservative-dominated Case

When conservative corrections dominate, we can set the dissipative correction

to vanish in Eq. (A.15) to find

βPPE = −15

8

γr
cr

c2
r − 2cr − 6

(8− cr)(5− cr)
, b = cr − 5 . (2.23)

Using this equation together with Eq. (2.13), we find

αPPE =
8

15

(8− a)(5− a)(a2 − 4a− 6)

a2 − 2a− 6
βPPE . (2.24)

• Comparable Dissipative and Conservative Case
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When dissipative and conservative corrections enter at the same PN order, there

is no explicit relation between αPPE and βPPE. This is because αPPE depends

both on γr and γḟ (see Eq. (2.14)) while βPPE depends only on the latter (see

Eq. (2.19)), and there is no relation between the former and the latter. Thus,

one can rewrite γḟ in terms of βPPE and substitute into Eq. (2.14) but cannot

eliminate γr from the expression for αPPE.

2.3 Example Theories

In this section, we consider several modified theories of gravity where non-GR correc-

tions arise from generation mechanisms. We briefly discuss each theory, describing

differences from GR and its importance. We derive the PPE parameters for each

theory following the formalism in Sec. 2.2. Among the various example theories we

present here, dissipative corrections dominate in scalar-tensor theories, EDGB grav-

ity, Einstein-Æther theory, and khronometric gravity. On the other hand, dissipative

and conservative corrections enter at the same PN order in DCS gravity, noncom-

mutative gravity, and varying-G theories. We do not consider any theories where

conservative corrections dominate dissipative ones, though such a situation can be

realized for e.g. equal-mass and equal-spin binaries in DCS gravity, where the scalar

quadrupolar radiation is suppressed and dominant corrections arise from the scalar

dipole interaction and quadrupole moment corrections in the conservative sector.
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2.3.1 Scalar-tensor theories

Scalar-tensor theories are one of the most well-established modified theories of grav-

ity where at least one scalar field is introduced through a non-minimal coupling to

gravity [36, 197, 198]. Such theories arise naturally from the dimensional reduction

of higher dimensional theories, such Kaluza-Klein theory [199, 200] and string theo-

ries [201,202]. Scalar-tensor theories have implications to cosmology as well since they

are viable candidates for accelerating expansion of our universe [168–170, 203, 204],

structure formation [205], inflation [21, 167, 206], and primordial nucleosynthesis [56,

57, 207, 208]. Such theories also offer simple ways to self-consistently model possible

variations in Newton’s constant [21] (as we discuss in Sec. 2.4). One of the simplest

scalar-tensor theories is Brans-Dicke (BD) theory, where a non-canonical scalar field

is non-minimally coupled to the metric with an effective strength inversely propor-

tional to the coupling parameter ωBD [166, 171]. So far the most stringent bound on

the theory has been placed by the Cassini-Huygens satellite mission via Shapiro time

delay measurement, which gives ωBD > 4 × 104 [209]. Another class of scalar-tensor

theories that has been studied extensively is Damour-Esposito-Farèse (DEF) grav-

ity (or sometimes called quasi Brans-Dicke theory), which has two coupling constants

(α0, β0). This theory reduces to BD theory when β0 is set to 0 and α0 is directly related

to ωBD. This theory predicts nonperturbative spontaneous or dynamical scalarization

phenomena for NSs [210,211].

When scalarized NSs form compact binaries, these systems emit scalar dipole



Chapter 2. PPE Waveforms in Various Modified Theories of Gravity 37

radiation that changes the orbital evolution from that in GR. Such an effect can be

used to place bounds on scalar-tensor theories. For example, combining observational

orbital decay results from multiple binary pulsars, the strongest upper bound on β0

that controls the magnitude of scalarization in DEF gravity has been obtained as

β0 & −4.38 at 90% confidence level [212]. More recently, observations of a hierarchical

stellar triple system PSR J0337+1715 placed strong bounds on the Strong Equivalence

Principle (SEP) violation parameter3 as |∆| . 2×10−6 at 95% confidence level [213].

This bound stringently constrained the parameter space (α0, β0) of DEF gravity [210,

214–217].

Can BHs also possess scalar hair like NSs in scalar-tensor theories? BH no-hair

theorem can be applied to many of scalar-tensor theories that prevents BHs to acquire

scalar charges [218–222] including BD and DEF gravity, though exceptions exist, such

as EDGB gravity [223–227] that we explain in more detail in the next subsection.

On the other hand, if the scalar field cosmologically evolves as a function of time,

BHs can acquire scalar charges, known as the BH miracle hair growth [228,229] (see

also [230,231] for related works).

Let us now derive the PPE parameters in scalar tensor theories. Gravitational

waveforms are modified from that in GR through the scalar dipole radiation. Using

the orbital decay rate of compact binaries in scalar-tensor theories in [37,45], one can
3SEP violation parameter is defined as ∆ = mG/mI − 1, where mG and mI are respectively the

gravitational and inertial mass of a pulsar [213].
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read off the non-GR corrections to ḟ as

γḟ =
5

96
η2/5(α1 − α2)2 (2.25)

with cḟ = −2. Given that the leading correction to the waveform is the dissipative one

in scalar-tensor theories, one can use Eq. (2.20) to derive the PPE phase correction

as

βST = − 5

7168
η2/5(α1 − α2)2 (2.26)

with b = −7. Here αA represents the scalar charge of the Ath binary component.

Using further Eq. (2.22), one finds the amplitude correction as

αST = − 5

192
η2/5(α1 − α2)2 (2.27)

with a = −2. These corrections enter at −1 PN order relative to GR.

The scalar charges αA depend on specific theories and compact objects. For

example, in situations where the BH no-hair theorem [218–220] applies, αA = 0. On

the other hand, if the scalar field is evolving cosmologically, BHs undergo miracle

hair growth [228] and acquire scalar charges given by [229]

αA = 2mA Φ̇ [1 + (1− χ2
A)1/2] , (2.28)

where Φ̇ is the growth rate of the scalar field while mA and χA are the mass and the

magnitude of the dimensionless spin angular momentum of the Ath body respectively.

The PPE phase parameter β for binary BHs in such a situation was derived in [27].

Another well-studied example is Brans-Dicke theory, where one can replace (α1−α2)2
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in Eqs. (2.26) and (2.27) as 2(s1 − s2)2/(2 + ωBD) [37]. Here sA is the sensitivity of

the Ath body and roughly equals to its compactness (0.5 for BHs and ∼ 0.2 for

NSs). The PPE parameters in this theory has been found in [87]. Scalar charges and

the PPE parameters in generic screened modified gravity have recently been derived

in [190,232].

The phase correction in Eq. (2.26) has been used to derive current and future

projected bounds with GW interferometers. Regarding the former, GW150914 and

GW151226 do not place any meaningful bounds on Φ̇ [27]. On the other hand, by

detecting GWs from BH-NS binaries, aLIGO and Virgo with their design sensitivities

can place bounds that are stronger than the above binary pulsar bounds from dynam-

ical scalarization for certain equations of state and NS mass range [91,212,233,234]4.

Einstein Telescope, a third generation ground-based detector, can yield constraints

on BD theory from BH-NS binaries that are 100 times stronger than the current

bound [235]. Projected bounds with future space-borne interferometers, such as DE-

CIGO, can be as large as four orders of magnitude stronger than current bounds [236],

while those with LISA may not be as strong as the current bound [172,237].

Up until now, we have focused on theories with a massless scalar field, but let

us end this subsection by commenting on how the above expressions for the PPE

parameters change if one considers a massive scalar field instead. In such a case, the

scalar dipole radiation is present only when the mass of the scalar field ms is smaller
4One needs to multiply Eq. (2.26) by a step-like function to capture the effect of dynamical

scalarization.
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than the orbital angular frequency Ω = πf . Then, if the Yukawa-type correction to

the binding energy is subdominant, Eqs. (2.26) and (2.27) simply acquire an addi-

tional factor of Θ(Ω −ms/~), where Θ is the Heaviside function. For example, the

gravitational waveform phase in massive BD theory is derived in [238]. The situation

is similar if massive pseudo-scalars are present, such as axions [239].

2.3.2 Einstein-dilaton-Gauss-Bonnet gravity

EDGB gravity is a well-known extension of GR, which emerges naturally in the frame-

work of low-energy effective string theories and gives one of the simplest viable high-

energy modifications to GR [240, 241]. It also arises as a special case of Horndeski

gravity [36,242], which is the most generic scalar-tensor theory with at most second-

order derivatives in the field equations. One obtains the EDGB action by adding a

quadratic-curvature term to the Einstein-Hilbert action, where the scalar field (dila-

ton) is non-minimally coupled to the Gauss-Bonnet term with a coupling constant

ᾱEDGB [243]5. A stringent upper bound on such a coupling constant has been placed

using the orbital decay measurement of a BH low-mass X-ray binary (LMXB) as√
|ᾱEDGB| < 1.9× 105 cm [244]. A similar upper bound has been placed from the ex-

istence of BHs [241]. Equation-of-state-dependent bounds from the maximum mass

of NSs have also been derived in [245].

BHs in EDGB gravity are of particular interest since they are fundamentally

different from their GR counterparts. Perturbative but analytic solutions are available
5We use barred quantities for coupling constants so that one can easily distinguish them from

the PPE parameters.
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for static [223,225,246,247] and slowly rotating EDGB BHs [248–250] while numerical

solutions have been found for static [243, 251, 252] and rotating [241, 253, 254] BHs.

One of the important reasons for considering BHs in EDGB is that BHs acquire

scalar monopole charges [33, 173, 225, 255] while ordinary stars such as NSs do not if

the scalar field is coupled linearly to the Gauss-Bonnet term in the action [173,256].

This means that binary pulsars are inefficient to constrain the theory, and one needs

systems such as BH-LMXBs [244] or BH/pulsar binaries [256] to have better probes

on the theory.

We now show the expressions of the PPE parameters for EDGB gravity. The scalar

monopole charge of EDGB BHs generates scalar dipole radiation, which leads to an

earlier coalescence of BH binaries compared to GR. Such scalar radiation modifies

the GW phase with the PPE parameters given by [27,173]

βEDGB = − 5

7168
ζEDGB

(m2
1s̃

EDGB
2 −m2

2s̃
EDGB
1 )2

M4
t η

18/5
(2.29)

and b = −7. Here, ζEDGB ≡ 16πᾱ2
EDGB/M

4
t is the dimensionless EDGB coupling

parameter and s̃EDGB
A are the spin-dependent factors of the BH scalar charges given

by s̃EDGB
A ≡ 2(

√
1− χA2 − 1 + χA

2)/χA
2 [33, 255]6. In EDGB gravity, the leading

order correction to the phase enters through the correction of the GW energy flux,

and hence the theory corresponds to a dissipative-dominated case. We can then use
6s̃EDGB
A are zero for ordinary stars like NSs [173,256].
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Eq. (2.22) to calculate the amplitude PPE parameters as

αEDGB = − 5

192
ζEDGB

(m2
1s̃

EDGB
2 −m2

2s̃
EDGB
1 )2

M4
t η

18/5
(2.30)

and a = −2. These corrections enter at −1 PN order.

One can use the phase correction in Eq. (2.29) to derive bounds on EDGB gravity

with current [27] and future [244] GW observations. Similar to the scalar-tensor

theory case, current binary BH GW events do not allow us to place any meaningful

bounds on the theory. Future second- and third-generation ground-based detectors

and LISA can place bounds that are comparable to current bounds from LMXBs [244].

On the other hand, DECIGO has the potential to go beyond the current bounds by

three orders of magnitude.

2.3.3 Dynamical Chern-Simons gravity

DCS gravity is described by Einstein-Hilbert action with a dynamical (pseudo-)scalar

field which is non-minimally coupled to the Pontryagin density with a coupling con-

stant ᾱDCS [257,258]. Similar to EDGB gravity, DCS gravity arises as an effective field

theory from the compactification of heterotic string theory [259, 260]. Such a theory

is also important in the context of particle physics [257,261–263], loop quantum grav-

ity [264, 265], and inflationary cosmology [266]. Demanding that the critical length

scale (below which higher curvature corrections beyond quadratic order cannot be

neglected in the action) has to be smaller than the scale probed by table-top exper-

iments, one finds
√
|ᾱDCS| < O(108km) [267]. Similar constraints have been placed
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from measurements of the frame-dragging effect by Gravity Probe B and LAGEOS

satellites [268].

We now derive the expressions of the PPE parameters for DCS gravity. While BHs

in EDGB gravity possess scalar monopole charges, BHs in DCS gravity possess scalar

dipole charges which induce scalar quadrupolar emission [173]. On the other hand,

scalar dipole charges induce a scalar interaction force between two BHs. Each BH

also acquires a modification to the quadrupole moment away from the Kerr value. All

of these modifications result in both dissipative and conservative corrections entering

at the same order in gravitational waveforms. For spin-aligned binaries7, corrections

to Kepler’s law and frequency evolution in DCS gravity are given in [174] within the

slow-rotation approximation for BHs, from which we can derive

γr =
25

256
η−9/5ζDCSχ1χ2 −

201

3584
η−14/5ζDCS

(
m2

1

M2
t

χ2
2 +

m2
2

M2
t

χ2
1

)
(2.31)

with cr = 4, and

γḟ =
11975

12288
η−9/5ζDCSχ1χ2 −

96305

172032
η−14/5ζDCS

(
m2

1

M2
t

χ2
2 +

m2
2

M2
t

χ2
1

)
. (2.32)

with cḟ = 4. Here ζDCS = 16πᾱ2
DCS/M

4
t is the dimensionless coupling constant. Using

Eqs. (2.31) and (2.32) in Eqs. (2.14) and (2.20) respectively, one finds

αDCS =
57713

344064
η−14/5ζDCS [−2δmχaχs

+

(
1− 14976η

57713

)
χ2
a +

(
1− 215876η

57713

)
χ2
s

]
, (2.33)

7See recent works [269,270] for precession equations in DCS gravity.
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with a = 4, and

βDCS =
481525

3670016
η−14/5ζDCS [−2δmχaχs

+

(
1− 4992η

19261

)
χ2
a +

(
1− 72052η

19261

)
χ2
s

]
. (2.34)

with b = −1. Here χs,a = (χ1 ± χ2)/2 are the symmetric and antisymmetric combi-

nations of dimensionless spin parameters and δm = (m1 − m2)/Mt is the fractional

difference in masses relative to the total mass. The above corrections enter at 2 PN

order.

Can GW observations place stronger bounds on the theory? Current GW ob-

servations do not allow us to put any meaningful bounds on DCS gravity [27] (see

also [97]). However, future observations have potential to place bounds on the theory

that are six to seven orders of magnitude stronger than current bounds [174]. Such

stronger bounds can be realized due to relatively strong gravitational field and large

spins that source the pseudo-scalar field. Measuring GWs from extreme mass ratio

inspirals with LISA can also place bounds that are three orders of magnitude stronger

than current bounds [271].

2.3.4 Einstein-Æther and Khronometric theory

In this section, we study two example theories that break Lorentz invariance in the

gravity sector, namely Einstein-Æther and khronometric theory. Lorentz-violating

theories of gravity are candidates for low-energy descriptions of quantum gravity [272,

273]. Lorentz-violation in the gravity sector has not been as stringently constrained
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as that in the matter sector [274–276] and several mechanisms exist that prevents

percolation of the latter to the former [276,277].

Einstein-Æther theory is a vector-tensor theory of gravity, where along with

the metric, a spacetime is endowed with a dynamical timelike unit vector (Æther)

field [278, 279]. Such a vector field specifies a particular rest frame at each point in

spacetime, and hence breaks the local Lorentz symmetry. The amount of Lorentz vio-

lation is controlled by four coupling parameters (c1, c2, c3, c4). Einstein-Æther theory

preserves diffeomorphism invariance and hence is a Lorentz-violating theory with-

out abandoning the framework of GR [279]. Along with the spin-2 gravitational

perturbation of GR, the theory predicts the existence of the spin-1 and spin-0 pertur-

bations [280–282]. Such perturbation modes propagate at speeds that are functions

of the coupling parameters ci, and in general differ from the speed of light [281].

Khronometric theory is a variant of Einstein-Æther theory, where the ther field is

restricted to be hypersurface-orthogonal. Such a theory arises as a low-energy limit

of Hořava gravity, a power-counting renormalizable quantum gravity model with only

spatial diffeomorphism invariance [36,273,283–285]. The amount of Lorentz violation

in the theory is controlled by three parameters, (ᾱkh, β̄kh, λ̄kh). Unlike Einstein-Æther

theory, the spin-1 propagating modes are absent in khronometric theory.

Most of parameter space in Einstein-Æther and khronometric theory have been

constrained stringently from current observations and theoretical requirements. Us-

ing the measurement of the arrival time difference between GWs and electromagnetic
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waves in GW170817, the difference in the propagation speed of GWs away from the

speed of light has been constrained to be less than ∼ 10−15 [71, 286]. Such a bound

can be mapped to bounds on Lorentz-violating gravity as |c1 + c3| . 10−15 [287,288]

and |β̄kh| . 10−15 [289]8. Imposing further constraints from solar system experi-

ments [2,291,292], Big Bang nucleosynthesis [293] and theoretical constraints such as

the stability of propagating modes, positivity of their energy density [294] and the

absence of gravitational Cherenkov radiation [295], allowed regions in the remaining

parameter space have been derived for Einstein-Æther [288] and khronometric [289]

theory. Binary pulsar bounds on these theories were studied in [296, 297] before the

discovery of GW170817, within a parameter space that is different from the allowed

regions in [288,289].

Let us now derive the PPE parameters in Einstein-Æther and khronometric the-

ories. Propagation of the scalar and vector modes is responsible for dipole radiation

and loss of angular momentum in binary systems, which increase the amount of or-

bital decay rate. Regarding Einstein-Æther theory, the PPE phase correction is given

by [175]

βEA = − 5

3584
η2/5 (sEA

1 − sEA
2 )2

[(1− sEA
1 )(1− sEA

2 )]4/3
× [(c14 − 2)w3

0 − w3
1]

c14w3
0w

3
1

(2.35)

with b = −7. Here ws is the propagation speed of the spin-s modes in Einstein-Æther
8Such bounds are consistent with the prediction in [175] based on [290].
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theory given by [279]

w2
0 =

(2− c14)c123

(2 + 3c2 + c+)(1− c+)c14

, (2.36)

w2
1 =

2c1 − c+c−
2(1− c+)c14

, (2.37)

w2
2 =

1

1− c+

, (2.38)

with

c14 ≡ c1 + c4 , c± ≡ c1 ± c3 , c123 ≡ c1 + c2 + c3 . (2.39)

sA in Eq. (2.35) is the sensitivity of the A-th body and has been calculated only for

NSs [296,297]. Given that the leading order correction in Einstein-Æther theory arises

from the dissipative sector [175], we can use Eq. (2.22) to find the PPE amplitude

correction as9

αEA = − 5

96
η2/5 (sEA

1 − sEA
2 )2

[(1− sEA
1 )(1− sEA

2 )]4/3
× [(c14 − 2)w3

0 − w3
1]

c14w3
0w

3
1

(2.40)

with a = −2. Similar to Einstein-Æther theory, the PPE parameters in khronometric

theory is given by [175]

βkh =− 5

3584
η2/5 (skh

1 − skh
2 )2

[(1− skh
1 )(1− skh

2 )]4/3

×
√
ᾱkh

[
(β̄kh − 1)(2 + β̄kh + 3λ̄kh)

(ᾱkh − 2)(β̄kh + λ̄kh)

]3/2

(2.41)

with b = −7, and

αkh =− 5

96
η2/5 (skh

1 − skh
2 )2

[(1− skh
1 )(1− skh

2 )]4/3

9Eqs. (2.40) and (2.42) correct errors in [175].
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×
√
ᾱkh

[
(β̄kh − 1)(2 + β̄kh + 3λ̄kh)

(ᾱkh − 2)(β̄kh + λ̄kh)

]3/2

(2.42)

with a = −2. These corrections enter at −1 PN order.

Above corrections to the gravitational waveform can be used to compute current

and projected future bounds on the theories with GW observations, provided one

knows what the sensitivities are for compact objects in binaries. Unfortunately, such

sensitivities have not been calculated for BHs, and hence, one cannot derive bounds on

the theories from recent binary BH merger events. Instead, Ref. [27] used the next-to-

leading 0 PN correction that is independent of the sensitivities and derived bounds

from GW150914 and GW151226, though such bounds are weaker than those from

binary pulsar observations [296,297]. On the other hand, Ref. [175] includes both the

leading and next-to-leading corrections to the waveform and estimate projected future

bounds with GWs from binary NSs. The authors found that bounds from second-

generation ground-based detectors are less stringent than existing bounds even with

their design sensitivities. However, third-generation ground-based ones and space-

borne interferometers can place constraints that are comparable, and in some cases,

two orders of magnitude stronger compared to the current bounds [175,298].

2.3.5 Noncommutative gravity

Although the concept of nontrivial commutation relations of spacetime coordinates

is rather old [299, 300], the idea has revived recently with the development of non-

commutative geometry [301–305], and the emergence of noncommutative structure
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of spacetime in a specific limit of string theory [306, 307]. Quantum field theories on

noncommutative spacetime have been studied extensively as well [308–310]. In the

simplest model of noncommutative gravity, spacetime coordinates are promoted to

operators, which satisfy a canonical commutation relation:

[x̂µ, x̂ν ] = iθµν , (2.43)

where θµν is a real constant antisymmetric tensor. In ordinary quantum mechanics,

Planck’s constant ~ measures the quantum fuzziness of phase space coordinates. In a

similar manner, θµν introduces a new fundamental scale which measures the quantum

fuzziness of spacetime coordinates [176].

In order to obtain stringent constraints on the scale of noncommutativity, low-

energy experiments are advantageous over high-energy ones [311, 312]. Low-energy

precision measurements such as clock-comparison experiments with nuclear-spin-polarized

9Be+ ions [313] give a constraint on noncommutative scale as 1/
√
θ & 10 TeV [311],

where θ refers to the magnitude of the spatial-spatial components of θµν10. A similar

bound has been obtained from the measurement of the Lamb shift [314]. Another

speculative bound is derived from the analysis of atomic experiments which is 10 or-

ders of magnitude stronger [312,315]. Study of inflationary observables using cosmic

microwave background data from Planck gives the lower bound on the energy scale

of noncommutativity as 19 TeV [316,317].
10The corresponding bound on the time-spatial components of θµν is roughly six orders magnitude

weaker than that on the spatial-spatial components.
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Let us now review how the binary evolution is modified from that in GR in this

theory. Several formulations of noncommutative gravity exist [318–323], though the

first order noncommutative correction vanishes in all of them [324,325] and the leading

order correction enters at second order. On the other hand, first order corrections may

arise from gravity-matter interactions [325,326]. Thus one can neglect corrections to

the pure gravity sector and focus on corrections to the matter sector (i.e., energy-

momentum tensor) [176]. Making corrections to classical matter source and following

an effective field theory approach, expressions of energy and GW luminosity for quasi-

circular BH binaries have been derived in Ref. [176], which give the correction to the

frequency evolution in Eq. (2.5) as

γḟ =
5

4
η−4/5(2η − 1)Λ2

NC (2.44)

with cḟ = 4 and Λ2
NC = θ0iθ0i/(l

2
pt

2
p) with lp and tp representing the Planck length

and time respectively. On the other hand, modified Kepler’s law in Eq. (2.4) can be

found as [176]

γr =
1

8
η−4/5(2η − 1)Λ2

NC (2.45)

with cr = 4.

We are now ready to derive the PPE parameters in noncommutative gravity.

Given that the dissipative and conservative leading corrections enter at the same PN

order, one can use Eqs. (2.44) and (2.45) in Eq. (2.14) to find the PPE amplitude
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correction as

αNC = −3

8
η−4/5(2η − 1)Λ2

NC (2.46)

with a = 4. Similarly, substituting Eq. (2.44) into Eq. (2.20) gives the PPE phase

correction as

βNC = − 75

256
η−4/5(2η − 1)Λ2

NC (2.47)

with b = −1. βNC can also be read off from the phase correction derived in [176]. The

above corrections enter at 2 PN order.

The above phase correction has already been used to derive bounds on noncom-

mutative gravity from GW150914 as
√

ΛNC . 3.5 [176], which means that the energy

scale of noncommutativity has been constrained to be the order of the Planck scale.

Such a bound, so far, is the most stringent constraint on noncommutative scale and is

15 orders of magnitude stronger compared to the bounds coming from particle physics

and low-energy precision measurements11.

2.4 Varying-G Theories

Many of the modified theories of gravity that violate the strong equivalence princi-

ple [2,327,328] predict that locally measured gravitational constant (G) may vary with

time [329]. Since the gravitational self-energy of a body is a function of the gravita-

tional constant, in a theory where G is time-dependent, masses of compact bodies are

also time-dependent [330]. The rate at which the mass of an object varies with time is
11Notice that the GW bound is on the time-spatial components of θµν , while most of particle

physics and low-energy precision experiments place bounds on its spatial-spatial components.
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proportional to the rate of change of the gravitational coupling constant [330]. Such

a variation of mass, together with the conservation of linear momentum, causes com-

pact bodies to experience anomalous acceleration, which results in a time-evolution

of the specific angular momentum [330]. Existing experiments that search for vari-

ations in G at present time (i.e., at very small redshift) include lunar laser ranging

observations [331], pulsar timing observations [332,333], radar observations of planets

and spacecraft [334], and surface temperature observations of PSR J0437-4715 [335].

Another class of constraints on a long-term variation of G comes from Big Bang nucle-

osynthesis [336, 337] and helioseismology [338]. The most stringent bound on |Ġ/G|

is of the order . 10−14 yr−1 [339].

More than one gravitational constants can appear in different areas of a gravita-

tional theory. Here we introduce two different kinds of gravitational constant, one that

arises in the dissipative sector and another in the conservative sector. The constant

which enters in the GW luminosity through Einstein equations, i.e. the constant in

Eq. (2.8), is the one we refer to as dissipative gravitational constant (GD), while that

enters in Kepler’s law or binding energy of the binary is what we refer as the conser-

vative one (GC). These two constants are the same in GR, but they can be different

in some modified theories of gravity. An example of such a theory is Brans-Dicke

theory with a cosmologically evolving scalar field [2].

The PPE parameters for varying-G theories have previously been derived in [177]

for GD = GC . Here, we improve the analysis by considering the two different types
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of gravitational constant and including variations in masses, which are inevitable for

strongly self-gravitating objects when G varies [330]. We also correct small errors

in [177]. We follow the analysis of [340] that derives gravitational waveforms from

BH binary inspirals with varying mass effects from the specific angular momentum.

We also present another derivation in App. B using the energy balance argument

in [177].

The formalism presented in Sec. 2.2 assumes that G and the masses to be constant,

and hence are not applicable to varying-G theories. Thus, we will derive the PPE

parameters in varying-G theories by promoting the PPE formalism to admit time

variation in the gravitational constants and masses as

mA(t) ≈ mA,0 + ṁA,0(t− t0) , (2.48)

GC(t) ≈ GC,0 + ĠC,0(t− t0) , (2.49)

GD(t) ≈ GD,0 + (1 + δĠ)ĠC,0(t− t0) , (2.50)

where t0 is the time of coalescence. Here we assumed that spatial variations of GC

and GD are small compared to variations in time. δĠ gives the fractional difference

between the rates at which GC and GD vary with time, and could be a function of

parameters in a theory. The subscript 0 denotes that the quantity is measured at

the time t = t0. Other time variations to consider are those in the specific angular

momentum j and the total mass Mt:

j(t) ≈ j0 + j̇0(t− t0) , (2.51)
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Mt(t) ≈Mt,0 + Ṁt,0(t− t0) . (2.52)

j̇0 and Ṁt,0 can be written in terms of binary masses and sensitivities defined by

sA = −GC

mA

δmA

δGC

, (2.53)

as [330]

j̇0 =
m1,0s1,0 +m2,0s2,0

m1,0 +m2,0

ĠC,0

GC,0

j0 , (2.54)

Ṁt,0 = −m1,0s1,0 +m2,0s2,0

m1,0 +m2,0

ĠC,0

GC,0

Mt,0 , (2.55)

respectively.

Next, we explain how the binary evolution is affected by the variation of the above

parameters. First, GW emission makes the orbital separation r decay with the rate

given by [191]

ṙGW
12 = −64

5

GDG
2
CµM

2
t

r3
12

. (2.56)

Second, time variation of the total mass, (conservative) gravitational constant and

specific angular momentum changes r12 at a rate of

ṙĠ12 = −

(
ĠC,0

GC

+
Ṁt,0

Mt

− 2
j̇0

j

)
r12 , (2.57)

which is derived by taking a time derivative of the specific angular momentum j ≡
√
GCMtr12. Having the evolution of r12 at hand, one can derive the evolution of the
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orbital angular frequency using Kepler’s third law as

Ω̇ =
1

2Ωr3
12

(
MtĠC,0 + Ṁt,0GC − 3MtGC

ṙ12

r12

)
. (2.58)

Using the evolution of the binary separation ṙ12 ≡ ṙGW
12 + ṙĠ12 in Eq. (2.58), together

with Eqs. (2.54) and (2.55), we can find the GW frequency evolution as

ḟ =
Ω̇

π

=
96

5
π8/3G

2/3
C GDM5/3

ch f
11/3 {1

+
5

96

ĠC,0GC

GDη
[2Mt − 5(m1,0s1,0 +m2,0s2,0)]x−4

}
,

(2.59)

where x ≡ (πGCMtf)2/3 is the squared velocity of the relative motion. Here we only

considered the leading correction to the frequency evolution entering at −4 PN order.

Using Eqs. (2.48)–(2.50) and (2.55) into Eq. (2.59), one finds

ḟ =
96

5
π8/3 f 11/3 η0G

2/3
C,0GD,0M

5/3
t,0 {1

−5GC,0 ĠC,0

768 η0G2
D,0

[3(1 + δĠ)GC,0Mt,0 − (3s1,0 + 3s2,0

+14)GD,0Mt,0 + 41(m1,0s1,0 +m2,0s2,0)GD,0]x−4
0

}
. (2.60)

Notice that GC,0 and GD,0 differ only by a constant quantity, and such a difference

will enter in ḟ at 0 PN order which is much higher than the −4 PN corrections. We

will thus ignore such 0 PN corrections and simply use GD,0 = GC,0 ≡ G0 from now

on.
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Based on the above binary evolution, we now derive corrections to the GW phase.

We integrate Eq. (2.60) to obtain time before coalescence t(f)− t0 and the GW phase

φp(f) ≡
∫

2πfdt =
∫

(2πf/ḟ)df as

t(f) = t0 −
5

256
G0Mch,0 u

−8
0 {1

− 5

1536

ĠC,0

η0

[11Mt,0 + 3(s1,0 + s2,0 − δĠ)Mt,0

−41(m1,0s1,0 +m2,0s2,0)]x−4
0

}
, (2.61)

φp(f) = φp,0 −
1

16
u−5

0 {1

− 25

9984

ĠC,0

η0

[11Mt,0 + 3(s1,0 + s2,0 − δĠ)Mt,0

−41(m1,0s1,0 +m2,0s2,0)]x−4
0

}
, (2.62)

with u 0 ≡ (πG0Mch,0f)
1
3 . The GW phase in the Fourier space is then given by

Ψp(f) =2πft(f)− φ(f)− π

4

=2πft0 − φp,0 −
π

4
+

3

128
u−5

0

{
1− 25

19968

ĠC,0

η0

[11Mt,0

+3(s1,0 + s2,0 − δĠ)Mt,0 − 41(m1,0s1,0 +m2,0s2,0)]x−4
0

}
. (2.63)

From Eq. (2.63), one finds the PPE phase parameters as b = −13 and

βĠ = − 25

851968
ĠC,0 η

3/5
0 [11Mt,0 + 3(s1,0 + s2,0 − δĠ)Mt,0

−41(m1,0s1,0 +m2,0s2,0)] . (2.64)

Next, we derive the PPE amplitude parameters. Using Kepler’s law to Eq. (2.9),
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one finds

Ã(f) ∝ 1√
ḟ

GD(t)

DL

µ(t)r12(t)2f 2

∝ 1√
ḟ
GD(t)GC(t)2/3µ(t)Mt(t)

2/3 . (2.65)

Using further Eqs. (2.48)–(2.50) in Eq. (2.65), we find the amplitude PPE parameters

as a = −8 and

αĠ =
5

512
η

3/5
0 ĠC,0 [−7Mt,0 + (s1,0 + s2,0 − δĠ)Mt,0

+13(m1,0s1,0 +m2,0s2,0)] . (2.66)

Let us comment on how the above new PPE parameters in varying-G theories

differ from those obtained previously in [177]. The latter considers GD = GC (which

corresponds to δĠ = 0) and sA = 0 (which is only true for weakly-gravitating objects).

However, the above expressions for the PPE parameters do not reduce to those in [177]

under these limits. This is because Ref. [177] did not take into account the fact that

the binding energy is not conserved in the absence of GW emission in varying-G

theories. In App. B, we show that the correct application of the energy balance law

does indeed lead to the same conclusion as in this section.

Eqs. (2.64) and (2.66) can be used to constrain varying-G theories with GW ob-

servations. Recent GW events (GW150914 and GW151226) place constraints on

variation of G which are much weaker than the current constraints [27]. Projected

GW bounds have been calculated in Ref. [177] (see [298] for an updated forecast
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of future GW bounds on Ġ) which gives |Ġ0/G0| . 10−11 yr−1, considering a sin-

gle merger event. Although GW bounds are less stringent compared to the existing

bounds [2], they are unique in the sense that they can provide constraints at interme-

diate redshifts, while the existing bounds are for very small and large redshifts [177].

Furthermore, GW constraints give Ġ0/G0 at the location of merger events, which

means that a sufficient number of GW observations can be used to construct a 3D

constraint map of Ġ0/G0 as a function of sky locations and redshifts [177].

2.5 Conclusions

We derived non-GR corrections to the GW phase and amplitude in various modi-

fied theories of gravity. We achieved this by revisiting the standard PPE formalism

and considered generic corrections to the GW frequency evolution and Kepler’s third

law that have been derived in many non-GR theories. Such a formalism yields the

expressions of the PPE parameters which are simpler compared to the original formal-

ism [86, 87]. We derived the PPE amplitude parameters for the first time in EDGB,

DCS and noncommutative gravity. We also corrected some errors in the expressions

of the PPE amplitude parameters in Einstein-Æther and khronometric theories in

previous literature [175].

We also considered the PPE formalism with variable gravitational constants by

extending previous work [177] in a few different ways. One difference is that we in-

troduced two different gravitational constants, one entering in the GW luminosity

(dissipative G) and the other entering in the binding energy and Kepler’s law (con-
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servative G). We also included time variations of component masses in a binary in

terms of the sensitivities following [330], which is a natural consequence in varying-G

theories. We further introduced the effect of non-conservation of the binding energy

in the energy balance law. Such an effect arises due to an anomalous acceleration

caused by time variations in G or masses [330] that was not accounted for in the orig-

inal work of [177]. Including all of these, we derived the PPE amplitude and phase

corrections to the gravitational waveform from compact binary inspirals.

The analytic expressions of the PPE corrections derived in this work, especially

those in the amplitude, can be used to improve analyses on testing GR with observed

GW events and to derive new projected bounds with future observations, since most

of previous literature only include phase corrections. For example, one can reana-

lyze the available GW data for testing GR including amplitude corrections with a

Bayesian analysis [25]. One can also carry out a similar Fisher analysis as in [27]

by including amplitude corrections and mapping bounds on generic parameters to

those on fundamental pillars in GR. GW amplitude corrections are also crucial for

testing strong-field gravity with astrophysical stochastic GW backgrounds [97, 100].

One could further improve the analysis presented in this work by considering binaries

with eccentric orbits [89] or including spin precession [88,270].



Chapter 3

Testing Gravity with GW Amplitude
Corrections

3.1 Introduction

In this chapter, we study how much impact the amplitude corrections may bring

to tests of GR with GWs and provide justifications for previous studies that only

considered the phase corrections. 1 To do so, we make use of PPE parameters derived

in case of a few modified theories of gravity in Chapter 2. We compute constraints on

those theories from both the phase and amplitude, focusing on leading PN corrections

to tensorial modes only. We choose theories where the leading correction enters at a

negative PN order, and sensitivities of black holes (BHs) are known. Such criteria lead

us to choose Einstein-dilaton-Gauss-Bonnet (EDGB) gravity, scalar-tensor theories,

and varying-G theories. We carry out Fisher analyses with Monte-Carlo simulations

utilizing the parameter posterior samples of GW151226 and GW150914 released by
1This chapter is based on the following paper:Testing Gravity with Gravitational Waves from

Binary Black Hole Mergers: Contributions from Amplitude Corrections; Tahura, Shammi; Yagi,
Kent; Carson, Zack; Phys. Rev. D 100, 104001 (2019)
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LVC [341]2. Such analyses with actual posterior samples produce more reliable results

compared to the ones with sky-averaged waveforms. In fact, when implementing such

samples, we can determine the credibility of the small coupling approximation in

scalar-tensor theories, which allows us to place reliable bounds on the time-evolution

of the scalar field from GW observations for the first time [81].

We find that the constraints derived from the phase and the amplitude can be

comparable in case of massive binary systems like GW150914. Whereas for less

massive binaries with a larger number of GW cycles, the phase always yields stronger

constraints. Moreover, inclusion of an amplitude correction to the waveform impacts

the bound on the phase correction as well since the former can easily be related to

the latter provided the dissipative and conservative corrections do not enter at the

same order. The amount and direction of such effects vary with the PN order of the

corrections. All such constraints in the theories under consideration are summarized

in Table 1.1 in chapter 1.

The rest of the chapter is organized as follows. Section 3.2 summarizes the data

analysis techniques. Section 3.3.1 is devoted to justifying our formalism against the

one by LVC in massive gravity [25] while we derive constraints on EDGB, scalar-

tensor, and varying-G theories in Secs. 3.3.2- 3.3.4. Section 3.4 presents a summary

of our work while discussing the effects of an amplitude correction on that of phase.

Appendix C compares the PhenomB and PhenomD waveforms for constraining PPE
2We choose GW151226 and GW150914 as representatives of low-mass and massive binaries re-

spectively, following [27].
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parameters.

3.2 Data Analysis Formalism

We adopt a Fisher analysis [191] to estimate the statistical errors of the non-GR pa-

rameters in various theories. Such an analysis is valid for GW events with sufficiently

large signal-to-noise (SNR) ratios. We make the assumptions that the detector noise

is Gaussian and stationary. Let us write the detector output as

s(t) = h(t) + n(t) , (3.1)

where h(t) and n(t) are the GW signal and the noise respectively. Let us also define

the inner product of two quantities A(t) and B(t) as

(A|B) = 4<
∫ ∞

0

df
Ã∗(f)B̃(f)

Sn (f)
. (3.2)

Here Ã(f) is the Fourier component of A, an asterisk (∗) superscript means the

complex conjugate and Sn (f) is the noise spectral density. With the above definitions,

the probability distribution of the noise can be written as

P (n = n0(t)) ∝ exp [− (n0|n0)] , (3.3)

and the SNR for a given signal h(t) can be defined as

ρ ≡
√

(h|h) . (3.4)
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Under the assumptions of Gaussian and stationary noise, the posterior probability

distribution of binary parameters θa takes the following form:

P (θa|s) ∝ p(0) (θa) exp
[
−1

2
Γab∆θ

a∆θb
]
, (3.5)

where ∆θa = θ̂a − θa with θ̂a being the maximum likelihood values of θa. p(0) (θa)

gives the probability distribution of the prior information, which we take to be in

a Gaussian form for simplicity. Γab is called the Fisher information matrix which is

defined as

Γab = (∂ah|∂bh) , (3.6)

where ∂b ≡ ∂
∂θb

. One can estimate the root-mean-square of ∆θa by taking the square

root of the diagonal elements of the inverse Fisher matrix Σ̃ab:

Σ̃ab =
(

Γ̃−1
)ab

= 〈∆θa∆θb〉 , (3.7)

where Γ̃ab is defined by

p(0) (θa) exp
[
−1

2
Γab∆θ

a∆θb
]

= exp
[
−1

2
Γ̃ab∆θ

a∆θb
]
. (3.8)

To save computational time, we use IMRPhenomB waveform. Reference [27]

showed that the difference in constraints on PPE phase parameters between IMR-

PhenomB and IMRPhenomD waveforms are negligible for propagation mechanisms

at any PN order and for generation mechanisms at negative PN orders. In App. C,

we perform a similar comparison for generation mechanism corrections in the ampli-

tude using sky-averaged waveforms and show that the former is at least suitable for
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constraining generation mechanisms that enter at negative PN orders, which is what

we will consider in Sec. 3.3.

We choose the following parameters as our variables for the Fisher analysis:

θa ≡ (lnMz, ln η, χ, lnDL, ln t0, φp,0, αr, δ, ψpolar, ι, θPPE) , (3.9)

whereMz is the redshifted chirp mass, η ≡ m1m2/(m1 +m2)2 is the symmetric mass

ratio and χ is the effective spin parameter3. αr, δ, ψpolar, and ι are the right ascension,

declination, polarization and inclination angles respectively in the detector frame.

The non-GR parameter is represented by θPPE = αPPE or βPPE. We perform a Monte

Carlo simulation by using each set of the posterior samples released by LIGO [341] for

(Mz, η,DL, χ, αr, δ, ι), while we randomly sample the polarization angle ψpolar and the

coalescence phase φp,0 in [0, π] and [0, 2π] respectively. We impose prior information

such that −1 ≤ χ ≤ 1, −π ≤ (φp,0, αr, ψpolar) ≤ π, and −π/2 ≤ (δ, ι) ≤ π/2.

We use the detector sensitivity of Advanced LIGO (aLIGO) O1 run [29], and we

consider the two detectors at Hanford and Livingston. For simplicity, we assume that

the Livingston noise spectrum is identical to that of Hanford [194]. For the Fisher in-

tegration, the minimum frequency is taken to be 20 Hz while the maximum frequency

is same as the cutoff frequency above which the signal power is negligible [342].

Now we are going to discuss how we compute the probability distribution of a non-

GR parameter from the output of a Fisher analysis with a Monte Carlo simulation.
3The effective spin parameter is defined as χ ≡ (m1χ1 +m2χ2) / (m1 +m2), where χA with

A = (1, 2) is the dimensionless spin of the Ath body.
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We set the fiducial value of any non-GR parameter to be zero for our analysis. We

perform the following integration numerically to obtain the compound probability

density function4 of any parameter ξ :

P (ξ) =

∫
P (ξ|σξ)P (σξ) dσξ , (3.10)

where P (ξ) is the marginal (unconditional) probability density function of ξ. P (ξ|σξ) ∝

exp[−(ξ − ξ̄)2/2σ2
ξ ] is the conditional probability density function of ξ which we as-

sume to be a Gaussian distribution with a mean ξ̄ and a standard deviation σξ. P (σξ)

is the probability distribution of σξ computed from the Fisher analysis for the entire

posterior distribution.

Let us finish this section by explaining how we can utilize both amplitude and

phase corrections to derive constraints on some theory. One can include αPPE or βPPE

as variables to the Fisher analysis as in Eq. (3.9) and map them to a non-GR param-

eter of a theory to derive constraints from the phase and amplitude independently.

We refer to such constraints as the “phase-only” and “amplitude-only” bounds respec-

tively. How can we achieve a single constraint that accommodates both of them?

Recall the relations between the PPE parameters in Sec. 2.2. One can rewrite αPPE

in the waveform in terms of βPPE according to Eqs. (2.22) or (2.24) and eliminate

the former variable from the analysis. We refer to such constraints as the “phase &
4If the distribution of a random variable y depends on a parameter x, and if x follows a

certain distribution P (x) (called the mixing or latent distribution), the marginal distribution of
y is called mixture distribution or compound probability distribution and is given by P (y) =∫
P (y|x)P (x) dx [343].
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amplitude combined” bounds5.

3.3 Results in Example Theories

We now apply our analysis to some example theories. We begin by studying massive

gravity that yields corrections in the phase through propagation mechanisms. We

compare bounds from the Fisher analysis to those from LVC’s Bayesian analysis to

justify the former. We next study EDGB gravity, scalar-tensor theories and varying-

G theories, which achieve the corrections through generation mechanisms entering at

negative PN orders.

3.3.1 Validation of the Fisher analysis: massive gravity

The idea of introducing the mass to gravitons is rather old [344], and many attempts

have been made to construct a feasible theory that allows one to do so [345]. Such

a theory may arise in higher-dimensional setups [346] and has the potential to solve

the cosmic acceleration problem [345]. Although gravitons with non-vanishing masses

may have additional polarizations as well [347], we here restrict our attention to the

non-GR effects on the tensor modes due to a massive dispersion relation.

We will focus on the non-GR corrections specifically to the GW phase. Thus, the

purpose of this section is simply to compare our Fisher analysis with the Bayesian

one performed by the LVC. Gravitons with a non-vanishing mass travel at a speed
5Alternatively, one can rewrite the PPE corrections in the phase and the amplitude in terms of

non-GR parameters of a theory. Performing Fisher analyses with such parameters as variables lead
to similar constraints as the ‘phase & amplitude combined” bounds, although such an approach is
not theory-agnostic.
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smaller than the speed of light and the non-GR effects accumulate over the distance.

Modified dispersion relation for such gravitons is given by E2 = p2c2 + m2
gc

4, where

mg is the mass of the graviton while E and p are the energy and the momentum

respectively. The PPE phase parameters are [348]

βMG =
π2

λ2
g

Mch

1 + z
D , b = 3 , (3.11)

where

D =
z

H0

√
ΩM + ΩΛ

[
1− z

4

(
3ΩM

ΩM + ΩΛ

)
+O(z2)

]
. (3.12)

Here, ΩM and ΩΛ are the energy density of matter and dark energy respectively.

H0 is the Hubble constant while z is the redshift of the source. λg is the Compton

wavelength of the graviton that is related to mg as λg ≡ h/ (mgc), where h is Planck’s

constant.

We compute the probability distribution of λg from GW150914 according to the

procedure outlined in Sec. 3.2 and compare with the one obtained by the LVC [25]

(Fig. 3.1). The Fisher analysis with Monte Carlo simulations yields λg < 1.2 × 1013

km at 90% CL, which is in a good agreement with the LVC bound of 1.0 × 1013

km and thus shows the validity of the former. The difference in the two cumulative

distributions of λg presented in Fig. 3.1 can be attributed to the fact that the LVC

used a more accurate Bayesian analysis and imposed a uniform prior on the graviton

mass. The GW bound has recently been updated by combining multiple events [32].

The new bound is stronger than binary pulsar constraints [349,350] but slightly weaker
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Figure 3.1: The cumulative probability distribution of the graviton Compton
wavelength from GW150914. We show the ones obtained from a Fisher analysis
with Monte Carlo simulations (blue solid) and from a Bayesian analysis by the LVC
(red solid). Each of the vertical dashed lines corresponds to the lower bound of the
distribution of the same color with 90% confidence. Observe how the two different
analyses give similar bounds.

than the updated solar system bounds [351]. The bound is also weaker than the ones

from the observations of galactic clusters [352–354], gravitational lensing [355], and

the absence of superradiant instability in supermassive BHs [356].

3.3.2 Einstein-dilaton-Gauss-Bonnet gravity

In EDGB gravity, BHs accumulate scalar monopole charges which may generate scalar

dipole radiation if they form binaries [33, 173, 225, 255]. Recall from Sec. 2.3.2, such

radiation leads to an earlier coalescence of BH binaries compared to that of GR and

modifies the gravitational waveform with the PPE parameters given by [27,173]

βEDGB = − 5

7168
ζEDGB

(m2
1s̃

EDGB
2 −m2

2s̃
EDGB
1 )2

M4
t η

18/5
, (3.13)
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with b = −7 and

αEDGB = − 5

192
ζEDGB

(m2
1s̃

EDGB
2 −m2

2s̃
EDGB
1 )2

M4
t η

18/5
, (3.14)

with a = −2. Here, ζEDGB ≡ 16πᾱ2
EDGB/M

4
t is the dimensionless EDGB coupling

parameter and s̃EDGB
A are the spin-dependent factors of the BH scalar charges given

by s̃EDGB
A ≡ 2(

√
1− χA2 − 1 + χA

2)/χA
2 [33, 255].
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Figure 3.2: Histogram distributions of the 90% CL bounds on ζEDGB from a Fisher
analysis with the phase correction only (blue solid), the amplitude correction only
(red dashed) and combining the two corrections (green dotted-dashed). Fiducial
values are taken from the posterior samples of GW150914. The samples that lie on
the left side of the vertical black dashed line satisfy the small coupling
approximation with 90% CL.

We now derive constraints on EDGB gravity from GW150914 and GW151226.

First, we estimate how well these events satisfy the small coupling approximation

ζEDGB < 1. To do so, we extract the 90% CL upper bound ∆ζEDGB from each sample

of the posterior distribution of a particular event. We then create histograms with

all the samples (see Fig. 3.2) and calculate the fraction satisfying ∆ζEDGB < 1. For
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GW150914, 72% (42%) of the samples satisfy the small coupling approximation if

∆ζEDGB is derived from the phase (amplitude) correction only, while 71% of the pos-

terior distribution satisfies such approximation if the phase and amplitude corrections

are combined. A similar analysis with GW151226 gives 98% and 87% for the phase

and amplitude corrections respectively while combining the two yields almost the

same result as that of the phase-only case. Since the fraction of samples satisfying

ζEDGB < 1 is much higher for GW151226 than GW150914 due to a larger number of

GW cycles and slower relative velocity of the binary constituents, the former event

places more reliable constraints on EDGB gravity compared to the latter one.
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Figure 3.3: Cumulative probability distributions of ᾱ2
EDGB obtained from GW150914

for the same three cases as in Fig. 3.2. Each vertical dashed line shows the
corresponding 90% CL upper bound of a solid line of the same color.

Figure 3.3 presents cumulative probability distributions of ᾱ2
EDGB

6 for GW150914
6We show the distribution of ᾱ2

EDGB instead of
√
ᾱEDGB as it is the former that directly enters in

the waveform.
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for three different cases with vertical lines representing the 90% CL of the corre-

sponding distribution. We found the 90% CL constraints on
√
ᾱEDGB from each of the

phase and amplitude corrections as 50.5 km and 76.3 km respectively. Notice that

these bounds have the same order of magnitude. On the other hand, combining the

amplitude and phase corrections leads to an upper bound of 51.5 km, which is weaker

than the phase-only constraint by 2% (to be discussed more in Sec. 3.4). Though

above constraints may not be reliable as the 90% CL bounds on ζEDGB do not satisfy

the small coupling approximation, which is shown in Table 1.1.

We now look at bounds on GW151226. We found that this event yields 4.32 km

and 10.5 km respectively from the phase and amplitude corrections, while combining

the two only changes the result from the phase-only case by 0.01%. These bounds

are consistent with those in a recent paper [357] that utilized the LVC posterior

samples including the non-GR phase corrections at −1PN order while Ref. [358]

found even stronger bounds by combining multiple GW events. These GW bounds

are comparable to the one obtained from low-mass X-ray binaries [244].

Although GW150914 leads to weaker constraints on EDGB gravity compared

to GW151226, the effect of amplitude correction is more manifest for the former

event. This is because GW150914 has a smaller number of GW cycles, and thus the

amplitude contribution becomes relatively higher than GW151226.
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3.3.3 Scalar-Tensor theories

Certain scalar-tensor theories predict scalarization of neutron stars [210, 211], which

can also happen to BHs if the scalar field evolves with time cosmologically [228,229].

Let us recall from Sec. 2.3.1 that compact binaries formed by such objects emit dipole

radiation which modifies the GW phase with PPE parameters [37,45,81]

βST = − 5

7168
η2/5(α1 − α2)2 (3.15)

with b = −7, and the GW amplitude as [81]

αST = − 5

192
η2/5(α1 − α2)2 (3.16)

with a = −2. Here αA represents the scalar charge of the Ath binary component and

depends on specific theories and the type of compact objects. If we consider a binary

consisting of BHs in a theory where the scalar field Φ obeys a massless Klein-Gordon

equation, αA is given by [229]

αA = 2mA Φ̇ [1 + (1− χ2
A)1/2] , (3.17)

where Φ̇ is the rate of change of Φ with time.

One can use Eqs. (3.15)–(3.17) and the numerical analysis described in Sec. 3.2

to find constraints on Φ̇ as long as the small coupling approximation mAΦ̇ < 1 is

satisfied. In this regard, only 11.7% (13.5%) of the samples of GW150914 satisfies

such approximation with 90% confidence level for the phase (combined) correction,

while all of the samples fail to do so for the amplitude correction. Hence GW150914



Chapter 3. Testing Gravity with GW Amplitude Corrections 73

cannot place any meaningful bound on scalar-tensor theories considered here. On the

other hand, 90.4% of the samples from GW151226 meets the small coupling criterion

for the phase-only and combined analyses, while the fraction is only 25% for the

amplitude correction. Thus, we derive reliable constraints from GW151226 with the

phase-only and combined analyses, with both leading to Φ̇ < 1.1 × 104/sec7. This

constraint is 10 orders of magnitude weaker than the current most stringent bound

obtained from the orbital decay rate of quasar OJ287 [229], though this is the first

bound obtained in the strong/dynamical regime.

3.3.4 Varying- G theories

Many metric theories of gravity that violate the strong equivalence principle [2, 327,

328] predict time variation in the gravitational coupling parameter G [329]. Scalar-

tensor theories are examples where G varies as a function of the asymptotic scalar

field [2], which may vary over time. As we discussed in Sec. 2.4, any such time-

dependence of G leads to an alteration of the gravitational waveform through the

modifications of the binary orbital evolution and the energy balance law [81].

We now show the PPE modifications due to a time variation in the gravitational

constant. As pointed out in Sec. 2.4, the amount of gravitational coupling that

appears in different sectors of a gravitational theory may not be unique. Einstein-

Æther theory [296] and Brans-Dicke theory with a cosmologically evolving scalar
7A previous analysis with the sky-averaged waveform in Ref. [27] could not place a reliable bound

on scalar-tensor theories. Since the posterior distributions of the GW events were not available then,
one could not determine how well those events satisfied the small coupling approximation from a
simple Fisher analysis.
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field [2] are examples of such theories in which various gravitational constants exist.

In Sec. 2.4 we studied a generic case with two distinct gravitational constants in

Kepler’s law (conservative sector) and GW luminosity (dissipative sector). Here we

place constraints on the special case where these two constants coincide with each

other. In that case, we set GC = GD = G and Eqs. (2.64) and (2.66) change as

βĠ = − 25

851968
Ġ0 η

3/5
0 [(11 + 3s1,0 + 3s2,0)Mt,0 − 41(s1,0m1,0 + s2,0m2,0)]

(3.18)

with b = −13, and

αĠ =
5

512
η

3/5
0 Ġ0 [−(7− s1,0 − s2,0)Mt,0 + 13(s1,0m1,0 + s2,0m2,0)] (3.19)

with a = −8 respectively.

Employing Eqs. (3.18) and (3.19), GW150914 (GW151226) imposes constraints

on |Ġ0/G0| from the phase-only and amplitude-only analyses as 7.30×106 yr−1 (2.24×

104 yr−1) and 1.37×108 yr−1 (3.82×105 yr−1) respectively, with the combined analyses

yielding slight improvements over the phase-only results. Unlike the EDGB and

scalar-tensor cases, the amplitude-only analyses yield much worse bound than that

from the phase-only cases even with GW150914. Notice also that for varying-G

theories, the combined bound is slightly stronger than the phase-only bound (to be

discussed more in the subsequent section). These bounds are much less stringent

compared to the other contemporary constraints [2]. However, future space-borne

detectors such as LISA [181,359] will be able to obtain constraints up to 13 orders of
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magnitude stronger compared to the aLIGO ones [177,298].

3.4 Conclusion and Discussion

In this analysis, we have derived constraints on scalar-tensor, EDGB and varying-G

theories from GW150914 and GW151226. To do so, we performed Fisher analyses

with Monte-Carlo simulations using the posterior samples constructed by LVC. In

particular, we derived reliable constraints on the time-evolution of the scalar field in

scalar-tensor theories from GW observations for the first time.

We explored how amplitude corrections contribute to the constraints on such

theories. We derived three sets of bounds on each theory: phase-only, amplitude-

only, and from both phase and amplitude combined. We found that for binaries with

large masses such as GW150914, where we have less number of cycles, the bounds

from the amplitude and phase can be comparable to each other. On the other hand,

combined analyses yield constraints that differ from the phase-only case at most by

3.6% for the theories under consideration. Hence, at least in theories where the

leading corrections enter at negative PN orders, the phase-only analyses as done in

previous literature [27,298,357,358,360] can produce sufficiently accurate constraints.

Depending on the prior information and the PN order of the non-GR correction, a

combined analysis can yield stronger or weaker constraint compared to a phase-only

one. With the priors mentioned in Sec. 3.2, the fractional difference between βPPE

for the two cases is presented in Fig. 3.4. From −4 PN to −2.5 PN correction, the
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Figure 3.4: Comparison of combined and phase-only analyses at different PN orders
from GW150914 with a sky-averaged phenomB waveform. We show
δβ = (βcomb − βphase) /βphase, where βphase and βcomb are bounds on βPPE from
phase-only and combined analyses respectively. When δβ is positive (negative), the
combined analyses yield weaker (stronger) bounds than the phase-only ones.

combined analyses give rise to slight improvements over the phase-only constraints,

while for other cases, the former is weaker with a maximum deterioration of 8.5% at

−1 PN order. Nonetheless, it would be safer to include both phase and amplitude

corrections in the analysis as a lack of the former in the waveform may cause system-

atic errors on GR parameters such as luminosity distance if non-GR corrections exist

in nature.

In this paper, we considered only the leading PN corrections in the inspiral part of

the waveform, but how important are higher-PN corrections and modifications in the

merger-ringdown portion? Reference [27] partially addressed this question by taking

Brans-Dicke theory as an example whose leading correction enters at −1PN order,

similar to EDGB gravity and scalar-tensor theories considered here. Appendix B
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of [27] shows that including higher-PN corrections only affects the bound from the

leading PN correction by 10% at most for GW150914. Moreover, for EDGB gravity,

including the correction to the black hole ringdown frequency and damping time

only affects the bound from the leading PN corrections in the inspiral by 4.5% for

GW150914 [361]. Thus, it is likely that the bounds presented here are valid as order-

of-magnitude estimates.

A possible avenue for future work includes repeating the calculation presented

here but with a Bayesian analysis using a more accurate waveform such as PhenomD,

PhenomPv2 or effective-one-body ones. In particular, it would be interesting to

investigate whether the amplitude correction contribution entering at positive PN

orders is negligible like the negative PN cases reported here. It is also interesting to

repeat the analysis here to all the other events in GWTC-1 [29] and study how much

the bounds on each theory improve by combining these events. Another possibility is

to take into account non-tensorial polarization modes following e.g. [87]. For future

detectors with improved sensitivities, the ability to measure amplitude corrections

may be dominated by calibration errors8.

8The calibration error on the amplitude for the O2 run was 3.8% [29].



Chapter 4

Probing Compact Extra Dimensions
with Gravitational Waves

4.1 Introduction

In this chapter we consider gravitational waves in a 5d spacetime, with the fifth

dimension being compactified on a circle and with the matter constrained on a brane 1.

We work in 5d GR rather than in the context of the effective Einstein-Maxwell-

dilaton 4d theory (considered in [107–110]) which arises from performing a Kaluza-

Klein reduction of the 5d theory. Our motivation is two-fold. First motivation is

simplicity: it is easier to work with a single field (the metric) than a collection of

fields. Also, by not performing the Kaluza-Klein reduction (which assumes that fields

are independent of the compactified dimension) allows us to account for the effect

of the massive fluctuations that arise when integrating out the compact dimension.

By working directly in higher-dimensional GR theory we are also able to generalize

the 5d results to an arbitrary number of compactified extra dimensions. Second, we
1This chapter is based on the following paper:Probing Compactified Extra Dimensions with Grav-

itational Waves; Du, Yuchen; Tahura, Shammi; Vaman, Diana; Yagi, Kent; Phys. Rev. D 103,
044031 (2021)

78

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.044031
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hope that our 5d analysis will be useful to assess the effect of the extra dimensions

on gravitational wave detection when considering other paradigms for the geometry

of the extra dimensions, e.g. Randall-Sundrum (RS) models.

This chapter is organized as follows. In section 4.2 we present our conventions,

notations and general framework. In section 4.3, we extract the compactified 5d New-

tonian potential and the modified Kepler’s law for a binary at a fixed position in the

extra dimension. In section 4.4 we review the Kaluza-Klein reduction of the 5d theory

and point out that 5d matter, when seen from a 4d perspective is non-minimally cou-

pled. Section 4.5 contains our main result, namely the form of the gravitational waves

sourced by the 5d binary. In section 4.6 we extract the luminosity of the gravitational

waves, and in section 4.7 we compute the phase of the gravitational waveform as pre-

dicted by the compactified 5d model, and compare it with observations. Throughout

the chapter we give generalizations of our formulae in the case of a comapctified D-

dimensional spacetime, with four non-compact dimensions. We conclude in section

4.8.

4.2 Set-up

We will consider point-like mass sources in some higher-dimensional spacetime, and

we will investigate their effect on the spacetime geometry and on the emission of

gravitational waves from binaries, in perturbation theory.

To this end we will compute the metric perturbation h̃µν by direct integration of

Einstein’s equations and not from the quadrupole formula as it is customary, because
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the quadruple formula actually fails when there is a compactified dimension. The

reason for this is that the validity of quadrupole formula relies on integration by

parts. When the spatial coordinates are non-compact, the boundary terms which

accompany the integration by parts are zero. However, when there are compactified

extra dimensions, there are non-zero boundary terms, which are not straightforward

to evaluate and which will contribute, in addition to the usual quadrupole integral.

Please see Appendix D for the modified expression.

Thus, we need to solve the metric perturbation directly from the Einstein equa-

tions. We will use the relaxed Einstein equations in the harmonic gauge [178].

For simplicity in most of this chapter we will consider a five-dimensional (5d)

spacetime with coordinates xM , with four noncompact dimensions xµ and a fifth

dimension, x5 = w, compactified on a circle of radius R, though we will occasion-

ally point out how our results change in the case of additional compactified extra

dimensions:

xM = (xµ, x5, . . . ) = (t, ~x, w, . . . ) ∼ (t, ~x, w + 2πR, . . . ), M = 0, 1, 2, 3, 5, . . . D.

(4.1)

We further denote the spatial coordinates by

xI = (~x, w, . . . ) = (x, y, z, w, . . . ), I = 1, 2, 3, 5 . . . D , (4.2)

and the spatial non-compact coordinates by

xi = (x, y, z), i = 1, 2, 3 . (4.3)
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We set the speed of light to c = 1.

Let us consider a perturbation of the flat spacetime

hMN ≡ gMN − ηMN , ηMN = diag(−1, 1, 1, 1, 1, . . . ), (4.4)

and let us also define

h̃MN ≡ ηMN − g̃MN g̃MN ≡
√
−ggMN , (4.5)

where (g) is the determinant of the metric gMN . As advertised, we take h̃MN to satisfy

the Lorenz, or de Donder, or harmonic gauge condition:

∂M h̃
MN = 0. (4.6)

To linear order in hMN , h̃MN reduces to the usual trace-reversed metric perturbation:

h̃MN ' hMN −
1

2
h ηMN . (4.7)

Then, the relaxed Einstein equations state [178]

�h̃MN = −16πG(D)τMN , (4.8)

whereG(D) is the gravitational constant in theD-dimensional spacetime, � = ∂M∂Nη
MN ,

and where τMN is given by

τMN = (−g)(TMN + tMN
LL ) +

1

16πG(5)

(
h̃MP

,Q h̃
NQ

,P − h̃PQh̃MN
,PQ

)
. (4.9)

Lastly, TMN is the matter energy-momentum tensor while tMN
LL is the Landau-Lifshitz
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[362] gravitational energy-momentum pseudo-tensor. In a D−dimensional spacetime

we have [363]

16πG(D)(−g)tMN
LL = g̃MN

,P g̃
PQ

,Q − g̃
MP

,P g̃
NQ

,Q +
1

2
gMNgPQg̃

PR
,S g̃

QS
,R

−
(
gMPgQRg̃

NR
,S g̃

QS
,P + gNPgQRg̃

MR
,S g̃

QS
,P

)
+ gPQg

RS g̃MP
,R g̃

NQ
,S +

1

4(D − 2)

(
2gMPgNQ − gMNgPQ

)
× [(D − 2)gRSgR′S′ − gRR′gSS′ ] g̃RR

′

,P g̃
SS′

,Q . (4.10)

From the relaxed Einstein equations (4.8) and the harmonic gauge condition (4.6)

it is easy to see that τMN obeys the conservation law

∂Mτ
MN = ∂M

(
(−g)(TMN + tMN

LL )

)
= 0 . (4.11)

4.3 Modified Kepler’s Law

Let us first consider the scenario where there is one extra non-compact spatial dimen-

sion. Thus D = 5, the background is flat, and we assume that there is one matter

source which is point-like, of mass m, at rest. Then, the energy-momentum tensor is

TMN(xµ, w) = mδM0δN0δ3(~x)δ(w). (4.12)

The only non-trivial linearized metric fluctuation is h̃00
T , and it satisfies

�h̃00
T = −16πG(5)T 00 , (4.13)
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where G(5) is the gravitational constant in 5d. The solution is

h̃00
T (~x, w) =

4G(5)m

π(R2 + w2)
, R2 ≡ ~x2 = x2 + y2 + z2. (4.14)

The 5d linearized metric fluctuation h00
T = (2/3)h̃00

T
2 corresponds to a Newtonian

potential3

V (5)(R,w) = −4

3

G(5)m

π(R2 + w2)
. (4.15)

If the extra dimension is not flat, but compact, with an identification w ∼ w +

2πR, an observer sees a mass m at every w = 2nπR, where R is the radius of

compactification and n ∈ Z [364]. Summing over all such sources, the resulting

linearized metric fluctuation h̃00
T is periodic h̃00

T (~x, w) ∼ h̃00
T (~x, w + 2πnR):

h̃00
T (t, ~x, w) =

4G(5)m

π

∞∑
n=−∞

1

~x2 + (w − 2nπR)2
, (4.16)

and, correspondingly, the Newtonian gravitational potential is given by

V (5,c)(~x, w) = −4

3

G(5)m

π

∞∑
n=−∞

1

R2 + (w − 2nπR)2
. (4.17)

If the observers are located at the same w coordinate as the source (think of

the matter source and observer living on the same brane at w = 0, and ignore for

simplicity the backreaction of the brane on the geometry) then we are interested in

2In D spacetime dimensions this relation gets modified to h00T = (D − 3)/(D − 2) h̃00T , and the
linearized metric is given by ds2 = (−1 + (D − 3)/(D − 2) h̃00T ) dt2 + (1 + 1/(D − 2) h̃00T ) d~x · d~x.

3Working with a D-dimensional spacetime, (4.15) generalizes to

V (D)(R, ρ) = −1

2

D − 3

D − 2
h̃00T = − D − 3

(D − 2)

4

π(D−3)/2 Γ(
D − 1

2
)

G(D)m

(R2 + ρ2)D−3
, ρ2 = xIxI −R2 .
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V (5,c)(~x, w=0)4. Setting w = 0 and evaluating the sum over n in (4.17) yields

V (5,c)(~x, w=0) = −4

3

G(5)m

`R
coth

(
πR

`

)
= −1

3
h̃00

T (t, ~x, w=0) , (4.18)

where

` = 2πR (4.19)

denotes the length of the compactified extra dimension. For a generalization of (4.18)

to the case when the observer and the source are located at different positions in the

compact dimension, please see Appendix E.

There are two useful limits of (4.18): one is the decompactification limit, when

` � R, and the other is the opposite, with ` � R. In the first case, the Newtonian

potential assumes the form of a 4d non-compact space

V (5,c)(R,w=0) = −4

3

G(5)m

πR2
+O(R/`) , R = ~x2 = xixi , `� R , (4.20)

whereas in the second case it is equal to the Newtonian potential in a 3d non-compact

space plus exponential corrections5

V (5,c)(R,w=0) = −4

3

G(5)m

`R

(
1 + 2e−2πR/` +O(e−4πR/`)

)
, `� R. (4.21)

The exponential corrections look like a Yukawa potential, and can be interpreted
4For an investigation whether localized matter can arise in the context of effective field theory

see [365]
5For a D-dimensional space time R3,1 × TD−4, with three non-compact spatial dimensions and

the compact space being torus, the generalization of (4.21) is

V (D)(xI) = −2(D − 3)

D − 2

G(D)m

Vol(Compact Space)

1

R

(
1 +O(e−2πR/`)

)
,

where ` is the length of the largest of the cycles of the torus.
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as being due to massive gravitons. From a 4d perspective, these massive gravitons

correspond to non-uniform Fourier modes of the massless 5d gravitons on the circle

w ∼ w + `. We will have more to say about this in the following sections.

Next, let us consider a quasi-circular binary with component masses m1 and m2

and binary separation r12, with r12 � `. The matter energy-momentum tensor is

given by

TMN(x) =
∑
a=1,2

ma

∫
dτ

ẋMa ẋ
N
a√

−gPQ(x)ẋPa ẋ
Q
a

δ5(x− xa(τ)) , (4.22)

where xMa (τ) is the trajectory of the point-like mass ma with τ representing an affine

parameter on the worldline. We can use reparametrization invariance to identify

x0(τ) = τ and, assuming that the matter sources are located at w1(t) = w2(t) = 0

(i.e. confined to the same brane), to leading order we have

~x12(t) = ~x1(t)− ~x2(t) = (r12 cos(Ωt), r12 sin(Ωt), 0) . (4.23)

Further using (4.21) yields the effective potential of such a binary

Veff '
1

2
µr2

12Ω2 − GNµMt

r12

(
1 + 2e−2πr12/`

)
, (4.24)

where

Mt = m1 +m2 (4.25)

is the total mass of the binary and

µ = (m1m2)/Mt (4.26)
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is the reduced mass, while Ω is the orbital angular frequency. GN is the 4d Newton’s

constant, with6

GN ≡
4

3

G(5)

`
. (4.27)

The distance between the two sources is solved from the condition of local extremum

of Veff with respect to r12. This leads to the following modification to the Kepler’s

law:

r12 '
(
GNMt

Ω2

)1/3
{

1 + 2
3

(
GNMt

Ω2

)1/3 2π
`

exp
[
−2π

`

(
GNMt

Ω2

)1/3
]

+2
3

exp
[
−2π

`

(
GNMt

Ω2

)1/3
]}

, (4.28)

where we have retained the first order correction to the 4d Kepler’s law.

4.4 Performing the Kaluza-Klein Reduction with 5d

Point-like Matter Sources

One might be tempted to think that the physics of the binary system in a 5d spacetime

is that of a binary (two point-like masses) coupled to the fields obtained via Kaluza-

Klein reduction of the 5d metric, namely gravity, dilaton and Maxwell fields, and

with the latter two being set to zero. Then, to leading order, neglecting all corrections

coming from massive modes on the fifth dimensional circle, one recovers the 4d matter
6For a D-dimensional space time R3,1 × TD−4, with three non-compact spatial dimensions and

the compact space being torus, the 4d Newton’s constant is given by

GN =
2(D − 3)

D − 2

G(D)

Vol(Compact Space)
,

with G(D) the D-dimensional gravitational constant.
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(the binary) plus gravity set-up. However, this is not the case. To better understand

this issue, we take a quick detour and review the Kaluza-Klein reduction of the 5d

system composed of gravity plus point-like sources. This is a self-contained section

of the chapter and for the purpose of performing the Kaluza-Klein reduction we

introduce the notation GMN for the 5d metric and gµν for the 4d metric.

Consider five-dimensional gravity

S5d =
1

`κ

∫
d5x
√
−detGMN R[GMN ], (4.29)

where κ = 16πG (we work in units where c = 1), R[GMN ] is the Ricci scalar of

metric GMN , and G = G(5)/`. The Kaluza-Klein reduction ansatz to 4d is (see for

example [366]):

GMN = e−υ/3

gµν + κeυAµAν
√
κeυAµ

√
κeυAν eυ

 , (4.30)

where all the fields in (4.30) are functions of the 4d coordinates, xµ, only.

Substituting (4.30) into the 5d Einstein-Hilbert action yields the 4d Einstein-

Maxwell-dilaton action

SKK =
1

κ

∫
d4x
√
−g
(
R[gµν ]−

κ

4
eυFµνF

µν − 1

6
∂µυ∂

µυ

)
. (4.31)

Note that we can find solutions with a vanishing dilaton as long as the Maxwell

field is pure gauge. (The dilaton equation is sourced by the Maxwell field, so setting

the dilaton to zero in general would lead to an inconsistent Kaluza-Klein truncation.)
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By introducing the rescaled dilaton and Maxwell field as

υ = −2
√

3φ , Aµ =
2√
κ
Āµ , (4.32)

we can rewrite the Einstein-Maxwell-dilaton action as

SKK =
1

κ

∫
d4x
√
−g
(
R[gµν ]− e−2

√
3φF̄µνF̄

µν − 2∂µφ∂
µφ

)
. (4.33)

This agrees with (II.1) of [108]. We will use the rescaled dilaton (4.32) to make

contact with [108] in Section 4.6.

Consider now adding a point-like source of mass m to the 5d action:

Smatter, 5d = −m
∫
dτ
√
−ẋM(τ)ẋN(τ)GMN(x(τ)) , (4.34)

where τ is an affine parameter on the source’s worldline and ẋM = d
dτ
xM . This

will source the 5d metric in the usual way, leading to the 5d perturbative analysis

performed in the previous section, and continued in the next.

Here we would like to point out that the 4d dilaton is also being sourced by the

5d matter (4.34). Specifically, for a source that is not moving in the fifth dimension

(note that this is a solution to its equation of motion in the context of a 5d metric

which is independent of the fifth coordinate), the reduction of the 5d action (4.34)

yields

Smatter,KK=−m
∫
dτ e−υ/6

√
−ẋµ(τ)ẋν(τ)(gµν + κeυAµAν) , (4.35)

where the 4d fields are evaluated on the worldline.

In contrast, adding a 4d neutral source of mass m to the Einstein-Maxwell-dilaton
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action is done by considering

Smatter, 4d = −m
∫
dτ
√
−ẋµ(τ)ẋν(τ)gµν . (4.36)

The main message here is that 5d matter couples not only to the 4d graviton, but

also to the dilaton and Maxwell field. Most importantly, while we can find solutions

with a vanishing dilaton to the 4d action with a 4d matter source, we cannot find

solutions with a vanishing dilaton to the 4d Kaluza-Klein reduced action when the

matter source is a 5d point-like source; this can be understood by noticing that in

(4.35) there is a linear coupling between the dilaton and the matter source, when

expanding in small fluctuations about a vanishing dilaton. In effect, the 4d mass in

the Kaluza-Klein reduced action is modulated by the dilaton,

meffective = m exp(−υ/6) , (4.37)

as evidenced by (4.35).

Lastly, in the context of Kaluza-Klein reduction of a higher-dimensional gravita-

tional theory, the 4d gravitational coupling constant is 1/(16πG), as we can see from

(4.31), with

G = G(5)/` . (4.38)

However, G and GN (which shows up in the Newtonian potential and it is given in

(4.27) for D = 5) are not equal: they differ by a factor. This is different from 4d GR,

where G and GN are equal to one another. The explanation for this mismatch stems
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from the fact that in an effective 4d theory, the interaction between two masses is

not only gravitational, but there are additional contributions mediated by 4d scalars

(e.g. dilaton) as well.

4.5 Metric Perturbations

We now return to our main problem, namely finding the 5dmetric fluctuations sourced

by a binary in a spacetime with one compact dimension of radius R.

We separately find the contribution of the matter energy-momentum tensor and

of the Landau-Lifshitz pseudo-tensor to the metric fluctuations: we denote these

by h̃MN
T and h̃MN

t . There is one more contribution to the metric fluctuations from

the remainder of the relaxed Einstein equation source τMN (see (4.9)). However, to

leading order, the extra terms in τMN contribute only to the 00-component of the

metric fluctuations, h̃00. We will compute the 0-components of the metric fluctuations

not by direct integration, but by using the harmonic gauge (4.6). So, for the remaining

fluctuations h̃IJ = (h̃ij, h̃i5, h̃55) we will evaluate first the contribution from the matter

source, and then use this in the Landau-Lifshitz pseudo-tensor to evaluate the non-

linear metric fluctuations. Despite h̃IJt being non-linear, it is actually of the same

order as h̃IJT in a velocity expansion. Lastly, we add the two contributions to find the

metric perturbation to second order in velocities, i.e. leading order in post-Newtonian

expansion.
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4.5.1 Metric perturbations: contribution from the matter sources

We begin by computing the perturbations sourced by the matter stress-energy tensor.

The energy-momentum tensor TMN of a system of point masses at w = 0 is given by

TMN(t, ~x, w) =
∑
a

PM
a PN

a

P 0
a

δ3 (~x− ~xa(t)) δ (w) , (4.39)

where PM
a = mẋMa /

√
−gPQẋPa ẋ

Q
a is the M -component of the momentum of particle

a. We parametrize the particles’ trajectories with ~xa = ~xa(t) and take x0
a = t. For a

binary source, we specifically use (4.23).

From (4.8), the linearized fluctuations are given by

h̃MN
T (t, ~x, w) = −16πG(5)

∫
dt′d3~x′dw′ G(5,c) (t, ~x, w; t′, ~x′, w′)TMN (t′, ~x′, w′) ,

(4.40)

where G(5,c)(t, ~x, w; t′, ~x′, w′) is the (scalar) retarded compactified Green’s function in

5d. The retarded Green’s function in flat 5d can be represented as [367]

G(5) (t, ~x, w; t′, ~x′, w′) = −θ(t− t
′)

4π2r
∂

∂r
θ (t− t′ − r )√
(t− t′)2 − r 2

, (4.41)

with

r 2 = (~x− ~x′)2 + (w − w′)2 , (4.42)

and where θ denotes the Heaviside step-function. 7

7For the reader accustomed to 4d expressions, we want to point out that even though the 5d
retarded Green’s function does not have support only on the light-cone (as opposed to the massless
4d retarded Green’s function which has support on the light-cone only), it does have support inside
the light-cone, and it is therefore causal. This is one of the peculiar features of odd dimension
spacetimes.
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Then, starting from (4.41), we can write the compactified 5d retarded Green’s

function, G(5,c)(x, y):

G(5,c) (t, ~x, w; t′, ~x′, w′) = −
∞∑

n=−∞

θ(t− t′)
4π2 r n

∂

∂r n
θ (t− t′ − r n)√

(t− t′)2 − r 2
n

, (4.43)

where r 2
n = (~x − ~x′)2 + (w − w′ − n`)2. For practical purposes, the compactified

Green’s function expression given in (4.43) is not very useful.8 Instead, we will use

the equivalent representation of the compactified retarded Green’s function in terms

of a sum/integral over Fourier modes9 (see also Appendix G):

G(5,c)(xµ, w;x′µ, w′) = −1

`

∞∑
n=−∞

∫
d4p

(2π)4

eip·(x−x
′)ei2πn(w−w′)/`

−(p0 + iε)2 + ~p2 + (2πn/`)2
, (4.44)

where ε is an infinitesimally small positive number. In (4.44) each term in the sum

can be interpreted as the 4d retarded Green’s function of a massive particle, of mass

ms = (2πn/`). These massive particles are nothing else but the massive Kaluza-

Klein graviton states. Thus we expect that in the limit when r � `, and for slow

moving sources, (4.44) will reduce to the 4d retarded Green’s function of a massless

particle, corresponding to n = 0, plus exponentially suppressed corrections, with the

leading order correction coming from the least massive mode, corresponding to n = 1.

Indeed, the n = 0 term in the sum above corresponds to massless 4d excitations, and

the retarded 4d Green’s function θ(t− t′)δ(t− t′−|~x−~x′|)/(4π|~x−~x′|). The non-zero

n terms are associated with massive 4d excitations. The retarded Green’s function
8However, for the purpose of demonstrating how one could use (4.43) in an explicit calculation,

please see Appendix F for another derivation of the Newtonian potential in 5d GR.
9The Dirac-delta function, written as a distribution on the space of periodic functions with period

`, is δ(w − w′) = (1/`)
∑∞
n=−∞ exp(i2πn(w − w′)/`).
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for a massive 4d scalar of mass ms is

−
∫

d4p

(2π)4

eip·(x−x
′)

−(p0 + iε)2 + ~p2 +m2
s

=− θ(t− t′)
4π

[
δ(t− t′ − |~x− ~x′|)

|~x− ~x′|

− θ(t− t′ − |~x− ~x′|)
msJ1

(
ms

√
(t− t′)2 − |~x− ~x′|2

)
√

(t− t′)2 − |~x− ~x′|2

]
. (4.45)

Consider next the propagation of a periodic signal eiωt′f(~x′), with f(~x′) localized near

the origin (similar to the case encountered with the binary sources). In the leading

multipole expansion, for |~x− ~x′| ' |~x| = R we are left with evaluating

∫ t

−∞
dt′

δ(t− t′ −R)

R
− θ(t− t′ −R)

msJ1

(
ms

√
(t− t′)2 −R2

)
√

(t− t′)2 −R2

 eiωt
′

=
eiω(t−R)

R
−mse

iωtI 1
2

[
R

2

(√
m2
s − ω2 − iω

)]
K 1

2

[
R

2

(√
m2
s − ω2 + iω

)]
=
eiωt

R
e−R
√
m2
s−ω2

. (4.46)

If ms � ω (which is the case for slow moving binary sources since ms = 2πn
`
, ` �

r12,Ωr12 � 1), the approximate result from (4.46) would be simply (1/R) eiωte−2πnR
` ,

which is the anticipated exponentially suppressed contribution.

So, putting everything together, the signal propagating from a source that is

localized near the origin f(~x′, w′)eiωt
′ to a spacetime coordinate (t, ~x, w) is

∫
dt′
∫
d3~x′

∫ `

0

dw′ G(5,c)(t, ~x, w; t′, ~x′, w′)f(~x′, w′)eiωt
′

' −e
iω(t−R)

4π`R

∫
d3~x′

∫ `

0

dw′ f(~x′, w′)
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−
∑
n,n 6=0

eiωt

4π`R
e−R
√

(2πn/`)2−ω2

∫
d3~x′

∫ `

0

dw′ f(~x′, w′)e2πin(w−w′)/` . (4.47)

In the limit of a small extra-dimension and a slow moving source (i.e. 2π/`� ω), we

find that the leading contribution is

− 1

4π`R

∫
d3~x′

∫ `

0

dw′ f(~x′, w′)eiω(t−R) , (4.48)

which corresponds to a signal that propagates uniformly in w and radially in the non-

compact space. The massive Kaluza-Klein gravitons give an exponentially suppressed

contribution of the form

− 2
∞∑
n=1

eiωt

4π`R
e−2πnR/`

∫
d3~x′

∫ `

0

dw′ f(~x′, w′) cos(2πn(w − w′)/`) . (4.49)

At large distances R� ` these massive states contributions can be safely ignored.

In particular, from (4.40), sourced by the binary (4.22, 4.23) energy-momentum,

and using the approximations in (4.48) and (4.49) in the far-field slow motion limit,

we find for example the (x, y) component as

h̃xyT (t, ~x, w=0) '− 3

2

GNµ

R
r2

12Ω2

(
sin[2Ω(t−R)] +

∞∑
n=1

e−
2πR
`
n sin(2Ωt)

)
, (4.50)

where R = |~x| is the 3d distance between the sources and the observer, and µ is

the reduced mass defined in (4.26). The leading correction due to the extra com-

pact dimension to the part of the metric fluctuation which is sourced by the matter

energy-momentum tensor is given by the n = 1 term in the sum in (4.50), and it is

an exponentially suppressed correction. Since `� R, the correction exp(−2πR
`

) is ex-
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tremely small and can be safely ignored (after all we have already ignored corrections

of order r12/R, and we expect ` < r12).

4.5.2 Metric perturbations: the non-linear contribution from
the Landau-Lifshitz pseudo-tensor

We denote the non-linear metric perturbations sourced by tMN
LL in (4.8) as h̃MN

t . In

the slow motion limit (v � 1), since h̃00
T ∼ O(1), h̃0i

T ∼ O(v), h̃ijT ' O(v2) and

h̃M5
T ' 0, the leading order contribution for I, J = 1, 2, 3, 5, . . . D comes from

h̃IJt (x) = −16πG(D)

∫
d5y G(D,c)(x, y)tIJLL(y)

' − D − 3

4(D − 2)

∫
d5y G(D,c)(x, y)∂M h̃

00
T (y)∂N h̃

00
T (y)(2ηIMηJN − ηIJηMN),

(4.51)

where G(D,c)(x, y) is the compactified retarded Green’s function in D dimensions.

Specializing to the case D = 5, we get

h̃IJt (x) ' −1

6
(2ηIMηJN − ηIJηMN)

∫
d5y G(5,c)(x, y)∂M h̃

00
T (y)∂N h̃

00
T (y), (4.52)

where G(5,c)(x, y) was previously defined in (4.43) and (4.44). As discussed in the

previous subsection, in the far field limit (when the distance to the source is much

larger than the distances between sources) with the observer and the sources lo-

cated at w = 0, and in the slow motion approximation, the compactified retarded 5d

Green’s function reduces effectively to a 4d retarded Green’s function. The first order
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correction, which is proportional to exp(−2πR
`

) is negligible, and (4.52) becomes

h̃IJt (t, ~x, 0) ' 1

4π`R

1

6
(2ηINηJM − ηIJηMN)

×
∫
d3y

∫ `

0

dw ∂M h̃
00
T (t−R, ~y, w) ∂N h̃

00
T (t−R, ~y, w). (4.53)

The most striking difference in the non-linear contribution to the metric fluctuations

in 5d with respect to the 4d case is the coefficient 1/6 on the right hand side of (4.53)

relative to the more familiar coefficient of 1/8 in 4d.

We now return to the specific case of a binary system at w = 0, with masses

m1,m2 moving in the (x1, x2) plane. The first observation is that in (4.53), to leading

order in velocities we only need to to consider the action of the spatial derivatives on

h̃00
T , which does not contain an explicit t-dependence. Restricting now the sumation

over M,N indices to spatial indices K,L, consider the term ∂K h̃
00
T ∂Lh̃

00 in (4.53).

Since h̃00
T = h̃00

T,1 + h̃00
T,2, there will be four terms. However, we are only interested

in the two crossing terms because non-crossing terms will be simply regularized and

effectively be dropped out. In addition, we will replace the spatial derivative on y to

the derivative with respect to the position of the sources (with a minus sign). We can

do so because of translation invariance of the flat background which implies that the

linearized fluctuation h̃00
T,a only depends on ~y − ~ya and w − wa. We will use ∂(a)

K to

represent partial derivatives with respect to the coordinates of the source a, ∂/∂yKa .

With the help of this little trick, we can simplify (4.53):

h̃IJt (t, ~x, w) '(2ηIKηJL − ηIJηKL)(∂
(1)
K ∂

(2)
L + ∂

(2)
K ∂

(1)
L )

24π`R
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×
∫

NZ

d3y

∫ `

0

dw h̃00
T,1(t−R, ~y, w)h̃00

T,2(t−R, ~y, w) , (4.54)

where
∫

NZ
d3y denotes integration in the near zone (NZ) region (i.e. in the vicinity

of the sources) which is the region that contributes the most to the volume integral∫
d3y [178]. Due to the near-zone approximation, the wave propagation is almost

instantaneous and we can use for h̃00
T,a in the NZ region the result from (4.16),

h̃00
NZ,T,a(t, ~y, w) = − 4

π
G(5)ma

∑
n

1

(~y − ~xa(t))2 + (w − wa + n`)2
. (4.55)

Substituting (4.55) into the integrand (4.54), we can use the infinite sums to extend

the integration region over w first, and then we can perform the remaining sum

exactly:

∫ `

0

dw′ h̃00
NZ,T,1(t, ~y, w′)h̃00

NZ,T,2(t, ~y, w′)

=
∑
n1,n2

∫ l

0

dw′
16m1m2(G(5))2

π2(R2
1 + (w′ − w1 + n1`)2)(R2

2 + (w′ − w2 + n2`)2)

=

∫ +∞

−∞
dw′

∑
n2

16m1m2(G(5))2

π2(R2
1 + w′2)(R2

2 + (w′ + w1 − w2 + n2`)2

=
16m1m2(G(5))2(R1 +R2)

πR1R2

∑
n2

1

(R1 +R2)2 + (w1 − w2 + n2`)2

= `
9m1m2G

2
N

R1R2

sinh 2π(R1+R2)
`

cosh 2π(R1+R2)
`

− cos 2π(w1−w2)
l

' `
9m1m2G

2
N

R1R2

(
1 + 2e−

2π(R1+R2)
` cos

2π(w1 − w2)

`

)
, (4.56)

where R1 = |~y − ~x1(t)|, R2 = |~y − ~x2(t)|, and where GN was previously defined in

(4.27). In the last step in (4.56) we used ` � r12 ≤ R1 + R2, with r12 the binary
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separation distance. It is important to keep the explicit wi dependence because we

will still have to take derivatives respect to the position of the sources in the 5d

spacetime. Substituting (4.56) into (4.54) we obtain

h̃IJt (x) ' 3

2

m1m2G
2
N

2πR
(2ηIKηJL − ηIJηKL)(∂

(1)
K ∂

(2)
L + ∂

(2)
K ∂

(1)
L )

×
(
−πr12 + ` e−

2πr12
` cos

2π(w1 − w2)

`

)
. (4.57)

For more details on how the integration was performed in (4.57), please see Appendix

H.

In particular, from (4.57), for a binary at w1 = w2 = 0 as in (4.22) and (4.23), we

obtain e.g. the (x, y) component of the metric perturbation as

h̃xyt (t, ~x, 0) '− 3

2

m1m2G
2
N

R
(∂

(1)
1 ∂

(2)
2 + ∂

(2)
1 ∂

(1)
2 )

(
r12 −

`

π
e−

2πr12
`

)
'− 3

2

m1m2G
2
N

Rr12

(
1 + 2e−

2πr12
` +

4πr12

`
e−

2πr12
`

)
sin[2Ω(t−R)] . (4.58)

We can further use the modified Kepler’s law Ω2 = GNM
r312

(1 + 2e−
2πr12
` + 4πr12

`
e−

2πr12
` )

to cast it into a more familiar form:

h̃xyt (t, ~x, 0) ' −3

2

GNµ

R
r2

12Ω2 sin[2Ω(t−R)] . (4.59)

4.5.3 Gravitational waves from a binary source in a 5d space-
time

Similar calculations to the ones we presented in explicit detail in the previous sec-

tions yield the following expressions for the other non-zero linearized fluctuations

h̃IJT (sourced by the matter energy-momentum tensor), as well as the leading order
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non-linear fluctuations, h̃IJt (sourced by the Landau-Lifshitz pseudo-tensor):

h̃xxT (t, ~x, 0) ' 3
GNµ

R
r2

12Ω2 sin2[Ω(t−R)],

h̃yyT (t, ~x, 0) ' 3
GNµ

R
r2

12Ω2 cos2[Ω(t−R)],

h̃zzT (t, ~x, 0) ' 0,

h̃wwT (t, ~x, 0) ' 0,

h̃xxt (t, ~x, 0) ' −3
GNµ

R
r2

12Ω2 cos2[Ω(t−R)] ,

h̃yyt (t, ~x, 0) ' −3
GNµ

R
r2

12Ω2 sin2[Ω(t−R)] ,

h̃zzt (t, ~x, 0) ' 0 ,

h̃wwt (t, ~x, 0) ' −3
GNµ

R
r2

12Ω2

(
1− 4

2πr12

`
e−

2πr12
`

)
, (4.60)

where we recall that µ is the reduced mass of the binary (4.26). (As a caveat, we

would like to point out that we cannot set z1 = z2 = w1 = w2 = 0 until the derivatives

in (4.57) have been taken, and the vanishing of h̃zzt is not trivial.) As advertised, both

h̃IJT and h̃IJt are of the same order in velocities.

To second order in velocities, the non-zero metric fluctuations h̃IJ are obtained

by adding the linearized h̃T and non-linear h̃t:

h̃xy(t, ~x, 0) = h̃xyT + h̃xyt ' −3
GNµ

R
r2

12Ω2 sin[2Ω(t−R)] ,

h̃xx(t, ~x, 0) = h̃xxT + h̃xxt ' −3
GNµ

R
r2

12Ω2 cos[2Ω(t−R)] ,

h̃yy(t, ~x, 0) = h̃yyT + h̃yyt ' 3
GNµ

R
r2

12Ω2 cos[2Ω(t−R)] ,

h̃ww(t, ~x, 0) = h̃wwT + h̃wwt ' −3
GNµ

R
r2

12Ω2

(
1− 4

2πr12

`
e−

2πr12
`

)
. (4.61)
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According to our discussion in Sections 4.5.1 (see (4.49)) and 4.5.2 (see (4.57)), the

metric fluctuations h̃IJ(xµ, w) are equal to h̃IJ(xµ, w=0), up to exponentially sup-

pressed corrections. However, the biggest change to the luminosity of the gravita-

tional waves and the phase of the gravitational waveform comes from the leading

order terms retained in (4.61).

The extension of the results given in (4.61) to a compactifiedD-dimensional space-

time is straightforward:

h̃(D)IJ =
D − 2

2(D − 3)

 h̃(4)ij 0

0
(
− 4GNµ

R
r2

12Ω2
)
δpq

 , (4.62)

where i, j = 1, 2, 3 and p, q = 5, 6, . . . D. Here h̃(4)ij denotes the 4d gravitational

waves sourced by a binary with the same characteristics as ours: reduced mass µ,

separation distance r12, angular frequency Ω, and located at z = 0:

h̃(4)ij =


−4GNµ

R
r2

12Ω2 cos[2Ω(t−R)] −4GNµ
R
r2

12Ω2 sin[2Ω(t−R)] 0

−4GNµ
R
r2

12Ω2 sin[2Ω(t−R)] 4GNµ
R
r2

12Ω2 cos[2Ω(t−R)] 0

0 0 0

 .

Lastly, the remaining metric fluctuations h̃0M can be obtained either by direct

integration, or more easily, by using the harmonic gauge (4.6) condition. In the next

sections we will use the latter.
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4.6 The Luminosity of Gravitational Waves

In this section we compute the luminosity of gravitational waves. We work in the

harmonic gauge (4.6), without specializing to the more commonly used transverse-

traceless gauge (for a comparison, see Appendix I).

There is one more subtlety we would like to comment on before we begin. In theD-

dimensional gravitational theory, the only coupling constant is the gravitational con-

stant G(D) of the Einstein-Hilbert action. After performing the Kaluza-Klein reduc-

tion, the effective 4d theory has the gravitational constantG = G(D)/Vol(Compact Space)

and the Newton’s constant is GN = (2(D − 3)/(D − 2))G. In contrast, in a strictly

4d theory of gravity coupled to matter, we would have G = GN.

In our subsequent comparisons between the predictions of the compactified higher-

dimensional gravity theory and 4d GR we will identify the Newton’s constants in the

two theories.

We use the gravitational energy-momentum pseudo-tensor tMN
LL given in (4.10).

Since tMN
LL is already second order in the metric fluctuations, we can use the linearized

approximation for h̃MN , (4.7), to obtain

16πG(D)tMN
LL ' h̃MN

,P h̃
PQ

,Q − h̃
MP

,P h̃
NQ

,Q +
1

2
ηMN h̃PR,Qh̃

Q
P,R

−
(
h̃MP

,Qh̃
Q,N

P + h̃NP,Qh̃
Q,M

P

)
+ h̃MP,Qh̃NP,Q +

1

2
h̃PQ,M h̃ ,N

PQ − 1

4
ηMN h̃PQ,Rh̃PQ,R

− 1

4(D − 2)

(
2h̃,M h̃,N − ηMN h̃,P h̃,P

)
, (4.63)
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where the indices are raised and lowered with the Minkowski metric. Further imposing

the Lorenz gauge (4.6) and performing short-wavelength averaging10, (4.63) becomes

〈(tLL)MN〉 '
1

32πG(D)

〈
∂M h̃PQ∂N h̃

PQ − 1

D − 2
∂M h̃∂N h̃

〉
. (4.64)

The total energy carried away by gravitational waves is given by the following volume

integral:

EGW =

∫
d3~x

∫ `

0

dw t00
LL(t, xI) ' `

∫
d3~x t00

LL(t, ~x) , (4.65)

where in the last step we used that, to leading order, the metric fluctuations propagate

uniformly in w. Then the rate of change of the radiated energy is

ĖGW =
dEGW

dt
=

∫
d3~x

∫ `

0

dw ∂0t
00
LL

=−
∫
d3~x

∫ `

0

dw ∂It
I0
LL

=

∮
dA

∫ `

0

dw (tLL)0In
I , (4.66)

where we recall that our index conventions defined in (4.2) and (4.3) are: I, J =

1, 2, 3, 5 and i, j = 1, 2, 3. In (4.66), dA is the differential area element on the 2-

sphere at spatial infinity and nI is the unit vector along the direction of propagation

of the gravitational waves. From (4.48) and (4.61) we saw that the gravitational waves

propagate radially in the non-compact directions and uniformly in w to leading order.

The non-uniform propagation along the direction of compactification is due to the

massive Kaluza-Klein modes which yield exponentially suppressed corrections. So, to
10When performing short-wavelength averaging, integration by parts is permitted [368].
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leading order, the only non-zero components of nI are ni. Then, the rate of change

of energy in a 2-sphere at a distance R from the source becomes

ĖGW = `

∮
dΩ (tLL)0kn

kR2 . (4.67)

Using repeatedly the harmonic gauge and the fact that the perturbations in the far

zone depend on the retarded time, we obtain the following identities to leading order

in 1/R:

∂kh̃IJ ' − ˙̃hIJnk ,

∂kh̃00 ' − ˙̃hijn
injnk ,

∂kh̃0I ' ˙̃hIjn
jnk ,

˙̃h00 ' ˙̃hijn
inj ,

˙̃h0I ' − ˙̃hIjn
j , (4.68)

where a dot denotes a time derivative. In more detail, in writing ∂kh̃IJ ' − ˙̃hIJnk,

we used the fact that the metric fluctuations are spherical waves (see (4.61)), and to

leading order in 1/R, we can ignore the action of ∂k derivative on the 1/R factor.

Then, when acting on the periodic function of t−R, we can trade off ∂k for nk∂R and

the latter for −nk∂t.

Substituting (4.68) into (4.64) we derive the follwing result

〈t0knk〉 ' −
1

32πG(D)

〈
˙̃hIJ

˙̃hIJ + D−3
D−2

˙̃hij
˙̃hkln

injnknl −2 ˙̃hIj
˙̃hIknjnk − 1

D−2

˙̃hII
˙̃hJJ

+ 2
D−2

˙̃hII
˙̃hijn

inj
〉
. (4.69)
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We are now ready to compute the luminosity of the gravitational waves from a

binary source. For D = 5, substituting the perturbations derived in (4.61) into (4.67),

and noting that to leading order we have ∂0h̃
I
I = ∂0h̃

i
i = 0, we find 11

Ė
(5,c)
GW ' − 19

360

R2

G

〈
˙̃hij

˙̃hij
〉
, (4.70)

where we recall that G is the effective 4d theory gravitational constant (4.38), and

we used the isotropy of the gravitational waves together with the following identities:

∫
d2Ωninj =

4π

3
δij ,∫

d2Ωninjnknl =
4π

15

(
δijδkl + δilδjk + δikδjl

)
. (4.71)

Substituting the metric perturbations derived earlier in (4.61) into (4.70), and keeping

terms only to leading order in velocity, the compactified 5d GR luminosity is

Ė
(5,c)
GW ' −304

45
Gµ2r4

12Ω6 = −76

15
G

7/3
N µ2M

4/3
t Ω10/3 . (4.72)

In contrast, the luminosity of gravitational waves in a purely 4d gravitational theory,

with the gravitational waves sourced by a binary with the same characteristics as

ours, is equal to

Ė
(4)
GW ' −

32

5
GNµ

2r4
12Ω6 = −32

5
GN

7/3µ2M
4/3
t Ω10/3 . (4.73)

11 For general D-dimensions,

Ė
(D,c)
GW ' − 7D − 16

15(D − 2)

R2

8GN

2(D − 3)

D − 2

〈
˙̃
hij

˙̃
hij
〉

= − 7D − 16

15(D − 2)

D − 2

2(D − 3)
16G

7/3
N µ2M

4/3
t Ω10/3

=
7D − 16

12(D − 3)
Ė

(4)
GW ,

where Ė(4)
GW is defined in (4.73).
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We conclude that the luminosity of gravitational waves in a 5d spacetime with a

compact fifth dimension differs by 20.8% from the corresponding 4d GR luminosity.

Let us now compare the luminosity derived earlier in (4.72) with the predictions of

Einstein-Maxwell-dilaton theory studied in Refs. [108–110]. For neutral matter (i.e.

the electric charges are zero), the energy of a binary is dissipated via gravitational

and scalar (dilaton) radiation. We refer to them as Ėg and Ėφ respectively. The

luminosity depends on the scalar charge through the quantity

α0
a =

d lnma(φ)

dφ
, (4.74)

where the superscript “0” refers to the quantity being evaluated at φ∞ (a constant

corresponding to the scalar field at spatial infinity), and where ma(φ) is the effective

4d mass of a source a, which may depend on the dilaton. In general, for a circular

binary, the leading order term in Ėφ is dipolar and depends on the difference in scalar

charges of the binary constituents [369].

In our compactified (Kaluza-Klein) higher-dimensional gravity picture, the effec-

tive 4d mass of source a is given by

ma(φ) = mae
−φ/
√

3 , (4.75)

as in (4.37), and where we used the dilaton rescaling as in (4.32). Since in our theory

masses are coupled to the dilaton universally,

α0
1 = α0

2 = −1/
√

3 , (4.76)
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the dipole radiation is zero (because α0
1 − α0

2 = 0), and so the leading contribution

in Ėφ is quadrupolar. Therefore, both Ėg and Ėφ are quadrupolar, and so is their

sum, which is in agreement with our earlier findings (4.72). More precisely, given the

Kaluza-Klein scalar charges (4.76), the leading order contribution to the luminosity

in Einstein-Maxwell-dilaton theories [109,110] becomes

Ėg '
(
1 + α0

1α
0
2

)−1
Ė

(4)
GW , Ėφ '

1

6

(
1 + α0

1α
0
2

)−1
α0

1α
0
2 Ė

(4)
GW . (4.77)

Thus, in total, we have

Ėg + Ėφ '
(
1 + α0

1α
0
2

)−1
(

1 +
1

6
α0

1α
0
2

)
Ė

(4)
GW

=
19

24
Ė

(4)
GW , (4.78)

which matches with our result in (4.72).

4.7 Constraints from Gravitational Wave Observa-
tions

In this section we compute the phase of the gravitational waveform in the frequency

domain and compare it with observations. We restrict ourselves to the leading post-

Newtonian contribution. We begin by deriving the frequency evolution of the gravi-

tational waves from the energy-balance law

dE

dt
= ĖGW , (4.79)
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which simply states that the rate of change of the binding energy of the binary E

is same as the luminosity ĖGW of the energy radiated by gravitational waves. For a

circular binary, the binding energy is same as the effective potential, which is given

in (4.24). However, since we are interested in calculating the leading post-Newtonian

effect, we can ignore the exponentially suppressed correction. We can further use the

Kepler’s law to rewrite the binding energy as

E = −1

2
µ(GNMtΩ)2/3 . (4.80)

Substituting (4.72) on the right hand side of (4.79), and (4.80) into its left hand side,

we find

ḟ (5,c) =
76

5
π8/3f 11/3G

5/3
N M

5/3
ch , (4.81)

where f = Ω/π is the gravitational waves frequency (this is manifest in (4.61)), and

Mch = (m1m2)3/5/(m1 + m2)1/5 denotes the chirp mass. On the other hand, the

frequency evolution in 4d GR is given by

ḟ (4) =
96

5
π8/3f 11/3G

5/3
N M

2/3
ch , (4.82)

which differs from the compactified 5d result in (4.81) by a numerical factor indepen-

dent of the size of the extra dimension.

We now compute the gravitational wave phase in the frequency domain. The

observed waveform is given by a linear combination of the + and × modes. In

stationary phase approximation, the phase of gravitational waveform as a function of
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the frequency f is [191,370]

Ψp(f) = 2πf t(f)− φp(f)− π

4
, (4.83)

where

t(f) = t0 +

∫ f

∞
df
dt

df
= t0 +

∫ f

∞
df

1

ḟ
, (4.84)

and

φp(f) =

∫
dt 2πf = φp,0 +

∫ f

∞
df

2πf

ḟ
. (4.85)

Further using (4.81) we obtain

Ψ(5,c)
p (f) =

9

304G
5/3
N u5

+ 2πft0 − φp,0 −
π

4
, (4.86)

where t0 and φp,0 are the time and phase at the coalescence respectively, and u ≡

(πMchf)1/3 is the effective relative velocity of the binary components. On the other

hand, the 4d GR result for the phase of the gravitational waves in the frequency

domain is [191,370]

Ψ(4)
p (f) =

3

128G
5/3
N u5

+ 2πft0 − φp,0 −
π

4
. (4.87)

Thus, we can rewrite (4.86) based on (4.87) as

Ψ(5,c)
p (f) =

3

128G
5/3
N u5

(1 + δφ̂) + 2πft0 − φp,0 −
π

4
, (4.88)
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with

δφ̂ ≡ 5

19
∼ 0.26 . (4.89)

We note that our results agree with those derived in the context of Einstein-Maxwell-

dilaton theory discussed in Ref. [110] (with α1 = α2 = −1/
√

3 and the electric

charges set to zero as discussed previously) to 0.3%. The difference arises due to a

series expansion in luminosity in Ref. [110] which assumes that the scalar energy flux

is small compared to the tensor energy flux. If one performs the calculation without

making such an approximation, the result in Ref. [110] matches with ours exactly.

Let us now compare the predictions of our model, with a compactified fifth di-

mension with actual gravitational wave observations. From (4.89), one sees that the

leading post-Newtonian term in (4.86) differs by 26% from that of (4.87), irrespec-

tive of the masses of the binary components. The LIGO/Virgo Collaborations used

the events detected from the first and second observing runs and have placed upper

bounds on |δφ̂| as ∼ 15% from single events and ∼ 10% from combined events [32].

Hence a discrepancy of 26% is inconsistent with the gravitational wave observations,

and thus we can rule out the simple compactified 5d GR model considered in this

chapter.

We can easily generalize our previous results and compute the phase of the gravita-

tional waves in an arbitrary number dimensions D, with four non-compact dimensions

and the rest compactified (periodic). Using the the gravitational wave luminosity in
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a D dimensional spacetime given in footnote 11, it is straightforward to derive δφ̂ as

δφ̂(D) =
5(D − 4)

7D − 16
. (4.90)

We plot δφ̂(D) as a function of D in Figure 1.6, and notice that δφ̂ increases with

D. This means that our model stays inconsistent with the LIGO/Virgo observations

even if we increase the number of compact extra dimensions.

We now comment on some caveat in the above bounds. We used the bounds

derived by the LIGO/Virgo Collaborations that assumed the correction to 4d GR in

the phase enters only at 0PN order. Such a correction partially degenerates with the

chirp mass that also enters first at 0PN order, though the mass also enters at higher

PN orders and thus the degeneracy can be partially broken. In reality, higher PN

corrections to 4d GR also enter in the waveform phase. This may change the amount

of correlation between the chirp mass and beyond-4d-GR effects and may weaken the

bound on the 0PN correction. In [25], the LIGO/Virgo Collaborations carried out

another analysis for GW150914 where they included phase corrections at various PN

orders in the search parameter set. This enhances the correlation significantly and

the bound on the 0PN correction now becomes |δφ̂| . 5. If we quote this bound,

we cannot rule out the compact extra dimension model considered here. Thus, to

make a robust statement on whether one can rule out the model with gravitational-

wave observations, one needs to compute corrections at higher PN orders and rederive

bounds on the extra dimension effect.



Chapter 4. Probing Compact Extra Dimensions with Gravitational Waves 111

Having said this, one can still rule out the model with binary pulsar observations

for the following reason. A standard method for testing GR with binary pulsars is

to determine the masses from at least three independent observables (such as post-

Keplerian parameters including the periastron precession, Shapiro delay and orbital

decay rate) assuming GR and check the consistency. The orbital decay rate Ṗ is

the only post-Keplerian parameter that depends on the gravitational-wave emission.

Thus, even for the compact extra dimension model considered here, one can safely

use the masses obtained from other post-Keplerian parameters under the 4d GR

assumption since the conservative corrections are exponentially suppressed. One can

then use the measurement of Ṗ to constrain the model without having to worry about

the degeneracy between the extra dimension effect and masses. Such Ṗ measurements

have been mapped to a bound on δφ̂ as |δφ̂| . 10−3 [371,372], which is much stronger

than the gravitational-wave bound. Thus, one can rule out the compact dimension

model with the binary pulsar observations12.

4.8 Conclusions

In this work we performed an analysis of gravitational waves sourced by a binary in a

D-dimensional spacetime with four non-compact dimensions and a set of compactified

extra dimensions. We worked under the assumptions that the two binary sources are

point-like and located on the same "brane" (i.e. at the same position in the compact
12A similar result was found in [373] though this reference effectively introduces matter after the

KK reduction and thus is different from the setup we study here.
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coordinates). For most part we took D = 5, but we have provided generalizations

to arbitrary D throughout the chapter. We worked within the framework of GR,

and in the limit of small extra dimensions. We computed the gravitational waves

sourced by the binary, the luminosity of the gravitational waves and the phase of the

gravitational waves, to leading order in the post-Newtonian expansion. We found

that the luminosity of gravitational waves emitted in 5d gravity by a binary with

the same characteristics (same masses and separation distance) as a 4d binary is

20.8% less relative to the 4d case, to leading post-Newtonian order. The phase of

the gravitational waveform differs by 26% relative to the 4d case, to leading post-

Newtonian order, while for general D, the fractional difference of the phase with that

of 4d GR is 5(D−4)
7D−16

, which only increases with an increase in D. While there are

exponential corrections which depend on the size of the extra dimensions, the leading

order estimates for the gravitational wave phase we gave here are independent of

size, and depend only on the number of extra dimensions. Based on a comparison

with gravitational-wave observations from the LIGO/Virgo Collaborations [32] and

binary pulsar observations from radio astronomy [371,372] we can rule out this class of

models for compact extra dimensions. The main source of discrepancy is the higher-

dimensional gravity coupling with matter, which, when seen from a 4d perspective,

means that matter will couple not only with the 4d metric, but with the dilaton as

well. This dilaton coupling (or scalar charge) is responsible for fifth force effects which

change the phase of the gravitational waves. Our results agree with those derived in
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the context of 4d Einstein-Maxwell-dilaton theory [108–110] provided that we set the

binary’s scalar charges equal to one another and equal to the Kaluza-Klein value.

The same fifth force effects are responsible for the difference between the 4d New-

ton’s constant GN and the 4d gravitational coupling G: GN = 2(D−3)
D−2

G, and for the

Shapiro time-delay discrepancy with 4d GR. In a parametrized post-Newtonian ex-

pansion (PPN) the 4d “physical" metric (which is obtained by performing a rescaling

of the 4d metric with the dilaton in such a way to eliminate the matter-dilaton cou-

pling [2] is written as g00 = −1 + 2U + . . . , gij = δij(1 + 2γ U + . . . ), with γ = 1 in 4d

GR. A measurement of the frequency shift of radio photons to and from the Cassini

spacecraft as they passed near the Sun gave γ = 1 + (2.1± 2.3)× 10−5 [209]. On the

other hand, the “physical metric" as read off from footnote 1 has g00 = −1 + 2
3
h̃T00

and gij = 1 + 1
3
h̃T00 + . . . , which amounts to γ ∼ 1/2. Therefore this class of

compactified extra dimensions models was ruled out based on Solar System measure-

ments [374,375].

In string theory the massless dilaton is one of the many moduli (zero mass scalars)

that arise in the compactification of the higher-dimensional spacetime. Stabilzation

of the moduli can be achieved, for example, by turning on fluxes for the Ramond-

Ramond potentials [376]. This gives rise to a mass term for the moduli, and eliminates

the large contribution of the scalar fifth force, by turning a Coulomb potential into a

Yukawa potential. It would be interesting to study gravitational waves in such a set-

up and place constraints on the various parameters. A somewhat simpler scenario is
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the Randall-Sundrum model, where the fifth dimension is large and warped. Our work

here is intended as a first step in understanding how to set up the problem of solving

for gravitational waves in a higher-dimensional space with compact dimensions, or

warped, large extra dimensions. For example, we saw that quadrupole formula need

not apply, and we had to use a direct integration of the Einstein equations. Also, when

it comes to the propagation of gravitational waves in spacetimes with warped, large

extra dimensions, reducing the problem to 4d seems less appropriate, and working in

the higher-dimensional space, as we did here, presents an advantage.



Chapter 5

Brans-Dicke Theory in Bondi-Sachs
Framework

5.1 Introduction

Compact binary mergers opened a new parameter space of general relativity to be

tested (the region of strong curvature and high GW luminosities) which was less well

probed by tests of general relativity in the Solar System or with binary pulsars. In

this parameter space, there are some types of relativistic phenomena that are only

likely to be measured for strongly curved and highly radiating systems. One such

class of effects that has yet to be detected, but are under active investigation (see,

e.g., [134,135,137,377,378]), are gravitational-wave memory effects 1.

The best known GW memory effect (sometimes referred to as the GW memory

effect) is characterized by lasting change in the GW strain after a burst of GWs pass

by a GW detector. One of the earliest explicit calculations of the GW memory ef-
1This chapter is based on the following paper: Brans-Dicke theory in Bondi-Sachs form: Asymp-

totically flat solutions, asymptotic symmetries, and gravitational-wave memory effects; Tahura,
Shammi; Nichols, David A.; Saffer, Alexander; Stein, Leo C.; Yagi, Kent; Phys. Rev. D 103,
104026 (2021)

115

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.104026
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.104026


Chapter 5. Brans-Dicke Theory in Bondi-Sachs Framework 116

fect from gravitational scattering was performed in Ref. [130] (see also [379, 380]),

though the possibility of a nonvanishing GW strain at late times was discussed pre-

viously (e.g., [381]). It was subsequently noted that massless (or nearly massless)

fields could also produce the GW memory effect [382, 383] including the nonlinear

effective stress-energy of gravitational waves themselves [131,132]. The GW memory

effect has a distinctive observational signature, in that it causes a constant, enduring

displacement between nearby freely falling observers after a burst of gravitational

waves have passed. A number of generalizations of the GW memory effect have

been found by considering asymptotic changes in burst of other fields (such as elec-

tromagnetism [384] or massless Yang-Mills theory [385]) or in time integrals of the

GW strain (e.g., [152, 156]). Other GW memories have been found from examining

other kinds of lasting kinematical effects on freely falling observers (like lasting rela-

tive velocities [386, 387], relative changes in proper time [155, 388], relative rotations

of parallel transported tetrads [388]) or through other types of measurement proce-

dures [389, 390]. Also important in the discovery of new GW memory effects was

the understanding of how certain GW memories are closely related to symmetries,

conserved quantities, and soft theorems (see, e.g., [391]).

For understanding the relationship between memory effects and the asymptotic

structure of spacetime, two approaches have been taken to study asymptotic flat-

ness: a covariant conformal completion of spacetime [392, 393] and calculations in

particular coordinate systems adapted to the spacetime geometry by Bondi, van der
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Burg, and Metzner [139] and Sachs [140] or Newman and Unti [394]. We will focus

on the Bondi-Sachs approach to asymptotic flatness. In this approach, coordinates

are chosen that are well suited to the null hypersurfaces and the null geodesics of the

spacetime. Boundary conditions can then be imposed on the metric to determine a

reasonable notion of a spacetime that becomes asymptotically Minkowskian as the

light rays travel an infinite distance from an isolated source. Although spacetime can

be cast in an asymptotically Minkowskian form at large Bondi radius r, the asymp-

totic symmetry group of this spacetime does not reduce to the Poincaré group of flat

spacetime; rather, it becomes the infinite-dimensional Bondi-Metzner-Sachs (BMS)

group [139,141].

The structure of the BMS group is in some ways similar to the Poincaré group:

it contains the Lorentz transformations, but rather than having an additional four

spacetime translations as the remaining group elements, it has an infinite-dimensional

commutative group called the supertranslations [141] (the usual Poincaré translations

are a normal finite subgroup of the supertranslations). It is possible to associate

charges conjugate to these asymptotic symmetries (see, e.g., [148–151]). These charges

are conserved in the sense that the difference in the charges between two times is

equal to the flux of the quantity between these two times. Associated with the

Lorentz symmetries are the six components of the relativistic angular momentum

[which can be divided into center-of-mass (CM) and spin parts] and corresponding

to the supertranslations are conserved quantities called supermomenta. Note that
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there also have been proposals to extend the Lorentz part of the symmetry algebra

to include all conformal Killing vectors on the 2-sphere called superrotations [142–

144] (see also [145]) or all smooth vector fields on the 2-sphere [146, 147] (sometimes

called super-Lorentz symmetries [395]). The additional charges of these extended

BMS algebras are the super CM and super spin charges [153] or the super-angular

momentum [152].

The connection between asymptotic symmetries, conserved quantities, and GW

memory can now be more clearly stated with the nomenclature now set. Changes

in the supermomentum charges, generated by both massive particles and massless

fields, induce a nonzero GW memory effect; in addition, when the GW memory effect

is present, the final state of the system is supertranslated from a certain canonical

asymptotic rest frame for the system (see, e.g., [153]). Changes in the super-angular

momentum charges can induce two additional types of GW memory effects called

spin [156] and CM [152] memory. These memory effects are not necessarily related to

a spacetime that has been superrotated or super-Lorentz transformed from a certain

canonical frame, since such solutions often are not asymptotically flat in the usual

sense [395,396].

While GW memory effects and their analogues for other matter fields have now

been much more carefully studied in a number of contexts, they have not been studied

as systematically in modified theories of gravity. Modified theories can have additional

GW polarizations [2, 87, 165], which could allow for additional types of GW memory
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effects (see, e.g., [179, 180, 397, 398]). In addition, as far as we are aware, there

is not a standard definition of asymptotic flatness in these theories, nor is the set of

asymptotic symmetries of these solution clearly understood. It is not obvious, a priori,

that modified theories of gravity generically have the same asymptotic properties as

in general relativity, or that their memory effects would be related to symmetries and

conserved quantities as in general relativity. A main aim of this chapter is to develop

a better understanding of these relationships in a relatively simple modification of

general relativity known as Brans-Dicke theory [166].

Brans-Dicke theory is one example of a scalar-tensor theory, i.e., a theory in

which there is a scalar field that couples to gravity nonminimally (see, e.g., the re-

view [36]). Scalar-tensor theories have appeared in the contexts of string theory,

inflation [21, 167], and the accelerated expansion of the Universe [168–170]. In our

work, we will focus on Brans-Dicke theory, with a massless scalar field. It is known

from calculations in linearized gravity and post-Newtonian (PN) theory, the scalar

field generates an additional polarization of gravitational waves sometimes called a

“breathing mode” [2, 399, 400] (it produces a transverse uniform expansion and con-

traction of a ring of freely falling test masses). It was also noted (from the 1.5PN

and 2PN calculations in [179,180]) that the GW memory effect differs in scalar-tensor

theory from in general relativity.2 It was also shown in [180] that the scalar, breathing
2Specifically, the energy radiated from the dipole moment of the scalar field gives rise to a formally

1.5PN-order effect in the tensor gravitational waveform that would appear at Newtonian order in
the waveform for nonspinning compact binaries, which are inspiraling because of the emission of
dipole radiation. This is analogous to how the energy radiated in gravitational waves gives rise to a
2.5PN-order effect that appears at Newtonian order in the waveform for nonspinning compact-binary
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polarization of the GWs does not have a nonlinear-type memory effect at 1.5PN order.

Finally, it was observed that there is a new type of nonhereditary, nonlinear term in

the tensor waveform arising from the scalar field that took on an analogous form to

the nonhereditary and nonoscillatory term found in [401] (and discussed in [164]),

which was shown to be related to the spin memory effect in [154]. Our calculations

in Brans-Dicke theory in Bondi-Sachs coordinates allow us to compute the memory

effects using the fully nonlinear field equations. This will provide us with the frame-

work to understand the presence (and absence) of the memory effects computed at

2PN order in [179] and 1.5PN order in [180] (though we leave the explicit calculations

for future work) and to determine the relevant radiative and nonradiative data needed

to compute these effects.

Scalar-tensor theories are frequently studied in two different conformal frames,

called the Jordan and Einstein frames, respectively. We find that the Einstein frame

is more convenient for determining the asymptotic boundary conditions on the scalar

field and metric, because the field equations have the same form as the Einstein-Klein-

Gordon equations for a massless scalar field. The statement of stress-energy conser-

vation is more complicated in the Einstein frame, however, because the stress-energy

tensor of all matter fields besides the scalar field is no longer divergence free, but equals

a nontrivial right-hand side involving gradients of the scalar field. Consequently, test

particles follow accelerated curves in the Einstein frame (with an acceleration related

sources in GR [163,164]. Because stationary black holes in Brans-Dicke theory do not support scalar
fields [218,220], the compact binary can have at most one black hole to have this new scalar-dipole-
sourced GW memory effect.
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to the gradients of the scalar field in this frame) rather than following the geodesics

of the Einstein-frame metric. In the Jordan frame, the modified Einstein equations

are more complicated than in the Einstein frame, but the stress-energy tensor of all

matter fields besides the scalar field is divergence free, and thus test particles follow

the geodesics of the Jordan-frame metric. It is therefore much simpler to compute the

response of a gravitational-wave detector to any impinging gravitational waves in the

Jordan frame. Flanagan [402] has argued that all classical physical predictions (such

as gravitational-wave memory effects) are conformal-frame invariants. This allows

us to compute the memory effects in the Jordan frame, in which the computation is

simpler, but to obtain a result that is independent of the choice of conformal frame

(after properly identifying any potentially different conventions between the frames,

as discussed further in [402]).

The rest of the chapter is organized as follows: In Sec. 5.2, we describe the con-

ditions we use to define asymptotic flatness in Brans-Dicke theory, by examining

the theory in both Einstein and Jordan frames [199]. This includes deriving the

field equations of the theory in Bondi-Sachs coordinates. In Sec. 5.3, we compute

the asymptotic symmetries that preserve our definition of asymptotic flatness in the

previous part. We describe how the functions in the metric must transform to main-

tain the Bondi gauge conditions and the asymptotically flat boundary conditions.

In Sec. 5.4, we describe how the memory effects can be measured through geodesic

deviation and how the changes in the charges related to (extended) BMS symmetries
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constrain the different GW memory effects in Brans-Dicke theory. We discuss our

results and some future directions in Sec. 5.5.

Throughout this chapter, we use units in which c = 1, and we use the conventions

for the metric and curvature tensors given in [185]. Greek indices (µ, ν, α, . . . ) rep-

resent four-dimensional spacetime indices, and uppercase Latin indices (A,B,C, . . . )

represent indices on the 2-sphere. Indices with a circumflex diacritic (e.g., α̂) repre-

sent those of an orthonormal tetrad.

While we were completing this work, there appeared a closely related pre-print [403]

investigating asymptotically flat solutions and GW memory effects in scalar-tensor

theories. Our work and that of [403] agree in the boundary conditions used to define

asymptotically flat solutions in Brans-Dicke theory and the leading-order symmetry

vectors that preserve these conditions and our gauge choices (though not subleading

corrections to extend these symmetries into the spacetime). Our works differ in the

choices of gauges, the classes of spacetimes in which we compute memory effects, and

the procedures by which we compute the scalar-type memory effect. We will comment

in more detail on the similarities and differences between our works at a few points

throughout the text.

5.2 Bondi-Sachs Framework

In this section, we impose the Bondi-Sachs coordinate conditions in Brans-Dicke

theory, and we solve the field equations in both the Einstein and the Jordan frames.

We begin with the Einstein frame, where it is easier to identify a set of asymptotic
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boundary conditions that can be imposed on the scalar field and on the metric that we

use to define an asymptotically flat solution in Brans-Dicke theory. We next perform

conformal transformation to the Jordan frame (in which the stress-energy tensor of

all other matter fields besides the scalar field is divergence free), and we find the

corresponding boundary conditions on the scalar field and metric. We then solve the

field equations of Brans-Dicke theory in this frame. Our notation and conventions

for the Bondi-Sachs framework will parallel the ones used in Ref. [404], which treats

general relativity.

5.2.1 Einstein frame

We begin by investigating the Brans-Dicke theory in the Einstein frame. The action

in the Einstein frame in the absence of additional matter fields is given by [369]

S =

∫
d4x
√
−g̃

[
R̃

16π
− 1

2
g̃ρσ
(
∇̃ρΦ

)(
∇̃σΦ

)]
, (5.1)

where g̃ is the metric in the Einstein frame, R̃ = R̃µ
µ is the Ricci scalar and Φ is a

real scalar field. We also use units where the gravitational constant in the Einstein

frame GE satisfies GE = 1. We use ∇̃µ to denote the covariant derivative compatible

with g̃µν . Varying the action with respect to the metric and the scalar field leads to

the following equations of motion for the theory:

Ẽµν ≡ R̃µν −
1

2
R̃g̃µν − 8πT̃ (Φ)

µν = 0 , (5.2a)

∇̃µ∇̃µΦ = 0 . (5.2b)
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The quantity T̃ (Φ)
µν is the stress-energy tensor for the scalar field, which is given by

T̃ (Φ)
µν = ∇̃µΦ∇̃νΦ− g̃µν

[
1

2
g̃ρσ∇̃ρΦ∇̃σΦ

]
. (5.2c)

The field equations, therefore, have the same form as in Einstein-Klein-Gordon the-

ory for a real scalar field Φ, so their solutions will also have the same form as in

Einstein-Klein-Gordon theory in general relativity. We will review the solutions of

these equations in Bondi coordinates next.

5.2.1.1 Bondi gauge and field equations

First, we introduce Bondi-Sachs coordinates x̃µ = (ũ, r̃, x̃A). The quantity ũ is the

retarded time, r̃ is an areal coordinate (and ~∂r̃ is a null vector field), and x̃A are

coordinates on the 2-sphere (with A = 1, 2) [139, 404]. The conditions that define

Bondi gauge are given by [139,404]

g̃r̃A = g̃r̃r̃ = 0, det [g̃AB] = r̃4q
(
x̃C
)
. (5.3)

The function q is the determinant of a metric on the 2-sphere, qAB(xC), which is

restricted to be independent of ũ and r̃. The Bondi gauge conditions fix four of the

ten functions in the metric, leaving six free functions. It is conventional to write these

six degrees of freedom as follows:

g̃µνdx̃
µdx̃ν = − Ṽ

r̃
e2β̃dũ2 − 2e2β̃dũdr̃ + r̃2h̃AB

(
dx̃A − ŨAdũ

)(
dx̃B − ŨBdũ

)
. (5.4)
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The functions Ṽ , β̃, ŨA and h̃AB here depend on all four Bondi coordinates x̃µ =

(ũ, r̃, x̃A).

The modified Einstein equations (5.2a) and the scalar-field equation (5.2b) satisfy

an interesting hierarchy in Bondi coordinates [139, 404], which we will now further

elaborate. The functions Ṽ , β̃, and ŨA satisfy the so-called “hypersurface equations.”

The equations were given this name because they do not involve derivatives with

respect to ũ, which in turn allows the functions Ṽ , β̃, and ŨA to be determined on

surfaces of constant ũ in terms of the 2-metric h̃AB, the scalar field Φ, and “functions

of integration” (i.e., functions of ũ and x̃A that will be constrained by ũũ and ũÃ

components of the modified Einstein equations). The concrete form of the hyper-

surface equations can be obtained from substituting the metric (5.4) into the field

equations in Eq. (5.2a), using the definition of the stress-energy tensor in Eq. (5.2c),

and considering the appropriate components of the modified Einstein equations. The

r̃r̃ component yields the equation

∂r̃β̃ −
r̃

16
h̃AC h̃BD∂r̃h̃AB∂r̃h̃CD = 2πr̃∂r̃Φ∂r̃Φ . (5.5a)

where h̃AB is the inverse of h̃AB. Once β̃ is determined in terms of h̃AB (and its

inverse), Φ, and their derivatives, then it is also possible to use the r̃A components of

the field equations to solve for ŨA in terms of the same quantities from the following
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equation:

∂r̃

[
r̃4e−2β̃h̃AB∂r̃Ũ

B
]
− 2r̃4∂r̃

(
1

r̃2
D̃Aβ̃

)
+ r̃2h̃BCD̃B∂r̃h̃AC − 16πr̃2∂r̃Φ∂AΦ = 0 .

(5.5b)

where D̃A is the covariant derivative compatible with the 2-metric h̃AB. Finally, from

the trace of the AB components of the field equations, it is then possible to solve for

Ṽ in terms of the same data:

2e−2β̃
(
∂r̃Ṽ

)
− R̃ − e−2β̃

r̃2
D̃A

[
∂r̃

(
r̃4ŨA

)]
+ 2h̃AB

[
D̃AD̃Bβ̃ −

(
D̃Aβ̃

)(
D̃Bβ̃

)]
+

1

2
r̃4e−4β̃h̃AB

(
∂r̃Ũ

A
)(

∂r̃Ũ
B
)
− 8πh̃AB∂AΦ∂BΦ = 0 .

(5.5c)

Here R̃ is the Ricci scalar of 2-metric h̃AB. The remaining two independent compo-

nents of the modified Einstein equations are called the evolution equations, and they

arise from the trace-free (with respect to hAB) part of ẼAB. It is convenient to write

this expression using a complex polarization dyad composed of m̃A = δAµm̃
µ (which

satisfies m̃µ∇̃µũ = 0) and ¯̃mA (the complex conjugate of m̃A). The evolution is given

by m̃Am̃BẼAB = 0, which can be written in terms of the metric functions as

m̃Am̃B

{
r̃∂r̃

[
r̃
(
∂ũh̃AB

)]
− 1

2
∂r̃

[
r̃Ṽ
(
∂r̃h̃AB

)]
+ h̃CAD̃B

[
∂r̃

(
r̃2ŨC

)]
−1

2
r̃4e−2β̃h̃AC h̃BD

(
∂r̃Ũ

C
)(

∂r̃Ũ
D
)

+
r̃2

2

(
∂r̃h̃AB

)(
D̃CŨ

C
)

+ r̃2ŨCD̃C

(
∂r̃h̃AB

)
− r̃2

(
∂r̃h̃AC

)
h̃BE

(
D̃CŨE − D̃EŨC

)
− 8πe2β̃∂AΦ∂BΦ− 2eβ̃D̃AD̃Be

β̃
}

= 0 .

(5.5d)
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We will discuss the evolution equations in more detail in Sec. 5.2.2 on the Jordan

frame.

In vacuum general relativity, once the metric functions β̃, ŨA and Ṽ are deter-

mined on a hypersurface of constant ũ, they can be used in the evolution equation for

the 2-metric h̃AB, to evolve hAB to the next hypersurface; the hypersurface equations

can then be solved again in an iterative process. In Brans-Dicke theory, however, one

must jointly evolve the evolution equation for h̃AB with the scalar field equation to

obtain the data h̃AB and Φ needed to solve the hypersurface equations. For conve-

nience, we give the scalar wave equation (5.2b) when written in terms of the Bondi

metric functions below:

2∂ũ∂r̃Φ + D̃A(ŨA∂r̃Φ) + ∂r̃(Ũ
AD̃AΦ)− 1

r̃

(
−2ŨAD̃AΦ− 2∂ũΦ + ∂r̃Ṽ ∂r̃Φ + Ṽ ∂r̃∂r̃Φ

)
− 1

r̃2

[
e2β̃h̃AB

(
2D̃Aβ̃D̃BΦ + D̃BD̃AΦ

)
+ Ṽ (∂r̃Φ)

]
= 0 .

(5.5e)

Aside from the additional complication that the scalar-wave equation and evolution

equation for h̃AB must be solved as a coupled system, the form and the hierarchy of

the modified Einstein and scalar field equations in the Einstein frame is similar to

that of the Einstein equations in vacuum general relativity.

5.2.1.2 Conditions for asymptotic flatness

We next study the asymptotic behavior of the metric and the scalar field at large

Bondi radius r. Because Ṽ , β̃, and ŨA are determined by h̃AB and Φ, we must posit
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boundary conditions on h̃AB and Φ; we can then deduce the remaining conditions on

the metric from the hypersurface equations (5.5a)–(5.5c) up to functions of integra-

tion. There are well-established definitions for asymptotic flatness for the Einstein

equations [139,140]. For the scalar field, we will assume that it satisfies the following

scaling as r̃ →∞:

Φ
(
ũ, r̃, x̃A

)
= Φ0 +

Φ1

(
ũ, x̃A

)
r̃

+O(r̃−2) , (5.6)

where Φ0 is a constant.3

In GR, the action for a massless scalar field (and hence the stress-energy tensor

and equations of motion) is independent of the value of Φ0 in Eq. (5.6). Thus, there

is no loss of generality by requiring that the constant value of the scalar field is zero.

The boundary condition on the massless scalar field as r goes to infinity can then

be given by “Sommerfeld’s radiation condition”: limr→∞ rΦ is finite. In Brans-Dicke

theory, the constant value of the scalar field is related to the asymptotic value of

Newton’s constant G. Setting Φ0 to zero, therefore, does have a physical effect in

Brans-Dicke theory (note, however, that the precise value of the constant does not

affect the stress-energy tensor for the scalar field, nor does it affect the equation of

motion for the scalar field in vacuum). We thus require a nonzero Φ0 in Eq. (5.6), and

we do not employ Sommerfeld’s radiation condition to write the limit of the scalar

field as r goes to infinity.
3With the expansion of h̃AB in Eq. (5.7) and with a polynomial expansion of β̃, ŨA and Ṽ in r̃−1

consistent with Eq. (5.8), one can prove from the r̃−1 piece of Eq. (5.5e) that Φ0 is independent of
ũ; from the r̃−2 piece of Eq. (5.5e), one can show that Φ0 is independent of x̃A.
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Similarly, we adopt the same expansion of the 2-metric h̃AB as r̃ →∞ as in GR:

h̃AB = qAB(x̃C) +
c̃AB(ũ, x̃C)

r̃
+O(r̃−2) . (5.7)

The determinant condition of Bondi gauge requires that qAB c̃AB = 0. It is then

convenient to define a covariant derivative operator compatible with qAB, which will

be denoted by ðA. In addition, it is also helpful to raise (or lower) capital Latin

indices on 2-spheres of constant ũ and r̃ with the 2-metric qAB (or qAB).

Next, we assume the functions β̃, ŨA, Ṽ and h̃AB have the following limits as r̃

approaches infinity:4

lim
r̃→∞

β̃ = lim
r̃→∞

ŨA = 0, lim
r̃→∞

Ṽ

r̃
= 1, lim

r̃→∞
h̃AB = qAB . (5.8)

The metric thus reduces to Minkowski spacetime in inertial Bondi coordinates in this

limit. Hou and Zhu independently proposed similar conditions in [403]. Imposing

these conditions and radially integrating the hypersurface equations in Eqs. (5.5a)–

(5.5c) further, we then arrive at the solutions5

β̃ = − 1

32r̃2
c̃AB c̃AB −

1

r̃2
πΦ2

1 +O(r̃−3) , (5.9a)

4We assume that it is possible to impose these conditions at all retarded times u. Given the
structure of the Bondi-Sachs equations as described in Sec. 5.2.1.1, these conditions can be imposed
on an initial hypersurface u = const., but they will not necessarily be preserved under evolution
to future hypersurfaces. It is possible to construct coordinate transformations that reimpose the
conditions Eq. (5.8) after evolution (see, e.g., [405,406] for more details).

5Note that in the expression for UA in Eq. (5.9b), the remainder contains a term of order r̃−3 log r̃.
The coefficient of the term that scales as r̃−3 log r̃ is proportional to ðBD̃AB , where we have denoted
the r̃−2 the part of h̃AB that is trace-free with respect to the metric qAB by D̃AB . The order 1/r̃ part
of the Einstein equation (5.5d) imposes that D̃AB satisfies ∂ũD̃AB = 0 (i.e., that it is nondynamical,
as the analogous quantity in general relativity is). This will not be true of the analogous function
in the Jordan frame, as we discuss in Sec. 5.2.2.
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ŨA = − 1

2r̃2
ðB c̃AB +O(r̃−3 log r̃) , (5.9b)

Ṽ = r̃ − 2M̃ +O(r̃−1) . (5.9c)

The function M̃(ũ, x̃A) is called the Bondi mass aspect and is one of the functions of

integration that arises from integrating the hypersurface equations.

5.2.2 Jordan frame

Having determined the asymptotic fall-off conditions in the Einstein frame, we now

consider the asymptotic properties of the solutions in the Jordan frame, in which it

is more straightforward to understand the response of a detector to the gravitational

waves emitted from an isolated system (because test particles follow geodesics of the

Jordan-frame metric). A solution in the Jordan frame can be found from one in the

Einstein frame by performing a conformal transformation [407]

gµν =
1

λ
g̃µν , (5.10)

where

λ = exp (Φ/W) , W ≡
√

2ωBD + 3

16π
. (5.11)

The scalar field is called λ in this frame, and ωBD is the Brans-Dicke parameter. In

the limits in which ωBD → ∞ and λ becomes nondynamical, general relativity is

recovered. The Brans-Dicke action in the Jordan frame is given by [166]

S =

∫
d4x
√
−g
[
λ

16π
R− ωBD

16π
gµν

(∂µλ) (∂νλ)

λ

]
, (5.12)
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where R is the Ricci scalar of the Jordan-frame metric gµν . The field equations are

given by

Gµν =
1

λ

(
8πT (λ)

µν +∇µ∇νλ− gµν2λ
)
, (5.13a)

2λ = 0 , (5.13b)

where Gµν is the Einstein tensor, 2 = gµν∇µ∇ν is the covariant wave operator, and

T (λ)
µν =

ωBD

8πλ

(
∇µλ∇νλ−

1

2
gµν∇αλ∇αλ

)
. (5.13c)

is the stress-energy tensor of the scalar field. It is also convenient to define a tensor

Eµν by

Eµν ≡ Gµν −
1

λ

(
8πT (λ)

µν +∇µ∇νλ− gµν2λ
)
, (5.14)

which vanishes when the equations of motion are satisfied.

5.2.2.1 Bondi gauge and asymptotic boundary conditions

We would now like to compute a metric in Bondi-Sachs coordinates in the Jordan

frame that is consistent with our definition of asymptotic flatness in the Einstein

frame. The transformation in Eq. (5.11) implies that λ admits an expansion in 1/r̃,

in which the leading-order term is constant: i.e.,

λ(ũ, r̃, x̃A) = exp

(
Φ0

W

)(
1 +

Φ1

W
1

r̃

)
+O(r̃−2) , (5.15)

The conformal transformation of the metric in Eq. (5.10) preserves the Bondi gauge

conditions grr = grA = 0, but the determinant condition becomes det[gAB] = r̃4λ−2q(xC).
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Consequently, the final condition of Bondi gauge will not be satisfied in general (i.e.,

r̃ is not an areal radius in the Jordan frame). It is possible to work in a set of coor-

dinates that do not impose the determinant condition in Bondi gauge (as was done

in [403]); however, when λ is positive (as it is expected to be far from an isolated

source, since λ is related to the gravitational constant [2]), it is also possible to rede-

fine the radial coordinate so as to make it an areal coordinate. The transformation

that effects this change is

u =
ũ√
λ0

, r = r̃λ−1/2 , xA = x̃A , (5.16)

where we have introduced the notation λ0 = exp(Φ0/W). The retarded time ũ is

rescaled by λ0 so that the metric coefficient −gur becomes one as r → ∞. In the

coordinates (u, r, xA), the metric takes the Bondi form,

gµνdx
µdxν =− V

r
e2βdu2 − 2e2βdudr + r2hAB

(
dxA − UAdu

) (
dxB − UBdu

)
, (5.17)

where V , β, UA and hAB are functions of coordinates xµ = (u, r, xA). The metric

satisfies all the Bondi gauge conditions

grA = grr = 0 , det [gAB] = r4q
(
xC
)
. (5.18)

By performing the conformal and coordinate transformation on the solutions of the

field equations in the Einstein frame [Eqs. (5.9a)–(5.9c)], we find that the functions
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β, UA, and V should have the following forms:

β =− 1

2r

Φ1

W
√
λ0

+O
(
r−2
)
, (5.19a)

UA =− 1

2
√
λ0r2

(
ðBcAB − ðAΦ1

)
+O

(
r−3 log r

)
, (5.19b)

V =

(
1 +

∂uΦ1

W

)
r +O

(
r0
)
. (5.19c)

Interestingly, in the limit as r goes to infinity, V/r goes as 1+∂uΦ1/W (i.e., when Φ1 is

dynamical, the leading-order Minkowski part of the metric is expressed in noninertial

coordinates when the Bondi gauge conditions are imposed). This occurs because the

component of the Ricci tensor, Ruu, scales as 1/r when ∂uΦ1 in nonvanishing, as

we discuss in more detail below and in Sec. 5.4. In addition, β scales as O (r−1)

instead of O (r−2), as in the Einstein frame (or in general relativity). Based on these

considerations, we expect that the metric functions will have the following scaling

with r in the Jordan frame:

β = O
(
r−1
)
, V = O (r) , UA = O

(
r−2
)
. (5.20)

We explicitly verify this by solving the field equations in the next part.

5.2.2.2 Asymptotically flat solutions

The Bondi-Sachs field equations for Brans-Dicke theory in the Jordan frame have a

similar hierarchy as in the Einstein frame. The trace-free part of hAB satisfies an

evolution equation, and the scalar field satisfies the curved-space wave equation (also

an evolution equation). The remaining metric functions β, UA, and V can be solved
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from hypersurface equations on surfaces of constant u in terms of hAB, λ, and func-

tions of integration known as the Bondi mass aspect and angular momentum aspect.

The mass and angular momentum aspects satisfy the conservation equations. The

full expressions for these equations are rather lengthy, though we give the expressions

for the scalar wave equation and the hypersurface equations in Appendix J. Thus, we

will focus on determining the metric functions and the evolution equations satisfied

by these functions when these quantities are expanded in a series in 1/r.

As in the Einstein frame, it is necessary to assume an expansion of the 2-metric

hAB and the scalar field λ as series in 1/r, and the expansions of the remaining

quantities will follow from the field equations and boundary conditions in Eq. (5.20).

For the scalar field, we have

λ(u, r, xA) = λ0 +
λ1

(
u, xA

)
r

+
λ2

(
u, xA

)
r2

+
λ3

(
u, xA

)
r3

+O(r−4) , (5.21)

The constant λ0 is related to the gravitational constant6, and λ1 is the leading-order

non-constant part of the scalar field, which is closely connected to the additional

polarization of the gravitational waves in Brans-Dicke theory. That λ in Eq. (5.21)

has a similar expansion in 1/r as Φ in Eq. (5.6) follows from the relation between λ

and Φ in Eq. (5.11).
6The relation between the gravitational constant and the scalar field in Brans-Dicke theory is

given by G(λ) = 4+2ωBD
3+2ωBD

1
λ . If one assumes the experimentally measured value of G at infinity to be

1, λ0 can be written in terms of the Brans-Dicke parameter ωBD as λ0 = 3+2ωBD
4+2ωBD

.
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For the two-metric, we take the expansion to be

hAB = qAB(xC) +
cAB(u, xC)

r
+
dAB(u, xC)

r2
+
eAB(u, xC)

r3
+O

(
r−4
)
. (5.22a)

The determinant condition in Bondi gauge fixes the part of dAB and eAB that is

proportional to qAB. Thus, we write them as

dAB = DAB +
1

4
cFGc

FGqAB , (5.22b)

eAB = EAB +
1

2
cFGD

FGqAB , (5.22c)

where cAB, DAB, and EAB are trace-free with respect to qAB. The tensor cAB(u, xA)

is closely related to the shear of outgoing null geodesics at large r, and is thus also

related to the gravitational waves.

We now substitute the expansion of λ and hAB in Eqs. (5.21) and (5.22a) into

the field equations, solve order by order in r−1, and compute the metric functions

and their corresponding evolution equations. We begin with the curved-space, scalar

wave equation in Eq. (5.13b). The explicit forms, in Bondi coordinates, of Eq. (5.13b)

and the hypersurface equations in Eq. (5.13a) are given in Appendix J. We find

that the assumption of λ0 = constant is consistent with these field equations; at

O(r−2), the wave equation reduces to the expression ∂r(∂uλ1) = 0, which implies that

∂uλ1 = N(λ)(u, x
A) is an arbitrary function. An analogous equation arises for the

evolution of the tensor cAB, which leads to ∂ucAB being unconstrained (and equal

to an arbitrary symmetric, trace-free tensor that gets called the Bondi news tensor,

which is defined below). To obtain higher-order terms in the wave equation, we need
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to first solve for some functions in the Bondi metric.

Next, integrating the rr, rA, and the trace of the AB components of the modified

Einstein equations presented in Appendix J, we find

β =− λ1

2λ0r
− 1

r2

[
1

32
cABcAB +

ωBD − 1

8λ2
0

λ2
1 +

3λ2

4λ0

)
+O

(
r−3
)
, (5.23a)

UA =− 1

2r2

(
ðF cAF −

ðAλ1

λ0

)
+

1

3r3

[
cADðF cDF −

1

λ0

cADðDλ1 +
λ1

λ0

ðBcAB

− λ1

λ2
0

ðAλ1 + UA (1 + 3 log r) + 6LA

]
+O

(
r−4
)
, (5.23b)

V =

(
1 +

∂uλ1

λ0

)
r − 2M +O

(
r−1
)
, (5.23c)

respectively. HereM(u, xA) is a function of integration. While an analogous quantity

is defined to be the Bondi mass aspect in the Einstein frame or in GR, here we find

it convenient to define a slightly different quantity to be the mass aspect (which is

defined shortly below). The second function of integration, the angular-momentum

aspect LA, can be obtained from the expression

LA(u, xA) = −1

6
lim
r→∞

(
r4e−2βhAB∂rU

B − rðBcAB + r
ðAλ1

λ0

+ 3UA log r

)
. (5.24)

The integration procedure allows for a term proportional to log r/r3 in UA. The term

UA is given by

UA = −2

3
ðB
(
DAB +

1

2λ0

λ1cAB

)
. (5.25)

We will only consider solutions with UA = 0 for reasons which we discuss below

Eq. (5.30).
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We can now return to the scalar wave equation to solve for the higher-order terms.

The O(r−3) and O(r−4) parts of the scalar wave equation determine that λ2 and λ3

evolve via the equations

∂uλ2 =− 1

2
Ð2λ1 , (5.26a)

∂uλ3 =− 1

2λ0

∂u(λ1λ2) +
1

2
Mλ1 −

1

4
(Ð2 + 2)λ2 +

1

2
ðBcABðAλ1

− 1

8λ0

λ1Ð2λ1 +
1

4
cABðAðBλ1 +

1

8
λ1ðAðBcAB . (5.26b)

To simplify the notation slightly, we have introduced the quantity Ð2 = ðAðA to

denote the Laplacian on the 2-sphere.

The evolution equations for hAB come from the trace-free part of the AB compo-

nents of the field equations

EAB −
1

2
gABg

CDECD = 0 . (5.27)

Because we have already imposed the field equation hCDECD = 0 to determine V ,

the term proportional to gAB in Eq. (5.27) does not contribute. As a practical com-

putational matter, it can be more convenient to contract Eq. (5.27) into a com-

plex polarization dyad mA = δAµm
µ (and its complex conjugate) where mµ satisfies

mµ∇µu = 0 [404,408,409] (a similar procedure was performed in the Einstein frame).

Then the two degrees of freedom in the evolution equation can be recast in terms of

a single complex equation

mAmBEAB = 0 . (5.28)
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The O(r0) part of Eq. (5.28) reduces to the equation proportional to ∂r(∂ucAB) = 0.

This implies that

∂ucAB = NAB , (5.29)

where NAB is an arbitrary symmetric trace-free tensor, called the news tensor. In

GR, spacetimes with a vanishing news tensor contain no gravitational waves [148].

The O(r−1) terms of Eq. (5.28) lead to the equation

∂u

(
DAB +

1

2λ0

λ1cAB

)
= 0 . (5.30)

By taking ∂u of Eq. (5.25) and ðA of Eq. (5.30), then one can see that one must

have ∂uUA = 0. Thus the choice UA = 0 made above will not affect the dynamics

of DAB, but it does impose a constraint on the allowed initial data for the quantity

DAB+λ1cAB/(2λ0). The O (r−2) part of Eq. (5.28) is a significantly more complicated

expression, which we give below:

∂uEAB = −1

2
DAB +

1

2
cABM− ð(BLA) +

1

2
qABðCLC +

1

4
cABc

CDNCD

+
1

32

(
ðAðB −

1

2
qABÐ2

)
(cEDcED) +

1

8
εC(AcB)

C(εDEðEðF cDF )

+
1

6

[
ð(B

(
cCA)ðDcCD

)
− 1

2
qABðE

(
cCEðDcCD

)]
− 1

12λ2
0

(3ωBD + 7)

(
ðAλ1ðBλ1 −

1

2
qABðCλ1ðCλ1

)
− 1

2λ0

λ2NAB

+
1

12λ2
0

(3ωBD + 2)λ1

(
ðBðA −

1

2
qABÐ2

)
λ1 −

1

3λ0

λ1cAB

+
1

12λ0

cABÐ2λ1 +
3λ2

1

8λ2
0

NAB +
1

4λ0

(
ðBðA −

1

2
qABÐ2

)
λ2

− 1

6λ0

(
ðCλ1ð(BcA)C −

1

2
qABðCcCDðDλ1

)
+

1

12λ0

ðCλ1ðCcAB
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+
1

24λ0

λ1Ð2cAB −
1

4λ2
0

(4λ0DAB − λ1cAB) ∂uλ1 . (5.31)

We use this expression to understand the properties of the angular momentum aspect

LA in nonradiative regions of spacetime in Sec. 5.4.

To complete our treatment of the field equations, we must consider the conserva-

tion equations in Euu and EuA. These equations result in conservation equations for

the mass and angular-momentum aspects. The equation for the mass aspect comes

from the O(r−2) part of Euu, and it is given by

∂uM = −1

8
NABN

AB +
1

4
ðAðBNAB − (3 + 2ωBD)

1

4λ2
0

(∂uλ1)2 +
1

4λ0

∂uÐ2λ1 ,

(5.32a)

where we have defined

M
(
u, xA

)
= M

(
u, xA

)
− 1

4λ2
0

λ1∂uλ1 , (5.32b)

to be the Bondi mass aspect in the Jordan frame. With this definition ofM the av-

erage of the right-hand side of Eq. (5.32a) over the 2-sphere is a non-positive number:

i.e., the average value of M is a strictly decreasing quantity. This makes M more

closely analogous to the Bondi mass aspect in general relativity, in which the average

value of mass aspect gives rise to the well known Bondi mass-loss formula [139]. Note

that M would not necessarily satisfy this property, because λ1∂uλ1 = ∂u(λ
2
1/2) is not

necessarily a decreasing quantity. The calculations of symplectic fluxes and charges

in Sec. 5.4 would suggest one might also include the Ð2λ1 term in the definition of
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the mass aspect, though we do not do that above.

Finally, from the O(r−2) part of EuA, the angular momentum aspect satisfies a

conservation equation of the form

−3∂uLA = ðAM−
1

4
ðE
(
ðEðF cAF − ðAðF cEF

)
+

1

16
ðA
(
cEFN

EF
)
− 1

2
ðC
(
cCFNAF

)
+

1

4
cEF (ðANEF ) +

1

8λ0

ðAÐ2λ1 −
1

4λ2
0

(2 + 3ωBD)ðAλ1∂uλ1

+
λ1

4λ2
0

(4 + ωBD)ðA∂uλ1 +
1

4λ0

∂u
(
cABðBλ1 − λ1ðBcAB

)
. (5.33)

To summarize, the structure of the Einstein equations is very much like the Bondi-

Sachs formalism for general relativity [404] (though with an additional massless field).

There are unconstrained functions NAB = ∂ucAB and N(λ) = ∂uλ1 that determine the

evolution of the different functions in the expansion of the metric and scalar field.

Then initial data must be given for λ1, λ2, λ3, M, LA, cAB, and EAB. Initial data

also must be given for DAB, but because we did not allow log terms in our expansion,

this initial data is not independent of that of λ1 and cAB. Our field equations have

a slightly different form than those given in [403], because of the different gauge

conditions that we use (note also that [403] did not compute the evolution equations

for EAB or λ3).

5.3 Asymptotic Symmetries

We now turn to computing the infinitesimal vector fields ~ξ that preserve the Bondi

gauge conditions and the asymptotic form of the metric and the scalar field in Brans-
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Dicke theory. Our treatment parallels that given in [143] for general relativity. The

scalar field is Lie dragged along the generators of these asymptotic symmetries ~ξ, so

it transforms as λ → λ + Lξλ (where we use Lξ to denote the Lie derivative along

~ξ). To preserve the Bondi gauge conditions, the following components of the metric

must be left invariant when the metric is Lie dragged along ~ξ:

Lξgrr = 0, LξgrA = 0, gABLξgAB = 0 . (5.34)

The four differential equations in Eq. (5.34) constrain the four components of ~ξ.

Because these conditions rely only upon Bondi gauge and not the underlying theory,

we can expand the solution in Eq. (4.7) of [143] using our solutions for β, UA, and

hAB in the Jordan frame of Brans-Dicke theory, which were computed in the Sec. 5.2.

The results are that

ξu = f
(
u, xA

)
, (5.35a)

ξr =− 1

2
rðAY A +

1

2
ðAðAf −

1

4r

(
cABðBðAf

+ 2ðAfðBcAB +
λ1

λ0

Ð2f

)
+O

(
r−2
)
, (5.35b)

ξA = Y A
(
u, xA

)
− 1

r
ðAf +

1

2r2

(
cABðBf +

1

λ0

λ1ðAf
)

+
1

r3

[
1

3
DABðBf −

1

16
cBCcBCðAf −

λ1

3λ0

cABðBf

+
λ2

2λ0

ðAf +
λ2

1

12λ2
0

(ωBD − 3)ðAf
]

+O
(
r−4
)
. (5.35c)

The functions of integration f(u, xA) and Y A(u, xA) come from radially integrating

Eq. (5.34).
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To maintain the asymptotic fall-off conditions that we have determined, we require

that the remaining metric components transform as follows:

Lξgur = O(r−1) , LξguA = O(r0) ,

LξgAB = O(r) , Lξguu = O(r0) . (5.36)

Note that in GR Lξguu = O(r−1); however, because in Brans-Dicke theory in the

Jordan frame guu is given by guu = −1 + ∂uλ1/λ0 +O(r−1), we allow a change in guu

at O(r0) (which occurs from the change in ∂uλ1). To express the conditions that we

use to constrain ~ξ and the change in the metric coefficients, it is convenient to expand

Lξgµν in a series in r as

Lξgµν =
∑
n

rnl(n)
µν , (5.37)

where n can be an integer, and the coefficients l(n)
µν in the expansion are functions of

u and xA. Then one can show from l
(2)
uA = 0 that Y A is independent of u, and from

l
(2)
AB = 0 that it is a conformal Killing vector on a 2-sphere: i.e.,

ðAYB + ðBYA = ψqAB , (5.38)

where ψ = ðAY A. The coefficient l(0)
ur = 0 restricts f to be given by

f =
1

2
uψ + α

(
xA
)
. (5.39)

The functions f and Y A have the same form as in general relativity. Thus, the

different fall-off conditions of components of the the metric in Brans-Dicke theory
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do not alter the symmetries of the spacetime. The interpretation of Y A and α will,

therefore, be the same as in GR: the globally defined Y A span a six-parameter algebra

isomorphic to the proper, isochronous Lorentz algebra (and the locally defined Y A

will be the infinite-dimensional group of super-rotation symmetries [142]) and α span

the infinite-dimensional commutative algebra of supertranslations [139, 141]. How

the asymptotic Killing vectors ~ξ are extended into the interior of the spacetime from

future null infinity is different in GR from in Brans-Dicke theory in the Jordan frame.

This will lead to the functions in the metric transforming differently between the two

theories.

Before we compute the transformation of the metric functions, it is necessary to

determine how the functions λ1 and λ2 in the expansion of the scalar field transform

as they are Lie dragged along ~ξ. We denote this transformation as δξλ1 and δξλ2 and

they can be computed from the O(r−1) and O(r−2) of Lξλ, respectively. The result

is

δξλ1 =
1

2
λ1ψ + Y AðAλ1 + f∂uλ1 , (5.40)

δξλ2 = λ2ψ −
1

2
λ1Ð2f − ðCfðCλ1 + Y DðDλ2 + f∂uλ2 . (5.41)

Next, we can compute how the functions cAB, DAB,M, and LA transform when Lie

dragged along ~ξ given in Eq. (5.35). We denote these quantities δξcAB and similarly

for the other three functions. The term δξcAB can be obtained directly from the

appropriate coefficients and components of l(n)
µν , but other terms require also removing
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the transformation of combinations of δξλ1 and δξcAB that appear at the same order

in the metric. The expressions used to compute these quantities are given below:

δξcAB = l
(1)
AB (5.42a)

δξM =
1

2
l(−1)
uu −

1

2

[
δξλ1

λ0

+
3

2λ2
0

δξ (λ1∂uλ1)

]
(5.42b)

δξDAB = l
(0)
AB −

1

4
qABδξ

(
cCDcCD

)
(5.42c)

δξLA =− 1

2
l
(−1)
uA +

1

12
δξ
(
cABðCcBC

)
− 1

6λ0

δξ
(
λ1ðBcBA

)
+

1

6λ2
0

δξ (λ1ðAλ1)− 1

12λ0

δξ
(
cABðBλ1

)
(5.42d)

Thus, we can compute δξM and δξcAB from the relevant l(n)
µν and δξλ1 to be

δξcAB = LY cAB + fNAB −
1

2
ψcAB − 2ðAðBf + qABÐ2f , (5.43a)

δξM = f∂uM+
3

2
Mψ + Y AðAM+

1

8
cABðAðBψ +

1

2
ðAfðBNAB +

1

4
NABðAðBf

+
1

4λ0

ðAψðAλ1 +
1

4λ0

Ð2f∂uλ1 +
1

2λ0

ðAfðA∂uλ1 −
λ1ψ

4λ0

. (5.43b)

Then with the expression for δξcAB, it is possible to compute the remaining two terms

for δξDAB and δξLA. They are given by

δξDAB = LYDAB +
λ1

λ0

(
ðAðB −

1

2
qABÐ2

)
f − 1

2λ0

f∂u (λ1cAB) , (5.43c)

for δξDAB and

δξLA = f∂uLA + LYLA + LAψ +
1

96
cCDcCDðAψ +

1

6
DABðBψ −MðAf

−1

8
ðA
(
cBCðBðCf

)
+

1

4

(
ðDðCcAD − ðAðBcBC

)
ðCf − 1

6
cABðBf
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+
1

6
cBCNABðCf −

1

12λ2
0

[
cABλ0ðBf + λ1 (ωBD + 4) ðAf

]
∂uλ1

− 1

12λ0

(2λ1 + 3∂uλ2)ðAf −
5

24λ0

ðA
(
λ1ðCðCf

)
+

λ1

12λ0

NABðBf

+
1

12

(
ðCðCfðBcAB − cABðBðCðCf

)
− 1

6
ðBðAfðCcBC −

5

48
cBCNBCðAf

+
1

24λ2
0

[
6λ0λ2 + (ωBD − 1)λ2

1

]
ðAψ −

1

12λ0

(
ðBðAfðBλ1 + 3ðBðAλ1ðBf

)
,

(5.43d)

for δξLA. In deriving the expression for δξM, we used the properties Ð2ψ = −2ψ and

Ð2Y A = −Y A. To derive δξLA, we also used the identities in [143]

2cC(AðB)ðCf − qABcCDðCðDf − cABÐ2f = 0 , (5.44a)

2ðCcC(AðB)f + 2ð(AcB)CðCf − 2ðCcABðCf − 2qABðCfðDcCD = 0 . (5.44b)

The expressions in Eq. (5.43) will be useful for understanding the properties of metric

in nonradiative regions, which we discuss in Sec. 5.4 soon hereafter. The GR limit of

our expressions agrees with the equivalent results in [144] after taking into account

differences in conventions. Our results are similar to those in [403], but not identical,

because of the different gauge conditions that we use.

Before concluding this part, we note that because the scalar field appears in the

metric, we can check whether the transformation of the metric is consistent with

requiring that the scalar field is Lie dragged along ~ξ. We can obtain δξλ1 from

2λ0l
(−1)
ur , and we find that it agrees with Eq. (5.40). We can also obtain δξ (∂uλ1)

from −λ0l
(0)
uu and we find that it is equivalent to ∂u(δξλ1), as it should be.
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We can also explicitly compute the quantities δξ(cABcAB) and δξ(ðBcAB) from Lie

dragging the metric. The relevant expressions for computing this are

δξ
(
cABcAB

)
= 16l(−2)

ur +
4

λ2
0

(3− ωBD) δξ(λ1)2 − 24

λ0

δξλ2 (5.45a)

δξ
(
ðBcAB

)
= 2l

(0)
uA +

1

λ0

δξ (ðAλ1) (5.45b)

Not surprisingly, we find that

δξ
(
cABcAB

)
= δξc

ABcAB + cABδξcAB , (5.46a)

δξ
(
ðBcAB

)
= ðB (δξcAB) , (5.46b)

as the latter relation was proven in GR in [143]. For completeness, we give the

expressions for these terms here

δξ
(
cABcAB

)
= 2fNABc

AB + cABc
ABψ + 2cBCY AðAcBC − 4cABðAðBf , (5.47a)

δξ
(
ðBcAB

)
=− ðA(Ð2 + 2)f − 1

2
cABðBψ +

1

2
ψðBcAB + LY ðCcAC + ðB (fNAB) .

(5.47b)

It does not seem possible to verify these types of relationships with all of the terms

that appear in Eq. (5.42). Thus, for example, for the term δξ
(
cABðCcBC

)
, we assumed

it can be written as the sum of δξcABðCcBC and cABδξðCcBC .

5.4 Gravitational-wave Memory Effects

Gravitational-wave (GW) memory effects are commonly defined for bursts of gravita-

tional waves of finite duration between two nonradiative regions before and after the
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burst; they are also defined for sources of gravitational waves that become asymptot-

ically nonradiative in the limits as u → ±∞ at large Bondi radius r. In either case,

discussing GW memory effects requires a notion of a nonradiative region of spacetime.

In this section, we first describe the properties of nonradiative regions in Brans-Dicke

theory, we then discuss the measurement of GW memory effects through geodesic

deviation, and we finally discuss how the conservation equations constrain the GW

memory effects (thereby allowing them to be computed approximately).

5.4.1 Nonradiative and stationary regions

Nonradiative regions For general relativity, it is typical to consider regions of

vanishing Bondi news NAB, and vanishing stress-energy tensor. In the context of

Brans-Dicke theory, we will instead consider regions where NAB = 0, ∂uλ1 = 0,

and any other stress-energy from matter fields vanishes. These two equations imply

that λ1 and cAB must be independent of u. Integrating Eqs. (5.26), (5.25), (5.32a)

and (5.33), we can then show that λ2, DAB,M, LA, and λ3 are given by

λ1 = λ
(0)
1 (xA) , (5.48a)

cAB = c
(0)
AB(xC) , (5.48b)

λ2 =− u

2
Ð2λ

(0)
1 + λ

(0)
2 (xB) , (5.48c)

DAB =− 1

2λ0

λ
(0)
1 c

(0)
AB , (5.48d)

M =M(0)(xA) , (5.48e)

LA =− u

3
ðAM(0) − u

24λ0

ðAÐ2λ
(0)
1 +

u

12
ðD(ðDðBc(0)

AB
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− ðAðBc(0)
DB) + L

(0)
A (xE) , (5.48f)

λ3 =
u2

16λ0

(Ð2 + 2)Ð2λ
(0)
1 +

u

2

[
− 1

2
(Ð2 + 2)λ

(0)
2

+M(0)λ
(0)
1 +

1

4λ0

λ
(0)
1 Ð2λ

(0)
1 +

1

2
cAB(0) ðAðBλ

(0)
1

+
1

4
λ

(0)
1 ðAðBcAB(0) + ðBcAB(0) ðAλ

(0)
1

]
+ λ

(0)
3 (xC) . (5.48g)

In a nonradiative region, EAB has the form

EAB = u2E
(2)
AB + uE

(1)
AB + E

(0)
AB(xC) , (5.49a)

where the coefficients E(2)
AB and E(1)

AB are given by

E
(2)
AB =

1

6

(
ðAðB −

1

2
qABÐ2

)(
M(0) − 1

4λ0

Ð2λ
(0)
1

)
− 1

24
ð(AεB)CðC(εDEðEðF c(0)

DF ) , (5.49b)

E
(1)
AB =− ð(AL

(0)
B) +

1

2
qABðCL(0)

C +
1

2
M(0)c

(0)
AB +

1

8
εC (Ac

(0)
B)C(εDEðEðF c(0)

DF )

+
1

6
ð(A

(
c

(0)
B)CðDc

DC
(0)

)
− 1

12
qABðD(c

(0)
DCðEc

EC
(0) )

+
1

32

(
ðAðB −

1

2
qABÐ2

)
(c

(0)
CDc

CD
(0) )− 1

12λ0

λ
(0)
1 c

(0)
AB

+
1

24λ0

λ
(0)
1 Ð2c

(0)
AB +

1

12λ0

Ð2λ
(0)
1 c

(0)
AB +

1

12λ0

ðCλ(0)
1 ðCc(0)

AB

− 1

6λ0

ð(Ac
(0)
B)Cð

Cλ
(0)
1 +

1

12λ0

qABðDc(0)
DCð

Cλ
(0)
1

+
2 + 3ωBD

12(λ0)2
λ

(0)
1

(
ðAðB −

1

2
qABÐ2

)
λ

(0)
1 +

1

4λ0

(
ðAðB −

1

2
qABÐ2

)
λ

(0)
2

− 3ωBD + 7

12(λ0)2

(
ðAλ(0)

1 ðBλ(0)
1 −

1

2
qABðCλ(0)

1 ðCλ(0)
1

)
, (5.49c)

E
(0)
AB = E

(0)
AB(xC) . (5.49d)
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This expression will simplify considerably in some more restrictive classes of nonra-

diative solutions that we discuss next.

Stationary regions and the canonical frame In general relativity, there are

frames for stationary regions in which the Bondi metric functions are independent of

u. We next discuss how the metric functions and scalar field in nonradiative regions

in Brans-Dicke theory [given in Eq. (5.48)] simplify when there exist such frames in

the Jordan frame. To discuss this, it is useful to recall that a vector field, such as LA,

on the 2-sphere can be decomposed into divergence- and curl-free parts as follows

LA = ðAρ+ εABðBσ . (5.50)

Similarly, a symmetric trace-free tensor like cAB can be decomposed as [381,410]

cAB =

(
ðAðB −

1

2
qABðCðC

)
Θ + εC(AðB)ðCΨ . (5.51)

The terms without the antisymmetric tensor εAB in the last two equations are often

called the “electric (parity)” part and the terms with εAB are called the “magnetic

(parity)” part.

If we require that the scalar field is also independent of u in these regions, then

the expression for λ2 in Eq. (5.48c) requires that Ð2λ1 = 0, or namely λ1 is constant.

The expression for LA in Eq. (5.48f) shows that the magnetic part of c(0)
AB, Ψ, vanishes

(see, e.g., [153]). Together with the fact that λ(0)
1 is constant, it also follows from

Eq. (5.48f) thatM(0) = M (0) is a constant. Because cAB is an electric-parity tensor
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field, then it can be set to zero by performing a supertranslation with α = Θ/2 [see

Eq. (5.43a)]. With cAB = 0 as well as λ(0)
1 andM(0) being constant, then by requiring

λ3 is independent of time Eq. (5.48g) gives the following condition on λ(0)
2 :

(Ð2 + 2)λ
(0)
2 = 2M(0)λ

(0)
1 . (5.52)

This nonhomogeneous linear elliptic equation can be written as the sum of the par-

ticular solution λ
(0)
2 = M(0)λ

(0)
1 and a linear combination of the solutions to the

homogeneous equation

(Ð2 + 2)λ
(0)
2 = 0 . (5.53)

The solution of the homogeneous equation is a superposition of ` = 1 spherical har-

monics. Finally, with these conditions on the metric functions, this greatly simplifies

the form of EAB in Eq. (5.49a). That λ(0)
1 andM(0) are constants and that c(0)

AB van-

ishes cause the coefficient in Eq. (5.49b) to vanish; similarly, the lengthy expression

in Eq. (5.49c) reduces to the following much simpler equation:

ð(AL
(0)
B) −

1

2
qABðCL(0)

C = 0 . (5.54)

To have smooth solutions L(0)
A , then it must be a superposition of the six electric-

parity and magnetic-parity ` = 1 vector spherical harmonics. The electric part of

L
(0)
A can be set to zero by performing a translation with α = κ/[M(0) − λ(0)

1 /(4λ0)]

The magnetic part could be chosen to align with a particular axis by performing a

rotation if desired.
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Like in general relativity, this class of stationary regions in Brans-Dicke theory

admit a “canonical” frame, in which M and λ1 are constant, cAB = 0, and LA is

composed of ` = 1 magnetic-parity vector harmonics. Furthermore, the scalar-field

function λ1 is also constant, and the function λ2 is equal to the constantMλ1 plus

a superposition of l = 1 spherical harmonics. For bursts of gravitational and scalar

radiation, there can be transitions between such stationary regions where the initial

stationary region is in the canonical frame, but the final stationary region is super-

translated from its canonical frame, so that cAB is nonzero. This nonzero cAB at late

times is, in essence, the GW memory effect (see e.g., [155]); thus, transitions between

these stationary regions provide a sufficiently general arena in which to study certain

types of GW memory effects in general relativity (these transitions were called “BMS

vacuum transitions in [155]). Note that these types of transitions also do not allow

“ordinary” memory [411], so they do not admit memory effects of full generality (see,

e.g., [412]).

However, in Brans-Dicke theory, because λ1 must be a constant in both stationary

regions in the canonical frames, such a transition would significantly restrict the types

of possible memory effects that could occur. For the memory effects related to the

scalar radiation (discussed in greater detail in the next part) such a transition would

only allow these scalar-type memory effects to have a uniform sky pattern. As a

result, considering only these types of transitions between these frames will not be

sufficiently general to explore the full range of possible memory effects in Brans-Dicke
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theory. A slight generalization would be to consider transitions between stationary

regions in which one of the regions is both boosted and supertranslated from the

canonical frame. However, this still seems to be a somewhat restrictive scenario,

as it does not seem to admit solutions that are superpositions of boosted massive

bodies with a scalar charge. As a result, we will next focus on a slightly more general

set of frames, that is still somewhat simpler than the nonradiative regions without

restrictions.

Nonradiative regions with vanishing magnetic-parity shear For a slightly

more general set of solutions, though which lack the full generality of the nonradia-

tive regions, we will consider regions of spacetime with vanishing stress-energy (not

including the scalar field), NAB, ∂uλ1, and Ψ (the magnetic-parity part of the shear).

Like the stationary regions, it will again be possible to set cAB = 0 by a supertrans-

lation to produce a “semi-canonical” frame; however, the mass-aspect and scalar-field

functionsM(0) and λ(0)
1 will no longer be constants, and will remain arbitrary func-

tions of xA as in Eq. (5.48) in this frame. This will imply that λ2 depends linearly

on u as in Eq. (5.48c), DAB will vanish in this semi-canonical frame, and the electric

part of LA will depend linearly on u, whereas the part independent of u will contain

both electric and magnetic parts. Thus, transitions between nonradiative regions of

this type should be sufficiently general to capture both the usual tensor-type and

scalar-type memory effects, which will be discussed in greater detail below. This was

also the scenario considered by [403].
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5.4.2 Geodesic deviation and GW memory effects

GW memory effects are frequently described by their effects on families of nearby

freely falling observers at large distances r from a source of gravitational waves [130,

413, 414]. The deviation vector ~X between a geodesic with tangent ~u and a nearby

geodesic satisfies the equation of geodesic deviation

uγ∇γ(u
β∇βX

α) = −Rβγδ
αuβXγuδ , (5.55)

to linear order in the deviation vector Xα. It is then useful to expand the vector Xα

in terms of an orthonormal triad eα
î
with eα

î
uα = 0 that is parallel transported along

the geodesic with tangent uα. If uα is denoted by eα
0̂
, then eαµ̂ = {eα

0̂
, eα
î
} forms an

orthonormal tetrad. It is also convenient to introduce a dual triad eĵα with eα
î
eĵα = δĵ

î
.

The vector can then be written in the form Xα = X î(τ)eα
î
, where τ is the proper

time along the geodesic worldline. The equation of geodesic deviation then reduces

to the expression

Ẍ î = −R0̂ĵ0̂
îX ĵ (5.56)

where the dot denotes d/dτ . Given a set of tetrad coefficients X î
0 = X î(τ0) and

Ẋ î
0 = Ẋ î(τ0) that represent the initial separation and relative velocity of the nearby

geodesics, it is possible to solve for the change in the final values of the tetrad coeffi-

cients of the separation vector, which we denote by

∆X î = X î(τf )−X î(τ0) . (5.57)
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We then expand this vector in a series to linear order in the Riemann tensor as

∆X î = ∆X î
(0) + ∆X î

(1) , (5.58)

where the value ∆X î
(0) is identical to the expected result in flat spacetime

∆X î
(0) = (τf − τ0)Ẋ î

0 . (5.59)

The correction ∆X î
(1) to the deviation vector to linear order in the Riemann tensor

is given by [390]

∆X î
(1) =−X ĵ

0

∫ τf

τ0

dτ

∫ τ

τ0

dτ ′R0̂ĵ0̂
î − Ẋ ĵ

0

∫ τf

τ0

dτ

∫ τ

τ0

dτ ′
∫ τ

τ ′
dτ ′′R0̂ĵ0̂

î . (5.60)

Note that in the triple integral, the limits of integration on the innermost integral

run from τ ′ to τ .

To compute ∆X î associated with a burst of gravitational waves at large distances

r from a source of GWs (and thereby compute the GW memory effects), it will be

necessary to compute the leading 1/r parts of the Riemann tensor components R0̂ĵ0̂
î,

the geodesic with tangent uα, the infinitesimal element of proper time dτ , and the

orthonormal triad eα
î
. In Bondi coordinates, with V given by Eq. (5.23c), a vector

~u = ~e0̂ that is tangent to a timelike geodesic to leading order in 1/r is given by

~u = ~∂u −
1

2λ0

λ̇1
~∂r +O(r−1) . (5.61a)

The retarded time u is the proper time τ along the geodesic at this order. A useful



Chapter 5. Brans-Dicke Theory in Bondi-Sachs Framework 155

triad is given by

~er̂ = ~∂u −
(

1 +
1

2λ0

λ̇1

)
~∂r +O(r−1) , (5.61b)

~eÂ =
1

r
~eÂ +O(r−2) , (5.61c)

where ~eÂ is an orthonormal dyad associated with the metric qAB. The nonzero tetrad

components of the Riemann tensor at O(r−1) are given by

R0̂Â0̂B̂ = − 1

2r
c̈ÂB̂ +

1

2λ0r
δÂB̂λ̈1 +O

(
r−2
)
. (5.62)

Note that if the Riemann tensor is decomposed into its Weyl and Ricci parts, the

relevant nonzero components are given by

C0̂Â0̂B̂ =− 1

2r
c̈ÂB̂ +O

(
r−2
)
, (5.63a)

R0̂0̂ =
1

λ0r
λ̈1 +O

(
r−2
)
. (5.63b)

It then follows that the Ricci scalar, R, satisfies R = O (r−2).

Putting these results together, we find that the O(r0) part of ∆X î is the same as

the flat-space result in Eq. (5.59), and the O(r−1) part is given by

∆X
(1)

Â
=

1

2r

(
∆cÂB̂ −

1

λ0

∆λ1δÂB̂

)
XB̂

0 −
1

r

(
∆CÂB̂ −

1

λ0

∆Λ1δÂB̂

)
ẊB̂

0

+
1

2r
∆

[
ucÂB̂(u)− 1

λ0

uλ1(u)δÂB̂

]
ẊB̂

0 +
∆u

2r

[
cÂB̂(u0)− 1

λ0

λ1(u0)δÂB̂

]
ẊB̂

0

− u0

2r

(
∆cÂB̂ −

1

λ0

∆λ1δÂB̂

)
ẊB̂

0 . (5.64)
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We have defined ∆u = uf − u0,

∆CÂB̂ =

∫ uf

u0

du cÂB̂ , and ∆Λ1 =

∫ uf

u0

du λ1 ; (5.65)

in the third line of Eq. (5.64), the ∆ of the quantity in square brackets means to

take the difference of the quantity within the brackets at u = uf and u = u0. Equa-

tion (5.64) contains (in addition to initial and final data) six memory effects, which

we will now discuss in greater detail (or in the language of [390, 415] six persistent

observables, three of which are memory effects).

The first two collections of effects, ∆cÂB̂ and ∆CÂB̂, have the same type of effect

on nearby freely falling observers as GW memory effects in GR: namely, they produce

a shearing (transverse to the propagation direction of the gravitational waves) of an

initially circular congruence of geodesics after a burst of GWs pass. The tensor ∆cÂB̂

was the first type of GW memory effect identified in calculations, and it produces a

lasting change in the deviation vector between initially comoving observers. When

∆cÂB̂ is nonvanishing, then the tensor ∆CÂB̂ will be the sum of a term that grows

with u after the burst passes and a term ∆C(0)

ÂB̂
that is independent of u. For observers

with an initial relative velocity, this will cause ∆X
(1)

Â
to have a shearing part that

grows linearly with u after the GWs pass (this effect is also sometimes called the

“subleading displacement memory”). The electric- and magnetic-parity parts of the

tensor ∆C(0)

ÂB̂
are closely related to the spin and center-of-mass (CM) GW memory

effects, that were more recently identified. The tensor ∆cÂB̂ was frequently described
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as being of electric parity, but it was shown that there are sources of stress-energy

that can produce a magnetic-parity ∆cÂB̂ [410,412,416].

The second two terms, ∆λ1 and ∆Λ1, are memory effects related to the passage

of the scalar field. These effects cause an initially circular congruence of geodesics

to undergo a relative uniform expansion (or contraction) in the direction transverse

to the propagation direction of the scalar radiation.7 Thus, for initially comoving

observers, a nonzero ∆λ1 would cause a uniform, transverse change in ∆X
(1)

Â
. When

∆λ1 is nonvanishing, then ∆Λ1 would also be a sum of term that grows with u after

the burst of scalar field and a term ∆Λ
(0)
1 that is independent of u; thus, the deviation

vector ∆X
(1)

Â
would have an expanding (or contracting) part that grows linearly with

u for observers with an initial relative velocity. The scalar-field memory effect ∆λ1

had been discussed in the context of post-Newtonian theory in [179] or in gravitational

collapse in [397, 398], for example. The quantity ∆Λ
(0)
1 is the scalar-field analog of

the CM memory, and it seems to have not been discussed previously.

We turn in the next part of this section to how the different memory scalars and

tensors—∆cÂB̂, ∆CÂB̂, ∆λ1 and ∆Λ1—are constrained (or not constrained) by the

asymptotic field equations of Brans-Dicke theory and the properties of the nonradia-
7It is possible to define a suitably adapted Newman-Penrose tetrad [417] with lµ = ∇µu and with

a complex dyad chosen to have only its 2-sphere indices nonvanishing and to be normalized to one:
mAm̄

A = 1. The spin coefficient ρ = −mµm̄ν∇ν lµ then can be expanded at large Bondi radius r in
this tetrad as

ρ = − 1

r2
mAm̄B∇B∇Au =

1

r
+

λ1
2λ0r2

+O(r−3) . (5.66)

As ρ is one of the “optical scalars” and its real part corresponds to the expansion of a congruence
to which lµ is tangent, this provides a second geometrical viewpoint on how λ1 causes a type of
expansion at large r.
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tive regions before and after the passages of the gravitational waves and the radiative

scalar field.

5.4.3 Constraints on GW memory effects from fluxes of con-
served quantities

Memory effects were defined in [390] to be the subset of the persistent observables

that are associated with symmetries and conserved quantities at spacetime bound-

aries, like null infinity. A commonly used procedure for computing these conserved

quantities related to symmetries is due to Wald and Zoupas [151], who computed the

“conserved” quantities associated with BMS symmetries at null infinity in vacuum

general relativity. The word “conserved” is used in quotes, because these quantities

(also called “charges”) are not constant along cross-sections (or “cuts”) of null infinity,

but change so that the difference of the charges between the cuts is equal to the flux

of the charge integrated over the region of null infinity between the cuts. The flux

had been computed previously by Ashtekar and Streubel [149], and it is consistent

with the result in [151]. In Bondi coordinates and in general relativity, the change in

the charges, ∆Qξ, can be concisely expressed by the expression

∆Qξ = − 1

32πG

∫
du d2ΩNABδξcAB , (5.67)

where δξcAB is given in Eq. (5.43a) and d2Ω =
√
qdx1dx2 is the two-dimensional

volume element associated with the metric qAB (see, e.g. [153]). The charge is given

by the Komar formula [418], with an additional prescription needed to make the
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charge integrable in radiative regions.

The formalism for computing conserved quantities outlined in [151] can be ap-

plied to a large class of gravitational theories that can be derived from a Lagrangian,

such as Brans-Dicke theory. In the Einstein frame, the action has the form of the

Einstein-Klein-Gordon theory. Wald and Zoupas noted in [151] that having a mini-

mally coupled scalar field causes stress-energy terms to be added to the flux, but will

otherwise not greatly change the charges. However, they posited that rΦ has a finite

limit to null infinity, which would require that Φ0 = 0. We checked whether having

a constant Φ0 that is nonzero would alter the flux, and because this nonzero Φ0 is

constant, and we found that it did not. Wald and Zoupas also mentioned in [151]

that a conformally coupled scalar field, such as in Brans-Dicke theory in the Jordan

frame, would also only add terms to the flux. However, they did not specify whether

the kinetic term for the scalar field must have the canonical form (as in the Einstein

frame), which it does not in the Jordan frame. Consequently, we computed the flux

of the charges associated with a BMS symmetry in the Jordan frame in Bondi coor-

dinates. We found that the integral of the flux over a region of future null infinity is

given by

∆Q~ξ = − λ0

32π

∫
du d2Ω

[
NABδξcAB +

6 + 4ωBD

(λ0)2
∂uλ1δξλ1

]
. (5.68)

Note that by combining Eqs. (5.2c) and (5.11), expanding λ as in Eq. (5.21), and

using Eq. (5.40), then we find that the term (3 + 2ωBD)∂uλδξλ/(16π) in Eq. (5.68)
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is the O(r−2) part of λ0T
(Φ)
uν ξν . Thus, the result is consistent with the expectations

of Wald and Zoupas for a conformally coupled scalar field, despite the noncanonical

form of the kinetic term for λ (and the flux is then conformally invariant as required

in [151]).

5.4.3.1 Displacement memory and electric-parity part of ∆cAB

For computing the GW memory effect connected with the electric-parity part of

∆cÂB̂, we should specialize the flux expression for a supertranslation vector field ~ξ =

α(xA)~∂u. Restricting Eqs. (5.43a) and (5.40) to a supertranslation, and integrating

by parts for terms involving ðA (there are no boundary terms on the 2-sphere), we

can show that the expression in Eq. (5.68) can be written as

∆Q(α) = − λ0

32π

∫
du d2Ωα

[
NABN

AB − 2ðAðBNAB +
6 + 4ωBD

(λ0)2
(∂uλ1)2

]
. (5.69)

It will next be useful to make a few definitions and to relate some of the quantities

in Eq. (5.69) to quantities that we have computed earlier in the chapter.

The term proportional to ðAðBNAB depends only on the electric part of NAB (and

thus the electric part of ∆cAB, when the integral with respect to u is performed). With

the definition of cAB in Eq. (5.51) and of the news tensor in Eq. (5.29), we can write

the term ðAðBNAB as

2ðAðBNAB = Ð2(Ð2 + 2)∂uΘ . (5.70)

With the equation for the Bondi mass aspect (5.32a), it is possible to show that the

supertranslation charge (i.e., the supermomentum) needed to satisfy Eq. (5.69) is
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given by

Q(α) =
λ0

4π

∫
d2Ωα

(
M− 1

4λ0

Ð2λ1

)
. (5.71)

Note that when α = 1, this corresponds to a time translation, and the associated

conserved charge is the energy. Solutions of physical interest have non-negative en-

ergy. Because Ð2λ1 vanishes when integrated over the 2-sphere, this implies that the

integral ofM over S2 must be non-negative, or the 2-sphere integral of M must be

greater than or equal to the same integral of 1
4λ20
λ1∂uλ1. Finally, it will be helpful to

define α times the change in the energy radiated by the gravitational waves and the

scalar field λ as

∆E(α) =
λ0

32π

∫
du d2Ωα

[
NABN

AB +
6 + 4ωBD

(λ0)2
(∂uλ1)2

]
. (5.72)

Then Eq. (5.69) can be written as

∫
d2ΩαÐ2(Ð2 + 2)∆Θ =

32π

λ0

(
∆E(α) + ∆Q(α)

)
. (5.73)

The supertranslations α are allowed to be any smooth function on the 2-sphere.

By choosing for α an appropriate basis of functions that span this space of smooth

functions on S2 (e.g., spherical harmonics), it is then possible to use Eq. (5.73) to

determine the coefficients of ∆Θ expanded in these basis functions in terms of the ex-

pansion coefficients of the energy flux and the change in the supermomentum charges.

In other words, supposing that the energy flux ∆E(α) is known for some given radia-

tive data NAB and ∂uλ1, and that the early- and late-time nonradiative data through
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∆M and ∆λ1 are also known, then it is possible to determine the corresponding

electric-parity memory effect in ∆cAB. The computation of this memory effect is

not substantially different from in general relativity; the main difference is that it is

necessary to provide both radiative (∂uλ1) and nonradiative (∆λ1) data for the scalar

field, in addition to the radiative (NAB) and nonradiative (∆M) gravitational data.

We will use this procedure to calculate the memory effect from compact binaries in

Brans-Dicke theory in future work.

The two types of sources of GW memory in Eq. (5.73)—i.e., ∆E(α) and ∆Q(α)—

are often called “null” and “ordinary” memory, respectively in general relativity [411].

The word “null” refers to the fact that it is sourced by massless fields (including

gravitational waves), and the word “ordinary” refers to the fact that it is sourced by

“ordinary” massive particles (and fields). The specific components of the spacetime

curvature and matter stress-energy tensor responsible for producing the ordinary and

null memory are distinct and distinguishable in GR. How to classify the contributions

of a scalar field to the ordinary and null memory is not as immediately obvious in

Brans-Dicke theory as it is in GR, because (i) massive objects can have “scalar charges”

(nontrivial stationary scalar field configurations of the massless scalar) in Brans-Dicke

theory, and (ii) the radiative and the static parts of the scalar field both appear at

leading order in 1/r. While in GR all terms involving the scalar field would be treated

as null memory, in Brans-Dicke theory, we will consider one part of the scalar field

to contribute to the null memory and another part to contribute to the ordinary
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memory. Specifically, because the term quadratic in ∂uλ1 in the energy flux ∆E(α)

has the form of a flux of energy per solid angle, we will consider it to be null memory.

The term proportional to Ð2∆λ1 enters in the charge ∆Q(α) and is linear in λ1, so

we treat it as a source of ordinary memory for the shearing GW memory ∆cAB. 8

Because the right-hand side of (5.73) is determined by the changes inM and ∆λ1

(for the term ∆Q(α)) and the change in the flux of tensor and scalar waves (for the

term ∆E(α)), then we can solve for ∆Θ in Eq. (5.73) in terms of a sum of these two

contributions. We will then write this solution for the total potential as a sum of two

terms

∆Θ = ∆Θ(n) + ∆Θ(o) , (5.74)

which correspond to the solutions for the null and ordinary parts, separately. This

splitting will be useful in discussing the CM memory effect in the next part.

Lastly, note that no constraints on the magnetic-parity part of ∆cAB are found

from supermomentum conservation. Thus, it would be classified as a persistent ob-

servable rather than a memory effect in the language of [390].

8There is a second possibility that one might have considered the change in Ð2∆λ1 to be a
scalar GW memory that is constrained at the same time as the tensor-type memory through the
flux ∆E(α) and the change in the integral of α times the mass aspect M. However, this is not
a viable option, because to specify the properties of the initial and final nonradiative states, one
has to specify the nonradiative value of the scalar field λ1 (analogously to how one has to specify
the value of the mass aspect M. Thus, there is no freedom to constrain the value of λ1 through
the memory equation (5.73). This does have the noteworthy consequence that to determine the
tensor-type memory ∆Θ, one needs to know the scalar memory ∆λ1 to be able to compute the term
∆Ð2λ1 that enters into the ordinary memory ∆Q(α).
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5.4.3.2 Subleading displacement memory and ∆CAB

In the BMS group, there are also symmetries parameterized by the vector field on

the 2-sphere, Y A. This vector field is required to be a conformal Killing vector on

the 2-sphere from Eq. (5.38); the space of such vector fields that are globally defined

form a six-dimensional algebra, which is isomorphic to the Lorentz algebra of 3+1

dimensional Minkowski spacetime. There have also been proposals to consider ex-

tensions of the BMS algebra that enlarge the symmetry algebra by including either

all the conformal Killing vectors on the 2-sphere that have complex-analytic singu-

larities [142, 143] or all smooth vector fields on the 2-sphere [146, 147]. When the

Wald-Zoupas prescription was applied to these extended BMS algebras, it was found

that there needed to be an additional term to the flux (or the change in the charges)

to maintain that the difference in the charges was equal to the flux [153]. For the

smooth vector fields, it was shown that this related term could be absorbed into the

definition of the charges [395]. This new term was closely related to a new type of

GW memory effect called GW spin memory [156]. There was also a second type of

new GW memory related to these extended symmetries called GW CM memory [152].

These two new memory effects are related to the electric- and magnetic-parity parts

of the subleading displacement memory in ∆CAB. We now discuss the computation

of these effects in Brans-Dicke theory.

First, we write the change in the charges associated with an extended BMS algebra

element ~ξ = Y A~∂A for a smooth vector field Y A. Starting from Eq. (5.68) and
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integrating by parts to simplify the expression, we find

∆Q(Y ) = − λ0

32π

∫
du d2ΩY A

{
u

2
ðA
[
2ðBðCNBC −NBCN

BC − 6 + 4ωBD

(λ0)2
(∂uλ1)2

]

+
1

2
ðA(cBCN

BC) +NBCðAcBC − 2ðB(cACN
BC)

+
2ωBD + 3

(λ0)2
(∂uλ1ðAλ1 − λ1ðA∂uλ1)

}
+ ∆F(Y ) ,

(5.75)

where ∆F(Y ) is the additional term needed to relate the change in the charges to the

flux integral. It is given by

∆F(Y ) =
λ0

64π

∫
d2ΩY AεABðBÐ2(Ð2 + 2)∆Σ , (5.76)

where we introduced the notation of [154] for the u integral of Ψ

∆Σ =

∫
duΨ , (5.77)

and where Ψ determines the magnetic-parity part of cAB in Eq. (5.51).9 The GW spin

memory effect is related to the quantity ∆Σ, which determines the magnetic-parity

part of ∆CAB. In the absence of magnetic-parity displacement memory ∆cAB, the

spin memory will be independent of u, and given by just the magnetic-parity part of

∆C(0)
AB.

Let us now make a few additional definitions. Note that in Eq. (5.75), there is

a term that is linear in the news tensor NAB, like the term that gives rise to the
9The modification to the charge defined in [395] is similar to the quantity ∆F(Y ), but instead of

∆Σ, a term proportional to uΨ was used instead.
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displacement memory; however, the term in (5.75) is multiplied by u. When this

term is integrated over u, the resulting quantity has dimensions or strain multiplied

by time, like the GW spin memory. It was argued in [152] that a quantity related

to this term is responsible for a new type of GW memory called GW center-of-mass

(CM) memory. Specifically, consider the quantity defined by u times the u integral

of ∂uΘ, with the part of ∂uΘ responsible for the ordinary memory ∆Θ(o); i.e.,

∆K =

∫
du u∂u(Θ−Θ(n)) . (5.78)

Then the integral of the term in square brackets in Eq. (5.68) can be written in the

form

∆C(Y ) = − λ0

64π

∫
d2ΩY AðAÐ2(Ð2 + 2)∆K . (5.79)

Finally, define the remaining terms in Eq. (5.75) to be

∆J(Y ) =
λ0

64π

∫
du d2ΩY A

[
ðA(cBCN

BC) + 2NBCðAcBC − 4ðB(cACN
BC)

+
4ωBD + 6

(λ0)2
(∂uλ1ðAλ1 − λ1ðA∂uλ1)

]
, (5.80)

which are the moments of the change in the super angular momentum with respect

to the vector field Y A. With these definitions, Eq. (5.75) reduces to the expression

∆Q(Y ) = −∆J(Y ) + ∆C(Y ) + ∆F(Y ) (5.81)

Using the evolution equation for the Bondi mass aspect (5.33), we can show that the
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definition of the charge needed to satisfy Eq. (5.75) is given by

Q(Y ) =
λ0

8π

∫
d2ΩY A

[
− uðA

(
M− 1

4λ0

Ð2λ1

)
− 3LA +

1

32
ðA(cBCc

BC)

+
1

4λ0

ðA
(

3λ2 +
ωBD − 1

2λ0

(λ1)2

)
− 1

4λ0

(cABðBλ1 − λ1ðBcAB)

]
. (5.82)

Next, it is useful to consider decomposing the vector field Y A into gradient and curl

parts via the expression

Y A = ðAβ(xC) + εABðBγ(xC) , (5.83)

(for smooth functions β and γ) and to treat the case of divergence- and curl-free

vector fields Y A separately. This will allow us to isolate the GW spin and CM

memory effects.

CM memory and electric-parity Y A Let us first specialize to Y A = ðAβ. The

term ∆F(Y ) vanishes for vector fields Y A of this type. After integrating by parts, this

means that we can determine the CM memory through the equation

∫
d2Ω βÐ4(Ð2 + 2)∆K =

64π

λ0

(
∆J(β) + ∆Q(β)

)
. (5.84)

In the above equation, we have defined Ð4 = (Ð2)2, and we have let ∆Q(β) and ∆J(β)

given in Eqs. (5.82) and (5.80) be the change in the charges and in a part of the flux

associated with the vector field Y A = ðAβ. The procedure for computing the CM

memory works similarly to that for computing the standard GW memory described

by the potential ∆Θ: (i) first pick a basis of functions for the smooth function β on
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S2 to determine the coefficients of ∆K expanded in this basis (perhaps most usefully,

spherical harmonics); (ii) then provide radiative (and some nonradiative) data in the

functions λ1, cAB, and their u derivatives to evaluate the basis-function coefficients of

the flux term ∆J(β); (iii) next specify the nonradiative data inM, LA, cAB, λ1, and

λ2 to evaluate the coefficients of the change in the charges ∆Q(β); (iv) finally, solve for

the relevant coefficients of ∆K by acting on it with the elliptic operator Ð4(Ð2 + 2)

and performing the integral. Some interesting differences from the standard GW

memory are that the flux term involves cAB and λ1 in addition to ∂uλ1 and NAB, and

the charge involves cAB, LA, and λ2 in addition to λ1 andM.

Spin memory and magnetic-parity Y A Next we shall discuss vector fields given

by Y A = εABðBγ. In this case, it is the term ∆C(Y ) that vanishes, and one can solve

for the spin memory through the equation

∫
d2Ω γÐ4(Ð2 + 2)∆Σ = −64π

λ0

(
∆J(γ) + ∆Q(γ)

)
. (5.85)

The prescription used to determine the coefficients of the potential ∆Σ when expanded

in a basis of functions on S2 works nearly identically to that for the expansion of ∆K

for the spin memory. The main difference is that less nonradiative data is needed

to determine the spin memory. Specifically, because the quantities ðAλ2 and ðAM

enter into the charge as gradients, then these terms will vanish for a magnetic-parity

vector field of the form Y A = εABðBγ. Thus, computing the spin memory does not

require knowledge of the functions λ2 andM.
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5.4.4 Summary and discussion

To summarize, in asymptotically flat general relativity in Bondi coordinates, there

are four types of memory effects that are encoded in the electric- and magnetic-parity

parts of the tensors ∆cAB and ∆CAB. All four memory effects can be measured

through geodesic deviation, and they produce a type of shearing of a family of de-

viation vectors pointing from some fiducial timelike worldline far from a source of

gravitational waves. The memory effects encoded in ∆cAB are related to the depen-

dence of the final deviation vector on the initial deviation vector; the memory effects

encapsulated in ∆CAB are connected to the dependence of the final deviation on the

initial relative velocity of the deviation vector. Three of the four memory effects

were constrained by conservation laws for charges associated with the (extended)

BMS algebra. Specifically, the electric-parity part of ∆cAB is constrained through

the statement of supermomentum conservation associated with the supertranslation

symmetries of the BMS group. The electric- and magnetic-parity parts of ∆CAB were

determined through the conservation of super-angular momentum conjugate to the

super-Lorentz symmetries of the extended BMS algebra. The magnetic-parity part

of ∆cAB does not seem to have any conservation equation that constrains its value

(and thus might be classified as just a persistent observable).

In our treatment of asymptotically flat solutions of Brans-Dicke theory in Bondi

coordinates, we observed that there were a total of six types of memory effects: the

four that exist in general relativity, and two more that are related to the leading-



Chapter 5. Brans-Dicke Theory in Bondi-Sachs Framework 170

order dynamical part of the scalar field, λ1. The two new memory effects also could

be measured through geodesic deviation, though they would produce an expansion

(or contraction) of the family of deviation vectors pointing orthogonally away from a

given worldline (a so-called “breathing” mode). The memory effect ∆λ1 was related

to the amplitude of this effect which depends on the initial deviation vector, and the

effect in ∆Λ1 corresponded to the scale of the effect depending on the initial relative

velocity of the nearby worldlines. The quantities ∆λ1 and ∆Λ1 were not constrained

by any conservation laws associated with conserved quantities in asymptotically flat

spacetimes in Brans-Dicke theory (so they would also just be persistent observables).

Rather, because the symmetries of asymptotically flat solutions of Brans-Dicke theory

are the same as those of general relativity, the same three types of memory effects are

constrained by the fluxes of conserved quantities as in general relativity. Because the

definition of the flux and charges includes additional radiative and non-radiative data

(namely, ∂uλ1, λ1, and λ2), the precise expressions used for computing the memory

effects and the data necessary to compute these effects differs in Brans-Dicke theory

from the expressions used in general relativity.

5.5 Conclusions

We investigated asymptotically flat solutions of Brans-Dicke theory in Bondi-Sachs

coordinates. We solved the field equations of this theory, and we found that they

have a similar structure to the Bondi-Sachs form of the Einstein equations in gen-

eral relativity. The expansions of the metric and the Ricci tensor in series in 1/r (r
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being the areal radius) have somewhat different forms from the equivalent quantities

in general relativity. Specifically, the Ricci tensor in Bondi coordinates scales like

1/r, which allows for a scalar (or breathing-mode) gravitational-wave polarization

not present in general relativity; other coefficients in the metric also fall off more

slowly with 1/r in Brans-Dicke theory than in general relativity to accommodate this

additional GW polarization. Interestingly, this different “peeling” property of the

Ricci tensor does not affect the asymptotic symmetry group in Brans-Dicke theory,

which remains the Bondi-Metzner-Sachs group (though the way in which these sym-

metries are extended into the interior of the spacetime in Brans-Dicke theory differs

from the related extension in general relativity). We also computed the properties

of nonradiative and stationary regions of spacetime in Brans-Dicke theory, which is

important for computing and understanding GW memory effects.

We found six types of memory effects generated after a burst of the scalar field

and tensorial gravitational waves pass by an observer’s location. Four of these effects

are also present in GR: namely, they are the electric- and magnetic-parity parts of

displacement and subleading displacement memories. These effects produce the fa-

miliar, lasting shearing of a ring of freely falling test masses, with the displacement

part depending on the initial separation of the test masses, and the subleading dis-

placement part depending on the initial relative velocity of the masses (the electric-

and magnetic-parity parts refer to the parity properties of the sky pattern of the

memory effect over the anti-celestial sphere). The amplitude of the memory effects in
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Brans-Dicke and in GR will differ, because in Brans-Dicke theory, there are additional

contributions from the fluxes of energy and angular momentum per solid angle from

the scalar field. The two additional GW memory effects in Brans-Dicke theory are

related to the breathing-mode polarization of the gravitational waves, and they could

also be classified into leading and subleading displacement terms. These memory ef-

fects cause a ring of freely falling test masses to have an enduring, uniform expansion

(or contraction) of a circular congruence of geodesics transverse to GW propagation.

The leading part that depends upon the initial displacement of the masses had been

previously considered, but the subleading part, which depends on the initial relative

velocity of the masses appears not to have been. The latter can be thought of as the

scalar analog of the center-of-mass memory effect.

Half of these memory effects are constrained by fluxes of conserved quantities

associated with the extended BMS group (these are the electric-parity displacement

memory, the spin memory, and the center-of mass memory). The other half (the

magnetic-parity displacement memory, and both breathing-mode memory effects)

are not, and would be described as being persistent observables in the nomenclature

of [390,415]. For all the memory effects, but particularly for the persistent-observable

types, understanding the properties of the nonradiative regions before and after the

burst of the scalar field and gravitational waves is important for understanding the set

of possible memory effects. For example, in general relativity, stationary-to-stationary

transitions in which the two stationary regions differ by only a supertranslation allow
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for a wide range of possible electric-parity displacement memory effects; however, in

Brans-Dicke theory, such transitions would only allow for scalar-type memory effects

with constant sky pattern. More general types of nonradiative regions at early and

late times are necessary to have less trivial memory effects.

Let us conclude with a few comments on future applications and directions for our

work. It would be interesting to explore the post-Newtonian limit of our results for

compact binary systems, so as to make contact with some existing results computed

by Lang [179,180]. Another potential direction is to explore a broader set of modified

gravity theories. We note that our formalism can easily be extended to more general

massless scalar-tensor theories, such as those proposed by Damour and Esposito-

Farèse [210, 369]. It would be interesting to understand whether there are similar

relationships between symmetries and memory effects in theories where additional

polarizations are present, such as the scalar-vector-tensor theories [419]. (A generic

theory of gravity can have up to six polarizations, and there would typically be

additional GW memory effects associated with all such polarizations.) Other viable

theories of gravity such as the higher curvature theories [36] (e.g., dynamical Chern-

Simon gravity [258] and Einstein-dilaton-Gauss-Bonnet gravity [240,241]) and massive

scalar-tensor theories would also be useful to explore.



Chapter 6

Gravitational Wave Memories in
Brans-Dicke Theory in
Post-Newtonian Approximation

6.1 Introduction

In this chapter, we apply the results of chapter 5 to construct the GW memory

waveform from compact binary systems 1. We will focus on the memory effects that

appear in the tensor polarizations of the GWs, because we can use the BMS flux

balance laws to construct nonlinear memory effects based on linearized (or nonlinear)

waveforms that do not include the memory effects. The procedure in Brans-Dicke

theory is closely analogous to that used in GR [154, 154, 157–162]. The two new

memory effects in the scalar polarizations of the GWs are related to shifts in the

scalar field and its time integral. It was recently shown in [420] that the scalar

memory effects are closely related to the large gauge symmetries of 2-form theory

that was shown in [421] to be dual to the scalar field theory. The symplectic flux
1This chapter is based on the following paper:Gravitational-wave memory effects in Brans-Dicke

theory: Waveforms and effects in the post-Newtonian approximation; Tahura, Shammi; Nichols,
David A.; Yagi, Kent; arXiv:2107.02208(Submitted to Physical Review D)
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of the scalar field is linear in the field and in the large gauge transformation; as a

result, we cannot use the flux balance laws to construct a nonlinear memory of the

scalar waves as one can for the tensor waves via the BMS flux-balance laws (one

must instead solve the scalar field equation directly to determine the scalar memory

effect). Since our focus is on the application of the BMS balance laws in BD theory

to determine the GW memory effects, we will focus here on computing the tensor

memory effects in BD theory, which differ from those of GR due to the scalar dipole

radiation.

In BD theory, tensor GWmemory effects are sourced by both the scalar and tensor

energy and angular momentum fluxes. Because solar-system experiments [209] and

pulsar observations [37, 213] have constrained the amount of scalar radiation in BD

theory, we assume that the scalar radiation leads to energy and angular momentum

fluxes that are small compared to the leading quadrupole fluxes of tensor GWs in

GR. Note, however, that the scalar fluxes appear at a lower post-Newtonian (PN)

than the tensor fluxes do (see, e.g., [195] for a review of the post-Newtonian, as

well as the multipolar post-Minkowskian, expansion). For a fixed value of the small

(dimensionless) inverse coupling parameter in BD theory, there is thus a smallest PN

parameter at which our approximation of small scalar fluxes holds. To compute GW

memory effects in BD theory at Newtonian order, we will need to include higher-

PN-order terms (in the frequency evolution and Kepler’s law, for example) than we

would need to go to Newtonian order in the calculation in GR. In addition, we will
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also truncate our results at a finite, but smallest PN parameter, which is the smallest

value for which our approximation holds (unlike in GR, in which we can take the PN

parameter to zero).2

We computed our memory effects using the oscillatory waveforms computed in,

e.g., [179, 180, 399] after verifying that we can relate the waveforms computed in

harmonic coordinates in these references to our Bondi-Sachs quantities. The memory

effects that we compute in BD theory, have small terms (proportional to the small

BD parameter) that appear at a PN order less than the leading Newtonian order. We

can relate part of our results to a part of the waveform computed by Lang in [179,180]

using the direct integration of the relaxed Einstein equations for the scalar and tensor

waveforms up to 1.5PN and 2PN orders, respectively. Lang found no scalar GW

memory effects, but he computed a (hereditary) tensor GW memory effect formally

at 1.5PN order that arises from the flux of energy radiated in the scalar waves. Upon

integrating this 1.5PN term for compact-binary source in our approximation, this

term leads to a memory effect that depends logarithmically on the PN parameter

(this is analogous to how a formally 2.5PN order term in GR, when integrated for

compact binaries, leads to a Newtonian-order effect in the waveform [163,164]). If we

compare our result in the Bondi-Sachs framework with Lang’s harmonic-coordinate
2Note, of course, that we could also compute the memory effects from a PN parameter of zero

up to the small PN parameter at which the scalar and tensor fluxes have comparable magnitudes,
if we assume that the radiated fluxes are dominated by the scalar emission. This, in fact, is the
approximation used in [179,180], for example. However, because memory effects are most important
when the fluxes are large, this early-time (or small-PN-parameter) regime is not expected to produce
a significant GW memory effect, and we do not compute it in this chapter.
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expression, the two terms agree. The BMS flux balance laws are not as helpful for

verifying the absence of scalar memory effects through 1.5PN order.

Our BMS flux-balance approach allows us to compute the Newtonian-order ten-

sor waveforms—which have not been computed before, as far as we are aware—that

should appear if the work of Lang [179] were extended to 2.5PN order. We find that

because of the dipole emission, the Newtonian-order GW memory effects sourced by

the tensor GW energy flux has contributions from current quadrupole and mass oc-

topole and hexadecapole moments. These higher multipole moments produce GW

memory waveforms that have a different dependence on the inclination angle than

the tensor GW memory effect in GR at the equivalent PN order. The Newtonian GW

memory effect generated by the scalar field’s energy flux also has a different depen-

dence on inclination angle from that sourced by the tensor GWs. The inclination-angle

dependence of the GW memory effect has been shown to be something that can be

tested with second- and third-generation ground-based GW detectors [184].

The rest of the chapter is organized as follows. In Sec. 6.2, we present a few ele-

ments of BD theory in harmonic and Bondi coordinates. Section 6.3 lists the oscillia-

tory radiative mass and current multipole moments for a quasi-circular, nonspinning

compact-binary inspiral (Sec. 6.3.1); reviews the derivation of Kepler’s law, the evo-

lution of the orbital frequency, and the phase of GWs in BD theory at the necessary

PN orders in our approximation (Sec. 6.3.2); and presents scalar multipole moments

generated by an inspiraling quasi-circular, nonspinning compact binary (Sec. 6.3.3).
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In Sec. 6.4 we compute nonlinear displacement and spin GW memory waveforms in

BD theory from the BMS fluxes. We conclude in Sec. 6.5. We give additional re-

sults in two appendices where we show the coordinate transformations that relate the

Bondi coordinates to harmonic coordinates including relations between the metric

functions in two coordinates systems (Appendix K), and we argue that the ordinary

parts of the GW memory effects are subleading compared to null memory effects in

BD theory (Appendix L).

Throughout this chapter, we use units in which c = 1, and we also set the asymp-

totic value of the gravitational constant in BD theory to 1. We use Greek indices

(µ, ν, . . . ) to denote four-dimensional spacetime indices, and uppercase Latin indices

(A,B,C, . . . ) for indices on the 2-sphere, and lowercase Latin indices (i, j, k, . . . ) for

the spatial indices in quasi-Cartesian harmonic coordinates.

6.2 Waveform in Harmonic and Bondi Coordinates

In this section, we discuss briefly the Bondi-Sachs framework [139, 140] and the

harmonic-gauge waveform in post-Newtonian theory, both of which we will use to

compute the GW memory waveform. Specifically, in Sec. 6.2.1, we discuss BD the-

ory in harmonic coordinates and decompose the GW strain into radiative multipole

moments. In Sec. 6.2.2, we present BD theory in the Bondi-Sachs framework and

relate the shear tensor in Bondi coordinates to the radiative mass and current multi-

pole moments found in harmonic coordinates. We also relate the scalar waveform in

Bondi coordinates to that of the harmonic coordinates.
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We require both coordinate systems and frameworks, because the GW memory

effects are straightforward to compute through the BMS balance laws in the Bondi

approach, but it is more challenging to relate the Bondi-Sachs framework to a specific

solution of a Cauchy initial-value problem. In the harmonic-gauge PN approach

the scalar and tensor GW waveforms already have been computed generally and

for specific compact-binary sources in, e.g., [179, 180]; however, the GW memory

effects are of a sufficiently high PN order in PN theory that they have not been

fully computed in Brans-Dicke theory. After relating the harmonic-gauge waveform

to the shear in the Bondi-Sachs framework, we can then determine the GW memory

waveforms using the balance laws (and thereby avoiding high PN-order calculations).

Throughout this chapter, we treat Brans-Dicke theory in the Jordan frame [166],

in which the action takes the form

S =

∫
d4x
√
−g
[
λ

16π
R− ωBD

16π
gµν

(∂µλ) (∂νλ)

λ

]
.

(6.1)

Here gµν is the Jordan-frame metric, R is the Ricci scalar of gµν , λ is a massless scalar

field with a nonminimal coupling to gravity, and ωBD is a coupling constant called the

Brans-Dicke parameter. In this section and subsequent ones, we set the gravitational

constant at infinity to unity, i.e.,

G0 =
4 + 2ωBD

3 + 2ωBD

1

λ0

= 1 , (6.2)

where λ0 is the constant value that λ approaches in the limit of infinite distances
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from an isolated source.

6.2.1 Waveform in harmonic coordinates

We will denote our quasi-Cartesian harmonic-gauge coordinates as Xµ, and we will

use the notation X0 = t for the time coordinate and X i (for i = 1, 2, 3) for the spatial

coordinates. We will denote the Euclidean distance from the origin at fixed t by R =√
X iXjδij. The tensor GWs in Brans-Dicke theory are described by the transverse-

tracelesss (TT) components of the metric perturbation, h̃TT
ij , and the scalar GWs are

encapsulated in the scalar field λ. Both fields can be obtained from the metric at

order 1/R in an expansion in R, from the spatial components of the spacetime metric

gij. The metric is more conveniently written in terms of the metric perturbation h̃ij

and its trace h̃ rather than the TT part. For extracting the GWs, we need only

the part of the spacetime metric that is linear in the fields λ and h̃ij, which can be

obtained, e.g., from the results in [179] to be

gij = δij + h̃ij −
1

2
h̃δij −

(
λ

λ0

− 1

)
δij . (6.3)

The scalar GWs are present in the 1/R part of λ, which we expand as

λ = λ0 +
Ξ(ũ, yA)

R
+O

(
1

R2

)
. (6.4)

We have written the scalar field in terms of ũ = t−R, the retarded time in harmonic

coordinates, and the angles yA ≡ (ι, ϕ). The angle ι is the polar angle and ϕ is
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the azimuthal angle of a spherical polar coordinate system.3 We expand the TT

projection of h̃ij in terms of second-rank electric-parity and magnetic-parity tensor

spherical harmonics (T (e),lm
ij and T (b),lm

ij , respectively; see, e.g., [422]) as [195]

h̃TT
ij =

1

R

∑
l,m

[
Ulm(ũ)T

(e),lm
ij + Vlm(ũ)T

(b),lm
ij

]
. (6.5)

The sum runs over integer values of l and m with l ≥ 2 and −l ≤ m ≤ l. The

coefficients Ulm and Vlm are two sets of radiative multipole moments which are called

the mass and current moments, respectively. Because h̃TT
ij is real, the mass and

current moments satisfy the following properties under complex conjugation:

Ūlm = (−1)mUl,−m, V̄lm = (−1)mVl,−m . (6.6)

We use an overline to denote the complex conjugate.

We will also use the complex gravitational waveform h which is composed of the

plus and cross polarizations as follows:

h = h+ − ih× . (6.7)

We use the conventions for the polarization tensors e+
ij and e

×
ij given in [164] or [423]

to construct the polarizations h+ = hijTTe
+
ij and h× = hijTTe

×
ij. We expand h as in

3For compact binary sources, ι is the inclination angle between the orbital angular momentum
of the binary (assumed to be in the Z direction) and ϕ is the azimuthal angle as measured from the
X direction.
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terms of spin-weighted spherical harmonics sYlm with spin weight s = −2:

h =
∑
l,m

hlm(ũ)(−2Y lm) . (6.8)

For a non-spinning planar binary, the modes hlm are related to the mass and current

multipole moments by [195]

hlm =


1√
2R
Ulm (l +m is even) ,

− i√
2R
Vlm (l +m is odd) .

(6.9)

6.2.2 Waveform and metric in Bondi coordinates

We use (u, r, xA) to denote Bondi coordinates. The coordinate u is the retarded time,

r is an areal radius, and xA are coordinates on a 2-sphere cross sections of constant

u and r (where A = 1, 2). We expand λ as a series in 1/r as

λ(u, r, xA) = λ0 +
λ1

(
u, xA

)
r

+
λ2

(
u, xA

)
r2

+O(r−3) . (6.10)

The metric in Bondi gauge satisfies the conditions grr = 0, grA = 0, and the deter-

minant of the metric on the 2-sphere cross sections scaled by r−4 is independent of r

(and u). We imposed a set of aysmptotic boundary conditions on the nonzero com-

ponents of the metric in Bondi gauge in [82] and postulated a Taylor series expansion

of the scalar field and metric on the 2-sphere cross sections in 1/r. This allowed us

to solve the field equations of Brans-Dicke theory to obtain the following solution for
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the line element [82]:

ds2 = −

[
1 +

λ̇1

λ0

−1

r

(
2M+

λ1

λ0

+
3λ1

2λ2
0

λ̇1

)]
du2

−2

(
1− λ1

λ0r

)
dudr + r2

(
qAB +

1

r
cAB

)
dxAdxB

+

{
ðF cAF −

ðAλ1

λ0

+
1

r

[
−4LA +

1

3
cABðCcBC

− 1

3λ0

(2λ1ðBcAB + cABðBλ1 −
1

λ0

ðAλ2
1)

]}
dudxA + . . . . (6.11)

The ellipsis at the end of the equation indicates higher order terms in powers of 1/r

that we are neglecting (the terms are of order 1/r2 except for the term proportional to

dxAdxB, which is of order unity, because of the r2 term multiplying the expression).

In Eq. (6.11), we have introduced M and LA which are (related to) functions of

integration in Brans-Dicke theory that are the analogues of the Bondi mass aspect

and angular momentum aspect in GR [82]. The two-dimension metric qAB is the

unit-sphere metric and ðA is the covariant derivative compatible with qAB. We will

raise and lower 2-sphere indices (such as A and B) with the metrics qAB and qAB,

respectively. The overhead dot means a derivative with respect to the retarded time

u. The symmetric trace-free tensor cAB is called the shear tensor, and is related to

the GW strain. The time-derivative of cAB is a symmetric trace-free tensor known as

the news tensor:

NAB = ∂ucAB . (6.12)

It is not constrained by the asymptotic field equations in Brans-Dicke theory, and it

contains information about the tensor GWs. If the news tensor vanishes it means the
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corresponding region of spacetime contains no GWs [148].

We will also expand cAB in spherical harmonics as

cAB =
∑
l,m

(
c(e),lmT

(e),lm
AB + c(b),lmT

(b),lm
AB

)
. (6.13)

The tensor spherical harmonics can be defined from the scalar spherical harmonics

T
(e),lm
AB =

1

2

√
2(l − 2)!

(l + 2)!

(
2ðAðB − qABÐ2

)
Ylm , (6.14a)

T
(b),lm
AB =

√
2(l − 2)!

(l + 2)!
εC(AðB)ðCYlm , (6.14b)

or instead in terms of spin-weighted spherical harmonics and a complex null dyad on

the unit 2-sphere of mA and its complex conjugate m̄A (see, e.g., [422]):

T
(e),lm
AB =

1√
2

(−2YlmmAmB + 2Ylmm̄Am̄B) , (6.15a)

T
(b),lm
AB =− i√

2
(−2YlmmAmB − 2Ylmm̄Am̄B) . (6.15b)

The dyad is normalized such that mAm̄A = 1.

6.2.3 Relation between Bondi- and harmonic-gauge quantities

We construct a coordinate transformation between harmonic and Bondi gauges in

App. K, at the first order beyond the Minkowski background in a series in 1/R. The

procedure used is similar to that recently outlined in [424], but it is adapted to Brans-

Dicke theory (rather than GR) and it is accurate only to the first nontrivial order in

1/R. This coordinate transformation leads to a simple relationships between cAB and
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h̃TT
ij , first, and λ1 and Ξ, second:

cAB(u, xA) = R h̃TT
ij (t−R, yA)∂An

i∂Bn
j , (6.16)

λ1(u, xA) = Ξ(t−R, yA) . (6.17)

The spatial vector ~n is the unit vector pointing radially outward at fixed t in harmonic

coordinates (i.e., in the direction of propagation for outgoing GWs). The full transfor-

mation between the spherical polar coordinates R and yA = (ι, ϕ) constructed from

the quasi-Cartesian harmonic coordinates and Bondi coordinates is given in App. K;

we list here the relevant leading-order parts of the transformation needed to relate u

to t−R, r to R, and xA to yA in Eq. (6.16):

u = t−R− 2Mt

λ0

log(R) +O(R−1) , (6.18a)

xA = yA +O(r−2) , r = R +O(R0) , (6.18b)

where Mt is a constant which we will later consider as the total mass of the system.

The second-rank tensor spherical harmonics on the unit 2-sphere in spherical and

Cartesian coordinates are related by the following transformation:

T
(e),lm
AB = T

(e),lm
ij ∂An

i∂Bn
j , (6.19a)

T
(b),lm
AB = T

(b),lm
ij ∂An

i∂Bn
j . (6.19b)

Combining the expressions (6.5), (6.13), and (6.16), we find that the multipole mo-
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ments of the strain and shear are related by

c(e),lm = Ulm, c(b),lm = Vlm , (6.20)

as was given in [154] (though there the relationship was derived through a different

argument involving the Riemann tensor in linearized gravity). The relation (6.20)

allows us to express the multipole moments of the shear tensor in terms of multipole

moments of the harmonic-gauge TT strain tensor, once the difference between the

retarded times in harmonic and Bondi coordinates in Eq. (6.18a) is taken into account.

6.3 Post-Newtonian Radiative Multipole Moments

In this section, we compute expressions for the radiative multipole moments Ulm

and Vlm, as well as the scalar multipole moments which we will define herein. We

obtain the moments for nonspinning, quasicircular binaries. We denote the total

mass by Mt = m1 +m2 (where m1 and m2 are the individual masses), the symmetric

mass-ratio by η = m1m2/M
2
t , and orbital separation by r12. We also introduce the

parameters ξ = 1/(2 + ωBD) and x = (πMtf)2/3, where f is the GW frequency.

We will work in the approximation in which ξ � x, which corresponds to assuming

that BD modifications to the waveforms and the dynamics are small corrections to

the corresponding quantities in GR. Given that the Shapiro delay measurement in

the solar system bounds the BD parameter to be ωBD > 4 × 104 [209] (a similar

bound has been derived from the pulsar triple system PSR J0337+1715 [213]), this

implies that our approximation is valid when x � 2.5 × 10−5. In this work, we will
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compute GW memory waveforms at Newtonian order, and we keep BD terms that are

leading order in ξ; we then retain only the terms in the radiative multipole moments

at the appropriate powers of x and ξ to obtain Newtonian-order-accurate memory

waveforms.

We will need radiative mass and current multipole moments at a higher PN order

than those required for computing 0PN memory effects in GR. Specifically, in GR, one

only requires the mass quadrupole moment at 0PN orO(x) to obtain Newtonian-order

memory effects. In BD theory, we will need the BD correction to the mass quadrupole

moment. We will also need 1PN or O(x3/2) GR terms of the mass quadrupole mo-

ment since it can multiply −1PN terms present in GW phase or frequency evolution

to contribute to Newtonian-order memory effects. Other radiative multipole moments

that contain O(x3/2) terms are also required, which include current quadrupole, mass

octupole, and mass hexadecapole moments. BD corrections to O(x3/2) terms in ra-

diative multipole moments are not required, as Newtonian-order memory terms pro-

duced them would be higher order in ξ. As for scalar multipole moments, depending

on which combinations of moments can produce Newtonian-order memories, we will

need terms at O
(
x3/2

)
at most.

6.3.1 Radiative mass and current multipole moments

First, we present the real GW polarizations for l = 2, m = ±2 that is needed to

compute the radiative mass multipole moment U22. For GWs generated by a quasi-

circular nonspinning compact binary, the plus and cross polarizations of the leading-
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order quadrupolar GWs were computed in Ref. [87]. Specifically, they computed the

real GW polarizations from a superposition of l = 2, m = ±2 spin-weighted spherical

harmonic modes which are given by:

h
(2±2)
+ =

(
1− ξ

2

)
G2/3A(22)

GR,+(x, ι) cos[φp(x)] , (6.21a)

h
(2±2)
× =

(
1− ξ

2

)
G2/3A(22)

GR,×(x, ι) sin[φp(x)] , (6.21b)

The notation h(2±2)
+ and h(2±2)

× means the plus and cross polarizations associated with

only the l = 2, m = ±2 modes of the waveform. The quantities A(22)
GR,+ and A(22)

GR,×

are the amplitudes of plus and cross polarizations in GR for the l = 2, m = ±2

modes (the amplitudes for the m = ±2 modes are equal, which is why we drop the

superscript ±). The modified gravitational constant in BD theory is denoted by

G = 1− ξ(s1 + s2 − 2s1s2) , (6.22)

where s1 and s2 are the sensitivities (see, e.g., [399]) of the binary components. Be-

cause we work to linear order in ξ throughout this chapter, we find it convenient to

also write

G = 1− G , with G = ξ(s1 + s2 − 2s1s2) , (6.23)

as we will linearize powers of G in ξ (or equivalently G ). The GW phase is denoted

φp(x), and it differs from the phase of the l = 2, m = ±2 modes of the waveform in

GR; we give the expression for the phase in Eq. (6.37) below.

We now give an expression for U22 at 1PN and including the Newtonian-order
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Brans-Dicke correction linear in ξ. The complex strain h(2±2)
+ −ih(2±2)

× from Eqs. (6.21a)

and (6.21b) is proportional to the sum of the Newtonian order moment U22 [times

−2Y22(ι, 0)] plus U2,−2 [times −2Y2,−2(ι, 0)]. One can then obtain the mode U22 by

performing the overlap integral of the complex strain with a spin weighted spherical

harmonic. This gives the Newtonian-order U22 mode in BD theory. However, we will

also need the 1PN corrections to the amplitude of U22 in the GR limit (we do not

need the BD terms linear in ξ at 1PN). We use the 1PN GR terms from the review

article [195]. Putting these two results together, we have the following expression for

U22:

U22 = − 8

√
2π

5
ηMtx e

−iφp
[(

1− ξ

2
− 2

3
G

)
+

(
55η

42
− 107

42

)
x

]
. (6.24a)

The term proportional to x in the square bracket is the 1PN GR term taken from [195].

As we will explain in section 6.4, to compute the GW memory waveform at New-

tonian order, we need the radiative current quadrupole moment and a subset of the

radiative mass octopole and hexadecapole moments. To work to linear order in ξ,

we can use the GR amplitudes of the moments (though we use the BD phase). This

allows us to take the amplitudes from the expressions given, e.g., in the review [195]:

V21 =
8

3

√
2π

5
ηδmx3/2e−iφp/2 , (6.24b)

U33 = 6i

√
3π

7
ηδmx3/2e−3iφp/2 , (6.24c)

V32 = i
8

3

√
π

14
Mtη(1− 3η)x2e−iφp , (6.24d)
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U31 = −2i

3

√
π

35
ηδmx3/2e−iφp/2 , (6.24e)

U42 = − 8

63

√
2πMtη(1− 3η)x2e−iφp , (6.24f)

We use the notation δm = (m1 −m2).

6.3.2 Kepler’s law, frequency evolution, and GW phase

Let us first give an expression for Kepler’s law, which we will need to compute the

scalar multipole moments and the frequency evolution. To obtain a Newtonian-order

accurate GW memory waveform, it is necessary to have an expression for Kepler’s

law at 1PN order. This higher order is needed, because when evaluating the integrals

involved in computing the GW memory effect, there are −1PN terms arising from

dipole radiation in the energy flux, which multiply 1PN terms in Kepler’s law that

give rise to Newtonian-order terms in the waveform. The two-body equations of

motion of non-spinning compact objects in Brans-Dicke theory has been computed in

Ref. [425]. For circular orbits, the relative acceleration is proportional to the orbital

frequency squared, Ω2, and the relative separation to 1PN order. Working to linear

order in ξ, the results of Eqs. (1.4) and (1.5a) of [425] show that Kepler’s law in BD

theory (in this approximation) is

Ω2 =
Mt

r3
12

[
1− G − Mt

r12

(1− 2G ) (3− η)− Mt

r12

Gγ̄
]

+O(ξ2) . (6.25)

We have introduced the parameter

γ̄ = −G−1ξ (1− 2s1) (1− 2s2) , (6.26)
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in the equation above and G is defined in Eq. (6.22).

Let us next compute the evolution of the GW frequency, ḟ . We again need a 1PN-

order-accurate expression, which turns out to contain many terms. Because we work

to linear order in ξ, the only 1PN terms that we need to obtain a Newtonian-order

expression for the GW memory waveforms are the 1PN GR terms in ḟ (i.e., the 1PN

terms without ξ).4 We can then write the expression for ḟ = df/dt in the following

form:

ḟ = ḟ0 + ḟ1,GR , (6.27)

where ḟ0 is the BD expression to Newtonian order and linear order in ξ, and ḟ1,GR is

ξ = 0 (or GR) limit of the 1PN terms. We first compute ḟ0 using results from [425],

and then we add to it the terms ḟ1,GR taken from [426]. To compute ḟ0, we first use

the binding energy of a binary in BD theory from Eq. (6.14) of [425], which is valid

to 1PN order:

Eb =
1

2
µv2 − µGMt

r12

+
3

8
µ(1− 3η)v4 +

1

2
µ
GMt

r12

(3 + 2γ̄ + η)v2

+
1

2
µ(1− 2G )

(
Mt

r12

)2

+O(ξ2) . (6.28)

We linearized the expression in ξ and we used µ = ηMt to denote the reduced mass.

We will next express the binding energy in terms of the PN parameter x; to do this
4The −1PN term that multiplies the 1PN term in this calculation is linear in ξ, which implies

that the BD modification to ḟ at 1PN enters at higher order in ξ in the GW memory waveforms.
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it is useful to have the expressions for Mt/r12 and v2 written in terms of x:

Mt

r12

= x

[
1 +

1

3
G +

(
1− 1

3
G

)(
1− 1

3
η

)
x+

1

3
Gγ̄x

]
+O(ξ2, x3) , (6.29a)

v =
√
x

[
1− 1

3
G − (1− G )

(
1− 1

3
η

)
x− 1

3
Gγ̄x

]
+O(ξ2, x5/2) , (6.29b)

We can then substitute Eq. (6.29) into Eq. (6.28) to obtain

Eb = −1

2
µx

[
1− 2

3
G − 1

12

(
1− 4

3
G

)
(9 + η)x− 2

3
Gγ̄x

]
+O(ξ2, x3) . (6.30)

The rate of change of energy radiated in GWs in BD theory through Newtonian

order is given by a −1PN term plus a Newtonian term. If we define

S = s1 − s2 (6.31)

and we make use of expressions (6.16) and (6.19) given in [425], then linearizing their

expression in ξ, we have

ĖGW =
32

5
η2x5

[
5ξS2

48x
+ 1− 7

3
G +

5

12
Gγ̄ − 5

72
ξS2(3 + 2η)

]
+O(ξ2, x6) . (6.32)

Imposing energy balance Ėb = −ĖGW (the change in the binding energy is equal

to the energy radiated by the GWs) and using the chain rule to write ḟ = (df/dEb)Ėb,

we can write the Newtonian-order frequency derivative ḟ0 as a function of the PN

parameter x as

ḟ0 =
96η

5πM2
t

x11/2

[
1 + ξ

(
5S2

48x
+ F

)]
+O(ξ2) , (6.33)
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where

F =− 5

12
− 5

6
(s1 + s2) +

5

144
(51 + 7η)s1s2 −

5

288
(3 + 7η)(s2

1 + s2
2) . (6.34)

Finally, including the GR frequency evolution at 1PN [426] to ḟ0, we find

ḟ =
96ηx11/2

5πM2
t

[
1 + ξ

(
5S2

48x
+ F

)
−
(

743

336
+

11

4
η

)
x

]
. (6.35)

We previously introduced a waveform phase variable φp, which we will now com-

pute explicitly. For computing the GW memory waveforms, we will again need an

expression for the GW phase through 1PN order; however, because we are working

to linear order in ξ, we will only need the terms without ξ at 1PN order in the phase

(analogously to our calculation of ḟ). The GW phase is typically obtained by inte-

grating the GW frequency with respect to time from some appropriate starting time.

For calculations of the GW memory waveform, it is more useful to write the phase

as a function of x = (πMtf)2/3; then by using the chain rule, we can write the time

integral of the frequency in terms of an integral with respect to the PN parameter x

as follows:

φp(x) = 2π

∫ x

xi

f

ḟ

df

dx′
dx′ , (6.36)

where the frequency f and the derivatives ḟ and df/dx are functions of x. We have

also introduced an initial PN parameter xi that should be greater than ξ, so that our

approximation of ξ � x holds. From ḟ in Eq. (6.35), the GW phase at the desired
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order can be computed as

φp(x)− φp,0 = − 1

16ηx5/2

[
1− ξ

(
F +

25S2

336x

)
+

5

3

(
x− 1

8
ξS2

)(
743

336
+

11

4
η

)]
+O(ξ2, x−1/2) .

(6.37)

We defined a constant φp,0, the phase at coalescence, which is chosen such that the

phase at xi vanishes [i.e., φp(xi) = 0]. The terms in the second line of Eq. (6.37)

come from the product of a −1PN term multiplying a +1PN term, which produces a

Newtonian-order effect on the phase (specifically, this arises because of dipole radia-

tion in BD theory, which allows for −1PN order effects).

6.3.3 Scalar Multipole Moments

We will expand λ1 in terms of the scalar spherical harmonics and the corresponding

multipole moments λ1(l,m):

λ1 =
∑
l,m

λ1(lm)Y
lm . (6.38)

Specifically, we give expressions for the scalar moments λ1(1,1), λ1(2,2) and λ1(3,1) in

terms of the PN parameter x, which we will then use to derive the tensor GW memory

effects sourced by the fluxes of the scalar field. These three moments are those needed

to compute the GW memory effects at Newtonian order. The relevant part of the

scalar field λ1 had been computed previously in [180,399], and we give the expression
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to 1PN order above the leading dipole radiation, and to linear order in ξ:

λ1 = ηMtλ0ξ

{[
−2S +

Mt

2r12

(
3Γ
δm

Mt

+ 10Sη

)]
vin

i

+Γ

[
(vin

i)2 − Mt

r12

(ni12ni)
2

]
− (Γ

δm

Mt

+ 2ηS)

×
[
(vin

i)3 − 7

2

Mt

r12

(vin
i)(ni12ni)

2

]}
. (6.39)

Above we introduced the quantity

Γ = 1− 2(m1s2 +m2s1)/Mt , (6.40)

the unit vector ni pointing radially outward in the direction of the GW’s propagation,

the unit separation vector ni12 between the binary’s components, and the relative

velocity vector vi = vi1−vi2 of the binary’s masses. In terms of ι and ϕ (the polar and

the azimuthal angles, respectively, in the center-of-mass frame of the binary) and the

GW phase φp, the two unit vectors and the relative velocity vector take the form

ni = (sin ι cosϕ, sin ι sinϕ, cos ι) , (6.41a)

ni12 = {cos[φp(u)/2], sin[φp(u)/2], 0} , (6.41b)

vi = {−v sin[φp(u)/2], v cos[φp(u)/2], 0} . (6.41c)

For the magnitude of the velocity, v, we need only the GR expression (zeroth-order

in ξ) at 1PN order in x, because λ1 is already linear in ξ:

v =
√
x

[
1− 1

3
(3− η)x

]
. (6.42)
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We wrote the phase as φp(u) [short for φp[x(u)], which is given in Eq. (6.37), to

emphasize its retarded time dependence. The multipole moments can be extracted

through the overlap integral

λ1(lm) =

∫
d2Ωλ1Y

∗
lm(ι, ϕ) . (6.43)

Using Eqs. (6.38)–(6.41) and Kepler’s law in Eq. (6.25), we find that the harmonic

components of λ1 can be written as

λ1(11) =− 2i

√
2π

3
λ0ξηMt

√
xe−iφp/2

{
S − x

15

[
12Γ

δm

Mt

+ S (15 + 34η)

]}
, (6.44a)

λ1(22) =− 2

√
2π

15
λ0ξΓηMtxe

−iφp , (6.44b)

λ1(31) =− i

10

√
π

21
λ0ξ

(
Γ
δm

Mt

+ 2ηS

)
ηMtx

3/2e−iφp/2 . (6.44c)

Equations (6.24) and (6.44) are all the sets of radiative moments that we will need

to compute the GW memory effects in the next section.

6.4 Memory Effects

In this section, we compute the displacement and spin GW memory effects produced

by a quasi-circular compact-binary inspiral. The displacement and spin memory

effects are both constructed from the shear tensor cAB, and they have sky patterns

with different parities. It is then useful to first decompose the shear tensor into

electric- and magnetic-parity parts as follows:

cAB =
1

2
(2ðAðB − qABÐ2)Θ + εC(AðB)ðCΨ , (6.45)
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where Ð2 ≡ ðAðA is the Laplacian on the unit 2-sphere. We compute the displacement

and spin GW memory effects using the BMS flux-charge balance laws that were

computed in Brans-Dicke theory in [82]. We focus on the nonlinear GW memory

effects and the null memory associated with the stress-energy tensor of the scalar

waves. These effects can be computed using low PN-order oscillatory waveforms and

the BMS balance laws, whereas if one were to try to compute them directly through

the relaxed Einstein equations in harmonic gauge, one would need to compute the

gravitational waveform at a higher PN order in BD theory than has been completed

thus far. We also argue that the ordinary parts of the GW memory effects are of a

higher PN order than the nonlinear and null parts in Appendix L.

6.4.1 Spherical harmonics and angular integrals

We will compute multipole moments of the GW memory effects, starting from the

oscillatory tensor and scalar waves expanded in terms of the multipole moments in

Eqs. (6.24) and (6.44), respectively. Evaluating these multipole moments involves

computing angular integrals involving products of three spherical harmonics of differ-

ent types (scalar, vector, and tensor). We instead follow the strategy in, e.g., [152,154],

in which the vector and tensor harmonics are recast in terms of spin-weighted spher-

ical harmonics. The angular integrals then involve products of three spin-weighted

spherical harmonics (we use the conventions for the spherical harmonics in [154]).

We also use the notation for the integral of three spin-weighted spherical harmonics
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in [152]

Bl(s′, l′,m′; s′′, l′′,m′′) ≡∫
d2Ω (s′Yl′m′)(s′′Yl′′m′′)(s′+s′′Ȳl(m′+m′′)) , (6.46)

which can be written in terms of Clebsch-Gordan coefficients (denoted by 〈l′,m′; l′′,m′′|l,m′+

m′′〉) as was shown, e.g., in [427] (though using the conventions of [154]):

Bl(s′, l′,m′; s′′, l′′,m′′) = (−1)l+l
′+l′′

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)

×〈l′, s′; l′′, s′′|l, s′ + s′′〉〈l′,m′; l′′,m′′|l,m′ +m′′〉 . (6.47)

The multipolar expansion of the nonlinear memory effects in terms of the radiative

moments Ulm and Vlm have the same form as in GR, which is given in [154]. However,

we will need to perform a new multipolar expansion of the null memory effects from

the stress-energy tensor of the scalar field. For this expansion, we will need the vector

spherical harmonics

T
(e),lm
A =

1√
l(l + 1)

ðAYlm , (6.48a)

T
(b),lm
A =

1√
l(l + 1)

εABðBYlm . (6.48b)

In terms of the spin-weighted spherical harmonics and a complex dyad mA on the

unit 2-sphere, we can write the vector spherical harmonics as

T
(e),lm
A =

1√
2

(−1YlmmA − 1Ylmm̄A) , (6.49a)

T
(b),lm
A =

i√
2

(−1YlmmA + 1Ylmm̄A) , (6.49b)
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where mAmA = m̄Am̄A = 0 and mAm̄A = 1.

6.4.2 Displacement memory effects

Supermomentum conservation requires that the change in the “potential” Θ that

produces the electric part of the shear tensor, ∆Θ, must have its change between two

retarded times and satisfy the following relationship [82]:

∫
d2ΩαÐ2(Ð2 + 2)∆Θ =

∫
du d2Ωα

[
NABN

AB +
6 + 4ωBD

(λ0)2
(∂uλ1)2

]
+ 8

∫
d2Ωα

(
∆M− 1

4λ0

Ð2∆λ1

)
. (6.50)

The supermomentum is conserved charge conjugate to a supertranslation BMS sym-

metry, and α(xA) is the function that parametrizes the supertranslation symmetry.

The first two terms inside the square brackets on the right-hand side of Eq. (6.50)

produce the null memory (i.e., the memory sourced by massless fields) and the first

term is the nonlinear (Christodoulou) memory. Both ∆M and Ð2∆λ1 generate or-

dinary memory [82], but we argue in App. L that the ordinary memory is a higher

PN-order effect. We will then focus on only the null memory, and we will derive

separately the contributions of the tensor energy flux and the scalar energy flux. We

denote the nonlinear (tensor) part by ∆ΘT and the null part from the scalar field by

∆ΘS; the full memory effect is then the sum of the two components:

∆Θ = ∆ΘT + ∆ΘS . (6.51)

While ∆Θ is the quantity most straightforwardly constrained by supermomentum
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conservation, it is the change in the strain ∆h that is the more commonly used

gravitational-wave observable. It is thus useful to relate the potential ∆Θ to the

strain. To do this, we will first introduce the following notation for just the electric

part of the change in the shear, ∆cAB:

∆cAB,(e) =
1

2
(2ðAðB − qABÐ2)∆Θ . (6.52)

We expand ∆Θ in scalar spherical harmonics

∆Θ =
∑
l,m

∆ΘlmY
lm(ι, ϕ) , (6.53)

where l ≥ 2 (and −l ≤ m ≤ l), because the l ≤ 1 harmonics are in the kernel of

the operator 2ðAðB − qABÐ2. By substituting (6.53) into Eq. (6.52) and using the

definition of T (e),lm
AB in Eq. (6.14a), we can relate ∆Θlm to ∆c(e),lm via Eq. (6.13),

∆c(e),lm =

√
(l + 2)!

2(l − 2)!
∆Θlm . (6.54)

The above equation will be necessary when we construct the waveform from ∆Θlm.

Specifically, we can compute the waveform by combining Eqs. (6.9), (6.20), and (6.54)

in Eq. (6.8) to obtain

∆h(disp) =
1√
2R

∑
l,m

√
(l + 2)!

2(l − 2)!
∆Θlm −2Y lm . (6.55)

We will denote the memory waveform ∆hdisp as a sum of the tensor-sourced, ∆hdisp,T,

and scalar-sourced ∆hdisp,S constributions as follows:

∆hdisp = ∆hdisp,T + ∆hdisp,S . (6.56)
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We first compute ∆hdisp,T followed by ∆hdisp,S.

6.4.2.1 Displacement memory effect sourced by the tensor energy flux

The contribution to ∆Θ from the tensor energy flux in Eq. (6.50) has the same form

as in GR,

Ð2(Ð2 + 2)∆ΘT =

∫ uf

ui

duα(xC)NABN
AB , (6.57)

but there is a subtlety related to the limits of integration (ui and uf ) in the retarded-

time integral over u. Because we work in an approximation in which ξ � x, the

lower limit ui must start at a PN parameter xi for which xi � ξ. This differs from

the corresponding convention in GR, in the limit ui → −∞ is often taken. The

upper limit, uf is a retarded time at which the corresponding PN parameter xf , is

sufficiently large that the PN approximation (at the order at which we work) becomes

inaccurate.

The multipolar expansion of ∆ΘT proceeds exactly as in GR (and we note just a

few features of the calculation here; see [154] for further details). We can first replace

the function α(xC) with the scalar spherical harmonic Ȳlm and then use Eqs. (6.12),

(6.13), (6.15), and (6.53) and the form of the result for the moments ∆ΘT
lm in terms

of the radiative moments U̇lm and V̇lm is the same as that derived in GR in [154]:

∆ΘT
lm =

1

2

(l − 2)!

(l + 2)!

∑
l′,l′′,m′,m′′

Bl (−2, l′,m′; 2, l′′,m′′)

×
∫ uf

ui

du
[
s
l,(+)
l′;l′′

(
U̇l′m′U̇l′′m′′ + V̇l′m′V̇l′′m′′

)
+ 2is

l,(−)
l′;l′′ U̇l′m′V̇l′′m′′

]
.(6.58)
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We however, introduced the coefficients

s
l,(±)
l′;l′′ = 1± (−1)l+l

′+l′′ (6.59)

that were used in [152] to make the notation more compact. As in [154], the sum

runs over l′, l′′ ≥ 2 and l must be in the range |l′ − l′′| ≤ l ≤ |l′ + l′′| so that the

coefficients Bl(−2, l′,m′; 2, l′′,m′′) given in Eq. (6.47) are nonzero. One must also have

m = m′ +m′′ for the coefficients Bl(−2, l′,m′; 2, l′′,m′′) to be nonzero.

Because we focus on the leading GWmemory effects in the non-oscillatory (m = 0)

part of the waveform, this will further restrict m′ and m′′ to have equal magnitudes

and opposite signs: m′ = −m′′. While the abstract expression for ∆ΘT
lm in terms

of radiative multipole moments has exactly the same form as that in GR, the time-

derivatives of the radiative multipole moments U̇l′m′ and V̇l′m′ in BD theory differ

from the corresponding moments in GR. This leads to a number of order ξ terms in

the expression for the GW memory effect that we will give below.

Next, we will summarize how we compute the memory waveforms, including which

radiative multipoles we need and at what PN-order accuracy we require these multi-

pole moments. For concreteness, let us first focus on products of the mass moments

U̇l′m′U̇l′′m′′ in Eq. (6.58). We perform the integral over u by using the chain rule to

recast the integral over u in terms of an integral over x

∫
duU̇l′m′U̇l′′m′′ =

∫
d

dx
Ul′m′

d

dx
Ul′′m′′ẋdx , (6.60)

as was outlined in, e.g., [164] [the integrals for the other products of radiative moments
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in Eq. (6.58) are evaluated similarly]. In GR, the Newtonian-order memory waveform

can be calculated from just Ul′m′ = U22 and Ul′′m′′ = U2,−2 (and similarly Ul′m′ = U2,−2

and Ul′′m′′ = U22), with U22 evaluated at Newtonian order, as well. In BD theory,

however, both ẋ and dφp
dx

(the latter term coming from dUlm
dx

) have contributions from

the dipole moments of the scalar field, and these effects enter at a −1PN order relative

to the GR result (and they are proportional to ξ). To obtain the full result at the

Newtonian order requires the 1PN contributions to U22, ẋ and dφp
dx

. Because the −1PN

terms of ẋ and dφp
dx

are proportional to ξ, we only need the parts of the 1PN terms in

U22, ẋ and dφp
dx

that are independent of ξ to compute ∆ΘT
lm. Hence, the BD corrections

to the 1PN terms in Eqs. (6.24a), (6.35) and (6.37) were not given. The −1PN term

in ẋ also requires that we compute the part of the GW memory waveform sourced by

products of the other radiative multipole moments in Eq. (6.24) (specifically V21, U31,

U33, U42 and their complex conjugates) to obtain a Newtonian-order-accurate result;

in GR, these moments all source higher PN corrections to the GW memory effect.

Considering the radiative multipoles described above, we can then compute the

GW memory moments ∆ΘT
l0 from Eq. (6.58). Because the memory is electric-type,

only even lmoments are nonvanishing. When written in terms of the relevant radiative

moments Ulm and Vlm, the ∆ΘT
l0 are given by

∆ΘT
20 =

1

168

√
5

π

∫ uf

ui

du
(

2|U̇22|2 − |V̇21|2 +
√

7=
[√

2 ˙̄U31V̇21 +
√

5 ˙̄U22V̇32

]
+
√

5<
[

˙̄U42U̇22

])
, (6.61a)
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∆ΘT
40 =

1

23760
√
π

∫ uf

ui

du

(
11

7
|U̇22|2 −

44

7
|V̇21|2 − 21|U̇33|2 − 7|U̇31|2

+
324
√

5

7
<
[

˙̄U42U̇22

]
+

22√
7
=
[
2
√

5 ˙̄U22V̇32 + 5
√

2 ˙̄V21U̇31

])
, (6.61b)

∆ΘT
60 =− 1

36960
√

13π

∫ uf

ui

du
(
|U̇33|2 + 15|U̇31|2 − 4

√
5<
[

˙̄U42U̇22

])
. (6.61c)

Next, we use Eqs. (6.24a), (6.24b)–(6.24f), and (6.35)–(6.37) to perform the integral

over u and to write the moments in terms of x. With the identity (δm/Mt)
2 = 1−4η,

we can write the moments as

∆ΘT
20 =

2
√

5π

21
Mtη∆x

{
1− 4

3
G − 5ξS2

48∆x
ln

(
xf
xi

)
−ξ
[
1 + F + S2

(
1915

96768
+

665η

1152

)]}
, (6.62a)

∆ΘT
40 =

√
π

1890
Mtη∆x

{
1− 4

3
G − 5ξS2

48∆x
ln

(
xf
xi

)
−ξ
[
1 + F + S2

(
−737045

709632
+

143395η

25344

)]}
, (6.62b)

∆ΘT
60 = −

√
π

13

5MtηS
2ξ∆x

178827264
(−839 + 3612η) . (6.62c)

We use the notation ∆x = xf − xi, where xi and xf correspond to the PN parameter

x evaluated at an early time ui and a final time uf during the inspiral, respectively.

The terms outside the curly braces in Eq. (6.62) in the expressions for ∆ΘT
20 and

∆ΘT
40 are equal to the equivalent results in GR.

Finally, we will construct the displacement memory waveform from the ∆Θl0 in

Eq. (6.62). To do this, it is helpful to have the expressions for the spin-weighted
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spherical harmonics

−2Y20(ι, ϕ) =
1

4

√
15

2π
sin2 ι , (6.63a)

−2Y40(ι, ϕ) =
3

16

√
10

π
sin2 ι(7 cos2 ι− 1) , (6.63b)

−2Y60(ι, ϕ) =
1

64

√
1365

π
sin2 ι(33 cos4 ι− 18 cos2 ι+ 1) . (6.63c)

Substituting Eqs. (6.62) and (6.63) into Eq. (6.55), we obtain the displacement mem-

ory waveform due to the tensor energy flux in BD theory. We find the waveform only

contains the plus polarization, and at Newtonian order, it is given by

∆h
(disp,T)
+ =

ηMt∆x

48R
sin2 ι(17 + cos2 ι)

[
1− 4

3
G − 5ξS2

48∆x
ln

(
xf
xi

)
− ξ(1 + F )

−ξS2

(
81145

73728
− 65465

18432
η

)
+ ξS2

(
20975

172032
− 1075

2048
η

)
cos2 ι

]
+
MtηS

2ξ∆x

R
sin2 ι

(
783875

2064384
− 35575

24576
η

)
. (6.64)

The expression in front of the square brackets on the first line of Eq. (6.64) is the same

as the Newtonian-order waveform for the memory effect in GR. The terms within

the square bracket highlight a number of corrections introduced into the memory

waveform amplitude in BD theory. These include effects related to the change in the

amplitude of the l = 2, m = ±2 modes (the ξ and G terms) and changes in the

frequency evolution (the F term). In particular, there is a change in the scaling of

the memory with the PN parameter that is proportional to ln(xf/xi), which arises

because of scalar dipole radiation. At the end of the first and on the second line

of Eq. (6.64) are a number of terms arising from 1PN-order products of multipole
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moments coupling to the −1PN term in the frequency evolution (or ẋ); the terms on

the second line lead to a small (order ξ) difference to the sky pattern of the memory

effect between BD theory and GR.

6.4.2.2 Displacement memory effect sourced by the scalar energy flux

The displacement memory effect also has a contribution from the integral of the

energy density radiated through scalar radiation. Its effect can be computed from the

terms proportional to (∂uλ1)2 in Eq. (6.50):

Ð2(Ð2 + 2)∆ΘS =
6 + 4ωBD

(λ0)2

∫ uf

ui

(∂uλ1)2du . (6.65)

Expanding λ1 and ∆ΘS in scalar spherical harmonics as in Eqs. (6.38) and (6.53),

respectively, we can determine the multipole moments ∆ΘS
lm in terms of the multipole

moments λ1(lm) and the integrals of three spherical harmonics defined in Eq. (6.46).

The result is

∆ΘS
lm =

(l − 2)!

(l + 2)!

6 + 4ωBD

(λ0)2

∑
l′,m′,l′′,m′′

Bl(0, l
′,m′; 0, l′′,m′′)

∫ uf

ui

du λ̇1(l′m′)λ̇1(l′′m′′),(6.66)

where l ≥ 2 and l′, l′′ ≥ 1 (and m, m′, and m′′ must satisfy m+m′+m′′ = 0). Because

λ1 is proportional to ξ, one might be concerned that ∆ΘS will be an O(ξ2) effect and

be negligible in our approximation. Note, however, that 3 + 2ωBD = 2/ξ − 1, which

implies that ∆ΘS is an O(ξ) effect, which means that the integrand can be one order

higher in ξ and still produce an effect at linear order in ξ.

We will now discuss which scalar multipole moments contribute to the displace-
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ment memory waveform and the accuracies at which we need the different moments

to obtain a Newtonian-order accurate memory waveform at linear order in ξ. The

1PN scalar multipole moments λ1(lm) that are computed from Eq. (6.39) are at least

O(ξ); thus, to linear order in ξ, we can treat 6 + 4ωBD as 4/ξ. We will evaluate the

integral over u in Eq. (6.66) by converting it to an integral over x (as was done in

Sec. 6.4.2.1), but unlike in Sec. 6.4.2.1 we need to keep only the GR contribution in

ẋ, which scales as x5. Similarly, when computing dφp/dx, we again need to retain

just the GR contribution that goes as x−7/2. The scalar field has a radiative dipole

moment, which from Eq. (6.44a), goes as x−1/2. The leading-order part of the in-

tegrand (proportional to λ̇1(11)λ̇1(1,−1)) scales as 1/x rather than O(x0) as in GR; in

this sense, the integrand is a −1PN order.5 This product of dipole terms will also

contribute to the waveform at 0PN order because of the O(x3/2) terms in λ1(11); see

Eq. (6.44a). To work to linear order in ξ, we do not need to go to a higher PN order

for λ1(11). Similar arguments show that the remaining scalar moments in Eq. (6.44)

(namely, λ1(22) and λ1(31)) are the ones that are needed to compute Newtonian-order

accurate moments of ∆ΘS
l0.

We then first list the integrals of the relevant moments λ1(lm) that contribute to

5Note, however, when the integrand is integrated, it will again give rise to a logarithm in x rather
than being proportional to x, as in GR. We will refer to this effect sometimes as a −1PN term, since
it comes from such an effect in the integrand, and since log terms do not enter into the PN order
counting of a term.
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the scalar-sourced part of the tensor memory at Newtonian order:

∆ΘS
20 =− 1

42
√

5πλ2
0ξ

∫ uf

ui

du

(
7|λ̇1(11)|2 + 10|λ̇1(22)|2 − 6

√
14<

[
λ̇1(11)

˙̄λ1(31)

])
,

(6.67a)

∆ΘS
40 =

1

630
√
πλ2

0ξ

∫ uf

ui

du

(
|λ̇1(22)|2 − 2

√
14<

[
λ̇1(11)

˙̄λ1(31)

])
. (6.67b)

As we did with the the memory sourced by the tensor energy flux, we first substitute

the expressions for the scalar moments in Eq. (6.44) into Eq. (6.67) and evaluate the

integrals in terms of x by using Eqs. (6.35)–(6.37). This gives the following results

∆ΘS
20 =− Mtηξ

√
5π

144

{
S2 ln

(
xf
xi

)
+ ∆x

[
8

7
Γ2 − 23

14
SΓ

δm

Mt

+ S2

(
71

336
− 157

84
η

)]}
,

(6.68a)

∆ΘS
40 =

Mtηξ
√
π

30240

(
8Γ2 − Γ

δm

Mt

+ 2S2η

)
. (6.68b)

We then substitute the equations into Eq. (6.55) and with the expressions for the

spin-weighted spherical harmonics in Eq. (6.63), we arrive at the following equation

for the displacement memory waveform sourced by the scalar energy flux:

∆h
(disp,S)
+ =− 5ηMtξ

192R
sin2 ι

{
S2 ln

(
xf
xi

)
+ ∆x

[
6

5
Γ2 − 33

20
SΓ

δm

Mt

+S2

(
71

336
− 113

60
η

)
− 1

20

(
8Γ2 − SΓ

δm

Mt

− 2S2η

)
cos2 ι

]}
. (6.69)

There are terms in Eq. (7.2e) of [179] which, after performing the integration over time

in our approximation, produce a −1PN term in the waveform; this term agrees with

the first line of Eq. (6.69). The Newtonian-order terms require going to a higher PN
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order than was computed in [179], but the BMS balance laws allow us to determine

this expressions.

Because the total GW memory ∆hdisp is a sum of the scalar and tensor contri-

butions, as given in Eq. (6.56), then the scalar-sourced contribution will produce an

additional correction to the amplitude and the sky pattern beyond the corrections

given in Eq. (6.64) for the tensor-sourced part of the memory effect.

6.4.3 Spin GW memory effect

The spin memory effect is a lasting offset in the time integral of the magnetic part of

the shear tensor. It can be constrained through the evolution equation for the Bondi

angular momentum aspect, or equivalently the magnetic part of the flux of the super

Lorentz charges. To compute the spin memory effect, it is helpful to denote the time

integral of the potential Ψ, which gives rise to the magnetic part of cAB in Eq. (6.45),

as ∆Σ:

∆Σ =

∫
Ψdu . (6.70)

We leave off the limits of integration for convenience here, though we will restore these

limits below when we compute the spin memory in the PN limit. The generalized

BMS balance law for the super angular momentum was given in [82], and analogously

to the computation in GR (see, e.g., [153]), a term involving Eq. (6.70) was needed

to ensure the balance law was satisfied and the charge was constructed from fields

defined locally in time on a cut of constant Bondi coordinate u. The form of the
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balance law can be written as follows:

∫
d2Ω γÐ2(Ð2 + 2)∆Σ = −64π

λ0

(
∆Q(γ) + ∆J(γ)

)
, (6.71a)

where Y A = εABðBγ is a smooth, magnetic-parity vector field on the 2-sphere and

where we have defined

∆J(γ) =
λ0

64π

∫
du d2Ω εADðDγ

[
ðA(cBCN

BC) + 2NBCðAcBC − 4ðB(cACN
BC)

+
4ωBD + 6

(λ0)2
(∂uλ1ðAλ1 − λ1ðA∂uλ1)

]
, (6.71b)

∆Q(γ) =
λ0

8π

∫
d2Ω εADðDγ

[
−3∆LA −

1

4λ0

∆(cABðBλ1 − λ1ðBcAB)

]
. (6.71c)

The net flux is denoted by ∆J(γ), the change in the charges is denoted by ∆Q(γ),

and the left-hand side of Eq. (6.71a) (which is related to the spin memory effect)

is the additional term required for the balance law to be satisfied. Analogously to

the displacement memory, the contribution of ∆Q(γ) to Eq. (6.71a) is referred to as

ordinary spin memory, and ∆J(γ) is the null spin memory (which contains a nonlinear

part). We will focus on the null contribution to Eq. (6.71a) here, as we argue in

App. L that the ordinary contribution to the spin memory is likely to be a higher PN

effect than the null memory is.

As we did with the change in ∆Θ related to the displacement memory effect, we

will split ∆Σ into a sum of its contributions from the the tensor- and scalar-sourced
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parts of the angular momentum flux. We denote these two contributions by

∆Σ = ∆ΣT + ∆ΣS . (6.72)

We compute these two contributions separately below.

In addition, while the spin-weight-zero quantity ∆Σ is the most convenient quan-

tity to compute from the balance law (6.71a), the shear cAB or strain h are the more

commonly used quantities in gravitational waveform modeling and data analysis. We

thus relate ∆Σ to a time integral of the shear; specifically, we denote the change in

the time integral of the magnetic-parity part of the shear tensor by

∫
cAB,(b)du = εC(AðB)ðC∆Σ . (6.73)

Expanding ∆Σ in terms of scalar spherical harmonics

∆Σ =
∑
l,m

∆ΣlmY
lm (ι, ϕ) (6.74)

(with l ≥ 2 and −l ≤ m ≤ l), then we can relate the multipole moments ∆Σlm

to the time integrals of the radiative current moments Vlm via Eqs. (6.73), (6.14b),

and (6.13). The result is that

∫
Vlmdu =

√
(l + 2)!

2(l − 2)!
∆Σlm . (6.75)

Equation (6.75) allows us to compute the time integral of the strain from ∆Σlm.
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6.4.3.1 Spin memory effect sourced by the tensor angular momentum
flux

The null part of the spin memory effect in Eqs. (6.71a) and (6.71b), that is sourced

by the tensor GWs can be computed from the following expression:

∫
d2Ω γÐ2(Ð2 + 2)∆ΣT =

∫ uf

ui

du d2Ω εADðDγ
[
ðA(cBCN

BC)

+2NBCðAcBC − 4ðB(cACN
BC)

]
. (6.76)

It has the same form as the analogous expression in GR. It can then be recast into

the same form as in Eq. (3.23) of [153] by using the identities in Appendix C of [153].

This expression was then the starting point for the multipolar expansion of the spin

memory effect given in [154]. We reproduce the result from [154] below; however, we

first introduce, in addition to sl,(±)
l′;l′′ in Eq. (6.59), the following coefficient (defined

in [152]) to make the expression more concise:

cll′m′;l′′m′′ = 3
√

(l′ − 1) (l′ + 2)Bl (−1, l′,m′; 2, l′′,m′′) +√
(l′′ − 2) (l′′ + 3)Bl (−2, l′,m′; 3, l′′,m′′) . (6.77)

The expression for the moments ∆Σlm can then be derived through a lengthy calcu-

lation outlined in [154], and the result is given by

∆ΣT
lm =

1

4
√
l(l + 1)

(l − 2)!

(l + 2)!

×
∑
l′,l′′,
m′,m′′

cll′m′;l′′m′′

∫ uf

ui

du
[
is
l,(−)
l′;l′′

(
Ul′m′U̇l′′m′′ − U̇l′m′Ul′′m′′ + Vl′m′V̇l′′m′′
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−V̇l′m′Vl′′m′′

)
− sl,(+)

l′;l′′

(
Ul′m′V̇l′′m′′ + V̇l′m′Ul′′m′′ − U̇l′m′Vl′′m′′ − Vl′m′U̇l′′m′′

)]
.

(6.78)

To compute the spin memory effect to Newtonian order, we need precisely the same

set of radiative multipole moments Ulm and Vlm that were used to compute the dis-

placement memory effect in Sec. 6.4.2.1. We then compute the spin memory effect

following the same procedure in Sec. 6.4.2.1 by first writing the needed moments of

∆Σlm in terms of integrals of the relevant radiative moments Ulm and Vlm:

∆ΣT
30 = − 1

720
√

7π

∫ uf

ui

du

{
=
[
9
(

˙̄U22U22 − 2 ˙̄V21V21

)
+ 7

(
˙̄U31U31 − ˙̄U33U33

)
+11
√

5
(

˙̄U22U42 + ˙̄U42U22

)]
+ <

[
5
√

35
(

˙̄V32U22 − ˙̄U22V32

)
−5

√
7

2

(
˙̄V21U31 − ˙̄U31V21

)]}
, (6.79a)

∆ΣT
50 =

1

5040
√

11π

∫ uf

ui

du

{
=
[
5
(

˙̄U33U33 + 5 ˙̄U31U31

)
− 38√

5

(
˙̄U22U42 + ˙̄U42U22

)]

+<

[
2

√
7

5

(
˙̄U22V32 − ˙̄V32U22

)
+ 2
√

14
(

˙̄V21U31 − ˙̄U31V21

)]}
.

(6.79b)

As in Sec. 6.4.2.1, we then use Eqs. (6.24a), (6.24b)–(6.24f), and (6.35)–(6.37) to

evaluate the integrals in Eqs. (6.79a)–(6.79b) and to write the expression for the

moments ∆Σ30 and ∆Σ50 in terms of x. Unlike in Sec. 6.4.2.1, the integrand does

not depend on ẋ, when written as an integral over x, because there is only one time

derivative of the radiative multipole moments. The result of this integration is given
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by

∆ΣT
30 =

√
π

7

ηM2
t

10

{
−5ξS2

144
∆(x−3/2) + ∆(x−1/2)

[
1− 4

3
G

− (1 + F )ξ +
5(47796η + 5003)S2ξ

435456

]}
, (6.80a)

∆ΣT
50 =−

√
π

11

ηM2
t ξS

2

12192768
(21588η − 4117)∆(x−1/2) , (6.80b)

where we have defined ∆(x−1/2) = x
−1/2
f − x−1/2

i and similarly for ∆(x−3/2).

In GR, the only term that appears in the Newtonian-order spin-memory waveform

is ∆(x−1/2) times the coefficient outside the curly braces in Eq (6.79a). The remaining

terms in ∆Σ30 and the entire expression for ∆Σ50 appear in the BD-theory waveform

at Newtonian order because of the −1 PN term in dφp/dx.

Finally, we construct the time-integrated strain from the moments ∆Σl0 in Eqs. (6.80a)–

(6.80b). Using Eqs. (6.8), (6.9), (6.20), and (6.75), we can write the relation between

the time integral of h and a general ∆Σlm as

∫ uf

ui

h(spin)du =
−i
2R

∑
l,m

√
(l + 2)!

(l − 2)!
∆Σlm −2Y lm . (6.81)

Because the modes ∆Σl0 that produce the time-integrated strain h(spin) in Eq. (6.80a)

and (6.80b) are real, then from Eq. (6.7) it follows that the spin memory enters in

the cross mode polarization of gravitational waves (as it does in GR [154]). Finally

substituting Eqs. (6.80a)–(6.80b) into (6.81), and using the expressions for the spin-

weighted spherical harmonics

−2Y30(ι, ϕ) =
1

4

√
105

2π
sin2 ι cos ι , (6.82a)
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−2Y50(ι, ϕ) =
1

8

√
1155

2π
sin2 ι cos ι(3 cos2 ι− 1) , (6.82b)

we obtain for the time-integrated strain

∫ uf

ui

duh
(spin,T)
× =

3ηM2
t

8R
sin2 ι cos ι

{
−5ξS2

144
∆(x−3/2) +

[
1− 4

3
G − (1 + F )ξ

− ξS2

(
3365

6912
η +

1915

27648

)]
∆(x−1/2)

+ξS2

(
20585

580608
− 1285

6912
η

)
∆(x−1/2) cos2 ι

}
.

(6.83)

The expression for the u integral of h(spin,T)
× is written such that the angular de-

pendence and coefficient 3ηM2/(8R) outside of the curly braces coincides with the

expression in GR at Newtonian order. With the curly braces there are several sorts

of terms: (i) the first term proportional to ∆(x−3/2) is a −1PN term arising from the

dipole term in the phase, but which have the same angular dependence as the spin

memory effect in GR; (ii) the terms in the square bracket (aside from the factor of

unity that reproduces the GR expression for the spin memory) are small BD correc-

tions (proportional to ξ) that modify the amplitude of the waveform without changing

its x or ι dependence; (iii) the final terms on the second line are those which have

the same x dependence, but a different angular dependence from the GR expression

(and are again proportional to ξ).
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6.4.3.2 Spin memory effect sourced by the scalar angular momentum flux

The angular momentum flux per solid angle sourced by the scalar radiation produces

a second contribution to the spin memory effect. Its contribution can be obtained

from the scalar field terms in the balance law in Eq. (6.71a), which are given by

∫
d2ΩγÐ4(Ð2 + 2)∆ΣS = −6 + 4ωBD

(λ0)2

∫ uf

ui

d2ΩduεABðBγ(λ̇1ðAλ1 − λ1ðAλ̇1) .

(6.84)

The multipolar expansion of ∆Σ can be obtained by assuming γ is equal to the

spherical harmonic Ȳlm, and then using the multipolar expansion of λ1 in Eq. (6.38).

After relating the gradients and curls of spherical harmonics in this expansion to

the electric- and magnetic-parity vector harmonics in Eqs. (6.48a)–(6.48b) and then

employing the relationship between these vector harmonics and the spin-weighted

spherical harmonics in Eqs. (6.49a)–(6.49b), we can derive the moments ∆Σlm in

terms of moments λ1(lm) (and their time derivatives and complex conjugates) and

the coefficients Bl(s′, l′,m′; s′′, l′′,m′′) given in Eq. (6.46). The resulting expression is

given below:

∆ΣS
lm =

i(2ωBD + 3)

λ2
0

√
l(l + 1)

(l − 2)!

(l + 2)!

∑
l′,m′,l′′,m′′

s
l,(−)
l′;l′′

√
l′′(l′′ + 1)Bl(0, l′,m′; 1, l′′,m′′)

×
∫ uf

ui

du(λ̇1(l′m′)λ1(l′′m′′) − λ1(l′m′)λ̇1(l′′m′′)) . (6.85)

The coefficient sl,(−)
l′;l′′ is defined in Eq. (6.59).

The moments of λ1(lm) that contribute to the Newtonian-order spin memory effect
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are the same moments needed to compute the scalar-sourced displacement memory

effect in Sec. 6.4.2.2. The only nonvanishing moment of ∆Σ at this order then is

∆Σ30, and to linear order in ξ it is given by

∆ΣS
30 = − 1

30ξ(λ0)2

1√
7π

∫ uf

ui

du=
[
λ̇1(22)λ̄1(22) −

√
7

2

(
λ̇1(11)λ̄1(31) − λ1(11)

˙̄λ1(31)

)]
.

(6.86)

We can then use the expressions for the moments in Eq. (6.44) to evaluate the integrals

and write them in terms of x (analogously to what was done for the tensor-sourced

part of the spin memory effect), and we find it is given by

∆ΣS
30 =

√
πηM2

t ξ

1440
√

7

(
2ηS2 + ΓS

δm

Mt

− 8Γ2

)
∆
(
x−1/2

)
, (6.87)

It is then straightforward to use Eq. (6.81) to write the retarded-time integral of the

spin memory waveform generated by scalar angular momentum flux as

∫ uf

ui

duh
(spin,S)
× =

ηM2
t ξ

384R

(
2ηS2 + Γ

δm

Mt

S − 8Γ2

)
∆
(
x−1/2

)
sin2 ι cos ι . (6.88)

The full retarded-time integral of the spin memory waveform h
(spin)
× = h

(spin,S)
× +h

(spin,T)
×

then has an additional small correction linear in ξ to the GR expression that changes

the amplitude but does not alter the x or ι dependence of the effect.

6.5 Conclusions

In this chapter, we computed the displacement and spin GW memory effects gener-

ated by nonprecessing, quasi-circular binaries in BD theory. We worked in the PN
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approximation, and the expression we computed are accurate to leading Newtonian

order in the PN parameter x, and they include the leading-order corrections in the

BD parameter ξ. Our calculations relied upon using the BMS balance laws associated

with the asymptotic symmetries in BD theory (which are the same as in GR) com-

puted recently. These balance laws permit us to determine the tensor memory effects,

but the scalar GW memory effects associated with the breathing polarization are not

constrained through these balance laws. We further focused on null contributions to

the tensor memory effects, because we estimated that the ordinary (linear) memory

effects (which are functions of both gravitational and scalar data) would contribute

to the memory effects at a higher PN order than the null (including the nonlinear)

memory effects.

Using the BMS balance laws has an advantage that it can determine the mem-

ory effects to a higher PN order than the direct integration of the relaxed Einstein

equations in harmonic gauge. This allowed us to compute the memory effects at a

higher PN order than had been previously computed. However, the balance laws take

as input radiative and nonradiative data at large Bondi radius and this data must

be obtained through some other method. Specifically, in the context of this chapter

in PN theory, we needed to take as input the scalar and tensor gravitational waves

computed in harmonic gauge in BD theory in [180]. This required us to compute a

coordinate transformation between harmonic and Bondi gauges at leading order in

the inverse distance to the source, so that we could relate the radiative GW data in
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these two different coordinate choices (and formalisms). There were relatively simple

transformations that allowed us to relate the Bondi shear tensor to the transverse-

traceless components of GW strain, and these relations were particularly simple when

expressed in terms of the radiative multipole moments of the shear and strain tensors.

There were similar expressions relating the scalar field at leading order in inverse dis-

tance in the two coordinate systems and the corresponding multipole moments of the

scalar field. With these relationships between the multipolar expansions of the scalar

field and the shear tensor in harmonic and Bondi gauges, we could then use the BMS

balance laws to compute the GW memory effects.

The tensor GW memory effects in BD theory have several noteworthy differences

from the corresponding effects in GR at the equivalent PN order. First, because

of scalar dipole radiation in BD theory, there are relative −1PN-order terms in the

memory effects in BD theory. The −1PN term in the displacement memory wave-

form comes from two sources in the supermomentum balance law: (i) directly from

the energy flux of scalar radiation and (ii) indirectly from the energy flux in tensor

radiation (specifically through dipole contributions to the frequency evolution and the

GW phase). The spin memory waveform, however, has a relative −1PN correction

from GR arising from only the energy flux of the tensor waves (the scalar-sourced

part of the energy flux gives rise to a contribution at the same leading order as in GR,

and it comes from products of dipole and octupole moments, as well as quadrupole

moments with themselves). The absence and presence of the −1PN term, respec-
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tively, in the spin and displacement memory effects arises because of the different

lowest multipole term in the sky pattern of the effects: the spin memory effect begins

with the l = 3, m = 0 mode, whereas the displacement memory has an l = 2, m = 0

mode.

A second noteworthy feature is that the computation of Newtonian-order memory

effects in BD theory requires radiative multipole moments of the strain at higher PN

orders than are required in GR (in which the leading-order effects can be computed

from just the l = 2, m = 2 radiative mass quadrupole moment and its complex

conjugate). Because there are −1PN terms in the GW phase and the evolution of

the GW frequency, computing the Newtonian GW memory effects requires higher-

PN-order radiative multipole moments (including the current quadrupole, the mass

and current octupoles, and the mass hexadecapole). These higher-order mass and

current multipole moments also give rise to a sky pattern of the GW memory effect

in BD theory that differs from the sky pattern of the effect in GR. In addition, the

presence of dipole radiation required using that to compute the memory effects to

Newtonian order, for which we needed to include 1PN corrections to the GW phase

and frequency time derivative in BD theory (though we only required the GR limit

of these 1PN corrections when working to linear order in the BD parameter ξ).

Finally, let us conclude by commenting on potential applications of the calcula-

tions of GW memory effects given in this chapter. Because the calculations herein

have shown that the memory effect in BD theory differs from that in GR, it is natural
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to ask if these differences could be detected. Given the challenges of detecting the

memory effect in GR with LIGO and Virgo [134, 135, 428] and the fact that the PN

corrections are small, it would be more natural to consider whether next-generation

gravitational-wave detectors—such as the space-based detector LISA [181] or ground-

based detectors like the Einstein Telescope or Cosmic Explorer [182,183]—could con-

strain BD theory through a measurement of the GW memory effect. The constraints

could come from searching for differences in the leading-order amplitude of the effect,

in the time dependence of the accumulation of the memory effect (through the dif-

ferent dependence on the PN parameter x), or in the sky pattern of memory effects

in BD theory (the latter being similar to the hypothesis test described in [184]). Be-

cause memory effects accumulate most rapidly during the merger of compact binaries,

having waveforms that go beyond the PN approximation and include the merger and

ringdown would be important for producing the most accurate constraints.
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Appendix A

Original PPE Formalism

In this appendix, we review the original PPE formalism. In particular, we will show

how the amplitude and phase corrections depend on conservative and dissipative

corrections, where the former are corrections to the effective potential of a binary

while the latter are those to the GW luminosity. We will mostly follow the analysis

in [87].

First, let us introduce conservative corrections. We modify the reduced effective

potential of a binary as

Veff =

(
−Mt

r12

+
L2
z

2µ2r2
12

)[
1 + A

(
Mt

r12

)p]
, (A.1)

where Lz is the z-component of the angular momentum. A and p show the magnitude

and exponent of the non-GR correction term respectively. Such a modification to the

effective potential also modifies Kepler’s law. Taking the radial derivative of Veff in

Eq. (A.1) and equating it to zero gives modified Kepler’s law as

Ω2 =
Mt

r3
12

[
1 +

1

2
Ap

(
Mt

r12

)p]
. (A.2)
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The above equation further gives the orbital separation as

r12 = rGR
12

[
1 +

1

6
Ap η−

2p
5 u2p

]
, (A.3)

where to leading PN order, rGR
12 is given by Kepler’s law as rGR

12 = (Mt/Ω
2)1/3. For a

circular orbit, radial kinetic energy does not exist and the effective potential energy

is same as the binding energy of the binary. Using Eq. (A.3) in Eq. (A.1) and keeping

only to leading order in non-GR corrections, the binding energy becomes

E = −1

2
η−2/5u2

[
1− 1

3
A(2p− 5)η−

2p
5 u2p

]
. (A.4)

Next, let us introduce dissipative corrections. Such corrections to the GW lumi-

nosity can be parameterized by

Ė = ĖGR

[
1 +B

(
Mt

r12

)q]
, (A.5)

where ĖGR is the GR luminosity which is proportional to v2(Mt/r12)4 with v = r12 Ω =

(πMtf)1/3 representing the relative velocity of binary components1.

Let us now derive the amplitude corrections. First, using Eqs. (A.4) and (A.5)

and applying the chain rule, the GW frequency evolution is given by

ḟ =
df

dE

dE

dt

= ḟGR

[
1 +Bη−

2q
5 u2q +

1

3
A(2p2 − 2p− 3)η−

2p
5 u2p

]
, (A.6)

where ḟGR is given by Eq. (2.6). Next, using Eqs. (A.3) and (A.6) to Eq. (2.9) and

1If we assume ĖGR to be proportional to r412 Ω6 which directly follows from the quadrupole formula
without using Kepler’s law, we will find slightly different expressions for ḟ and the waveform [87]
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keeping only to leading order in non-GR corrections, the GW amplitude in Fourier

domain becomes

Ã(f) = ÃGR
[
1− B

2
η−

2q
5 u2q − 1

6
A(2p2 − 4p− 3)η−

2p
5 u2p

]
. (A.7)

Next, we move onto deriving phase corrections. One can derive the GW phase

in Fourier domain by integrating Eq. (2.18) twice. Equivalently, one can use the

following expression

Ψp(f) = 2πft(f)− φp(f)− π

4
, (A.8)

where t(f) gives the relation between time and frequency and can be obtained by

integrating (A.6) as

t(f) =

∫
dt

df
df

=t0 −
5Mch

256u8

[
1 +

4

3
A

(2p2 − 2p− 3)

(p− 4)
η−

2p
5 u2p

+
4

q − 4
Bη−

2q
5 u2q

]
, (A.9)

with t0 representing the time of coalescence and keeping only the Newtonian term and

leading order non-GR corrections. On the other hand, φp(f) in Eq. (A.8) corresponds

to the GW phase in time domain and can be calculated from Eq. (A.6) as

φp(f) =

∫
2πfdt =

∫
2πf

ḟ
df

=φp,0 −
1

16u5

[
1 +

5

3
A

(2p2 − 2p− 3)

(2p− 5)
η−

2p
5 u2p

+
5

2q − 5
Bη−

2q
5 u2q

]
, (A.10)
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with φp,0 representing the coalescence phase. Using Eqs. (A.9) and (A.10) into (A.8)

and writing Ψp(f) as ΨGR(f) + δΨp(f), non-GR modifications to the phase can be

found as

δΨp(f) =− 5

32
A

2p2 − 2p− 3

(4− p)(5− 2p)
η−

2p
5 u2p−5

− 15

32
B

1

(4− q)(5− 2q)
η−

2q
5 u2q−5 , (A.11)

with ΨGR to leading PN order is given by [192]

ΨGR = 2πft0 − φp,0 −
π

4
+

3

128
u−5 . (A.12)

We can easily rewrite the above expressions using γr and cr. Comparing Eq. (A.3)

with Eq. (2.4), we find

A =
12γr
cr

η
cr
5 , p =

cr
2
. (A.13)

Using this, we can rewrite the GW amplitude in Eq. (A.7) as

Ã(f) = ÃGR
[
1− B

2
η−

2q
5 u2q − γr

cr
(c2
r − 4cr − 6)ucr

]
. (A.14)

Similarly, one can rewrite the correction to the GW phase in Eq. (A.11) as

δΨp(f) =− 15

8

γr
cr

c2
r − 2cr − 6

(8− cr)(5− cr)
ucr−5

− 15

32
B

1

(4− q)(5− 2q)
η−

2q
5 u2q−5 . (A.15)

On the other hand, rewriting the above expressions further in terms of γḟ and cḟ

is not so trivial in general since corrections to the frequency evolution in Eq. (A.6)
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involves two independent terms instead of one.



Appendix B

Frequency Evolution From Energy
Balance Law

In this appendix, we show an alternative approach to find ḟ in varying-G theories

in Eq. (2.59) by correcting and applying the energy balance law used in Ref. [177].

We begin by considering the total energy of a binary given by E = −(GCµMt)/2r12.

In order to calculate the leading order correction to the frequency evolution due to

the time-varying gravitational constants, we use Kepler’s law to rewrite the binding

energy as

E(f,GC ,m1,m2) = −1

2
µ(GCMtΩ)2/3 , (B.1)

where Ω = πf is the orbital angular frequency. Taking a time derivative of the above

expression and using Eqs. (2.48)–(2.50) in Eq. (B.1), the rate of change of the binding

energy becomes

dE

dt
=

π2/3

6f 1/3G
1/3
C M

4/3
t

[−3fGCMt(ṁ1,0m2 +m1ṁ2,0)

−2M3
t η(GC ḟ + fĠC) +M2

t fGCηṀt

]
. (B.2)
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We can use the following energy balance argument to derive ḟ . In GR, the time

variation in the binding energy is balanced with the GW luminosity ĖGW emitted

from the system given by

ĖGW =
1

5
GD

〈...
Qij

...
Qij −

1

3
(
...
Qkk)

2

〉
=

32

5
r4

12GDµ
2Ω6 . (B.3)

In varying-G theories, there is an additional contribution ĖĠ due to variations in

G, masses, and the specific angular momentum. Namely, the binding energy is not

conserved even in the absence of GW emission and the energy balance law is modified

as

dE

dt
= −ĖGW + ĖĠ . (B.4)

To estimate such an additional contribution, we rewrite the binding energy in terms

of the specific angular momentum as

E(GC ,m1,m2, j) = −G
2
C µM

2
t

2j2
. (B.5)

Taking the time variation of this leads to

ĖĠ =
∂E

∂j
j̇0 +

∂E

∂m1

ṁ1,0 +
∂E

∂m2

ṁ2,0 +
∂E

∂GC

ĠC,0 , (B.6)

where j̇0 is given by Eq. (2.54) and originates purely from the variation of GC (i.e. no

GW emission).

We are now in a position to derive the frequency evolution. Using Eqs. (B.3), (B.5)



Appendix B. Frequency Evolution From Energy Balance Law 230

and (B.6) in Eq. (B.4), one finds

dE

dt
=− 32

5
π10/3f 10/3η2G

4/3
C GDM

10/3
t

[
1 +

5G2
Cη

3/5Mt

64GD

×

(
Ṁt,0

Mt

+
ṁ1,0

m1

+
˙m2,0

m2

− 2
j̇0
j

+ 2
ĠC,0

GC

)
u−8

]
, (B.7)

where u = (πGCMchf)1/3. Substituting this further into Eq. (B.2) and solving for ḟ ,

one finds the frequency evolution as

ḟ =
96

5
π8/3G

2/3
C GDM5/3

ch f
11/3

{
1 +

5

96

GC

GD

ĠC,0η
3/5[2Mt

−5(m1,0s1,0 +m2,0s2,0)]u−8
}
, (B.8)

in agreement with Eq. (2.59).

Along with the constancy of masses, the second term in Eq. (B.4) was also missing

in [177]. Consequently, our PPE parameters in Eqs. (2.64) and (2.66) do not agree

with Ref. [177] even when we take the limit of no time variation in masses. Difference

in βĠ is smaller than 20% while αĠ differs by a factor of 7. Despite the discrepancy,

we expect the projected bounds on Ġ0/G0 calculated in Ref. [177] to be qualitatively

correct. This is because a matched filtering analysis is more sensitive to phase cor-

rections than to amplitude ones, where the difference between our results and [177]

is small.



Appendix C

Bounds on PPE parameters:
PhenomB and PhenomD Waveforms

Even though the PhenomD waveform produces more accurate results, we utilized

the PhenomB one in this paper throughout because the latter is simpler and saves

computational time when performing Monte Carlo simulations. In this appendix, we

compare constraints on the PPE parameter αPPE from both waveforms to justify our

method.

Let us discuss the distinct features of the two waveforms first. Both PhenomB and

PhenomD waveforms are spin-aligned (non-precessing) frequency-domain phenomeno-

logical models of gravitational waveforms [342, 429]. The PhenomB waveform is cal-

ibrated for mass ratios up to m1/m2 = 4 and spin components of χi ∈ [−0.85, 0.85]

are unified into a single effective spin. On the other hand, the PhenomD waveform

covers a larger region of the parameter space with mass ratios upto 18 and spins of

χi ∈ [−0.95, 0.95], with both spins introduced independently. The waveform contains

a much higher order in PN terms in the inspiral than the PhenomB waveform and fur-
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ther introduces an intermediate phase connecting the inspiral and merger-ringdown

portions, which make such waveforms more reliable than the PhenomB ones.
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Figure C.1: Comparison of 90% confidence constraints on αPPE from GW1501914
with the PhenomB and PhenomD waveforms for generation effects.

We now estimate the constraints on the PPE amplitude modification from the two

waveforms. Since modifications to propagation mechanisms used for massive gravity

in Sec. 3.3.1 do not give rise to amplitude corrections, we here focus on modifications

to generation mechanisms. We performed Fisher analyses with sky-averaged Phe-

nomB and PhenomD waveforms and derived upper bounds on αPPE at different PN

orders. As shown in Fig. C.1, the results from the two waveforms agree very well at

negative PN corrections but deviate from each other at the positive ones. On the other

hand, truncating the Fisher analyses at the end of the inspiral phase show significant

agreement between the two waveforms at positive PN orders (Fig. C.2), suggest-

ing that the deviation in Fig. C.1 originates mainly from the intermediate/merger-

ringdown portion.
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Figure C.2: Similar to Fig. C.1 but with inspiral signals only. The Fisher analyses
are truncated at 104Hz which is corresponding to the transition frequency between
the inspiral and merger portions of the PhenomB waveform, and we use the inspiral
portion of the PhenomD waveform all the way up to this cutoff frequency.

The example theories considered in this paper acquire leading non-GR corrections

either from propagation effects or from the generation effects with the latter entering

in negative PN orders. A comparison between the PhenomB and PhenomD results for

constraining βPPE presented in Ref. [27] reveals consistency on constraining modifica-

tions to propagation mechanisms at both positive and negative PN orders, while the

two waveforms show agreement only at negative PN orders for constraining modifica-

tions to generation mechanisms. Together with the results on amplitude corrections

discussed above confirms that the results of this paper should not change significantly

if one utilizes the PhenomD waveform instead. On the other hand, for constraining

theories like dynamical Chern-Simons or noncommutative gravity where the leading

correction enters at a positive PN order, the PhenomB waveform is not expected to

produce reliable results.



Appendix D

Quadrupole Formula in the Presence
of Compact Dimensions

Here we explicitly point out why the usual quadrupole formula

∫
d3~x τ ij =

1

2
∂2

0

∫
d3~x τ 00xixj , (D.1)

cannot be directly extended to higher dimensions if there are compact dimensions.

Consider the expression 1
2
∂2

0

∫
d3~x

∫ `
0
dw τ 00xIxJ , then use repeatedly the conser-

vation law for τMN and integrate by parts, while paying attention to the boundary

terms:

1
2
∂2

0

∫
d3~x

∫ `
0
dw τ 00xIxJ =

∫
d3~x

∫ `
0
dw τ IJ

+1
2

∫
d3~x(∂Kτ

5KxIxJ − τ 5IxJ − τ 5JxI)
∣∣∣w=`

w=0
. (D.2)

For I, J = i, j = 1, 2, 3, the quadrupole formula applies because of the periodicity of

the metric fluctuations in w. However if either I or J are along the compact dimension,

then there are extra terms relative to those expected based on the quadrupole formula.

These terms are not straightforward to evaluate, and for this reason we rely on direct
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integration of the Einstein equations.



Appendix E

Hidden Brane Scenario

We generalize the Newtonian potential by having the observer located at w = 0, and

the static mass source m on a hidden brane at w = w1:

T00(xµ, w) = mδ3(~x)δ(w − w1) . (E.1)

The corresponding Newtonian potential evaluated by the observer is

V (5,c)(R,w1) = − 4

3π
G(5)m

∞∑
n=−∞

1

R2 + (w1 + n`)2 . (E.2)

Using Poisson summation, the above sum can be evaluated to give the following result:

V (5,c)(R,w1) =− 4

3

G(5)m

`R
tanh

2πR

`

(
1 + sech

2πR

`
cos

2πw1

`

)
' −4

3

G(5)m

`R

(
1 + 2e−2πR/` cos

2πw1

`

)
, (E.3)

where in the last step we used R � ` and R � w1. When w1 = 0, (E.3) reproduces

the Newtonian potential in Section 4.3 in the limit of 2πR� `.
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Appendix F

Newtonian Potential from 5d
Compactified Green’s Function

In this appendix we offer an alternative derivation of the Newtonian potential obtained

in Section 4.3, by using the retarded 5d compactified Green’s function. A static source

of mass m located at the origin has

T00(xµ, w) = mδ3(~x)δ(w) . (F.1)

Substituting (4.43) and (F.1) into (4.40) we obtain

h̃T,00 (xµ, w) = − 4

π
G(5)m

∞∑
n=−∞

1

r n

∫ ∞
0

dt′
∂

∂r n
θ (t− t′ − r n)√

(t− t′)2 − r 2
n

, (F.2)

where r n =
√
x2 + y2 + z2 + (w − n`)2. The integral in (F.2) can be evaluated by

re-expressing the ∂r n derivative in terms of a time-derivative using

∂

∂r n

[
θ (∆t− r n)

(∆t2 − r 2
n)1/2

]
=− ∂

∂∆t

[
θ (∆t− r n)

(∆t2 − r 2
n)1/2

]
+

θ (∆t− r n)

[(∆t)2 − r 2
n]3/2

(r n −∆t) ,

(F.3)
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where ∆t = t− t′. Substituting (F.3) into (F.2) we obtain

h̃00
T (xµ, w) =− 4

π
G(5)m

∞∑
n=−∞

1

r n

∫ ∞
r n

d∆t
r n −∆t

[(∆t)2 − r 2
n]3/2

=
4

π
G(5)m

∞∑
n=−∞

1

r 2
n

,

(F.4)

and the corresponding Newton’s potential V (5,c) ≡ (−1/3)h̃T,00 matches with the one

in Eq. (4.17).



Appendix G

Retarded Green’s Function

The massless scalar D-dimensional flat space Euclidean Green’s function GE(x, x′) =

GE(x− x′) is the inverse of the D-dimensional Laplacian

∆(D)G(D)E(x− x′) = δD(x− x′), G(D)
E (x− x′) = −

∫
dDp

(2π)D
eip·x

p · p
. (G.1)

Starting from the unique Euclidean Green’s function, in Minkowski signature the

retarded Green’s function is obtained via the analytical continuation p0
E −→ −i(p0 +

iε). The Euclidean metric δMN gets replaced by the Minkowski metric ηMN , and the

iε prescription yields the retarded Green’s function:

G(D)(x− x′) = −
∫

dDp

(2π)D
eip·x

−(p0 + iε)2 + pipi
. (G.2)

The location of the poles is in the lower half-plane, when viewed as a function of p0

as a complex variable. To evaluate the integral one integrates over p0, using Cauchy’s

theorem, and if t− t′ > 0, one picks up the contribution from the two poles, otherwise
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the retarded Green’s function is zero. If D = 4, we recover the familiar expression

G(4)(x−x′) = −θ(t−t′)
∫

d3p

(2π)3

sin(p(t− t′))
p

ei~p·(~x−~x
′) = −θ(t−t′) 1

4πr
δ((t−t′)−|~x−~x′|),

(G.3)

where we used p to denote the magnitude of the spatial vector ~p, i.e. p = |~p|. If

D = 5, then

G(5)(x− x′) = −θ(t− t′)
∫

d4p

(2π)4

sin(p(t− t′))
p

ei~p·(~x−~x
′)

= −θ(t− t′) 4π

(2π)4

∫ ∞
0

dp p3

∫ π

0

dθ sin2 θ
sin(p(t− t′))

p
eip|~x−~x

′| cos θ

= −θ(t− t′) 1

4π2|~x− ~x′|

∫ ∞
0

dp p sin(p(t− t′))J1(p|~x− ~x′|)

= −θ(t− t′) 1

4π2|~x− ~x′|
∂

∂|~x− ~x′|

∫ ∞
0

dp sin(p(t− t′))J0(p|~x− ~x′|)

= −θ(t− t′) 1

4π2|~x− ~x′|
∂

∂|~x− ~x′|
θ(t− t′ − |~x− ~x′|)√
(t− t′)2 − (~x− ~x′)2

. (G.4)



Appendix H

Direct Integration vs. Quadrupole
Formula

Here we use post-Newtonian order counting to explain a somewhat subtle aspect of

our calculations. For simplicity’s sake, in this appendix we restrict ourselves to 4d GR.

Specifically, we will show that if in computing the spatial metric fluctuations h̃ij, one

uses the quadrupole formula, then one can safely neglect nonlinear source terms in the

relaxed Einstein equations. However, if one directly integrates the relaxed Einstein

equations, then the nonlinear terms cannot be neglected already at the leading post-

Newtonian order. Since our goal is only to highlight the dependence on velocities,

we will write our equations with squiggle lines, signaling that we are imprecise about

numerical factors.

The relaxed Einstein equations in the harmonic gauge are given in (4.8), whose

4d solution is given by

h̃µν ∼ 4

R

∫
d3~x τµν(~x, t−R) , (H.1)

where we assumed that we are working in the far-field approximation, R is the distance
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from the source to the field point, and the right hand side is evaluated at the retarded

time.

H.1 Direct Integration

We are interested in extracting the order of magnitude in a post-Newtonian (PN)

expansion estimates of the spatial components h̃ij for a compact binary. We will

be somewhat careless about the indices and numerical factors since we only care

about counting the PN order, namely powers of the relative velocity of the binary

constituents, v. Eq. (H.1) should receive contributions from both T ij and tijLL. To

leading PN order, the contribution from T ij is roughly given by

h̃ijT ∼
µ

R
vivj ∼ µ

R
v2 , (H.2)

where µ is the reduced mass of the binary. To consider the contribution of tijLL, let us

substitute g̃ij = ηij − h̃ij into (4.10) and look at one term (inside tijLL), for example

(−g)tijLL ∼ h̃00,ih̃00
,j ∼ h̃00,ih̃00,j , (H.3)

so that

h̃ijt ∼
1

R

∫
d3x h̃00,ih̃00,j . (H.4)

To compute (H.4), let us consider partitioning the spacetime into a near zone (NZ)

and a far zone (FZ)1 relative to the location of the sources. NZ is the region centered

around the source with the size of the gravitational wavelength while FZ is the region
1FZ is also called the radiation zone or the wave zone.
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exterior to it [178]. Within the NZ, the gravitational fields can be considered as

almost instantaneous and retardation can be neglected. The integral in (H.4) can be

decomposed into the NZ and FZ integrals. It turns out that the former dominates

the latter, so what we need is the NZ solution for h̃00. For a compact binary, the

leading NZ solution is given by [430]

hNZ
00 ∼ 2m1

r1

+
2m2

r2

, (H.5)

hNZ
ij ∼

(
2m1

r1

+
2m2

r2

)
δij , (H.6)

with ra ≡ |~x− ~xa| and where a = 1, 2 corresponding to one of the two sources. Thus,

hNZ ∼ 4m1/r1 + 4m2/r2 and

h̃NZ
00 ∼ hNZ

00 −
1

2
hNZη00 ∼

4m1

r1

+
4m2

r2

. (H.7)

We now substitute the above equation into the right hand side of (H.4). Those

terms that only depend on r1 or r2 will diverge and be dropped upon regularization,

so what matters is the cross term between sources 1 and 2. Ignoring numerical factors,

we find

h̃ijt ∼ m1m2

R

∫
NZ

d3x ∂i

(
1

r1

)
∂j

(
1

r2

)
+ (1↔ 2)

∼ m1m2

R

∫
NZ

d3x ∂
(1)
i

(
1

r1

)
∂

(2)
j

(
1

r2

)
+ (1↔ 2)

∼ m1m2

R
∂

(1)
i ∂

(2)
j

∫
NZ

d3x
1

r1r2

+ (1↔ 2) , (H.8)

where we changed the partial derivatives to source-derivatives ∂(a)
i ≡ ∂/∂xia so that
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derivatives can be taken outside of the integral. The remaining integral, is given

by [431] ∫
NZ

d3x
1

r1r2

= −2πr12 , (H.9)

where r12 = |~x1 − ~x2| is the binary separation. Thus,

h̃ijt ∼ m1m2

R
∂

(1)
i ∂

(2)
j r12 + (1↔ 2)

∼ m1m2

R

1

r12

∼ µ

R

Mt

r12

∼ µ

R
v2 , (H.10)

where Mt is the total mass and we used the Kepler’s law in the last equation. This

scaling could in fact be easily obtained from the first line of (H.8) by replacing all

the length scales inside the integral with r12. Notice that h̃ijt is of the same PN order

as h̃ijT . This means that the contribution from tijLL cannot be neglected even at the

leading order.

H.2 Quadrupole Formula

So far we have seen that by using direct integration of the relaxed Einstein equations,

where h̃ij is sourced by τ ij, both the linearized h̃ijT and second order in fluctuation

h̃ijt are of the same order in a velocity expansion. However, if we replace our starting

point for the derivation of h̃ij with the quadrupole formula (see Appendix D)

∫
τ ijd3x =

1

2

d2

dt2

∫
d3x τ 00xixj , (H.11)
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then we would be using τ 00 in extracting h̃ij. In this case, the contribution from t00
LL

is subleading to that of T 00, as we will now show.

Using (H.11) and (H.1) one derives

h̃ij ∼ 2

R

d2

dt2

∫
d3x τ 00xixj . (H.12)

The contribution from T 00 has the same scaling as in (H.2), i.e.

h̃ij(T 00) ∼
µ

R
v2 . (H.13)

On the other hand, the contribution from t00 is given by

h̃ij(t00) ∼
1

R

d2

dt2

∫
NZ

d3x h̃NZ
00 ,ih̃

NZ
00 ,j x

ixj

∼ 1

R

d2

dt2

∫
NZ

d3x ∂i

(
m1

r1

)
∂j

(
m2

r2

)
xixj

∼ 1

R
Ω2m1

r2
12

m2

r2
12

r2
12r

3
12

∼ m1m2

R
r12Ω2

∼ µ

R

Mt

r12

(r12Ω)2

∼ µ

R
v4 , (H.14)

where Ω is the binary angular frequency and we replaced all the length scale by r12

in the third line as noted in Sec. H.1. Notice that h̃ij(t00) is of higher order in velocities

than h̃ij(T00). Thus, once the expression for h̃ij is turned into the quadrupole formula,

the contribution from t00 becomes subdominant and one only needs to consider T 00

to leading order.



Appendix I

GW Luminosity in
Transverse-Traceless (TT) Gauge

The transverse traceless (TT) gauge for linearized gravitational fluctuations about a

flat spacetime imposes the following conditions:1

h̃TT
0M = 0 , (h̃TT)II = 0 , ∂J(h̃TT)IJ = 0 . (I.1)

Starting from the trace-reversed metric fluctuations, h̃IJ , one can show that the trans-

verse traceless components are obtained by simply acting with a transverse-tracelss

projector

ΛIJKL = PIKPJL −
1

D − 2
PIJPKL , (I.2)

1The TT gauge uses the residual gauge freedom of the Lorenz gauge to impose the additional
conditions: (h̃TT)MM = 0, h̃TT

0M = 0. Take nI to be pointing in the direction of propagation of the
waves, assuming they are plane waves: h̃TT

MN = h̃TT
MN (t−nIxI). Then, from the harmonic gauge one

finds that nI(h̃TT)IJ = ∂I(h̃
TT)IJ = 0, (h̃TT)II = 0. For spherical waves these relations remain true

to leading order in 1/R.
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and where PIK are projectors orthogonal to nI , with nI the direction of propagation

of the waves and nInI = 1:

PIJ = δIJ − nInJ , PIJn
J = 0 . (I.3)

Therefore, the non-vanishing (same as the trace-reversed) metric fluctuations in the

TT gauge are

h̃TT
IJ = ΛIJKLh̃

KL , (h̃TT)I I = 0 , nI h̃TT
IJ = h̃TT

IJn
J = 0 . (I.4)

It is easy to verify that

h̃TT
IJ (h̃TT)IJ = h̃IJ h̃

IJ − 2nInJδKLh̃IK h̃JL +

(
D − 3

D − 2

)
nInJnKnLh̃IJ h̃KL

−
(

1

D − 2

)
(h̃I I)

2 +

(
2

D − 2

)
nKnLh̃KLh̃

I
I . (I.5)

In particular, working in the TT gauge, the equation (4.64) becomes simply

t0Kn
K = − 1

32πG(D)

〈
˙̃hTT
IJ ( ˙̃hTT)IJ

〉
. (I.6)

We can nevertheless recover (4.69), starting from the TT gauge expression (I.6) and

substituting (I.5), which is to be expected given that we are computing a gauge-

invariant quantity.



Appendix J

Brans-Dicke Theory: Field Equations
in Jordan Frame

In this appendix, we present scalar wave equation and the hypersurface equations in

the Jordan frame. The rr, rA, and the trace of the AB components of the modified

Einstein equations in Eq. (5.13a) give

(
4
r

+ 2∂rλ
λ

)
∂rβ − 1

λ
∂r∂rλ− ωBD

λ2
(∂rλ)2 − 1

4
hABhCD∂rhAC∂rhBD = 0 , (J.1a)

1
2r2
∂r(r

4e−2βhAB∂rU
B)− r2∂r

(
1
r2
DAβ

)
+ 1

2
hBCDB (∂rhAC) + DAλ

λr
− ωBD

λ2
∂rλDAλ

+ 1
λ
DAβ∂rλ+ 1

2λ
hBCDBλ∂rhAC + 1

2λ
e−2βhABr

2∂rλ∂rU
B − 1

λ
∂rDAλ = 0 ,

(J.1b)

2hAB (DADBβ +DAβDBβ)−R − 1
r2
e−2βDA∂r(r

4UA) + 1
2
r4e−4βhAB∂rU

A∂rU
B

+2e−2β∂rV + r2

λ
2λ+ r2

λ
gAB∇A∇Bλ+ ωBDr

2

λ2
gAB∇Aλ∇Bλ = 0 , (J.1c)
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respectively. On the other hand, the scalar wave equation, 2λ = 0, is given by

2∂u∂rλ+DA(UA∂rλ) + ∂r(U
ADAλ)− 1

r

(
−2UADAλ− 2∂uλ+ ∂rV ∂rλ+ V ∂r∂rλ

)
− 1

r2

[
e2βhAB (2DAβDBλ+DBDAλ) + V (∂rλ)

]
= 0 . (J.2)



Appendix K

Coordinate Transformations:
Harmonic Gauge to Bondi Gauge

In this appendix, we construct a coordinate transformation between harmonic coor-

dinates to first order in 1/R and Bondi coordinates at an equivalent order in 1/r for a

radiating spacetime in Brans-Dicke theory. The procedure is similar to that recently

described in [424] in GR, but we do not work to all orders in 1/r as in [424]. Rather,

we only work to an order in 1/r so that we can relate the radiative data in harmonic

gauge (h̃TT
ij and Ξ) to the corresponding radiative data in Bondi gauge (cAB and λ1)

and compute the GW memory effects from PN waveforms in harmonic gauge .

We will denote the harmonic-gauge metric by g
(H)
µν which we write in quasi-

Cartesian coordinates Xµ = (X0, X i), where X0 = t and X i = (X, Y, Z). However,

we find it convenient to define R =
√
X iXjδij to be the harmonic-gauge distance

from the origin, and yA = (ι, ϕ) to be spherical polar coordinates with cos ι = Z/R

and tanϕ = Y/X. The components of the metric can then be written in the form

g
(H)
00 = −1 +

2aMt

R
+

1

R
H00(t−R, yA) , (K.1a)
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g
(H)
0i =

1

R
H0i(t−R, yA) , (K.1b)

g
(H)
ij = δij +

2bMt

R
δij +

1

R
Hij(t−R, yA) . (K.1c)

We have written the metric in the center-of-mass rest frame of the system, and we have

split the O(1/R) part of the metric in terms of the constant mass monopole moment

Mt and all the higher-order multipole moments in Hµν which are time dependent. We

have also introduced constants a and b (defined below) which are needed so that the

metric satisfies the modified Einstein’s equations in the static limit (at the leading

nontrivial order in 1/R). To specify a solution, we also need an expression for the

scalar field, which we give in the Jordan frame, and which we denote by λ. We will

again expand it in terms of a static multipole moment and higher-order multipole

moments that are time dependent as follows:

λ = λ0

[
1 +

ψ(t−R, yA) + 2cMt

R

]
. (K.2)

The monopole term is the O(1/R) piece proportional to 2λ0cMt and ψ contains the

higher-order, time-dependent multipole moments. The third coefficient c is again

needed to satisfy the field equations in the static limit. The expressions for the

constants a, b, and c were previously determined in [179,399,432] and are given by

a =
ωBD + 2− κ
ωBD + 2

, (K.3a)

b =
ωBD + 1 + κ

ωBD + 2
, (K.3b)

c =
1− 2κ

2ωBD + 4
. (K.3c)



Appendix K. Coordinate Transformations: Harmonic Gauge to Bondi Gauge 252

We introduced the notation κ = (m1s1 + m2s2)/Mt. The coefficients also satisfy the

relationships a− b = 2c and a+ b = 2/λ0.

The harmonic gauge conditions lead to relationships between the components of

the quantity Hµν . These relationships are more conveniently expressed in terms of a

quantity H̃µν , which is related to Hµν by

Hµν = H̃µν −
1

2
H̃ηµν − ψηµν , (K.4)

and they are given by

H̃00 = ninjH̃ij , H̃0i = −njH̃ij . (K.5)

We have defined ni = X i/R = ∂iR above, and it reduces to the expression ~n ≡

(sin ι cosϕ, sin ι sinϕ, cos ι) when written in terms of ι and ϕ.1

Our procedure for transforming from harmonic gauge to Bondi gauge follows

some aspects of Ref. [424], in which Bondi coordinates were determined in terms

of harmonic-gauge quantities in GR. In our case, however, we work in BD theory,

work only to linear order in 1/R in harmonic coordinates, and we determine the

corresponding Bondi coordinates in an expansion in 1/R, such that Bondi gauge is

imposed to one order in 1/r beyond the leading-order metric. To perform the coordi-

nate transformation, it is useful to work with the components of the inverse metric.
1The conditions in Eq. (K.5) can be derived by first making the definitions given, e.g., in [399,425],

of a conformally rescaled metric g̃µν = λgµν , then defining h̃µν to be h̃µν = ηµν −
√
−g̃g̃µν , and

imposing the harmonic gauge condition ∂ν h̃µν = 0. When the harmonic gauge condition is imposed
at leading order in 1/R, then the conditions in (K.5) can be obtained (up to integration constants
that we set to zero, so as to maintain the static solution of Einstein’s equations in Eqs. (K.1)
and (K.2)).
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In harmonic gauge, it is given by

gµν(H) = ηµν(H) −
1

R

[
Hµν + 2Mt(aδ

µ
0 δ

ν
0 + bδµi δ

ν
j δ

ij)
]

+O(R−2) , (K.6)

where Hµν is related to Hµν by raising indices with ηµν(H). We aim to put the metric in

Bondi form, in which the nonzero components of the inverse Bondi metric are given

by

gur(B) =− 1− λ1

λ0r
+O

(
r−2
)
, (K.7a)

grr(B) = 1 +
∂uλ1

λ0

+
1

r

(
λ1

λ0

− 2M+
λ1∂uλ1

2λ2
0

)
+O

(
r−2
)
, (K.7b)

grA(B) =
1

2r2

(
ðBcAB −

ðAλ1

λ0

)
+O

(
r−3
)
, (K.7c)

gAB(B) =
1

r2
qAB − 1

r3
cAB +O(r−4) , (K.7d)

(and where guu(B) = guA(B) = 0). For simplicity, we will summarize Eq. (K.7) as

gµν(B) = ηµν(B) −
1

r
hµν(B) , (K.8)

where the quantity ηµν(B) consists of the O(r0) pieces of gur(B) and g
rr
(B), the O(r−1) part

of grA(B) (which vanishes) and the O(r−2) part of gAB(B) ; the quantity hµν(B) consists of the

coefficients of the relative 1/r corrections to the components of ηµν(B).

We perform the coordinate transformation in two stages for illustrative purposes

(one could perform it in one stage as in [424], but the two-stage process here allows

us to highlight the different roles of the different terms in the transformation more

easily). The first stage imposes the gauge conditions on the inverse Bondi metric that
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guu(B) and g
uA
(B) vanish to the accuracy in 1/r at which we work, it also makes r an areal

radius, and finally, it relates the Bondi-coordinate retarded time u to the harmonic-

gauge retarded time t − R. It can be thought of as a “finite” gauge transformation,

in the sense that it is needed to relate the background metrics ηµν(B) and ηµν(H), which

differ by a large (not perturbative in 1/r) coordinate transformation. The second

stage, which can be treated as perturbative in 1/r, then sets the metric following the

first transformation into a Bondi-gauge metric that satisfies the modified Einstein

equations of BD theory.

In the first stage, the finite part of the coordinate transformation expresses a

set of coordinates xα = (u, r, xA) in terms of harmonic gauge coordinates Xα =

(t,X i). Although it is expressed more easily in terms of the spherical polar coordinates

(t, R, yA) constructed from harmonic coordinates as follows:

u = t−R−Mt(a+ b) lnR , (K.9a)

r = R +Mtb−
ψ

2
, (K.9b)

xA = yA . (K.9c)

The coordinates (u, r, xA) resemble, but are not precisely Bondi coordinates at the

order in 1/r at which we work, because they do not enforce all of the required prop-

erties of the Bondi-gauge metric. We will thus write this “intermediate” metric as

gµν(I) , and it can be computed from the harmonic-gauge metric using the usual tensor
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transformation law

gµν(I) = gαβ(H)

∂xµ

∂Xα

∂xν

∂Xβ
. (K.10)

A somewhat lengthy, but otherwise straightforward calculation shows that this metric

can be written in the form

gµν(I) = ηµν(B) −
1

r
hµν(I) , (K.11)

where η(B)
µν is the leading order part of the inverse Bondi metric in Eq. (K.7). The

coefficients of the relative order 1/r corrections to ηµν(B) we denoted by hµν(I) and they

are given by

hrr(I) = (a+ b)Mt(∂uψ)2 −

(
H̃

2
− 2bMt + ψ

)
∂uψ

+Hijn
inj + 2bMt +O

(
1

r

)
, (K.12a)

hur(I) = −1

2
(a+ b)Mt∂uψ +

Ξ

λ0

+
H̃

2
+O

(
1

r

)
, (K.12b)

r hrA(I) = −
(
H0iðAni −

1

2
ðAψ

)
+O

(
1

r

)
, (K.12c)

huu(I) = O
(

1

r

)
, (K.12d)

huA(I) = O
(

1

r2

)
, (K.12e)

r2hAB(I) = HijðAniðBnj + ψqAB +O
(

1

r

)
. (K.12f)

To arrive at Eq. (K.12), we used the conditions in Eq. (K.5) and we expressed ∂tψ in

terms of ∂uψ (and other terms) using the derivatives of the first two lines in Eq. (K.9)
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and the chain rule:

∂tψ = ∂uψ −
1

2r
(a+ b)Mt(∂uψ)2 . (K.13)

Note that nonlinear terms involving in ψ appear here and elsewhere in hrr(I), because

the coordinate transformations in (K.9a)–(K.9c) involve ψ at leading order in 1/r.

The metric is similar to a Bondi-Sachs form to the order in 1/r at which we work,

in the sense that the Bondi gauge conditions guu(I) = guA(I) = 0 are satisfied at this order

and the right-hand side of Eq. (K.12f) is traceless with respect to qAB (thereby being

consistent with the determinant condition of Bondi gauge). Note, however, that the

ur, rr, and rA components of hµν(I) do not satisfy the modified Einstein equations in

Bondi-Sachs gauge, as they are not consistent with the form of the inverse metric

in Eq. (K.7). The metric can be put into Bondi gauge with a perturbative (in 1/r)

coordinate transformation, as we describe next.

We will parametrize the perturbative coordinate transformation in terms of a

vector ξµ which effects the coordinate transformation xµ → xµ + ξµ. This coordinate

transformation will take the part of the metric hµν(I)/r and bring it to the Bondi-Sachs

form hµν(B)/r, through the transformation

1

r
hµν(B) =

1

r
hµν(I) + L~ξη

µν
(B) , (K.14)

where L~ξ is the Lie derivative along ~ξ. To solve for the perturbative gauge vector

that generates this transformation, one can write the components of ξµ as

ξµ =
1

r
(ξu(1), ξ

r
(1), ξ

A
(1)/r) , (K.15)
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where the functions ξµ(1) depend on u and xA (not r). These lead to a set of partial

differential equations for the ξµ(1) that can be integrated by requiring that hµν(I) be

transformed into Bondi-Sachs form. Before giving the full details of this procedure, it

is worth noting that given the form of the components of the vector ξµ in Eq. (K.15),

the radiative data λ1 and cAB can be related to harmonic-gauge data and the finite

coordinate transformation (K.9) without needing the full expression for ξµ in (K.15).

For the scalar field, because in both harmonic and Bondi gauges, the field has an

expansion of the form λ = λ0 + O(r−1) (where λ0 is constant and the coefficient of

the O(r−1) term is denoted Ξ(t − R, yA) in harmonic coordinates and λ1(u, xA) in

Bondi coordinates), then the transformation parametrized by ξµ in Eq. (K.15) will

not change Ξ or λ1. Thus, one must have that

λ1(u, xA) = Ξ[t−R, yA] , (K.16)

where u is related to t− R (and xA to yA) by the transformations in Eq. (K.9). For

cAB, a direct calculation shows that L~ξηAB(B) is of order r−4 for ξµ in (K.15). This

implies that

cAB = HijðAniðBnj + ψqAB . (K.17)

Using the definition of H̃µν in Eq. (K.4), the harmonic gauge conditions in (K.5), and

the fact that qAB = δijðAniðBnj, this equation can be recast as

cAB = H̃ijðAniðBnj −
1

2
H̃qAB . (K.18)
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After using Eq. (K.5) again, it follows that cAB is related to just the transverse-

traceless (TT) part of H̃ij as

cAB(u, xA) = H̃TT
ij (t−R, yA)ðAniðBnj , (K.19)

where again u is related to t−R and xA to yA by the transformations in (K.9).

For our purposes of relating the radiative data in Bondi coordinates to that in

harmonic coordinates, Eqs. (K.16) and (K.19) provide the solution. However, for

completeness we do compute the form of the required gauge vector ξµ needed to

complete the transformation from harmonic to Bondi coordinates. The components of

the gauge vector in Eq. (K.15) can be constrained from the ur, rA, and rr components

of Eq. (K.14), which state, respectively,

∂uξ
u
(1) = hru(B) − hru(I) , (K.20a)

∂uξ
A
(1) = r

(
hrA(B) − hrA(I)

)
, (K.20b)

2∂uξ
r
(1) + ξu(1)(∂u)

2(λ1/λ0) = hrr(B) − hrr(I) , (K.20c)

By substituting the relationships in Eqs. (K.16) and (K.19) into Eq. (K.7), extracting

the relevant components of hµν(B), and using the expressions for hµν(I) in Eq. (K.12), it is

straightforward to integrate the first two lines in Eq. (K.20) to obtain expressions for

ξu(1) and ξA(1). Once ξu(1) has been determined, integrating the final line of Eq. (K.20)

to determine ξr(1) is also, in principle, straightforward. There is one subtlety in this

procedure: hrr(B) involves the Bondi mass aspectM, which has not yet been determined
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from metric quantities in harmonic gauge. Because the mass aspect satisfies the

conservation equation [82]

∂uM = −1

8
NABN

AB +
1

4
ðAðBNAB − (3 + 2ωBD)

1

4λ2
0

(∂uλ1)2 +
1

4λ0

Ð2∂uλ1 , (K.21)

it is possible to integrate this equation and express M in terms of harmonic-gauge

quantities using Eqs. (K.16) and (K.19). To simplify the notation, however, we will

not write this out in detail below, and we will write this quantity just asM. The result

of performing these integrations and using the harmonic gauge conditions in (K.5) is

that the components of the vector ξµ are given by

ξu = − 1

2r

∫
dtH̃ +

M

λ2
0r

Ξ , (K.22a)

ξr = − 1

2r

∫
dt

[
ξu(1)

λ0

∂2
uΞ +

2M

λ3
0

(∂uΞ)2 − 2M+ H̃00

−1

2

Ξ

λ2
0

∂uΞ−
(

1

2
H̃ − 2M

λ0

)(
1 +

∂uΞ

λ0

)]
, (K.22b)

ξA = − 1

r2

∫
dt

[
1

2
ðB
(
H̃TT
ij ðAniðBnj

)
+Hijn

iðAnj
]
. (K.22c)

This transformation, along with the finite transformation in Eq. (K.9), brings the

metric into the form in Eq. (K.7), in which λ1 and cAB are related to the harmonic-

gauge quantities Ξ and H̃TT
ij by Eqs. (K.16) and (K.19).



Appendix L

Estimates of Ordinary Memory
Effects in Brans-Dicke Theory

L.1 Ordinary Displacement Memory Effect

The contribution to the ordinary memory effect comes from the “charge” rather than

the “flux” terms in Eq. (6.50), i.e.:

∫
d2ΩαÐ2(Ð2 + 2)∆ΘO = 8∆

∫
d2Ωα

(
M− 1

4λ0

Ð2λ1

)
.

(L.1)

Expanding ∆M, ∆ΘO and ∆λ1 in spherical harmonics, the moments ∆ΘO are given

by

∆ΘO
lm =

(l + 2)!

(l − 2)!

[
8∆Mlm +

2

λ0

l(l + 1)∆λ1(lm)

]
. (L.2)

We would like to estimate if the quantity ∆ΘO
lm is of a similar PN order to the

nonlinear and null parts of the memory ∆ΘT
lm and ∆ΘS

lm that were computed in

Sec. 6.4.2 for any of the specific values of l = 2, 4, or 6 and m = 0. To do so, we

will focus on the moment ∆ΘO
20 for simplicity (the other three moments will have the

260
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same, or a higher PN order).

One natural way to compute the ordinary memory would be to directly evalu-

ate the moments λ1(20) and ∆M20. Using Eq. (6.39), we can show that λ1(20) is

at least O(x2); thus the scalar field’s contribution to the memory is a higher PN

order than the Newtonian order at which we work. Although, we do not have an

independent expression for ∆M20 that would allow us to directly compute ∆ΘO
20,

we already verified that λ1(20) is of a higher PN order. Thus, we can compute ΘO
20

from the waveform that were already computed in Eqs. (7.1) and (7.2a) of [179] to

verify that ∆M20 would not contribute at Newtonian order. Specifically, we contract

the Newtonian-order expression with the polarization tensors eij+ − ie
ij
×, multiply by

the spin-weighted spherical harmonic −2Ȳ20 to obtain U20 and then rescale it to ob-

tain ∆ΘO
20. We find that the Newtonian-order result vanishes, and there is thus no

Newtonian-order ordinary displacement memory.

L.2 Ordinary Spin Memory Effect

The ordinary part of the spin memory effect can be computed from Eq. (6.71a) with

just the term (6.71c) on the right-hand side:

∫
d2Ω γÐ2(Ð2 + 2)∆Σ0 = −8∆

∫
d2Ω εADðDγ

[
−3LA −

1

4λ0

(cABðBλ1 − λ1ðBcAB)

]
.

(L.3)

The terms cABðBλ1 − λ1ðBcAB on second line of the equation will not contribute at

Newtonian order for the spin memory effect (i.e, at order x−1/2), because both cAB
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and λ1 involve non-negative powers of x in the PN expansion, so their product will

not be a negative power of x. The only term that could contribute to the spin memory

effect comes from the change in the angular momentum aspect, LA.

We do not have an expression for LA in terms of harmonic-gauge metric functions,

which (analogously to the case of the mass aspect and ordinary displacement memory

effect) prohibits a direct calculation of the ordinary spin memory effect. In addition,

it is not possible to directly check the time integral of the waveform. This is because

the Newtonian-order terms in the spin memory effect arise from formally 2.5PN-

order terms in the waveform that are then integrated with respect to retarded time;

however, the waveform has only been computed to 2PN order in Ref [179]. While

we cannot then be certain that the ordinary memory terms do not contribute at the

same order because of additional nonlinear terms in the near zone, we can estimate

the size of the effect in linearized theory.

The ordinary spin memory effect would arise at the lowest PN order from changes

in ∆ΣO
30, which is proportional to the retarded time integral of the radiative moment

V30. Because at leading PN order, V30 is related to three time derivatives of the

source current octopole J30, then ∆ΣO
30 should be proportional to J̈30. By dimensional

analysis, J30 is proportional toMtvr
3
12 (or see, e.g., [195]); thus, J̈30 scales asMtvr12ṙ

2
12.

This scales with the PN parameter as ξx9/2+x11/2, which would be a 6PN correction to

the nonlinear and null effects. We thus anticipate from these arguments in linearized

theory that the ordinary part of the spin memory will be small.
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