

i

Abstract

Powered descent vehicles (PDVs), such as the Mars Science Laboratory (MSL) and the Apollo

Lunar Module, play an integral role in safely landing both robotic vehicles and human crews. The

landing accuracy of PDVs has increased throughout the history of PDV development, with the

current generation, MSL PDV, landing its payload within several kilometers of the intended target.

However, future missions call for pinpoint landing, which requires PDVs to land within tens of

meters of the target. The NASA Design Reference Architecture 5.0 for human missions to Mars

calls for multiple assets to be deployed to the Martian surface prior to crew landings. These assets

will need to be within tens of meters of each other to be reachable by crews. Additionally, there is

a need for adaptable PDV guidance and control systems that are reconfigurable in-flight. A

guidance and control strategy of this nature would enable a PDV to land safely in the event of

component failure or performance degradation without the loss of crew or assets.

The ultimate goal of the research is to develop an autonomous guidance and control strategy

that permits pinpoint landings in uncertain and dynamic environments, and is also robust to

component failures. Towards meeting this ultimate goal, this work sets two objectives. First, a

powered descent vehicle must be enabled to adapt in real-time to failures and degradations in its

performance. An adaptive control allocation method is implemented that utilizes parameter

identification techniques and inertial measurement unit data to identify if an engine has failed and

what kind of failure it has experienced. Second, this research lays the groundwork for enabling a

guidance routine to perform trajectory path re-evaluation and re-planning onboard in real-time. A

guidance software is built that discretizes the trajectory design space, and evaluates each candidate

trajectory using an internal six degree-of-freedom simulation. Once each trajectory has been

simulated, constraints are verified and each trajectory is scored to determine a champion trajectory

that is then passed to the control system to follow. This work leverages the high performance

computing capabilities of multi-core central processing units by applying Open Multi-Processing

directive-based parallelism techniques to parallelize the guidance software. This guidance software

is then used to safely target and land a human scaled PDV (defined by the human Mars entry,

descent, and landing architecture study) in several scenarios. These include avoiding keep-out-

zones that the PDV cannot fly through, and diverting to secondary landing targets.

ii

Acknowledgments

Working on this dissertation has been an adventure, and one that was made possible multiple

individuals and organizations. Their guidance, expertise, and support was integral to my success.

First, I would like to thank my advisor, Dr. Robert E. Lindberg (UVA), for giving me the

opportunity to pursue my graduate education and for his support in both my master’s and doctoral

research. I would like to thank Dr. Juan R. Cruz (NASA LaRC) for his mentorship, expertise, and

humor. I’ve never met someone who has worked as hard as him to help others succeed. I have also

been fortunate to have the support of Dr. Eric Queen (NASA LaRC), Richard Powell (Analytic

Mechanics Associates, Inc.), and Dr. Scott Striepe (NASA LaRC), who have helped me through

both the big and small aspects of this dissertation. I would like to thank the other members of my

advisory committee Dr. Karl Knospe (UVA), Dr. Gang Tao (UVA), and Dr. Christopher Goyne

(UVA) for their interest and support of my doctoral research.

Thank you to Dr. N. Ronald Merski (NASA LaRC) and the NASA Pathways Program for

providing me an opportunity at NASA, and for giving me a place to develop my passion. Thank

you to the following individuals for their technical expertise, encouragement, and eagerness to help:

R. Anthony Williams (NASA LaRC), Dr. James Hoffman (Analytic Mechanics Associates, Inc.),

Dr. Eugene Morelli (NASA LaRC), Dr. Jared Grauer (NASA LaRC), Dr. Rafael Lugo (NASA

LaRC), Alicia Dwyer-Cianciolo (NASA LaRC), Dr. Soumyo Dutta (NASA LaRC), Dr. Ashley

Korzun (NASA LaRC), Karl Edquist (NASA LaRC), Carole Garrison (Analytical Mechanics

Associates, Inc.), John Aguirre (Analytical Mechanics Associates, Inc.), Steve Marsh (Analytical

Mechanics Associates, Inc.), William Colson (Science Applications International Corporation),

Francis Daly (Science Systems and Applications, Inc.), and Julian Gutierrez (Northeastern

University).

I would like to thank the following organizations for the support they provided to me and other

researchers in the field of high performance computing; they were a source of invaluable

information and expertise: the NASA High Performance Computing Incubator, the XSEDE project,

Pittsburgh Supercomputing Center, Old Dominion University, and Oak Ridge National Laboratory.

I would like to thank the Dr. Eng Lim Goh, John J. Kichury, Dr. Mark R. Fernandez, and David

Petersen of the Hewlett Packard Enterprise for the opportunity to collaborate with them on their

Spaceborne Computer project.

iii

I would like to thank my family for supporting and encouraging me to achieve what I never

thought possible. Finally, I would like to thank my wife, Jessica B. Green, who was always there

when I needed her. It would not have been possible for me to complete my dissertation without all

this support.

iv

Table of Contents
Abstract .. i

Acknowledgments .. ii

Table of Contents .. iv

List of Figures ... vii

List of Tables .. xii

Nomenclature .. xiv

1 Introduction .. 1

1.1 Motivation .. 2

1.2 Goal, Objectives, and Contributions .. 6

1.3 Dissertation Overview ... 7

2 Background and Prior Work .. 9

2.1 Entry, Descent, and Landing .. 9

2.1.1 Entry Phase .. 9

2.1.2 Descent Phase .. 11

2.1.3 Landing Phase .. 14

2.2 Guidance, Navigation, and Control.. 17

2.2.1 Prior Work in Powered Descent Guidance .. 19

2.2.2 Stochastic Parafoil Guidance using a Graphics Processing Unit 26

2.3 High Performance Computing Hardware .. 28

2.3.1 Processor Technology .. 28

2.3.2 Space-Grade Processors and Radiation Hardening .. 34

2.3.3 Parallel Programming .. 37

3 Trajectory Simulation and Descent Vehicle Description ... 41

4 Engine Failure Mitigation ... 47

4.1 Baseline Guidance and Trajectory ... 47

4.2 System and Parameter Identification ... 49

4.2.1 Ordinary Least Squares Estimation .. 49

4.2.2 Real-Time Parameter Identification and Sequential Least Squares in the

Frequency Domain ... 51

4.2.3 Orthogonal Multi-Sine Inputs .. 53

4.3 Thruster Controller ... 56

4.4 Plant Model Generation ... 57

v

4.5 Design and Analysis of Perturbation Maneuver .. 59

4.5.1 Maneuver Study ... 60

4.5.2 Inertial Measurement Unit Error Study.. 66

4.6 Engine Failure Case Studies .. 68

4.7 Discussion, Limitations, and Future Work .. 71

5 Onboard Autonomous Trajectory Planner Development ... 72

5.1 Parallelized Six Degree-of-Freedom Trajectory Simulation .. 73

5.1.1 Selected Computer Hardware .. 74

5.1.2 Software Construction.. 74

5.1.3 Equations of Motion .. 75

5.1.4 Software Construction and Conversion to Multi-Threaded Implementations 80

5.1.5 Execution Time Analysis ... 87

5.2 Polynomial Trajectories in Cylindrical Coordinates .. 92

5.3 Control System for Polynomial Cylindrical Guidance .. 96

5.4 Evaluation of Candidate Trajectories ... 99

5.4.1 Trajectory Pruning Metrics .. 99

5.4.2 Trajectory Scoring Functions ... 101

5.5 Onboard Autonomous Trajectory Planner Guidance Overview and Performance

Evaluation .. 103

5.6 Discussion, Limitations, and Future Work .. 106

6 Powered Descent Case Studies .. 108

6.1 Meeting Landing Target Conditions and Keep-Out-Zone Avoidance 110

6.1.1 Nominal Landing Target .. 110

6.1.2 Divert Targets .. 117

6.2 Switching Landing Target Mid-Flight ... 124

6.3 Discussion .. 134

7 Conclusions ... 136

7.1 Contributions.. 136

7.2 Future Work ... 137

References ... 140

Appendices .. 154

A Collaboration with Hewlett Packard Enterprise .. 154

A.1 Spaceborne Computer Project .. 154

vi

A.2 Onboard Autonomous Trajectory Planner Guidance Operating in Space 156

B Maneuver Effects on Model Fit Error for Studied Engine Failure Modes................... 162

B.1 Engine Failure – Total Loss of Thrust ... 162

B.2 Engine Failure – Engine Thrust Stuck Full-On.. 166

C Maneuver Effects on Targeting Capability for Studied Engine Failure Modes 171

C.1 Engine Failure – Total Loss of Thrust ... 172

C.1 Engine Failure – Engine Thrust Stuck Full-On.. 188

D Software Framework for the Six Degree-of-Freedom Simulation 204

D.1 Main Function - CPU ... 204

D.2 Main Function - GPU ... 204

D.3 Runge-Kutta Function .. 205

D.4 Trajectory Simulation Function ... 206

E Software Framework for the Onboard Autonomous Trajectory Planner Guidance

Software .. 207

E.1 Interface Function .. 207

E.2 Main Guidance Function .. 207

E.3 Control System Function ... 209

vii

List of Figures

Figure 1.1: The Mars Science Laboratory EDL event sequence. Image from [4]. 2

Figure 1.2: Comparisons of landing site ellipses of several past and current Mars robotic

missions. .. 3

Figure 2.1: Flow field visualization of a supersonic retropropulsion jet injecting exhaust into the

supersonic freestream flow. Image from [55]. ... 13

Figure 2.2: Diagram of the Sky Crane maneuver developed for and used by the Mars Science

Laboratory to land the 900 kg Curiosity rover. Image from [59]. ... 16

Figure 2.3: Astronaut Alan Bean inspecting Surveyor 3, and the Apollo 12 Lunar Module in the

background. Image from [60]. ... 17

Figure 2.4: Example polynomial trajectory profile in Cartesian coordinates. 21

Figure 2.5: Slegers and Rogers' design of their GPU-based guidance strategy for parafoils. Image

from [31]. ... 26

Figure 2.6: Data from the flown stochastic GPU-based parafoil guidance strategy. Image from

[31]. .. 27

Figure 2.7: Intel© Core™ i7 processor, image from [80]... 29

Figure 2.8: Computer memory hierarchy. .. 30

Figure 2.9: A close up look at one of the 60 streaming multiprocessor on the NVIDIA Pascal

GP100 Full GPU architecture. Image from [84]. ... 32

Figure 2.10: Comparing software organization to GPU hardware architecture. Figure created

using images from [84]. ... 33

Figure 2.11: Shared (left image) and distributed (right image) memory architectures. 37

Figure 2.12: Pseudo-code for implementing OpenMP and OpenACC directives. Image adapted

from course notes by John Urbanic11. .. 39

viii

Figure 3.1: Coordinate systems used in six DoF trajectory simulation. Image credit: Juan R. Cruz,

NASA LaRC. ... 42

Figure 3.2: (Top) HIAD EDL vehicle architecture. (Bottom) Cargo configurations for the HIAD

EDL vehicle. Image from [35]. .. 43

Figure 3.3: Orientation of the eight thrusters with respect to the vehicle body reference frame (br).

The subscript 𝒊 corresponds to the engine number. ... 43

Figure 3.4: Definitions of the body reference coordinate frame (br) origin at the vehicle nose, and

body coordinate frame (b) origin at the center of mass. .. 44

Figure 3.5. Position of the vehicle’s center of mass in the planet coordinate frame. Note 𝒁𝑷 is

negative as shown. Image credit: Juan R. Cruz, NASA LaRC. ... 45

Figure 3.6: Definition of the body frame relative to the North-East-Down frame (located here at

the origin of the body frame for illustration purposes only). Image credit: Juan R. Cruz, NASA

LaRC. ... 46

Figure 4.1: Nominal trajectory of the PDV. The gravity turn phase operates between 0 and 51 s;

the vertical descent phase operates from 51 s until touchdown. .. 48

Figure 4.2: Thrust and throttle profiles of the nominal PDV trajectory. .. 48

Figure 4.3: Sample multi-sine waveform function generated by the MKMSSWP routine in

SIDPAC. .. 54

Figure 4.4: Power spectral density of eight orthogonal multi-sine waveforms for the 1.5 s

maneuver. ... 55

Figure 4.5: Power spectral density of eight orthogonal multi-sine waveforms for the 4.0 s

maneuver. ... 55

Figure 4.6: Orientation of the eight thrusters with respect to the vehicle body reference frame (br).

All dimensions are in meters. ... 60

Figure 4.7: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a complete loss of thrust in engine four (Left) and thrust stuck

full-on failure in engine four (Right). .. 62

ix

Figure 4.8: Maneuver variable effects on PDV’s ability to meet the target conditions at discrete

events. a) Maneuver throttle multiplier of 0.05. b) Maneuver throttle multiplier of 0.3. 64

Figure 4.9: Maneuver variable effects on PDV’s ability to meet the target conditions at discrete

events. a) Maneuver throttle multiplier of 0.05. b) Maneuver throttle multiplier of 0.3. 65

Figure 4.10: Three failure scenarios shown are: a) full loss of thrust in engine three, b) engine six

is stuck full-on, and c) engine eight is only able to produce 50% of the commanded thrust. 70

Figure 5.1. Position of the vehicle’s center of mass in the planet coordinate frame. Note 𝒁𝑷 is

negative as shown. Image credit: Juan R. Cruz, NASA LaRC. ... 76

Figure 5.2. Definition of the vehicle’s state variables in the vehicle body frame. Image credit:

Juan R. Cruz, NASA LaRC. .. 76

Figure 5.3: Investigation into the effect the number of threads has on the software execution

time. ... 81

Figure 5.4: GPU utilization report from the NVIDIA Visual Profiler. .. 84

Figure 5.5: Investigations into the maximum register specification made at compile time. Each

mark represents the average obtained through 10 iterations at each testing point, and the red bars

indicate the range of results. .. 86

Figure 5.6: Comparisons of compilers and hardware with scaling the number of trajectories. 90

Figure 5.7: Comparisons of compilers and hardware with scaling the integration frequency. The

shaded regions are small compared to the scale on the y-axis. .. 91

Figure 5.8: Definition of the cylindrical coordinate frame relative to the North-East-Down frame.

Both frames have their origin at the target location. .. 93

Figure 5.9: Trajectory design space. The current heading of the PDV is indicated by the black

dashed line. .. 95

Figure 5.10: Cost function used to evaluate candidate trajectories. ... 103

Figure 5.11: Diagram illustrating the calculations steps taken in the OATP guidance. 104

Figure 5.12: Investigation into the effect the number of concurrent threads has on the software

execution time. ... 106

x

Figure 6.1: Orientation of the eight thrusters with respect to the vehicle body reference frame (br).

These locations are from the human Mars EDL architecture study23. All dimensions are in meters.

 ... 108

Figure 6.2: Two-dimensional trajectory to the nominal landing target. 112

Figure 6.3: a) Key parameters for the PDV following the OATP guidance to the nominal target.

The vertical descent phase operates from 51 s until touchdown. b) Thrust and moment command

profiles. .. 113

Figure 6.4: Two-dimensional trajectory to the nominal landing target while avoiding keep-out-

zones. ... 114

Figure 6.5: a) Key parameters for the PDV following the OATP guidance to the nominal target

while avoiding keep-out-zones. b) Thrust and moment command profiles. 115

Figure 6.6: Flown Trajectory along with a sample of the candidate trajectories investigated by the

OATP guidance. ... 116

Figure 6.7: Two-dimensional trajectories of the vehicle traveling to the five possible targets

defined by Table 6.2. ... 119

Figure 6.8: a) Key parameters for the PDV following the OATP guidance to the 1 km crossrange

divert target, Target 5. b) Thrust and moment command profiles. .. 120

Figure 6.9: a) Key parameters for the PDV following the OATP guidance to the 1 km downrange

divert target, Target 4. b) Thrust and moment command profiles. .. 121

Figure 6.10: a) Key parameters for the PDV following the OATP guidance to the 300 m

crossrange divert target, Target 3. b) Thrust and moment command profiles. 122

Figure 6.11: a) Key parameters for the PDV following the OATP guidance to the 300 m

downrange divert target, Target 2. b) Thrust and moment command profiles............................. 123

Figure 6.12: Investigation into times to begin diverting to secondary targets (defined in Table 6.2)

and the trajectories flown to get there. ... 125

Figure 6.13: Thrust and moment profiles for diverting to secondary target (300 m downrange,

Target 2) at different times along the nominal trajectory. ... 127

xi

Figure 6.14: Throttle command profiles for diverting to secondary target (300 m downrange,

Target 2) at different times along the nominal trajectory. ... 128

Figure 6.15: Thrust and moment profiles for diverting to secondary target (300 m crossrange,

Target 3) at different times along the nominal trajectory. ... 129

Figure 6.16: Throttle command profiles for diverting to secondary target (300 m crossrange,

Target 3) at different times along the nominal trajectory. ... 130

Figure 6.17: Thrust and moment profiles for diverting to secondary target (1 km downrange,

Target 4) at different times along the nominal trajectory. ... 131

Figure 6.18: Throttle command profiles for diverting to secondary target (1 km downrange,

Target 4) at different times along the nominal trajectory. ... 132

Figure 6.19: Thrust and moment profiles for diverting to secondary target (1 km crossrange,

Target 5) at different times along the nominal trajectory. ... 133

Figure 6.20: Throttle command profiles for diverting to secondary target (1 km crossrange, Target

5) at different times along the nominal trajectory. ... 133

Figure 6.21: An example of the allowable command space for thrust, pitching moment, and

yawing moment. ... 135

xii

List of Tables

Table 1.1: Entry, descent, and landing summary for past and current Mars missions [6, 16, 17, 18,

19, 20, 21, 22, 23]. ... 4

Table 2.1: Technical challenges for SRP technology development [3, 52, 53, 54]. 14

Table 3.1: Mars Planetary Parameters used in the six DoF simulation. .. 42

Table 4.1: Maneuver design space. .. 61

Table 4.2. Correlation coefficients between the IMU sensor errors to the model error and

touchdown (TD) conditions reached by the PDV. Adaptive control allocation method

implemented for the PDV experiencing a loss of thrust in engine three, and using a 1.5 s

maneuver with a 0.05 throttle multiplier. ... 67

Table 4.3. Inertial measurement unit sensor errors induce the below range of errors in the

parameter identification plant model update and the PDV’s ability to reach its target touchdown

conditions of 2.5 m/s and -90º pitch and flight path angles. .. 67

Table 4.4. Correlation coefficients between the IMU sensor errors to the model error and

touchdown conditions reached by the PDV. Adaptive control allocation method implemented for

the PDV experiencing a loss of thrust in engine three, and using a 4.0 s maneuver with a 0.3

throttle multiplier. .. 68

Table 4.5. Inertial measurement unit sensor errors induce the below range of errors in the

parameter identification plant model update and the PDV’s ability to reach its target touchdown

conditions of 2.5 m/s and -90º pitch and flight path angles. .. 68

Table 5.1: Hardware specifications [110, 111, 112, 113, 114]. ... 74

Table 5.2: GPU hardware comparisons [120]. ... 84

Table 5.3: Six DoF trajectory simulation execution time for running 20000 trajectories. Each

trajectory is integrated at 100 Hz, and simulates a 60 s trajectory. .. 87

Table 5.4: Compiler flags used in comparison analysis. .. 88

Table 5.5: Initial and target conditions to the TPBVP derived in cylindrical coordinates............. 93

xiii

Table 5.6: Cost function gains and target limits. ... 102

Table 5.7: Hardware specifications [123, 124]. ... 105

Table 6.1: Powered descent vehicle initial conditions and targeting requirements. The vehicle

flight path angle and attitude are provided relative to the North-East-Down frame. 109

Table 6.2: Landing site locations used for the study. ... 109

Table 6.3: Keep-out-zone definitions in the North-East-Down frame, with origin at the nominal

landing target. All zones have a radius of 50 m. .. 110

Table 6.4: Pruning metrics (Section 5.4.1) and scores (Section 5.4.2) for the trajectories provided

in Figure 6.6. .. 117

Table 6.5: Key vehicle information at the end of the main decent phase (MDP) and vertical

descent phase (VDP). ... 119

Table 6.6: Key vehicle information at the end of the main decent phase and vertical descent phase

for the 300 m downrange divert landing target, Target 2. ... 126

Table 6.7: Key vehicle information at the end of the main decent phase and vertical descent phase

for the 300 m crossrange divert landing target, Target 3. .. 129

Table 6.8: Key vehicle information at the end of the main decent phase and vertical descent phase

for the 1 km downrange divert landing target, Target 4. ... 131

Table 6.9: Key vehicle information at the end of the main decent phase and vertical descent phase

for the 1 km crossrange divert landing target, Target 5. .. 132

xiv

Nomenclature

Abbreviations, Acronyms, and Terms

ADAPT Ascent and Descent Powered-Flight Testbed

ALHAT Autonomous precision Landing and Hazard Avoidance Technology

AOS Array of Structures

AOTV Aeroassisted Orbital Transfer Vehicle

APC Analytic Predictor Corrector

API Application Programming Interfaces

ARC Ames Research Center

ASIC Applications Specific Integrated Circuits

CFD Computational Fluid Dynamics

CobraMRV Co-Optimization Blunt-body Re-entry Analysis Mid L/D Rigid Vehicle

CoM Center of Mass

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CST Crew Space Transportation

CUDA Compute Unified Device Architecture

DGB Disk-Gap-Band

DoF Degree of Freedom

EBC Earth-Based Computer

ECC Error Correction Code

EDL Entry, Descent, and Landing

EoM Equations of Motion

ESA European Space Agency

EXPRESS EXpedite the PRocessing of Experiments to Space Station

FPGA Field Programmable Gate Array

G-FOLD Guidance for Fuel Optimal Large Diverts

GLN-MAC Gimbaled LN-200 with Miniature Airborne Computer

xv

GNC Guidance, Navigation, and Control

GPS Global Positioning System

GPU Graphics Processing Unit

GRAM Global Reference Atmospheric Model

HDL Hardware Description Language

HIAD Hypersonic Inflatable Aerodynamic Decelerator

HPC High Performance Computing

HPCG High Performance Conjugate Gradients

HPE Hewlett Packard Enterprise

HPL High Performance Computing Linpack

IMU Inertial Measurement Unit

I/O Input/Output

ISS International Space Station

IXV Intermediate eXperimental Vehicle

JPL Jet Propulsion Laboratory

KNL Knights Landing

LaRC Langley Research Center

LDSD Low Density Supersonic Decelerator

MDP Main Descent Phase

MER Mars Exploration Rover

MIMD Multiple Instructions, Multiple Data

MIMU Miniature Inertial Measurement Unit

MISD Multiple Instructions, Single Data

MLE Mars Lander Engines

MoI Moments of Inertia

MOLA Mars Orbiter Laser Altimeter

MPF Mars Pathfinder

MPI Message Passing Interface

MSL Mars Science Landing

xvi

NASA National Aeronautics and Space Administration

NEAR Near Earth Asteroid Rendezvous

NPB NASA Parallel Benchmarks

NPC Numerical Predictor Corrector

NVPROF NVIDIA Profiler

NVVP NVIDIA Visual Profiler

OATP Onboard Autonomous Trajectory Planner

OpenACC Open Accelerators

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PCIe Peripheral Component Interconnect Express

PDV Powered Descent Vehicle

PGI The Portland Group, Inc.

PID Proportional, Integral, Derivative

POSIX Portable Operating System Interface

POST2 Program to Optimize Simulated Trajectories II

RCS Reaction Control System

SBC Space-Based Computer

SEE Single Event Effect

SEU Single Event Upset

SIDPAC System IDentification Programs for AirCraft

SIMD Single Instruction, Multiple Data

SISD Single Instruction, Single Data

SLS Space Launch System

SLSFD Sequential Least Squares in the Frequency Domain

SM Streaming Multiprocessor

SOA Structure of Arrays

SOCP Second-Order Cone Program

SRP Supersonic Retropropulsion

xvii

TD Touchdown

TPBVP Two Point Boundary Value Problem

TPS Thermal Protection System

TRN Terrain Relative Navigation

VDP Vertical Descent Phase

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

Variables

𝐴𝑛𝑜𝑧 Area of the engine nozzle [m2]

𝑎 Acceleration m/s2]

�⃑� Acceleration vector [m/s2]

𝐶𝐷 Drag coefficient

𝐶𝐿 Lift coefficient

𝐶𝑚𝑦 Moment coefficient about 𝑦-axis

𝐶𝑚𝑧 Moment coefficient about 𝑧-axis

𝐶𝑥 Force coefficient along 𝑥-axis

𝑐 Polynomial coefficient

𝐷 Drag [N]

𝐷𝑛𝑜𝑧 Diameter of the engine nozzle [m]

𝑑 Element of the covariance matrix

𝐹 Force [N]

𝐹𝐶𝑀𝐷 Force and moment command array

𝐹𝑇,𝑀𝑎𝑥 Single engine maximum thrust [N]

𝐹𝑇,𝑇𝑜𝑡𝑀𝑎𝑥 Maximum thrust of all active engines together [N]

𝐹𝑇,𝑇𝑜𝑡𝑀𝑖𝑛 Minimum thrust of all active engines together [N]

GMMars Gravitational constant for Mars

𝑓 Frequency [Hz]

xviii

[𝐸𝑝] Euler parameter transformation matrix

𝐸𝑇𝑜𝑡𝑎𝑙 Total mechanical energy [J]

�⃑� Gravity vector [m/s2]

𝑔𝑀𝑎𝑟𝑠 Gravity at the Martian surface [m/s2]

[I𝐵] Vehicle inertia matrix

𝐼𝑠𝑝 Specific Impulse [s-1]

𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 Principal moments of inertia [kg⸳m2]

𝑖, 𝑗, 𝑘 Indexing variables

𝐽(𝜚) Least squares cost function

𝐾𝐶𝐴1, 𝐾𝐶𝐴2 Control authority cost function gain

𝐾𝐷2𝑇 Distance to target cost function gain

𝐾𝐸 Kinetic energy [J]

𝐾𝐹𝑢𝑒𝑙1, 𝐾𝐹𝑢𝑒𝑙2 Fuel usage cost function gain

𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷 Proportional, integral, and derivative controller gains

𝐿 Lift [N]

𝐿/𝐷 Lift-over-Drag

𝑙, 𝜗, 𝑧 Cylindrical coordinate system with origin at the planet-fixed frame

𝑀 Moment [Nm]

𝑀𝑒𝑡 Constraint metric array

𝑚 Mass [kg]

𝑚𝑝 Propellant mass [kg]

𝑁 Number of

𝑁𝐿𝐶 Number of logical cores

𝑁𝑝 Polynomial order

𝑁𝑃𝑟𝑜𝑐 Number of processors

𝑁𝑝𝑡𝑠 Number of data points in the sinusoidal function

𝑁𝑆𝑇 Number of supported threads

𝑁𝑇ℎ𝑟𝑒𝑎𝑑𝑠 Number of threads

xix

𝑃 Time period of the waveform

𝑝, 𝑞, 𝑟 Euler rotational rates (roll, pitch, yaw) [rad/s]

𝑝∞ Freestream pressure [Pa]

𝑄 Total heat load [J/m3]

𝑸 Plant model matrix

�̇�𝑐𝑜𝑛𝑣 Convective heat flux [W/m3]

�̇�𝑟𝑎𝑑 Radiative heat flux [W/m3]

�̇�𝑡𝑜𝑡 Total heat flux [W/m3]

𝑅𝐼 Radial distance from the center of the planet [m]

𝑅𝐾𝑂𝑍 Keep-out-zone radius [m]

𝑅𝐿𝑆 Radial distance from the landing site the vehicle is desired to land within

[m]

𝑇 Throttle command array

[𝑇𝐼𝐵] Transformation matrix for transferring a vector from the body coordinate

system to the planet-fixed coordinate system

𝑡 Time [s]

𝑡𝐴𝑡𝑀𝑎𝑥 Time spent at maximum thrust command [s]

𝑡𝑔𝑜 Time-to-go [s]

𝑡1−8 Throttle commands of engines 1-8

𝑈𝐸 Potiential energy [J]

𝑈(𝑡) Orthogonal multi-sine function

𝑢, 𝑣, 𝑤 Entry vehicle velocity components in the body coordinate system

𝑉 Velocity [m/s]

𝑿 Regressor Matrix

𝑋𝑏 , 𝑌𝑏 , 𝑍𝑏 Body right handed Cartesian coordinate system

𝑋𝑏𝑟, 𝑌𝑏𝑟 , 𝑍𝑏𝑟 Body reference right handed Cartesian coordinate system

𝑋𝐼 , 𝑌𝐼 , 𝑍𝐼 Inertial right handed Cartesian coordinate system

𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃 Planet-fixed right handed Cartesian coordinate system with origin at the

landing target and represents the north, east, down coordinates

xx

𝑋𝑅 , 𝑌𝑅 , 𝑍𝑅 Planet-fixed right handed Cartesian coordinate system with origin at the

planet center and rotates by 𝜔𝑃 about the 𝑍𝐼 axis

𝑥 Regressor term

𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏 Engine locations in the body coordinate system [m]

𝑥𝑏𝑟, 𝑦𝑏𝑟 , 𝑧𝑏𝑟 Engine locations in the body reference coordinate system [m]

𝑦 Modeled dependent variable

𝑧 Measured dependent variable

Greek Alphabet

𝛽 Ballistic coefficient [kg/m2]

𝛾𝑣𝑒𝑙 Flight path angle relative to the planet-fixed frame [rad]

Δ Difference

𝜀0, 𝜀1, 𝜀2, 𝜀3 Euler parameters specifying the body coordinate system orientation

relative to the planet-fixed coordinate system. Also referred to as

quaternions.

𝜆 Longitude [deg]

𝜈 Model error and measurement noise

𝜌 Density [kg/m3]

𝜚 Parameter

𝜚 Parameter estimate

𝜚0 Bias Parameter

𝜚𝑎𝑙𝑙 Engine effectiveness parameter array

𝜎2 Varience

𝜑 Latitude [deg]

𝜓, 𝜃, 𝜙 Euler angles (azimuth, elevation, and bank) [rad]

Ψ Off-nadir angle [rad]

𝜓𝑣𝑒𝑙 Velocity azimuth angle relative to the planet-fixed frame [rad]

[Ω] Rotation matrix about the body coordinate system

xxi

𝜔 Angular frequency [rad/s]

𝜔𝑃 Planet rotational rate [deg/s]

Superscripts

* Optimal

̃ Frequency domain

Subscripts

∞ Freestream

0 Initial

𝐶𝑀𝐷 Command

𝐶𝑜𝑀2𝐸𝑛𝑔 CoM to the engine

𝑐𝑣 Control variables

𝑑 Derived

𝐸𝑛𝑔 Engine

𝑒𝑥𝑡 Total external

𝑓 Final

𝑔 Gravitational

𝐼 Inertial

𝐼𝑀𝑈2𝐶𝑜𝑀 From the IMU to the vehicle CoM

𝑖, 𝑗, 𝑘 Indices

𝑖𝑣 Independent variables

𝐾𝑂𝑍 Keep-out-zone

𝑚 Measurement

𝑃 Planet

𝑝 Propulsion

𝑝𝑎𝑟𝑎𝑚 Parameters

𝑅 Planet-relative

xxii

𝑟𝑒𝑓 Reference

𝑇 Thrust

𝑡𝑜𝑙 Tolerance

𝑥, 𝑦, 𝑧 Coordinate axes

1

1 Introduction

The exploration of terrestrial bodies has been driven by the desire to understand planetary

evolution and the search for life on other planets. The pursuit of this knowledge has been underway

for decades, and it has required the help of robotic and human explorers. Current robotic explorers,

such as the Curiosity rover, are paving the way for human Mars missions in the 2030s [1]. Future

Mars mission proposals include robotic sample return missions, and human mission architectures

that will land multiple assets in preparation for the human crew [1, 2]. For these missions to be

successful, more capable descent and landing systems will be required.

When arriving at their planetary destination, robotic and human missions alike go through three

distinct phases to safely land on the surface: entry, descent, and landing (EDL). Whether a mission

utilizes all or some of these phases depends on the planet and the mission design itself. Entry

includes the hypersonic flight into a planet’s atmosphere and employs a ballistic or lifting body for

deceleration. The entry vehicle can then exit the atmosphere, such as the case for aerocapture or

aerobraking, or it can continue descending to the planet’s surface. Descent bridges the gap between

hypersonic flight and the terminal phase of landing. Historically, this has been accomplished with

supersonic and subsonic parachute systems. Landing is the terminal descent (or powered descent)

portion of flight and concludes with the payload at zero velocity on the surface [3]. As an example,

Figure 1.1 shows the Mars Science Laboratory (MSL) EDL sequence, which utilized all three

phases of EDL. The Space Shuttle is an example of an entry system that utilized only the entry and

landing phases.

2

Figure 1.1: The Mars Science Laboratory EDL event sequence. Image from [4].

The focus of the present research is on the guidance and control of the powered descent vehicle

during the landing phase. The powered descent vehicle (PDV) decelerates the payload and/or crew

through the use of rockets. For example, the Apollo Lunar Module used a single descent engine to

decelerate and land on the lunar surface. Hazards were avoided through pilot observation and

control [5]. However, the PDV can, and has been, utilized to accomplish much more than to simply

reduce orbital velocity of the vehicle. For example, MSL used the PDV to divert the vehicle’s

trajectory and avoid the previously separated backshell and parachute from re-contacting the

payload [4]. Designs for future robotic and human missions call for the PDV to divert the vehicle

when hazards are detected in the landing area, and to accomplish landing within tens of meters

from the target (doing so is known as a pinpoint landing) [6]. Past Mars robotic missions have

obtained landing accuracies on the order of hundreds of kilometers with Viking, and more recently

tens of kilometers with MSL.

1.1 Motivation

 There is a need for improvement in guidance and control strategies to enable descent systems

to achieve pinpoint landings. This need has two main motivators. The first is the ability to land at

scientifically interesting sites that are located near hazardous terrain. The science return for

missions at Mars has been limited by the accuracy of the EDL system, which is often characterized

by a three-sigma (99.87 percentile) ellipse where landing the payload within is most likely to occur.

3

Figure 1.2 compares the landing ellipses of several Mars missions: Viking 1 (V1), Viking 2 (V2),

Phoenix, Mars Pathfinder (MPF), Mars Exploration Rovers (MER), and MSL. From the Viking

missions to MSL (see Table 1.1) the long axis of the landing ellipse has decreased form 280 km to

21 km. The Mars 2020 mission has an expected landing site ellipse of 7.1 × 6.4 km [7]. The second

motivator is the ability to land near already existing mission assets. One example is retrieving pre-

cached specimens for a sample return; the Mars 2020 mission is collecting Mars surface samples

in preparation for a sample return mission [8]. Another example is landing crew and supplies near

existing mission critical assets. The NASA Design Reference Architecture 5.0 for human

exploration of Mars recommended pre-deploying assets, such as the descent/ascent vehicle and

surface habitat, to the Martian surface before crew are sent [1].

Figure 1.2: Comparisons of landing site ellipses of several past and current Mars

robotic missions.

The MSL performed the most precise landing of a Mars EDL mission to date [9]. Several

investigators have published works on altering the parachute deployment strategy of MSL to

improve the overall EDL targeting accuracy [10, 11, 12]. These investigations suggest changing

the condition for parachute deployment from being velocity-dependent to downrange-to-target

dependent. Garcia-Llama et al. [12] investigated the benefits of this strategy to a future MSL-like

mission and found that their 99.87 percentile parachute deployment ellipse was reduced from 20

by 8.2 km to 4.4 by 2.3 km. These improvements to the parachute deployment are significant.

However, after parachute deployment the descent stage and payload will drift due to winds and

uncertainties in the parachute aerodynamics, thus the landing ellipse of the payload will be larger

than the parachute deployment ellipse. So, even with the significant improvement to the parachute

deployment condition, missions requiring pinpoint landing will potentially have to divert several

4

kilometers to reach their target. The current state of the art for descent phase guidance, polynomial

guidance (discussed in Section 2.2.1.2), provides sub-optimal trajectories for large diverts, which

results in higher fuel consumption [13, 14, 15]. Future guidance strategies will need to provide

improved near fuel-optimal trajectories that do not experience the fuel consumption penalty over

large diverts are associated with polynomial guidance.

Table 1.1: Entry, descent, and landing summary for past and current Mars missions [6, 16,

17, 18, 19, 20, 21, 22, 23].

Landing Year: 1976 1997 2004 2008 2012

Mission: Viking 1 MPF
MER-A

(Spirit)
Phoenix

MSL

(Curiosity)

Entry From Orbit Direct Direct Direct Direct

Inertial Entry Velocity [km/s] 4.7 7.26 5.4 5.6 5.85

Inertial Entry Flight Path

Angle [deg]
-17 -14.06 -11.49 -13 -15.2

Ballistic Coefficient [kg/m2] 64 63 94 62 146

Entry Mass [kg] 992 584 827 572.7 3380

Entry Guidance Unguided Unguided Unguided Unguided
Apollo

Guidance

Lift/Drag Ratio 0.18 0 0 0 0.24

Aeroshell Diameter [m] 3.5 2.65 2.65 2.65 4.5

DGB Parachute Diameter [m] 16 12.5 14 11.73 21.5

Parachute Deployment Mach

No.
1.1 1.57 1.77 1.65 1.7

Parachute Deploy Altitude

[km]
5.79 9.4 7.4 9.8 12.1

Powered Descent Guidance
Gravity

Turn

Timed

Burn

Timed

Burn

Gravity

Turn
Polynomial

Landing Mechanism Legs Airbag Airbag Legs
Rover

Wheels

Landing Site Elevation [km

MOLA1]
-3.5 -2.5 -1.9 -4.1 -4.6

3-sig. Landed Ellipse

Major×Minor Axis [km]
280×100 200×100 80×12 55.1X19.2 21X7

Landed Mass [kg] 590 360 539 382 900

1 MOLA stands for Mars Orbiter Laser Altimeter.

5

Both current and past guidance programs require significant use of a priori Monte Carlo

simulations. These are used by flight mechanics engineers and mission planners to re-tune and

evaluate the guidance solutions based on models and estimated uncertainties. By taking

uncertainties in vehicle states (e.g., position, velocity, attitude, etc.), vehicle performance (e.g.,

aerodynamics, thrust performance), modeling uncertainties (e.g., gravity field and atmospheric

properties), and other flight mechanics properties, statistics can be developed to characterize a

vehicle and its trajectory. Common statistics generated by the Monte Carlo simulation analysis, and

used by flight mechanics engineers, are the landing ellipse, fuel usage, aeroshell heating,

touchdown velocity, and total acceleration. However, depending on the mission, other statistics

may be used as well. For today’s systems, Monte Carlo simulation analysis is performed before the

beginning of EDL to evaluate the robustness of the trajectory and overall system for meeting

mission requirements. Should a trajectory not meet these requirements, the trajectory is iteratively

adjusted and its performance reanalyzed using Monte Carlo simulations until the mission

requirements are satisfied. This method is very effective when there is enough time before the

vehicle begins EDL, such that the analysis can be performed and the results communicated to the

vehicle. Should changes in the environment or vehicle performance occur during the EDL

sequence, there is no time to communicate that information back to engineers on Earth, have them

retune the guidance system to account for it, and communicate that back to the vehicle.

Prior Mars EDL missions have not been designed to accommodate failures or degraded

performance of engine or thruster components. The MSL mission, for example, the descent stage

designers performed extensive testing on the Mars lander engines (MLEs) and reaction control

system (RCS) thrusters and found that failures in these systems were unlikely [24]. This, along with

mission constraints, led the designers to decide that the MSL “spacecraft was not designed to

survive an engine failure for either the MLEs or RCS thrusters,” [24]. The risk inherent in this

approach is acceptable for a mission and descent system with a single payload or asset. However,

this approach is unacceptable when a mission and descent system must consider the safety and

security of already established assets on the ground and/or onboard crew members. Therefore,

redundancy and failure mitigation are of great interest for powered descent vehicles. Implementing

redundancies for larger systems, such as descent engines, can be problematic due to the mass or the

complexity of adding such systems. Constraints from the mission itself can also hinder the

implementation of redundant engines and supporting systems. Guidance and control strategies that

minimize the level of redundancy needed can improve reliability while minimizing additional mass

and complexity.

6

Human Mars mission architectures, due to their early stages in design and development, are

also in need of component failure mitigation strategies that do not add significant mass and

complexity. One solution for mitigating these issues would be to build a guidance and control

strategy that can adapt and reconfigure in the face of component failures. Such a capability has

been identified as a key technology to be developed by National Aeronautic and Space

Administration (NASA) Space Technology Roadmap for EDL [3]. A guidance and control strategy

of this nature would enable a descent system to land in the event of a component failure without

the loss of crew or assets.

1.2 Goal, Objectives, and Contributions

The development of an autonomous guidance and control strategy that allows for pinpoint

landings in uncertain and dynamic environments with no human in the loop control or guidance,

and is robust to component failures, such as engine failures is the ultimate goal of this research.

Towards meeting this goal, this work sets two objectives. First, a powered descent vehicle must be

enabled to adapt in real-time to failures and degradations in its performance. Second, develop a

guidance routine that can utilize high performance computing hardware to design and evaluate

trajectory designs through onboard real-time six degree-of-freedom simulations. This lays the

groundwork for enabling a guidance routine to take in new information to perform trajectory path

re-evaluation and re-tuning onboard in real-time. Realizing these objectives provides the

framework for a guidance routine that can design and evaluate, in real-time, the performance of

different trajectory choices available to it. This would be similar to how flight mechanics engineers

evaluate trajectories before the beginning of EDL to meet mission requirements. However, this

would be performed autonomously onboard the vehicle during EDL. The work presented herein

discusses novel approaches in meeting these two objectives as part of an overall guidance and

control strategy for powered descent.

Develop an algorithm that enables a powered descent vehicle to adapt in real-time to

failures and degradations in its performance that change its dynamic behavior: Past robotic

missions and planned human missions to the Moon and Mars have not addressed the engine failure

scenario. They have relied on extensive testing before the flight to increase confidence in the engine

performance [24]. This work presents a novel adaptive control allocation method for measuring the

effectiveness of each engine, in a multi-engine PDV, and adapting the thruster control. This method

applies system and parameter identification techniques described by Klein and Morelli, Ref [25],

which have been successfully applied to aircraft, turbines, and rocket engines [26, 27, 28]. This

7

relatively simple approach processes data from the onboard inertial measurement unit (IMU) to

identify thruster effectiveness in-situ and in real-time. This method can enable future powered

descent vehicles for robotic and human missions the ability to tolerate a component failure without

the loss of the vehicle or crew.

Develop a guidance routine that can utilize high performance computing hardware to

design and evaluate trajectory designs through onboard real-time six degree-of-freedom

simulations: Realizing this provides the framework for a guidance routine that can design and

evaluate, in real-time, the performance of different trajectory choices available to it. Before the

landing of a robotic or human scaled mission, engineers evaluate and tune their guidance routines

based on the best available information. Should vehicle or environmental conditions change during

EDL, there is no time for the vehicle to communicate that information to engineers on Earth, then

those engineers to re-evaluate or re-tune their guidance routine, and then communicate that back to

the EDL vehicle. However, EDL vehicles can be enabled to perform trajectory path re-evaluation

and re-tuning onboard by applying concepts first explored by Rogers and Slegers [29, 30, 31]. The

work herein expands their development of a graphics processing unit (GPU) – based guidance

concept for parafoils. The guidance routine discussed here is designed to execute full six degree-

of-freedom (DoF) simulations onboard in real-time. The guidance routine uses these simulations to

evaluate a design space of possible trajectory paths and then selects a desirable trajectory, using a

weighted cost function, for the control system to follow. This novel guidance routine is

demonstrated using commercial off-the-shelf (COTS) high performance computing

(HPC) hardware.

1.3 Dissertation Overview

 This dissertation is organized into seven chapters. Chapter 2 provides needed background

information for understanding the research contained herein. The three phases of EDL are discussed

in detail. Past and current work in powered descent guidance and control is reviewed, with

discussions on their application and limitations. Additionally, the stochastic graphics processing

unit – based parafoil guidance by Rogers and Slegers, Ref. [29], is introduced. The state-of-the-art

in space-grade processor technology is discussed alongside high performance computing hardware.

The computational power of high performance computing is an enabling technology for the

OATP guidance.

 Chapter 3 provides an overview of the trajectory simulation used to evaluate the guidance and

control research. The Program to Optimize Simulated Trajectories – II (POST2) software,

8

developed at the NASA Langley Research Center (LaRC), is trajectory simulation software that is

used to evaluate the research herein. [32]. Also, the powered descent vehicle, used to demonstrate

the guidance and control strategies developed here, is described. This vehicle is currently being

designed and evaluated for the human Mars mission architecture study [33, 34, 35, 36, 37].

 Chapter 4 introduces new work to enable a PDV to adapt to failures and degradations in engine

performance that will affect the dynamic behavior of the vehicle. Background information into

system and parameter identification are provided, and the adaptive control allocation method is

introduced. The construction of the thruster controller is provided. Lastly, several failure scenarios

are postulated and the adaptive control method’s ability to mitigate those failures is demonstrated.

 Chapter 5 discusses the development steps taken to create the Onboard Autonomous Trajectory

Planner (OATP) guidance. The defining equations behind the developed software are provided.

The construction of the software itself is discussed, with emphasis on how it is adapted to take

advantage of the parallel processing architecture of HPC hardware. The chapter concludes with the

evaluation of the OATP guidance execution time on HPC hardware.

 Chapter 6 evaluates the OATP guidance through several scenarios. The OATP guidance must

guide the PDV to the landing target while avoiding keep-out-zones that it may not fly over. Then

the ability to provide viable trajectories to four divert landing targets are assessed. The divert targets

are a 300 m and 1 km crossrange and downrange from the nominal landing target. Initial

investigations into switching landing targets mid-flight are performed and evaluate how late the

switch can occur. Through each of these scenarios, the ability of the OATP guidance to meet the

landing requirements set by the human Mars EDL architecture study is discussed. Finally, the

current limitations of the OATP guidance are provided.

 Chapter 7 provides the conclusions of this research and highlights the two major contributions.

The chapter concludes with a discussion on future research opportunities.

9

2 Background and Prior Work

2.1 Entry, Descent, and Landing

Entry, Descent, and Landing is defined as the process that brings a vehicle from orbit or orbital

approach conditions onto to surface of, or transits through the atmosphere of, a solar system body.

The objective of the EDL process is to decrease the total mechanical energy of a vehicle, in its

initial orbit, either to zero, relative to a reference point on the surface of a planet, or to a nonzero

value, thus placing the vehicle in a target orbit. The total mechanical energy is the sum of the total

potential and kinetic energies of the vehicle

𝐸𝑇𝑜𝑡𝑎𝑙 = 𝑈𝐸 + 𝐾𝐸 (2.1)

Engineers frame the discussion of parts of, or the whole, EDL process in the context of a trajectory.

A trajectory is the history of vehicle states (e.g., position, velocity, attitude, etc.) relative to a known

reference frame.

2.1.1 Entry Phase

Depending on the mission design and the solar system body, some or all three of the EDL

phases are utilized. The entry phase is applied to planetary bodies with an atmosphere, begins at

atmospheric interface and is predominantly the hypersonic portion of the flight. The entry phase

utilizes the aerodynamic drag of the vehicle forebody for deceleration. In the denser portions of the

atmosphere, where the majority of the deceleration occurs, the atmospheric gas ahead of the vehicle

is slowed (relative to the vehicle perspective) and compressed. When the vehicle exceeds the local

speed of sound, typical of the majority of entry scenarios, a shock field develops around the vehicle

forebody, which then rapidly heats and compresses gases moving through it. This generation of

heat is the mechanism for dissipating the majority of the kinetic energy of the vehicle. This heat

generation necessitates the use of thermal protection systems (TPS). The size, thickness, and

material types of TPS are dictated by the mission design and the atmosphere of the planet [38].

The entry phase can be grouped into three variants: aerobraking, aerocapture, and entry to land

(typically referred to as just entry). Both aerobraking and aerocapture use the atmosphere to change

the orbit of a vehicle. Since aerobraking and aerocapture are not used for landing, they are not

discussed further in this dissertation. However, further reading on these concepts can be found in

Ref. [39].

10

Entry to land brings the vehicle from either its initial orbit (either unbounded or bounded) to

the surface of the planet. The entry flight path angle (entry corridor) for a vehicle landing on a

planet must be steep enough so it does not leave the atmosphere, but is not too steep such that the

deceleration or aerothermal loads are above the design tolerances of the vehicle [39]. Entry to land

was initially applied for military ballistic missile systems [40]. However it also has a long history

for both robotic and human lander missions. Most notable are the human missions at Earth, such

as Mercury, Gemini, Apollo, Soyuz, Space Shuttle [41]. Entry vehicles for humans that are

currently under development include the NASA Orion Multi-Purpose Crew Vehicle, SpaceX

Dragon Spacecraft, Blue Origin New Shepard Capsule, Boeing Crew Space Transportation (CST)-

100 Starliner spacecraft, Sierra Nevada Corporation Dream Chaser, and Virgin Galactic

SpaceShipTwo [42, 43, 44, 45, 46, 47]. It should be noted that several of the above examples skip

the descent phase, which is discussed later, and go directly to land. This is due to their design,

which allows them to land on runways similar to modern aircraft. Table 1.1 provides several

examples of Mars robotic missions from the United States. An entry vehicle technology currently

under study for future human Mars missions is Hypersonic Inflatable Aerodynamic Decelerator

(HIAD). This type of vehicle relies on stacked inflated tori to provide the rigid forebody structure,

which is also covered in a flexible TPS. Information on the benefits and future control strategies

for HIADs can be found in Ref. [48]. Another human mars mission entry vehicle technology is the

Co-Optimization Blunt-body Re-entry Analysis Mid lift-over-drag (𝐿/𝐷) Rigid Vehicle

(CobraMRV). This is a lifting body concept, similar to HL-20 and M2-F3 concepts by NASA, and

the Intermediate eXperimental Vehicle (IXV) concept by the European Space Agency (ESA). More

information on the CobraMRV can be found in Ref. [35, 49, 50].

When designing entry vehicles, engineers must balance the requirements and considerations

imposed by the mission with the technologies that are available. Mission requirements may include

minimizing the overall vehicle mass, limiting the deceleration loads to within a tolerable range for

the payload, limiting the thermal loads absorbed by the vehicle structure and payload, ability to

target the terminal entry conditions (e.g., landing site location or target orbit), and mitigation of

uncertainties on vehicle performance (e.g., atmospheric uncertainties). Engineers must also take

into account the conditions the vehicle will be operating at, such as: atmospheric density and

composition, gravity field of the planet, and vehicle velocities and attitude [39]. Taking into account

these requirements and considerations, engineers can determine if uncontrolled ballistic trajectories

will suffice, or a low to moderate lifting trajectory will be needed. Typical parameters engineers

use to design and evaluate entry vehicle designs are ballistic coefficient, Eq. (2.2); 𝐿/𝐷, Eq. (2.3);

11

peak heat flux and heat load capability, Eq. (2.4) and (2.5); and static and dynamic stability across

multiple flow regimes.

𝛽 = 𝑚/𝐶𝐷𝑆 (2.2)

Ballistic coefficient is the ratio of the vehicle mass, 𝑚, to drag area, 𝐶𝐷𝑆 (coefficient of drag

multiplied by the reference area, typically the planform area). As an analogy a low ballistic number

would be a vehicle that flies like a balloon and a high ballistic number would fly like a brick.

𝐿

𝐷
=
𝐶𝐿
𝐶𝐷

 (2.3)

The ratio of the lift and drag forces simplify to be the ratio of the lift and drag coefficients, 𝐶𝐿 and

𝐶𝐷 respectively. The total peak heat flux

�̇�𝑡𝑜𝑡 = �̇�𝑐𝑜𝑛𝑣 + �̇�𝑟𝑎𝑑 (2.4)

is the summation of the convective and radiative heat fluxes, �̇�𝑐𝑜𝑛𝑣 and �̇�𝑟𝑎𝑑 respectively. The total

heat load is determined by

𝑄𝑙𝑜𝑎𝑑 = ∫ �̇�𝑡𝑜𝑡𝑑𝑡 (2.5)

Further reading on the estimation of heat flux and load can be found in Ref. [48]. Understanding

these parameters aid engineers in designing an entry vehicle that meet mission requirements.

However, for some missions (depending on the payload size, planetary atmosphere, and entry

conditions), the entry vehicle will not be capable of removing enough of the kinetic energy to safely

land on the planet surface, which is where the descent phase takes over.

2.1.2 Descent Phase

The descent phase bridges the gap between the hypersonic flight of entry and the terminal phase

of landing. The majority of this phase takes place at terminal velocity. Depending on the entry

vehicle, terminal velocity will be too high for the vehicle to touchdown with. However, some

missions, such as the Venera Landers at Venus, were designed to skip the descent phase and survive

the impact with the surface. Should it be needed, a typical method to further decreasing the vehicle

velocity is to deploy a drag enhancement device, such as a parachute or ballute. These increase the

effective drag area, thus lowering the ballistic coefficient, and provide added stability as the vehicle

transitions through the transonic and subsonic flight regimes. Parachute systems have been

12

successfully used for both human missions (e.g., Mercury, Gemini, Apollo, and Soyuz), and robotic

missions (e.g., Viking, MSL, and Huygens) [41, 51]. Parachute designs vary depending on the

mission, and offer different inflation performance, drag coefficient, stability, and manufacturing

cost. The ringsail parachute, with its superior stability, was used for the Mercury, Gemini, and

Apollo missions [38]. The largest supersonically deployed parachute belongs to the Mars Science

Laboratory, which deployed a 21.5 m Disk-Gap-Band (DGB) parachute to decelerate its 900 kg

payload [21].

Not all missions utilize parachutes for the descent phase. Retrorockets have a long history of

use for landing on planetary bodies with little to no atmosphere. Example missions include the

Moon Surveyor (used in preparation for the Apollo Lunar landings), the Apollo missions, and the

Soviet Luna missions. Retrorockets have also been used for landings on asteroids, such as the Near

Earth Asteroid Rendezvous (NEAR) – Shoemaker mission, which rendezvoused with and landed

on Eros, [38].

For missions at a planet with an appreciable atmosphere, supersonic retropropulsion (SRP)

technology is an alternative to parachutes for deceleration. The drive behind SRP technology

development is due to the limitations of parachute systems and the need for pinpoint landing [3,

52, 53]. The past two technology roadmaps published by NASA for EDL have made technology

research in SRP a top priority [3, 52]. These roadmaps point out that the largest payload landed

with current EDL technology (i.e. rigid aeroshell for entry and parachute system for descent) is the

900 kg payload of the MSL mission. Future human missions to Mars are looking to land 20 metric

ton payloads, which is not possible with current parachute technology [35]. In addition to the

payload mass limitations that come with parachute systems, there is also a concern with regards to

precision landing. For example, most of the landing error for MSL was because of on-parachute

winds [21, 53]. Current NASA studies investigating human Mars mission architectures are already

baselining SRP in their EDL designs [1, 33, 36, 37]. Although SRP technology is baselined in these

studies, it is not a new concept. The supersonic retropropulsion concept predates the Viking

missions, with early development in the 1960s and 1970s. Much of the development in SRP ended

with the decision by the Viking Project to pursue a supersonic parachute system and subsonic

propulsive terminal descent system [54]. In the early to mid-2000s interest in SRP technology

resumed, and on September 29th, 2013 the first demonstration of a SRP maneuver was by the Earth

return of the first stage of a SpaceX Falcon 9 rocket [53, 55]. Since then, SpaceX has successfully

utilized SRP multiple times to safely return the first stage of the Falcon 9 rocket.

13

As shown in Figure 2.1, SRP thrusts highly underexpanded jet exhaust gases into the supersonic

freestream flow. The interaction between the jet plume and the freestream flow terminate at the

contact surface, which also pushes the bow shock further upstream of the aeroshell body than it

would be without the jet plume. The thrust from the retrorockets adds a deceleration force to the

vehicle. However, the aerodynamics of the vehicle are affected by the retrorocket thrust and its

interaction with the supersonic freestream flow [56, 57]. Past wind tunnel testing and computational

fluid dynamic (CFD) modeling have provided early studies into these interactions and their effect

on vehicle aerodynamics. However, there is much still to explore, especially in flight-relevant

environments for Human Mars EDL missions. Table 2.1 summaries common technical challenges

for SRP technology development listed by researchers, grouped into the following areas of

research: 1) configuration, 2) propulsion, 3) aerodynamics and aerothermodynamics, and 4)

systems engineering and analysis. Table 2.1 is not an exhaustive and additional areas of research

will arise as SRP technology matures. However, gaining clear understandings in these research

areas is key to enable SRP technology use for human scaled EDL missions at Mars, and will

improve SRP use for EDL missions at Earth.

Figure 2.1: Flow field visualization of a supersonic retropropulsion jet injecting exhaust into

the supersonic freestream flow. Image from [55].

14

Table 2.1: Technical challenges for SRP technology development [3, 52, 53, 54].

Area of Research Technical Challenges

Systems Engineering

and Analysis

1) Entry, Descent, and Landing vehicles for human scaled missions are

loosely defined, which makes it difficult to design SRP flight systems.

Supersonic retropropulsion is impacted by the vehicle packaging,

transitions between vehicle configurations during EDL (e.g., ejection of

forebody aeroshell), and aeroshell shape.

2) Develop algorithms and systems to control and stabilize the EDL

vehicle during SRP use

3) Develop a fully integrated simulation for evaluating the full EDL

system using SRP (modeling propulsion; flight mechanics;

aerodynamics; aerothermodynamics; guidance, navigation, and control)

Propulsion 1) Deep throttling high thrust engines (hundreds of kilonewtons) are

needed for the high thrust required during SRP, and the low thrust

needed during the terminal descent of landing.

2) Development of long-term cryogenic propellant storage

Aerodynamics and

Aerothermodynamics

1) Vehicle shape will affect the propulsive and aerodynamic

interactions; these are as yet not fully understood

2) Supersonic retropropulsion at low thrust and high angles of attack are

not fully understood

3) Investment and development of validated and verified CFD tools for

evaluating SRP designs using ground testing and historical data

4) Computational fluid dynamic analysis to understand aerodynamics,

controllability, and stability during SRP initiation and operation during

flight relevant conditions

5) Development of tools to predict propellant use and surface

plume interactions

6) Understand the aerothermal environment and the effects on

surface heating

2.1.3 Landing Phase

The conclusion of the descent phase typically ends with the final preparations for landing, such

as deployment of landing systems. Depending on mission requirements and the planetary

15

atmosphere, parachute systems may take the payload through to landing, or the parachute may be

jettisoned and terminal descent engines take over decelerating the vehicle. Both current and future

deigns of EDL vehicles equipped with SRP utilize it for both the descent phase and the terminal

phase of landing [58]. Regardless of the method taken, the landing phase concludes when the

kinetic energy of the vehicle is fully dissipated and the potential energy is zero relative to the target

landing point [52].

Landings can be onto a body of liquid, such as the Apollo Command Module landing in the

oceans of Earth and potential future robotic missions to the methane lakes of Titan, or on solid

ground (or regolith), such as the Soyuz Descent Module landing in Kazakhstan and the Apollo

Lunar Module at the Moon. Landing in the ocean enables mission designers to use the momentum

transfer between the vehicle and the water to remove the last of the kinetic energy of the vehicle.

Just like entry and descent vehicles, there is a large variety of technologies and techniques used

during landing. These include pod landers (near-spherical to egg-shaped to prolate), such as the

Soviet Luna 9 and 13 landers. Airbags were used for the Mars Pathfinder and Exploration Rover

missions. Their relatively small landing mass (410 kg and 540 kg, respectively) and the Martian

gravity allowed the use of an airbag system [38]. More recently, the MSL mission directly landed

the Curiosity rover on the Martian surface. The wheels of the Curiosity rover served as the landing

gear as the terminal descent stage performed the Sky Crane Maneuver, shown in Figure 2.2 [59].

Other technologies, such as penetrators and harpoon anchors, exist, but they are not discussed here.

More information on those can be found in Ref. [38]. Legged landers (3-4 legs) are typical for the

majority of EDL missions, an example of which is shown in Figure 2.3. These types of landers use

either a crushable material, such as honeycomb or foam, or a piston-like mechanism to dissipate

the remaining kinematic energy over a finite distance, [38], thus minimizing loads transferred

through the structure to the payload.

16

Figure 2.2: Diagram of the Sky Crane maneuver developed for and used by the Mars Science

Laboratory to land the 900 kg Curiosity rover. Image from [59].

The majority of the energy removed during the EDL sequence of events occurs in the entry and

descent phases. Because of this, these phases are where the bulk of the targeting range errors are

removed. However, there may still be several kilometers of range error to mitigate by the time the

landing phase begins. These errors can be due to a culmination and build-up of errors from the

vehicle delivery conditions at the beginning of the EDL sequence, navigation system, vehicle

aerodynamics, drift while on parachutes, and unknown/unmodeled atmospheric properties [21]. For

future human and robotic missions to Mars, the ability to remove the residual range error and reach

within meters of the target is key [3, 36, 52]. This capability is termed pinpoint (or high precision)

landing. To date, the only example of pinpoint landing achieved outside of Earth was by the Apollo

12, which landed within sight of its intended target, Surveyor 3, shown in Figure 2.3. However,

this relied on the sensing and control offered by the human crew, and is thus not available for

robotic landers [38, 60]. Additionally for human and robotic Mars missions, there is a needed ability

to divert to a new landing target should the original be too risky, due to previously unknown

17

boulders or unsuitable terrain. For these missions, key technologies in guidance, navigation, and

control (GNC) have been and continue to be developed.

Figure 2.3: Astronaut Alan Bean inspecting Surveyor 3, and the Apollo 12 Lunar Module in

the background. Image from [60].

2.2 Guidance, Navigation, and Control

Guidance, navigation, and control is used for directing both manned and autonomous systems.

Guidance is the process of designing a plan for a system to follow based on known state information

and target requirements. A commonly used guidance process can be found on the modern

smartphone map application, which can provide a path for users to follow to their favorite

restaurant, airport, store, etc. Navigation is the process of estimating state information (e.g.,

position, velocity, acceleration, attitude, etc.) relative to a known reference and based on

observations. Again the modern smartphone map application is a good example; it takes in location

information from GPS measurements and combines those with onboard measurements from an

inertial measurement unit to estimate the position and velocity of the user as they follow the

guidance directions. Control is the process of maintaining the course and stability of the system.

Continuing with the smartphone analogy, the control system doesn’t exist within the phone itself,

but instead with the user, who must make decisions to stop at traffic lights and avoid obstacles all

the while following the guidance path. In the field of aeronautics, GNC is commonly used by airline

18

pilots who fly agreed upon routes with the aid of air traffic controllers (guidance), monitor their

location using GPS and ground radar (navigation), and with the pilot or autopilot directing the

aircraft (control). In the field of astronautics and specifically EDL, GNC is utilized to bring the

entry vehicle from its initial conditions (typically just before the final entry burn from an orbit or

just before atmospheric interface) to rest on the surface of the planet and within some margin of

error from the desired landing target.

A priori knowledge or estimates of planetary destination, mission requirements, and vehicle

properties are used to design and evaluate the GNC systems as well as the overall EDL vehicle.

This design and development process is performed using flight mechanics tools that can simulate

the three and/or six DoF behavior of multiple vehicles. The POST2 is one of several flight

mechanics tools utilized by NASA [32]. It is a generalized rigid body trajectory simulation

program, and has “the capability to target and optimize point mass trajectories for multiple powered

or unpowered vehicles near an arbitrary rotating, oblate planet” [32]. Tools, such as POST2, allow

engineers to incorporate uncertainties in parameters (such as atmospheric density, winds, vehicle

mass properties, control effector efficiency, initial conditions, sensor errors, and many others) into

a Monte Carlo simulation to gain insights into the performance of the EDL vehicle, and its systems,

in the presence of uncertainties. The performance can be based on a variety of metrics that vary

from mission to mission. Metrics such as total fuel usage and landing ellipse, are typical for landing

on the surface of a planet. The landing ellipse is a region on the surface that the vehicle is likely to

land within, usually specified relative to a percentile of simulation cases that land within it.

Examples of landing ellipses of several Mars missions can be found in Figure 1.2.

At its core, the guidance provides a reference trajectory, or profile, that takes a vehicle from its

current state to a target state. Through the simulation of the nominal (no dispersions) and Monte

Carlo (with dispersions) trajectories, the guidance and reference profile can be retuned and

reshaped to mission targets (e.g., range to target) and constraints (e.g., remaining above a minimum

nonzero thrust constraint) along the EDL phases of flight. Guidance routines have been developed

for all three phases of EDL. However, the work herein is focused on powered descent vehicles

(vehicles that utilize retropropulsion for deceleration). The following section discusses past and

current guidance routines that have been applied to the powered descent problem. Further reading

on entry vehicle guidance routines can be found in Refs. [17, 61, 62].

19

2.2.1 Prior Work in Powered Descent Guidance

There are several guidance strategies that have been developed for targeting landing sites and

vehicle states. For each guidance strategy a different balance has been made between the

complexity of implementation and the strategy’s accuracy. The gravity turn and polynomial

guidance strategies are the precision guidance strategies are commonly implemented for missions

involving PDVs [63, 64, 65]. All others have been tested in theory, flight tests, or both; but have

not been used for a mission. This section discusses the development, use, and limitations of

several strategies.

2.2.1.1 Gravity Turn Guidance

Gravity turn is a relatively simple guidance approach that directs the vehicle thrust vector to

align with the velocity vector. Throughout the trajectory, gravity will add a vertical downwards

component to the velocity. As the thrust decelerates the vehicle, gravity will continually add a

downwards component to the velocity. These downward velocity components due to gravity will

eventually dominate the overall velocity vector. This will cause the trajectory to turn over and

become vertical, hence the name gravity turn [38].

2.2.1.2 Polynomial Guidance

The polynomial guidance method was originally developed for the Apollo Lunar Module [64].

With some modifications for Mars landing requirements, polynomial guidance was implemented

in the MSL powered descent phase [65]. Due to its heritage, polynomial guidance was selected for

use by the Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) on the

Morpheus prototype lander [66].

Polynomial guidance uses the knowledge of the initial and target states to fit a polynomial

acceleration profile. Once this profile is found, the thrust magnitude and direction can be adjusted

to fit this acceleration profile as a function of time. Additionally, the vehicle’s attitude is

constrained by the acceleration and velocity vectors. This formulation creates a two-point boundary

value problem with boundary conditions on the initial position and velocity, and the target position

and velocity [5, 65, 67].

The equations for the two-point boundary value problem begin with the acceleration profile

�̈�(𝑡) = ∑𝑐𝜉𝑛𝑡
𝑛

𝑁𝑝

𝑛=0

 (2.6)

20

where 𝜉 represents a coordinate along an orthogonal coordinate frame. Typically, a Cartesian

coordinate frame is used. So, the 𝜉 can be replaced with 𝑥, 𝑦, 𝑧 from a desired reference frame.

Typically, the origin of this reference frame is at the target landing site on the surface of the planet

with the 𝑧 axis defining the local vertical. The variable 𝑁𝑝 defines the order of the polynomial, with

the 𝑖 numbered coefficients correlating to acceleration, jerk, snap, crackle, pop, etc. Integrating Eq.

(2.6) provides the velocity and position profiles

�̇�(𝑡) =∑
1

𝑖 + 1
𝑐𝜉𝑖𝑡

𝑖 + �̇�0

𝑁𝑝

𝑖=0

 (2.7)

𝜉(𝑡) =∑
1

(𝑖 + 1)(𝑖 + 2)
𝑐𝜉𝑖𝑡

𝑖 + �̇�0𝑡 + 𝜉0

𝑁𝑝

𝑖=0

 (2.8)

The initial conditions are defined as

𝜉(𝑡 = 0) = 𝜉𝟎 (2.9a)

�̇�(𝑡 = 0) = �̇�𝟎 (2.9b)

and target conditions are defined at a final time, 𝑡𝑓, as

𝜉(𝑡 = 𝑡𝑓) = 𝜉𝑓 (2.9c)

�̇�(𝑡 = 𝑡𝑓) = �̇�𝑓 (2.9d)

�̈�(𝑡 = 𝑡𝑓) = �̈�𝑓 (2.9e)

Using Eqs. (2.6) through (2.9) to solve for the polynomial coefficients provides a reference

trajectory for the control system to follow. Equations (2.6) through (2.8) can be solved analytically

for a 2nd order polynomial acceleration profile in the 𝑥, 𝑦 axes, and an assumed linear acceleration

profile in the 𝑧 axis. The 𝑧 axis is used to solve for the target time, 𝑡𝑓, which is referred to as the

time-to-go. If �̈�𝑓 ≠ 0

𝑡𝑔𝑜 =
2�̇�𝑓 + ż0

�̈�𝑓
+√(

2�̈�𝑡 + �̈�0
�̈�𝑓

)

2

+
6(𝑧0 − 𝑧𝑓)

�̈�𝑓
2 (2.10a)

If �̈�𝑓 = 0

21

𝑡𝑔𝑜 =
3(𝑧𝑓 − 𝑧0)

2�̇�𝑓 + ż0
 (2.10b)

The coefficients for the linear 𝑧 axis profile can then be solved

𝑐𝑧0 = �̈�𝑓 − 𝑐𝑧1𝑡𝑔𝑜 (2.11a)

𝑐𝑧1 = 2/𝑡𝑔𝑜
2 (�̈�𝑓𝑡𝑔𝑜 + ż0 − �̇�𝑓) (2.11b)

The coefficients for the 2nd order polynomial acceleration profiles in the 𝑥, 𝑦 axes are

𝑐𝜉0 = 𝜉𝑓 − 𝑐𝜉1𝑡𝑔𝑜 − 𝑐𝜉2𝑡𝑔𝑜
2 ; 𝜉 = 𝑥, 𝑦 (2.11c)

𝑐𝜉1 = 2/𝑡𝑔𝑜
2 (�̇�0 − �̇�𝑓 + �̈�𝑓𝑡𝑔𝑜 − 2𝑐𝜉2𝑡𝑔𝑜

3 /3); 𝜉 = 𝑥, 𝑦 (2.11d)

𝑐𝜉2 = 1/𝑡𝑔𝑜
4 (36(𝜉𝑓 − 𝜉0) − 12(�̇�0 + 2�̇�𝑓)𝑡𝑔𝑜 + 6�̈�𝑓𝑡𝑔𝑜

2); 𝜉 = 𝑥, 𝑦 (2.11e)

Figure 2.4 is an example trajectory profile (position, velocity, and acceleration) using Eqs. (2.10)

and (2.11).

Figure 2.4: Example polynomial trajectory profile in Cartesian coordinates.

22

For polynomials of higher order, either additional initial and target conditions are needed, or an

optimization approach can be applied to identify the unknown coefficients relative to desired cost

function(s). Once the acceleration vector profile is determined the thrust vector profile is

computed by

�⃑⃑�𝒄(𝑡) = 𝑚(𝑡)(�⃑�(𝑡) − �⃑�(𝑡))
(2.12)

where �⃑�(𝑡) is the gravitational vector, and �⃑�(𝑡) is the vector of the acceleration profiles. Equation

(2.12) assumes there are no aerodynamic forces.

Polynomial Guidance benefits from its relative simplicity and fast computation time and ability

to solve for an acceleration profile at all times. Although sufficient for small divert maneuvers, with

respect to fuel consumption, large divert trajectories, on the order of kilometers, lead to significant

increase in fuel consumption [15]. Additionally, Polynomial Guidance does not explicitly enforce

the minimum and maximum thrust constraints. These constraints are instead checked via Monte

Carlo simulations on the ground before EDL begins [14, 15, 67, 68, 69, 70, 71].

2.2.1.3 Predictor Corrector Guidance

There are two types of predictor corrector guidance routines: analytic and numeric. Both were

originally developed in the mid 1980’s for solving the aerocapture guidance problem [72, 73].

However, over the years variants of predictor corrector guidance have been developed for

hypersonic entry and numerical predictor corrector has been applied to powered descent case

studies [33, 74], which is why they are briefly addressed here. Both predictor corrector guidance

algorithms have been discussed extensively in aerocapture trade studies for Venus, Earth, Mars,

Titan, and Neptune [2, 75, 76, 77].

2.2.1.3.1 Analytic Predictor Corrector (APC)

Originally developed for the Aeroassist Flight Experiment in 1985 [72], the APC integrates the

drag equation, with respect to altitude, to analytically predict the vehicle’s velocity at a target

altitude, 𝑉𝑓. The kinetic and potential energies are used to find the velocity change incurred during

the transition from the vehicle’s current state to the target altitude. This velocity change is then

used to correct the predicted value of 𝑉𝑓. The value of 𝑉𝑓 is used to determine a desired altitude rate

of change, which can then be converted to a guidance output [2, 76].

 The APC is a fairly compact and efficient algorithm compared to its numerical counterpart.

However, it does utilize gains that require tuning for each atmosphere and vehicle configuration,

which is laborious and non-intuitive. Additionally, the APC is unable to accommodate discrete

23

events that occur during a trajectory, such as heat shield jettison2. Discrete events cannot be

accounted for, because the analytic integration is only from the current state to the target. An

intermediate step would require knowledge of where (in altitude) this event occurs. This is

unknown, thus a discrete event cannot be accounted for.

2.2.1.3.2 Numerical Predictor Corrector (NPC)

Originally developed by J.P. Higgins in 1984 for an Aeroassisted Orbital Transfer Vehicle

(AOTV) [73]. The NPC guidance can be thought of as a waypoint guidance, which uses one or

more control parameters (e.g., thrust, angle of attack, and angle of sideslip) to directly influence a

target parameter (e.g., downrange, crossrange, touchdown velocity, or any defined function of

them). Typically, the NPC guidance integrates the three DoF equations of motion (EoM) to

determine the sensitivity to each control variable. However, six DoF EoM could also be used to

determine the sensitivities. An internal optimizer, such as a projected gradient algorithm, is used to

solve for the combination of control parameters that satisfy the target parameters [74]. The NPC

has the advantage of being able to accommodate discrete events, such as heat shield jettison, and it

has no gains to tune. The NPC’s disadvantage is that it is a fairly large and complex algorithm to

implement with relatively long computation times when compared to gravity turn and

polynomial guidance2.

The NPC guidance implemented for powered decent by Lugo et al., Ref. [74], utilizes

waypoints along the trajectory. These waypoints allow for control parameters to change after

specified conditions have been met along the trajectory. These waypoints break up the trajectory

into guidance segments. While within a guidance segment, the projected gradient method iterates

to solve for the one or more control commands. A limit on the number of iterations is used to ensure

a result is supplied by the guidance routine in a reasonable amount of time. However, the guidance

may not converge on an optimal solution as a consequence of the iteration limit. The Jacobian used

for the projected gradient method requires 𝑁𝐶𝑉 + 1 integration passes through the three DoF EoM

at each optimization iteration, where 𝑁𝐶𝑉 is the number of control variables. The partial derivatives

used in the Jacobian are generated numerically using the Euler method. Perturbations on the control

parameters used to generate the partial derivatives are defined by the user [74]. The execution time

for the NPC guidance on current state of the art processor hardware is not defined. However, the

2 Information was provided through discussions with David Way, Richard Powell, and Carlie

Zumwalt of NASA Langley Research Center, Atmospheric Flight and Entry Systems Branch

(AFESB).

24

NPC guidance is expected to be able to provide solutions within the expected 0.2-1 Hz call rate,

because the number of control parameters and constraints are kept low3.

In Ref. [74], Lugo et al. apply the NPC guidance to the full EDL trajectory of a human-scale

Mars vehicle, and test the guidance in a six DoF simulation built using the POST2 flight mechanics

tool. An 8,001 case Monte Carlo stresses the NPC guidance capabilities through dispersions on

initial conditions, atmosphere, aerodynamics, propulsion, sensors, and mass properties. The NPC

guidance equipped EDL vehicle had a 99% of the simulated trajectories land within 68.4 m of

the target [74].

2.2.1.4 Guidance for Fuel Optimal Large Diverts (G-FOLD)

Some of the earliest publications on the G-FOLD algorithm begin in 2006 with Ref. [70], and

much of its development has been done at the NASA Jet Propulsion Laboratory (JPL). This novel

algorithm was originally developed as a way to compute fuel optimal trajectories a priori. However,

the authors eventually worked to adapt their algorithm for on-board real-time operation.

The G-FOLD algorithm is a numerical strategy for determining fuel optimal trajectories with

pinpoint landing capability. It begins with the description of the powered descent vehicle trajectory

using the three DoF kinetic EoM; constraints on the vehicle thrust, mass properties, and trajectory

constraints; and no aerodynamic forces assumption. The G-FOLD algorithm reformulates the

nonconvex fuel optimal powered descent control problem into a convex problem, which sets a time

of flight, 𝑡𝑓, and discretizes the time, 𝑡 ∈ [0, 𝑡𝑓), to solve for net thrust values. The original problem

is nonconvex due to the nonzero minimum thrust magnitude constraint in the problem formulation.

The convexification is achieved through the introduction of a scalar slack variable, which relaxes

the minimum thrust constraint. The resulting convexified and discretized parameter optimization

problem is a second-order cone program (SOCP), the solution of which will be the global minimum.

The authors then demonstrate that their relaxed SOCP problem solves the nonconvex optimal

control problem [15, 68, 69]. The SOCP uses interior point methods, which can determine the

feasibility or infeasibility of a solution based on the total fuel mass and max thrust. Should a

solution exist, it is defined by the optimal time of flight, 𝑡𝑓
∗ and thrust profile 𝑇(𝑡), 𝑡 ∈ [0, 𝑡𝑓),

which correspond to an optimal propellant mass 𝑚𝑝
∗ (𝑡𝑓) [69].

3 Information provided through personal communication with Rafael Lugo of NASA Langley

Research Center, Atmospheric Flight and Entry Systems Branch (AFESB).

25

Beginning in 2012, the G-FOLD algorithm began demonstrations as a part of the Autonomous

Ascent and Descent Powered-Flight Testbed (ADAPT) program with flight tests on the Masten

XA-0.1B Xombie rocket. In the first year of flight tests, pre-programmed divert trajectories

generated a priori by G-FOLD were loaded onto the Xombie rocket and successfully flown. In the

second year flight tests, the G-FOLD algorithm was adapted for on-board real-time operations

through interpolating tables. The authors of G-FOLD are developing the algorithms to run on

current radiation hardened processors, which lack the computational power of commercial off-the-

shelf processors, thus necessitating interpolation tables. The tables are made possible due to the

understanding that the boundary conditions for the divert could be used to bound the time interval

containing the optimal time of flight, 𝑡𝑓
∗ ∈ [𝑡𝑓,𝑙𝑜𝑤, 𝑡𝑓,ℎ𝑖𝑔ℎ]. This reduces the onboard computational

requirements by reducing the time of flight line search to a grid search over the interpolated time

interval [13]. The G-FOLD algorithm is executed before flight using a number of initial conditions

to obtain reference trajectories for the bounded times, 𝑡𝑓,𝑙𝑜𝑤 and 𝑡𝑓,ℎ𝑖𝑔ℎ . These trajectories are

formatted into tables that are then loaded onto the powered descent vehicle. During flight, the

powered descent vehicle interpolates these tables to obtain the near fuel-optimal trajectory solution

[13, 14, 78]. A single reference trajectory is then passed on to the Xombie control system and flown

to the divert landing target.

The G-FOLD algorithm is able to accommodate discrete events and determine a fuel-optimal

trajectory while satisfying the vehicle constraints. The table adaptation of G-FOLD has been

successfully demonstrated in five flight tests that have investigated long diverts (max of 800 m),

and the incorporation of terrain relative navigation (TRN) system [78]. In verification and

validation efforts, the authors used Monte Carlo simulations to investigate the performance of G-

FOLD to position, velocity, and mass dispersions. The Monte Carlo simulations were implemented

in a MATLAB based simulation environment where the G-FOLD algorithm was implemented as

a MATLAB executable file. The G-FOLD trajectories were found to be robust to initial condition

dispersions (position and velocity dispersed by an order of magnitude), and 10% dispersions in

mass. Results for a 1000 case Monte Carlo simulation are provided in Ref . [78] for the overall

performance of the Xombie GNC system implementing a G-FOLD divert trajectory. These show

the position and velocity norms of the Xombie vehicle as it flies the G-FOLD divert trajectory, and

show the vehicle is able to meet the target conditions to within 2.5 m and 1 m/s in position and

velocity, respective. However, there is little information on the range of dispersions used in this

analysis, and information on the effects to fuel usage are not provided; making it difficult to fully

understand the impacts of the Monte Carlo results. Additionally, it is not clear how the dispersions

26

affect the computations of the optimal time of flight, 𝑡𝑓
∗. Lastly, since the boundaries used to

calculate 𝑡𝑓
∗ depend on the vehicle constraints and are determined before flight, it is unclear if G-

FOLD could be used to determine a new trajectory in the event of a component failure (e.g.,

engine failure).

2.2.2 Stochastic Parafoil Guidance using a Graphics Processing Unit

From 2013 to 2015, Rogers et al. (Refs. [29, 30, 31]) published several works on a novel GPU-

based guidance concept for parafoils performing supply drops. As seen in Figure 2.5, the authors

utilized a GPU to run real-time Monte Carlo simulations of the parafoil’s trajectory. These

candidate trajectories were populated stochastically and were assessed by a cost function that

evaluated the robustness of each trajectory in terms of delivery accuracy, obstacle avoidance, and

other parameters. Monte Carlo simulations were executed on a GPU platform, because they

exhibited one to two orders of magnitude less runtime than serial-based software on central

processing units (CPUs). The runtime advantage of GPUs made real-time implementation of their

strategy possible [29, 30, 31].

Figure 2.5: Slegers and Rogers' design of their GPU-based guidance strategy for parafoils.

Image from [31].

The stochastic GPU-based guidance operates in three stages. First, a set of 𝑀 possible constant-

rate turn values, �̇�, are populated between the maximum possible turn rates [−�̇�𝑚𝑎𝑥,�̇�𝑚𝑎𝑥,], and a

set of 𝑁 values of final approach angle, 𝜓𝑓 , between [0, 2𝜋] are generated. Second, before the

vehicle approaches the target it makes a series of wind estimates by flying a square trajectory, and

comparing its planned position to GPS information; the difference between the two provides the

wind estimates. These estimates are then used along with the 𝑀 ×𝑁 trajectory candidates in

27

evaluating a kinematic model. The results of the model are fed into a cost function that scores and

ranks each trajectory. The best 𝑅𝑠 trajectories are selected for the next step. Third, a Monte Carlo

simulation is performed for each trajectory candidate. These simulations utilize a closed-loop six

DoF of the parafoil and payload. This model considers the parafoil and payload as a single rigid

body, and ignores the aeroelastic effects in the canopy and the swinging and rotating motion of the

payload relative to the canopy. The simulations also utilize a model predictive controller that tracks

the candidate trajectory. The winds within the Monte Carlo simulation are randomized using a

Gaussian distribution with the mean about the estimated values. The Monte Carlo simulation allows

for each trajectory to be evaluated according to its robustness through another cost function. An

example cost function that the authors provide is miss distance and the probability of landing within

a restricted area [31].

Results for two flights of the flown system are provided in Figure 2.6. In these flights, the

landing target is the blue × and the red quadrilateral is a region of space that the parafoil should

avoid landing within. The cost function chose trajectories that landed closest to the target and had

very low to no probability of landing within the red quadrilateral. The pink dots depict the guidance

updates that provided a new trajectory plan for the controller to follow. The black dots are the

parafoils position data supplied by GPS [31].

Figure 2.6: Data from the flown stochastic GPU-based parafoil guidance strategy. Image

from [31].

There are two major limitations to the parafoil guidance strategy. First, all candidate trajectories

are populated with equal probability. Therefore, trajectory paths that to a human would be

28

obviously poor candidates, because they would direct the parafoil further from the target, are still

considered in the initial vetting process. This wastes valuable computation time. Second, the

guidance system has a pre-loaded six DoF model of the parafoil system. If that model is inaccurate,

either by user error or due to damage to the parafoil itself, the guidance would supply off-nominal

trajectories to the controller. This indeed was a problem in Slegers and Rogers initial field tests.

Their experimental system consistently turned faster than the guidance system predicted, which

caused the parafoil to not track the desired path.

2.3 High Performance Computing Hardware

High performance computing is a field that applies aggregated computational resources that

together exceed the capabilities of a typical desktop, to solving computationally intensive problems.

In engineering, HPC is typically applied to problems that rely on numerical methods, such as

computational fluid dynamics [79]. However, other examples include visual data processing and

rendering of video game graphics. High performance computing systems leverage the parallelism

offered by processors such as multi-core CPUs, GPUs, field programmable gate arrays (FPGAs),

or some combination thereof. The parallelism of these processor types is due to multiple

computational units printed onto the integrated circuit that can operate on multiple data sets, and

potentially multiple instructions, independently and concurrently. The OATP guidance, developed

in this dissertation, relies on the simultaneous evaluation of multiple trajectories. The parallel

computation capability of HPC hardware is an enabling technology for the OATP guidance, which

is why HPC hardware is here.

This section discusses the underlying processor technologies that make HPC possible.

Additionally, the need for space-grade processor technologies is discussed and their relationship to

commercial off-the-shelf processor technology. Lastly, key programming strategies used to

leverage the massive parallelism offered by HPC hardware are discussed.

2.3.1 Processor Technology

The CPU, or microprocessor, is a type of integrated circuit that serves as the brain of computer

hardware. It is comprised of several components, which include but are not limited to input/output

(I/O) connections, memory controller, cache memory, and one or more cores. An example, the

Intel© Core™ i7 processor, is shown in Figure 2.7. Depending on the design of the processor,

different components may be located on the processor itself, or the overall footprint may change.

The given design of a processor is referred to as the processor architecture. The I/O connections,

29

such as the peripheral component interconnect express (PCIe), are the pipelines for bringing in and

sending out data that cores process [80]. The memory controller is responsible for retrieving data

that doesn’t exist in the processor cache memory from storage outside of the processor chip.

Figure 2.7: Intel© Core™ i7 processor, [80].

Cache memory is comprised of a memory hierarchy that is in close physical proximity to the

processor cores, and is therefore relatively quick to access. Cache memory is also a part of the

overall memory and data storage hierarchy that trades storage capacity for speed of access. The

overall memory hierarchy can be represented as a pyramid, as shown in Figure 2.8, to demonstrate

the tradeoff between memory access speed and storage capacity. Figure 2.8 provides a

generalization of memory hierarchy; depending on the processor architecture the exact format of

the pyramid may change. Data and instructions needed by a processor are searched for and loaded

from the bottom of the pyramid, through the pyramid hierarchy, and finally into the registers.

Registers hold the data and the instructions that the processor core is currently operating on, and

they are the smallest and fastest memory which are built into the processor core itself. Depending

on the processor architecture, the L1 and L2 cache memory may or may not be located on the cores

themselves. Typically the L1 cache will be dedicated (private) to each processor core. The higher

level cache memory (e.g., L2 and L3) may be private, shared, or may not exist on the processor

architecture. Extending outside the processor chip is the main memory and hard disc. These are

located on the same motherboard or sever that contains the processor chipset. For networked

computers, it is possible to access memory storage outside the physical computer.

30

Figure 2.8: Computer memory hierarchy.

The processor core itself is where computations are performed. In the past, single core

processors were the most common. However, since the early 2000s the processor performance

increases predicted by Moore’s Law and Dennard scaling seem to be leveling off [81, 82]. The end

of Dennard scaling motivated chip manufacturers to produce multicore CPUs. For these CPUs, the

increase in computational performance comes from the ability to perform multiple instructions in

parallel as opposed to increased clock speed.

Often discussed along with multicore CPUs is the concept of the thread, which is a sequence

of instructions within a code/software/program. Modern single and multicore CPU cores can

support one or more threads per clock cycle (i.e. more than one instruction executed per clock

cycle), which is referred to as multithreading [83]. Each of the four cores in the Intel© Core™ i7

processor can support two threads [80]. Therefore, the i7 processor can have eight concurrently

operating threads per clock cycle. The design of the multicore CPU compute and memory

architectures are made with the operation of multiple programs operating on multiple data in mind.

This ability to support multiple concurrently running threads is referred to as multiple instructions,

multiple data (MIMD)4 parallelism [83]. Not all programs can utilize MIMD parallelism, due to

4 The description of MIMD or SIMD refer to the classifications of computer architectures, which

comes from Flynn’s taxonomy. Several other classifications also exist. Multiple instruction, single

data (MISD), typical of problems that require a high level of robustness; and single instruction,

single data (SISD), typical of older single core processors [83].

31

data dependencies. For example, the following two instructions cannot be parallelized due to data

dependency caused by the variable 𝑜1.

𝑜1 = 𝑜2 + 1 (2.13a)

𝑜3 = 𝑜1
2 (2.13b)

However, should the variables 𝑜1, 𝑜2, and 𝑜3 be large data arrays the above instructions from Eqs.

(2.13) could be parallelized in a single instruction, multiple data (SIMD) manner.

A GPU is an example of a parallel processor architecture that thrives on SIMD level

parallelism, although GPUs do have MIMD capability. Originally designed for graphics

applications, GPUs are increasing utilized for scientific computing applications. Graphics

processing units can consist of hundreds or thousands of compute cores as opposed to the tens of

cores possible with multicore CPUs. However, the compute cores residing in GPUs operate at a

slower clock speed, and the majority of computing resources are dedicated to single-point floating-

precision calculations. Graphics processing units are comprised of multiple multi-threaded SIMD

processors, referred to as streaming multiprocessors, which can act independently of one another

(operating in a MIMD manner). Figure 2.9 shows a single streaming multiprocessor (of 56) from

the NVIDIA Pascal GP100 Full GPU architecture. As can be seen in this figure, there are twice as

many single precision processor units (labeled as “Core”) as there are double precision units

(labeled as “DP Unit”). Therefore, software needing only single precision accuracy will be able to

utilize twice the number of processor cores as software needing double precision. Each streaming

multiprocessor has their own dedicated registers and L1 cache, which are then shared amongst the

cores within the streaming multiprocessor. The L2 cache memory is shared amongst all streaming

multiprocessors on the GPU.

32

Figure 2.9: A close up look at one of the 60 streaming multiprocessor on the NVIDIA Pascal

GP100 Full GPU architecture, [84].

Figure 2.10 shows how GPU architectures maps software threads onto the hardware. A thread

is operated on by a processor core. These threads are grouped into groups of 32, called warps,

which operate concurrently on the streaming multiprocessor. Since the transfer of data to registers

for the processors to operate on requires multiple clock cycles, the warp scheduler will have the

streaming multiprocessor executing one warp, while the data for the next warp is being fetched.

This is a special form of multithreading, and helps to hide the latency of the GPU [83]. The mapping

levels for executing software on the overall GPU hardware continues with thread blocks and grids.

However, this level of detail is not needed for the work herein. See Ref. [83] for further discussions

on software mapping onto GPU hardware.

33

Figure 2.10: Comparing software organization to GPU hardware architecture, [84].

The website Top 500 list (www.top500.org) keeps track of the highest performing

supercomputers in the world. Many of the world’s top 500 supercomputers incorporate GPUs to

increase their performance [85]. It should be noted that not every software application can be

adapted to run on GPU hardware. Adapting software to run on multi-threaded GPUs requires non-

trivial changes in a programmer’s mindset, such as: how to manage memory, the organization of

instructions, and the use of if statements (also known as branching). More on these challenges will

be discussed in Section 2.3.3. However, investing the time into surmounting these challenges can

result in software that runs efficiently for both multi-threaded and single-threaded modes.

Another commonly used processor technology is the FPGA, which are a unique type of

integrated circuit, because the hardware configuration can be modified after they are deployed in

the field. Hence the term field programmable. Central processing units and GPUs do not have this

capability. The gates within FPGAs are the logic gates, which themselves are collections of

transistor gates, that operate on signals of 1’s and 0’s. Alone they don’t amount to much, but they

can be combined, into gate arrays, to perform complex operations. Field programmable gate arrays

can be likened to applications specific integrated circuits (ASICs), which are one-off processing

circuits customized to a given application. However, the difference is that FPGAs are prebuilt and

the hardware can be configured to meet the requirements of the application, or reconfigured to meet

34

new requirements that could arise at a later time. An ASIC could be designed to meet the current

requirements, but would have to be completely replaced with a redesigned ASIC to meet changing

requirements. The development of ASICs to specific applications leads to higher costs. So, FPGAs

allow for targeting of specific application requirements, and are generally more flexible and cost

effective compared to ASICs [86].

Users of FPGAs will begin with the requirements, such as power constraints or latency

restrictions. From there, users build the program that will be loaded onto the FPGA. There are two

approaches to programming FPGAs: hardware description language (HDL), such as Verilog and

VHDL5; or high-level software-programming, such as Open Computing Language (OpenCL). The

HDL programming approaches have the programmer build the code based on descriptions of the

gates and their connections, thus requiring significant knowledge in the hardware design of the

FPGA. High-level software-programming keeps the code construction at a higher level. Therefore,

putting the use of FPGAs within the grasp of a larger audience. Whichever method is used to

generate the software or program, it must be synthesized. A synthesis tool converts the program

into the physical connections the gates and registers need to be in to run the described program.

This configures the physical hardware of the FPGA to the needs of the program. The ability of

configuring the hardware to meet the needs of the program allows for the freedom to parallelize the

program. In fact, FPGAs excel at vector mathematics (one operation on a large set of numbers)

[86]. The logic gates can be reconfigured to perform the vector operation on the size of the number

array. For example, a multiplication operation on an array 128 members long could be done by

configuring the FPGA to have 128 arithmetic pipelines. Thus allowing for the entire array to be

operated on simultaneously, which significantly increases performance [86].

2.3.2 Space-Grade Processors and Radiation Hardening

Space-grade processors are either an evolution of or stand-alone design of COTS processors,

and are needed due to the adverse effects the radiation environment of space has on integrated

circuit technology. This radiation environment is due to galactic cosmic rays, solar particle events,

and/or trapped radiation in the Van Allen belts [87]. Radiation can cause transient effects and

permanent damage to integrated circuits as they pass through the silicon lattice. Examples of

observed transient effects are single event effects (SEEs), which are categorized as single event

upsets (SEUs) and single event transients. Single event upsets are transient bit-flip (changing a 1

5 VHDL is a nested acronym standing for VHSIC Hardware Description Language, where VHSIC

stands for Very High Speed Integrated Circuit.

35

to a 0 and vice versa) errors that invert the state held in dynamic or static random access memory

(DRAM or SRAM) or sequential logic gates [87, 88, 89, 90]. Single event transients are voltage

pulses occurring in combinatorial logic6 [88, 90]. Permanent damage to integrated circuits are

caused by cumulative radiation effects. Examples include, but are not limited to, ionization, and

displacement damage. Ionization damage is caused when radiation enters and interacts with the

semiconductor solid material. A build-up of charges on the gate oxide7 shifts the threshold voltage

required to turn on the transistor. This can cause supply currents to increase, timing margins to

degrade, and transistors cease functionality entirely [88, 89]. Displacement damage is a cumulative

effect of radiation particles scattering off lattice ions in the semiconductor. Over time, this deforms

the physical structure of the material and degrades the semiconductor performance. Examples of

this degradation include decreased energy production of solar arrays and increased noise in

communication signals [89].

Space-grade processors are built to be radiation hardened to mitigate damage and errors that

arise from radiation exposure. In the past, radiation hardened processors were limited to single core

CPUs, but more recently multicore CPUs and FPGAs have been developed [87]. Radiation

hardened GPUs are still an active area of development. Radiation hardening of processors can be

in the form of physical modifications and protections to the processor hardware, which include:

shielding, modifying base components, and component level redundancy. Tantalum and Tungsten

are common shielding materials, and are effective protection from low-energy protons and electron

impacts [89]. However, shielding can cause increases in SEEs due to the creation of secondary

particles generated from the interaction of cosmic rays with the shielding material [89].

Modifications of the baseline components include insulating the oxide layer within the transistor,

or modifying the layout of the transistor itself to improve the tolerance to leakage currents [87, 89].

Lastly, redundant components are paired with voting logic to detect and correct errors. For example,

triplicated logic memory paired with a voting circuit would be used to protect against SEU errors

[89]. This method has also been expanded to multiple processors as well, known as triple modular

redundancy. This has the benefit of being simple to implement, but has the cost to payload footprint

area and power [90].

Radiation hardening existing COTS hardware or building radiation hardened processors from

the ground up requires a significant amount of time and cost. Additionally, radiation hardened

6 Combinatorial logic is digital logic used to perform Boolean algebra.
7 Gate oxide is the dielectric layer within the transistor that separates the conductive channel that

connects the source and drain of the transistor when it is turned on [127].

36

processors incur costs in the form of slower operating frequencies, decreased number of processor

cores or computational units, increased power dissipation, and decreased I/O resources. These are

reasons why radiation hardened processors typically lag several generations behind COTS

processor hardware [87, 88, 89, 90]. Another challenge for radiation hardening processors is the

move towards smaller transistors and faster clock speeds, which has the effect of increasing the

radiation induced errors rates [90]. The capability gap between radiation hardened space-grade

processors and COTS processors is arguably growing, and pose significant limitations on in-space

assets [87]. The processing gap is further exacerbated by improving sensor technology and

increasing mission data rates, data precision, and problem sizes, combined with limited

transmission bandwidth. Thus increasing the need for processing of data onboard the spacecraft.

There is also a need for more complex guidance and control algorithms for EDL that can achieve

pinpoint landing. These algorithms require the processing power offered by HPC hardware [87,

88]. Another enabling technology for pinpoint landing is TRN, which would require HPC resources

to process real-time image data [88].

Recent research has investigated the use of software approaches to aid in effectively radiation

hardening processors, see Refs. [91, 92]. These efforts strive to have the processing power of COTS

processors while retaining the reliability of space-grade processors. Schmidt et al., Ref. [91],

expand upon error correction codes (ECCs) used in the HPC industry and apply them to FPGA

hardware. Their methods rely on a series of messages sent by each processor to a central control

processor. These messages report on the progress made through the computations they were

assigned, faults they corrected internally, and time since their last check-in with the central

processor. If these message packets cease being transmitted from a processor, or if the data

contained within them signal that the processor has experienced a significant error (e.g., data

corruption or abnormally long calculation time), the central control processor will restart the

affected processor. Their work has been demonstrated in a CubeSat launched from the International

Space Station (ISS). Goh et al., Ref. [92], use duplicated HPC hardware to monitor the power draw

and thermal output of the processing hardware. Each HPC system monitors itself and its neighbor.

Should their own readings, or their neighbor’s, be abnormal, due to a radiation event, they will

decrease the processor clock speed of the affected system, bring the system to idle, or power the

system down. At the time of this writing, Goh et al. are testing their software radiation hardening

scheme on COTS hardware on the ISS. Further discussion on this work can be found in

Appendix A.

37

2.3.3 Parallel Programming

There are several parallel programming approaches, known as application programming

interfaces (APIs), available that can take advantage of parallel processing architectures (multicore

CPUs, GPUs, and FPGAs). The choice of which to use depends on the application and the targeted

processor hardware. It is possible to mix parallel programming approaches for applications using a

combination of hardware types. However, before deciding on which parallel programming

approach to use, it is critical to know how the memory is shared between the processors. As shown

in Figure 2.11, a shared memory model allows each processor to access data addressed anywhere

in the memory structure. This is typical of cache memory that is shared amongst multiple processor

cores on a single chip, such as multicore CPUs, GPUs, and FPGAs. In a distributed memory model

each processor core only has direct access to memory addresses in the memory directly connected

to it. To gain access to memory not located with a given processor, it will have to send and receive

messages. This memory model is typical of networked computers and clusters. Multiple

instructions, multiple data problems that require hundreds to thousands of processors, such as large-

scale weather modeling, will also need to use a distributed memory model [93].

Figure 2.11: Shared (left image) and distributed (right image) memory architectures.

The list of all parallel programming approaches is quite extensive. Some examples include:

Portable Operating System Interface (POSIX) threads, also known as pthreads; Message Passing

Interface (MPI); Compute Unified Device Architecture (CUDA); Verilog; Open Multi-Processing

(OpenMP); and Open Accelerators (OpenACC). Some of these methods are dependent on the

hardware that is being executed, for example Verilog is unique to FPGAs, and CUDA is for GPUs

(specifically NVIDIA GPUs). Large multi-architecture systems with distributed memory rely on

passing data through a communication network, and typically employ MPI. Applications that

require explicit control flow of specific threads utilize pthreads. Lastly, the OpenMP and OpenACC

approaches are implemented in shared memory systems and utilize a directive-based approach,

which means they are added to existing code and can be turned on/off by the compiler at compile

time. Additionally, they are relatively simple to implement. For these reasons, they were chosen

38

for the work herein, and will be discussed further. More information on the other parallel

programming approaches listed can be found in Refs. [81, 83, 94, 95, 96, 97].

As with other directive-based implementations, OpenMP and OpenACC use a compiler

recognized keyword, the #pragma in C/C++, and the !$ in Fortran, to indicate a block of code to

be parallelized. The advantages of both OpenMP and OpenACC are that they are high-level

modifications to existing code that do not require specific knowledge of the hardware they are

operating on. This allows codes utilizing these approaches to adapt to other and/or newer processor

hardware with relative ease. Compilers not equipped to or able to recognize the compiler directives

compile the code to be executed in a single-threaded manner. This means there is a single source

code for both the single-threaded and multi-threaded implementations, which can be an advantage

for debugging and troubleshooting. Both OpenMP and OpenACC are quite efficient as they provide

favorable performance improvements when compared to other low-level implementations of the

same algorithm. Lastly, software designers are not required to have in-depth knowledge of the

entire software they are parallelizing to implement OpenMP and OpenACC. This opens up the

ability to incrementally tackle portions of code that have long execution times, known as hot spots8.

As mentioned above, compilers recognize the #pragma directives when instructed to do so9. In

OpenMP the compiler flags used to do so are –omp for pgcc, developed by The Portland Group,

Inc. (PGI); –fopenmp for gcc, the GNU compiler; and –qopenmp for icc, compiler developed by

Intel®. At the time of this writing, the only available compiler supporting the OpenACC API is the

PGI pgcc, which uses the –acc compiler flag. Once instructed to do so, compilers will recognize

regions of code users specify for parallelization. Regions of code that contain large independent

regions of code that are looped over, Figure 2.12 for example, are good places to parallelize, and

are typically known as embarrassingly parallel. Once a processor reaches a parallelized region of

code defined by the #pragma directive, the work will be split up into individual threads that are

then assigned to a logical core10. Computational processor units will operate on the same number

of threads as it does logical cores at any given time. As threads finish, logical cores will begin

operating on threads still waiting for execution. This will continue until all threads are completed.

8 Information from the 2017 courses on OpenMP and OpenACC by Dr. John Urbanic of the

Pittsburgh Supercomputing Center, and a part of the Extreme Science and Engineering Discovery

Environment (XSEDE).
9 From this point forward information will be given relative to C programming. There are

corresponding keywords used in Fortran for each functionality.
10 A logical core is defined here as the number of processor cores multiplied by the number of

supported threads per core. Therefore, an eight core processor that supports two threads per core

would have 16 logical cores.

39

Graphics processing units operate differently given their architecture. As mentioned earlier, GPUs

thrive on SIMD parallelism, where large groups of threads are executing the same instructions on

different data. When the CPU reaches the parallelized region defined by the #pragma, it will send

the instructions within the parallelized region to the GPU. Any needed data will be sent from the

host (CPU) to the device (GPU). When executing a parallel region, the thread scheduler will

assemble groups of 32 threads, called a warp, to operate concurrently. All threads within a warp

must march through in lock step with one another. Should branching occur within the parallelized

region (e.g., if statements) all threads will execute all instructions within the branching regions.

However, data will only be saved for the threads that satisfy the prescribed conditions of the

respective branches11 [93, 98].

Figure 2.12: Pseudo-code for implementing OpenMP and OpenACC directives. Image

adapted from course notes by John Urbanic11.

When implementing parallelized code, it is critical to properly manage data entering, being

generated within, and exiting from these regions. Unless otherwise specified, data are shared

amongst all threads. For OpenMP, when data needs to remain unique to their respective threads,

the private() clause can be added to the #pragma statement. When exiting the parallel region, the

reduction() clause can be used to provide common outputs, such as sums, minimums, and

maximums. If it is desirable to retain a value for each thread, an array can be used with each element

of the array pertaining to a respective thread. For OpenACC, the copyin() allocates memory on the

GPU and copies the data from the host to the GPU, which is shared amongst all threads. Temporary

11 Information from the 2017 courses on OpenMP and OpenACC by Dr. John Urbanic of the

Pittsburgh Supercomputing Center, and a part of the Extreme Science and Engineering Discovery

Environment (XSEDE).

40

variables can be created on the GPU through the use of the create() clause. Lastly, to retrieve data

from the GPU back to the host CPU, the copyout() clause is used. This brief overview of OpenMP

and OpenACC provides the essential information needed to understand the strategies employed in

the work herein. There are significantly more clauses, keywords, and variables offered in both the

OpenMP and OpenACC APIs that can add more complexity and functionality to parallelized

regions of code. However, outlining these is outside the scope of this work. For more information

on OpenMP and OpenACC programming, see Ref. [93, 98].

41

3 Trajectory Simulation and Descent Vehicle

Description

 The work herein focuses on the guidance and control of a PDV. To develop and verify these

strategies, they are implemented within a six DoF simulation built using the POST2 software [32].

The POST2 software, developed at the NASA LaRC, is a generalized rigid body trajectory

simulation program, and has “the capability to target and optimize point mass trajectories for

multiple powered or unpowered vehicles near an arbitrary rotating, oblate planet” [32]. The POST2

has been utilized for many NASA missions from the Space Shuttle, to the MSL and the Space

Launch System (SLS).

 The trajectory simulation built in POST2 integrates the six DoF EoM. Typically for simulations

that include GN&C, a fixed step integration method, such as a 4th order Runge-Kutta is selected.

The trajectory is of an EDL vehicle at Mars, represented as a rotating oblate planet, as shown in

Figure 3.1. The inertial frame coordinate system are 𝑋𝐼 , 𝑌𝐼 , 𝑍𝐼, and the rotating frame is 𝑋𝑅 , 𝑌𝑅 , 𝑍𝑅.

The planet rotates about the 𝑍𝐼 axis at the rotational rate, 𝜔𝑃 . The vehicle position can be

represented by the distance from the center of the planet, 𝑅𝐼; longitude, 𝜆; and planetodetic latitude,

𝜑; where the corresponding subscripts 𝐼 and 𝑅 represent the inertial and planet-relative values12.

The planetary parameters used for Mars in the six DoF simulation are provided in Table 3.1. The

atmosphere is modeled using the Mars Global Reference Atmospheric Model (Mars-GRAM) 2010

atmosphere, which is an engineering model that has been utilized for multiple Mars missions and

is developed and maintained by the NASA Marshall Space Flight Center [99].

12 Planet-relative values are those that are with respect to the rotating planet.

42

Figure 3.1: Coordinate systems used in six DoF trajectory simulation. Image credit: Juan R.

Cruz, NASA LaRC.

Table 3.1: Mars Planetary Parameters used in the six DoF simulation.

Mars Planetary Parameter Value

Equatorial Radius [m] 3396190

Polar Radius [m] 3376200

Mean Radius [m] 3397200

Gravitational Constant [m3/s2] 4.2828376383e+13

J2 Harmonic 0.0019628

Surface Gravity [m/s2] 3.7235

Rotational Rate [rad/s] 7.088218e-5

 The PDV chosen for this work is based on the HIAD EDL vehicle architecture, see Figure 3.2,

which is one of four architectures investigated for human Mars missions by NASA’s evolvable

Mars campaign [37]. This vehicle is designed to land 20 mt of payload to the Martian surface. The

red stacked tori in the top of Figure 3.2 are the inflated structure that forms the aerodynamic

decelerator, 16 m in diameter, used for entry. The eight descent engines (100 kN per engine) are

clustered near the nose of the aeroshell, as shown in Figure 3.3. The thrust of each engine is pointed

along the axis of symmetry, 𝑋𝑏𝑟 axis (see Figure 3.4), are throttleable between 0% and 100%, and

do not have limits on the throttle rate. It is assumed that the specific impulse, 𝐼𝑠𝑝, is constant for all

throttle levels. Each engine is independently throttled to create a differential thrust that pitches and

yaws the PDV, and enables it to follow the trajectory supplied by an onboard guidance routine. The

43

PDV initial mass is 46.4 mt (of which 9.5 mt is fuel) [34, 37]. A linear model is used for the vehicle

mass properties. The vehicle CoM and inertias are linearly interpolated between the fully fueled

and dry vehicle mass properties, and are calculated with respect to the total vehicle mass.

Figure 3.2: (Top) HIAD EDL vehicle architecture. (Bottom) Cargo configurations for the

HIAD EDL vehicle. Image from [35].

Figure 3.3: Orientation of the eight thrusters with respect to the vehicle body reference frame

(br). The subscript 𝒊 corresponds to the engine number.

44

Figure 3.4: Definitions of the body reference coordinate frame (br) origin at the vehicle nose,

and body coordinate frame (b) origin at the center of mass.

 The human Mars mission architecture study baselines descent engine ignition in the supersonic

flight regime. At the beginning of the work described herein, the aerodynamics of the PDV were

not defined. Additionally, the effects of the interactions between the freestream flow and the thrust

plume exhaust on the vehicle aerodynamics were not known. Therefore, the aerodynamics of the

vehicle were not modeled. As can be seen in Figure 3.2, the HIAD diameter is large, which will

result in aerodynamic forces acting on the PDV. These aerodynamic forces will be greater towards

the beginning the main descent phase, where the PDV will be traveling faster and incurring a higher

dynamic pressure. This will impact the commanded thrust levels from the guidance and control

system. Additionally, the freestream flow and thrust plume interactions may affect the stability of

the PDV, which will have impacts on the attitude control formulation and implementation. Results

in this dissertation should be interpreted with respect to the no aerodynamics assumption.

 Inertial measurement unit and IMU propagator models are used to simulate the sensor and

navigation systems on the PDV. These models were developed and used for the Low Density

Supersonic Decelerator (LDSD) project [100]. This navigation model provides vehicle state

information at 300 Hz. More details on the IMU implementation are discussed in Section 4.5.

 The simulation begins with the PDV at a planetodetic altitude of 3559 m, planetodetic latitude,

𝜑𝐼 , of -0.5032⁰; longitude, 𝜆𝑅 , of 181.1755⁰; planet-relative velocity, 𝑉, of 471 m/s; a planet-

relative velocity azimuth, 𝜓𝑣𝑒𝑙, of 0.0⁰; and a planet-relative flight path angle, 𝛾𝑣𝑒𝑙, of -19.9º. The

trajectory targets the beginning of the vertical descent phase for landing, which is a downward

45

velocity of 2.5 m/s at 12.5 m above ground. A vertical descent guidance guides the PDV through

the vertical descent phase, which concludes at touchdown (0 m) and at 2.5 m/s.

 The definition of the planet-relative values are in relationship to the North, East, Down

coordinate frame described by Figure 3.5. The origin of this frame is at the landing target. The

planet-relative parameters relating to the vehicle velocity and attitude are defined relative to this

frame as show in both Figure 3.5 and Figure 3.6. The planet-relative velocity is calculated by

𝑉 = ‖�̇⃑�𝑃‖ = ‖(�̇�𝑃 , �̇�𝑃 , �̇�𝑃)‖ (3.1)

The planet-relative velocity azimuth is defined as

𝜓𝑣𝑒𝑙 = tan
−1
�̇�𝑃

�̇�𝑃
 (3.2)

and is −𝜋 ≤ 𝜓𝑣𝑒𝑙 ≤ 𝜋. The planet-relative flight path angle is defined as

𝛾𝑣𝑒𝑙 = sin
−1
�̇�𝑃
𝑉

 (3.3)

where −𝜋/2 ≤ 𝛾𝑣𝑒𝑙 ≤ 𝜋/2.

Figure 3.5. Position of the vehicle’s center of mass in the planet coordinate frame. Note 𝒁𝑷 is

negative as shown. Image credit: Juan R. Cruz, NASA LaRC.

46

Figure 3.6: Definition of the body frame relative to the North-East-Down frame (located here

at the origin of the body frame for illustration purposes only). Image credit: Juan R. Cruz,

NASA LaRC.

47

4 Engine Failure Mitigation

 The goal of work in this chapter is to enable a PDV to adapt in real-time to failures and

degradations in its performance that change its dynamic behavior. This chapter describes a real-

time strategy for updating a PDV plant model on-board using measurements of the vehicle

dynamics. This strategy aids the guidance and control system’s ability to maximize its control

authority in the event of an engine failure. Section 4.1 describes the baseline PDV trajectory used

for the engine failure mitigation study. Section 4.2 discusses the use of real-time parameter

identification, which is the basis of the work herein. Section 4.3 details the derivation of the thruster

controller. Section 4.4 describes the vehicle plant model. Section 4.5 evaluates the effectiveness of

this failure mitigation strategy and the effects of sensor noise. Section 4.6 expands the failure

mitigation strategy to several failure scenarios, and Section 4.7 summarizes the conclusions of

this chapter.

4.1 Baseline Guidance and Trajectory

 The PDV trajectory is divided into two phases: gravity turn and vertical descent. The gravity

turn phase assumes the PDV thrust vector is aligned with the PDV planet-relative velocity vector.

This assumption is enforced by pitching the PDV as needed through differential throttling of the

engines. During this phase, differential throttling is also used to keep the vehicle travelling in plane

relative to its initial velocity azimuth. The enforcement of these assumptions is shown in Figure

4.1 and Figure 4.2. Note that in Figure 4.2, that the guidance commanded thrust stays within 20-

80% of the maximum engine thrust of 100 kN per engine. This leaves room for the control system

to operate. Switching to the vertical descent phase maintains the PDV constant rate of descent while

removing any lateral motion that was not removed during the gravity turn phase. The vertical

descent phase is initiated when the vehicle as met one of the following conditions: above ground

altitude is ≤ 12.5 m, velocity ≤ 2.5 m/s, or the flight path angle is ≤ -89⁰. At the beginning of vertical

descent, four of the engines are shutdown (engines 2, 3, 6 and 7). This is done to keep guidance

thrust commands from dropping below the 20% threshold.

48

Figure 4.1: Nominal trajectory of the PDV. The gravity turn phase operates between 0 and

51 s; the vertical descent phase operates from 51 s until touchdown.

Figure 4.2: Thrust and throttle profiles of the nominal PDV trajectory.

49

4.2 System and Parameter Identification

 System and parameter identification is a technique for the determination of model form and

value based on imperfect observations of the inputs and outputs of a desired system for the purpose

of generating an equivalent mathematical surrogate. An equivalent mathematical surrogate is the

simplest model that exhibits the desired system characteristics [25]. In the past, system and

parameter identification has been used to characterize and develop models for aircraft, turbines,

and rocket engines [25, 26]. For these applications, data was collected during a test and then

processed off-line. Real-time approaches have been developed for fault detection and enabling fault

tolerant control in aircraft [27, 28].

 Real-time parameter identification, specifically sequential least squares in the frequency

domain (SLSFD), is used here to develop an adaptable PDV control system. This strategy is

implemented on-board the PDV in the six DoF trajectory simulation. It allows the PDV to update

its internal plant model and identifies failed or underperforming engines. The internal plant model

is defined by parameter estimates, 𝜚, that indicate the effectiveness each engine has on the vehicle

dynamics, and a scale from 0 to 1. Through direct measurements of the vehicle state information

that come from the IMU and navigation models, the external forces and moments acting on the

vehicle can be computed. These along with the real-time parameter identification approach,

discussed in this chapter, form an adaptive control allocation method that enables a PDV to adapt

to engine loss of thrust and stuck full-on failure modes. The parameter identification equations

described herein are taken from Klein and Morelli, Ref. [25].

4.2.1 Ordinary Least Squares Estimation

 The ordinary least squares problem forms the basis for the regression analysis performed in

this work. A model of a dependent variable, 𝑦𝑖 , can be postulated as a summation of 𝑁𝑖𝑣

independent variables, 𝑥𝑖𝑗, and model parameters, 𝜚𝑗,

𝑦𝑖 = 𝜚0 +∑𝑥𝑖𝑗𝜚𝑗

𝑁𝑖𝑣

𝑗=1

 (4.1)

where the index 𝑖 indicates the 𝑖 th sample of the 𝑗𝑡ℎ independent variable (also referred to as

regressors). This model can only be as good as the measurements used to make it. Factoring in

measurement error/noise, 𝜈, provides a representation of measured dependent variable,

50

𝑧𝑖 = 𝑦𝑖 + 𝜈𝑖; 𝑖 = 1,2, … ,𝑁𝑚 (4.2)

where 𝑁𝑚 represents the number of sample measurements. Equations (4.1) and (4.2) can combined

and expanded to matrix form to include multiple measurements, which leads to

𝑧 = 𝑿𝜚 + 𝜈 (4.3)

where 𝑧 and 𝜈 are column vectors of length 𝑁 of the measured dependent variable and errors. The

variable 𝑿 is an 𝑁𝑚 × 𝑁𝑝𝑎𝑟𝑎𝑚 matrix of regressors, and 𝜚 is a column vector of model parameters

of length 𝑁𝑝𝑎𝑟𝑎𝑚 , where 𝑁𝑝𝑎𝑟𝑎𝑚 = 𝑁𝑖𝑣 + 1 . The variable 𝜈 can also be thought of as the

difference between the model prediction and the model measurement, or the residual. The best

model will be the one that minimizes the sum of squared differences between the model prediction

and measurement, which forms the least squares cost function

𝐽(𝜚) =
1

2
∑[𝑧(𝑖) − 𝑿𝑻(𝑖)𝜚]2

𝑁𝑚

𝑖=1

 (4.4)

Where 𝑖 is the index of measurements and 𝑁 is the total number of measurements taken. The model

parameters can be solved for by minimizing this cost function, which leads to

𝜚 = (𝑿𝑇𝑿)−1𝑿𝑇𝑧 (4.5)

where 𝜚 is an array of parameter estimates. The covariance of the parameter estimate can be

found using

Cov(𝜚) = �̂�2(𝑿𝑇𝑿)−1 (4.6)

Each element of the covariance matrix can referenced as

Cov(𝜚𝑖, 𝜚𝑘) = 𝑑𝑗𝑘; 𝑖, 𝑘 = 1,… ,𝑁𝑝 (4.7)

The estimated measurement error variance, �̂�2, over the data points used to calculate �̂� is

�̂�2 =
𝜈𝑇𝜈

𝑁𝑚 −𝑁𝑝𝑎𝑟𝑎𝑚
 (4.8)

51

 A pair-wise correlation between parameter estimates can be computed using

𝑐𝑜𝑟𝑟𝑗𝑘 =
𝑑𝑗𝑘

√𝑑𝑗𝑗𝑑𝑘𝑘
; 𝑗, 𝑘 = 1,… ,𝑁𝑝𝑎𝑟𝑎𝑚 (4.9)

A correlation coefficient of 1 means a linear relationship or equivalence exists between the two

regressor terms, and a value of -1 means an inverse linear relationship. It is desirable to have the

diagonal elements of the correlation coefficient matrix of higher magnitude than the off-diagonal

elements. This means the parameter estimates are linearly independent of one another, thus

providing unique measures for generating a model, and enables good parameter estimates. This can

be one of several checks used to verifying a good model form. Other checks for verifying the model

form and fit include computing the confidence interval and analyzing the residuals, see chapters

5.1.2 and 5.1.4 in Ref. [25].

4.2.2 Real-Time Parameter Identification and Sequential Least Squares in the

Frequency Domain

 Real-time parameter identification methods provide ongoing analysis of a system’s behavior,

and are used to estimate parameter values inside an existing model. These are useful for situations

where parameters may be time varying, or if parameter estimates must be provided before the

entirety of a large data set is available. The drawbacks of real-time parameter identification are that

the model form is typically fixed, and periods of low activity in the system (e.g., resting in position)

will cause numerical problems and poor parameter estimates. Additionally, a balance must be made

between how responsive the method is to changes in parameter values, and minimizing the effect

data noise has on the parameter value time history [25].

 Examples of possible real-time approaches include exponentially weighted least squares and

sequential least squares. To provide updates to time varying parameter estimates, each of these

methods employ different strategies for decreasing the importance of older data or forgetting it all

together. The exponential least squares incorporates a forgetting factor, 𝜆, into the least squares

cost function that exponentially decreases the impact of older data as new data are incorporated.

Sequential least squares uses a sliding time window that only analyzes data within the window. As

new data are brought in, older data are removed from consideration. Lastly, both of these methods

can be implemented in the time domain or frequency domain. Sequential least squares in the

frequency domain was chosen for the work herein for two reasons. One, early investigations

identified high correlation between the eight engine effectiveness parameters, which necessitated

52

the creation of a maneuver that would be executed to decorrelate the engine parameters. The

inclusion of the maneuver limited parameter estimation to data only existing within the maneuver

time window. Given this, including the added complication of a forgetting factor is not needed,

thus leading to the simpler sequential least squares approach. Two, operating in the frequency

domain provides insights into the frequency content of the data and allows for filtering of wideband

measurement noise without the implementation of a separate filter.

 The implementation, used here, of SLSFD utilizes the Euler approximation of the discrete

Fourier transform of both the regressor matrix and the measured data

�̃�𝑖(𝜔) = �̃�𝑖−1(𝜔) + 𝑿𝑖(𝑖)𝑒
−√−1𝜔𝑖Δ𝑡 (4.10)

�̃�𝑖(𝜔) = �̃�𝑖−1(𝜔) + 𝑧𝑖(𝑖)𝑒
−√−1𝜔𝑖Δ𝑡 𝑖 = 1,… ,𝑁𝑚 (4.11)

where 𝜔 is the angular frequency. The rigid body dynamics that are of interest occupy a frequency

band < 12 Hz. With a limited frequency band of interest, Eqs. (4.10) and (4.11) efficiently compute

the discrete Fourier transform. Moreover, the data used in this analysis are generated by the IMU

and navigation models, which operate at 300 Hz. The frequencies of interest are significantly lower

than the data generation rate. Thus, the errors attributed to the Euler approximation are small, and

can be safely ignored for real-time parameter estimation [25]. Through Eqs. (4.10) and (4.11), the

ordinary least squares cost function then changes to

𝐽(𝜚) =
1

2
(�̃� − �̃�𝜚)

†
(�̃� − �̃�𝜚) (4.12)

where † signifies the transpose of the complex conjugate. Solving for the minimum of the cost

function yields

𝜚 = (�̃�𝑅𝑒𝐼𝑚
†
�̃�𝑅𝑒𝐼𝑚)

−1

(�̃�𝑅𝑒𝐼𝑚
†
�̃�𝑅𝑒𝐼𝑚) (4.13)

Cov(𝜚) = 𝜎2 (�̃�𝑅𝑒𝐼𝑚
†
�̃�𝑅𝑒𝐼𝑚)

−1

 (4.14)

where

�̃�𝑅𝑒𝐼𝑚 = [
𝑅𝑒(�̃�)

𝐼𝑚(�̃�)
] (4.15)

53

�̃�𝑅𝑒𝐼𝑚 = [
𝑅𝑒(�̃�)

𝐼𝑚(�̃�)
] (4.16)

Appending the real and imaginary parts of the regressor and measurement arrays, as seen in Eqs.

(4.15) and (4.16), effectively doubles the data information content available to estimate the

parameter array, 𝜚. The sequential least squares method operates on sections of data of size 𝑁𝑚,

which depends on the time window of interest. The covariance provides a measure of the

relationship between different terms in �̃�. If the off diagonal terms are larger in magnitude than the

diagonal terms, then the data are correlated. Correlated data can lead to issues in estimating the

parameters in 𝜚, and will require efforts to decorrelate the terms in the covariance matrix.

4.2.3 Orthogonal Multi-Sine Inputs

Early investigations in applying the above analysis quickly identified high correlation between

the eight engine throttle commands. These correlations resulted in poor parameter estimates that

were unusable for meeting the goal of the present research. The solution to this issue was to inject

a test input on top of the throttle command solutions, which is referred to as a maneuver for the rest

of this dissertation. Orthogonal multi-sine functions generate functions that are orthogonal in time

and frequency, which decorrelates the throttle commands, thus allowing the effects of each engine

to be uniquely identified. Orthogonal multi-sine waveforms were generated for each of the eight

engines using the MKMSSWP function within the System IDentification Programs for AirCraft

(SIDPAC) [101]. This function generates waveforms that are a sum of sinusoids at discrete

frequencies that are phase optimized to minimize deviations from the nominal input, known as the

peak factor

𝑃𝐹(𝑈𝑖) =
max(𝑈𝑖) − min (𝑈𝑖)

2√𝑈𝑖
𝑇𝑈𝑖/𝑁𝑝𝑡𝑠

(4.17)

where 𝑁𝑝𝑡𝑠 is the number of data points in the sinusoidal function, 𝑈𝑖, time history. The form of

these sinusoids is

𝑈𝑖(𝑡) = 𝐵𝑖 ∑𝐴𝑖,𝑘 𝑠𝑖𝑛(2𝜋𝑓𝑖,𝑘𝑡 + 𝜛𝑖,𝑘)

𝐺𝑖

𝑘=1

; 𝑖 = 1,2,… ,𝑁𝑓 (4.18)

where 𝑁𝑓 is the number of excitation functions to be generated, and 𝐺𝑖 is the number of targeted

frequencies, 𝑓𝑖,𝑘 , in each function. Through optimization, each excitation function targets a

54

minimum peak factor by adjusting the function amplitude, 𝐴𝑖,𝑘 , and the phase shift, 𝜛𝑖,𝑘, for each

target frequency. A global amplitude, 𝐵𝑖, is applied to each excitation function, 𝑈𝑖, to meet the

needs of the maneuver. A detailed description of the generation and use of orthogonal multi-sine

functions can be found in Ref. [102].

 In designing the multi-sine inputs, the minimum frequency that can be resolved is limited by

the Nyquist frequency

𝑓𝑚𝑖𝑛 ≥ 2/𝑃 (4.19)

where 𝑃 is the time period of the waveform. The smallest change in frequencies that can be resolved

is

∆𝑓 = 1/𝑃 (4.20)

 An example waveform is shown in Figure 4.3 in the time domain. Figure 4.4 and Figure 4.5

show the frequency content for a set of eight waveform functions used in the 1.5 s and 4 s

maneuvers, respectively.

Figure 4.3: Sample multi-sine waveform function generated by the MKMSSWP routine

in SIDPAC.

55

Figure 4.4: Power spectral density of eight orthogonal multi-sine waveforms for the

1.5 s maneuver.

Figure 4.5: Power spectral density of eight orthogonal multi-sine waveforms for the

4.0 s maneuver.

56

4.3 Thruster Controller

 The PDV follows total force, pitching and yawing moment commands that are computed from

the guidance and control routines. These commands are met through differential thrusting of the

eight fixed engines. Note that the engine configuration used in this dissertation does not allow for

rolling moment control, which is why it is not included in the command array, 𝐹𝐶𝑀𝐷 . The no

aerodynamic assumption, used in this dissertation, leads to small disturbances about roll, and it is

assumed roll is controlled by other means. Roll control could be incorporated into the formulation

of the thruster controller described here. Changes would need to be made to the engine

configuration (such as canted engines) or RCS thrusters could be added. For the current engine

configuration, the force and moment commands can be met through the following formulation

𝐹𝐶𝑀𝐷 = 𝑇𝑸+ 𝐵 (4.21a)

𝐹𝐶𝑀𝐷 = [𝐹𝑥,𝐶𝑀𝐷 𝑀𝑦,𝐶𝑀𝐷 𝑀𝑧,𝐶𝑀𝐷] (4.21b)

𝑇 = [𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8] (4.21c)

𝑸 = 𝐹𝑇,𝑚𝑎𝑥

[

𝜚1 𝑧𝑏1𝜚1 𝑦𝑏1𝜚1
𝜚2 𝑧𝑏2𝜚2 𝑦𝑏2𝜚2

𝜚3
𝜚4
𝜚5
𝜚6
𝜚7
𝜚8

𝑧𝑏3𝜚3
𝑧𝑏4𝜚4
𝑧𝑏5𝜚5
𝑧𝑏6𝜚6
𝑧𝑏7𝜚7
𝑧𝑏8𝜚8

𝑦𝑏3𝜚3
𝑦𝑏4𝜚4
𝑦𝑏5𝜚5
𝑦𝑏6𝜚6
𝑦𝑏7𝜚7
𝑦𝑏8𝜚8]

 (4.21d)

𝐵 = 𝐹𝑇,𝑚𝑎𝑥[𝜚0𝑥 𝜚0𝑦 �̂�0𝑧] (4.21e)

where 𝐹𝑥,𝐶𝑀𝐷, 𝑀𝑦,𝐶𝑀𝐷, and 𝑀𝑧,𝐶𝑀𝐷 are the individual commands and are in the body reference

coordinate frame (b), as shown in Figure 3.4. Throttle solutions for each engine 𝑡1−8 meet the

command array, 𝐹𝐶𝑀𝐷 . The plant model, 𝑸, is comprised of the maximum thrust, 𝐹𝑇,𝑚𝑎𝑥 ; the

estimated engine efficiency (or parameter), 𝜚1−8, for each engine; and the moment arm (distance

from the engine to the center of mass (CoM)) of each engine, 𝑦𝑏1−8 and 𝑧𝑏1−8 . The bias array, 𝐵,

captures unmodeled dynamics, by including the bias parameter estimates, which correspond to the

force, pitching moment, and yawing moment, respectively. To solve for the throttle array, 𝑇, Eq.

(4.21a) can be reformulated into an ordinary least squares problem

57

𝑇 = [𝐹𝐶𝑀𝐷 − 𝐵]𝑸
+ (4.22)

where + indicates the Moore-Penrose pseudo inverse.

4.4 Plant Model Generation

 The parameter estimates used in Eq. (4.21d), are determined through the SLSFD method

described above. Initially, separate models for the derived total force, 𝐹𝑥𝑑; pitching moment, 𝑀𝑦𝑑;

and yawing moment, 𝑀𝑧𝑑, are created. The non-dimensionalized versions of these models are

𝐶𝑥 =
𝐹𝑥𝑑
𝐹𝑇,𝑚𝑎𝑥

=∑𝜚𝑖𝑡𝑖

8

𝑖=1

+ 𝜚𝑏𝑥 (4.23)

𝐶𝑚𝑦 =
𝑀𝑦𝑑

𝐹𝑇,𝑚𝑎𝑥𝐷𝑛𝑜𝑧
=∑𝜚𝑖

𝑧𝑏𝑖𝑡𝑖

𝐷𝑛𝑜𝑧

8

𝑖=1

+ 𝜚𝑏𝑦 (4.24)

𝐶𝑚𝑧 =
𝑀𝑧𝑑

𝐹𝑇,𝑚𝑎𝑥𝐷𝑛𝑜𝑧
=∑𝜚𝑖

𝑦𝑏𝑖𝑡𝑖

𝐷𝑛𝑜𝑧

8

𝑖=1

+ 𝜚𝑏𝑧 (4.25)

where 𝐷𝑛𝑜𝑧 is the engine nozzle diameter and is included for non-dimensionalization purposes.

 The derived values of 𝐹𝑥𝑑, 𝑀𝑦𝑑, and 𝑀𝑧𝑑 are estimated through an understanding of the PDV

equations of motion and IMU data.

𝐹𝑥𝑑 = 𝑚(𝑎𝑠𝑒𝑛𝑠𝑒𝑑𝑥 − (𝑞
2 + 𝑟2)𝑥𝐼𝑀𝑈2𝐶𝑜𝑀 + (𝑝𝑞 − �̇�)𝑦𝐼𝑀𝑈2𝐶𝑜𝑀 + (𝑝𝑟 + �̇�)𝑧𝐼𝑀𝑈2𝐶𝑜𝑀) (4.26)

𝑀𝑦𝑑 = �̇�𝐼𝑦𝑦 + 𝑝𝑟(𝐼𝑥𝑥 − 𝐼𝑧𝑧) + 𝑚𝑧𝐼𝑀𝑈2𝐶𝑜𝑀𝑎𝑥𝑚 −𝑚𝑥𝐼𝑀𝑈2𝐶𝑜𝑀𝑎𝑧𝑚 (4.27)

𝑀𝑧𝑑 = �̇�𝐼𝑧𝑧 + 𝑝𝑞(𝐼𝑦𝑦 − 𝐼𝑥𝑥) + 𝑚𝑥𝐼𝑀𝑈2𝐶𝑜𝑀𝑎𝑦𝑚 −𝑚𝑦𝐼𝑀𝑈2𝐶𝑜𝑀𝑎𝑥𝑚 (4.28)

The PDV principal moments of inertia (MoI) are given by 𝐼𝑥𝑥 , 𝐼𝑦𝑦 , and 𝐼𝑧𝑧 [103]. The cross

products of inertia are assumed to be negligibly small and are ignored. The distance between the

IMU position and the CoM in the body frame is defined by 𝑥𝐼𝑀𝑈2𝐶𝑜𝑀, 𝑦𝐼𝑀𝑈2𝐶𝑜𝑀, and 𝑧𝐼𝑀𝑈2𝐶𝑜𝑀.

The IMU provides the PDV attitude rates and accelerations about the roll, 𝑝; pitch, 𝑞; and yaw, 𝑟,

axes. Additionally, the IMU provides the translational acceleration data 𝑎𝑥𝑚, 𝑎𝑦𝑚, and 𝑎𝑧𝑚.

 With values of 𝐹𝑥𝑑, 𝑀𝑦𝑑, and 𝑀𝑧𝑑 determined, Eqs. (4.23) to (4.25) can be transformed into

the frequency domain and set up as SLSFD problems.

58

�̃�𝐶𝑥 = 𝜚�̃�𝐶𝑥 + 𝜈𝐶𝑥 (4.29)

�̃�𝐶𝑚𝑦 = 𝜚�̃�𝐶𝑚𝑦 + 𝜈𝐶𝑚𝑦 (4.30)

�̃�𝐶𝑚𝑧 = 𝜚�̃�𝐶𝑚𝑧 + 𝜈𝐶𝑚𝑧 (4.31)

The arrays �̃�𝐶𝑥, �̃�𝐶𝑚𝑦 , and �̃�𝐶𝑚𝑧 are the frequency content of the dimensionless force and moments

in Eqs. (4.23) to (4.25). The two dimensional arrays �̃�𝐶𝑥, �̃�𝐶𝑚𝑦, and �̃�𝐶𝑚𝑧 are the frequency content

of the regressor terms in Eqs. (4.23) to (4.25). The arrays 𝜈𝐶𝑥, 𝜈𝐶𝑚𝑦 , and 𝜈𝐶𝑚𝑧 are the complex

equation errors in the frequency domain. The arrays in Eqs. (4.29) to (4.31) can be appended to one

another to create

�̃� = 𝜚�̃� + �̃� (4.32a)

�̃� = [

�̃�𝐶𝑥
�̃�𝐶𝑚𝑦
�̃�𝐶𝑚𝑧

] (4.32b)

�̃� = [

�̃�𝐶𝑥
�̃�𝐶𝑚𝑦

�̃�𝐶𝑚𝑧

] (4.32c)

�̃� = [

𝜈𝐶𝑥
𝜈𝐶𝑚𝑦
𝜈𝐶𝑚𝑧

] (4.32d)

The creation of Eq. (4.32) combines all the available data information content into a single estimate,

which allows for improved accuracy in the estimation of the values in 𝜚 than using Eqs. (4.29) to

(4.31) individually. The parameter estimates in 𝜚 can be found using Eq. (4.13). Note, that the

conversion into the frequency domain removes the bias. Thus, after solving Eq. (4.13), 𝜚𝑏𝑥, 𝜚𝑏𝑦,

and 𝜚𝑏𝑧 are found separately by solving a second ordinary least squares problem in the time

domain, Eq. (4.5), for each force and moment. The formulation of the plant model is made such

that a PDV operating under nominal conditions (i.e. no engine failures) would have parameter

estimates, 𝜚, of all ones, and the three bias parameters all equal to zero. This formulation also allows

for the identification of different failure scenarios, by taking the parameter estimates as a whole,

𝜚𝑎𝑙𝑙 = [𝜚1 𝜚2 𝜚3 𝜚4 𝜚5 𝜚6 𝜚7 𝜚8 𝜚𝑏𝑥 𝜚𝑏𝑦 𝜚𝑏𝑧] (4.33)

59

Should a PDV experience a loss of thrust, or partial loss of thrust, in a single engine the 𝜚 array

will be all ones except for the engine that has failed, and the bias parameters would all have values

of zero. For example,

 𝜚𝑎𝑙𝑙 = [𝜚1 1 1 1 1 1 1 1 0 0 0] (4.34a)

where 𝜚1 would be 0 for a complete loss of thrust, and 0.7 for a 30% loss of thrust. Should a PDV

experience an engine thrust stuck full-on failure, the 𝜚 array would again be an array of all ones

except for the engine that has failed, but the bias parameters would all be non-zero values. For

example, should engine one be stuck full-on, then

𝜚𝑎𝑙𝑙 = [0 1 1 1 1 1 1 1 𝜚𝑏𝑥 𝜚𝑏𝑦 𝜚𝑏𝑧] (4.34b)

where 𝜚𝑏𝑥, 𝜚𝑏𝑦, and 𝜚𝑏𝑧 are all non-zero numbers. This capability enables the failure mitigation

strategy to accurately identify which engine is affected and how that affect contributes to the vehicle

dynamics. This information can then be passed onto the guidance and control system to make

decisions based on the current vehicle capabilities, thus forming the overall adaptive control

allocation method.

4.5 Design and Analysis of Perturbation Maneuver

The inclusion of a maneuver requires an understanding of how the throttle amplitude and

duration affect the parameter estimates and the PDV’s ability to reach its target conditions in the

event of a failure. Additionally, the effects of IMU errors on these same metrics need to be

well understood.

For this study, the human sized PDV discussed in Chapter 3 is used. The engine layout used is

shown in Figure 4.6.

60

Figure 4.6: Orientation of the eight thrusters with respect to the vehicle body reference frame

(br). All dimensions are in meters.

4.5.1 Maneuver Study

The study into the maneuver configuration investigates the maneuver time length and throttle

amplitude. The goal for this study is to determine the least disruptive maneuver combination that

provides the best possible outcome for the PDV (i.e., provides a reasonable PDV plant model that

enables the PDV to reach its target conditions in the event of an engine failure). For each maneuver

time length a unique group of eight orthogonal multi-sine waveforms were generated using the

SIDPAC toolbox. When finding the minimum peak factor, the optimization used within SIDPAC

resulted in local minima solutions. Thus 10 versions of each maneuver length of time, shown in

Table 4.1, were created. This enabled a study into the effects of the maneuver time length itself,

and not just the result of a particular local minimal solution. The throttle amplitude is designated

by the maneuver throttle multiplier, which scales the orthogonal multi-sine function (discussed in

Section 4.2.3). These functions are scaled relative to the maximum thrust of the engine (e.g., 1.0 is

the maximum thrust, and 0.25 is 25% of the maximum thrust). Table 4.1 provides the design space

exploration of the maneuvers. Permutations of these maneuver design parameters are tested using

each engine failure scenario for all eight engines. The plots and discussions in this section pertain

to failures in engine four. Plots showing the investigations of the maneuver design space applied to

engine failures in all other engines can be found in Appendices B and C.

61

Table 4.1: Maneuver design space.

Maneuver Throttle Multiplier, %/100 [0.3, 0.2, 0.1, 0.05]

Maneuver Length of Time, s [4.0, 3.5, 3.0, 2.5, 2.0, 1.7, 1.5]

The focus of the maneuver study is on the effects they have on the parameter estimates and the

PDV’s ability to target landing conditions; not the logic for triggering the maneuver itself.

Therefore, for this study, the initiation of the maneuver is assumed to be concurrent with the

beginning of the failure. This is equivalent to instantanous detection of a failure, without knowledge

of what type of failure has occurred. In reality, there would be a delay between the occurance of

the failure and initiating the failure mitigation strategy. This delay would not affect the ability to

detect the type and extent of the engine failure. However, errors in the vehicle controls grow as the

engine failure goes unmitigated. Future work will investigate methods for initiating the failure

mitigation strategy and minimizing the time delay between the failure event and mitigation.

As an example, Figure 4.7 shows box-and-whiskers plots of the plant model fit error versus the

throttle multiplier and time length. These figures are of engine four experiencing one of the two

failure scenarios studied in this work: loss of all thrust and thrust stuck full-on. In Figure 4.7 the

box-and-whiskers plots show the 25%-tile (bottom of box), the median (red line), and the 75%-tile

(top of box). The whiskers represent the extremes of the data that are not considered outliners. Data

that are 1.5 times larger than the range between the 25%-tile and 75%-tile are considered outliers,

and are indicated by the red crosses. Similar analyses with similar results were performed for each

of the engines. Results for all other engines and failure scenarios are in Appendix B. Plant model

fit error is the root mean square error and is defined as

𝐹𝑖𝑡 𝐸𝑟𝑟. = √
∑ (𝜚𝑎𝑙𝑙(𝑖) − 𝜚𝑎𝑙𝑙(𝑖))

211
𝑘=1

11
 (4.35a)

𝜚𝑎𝑙𝑙 = [𝜚1 𝜚2 𝜚3 𝜚4 𝜚5 𝜚6 𝜚7 𝜚8 𝜚𝑏𝑥 𝜚𝑏𝑦 𝜚𝑏𝑧] (4.35b)

𝜚𝑎𝑙𝑙 = [𝜚1 𝜚2 𝜚3 𝜚4 𝜚5 𝜚6 𝜚7 𝜚8 𝜚𝑏𝑥 𝜚𝑏𝑦 𝜚𝑏𝑧] (4.35c)

This provides a single metric for evaluating the accuracy of the eight engine parameter estimates

the three bias estimates. The box-and-whisker provides a rough statistical representation of the 10

versions of each maneuver time length. In general, this figure shows the trend that increasing the

throttle multiplier and time length lead to decreased model fit error. This trend is observed, because

least squares methods depend on the data information content. Larger maneuver amplitudes

62

increase the amount of data that is above the noise threshold, and longer maneuvers add more data

for the least squares method to operate on. Therefore, increasing the throttle multiplier and time

length increase the data information content for the SLSFD method to use, thus lowering the model

fit error.

Figure 4.7: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a complete loss of thrust in engine four (Left) and thrust

stuck full-on failure in engine four (Right).

Figure 4.8 and Figure 4.9 are sample results from the maneuver study. For brevity, only engine

four with the two failure scenarios (full loss of thrust and thrust stuck full-on) along with two of

the throttle multipliers (0.05 and 0.3) are shown in this chapter. All other engines with the

corresponding failure scenarios and thrust multipliers can be found in Appendix C. Figure 4.8 and

Figure 4.9 are organized in increasing maneuver throttle multiplier and show the PDV targeting

conditions. These figures show the PDV conditions planet-relative velocity, flight path angle, and

63

pitch angle at key targeting points on the trajectory. Figure 4.8a and Figure 4.8b show both the

initiation of vertical descent (left column) and at touchdown (right column). Figure 4.9, however,

only shows conditions at touchdown 13 . The 𝑥 -axis of each plot correspond to the different

maneuver lengths of time studied. Within each figure the black dashed line represents the nominal

flight of the PDV, where no failure occurred. The green diamonds represent a PDV experiencing a

failure, without implementing the adaptive control allocation method. The box-and-whisker plots

(in blue and red) show the result of a PDV implementing the corresponding maneuver time length

and multiplier. The box-and-whisker plots provide a rough statistical interpretation of the 10

versions of the maneuver time length.

In looking at the results in both Figure 4.8 and Figure 4.9, it can be seen that implementing the

real-time parameter identification using any of the maneuvers significantly improved the PDV’s

ability to reach the target conditions. A general trend emerges, as the maneuvers increase in throttle

multiplier and length of time, the errors in meeting the target conditions decreases. This trend does

have caveats, such as the beginning of the vertical descent phase for the 3 s maneuver in Figure

4.9. One version of the 3 s maneuver led to a flight path angle of -80.7⁰. But note, that the velocity

magnitude is at 2.5 m/s, which results in a horizontal component of velocity of 0.41 m/s. The non-

mitigated case, -80.8⁰ flight path angle with a 43.0 m/s velocity magnitude results in a horizontal

component of velocity of 6.9 m/s. Thus the adaptive control allocation method with the 3 s

maneuver is aiding in safely landing the vehicle. Another feature of Figure 4.8 and Figure 4.9 are

step improvements that are observed (particularly between 2 and 2.5 s in Figure 4.8). These step

increases are not consistently observed between the same to maneuvers for all failure scenarios (see

additional results in Appendix C). Therefore, the step increases are not attributed to the maneuvers

themselves. It is likely that these are due to the multiple criteria used to initiate the vertical descent

phase. Recall that in Section 4.1, that meeting any of the following criteria will initiate the vertical

descent phase: above ground altitude is ≤ 12.5 m, velocity ≤ 2.5 m/s, or the flight path angle is ≤ -

89⁰. Notwithstanding, the general trend across all failure scenarios is that as the maneuver throttle

13 This is due to the vertical decent phase being skipped in the event of an engine stuck full-on

failure. For these types of failures the thruster controller must force the engine opposing the stuck

at full thrust to also be at full thrust. This balances the moments acting on the vehicle and allows

the other engines to differentially throttle to control the attitude of the vehicle. Early analysis found

that the PDV control system was not able to maintain controllability through the transition from

the gravity turn guidance phase to vertical decent guidance phase when experiencing the engine

thrust stuck full-on failure scenario. However, keeping the PDV in the gravity turn guidance phase

all the way to the ground, in the event of this failure scenario, did maintain vehicle controllability.

64

multiplier and time length increase, the PDV is more able to meet the targeting conditions.

Furthermore, the maneuver combination that theoretically provides the least data information

content (1.5 s with 0.05 throttle multiplier), still provides enough information to enable the control

system to compensate for the failed engine and land the PDV within a close proximity of the target

conditions. For the loss of thrust case, it is able to land within 0.1 m/s of the velocity, 3º of the flight

path angle, and 2º of the pitch angle targets. For the stuck full-on failure case, it is able to land

within 0.1 m/s of the velocity, 6º of the flight path angle, and 2º of the pitch angle targets.

Figure 4.8: Maneuver variable effects on PDV’s ability to meet the target conditions at

discrete events. a) Maneuver throttle multiplier of 0.05. b) Maneuver throttle multiplier

of 0.3.

65

Figure 4.9: Maneuver variable effects on PDV’s ability to meet the target conditions at

discrete events. a) Maneuver throttle multiplier of 0.05. b) Maneuver throttle multiplier

of 0.3.

In both Figure 4.8b and Figure 4.9b, the increase in throttle multiplier (0.3) increases the PDV’s

ability to reach the target conditions when the PDV has experienced an engine failure. This is again

attributed to the increase data information content, which decreases the model fit error, and

improves the controller’s ability to control the PDV. However, this increase in data information

content comes at the cost of utilizing more thrust and more resources. Lastly, there is a small

increase in the pitch angle error at the vertical descent initiation as the maneuver time length is

increased. This is due to the small deviations from the overall commanded inputs caused by the

orthogonal multi-sine inputs. Even though these inputs are designed to minimize the overall

deviation from the commanded, their effect becomes more noticeable with longer maneuvers.

However, even for the 4 s maneuver, the effect on the pitch angle at vertical descent initiation are

small at approximately 3.2º off of the nominal -90º. For reference, the InSight Mars Lander,

successfully landed on Mars on November 26th, 2018, had the following touchdown requirements:

horizontal velocity less than 1.4 m/s, vertical velocity between 1.4-3.4 m/s, and pitch to be less than

5º off vertical14. The Apollo Lunar Lander touchdown attitude requirement was to be ≤ 6º of the

14 Information provided through communication with Robert Maddock, NASA Langley EDL Lead

for NASA InSight Mars Lander.

66

local gravity vector [104]. Future human missions to Mars will likely have different requirements

on their touchdown conditions. However, these two examples provide existing references to

mission requirements imposed on PDVs landing a payload. Using them demonstrates that the

failure mitigation strategy is able to land a PDV suffering from an engine failure to its touchdown

conditions within reasonable bounds.

 Although the discussions in this section focused on engine failures in engine three, the trends

discussed here are also observed for failures in the other engines as well. Information on the

maneuver studies for the other engine failures can be found in Appendices B and C.

4.5.2 Inertial Measurement Unit Error Study

This study investigated the degradations in plant model estimation due to IMU noise, bias, and

scale factor errors and the corresponding effects on the PDV’s ability to reach its target conditions.

It is assumed that all other sources (e.g. misalignment errors) of IMU errors are zero. The range of

IMU errors investigated are taken from the LDSD Gimbaled LN-200 with Miniature Airborne

Computer (GLN-MAC), the MSL Miniature Inertial Measurement Unit (MIMU), and the

Honeywell HG9900 [24, 100, 105]. In this study, the data generated by the IMU are smoothed

before entering the SLSFD routine.

In Section 4.5.1, it was found that the longer maneuvers with larger throttle multipliers produce

more data information content. These maneuvers lead to lower model fit errors and generally

improve the ability of the PDV to reach the targeting conditions while experiencing an engine

failure. To evaluate the effect IMU errors have on these results, the maneuvers that produce the

most (4.0 s maneuver with a 0.3 throttle multiplier) and least (1.5 s maneuver with a 0.05 throttle

multiplier) data information content were selected for further analysis. Through the maneuver study

discussed in Section 4.5.1, a top performing (in model fit error) version of the orthogonal multi-

sine input function was found for both maneuver lengths. Only the top performing version per

maneuver time length was chosen for the IMU error analysis here. These are then applied to a 2000

case Monte Carlo simulation where only the IMU errors are dispersed. The results of the Monte

Carlo simulation are used to show the correlations between the IMU errors and the PDV’s ability

to reach the target conditions. The analysis is shown here for the engine three loss of thrust failure

scenario along with the two maneuvers (1.5 s maneuver with 0.05 throttle multiplier and 4.0 long

maneuver with 0.3 throttle multiplier).

67

Correlation coefficients provide a measure of the linear relationship between the investigated

IMU errors and their effects on the plant model fit errors, which in turn affects the PDV’s ability

to reach the target touchdown conditions. Table 4.2 and Table 4.3 demonstrate the capability of the

adaptive control allocation method implementing the maneuver with the least data information

content (1.5 s maneuver with 0.05 throttle multiplier). Table 4.2 list the correlation coefficients,

and Table 4.3 shows the impact on the model fit error and the errors in the PDV touchdown

conditions. Table 4.4 and Table 4.5 provide the same series of results except the adaptive control

allocation method is implementing the 4.0 s maneuver with a 0.3 throttle multiplier, which has the

most data information content.

 Table 4.2 shows that the IMU accelerometer and gyroscope noise have the highest correlations

to the plant model fit error, thus impacting the PDV performance the most. However, Table 4.3

shows the overall impact to the model error is small. Thus, the adaptive control allocation method

is able to correctly identify the failed engine and generate an accurate planet model, which then

allows the PDV to reach its target touchdown conditions.

Table 4.2. Correlation coefficients between the IMU sensor errors to the model error and

touchdown (TD) conditions reached by the PDV. Adaptive control allocation method

implemented for the PDV experiencing a loss of thrust in engine three, and using a 1.5 s

maneuver with a 0.05 throttle multiplier.

Accelerometer Gyroscope

Noise Bias

Scale

Factor Noise Bias

Scale

Factor

Model Fit Error 0.959 -0.015 -0.004 0.242 0.005 -0.020

TD Velocity 0.008 -0.053 0.040 0.437 0.010 -0.011

TD Pitch -0.252 0.036 0.017 0.009 -0.041 0.003

TD Flight Path Angle 0.836 0.016 0.013 0.455 0.001 -0.017

Table 4.3. Inertial measurement unit sensor errors induce the below range of errors in the

parameter identification plant model update and the PDV’s ability to reach its target

touchdown conditions of 2.5 m/s and -90º pitch and flight path angles.

Errors

Min Mean Max

Model Fit Error 0.08 0.12 0.17

TD Velocity [m/s] 0.00 0.00 0.00

TD Pitch [deg] 0.01 0.04 0.10

TD Flight Path Angle [deg] 0.86 1.15 1.85

68

 Table 4.4 provides results for the adaptive control allocation method implementing a maneuver

that provides the most data information content (4.0 s maneuver with 0.3 throttle multiplier).

Although Table 4.4 shows the IMU accelerometer and gyroscope bias and scale factors play a larger

role in the plant model fit error, Table 4.5 shows the net impact is significantly reduced when

compared to Table 4.3.

Table 4.4. Correlation coefficients between the IMU sensor errors to the model error and

touchdown conditions reached by the PDV. Adaptive control allocation method implemented

for the PDV experiencing a loss of thrust in engine three, and using a 4.0 s maneuver with a

0.3 throttle multiplier.

Accelerometer Gyroscope

Noise Bias

Scale

Factor Noise Bias

Scale

Factor

Model Fit Error -0.106 0.360 -0.484 0.741 0.001 0.222

TD Velocity 0.031 -0.009 0.056 -0.025 -0.006 0.024

TD Pitch -0.304 0.834 -0.080 0.039 0.006 0.042

TD Flight Path Angle 0.506 -0.791 0.025 0.363 0.002 -0.036

Table 4.5. Inertial measurement unit sensor errors induce the below range of errors in the

parameter identification plant model update and the PDV’s ability to reach its target

touchdown conditions of 2.5 m/s and -90º pitch and flight path angles.

Errors

Min Mean Max

Model Fit Error 0.02 0.02 0.03

TD Velocity [m/s] 0.00 0.00 0.00

TD Pitch [deg] 0.00 0.01 0.02

TD Flight Path Angle [deg] 0.07 0.14 0.20

4.6 Engine Failure Case Studies

Up to this point results have been focused on a PDV experiencing a loss of thrust and stuck full-

on engine failures in one engine. Figure 4.10 shows the broader application of the adaptive control

allocation method to single engine failure scenarios: loss of thrust in engine three, engine six with

thrust stuck full-on, and engine eight with 50% loss of thrust. In each of these failure scenarios, the

simulated PDV with no adaptive control is shown in the left column; the PDV with adaptive control

is in the right. The dashed cyan lines represent the nominal flight of the PDV (no engine failure).

69

The loss of thrust scenario (Figure 4.10a, left column) causes the PDV with no adaptive control to

impact the ground at 15.5 m/s and at a flight path angle of -59.9º. In the stuck full-on scenario

(Figure 4.10b, left column), the simulated PDV tumbles until it impacts the ground at nearly 25

m/s. These high velocity impacts would be catastrophic to the vehicle. In the 50% loss of thrust

scenario (Figure 4.10c, left column), the PDV is able to meet the 2.5 m/s touchdown velocity

condition, but its flight path angle is -79.1º. In all failure scenarios where the PDV implements the

adaptive control allocation method, the PDV is able to meet the target conditions without tumbling

or loss of control.

The bottom plots in parts a), b), and c) show the throttle commands to each of the eight engines.

First looking at parts a) and b) for the no adaptive control case, commands continue to be sent to

the failed engines even though they are not responsive. In part c), the commands to the failed engine

are not appropriately adjusted, leading to undesirable pitch and flight path angle. With the adaptive

control, parts a) and b), show that the commands are discontinued to the unresponsive engines, and

the commands to the remaining seven engines are adjusted to compensate for the failed engine. In

part c), the commands to all eight engines are adjusted to compensate for the 50% loss of thrust in

engine eight.

a) Loss of thrust in engine three.

70

b) Engine six is stuck at full thrust.

c) Engine eight is only able to produce 50% of the commanded thrust.

Figure 4.10: Three failure scenarios shown are: a) full loss of thrust in engine three, b) engine

six is stuck full-on, and c) engine eight is only able to produce 50% of the commanded thrust.

71

4.7 Discussion, Limitations, and Future Work

The research goal of this chapter is to enable future PDVs to adapt in real-time to failures and

degradations in their performance. The real-time adaptive control allocation is performed using

SLSFD on-board combined with a maneuver to estimate the PDV plant model. The ability to

generate a new plant model on board enables the PDV to identify underperforming and failed

engines. This information is fed to the guidance and control systems where it adapts the engine

commands to mitigate the failure.

The work herein explores the design space of a maneuver to assist onboard identification of

engine failures. Although the plant model fit error is lower for longer and larger amplitude

maneuvers, the 1.5 s and 5% throttle amplitude maneuver is found to provide sufficient data for the

SLSFD to generate a plant model, while impacting the PDV flight the least. Additionally, the

combination of the chosen maneuver with SLSFD was found to be robust to IMU errors.

This approach provides a predominantly software approach to failure mitigation that does not

rely on duplicate hardware, thus saving mass and system complexity. Additionally, this work

focuses on the use of IMU measured data to identify the specific engine and type failure it is

experiencing. This approach is effective in adapting the on-board control of the PDV to mitigate

an engine failure. Future EDL missions can implement this adaptive control allocation method to

enable their powered descent vehicle to land in the event of an engine failure without the loss of

crew or assets. Additionally, this work can be readily applied to non-EDL flight systems, such as

commercial quadcopters.

 Several topics for future work in this area. The first is to test the performance of the failure

mitigation strategy using a navigational filter versus the smoothing routine, which was applied here.

Second is to implement a detection strategy that will be used to initiate the failure mitigation

strategy discussed here. Third is to enable the adaptive control allocation method to evaluate the

confidence it should have in the parameter estimates themselves and incorporate that confidence

interval metric into its decision making. Fourth is to investigate the effects engine dynamics have

on the accuracy of the parameter estimates used to update the plant model. The final area is to

investigate the effects to the SLSFD method due to aerodynamics on the PDV and the aerodynamic

interactions induced by the engine plume on the freestream flow.

72

5 Onboard Autonomous Trajectory

Planner Development

Chapter 4 discusses how a powered descent vehicle control system can adapt in real-time to

failures and degradations in engine effectiveness. A vehicle experiencing such a failure may no

longer be capable of following the original reference trajectory path. Historically, the total Mars

EDL flight takes on the order of minutes to complete [9, 106, 107]. The one-way communication

between Earth and Mars when they are at their next closest approach (62.12 million km on Oct. 6,

2020) is 3.5 min [108]. For the MSL mission the one-way communication between Mars and Earth

was approximately 14 minutes [109]. These long communication times do not allow for mission

designers to re-evaluate a new reference trajectory path and send it to the EDL vehicle. Therefore,

the EDL vehicles, and specifically powered descent vehicles, need to be able to re-plan and evaluate

their trajectories given new information. This chapter discusses the design and development of an

Onboard Autonomous Trajectory Planner (OATP) guidance, which uses HPC hardware to perform

multiple six DoF trajectory simulations onboard and in real-time.

The OATP guidance reads state information from onboard sensors, such as IMU; vehicle

information, such as engine effectiveness; and planet parameters, such as gravity and description

of the planet ellipsoid. Using this information the OATP guidance samples the trajectory design

space, executes a full six DoF simulation for each candidate trajectory, and provides a selected

trajectory for the control system to follow. Note that the six DoF simulations are executed within

the guidance routine itself and are performed simultaneously (in parallel), which necessitates the

use of HPC hardware and parallel programming techniques. These trajectory simulations are

separate, in both form and assumptions, from those performed in the POST2 six DoF simulation

environment for the overall PDV. The trajectories generated and evaluated by the OATP guidance

are for the main descent phase, which brings the PDV to just above the landing site. From there the

vehicle executes constant velocity vertical descent to touchdown. The constant velocity phase has

been utilized in past missions for accommodating errors that may have accumulated during EDL

[63, 65].

This chapter discusses the development of the key parts in the OATP guidance routine: the six

DoF trajectory simulation, trajectory generation method, and how they work together to provide

reference trajectories for the control system to follow. These parts were built using the C

programming language and were tested in isolation. Once complete they were merged to form the

73

OATP guidance. Section 5.1 discusses the development of the parallelized six DoF trajectory

simulation, and its performance on HPC hardware. Initially the construction of the six DoF

trajectory simulation served to demonstrate the applicability of the OpenMP and OpenACC

parallelization strategies to tasks outside of the typical large scale matrix mathematics. Once built

it was combined with the trajectory design method discussed in Section 5.2, the polynomial

guidance derived in cylindrical coordinates. Section 5.3 discusses the control system used to follow

the candidate trajectories. Once each candidate trajectory has been simulated, it is then evaluated

according to the constraints and scoring metrics discussed in Section 5.4. These four components

of the OATP guidance are then merged together in Section 5.5, and the performance of the OATP

guidance utilizing OpenMP on CPU architecture is demonstrated. Finally, Section 5.6 discusses

the conclusions from this chapter and future work.

Further investigations into the OATP guidance are discussed in Appendix A. The analyses in

this section were conducted in collaboration with the Hewlett Packard Enterprise (HPE)

Spaceborne Compter project. In this project, HPE has developed a novel software approach to

protect computers while operating in the radiation environment of the ISS. For over a year, their

technology has demonstrated the near continual operation of COTS HPC hardware in a space

relevant environment. Since December 20th, 2018, the OATP guidance software has been operating

on the COTS HPC hardware installed on the ISS. The goals of testing the OATP guidance software

on the SBC on the ISS were: 1) determine if the OATP guidance could operate in a space relevant

environment on the HPC hardware equipped with the software-hardening, and 2) determine

performance of the OATP guidance on the SBC system equipped with software-hardening.

Appendix A provides the background, testing, and analysis for this collaboration.

5.1 Parallelized Six Degree-of-Freedom Trajectory Simulation

 This section discusses the development and testing of the parallelized six DoF trajectory

simulation. This simulation was initially developed to demonstrate the applicability of the OpenMP

and OpenACC directive-based parallelization strategies to the trajectory simulation problem. The

development of this simulation was used as a learning platform for the greater OATP guidance

software. As such, the work in this section was done in collaboration with R. Anthony Williams15

and Julian Gutierrez16. Additionally, there are some differences in the final implementation of the

15 R. Anthony Williams is a research computer scientist in NASA LaRC High Performance

Computing Incubator and the Atmospheric Flight and Entry Systems Branch.
16 Julian Gutierrez is a graduate student at Northeastern University

74

parallelized six DoF trajectory simulation into the larger OATP guidance software. These

differences include, utilizing tables to define throttle commands and the calculation of terms not

directly needed by the OATP guidance software (e.g., angle of attack, atmospheric winds). The

impact of these differences is discussed in the Section 5.5.

5.1.1 Selected Computer Hardware

Benchmarking of the parallelized six DoF trajectory simulation software was conducted on two

compute nodes: The NASA Ames Research Center (ARC) Pleiades Supercomputer Cluster and a

NASA LaRC node with a Xeon Phi™ 7210 processor (also referred to as Knights Landing or

KNL). At Pleiades, the available GPU-enhanced nodes utilize two Intel® Xeon® E5-2670 (Sandy

Bridge) host processors connected to an NVIDIA® Tesla® K40 GPU. The NASA LaRC node uses

an Intel® Xeon Phi™ 7210 processor. Table 5.1 provides details of the hardware used in

the benchmarking.

Table 5.1: Hardware specifications [110, 111, 112, 113, 114].

 NASA Ames Pleiades Supercomputer NASA LaRC Node

Hardware

Intel® Xeon® E5-

2670 (Sandy

Bridge)

NVIDIA®

Tesla® K40
Xeon Phi™ 7210

Label Used in Section CPU GPU KNL

Manufacturer Launch Year 2012 2013 2016

Number of Processor Cores 16 (Two 8-core) 2880 64

Number of Threads

Supported Per Core
2 1 4

Processor Speed [GHz] 2.6 0.745 1.3

Cache [MB] 40 (20 per 8 cores) 1.536 32

Memory Size [GB] 64 (32 per 8 cores) 12 128

Memory Bandwidth [GB/s] 51.2 288 102

Thermal Design Power [W] 115 235 215

Voltage Range [V] 0.60-1.35 - 0.550-1.125

5.1.2 Software Construction

The six DoF trajectory simulation utilizes a four step Runge-Kutta integration scheme to

integrate 13 EoM, which define the flight of a single rigid entry vehicle operating at Mars [115].

The software is able to simulate a number of independent trajectories in succession; the number of

which is dictated by the user. The software is built to be modular, to allow easy implementation of

models of varying levels of complexity.

75

The prototype version of the six DoF trajectory software begins by reading a text file of initial

states and engine throttle profiles for each trajectory to be simulated (Once combined into the full

OATP guidance, the six DoF trajectory simulation begins with the sensed vehicle state information,

and trajectory definitions). All vehicle specific variables are saved into the data structure, tp, as

shown in Appendix D. Then the software enters the loops that iterate over the number of trajectories

and time integration. The Runge-Kutta integration routine calls the main trajectory function, which

contains the models needed to estimate the forces and moments acting on the vehicle and the

equation of motion model. The equation of motion model computes 14 state variables, 13 used to

define the vehicle’s position, orientation, and velocities relative to the planet’s surface (planet

coordinate frame) and one variable defining the vehicle mass.

5.1.3 Equations of Motion

 The equations of motion used here are sourced from references [39, 103, 116] and equations

supplied through personal communication with Dr. Juan R. Cruz17. These EoM require a number

of assumptions to be met. The vehicle is defined relative to a flat non-rotating planet, in a coordinate

system whose origin is located on the surface of the planet at the targeted landing site, and no

atmospheric winds. Figure 5.1 shows the North-East-Down convention used for the planet-fixed

coordinate system. The vehicle itself is modeled as a rigid body with gravity and thrust being the

only external forces acting on it. As discussed in Chapter 3, aerodynamic information was not

available for the human scaled vehicle used in this case study. The vehicle body coordinate system

is modeled at the vehicle CoM with the 𝑥 axis aligned with the axis of symmetry, see Figure 3.4.

The forces and moments feeding into the EoM are estimated through a gravity model, a propulsive

model, and an atmospheric model. The gravity model is a simple 1/𝑅2 model. The Mars

atmospheric model is an exponential curve fit of a Mars-GRAM 2010 model [99]. The Mars-

GRAM provides atmospheric pressure that is used to adjust the engine thrust based on

backpressure. The propulsive model takes throttle commands from a time dependent table to

estimate the total propulsive forces and moments18. It is assumed that each engine is throttleable

between 0% and 100%, and do not have limits on the throttle rate. The specific impulse, 𝐼𝑠𝑝, is

assumed to be constant across all throttle levels.

17 Dr. Juan R. Cruz is an aerospace engineer and researcher in the Atmospheric Flight and Entry

Systems Branch at NASA LaRC.
18 When the six DoF simulation is implemented into the overall OATP guidance, the tables defining

the throttle commands are replaced by the thruster controller equations from Section 4.3.

76

Figure 5.1. Position of the vehicle’s center of mass in the planet coordinate frame. Note 𝒁𝑷 is

negative as shown. Image credit: Juan R. Cruz, NASA LaRC.

 A fourth order Runge-Kutta integration scheme, based on equations from reference [115], is

used to integrate the seven kinematic EoM, six kinetic EoM, and vehicle mass. This forms 14

vehicle state parameters that are propagated in time. The kinematic EoM are split into three

equations relating the vehicle’s position, and four equations defining the orientation (through

quaternions) of the vehicle in the planet coordinate frame. They are defined as

[

�̇�𝑃
�̇�𝑃
�̇�𝑃

] = [T𝐼𝐵] [
𝑢
𝑣
𝑤
] (5.1)

[

𝜀0̇
𝜀1̇
𝜀2̇
𝜀3̇

] =
1

2
[𝐸𝑃] [

𝑝
𝑞
𝑟
] (5.2)

Figure 5.2. Definition of the vehicle’s state variables in the vehicle body frame. Image credit:

Juan R. Cruz, NASA LaRC.

77

where the rotation matrix, 𝑇IB, transforms vectors from the body coordinate system to the planet-

fixed coordinate system and is defined as

[𝑇IB] = [

𝜀0
2 + 𝜀1

2 − 𝜀2
2 − 𝜀3

2 2(𝜀1𝜀2 − 𝜀3𝜀0) 2(𝜀1𝜀3 + 𝜀2𝜀0)

2(𝜀1𝜀2 + 𝜀3𝜀0) 𝜀0
2 − 𝜀1

2 + 𝜀2
2 − 𝜀3

2 2(𝜀2𝜀3 − 𝜀1𝜀0)

2(𝜀1𝜀3 − 𝜀2𝜀0) 2(𝜀2𝜀3 + 𝜀1𝜀0) 𝜀0
2 − 𝜀1

2 − 𝜀2
2 + 𝜀3

2

] (5.3)

The Euler Parameters transformation matrix, 𝐸𝑃, is

[𝐸𝑃] = [

−𝜀1 −𝜀2 −𝜀3
𝜀0 −𝜀3 𝜀2
𝜀3
−𝜀2

𝜀0
𝜀1

−𝜀1
𝜀0

] (5.4)

The Euler Parameters, or quaternions, are initially computed based on the vehicle Euler angles,

𝜀0 = cos
𝜓

2
cos

𝜃

2
cos

𝜙

2
+ sin

𝜓

2
sin

𝜃

2
sin

𝜙

2
 (5.5)

𝜀1 = 𝑐𝑜𝑠
𝜓

2
𝑐𝑜𝑠

𝜃

2
sin

𝜙

2
− 𝑠𝑖𝑛

𝜓

2
𝑠𝑖𝑛

𝜃

2
cos

𝜙

2
 (5.6)

𝜀2 = 𝑐𝑜𝑠
𝜓

2
sin

𝜃

2
𝑐𝑜𝑠

𝜙

2
+ 𝑠𝑖𝑛

𝜓

2
cos

𝜃

2
𝑠𝑖𝑛

𝜙

2
 (5.7)

𝜀3 = sin
𝜓

2
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

𝜙

2
− cos

𝜓

2
𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

𝜙

2
 (5.8)

where Euler angles, as shown in Figure 3.6, are azimuth (or yaw), 𝜓 ; elevation (or pitch), 𝜃; and

bank (or roll), 𝜙 . Throughout the simulation the Euler angles can be computed from the

quaternions using

𝜃 = sin−1−𝑇31
𝐼𝐵 (5.9)

The azimuth and bank angles have several conditions to their calculation.

𝜙 = {
tan−1(𝑇32

𝐼𝐵 𝑇33
𝐼𝐵⁄) , if |𝑇31

𝐼𝐵| ≠ 1

0, if |𝑇31
𝐼𝐵| = 1

 (5.10)

𝜓 = {

tan−1(𝑇21
𝐼𝐵 𝑇11

𝐼𝐵⁄) , if |𝑇31
𝐼𝐵| ≠ 1

tan−1(−𝑇12
𝐼𝐵 −𝑇13

𝐼𝐵⁄), if 𝑇31
𝐼𝐵 = 1

− tan−1(𝑇12
𝐼𝐵 𝑇13

𝐼𝐵⁄) , if 𝑇31
𝐼𝐵 = −1

 (5.11)

The ranges for azimuth, elevation, and bank should be: −𝜋 < 𝜓 ≤ 𝜋 , −𝜋/2 < 𝜃 ≤ 𝜋/2 , and

−𝜋 < 𝜙 ≤ 𝜋.

Six kinetic EoM, defined by Newton’s 2nd Law and Euler’s equations, express the vehicle’s

velocity and rotational rates in the vehicle body frame. They are defined as

78

𝑚([
�̇�
�̇�
�̇�
] + [Ω] [

𝑢
𝑣
𝑤
]) − [

𝐹𝑥,𝑒𝑥𝑡
𝐹𝑦,𝑒𝑥𝑡
𝐹𝑧,𝑒𝑥𝑡

] = [
0
0
0
] (5.12)

[I𝐵] [
�̇�
�̇�
�̇�
] + [Ω][I𝐵] [

𝑝
𝑞
𝑟
] − [

𝑀𝑥,𝑒𝑥𝑡
𝑀𝑦,𝑒𝑥𝑡
𝑀𝑧,𝑒𝑥𝑡

] = [
0
0
0
] (5.13)

where the rotation about the body coordinate system is

[Ω] = [

0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

] (5.14)

and the moments and products of inertia matrix19, I𝐵, is defined as

[I𝐵] = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] (5.15)

 The total external forces and moments are

[

𝐹𝑥,𝑒𝑥𝑡
𝐹𝑦,𝑒𝑥𝑡
𝐹𝑧,𝑒𝑥𝑡

] = [

𝐹𝑔,𝑥 + 𝐹𝑃,𝑥
𝐹𝑔,𝑦 + 𝐹𝑃,𝑦
𝐹𝑔,𝑧 + 𝐹𝑃,𝑧

] (5.16)

[

𝑀𝑥,𝑒𝑥𝑡
𝑀𝑦,𝑒𝑥𝑡
𝑀𝑧,𝑒𝑥𝑡

] = [

𝑀𝑃,𝑥

𝑀𝑃,𝑦

𝑀𝑃,𝑧

] (5.17)

From the rotation matrix, 𝑇𝐼𝐵, the gravity force can be calculated as

[

𝐹𝑔,𝑥
𝐹𝑔,𝑦
𝐹𝑔,𝑧

] = [

−2𝑚𝑔(𝜀1𝜀3 − 𝜀2𝜀0)

2𝑚𝑔(𝜀2𝜀3 + 𝜀1𝜀0)

𝑚𝑔(𝜀0
2 − 𝜀1

2 − 𝜀2
2 + 𝜀3

2)

] (5.18)

As discussed earlier, the gravitational coefficient is computed as

𝑔 =
GMMars

𝑅𝐼
2 (5.19)

where GMMars is the gravitational constant for Mars, found in Table 3.1, and 𝑅𝐼 is the

planetocentric distance of the vehicle. The propulsive forces and moments from the propulsion

19 The product of inertias values are defined as positive; negative sign convention is supplied by

the six DoF trajectory program, not by the user.

79

model take throttle commands from the control systems. Since all thrust is along the 𝑥 body axis,

the propulsive thrust and moments are

[

𝐹𝑃,𝑥
𝐹𝑃,𝑦
𝐹𝑃,𝑧

] = [
−∑ 𝐹𝑇(𝑖)

𝑁𝑒𝑛𝑔

𝑖=1

0
0

] (5.20)

[

𝑀𝑃,𝑥
𝑀𝑃,𝑦
𝑀𝑃,𝑧

] =

[

0

∑ 𝐹𝑇(𝑖)
𝑁𝑒𝑛𝑔

𝑖=1
𝑧𝐶𝑜𝑀2𝐸𝑛𝑔

−∑ 𝐹𝑇(𝑖)𝑦𝐶𝑜𝑀2𝐸𝑛𝑔
𝑁𝑒𝑛𝑔

𝑖=1]

 (5.21)

where 𝑁𝑒𝑛𝑔 is the total number of engines, and (𝑦𝐶𝑜𝑀2𝐸𝑛𝑔, 𝑧𝐶𝑜𝑀2𝐸𝑛𝑔) are the 𝑦 and 𝑧 distances

from the CoM to the center of each engine in the body frame. The thrust output of each engine is

adjusted based on an atmospheric pressure, from Ref. [117], as follows

𝐹𝑇(𝑖) = 𝐹𝑇,𝑚𝑎𝑥𝑇(𝑖) − 𝑝∞𝐴𝑛𝑜𝑧𝔣(𝑖); 𝑖 = 1,2,…𝑁𝑒𝑛𝑔 (5.22)

𝔣(𝑖) = {
1, 𝑇(𝑖) > 0
0, 𝑇(𝑖) = 0

; 𝑖 = 1,2, …𝑁𝑒𝑛𝑔 (5.23)

where 𝑇(𝑖) is the throttle command 20 . The maximum thrust possible from a single engine is

represented as 𝑇𝑀𝑎𝑥. The freestream pressure, 𝑝∞, comes from the exponential curve fit of a Mars-

GRAM model. Lastly, 𝐴𝑛𝑜𝑧 is the area of the engine nozzle.

 To keep the EoM simple and decrease the computational intensity, the momentum carried by

the mass leaving the vehicle in the form of thrust exhaust is not modeled. Mass is however updated

based on the mass flow rate, �̇�, through the rocket equation

�̇� =
𝑇𝑀𝑎𝑥
𝐼𝑠𝑝𝑔0

∑ 𝑇(𝑖)

𝑁𝑒𝑛𝑔

𝑖=1

 (5.24)

where 𝐼𝑠𝑝 is the specific impulse of the engine, and 𝑔0 is standard gravity, 9.80665 m/s2 [117]. The

PDV inertias and CoM location are assumed to change linearly as fuel is spent.

20 When the six DoF simulation is implemented into the overall OATP guidance, the throttle array

is computed using Eq. (4.19) in Section 4.3.

80

5.1.4 Software Construction and Conversion to Multi-Threaded Implementations

As the software is discussed in this section, please refer to the pseudo-code provided in

Appendix D. The six DoF trajectory simulation software is designed to simulate multiple

independent trajectories per execution, which marks the loop covering those trajectories as

embarrassingly parallel. Parallelizing this section of code makes each trajectory execute using a

separate and unique thread. In parallelizing the software, the most notable changes made were the

organization of memory, mitigation of code branching, and the inclusion of the OpenMP and

OpenACC directive-based calls themselves.

Parallelization over GPUs requires significantly more effort than CPUs and KNLs.

Additionally, many of the changes that optimize the operation of the software on GPUs also benefit

the CPU and KNL multi-threaded implementations. Constructing the parallelized six DoF

trajectory simulation was done in collaboration with R. Anthony Williams and Julian Gutierrez.

5.1.4.1 Open Multi-Processing

Parallelization over CPUs and KNLs using OpenMP is relatively quick and simple to

implement. With each compute core able to operate independently, they can easily handle code

branching that typically occurs through if statements. In the parallelized six DoF trajectory

simulation software, implementing a #pragma omp parallel for directive directly above the

trajectory for loop indicates to the compiler the for loop to be parallelized. After implementing this

call, the next consideration is to ensure that each trajectory thread does not overwrite the data used

by another compute core. The data structure tp contains all of the pertinent data for a given

trajectory. Separating the memory for each thread is performed using the data clause private(tp).

These changes along with the compiler flag (-omp for pgcc, –fopenmp for gcc, or –qopenmp for

icc) can be implemented quickly and provide a powerful improvement in computational time.

Lastly, it is important to set the number of threads to be used by the OpenMP enabled software.

This setting is done by setting the environment variable OMP_NUM_THREADS=𝑁𝑇ℎ𝑟𝑒𝑎𝑑𝑠, where

𝑁𝑇ℎ𝑟𝑒𝑎𝑑𝑠 is the number of desired threads. Depending on the application, this number can be set to

equal or more/less than the number of logical cores supported by the hardware. The number of

logical cores, 𝑁𝐿𝐶, is defined here as

𝑁𝐿𝐶 = 𝑁𝑃𝑟𝑜𝑐𝑁𝑆𝑇 (5.25)

where 𝑁𝑃𝑟𝑜𝑐 is the number of processors, and 𝑁𝑆𝑇 is the number of supported threads per processor.

There are never more than 𝑁𝐿𝐶 cores operating concurrently, and thus only 𝑁𝐿𝐶 threads can be

81

active at any given time. However, depending on the memory access and level of input/output

needed, setting 𝑁𝑇ℎ𝑟𝑒𝑎𝑑𝑠 > 𝑁𝐿𝐶 may yield an improved execution time as shown by Bienia et al.21

[118]. Figure 5.3 investigates the ideal number of threads. The legend is organized as follows:

Architecture – Parallelization Strategy – Compiler. Each point in Figure 5.3 represents the average

obtained through 10 iterations at each testing point, and shaded regions mark the range of results.

For both the CPU and KNL hardware, it was best to set 𝑁𝑇ℎ𝑟𝑒𝑎𝑑𝑠 = 𝑁𝐿𝐶 . For the Intel Xeon E5-

2670 hardware the optimal number of threads is 32. For the Xeon Phi 7210 the optimal number of

threads is 256.

Figure 5.3: Investigation into the effect the number of threads has on the software

execution time.

5.1.4.2 Open Accelerator

The implementation of the OpenACC parallelization strategy for GPU operation is similar to

OpenMP in its use of #pragma statements. However, in OpenACC these #pragma statements tell

the CPU when and where in the software to engage the GPU hardware. This engagement

necessitates careful handling of data passing to, from, or generated on, the GPU. Much like with

OpenMP, OpenACC utilizes a #pragma acc parallel loop directive directly above the trajectory for

21 The maximum number of concurrent threads operating is equal to the number of logical cores. If

the number of desired threads is set greater than the number of logical cores, then some threads will

be paused as others are executing. This behavior may be desirable, if latencies due to memory

access and input/output require a significant number of clock cycles.

82

loop, which is parallelized using the GPU hardware. However, unlike OpenMP, OpenACC utilizes

#pragma acc data clauses, which control the flow of data between the GPU and the CPU.

Specifically, the copyin statement is used to pass data from the CPU to the GPU, and the create

statement is used to create the tp data structure on the GPU.

Branching within a software that causes large divergences in what code is executed will cause

significant penalties to execution time. Running on the Pleiades nodes, the OpenACC

implementation of the six DoF trajectory simulation that included branching ran approximately

10X slower than the single threaded version. Originally, the atmospheric model was controlled

through three nested if statements. The trajectory simulation is focused on a powered descent

vehicle, which places the vehicle lower in the Martian atmosphere. This placement allowed for the

atmospheric model to be simplified by removing the branching.

After enabling the six DoF trajectory simulation software to run on the GPU and obtaining all

the time integrated data to be returned to the CPU, the software was analyzed using profiler tools.

For this work, the NVIDIA Profiler (NVPROF) and the NVIDIA Visual Profiler (NVVP) were

utilized. Through these profilers, two main areas for improvement were identified using these

profilers: utilization and occupancy of the GPU.

5.1.4.2.1 Utilization

Utilization can be analyzed for the compute and/or the memory bandwidth resources, and is a

percentage of the amount of resources used to the total available [119]. Through NVPROF, the six

DoF trajectory simulation was found to have a compute utilization of 15%, and a memory

utilization of 55%. Of the compute resources used by the simulation software, the majority was

dedicated to memory operations. This result indicates the six DoF trajectory simulation software is

limited by the performance of the memory architecture in latency and bandwidth. Based on these

results, an attempt was made to improve the memory usage within the software by decreasing the

amount of memory used by the software and by restructuring the data to improve memory access

(known as memory coalescing).

To decrease the memory burden, it was necessary to refine how the data was structured. This

data restructuring involved the removal of redundant or constant variables from the tp data structure

and decreasing the number of temporary variables by recycling the address space throughout a

function. These changes saved approximately 3.608 KB per trajectory; bringing the current size of

the data structure to 3.176 KB per trajectory. Further data structure improvements involved

reorganizing the variables inside the data structure. Originally, variables were ordered

83

alphabetically. Changing the order to be based on spatial data locality (variables used in the same

functions are put closer together) increased the efficiency of memory access. The overhaul of the

data structure improved the execution time by 5%.

To address the local memory overhead concern, significant code redesign was required. Proper

memory coalescing from RAM memory is required for efficient memory bandwidth usage. The

GPU exhibits efficient coalescing when the data used per thread are stored contiguously in a

structure of arrays (SOA) instead of an array of structures (AOS). The initial GPU implementation

of the software stored data in an AOS, which was stored in local memory. Data stored in this way

caused a 99.5% local memory overhead, meaning most memory operations are local memory

related, which results in a high L1 cache utilization, creating congestion and possibly thrashing of

data in the L1 cache22. Additionally, storing data inside of local memory on the GPU did not allow

for the full time history of integrated data to be sent back to the CPU; only data at the conclusion

of the simulation could be returned. To help reduce the local memory overhead, data was moved

into global memory and into a SOA. To do this, one more dimension was added to each variable in

the tp data structure, which is used to index the trajectories. The added dimension is in the first

index of each array to be able to coalesce the reads from global memory efficiently.

The initial GPU implementation of the software called the integration loop inside the

parallelized trajectory loop. Moving the time integration loop outside of the parallelized trajectory

loop allows data to be copied from the GPU to the CPU at every time step using the pragma

update clause.

After the above improvements to memory access, compute and memory bandwidth utilization

is still an issue for the software. Figure 5.4, from NVVP, shows the GPU utilization by the six DoF

trajectory simulation software, which shows memory bandwidth is still an issue. Table 5.2

compares the NVIDIA Tesla K40, used in this study, with newer GPU hardware. Given that the six

DoF trajectory simulation software is memory bound, the increase in the memory capabilities of

the new hardware should improve the compute utilization of the GPU hardware, thus improving

the execution time.

22 When a level of cache memory is exhausted, the cache will evict older data to lower level cache

as new data is read in. If this older data is later required, then it must be read back into the cache

memory. Cache thrashing occurs when data is constantly (and possibly indefinitely) exchanged

back and forth between different cache memory levels, which results in slower performance [126].

84

Figure 5.4: GPU utilization report from the NVIDIA Visual Profiler.

Table 5.2: GPU hardware comparisons [120].

NVIDIA®

Tesla® K40

NVIDIA®

Tesla® P100

NVIDIA®

Tesla® V100

Manufacturer Launch Year 2013 2016 2017

Memory Size [GB] 12 16 16

Memory Bandwidth [GB] 288 732 900

Number of Single Precision Cores 2880 3584 5120

Number of Double Precision Cores 960 1792 2560

5.1.4.2.2 Occupancy

Occupancy is the percentage of active warps (groups of 32 threads on the Tesla K40

architecture) to the maximum number of active warps supported by the GPU [119]. The number of

active warps depends on the available resources the hardware can provide, and the amount required

to run the software. One of these resources being the amount of registers used within a program.

The amount of registers used by a program correlates directly to the local variable allocations and

the complexity of the function itself. On the Tesla K40 architecture, the maximum number of

registers is 65536 per streaming multiprocessor (SM) and 255 per thread [114]. These registers

must be divided up amongst all threads being used by the parallelized program. Increasing the

number of registers used per thread decreases the need for the threads to access L1 and L2 cache

memory, which increases the speed of the program. However, this comes at the cost of decreasing

the number of concurrent threads that could be run on the GPU. Therefore, a balance must be struck

between the number of registers used per thread and the complexity of the program.

85

To target the occupancy issue, a balance must be made between the maximum number of

registers the program can use with the register spills23 caused by each function within the software.

GPUs obtain their high speedups by hiding the latency of the execution for each thread with

overlapping execution. As an example, this happens when a warp is loading values from memory,

the GPU suspends those threads and executes a new warp in the meantime, and hides the latency

from the memory reads with execution of other threads. Increasing the number of trajectories

increases the utilization. Once a thread block is assigned to a SM, all of its warps exist in the SM

until they exit the program. Thus, a block is not launched until there are sufficient registers for all

warps of the block, and until there is enough free shared memory for the block. Decreasing the

number of registers used per thread increases the occupancy of the GPU (number of warps that can

be active in an SM). However, given the complexity of the software, this will cause an increase in

register spills to local memory, which can hinder performance. Determining this value is key to

striking a compromise between local memory usage due to spills and increasing the occupancy by

reducing the number of registers per thread. Figure 5.5 shows the performance achieved from

running 10 experiments per register value and averaging those results. Limiting the maximum

register usage to 80 resulted in the best performance. The large steps in execution time as the

number of maximum registers is increased is unknown.

23 Register spilling occurs when register resources on a processor are fully utilized and uncached

local memory is used instead, which will be slower to access [128].

86

Figure 5.5: Investigations into the maximum register specification made at compile time.

Each mark represents the average obtained through 10 iterations at each testing point, and

the red bars indicate the range of results.

Table 5.3 categorizes the modifications made to the six DoF trajectory simulation software and

their corresponding improvements. The memory modifications made for the GPU/OpenACC

implementation, to improve its utilization and occupancy, also provided benefits to the

CPU/OpenMP implementations. A final improvement for both the OpenACC and OpenMP

implementation was to include function inlining at compile time. Function inlining reduces the

function call overhead on the GPU by replacing the function calls with the lines of code of the

function itself within the main program. Function inlining provided a significant decrease in the

GPU implementation’s execution time, while providing a modest improvement for the

CPU implementations.

87

Table 5.3: Six DoF trajectory simulation execution time for running 20000 trajectories. Each

trajectory is integrated at 100 Hz, and simulates a 60 s trajectory.

Hardware

/Parallelization

Scheme/Number of

Logical Cores

Compiler
Adjustments

Made to Software

Max

Execution

Time [s]

Min

Execution

Time [s]

Mean

Execution

Time [s]

GPU/OpenACC/

2880

PGCC

Original

Implementation
17.925889 17.91272 17.9195

After Memory

Reorganization &

for Loop Switch

14.22608 14.21557 14.2202

Including

Function Inlining
8.96356 8.946091 8.95077

CPU/OpenMP/32

GCC

Original

Implementation
18.567092 18.3187 18.3867

After Memory

Reorganization
17.945576 17.5486 17.7444

Including

Function Inlining
11.863747 11.37236 11.6888

ICC

Original

Implementation
15.663124 15.16546 15.3323

After Memory

Reorganization
15.007072 14.63887 14.8136

Including

Function Inlining
9.520547 9.172192 9.29136

PGCC

Original

Implementation
25.413 24.04681 24.4751

After Memory

Reorganization
23.219827 22.94037 23.0076

Including

Function Inlining
15.419285 14.86854 15.0825

5.1.5 Execution Time Analysis

Multi-threaded comparisons were made across several computational architecture, and across

three compilers: pgcc (ver. 17.1-0), developed by The Portland Group, Inc.; gcc (ver. 6.2.0), the

GNU compiler; and icc (ver. 18.0.0), developed by Intel®. All comparisons executed the same

lines of code. There were minor changes related to the compiler flag selections, shown in Table

5.4. The other difference was between the OpenMP and OpenACC implementation where the order

88

of execution of the trajectory and time loops are switched. This change is discussed in Section

5.1.4.2. Although the order of the loops changed, the core functionality of the software remained

the same. Table 5.4 lists the compiler flags used for each compiler and hardware configuration.

When this study was conducted, the gcc compiler on the Pleiades Supercomputer did not support

OpenACC. The compiler availability limited the OpenACC/GPU study to just the pgcc compiler.

Additionally, the version of pgcc on Pleiades was not applied to the KNL hardware, because it did

not have KNL specific hardware targeting and was limited to a maximum of 64 threads

for OpenMP.

Table 5.4: Compiler flags used in comparison analysis.

 pgcc gcc icc

Optimization Enable

-fast

-Minline

-Mipa=fast,inline

-Ofast

-flto

-ffat-lto-

objects

-fast

-ffat-lto-

objects

OpenMP

Enable -mp -fopenmp -qopenmp

CPU Hardware

Targeting
-

-

march=native
-xhost

KNL Hardware

Targeting
- -march=knl -xmic-avx512

OpenACC

Enable -acc - -

GPU Hardware

Targeting

-ta=tesla:fastmath,

cc35,

maxregcount:80

- -

Figure 5.6 and Figure 5.7 provide comparisons across scaling the trajectory simulation. All

comparisons simulate 60 seconds of a powered decent vehicle trajectory as it decelerates to land

on the Martian surface. In both figures, the legends are organized as follows: Number of Logical

Cores – Architecture – Parallelization Strategy – Compiler. For the GPU hardware execution,

results showing variable definitions as all doubles (double precision) or all floats (single precision)

is also noted. Each point in Figure 5.6 and Figure 5.7 represents the average obtained through 10

iterations at each testing point, and shaded regions mark the range of results.

All concerns regarding memory accesses, occupancy, and local memory usage of the

simulation software are factors that can be mitigated by changing the data type from doubles to

floats. The main reasons for this are: access to more single-precision units per SM compared to

double-precision (see Table 5.2); register usage decreases (increasing occupancy to almost 40%);

global memory transactions reduce by half, thus increasing the memory throughput; and less

register spills, which reduces local memory requests. For all studied trajectories, the accuracy

difference between doubles and floats is < 3.0% , which is a tolerable difference for this

89

application. The CPU and KNL hardware implementations did not show significant performance

gains when using all float data types versus all doubles.

Figure 5.6 compares the scaling across the number of simulated trajectories. The linear

relationship observed in the CPU and KNL results is due to the trajectory simulation problem being

embarrassingly parallel. The GPU performance shows an approximate 1.3-1.8X speed of execution

improvement of the all float implementation over the all double implementation. The GPU lines

remain flat until the 4000-8000 simulated trajectories range, which is due to the low number of

simulated trajectories not utilizing the full 2880 cores available on the GPU. It is also why the CPU

and KNL results outperform the GPUs in this range. For the higher range of trajectories investigated

(> 8000), it’s notable that the GPU performance is not significantly improved over the OpenMP

enabled CPU implementation using the icc compiler, and is similar to the KNL implementations.

Two factors play into this result. One, the KNL hardware is three years newer than the GPU

hardware. Two, the nature of the trajectory simulation problem itself is not well suited for GPUs.

Although branching (due to if statements) has been mitigated, it is not possible to fully remove

them. Also, the scale of trajectories investigated ended at 20000, which does not fully leverage the

capability of the GPU (typically scale to the millions and larger).

Trends across the different compilers are noticeable in Figure 5.6 as well. In looking at the

OpenMP results, it is not surprising that the icc compiler out performs the gcc and pgcc compilers,

since Intel hardware is used. It is notable that the pgcc compiler used 1.35-1.65X more execution

time than the icc and gcc compilers. Lastly, the gcc compiled version executing on 32 threads CPU

versus the 256 threads on KNL achieved similar execution times, even though the KNL uses 8

times the number of threads.

90

Figure 5.6: Comparisons of compilers and hardware with scaling the number of trajectories.

Figure 5.7 compares the integration frequency, which directly relates to the number of

integration time steps taken. When simulating 2000 trajectories, the all double implementation on

the GPU requires the most time to execute and the all float version has a similar execution time as

the OpenMP with the pgcc compiler. As in Figure 5.6, this demonstrates how the low number of

simulated trajectories doesn’t fully utilize the capabilities of the GPU. When the number of

simulated trajectories is higher, such as shown in the bottom of Figure 5.7 with 20000 trajectories,

the GPUs execution times are more favorable when compared to the OpenMP enabled CPU

implementations. In looking at the 20000 simulated trajectories, the OpenACC enabled GPU

implementation using all float variable definitions outperforms the OpenMP enabled KNL

implementation with the icc compiler by a range of 0.6 – 47.9 s. However, the KNL version retains

the double precision accuracy.

91

Figure 5.7: Comparisons of compilers and hardware with scaling the integration frequency.

The shaded regions are small compared to the scale on the y-axis.

 The objective of Section 5.1 was to apply the OpenMP and OpenACC strategies to a six DoF

trajectory simulation problem and enable it to run in parallel on CPU, KNL, and GPU hardware.

This section outlines key principles for parallelizing the core computations performed by the

Onboard Autonomous Trajectory Planner guidance. Three compilers were investigated in this work

92

in an effort to broadly study the effects of parallelizing the software. Five conclusions are drawn

from this research: 1) The six DoF trajectory simulation software studied is memory bound, which

limits the amount of parallelism it can have on the GPU hardware. 2) The implementation of the

OpenMP and OpenACC #pragma statements to parallelize software is straight-forward, and

requires a low level of effort by the programmer. 3) Getting the GPU implemented software to run

well, however, requires a significant effort in managing memory and is non-trivial. 4) The OpenMP

strategy on KNL hardware provides a significant execution time speed up with minimal effort. 5)

Results found that the GPU hardware typically underperformed compared to the KNL hardware.

However, it should be noted that the GPU hardware used in this study is approximately three years

older than the KNL hardware, which was due to the resources available at the time. With this

groundwork, the methods for discretizing the trajectory design space and evaluating the final

performance of the trajectories can be implemented.

5.2 Polynomial Trajectories in Cylindrical Coordinates

 For the work herein, the chosen method for discretizing the trajectory design space is the

polynomial guidance. However, it is derived in cylindrical coordinates instead of Cartesian

coordinates; polynomial guidance is typically in Cartesian coordinates. Even though the

polynomial formulation is not fuel optimal, it is used here, because of its simple form and fast

computation time. Other trajectory generation methods can be substituted for the polynomial

formulation within the overall OATP guidance software. The interest of the work herein is on the

utilization of HPC hardware to evaluate a trajectory design space.

 Figure 5.8 defines the cylindrical coordinate frame with respect to the North-East-Down frame.

Both frames have their origin at the target location. With the frames defined, the polynomial

trajectories in the cylindrical coordinate can be derived in that same manner as in Section 2.2.1.2.

The difference is that the variable 𝜉 in Eqs. (2.6) to (2.11) correspond to (𝑙, 𝜗, 𝑧) instead of (𝑥, 𝑦, 𝑧).

The initial and target conditions for this two point boundary value problem (TPBVP) are provided

in Table 5.5.

93

Figure 5.8: Definition of the cylindrical coordinate frame relative to the North-East-Down

frame. Both frames have their origin at the target location.

Table 5.5: Initial and target conditions to the TPBVP derived in cylindrical coordinates.

 Initial Target

Position (𝑙0, 𝜗0, 𝑧0) (𝑙𝑓 , 𝜗𝑓 , 𝑧𝑓)

Velocity (𝑙0̇, �̇�0, �̇�0) (𝑙�̇� , �̇�𝑓 , �̇�𝑓)

Acceleration − (𝑙�̈� , �̈�𝑓 , �̈�𝑓)

 A linear profile is used for the 𝑧 axis, and using the initial and target conditions, the time-to-

go, 𝑡𝑔𝑜, can be solved using Eq. (2.10). The z coefficients are also solved for using Eqs. (2.11).

Using second order formulations for 𝑙 and 𝜗 results in Eqs. (2.6) to (2.8) becoming

�̈�(𝑡) = ∑ 𝑐𝜉𝑛𝑡
𝑛; 𝜉 = 𝑙, 𝜗

2

𝑛=0

 (5.26)

�̇�(𝑡) = ∑
1

𝑛 + 1
𝑐𝜉𝑛𝑡

𝑛 + �̇�0; 𝜉 = 𝑙, 𝜗

2

𝑛=0

 (5.27)

𝜉(𝑡) = ∑
1

(𝑛 + 1)(𝑛 + 2)
𝑐𝜉𝑛𝑡

𝑛 + �̇�0𝑡 + 𝜉0; 𝜉 = 𝑙, 𝜗

2

𝑛=0

 (5.28)

Solving for the 2nd order polynomial coefficients for the 𝑙 and 𝜗 directions yields

94

𝑐𝜉0 = 𝜉𝑡 − 𝑐𝜉1𝑡𝑔𝑜 − 𝑐𝜉2𝑡𝑔𝑜
2 ; 𝜉 = 𝑙, 𝜗 (5.29a)

𝑐𝜉1 = 2/𝑡𝑔𝑜
2 (�̇�0 − �̇�𝑓 + �̈�𝑓𝑡𝑔𝑜 − 2𝑐𝜉2𝑡𝑔𝑜

3 /3); 𝜉 = 𝑙, 𝜗 (5.29b)

𝑐𝜉2 = 1/𝑡𝑔𝑜
4 (36(𝜉𝑓 − 𝜉0) − 12(�̇�0 + 2�̇�𝑓)𝑡𝑔𝑜 + 6�̈�𝑓𝑡𝑔𝑜

2); 𝜉 = 𝑙, 𝜗 (5.29c)

 Reference profiles with respect to time (𝑡 = 0: Δ𝑡: 𝑡𝑔𝑜) can then be generated using the

solutions to Eqs. (2.10) and (5.29). The acceleration profiles are

𝑙�̈�𝑒𝑓(𝑡) = 𝑐𝑙0 + 𝑐𝑙1𝑡 + 𝑐𝑙2𝑡
2 (5.30)

�̈�𝑟𝑒𝑓(𝑡) = 𝑐𝜗0 + 𝑐𝜗1𝑡 + 𝑐𝜗2𝑡
2 (5.31)

�̈�𝑟𝑒𝑓(𝑡) = 𝑔Mars + 𝑐𝑧0 + 𝑐𝑧1𝑡 (5.32)

Notice the extra 𝑔Mars term in Eq. (5.32). For the vehicle to follow the 𝑧 profile defined by the

coefficients solved in Eq. (2.11), it will have to continuously oppose the Martian gravity. The �̈�𝑟𝑒𝑓

profile counteracts this by the addition of the 𝑔Mars term.

 With the origin of the cylindrical coordinates at the target landing site, the target location is

defined 𝑙𝑓 and 𝑧𝑓 . Defining the target approach azimuth, 𝜗𝑓 , is left to choice, and provides a

convenient variable for defining different candidate trajectories. Figure 5.9 shows the trajectory

design space based on 𝜗𝑓. The trajectories shown form a group of candidate paths that will be

evaluated using the parallelized six DoF simulation discussed in Section 5.1. As the vehicle

progresses through the powered descent phase, new candidate trajectories, discretized by 𝜗𝑓, are

generated based on the current vehicle states. Additionally, if the landing site is changed, the origin

will move to the new target location, and the process of generating, simulating, and evaluating

candidate trajectories will continue.

95

Figure 5.9: Trajectory design space. The current heading of the PDV is indicated by the black

dashed line.

 Before the reference trajectories, defined in (𝑙, 𝜗, 𝑧), are passed to the control system, they are

converted into the (𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃) frame. Note from Figure 5.8, the 𝑧 and 𝑍𝑃 axes are identical.

Therefore, no transforms are needed for these axes. Transforming the position to and from 𝑙, 𝜗 and

𝑋𝑃 , 𝑌𝑃 coordinate frames is as follows

𝑥𝑟𝑒𝑓 = 𝑙𝑟𝑒𝑓 cos 𝜗𝑟𝑒𝑓 (5.33)

𝑦𝑟𝑒𝑓 = 𝑙𝑟𝑒𝑓 sin𝜗𝑟𝑒𝑓 (5.34)

Velocities and accelerations can be obtained through the following time derivatives

�̇�𝑟𝑒𝑓 = 𝑙�̇�𝑒𝑓 𝑐𝑜𝑠 𝜗𝑟𝑒𝑓 − 𝑙𝑟𝑒𝑓�̇�𝑟𝑒𝑓 sin 𝜗𝑟𝑒𝑓 (5.35)

96

�̇�𝑟𝑒𝑓 = 𝑙�̇�𝑒𝑓 𝑠𝑖𝑛 𝜗𝑟𝑒𝑓 + 𝑙𝑟𝑒𝑓�̇�𝑟𝑒𝑓 cos 𝜗𝑟𝑒𝑓 (5.36)

�̈�𝑟𝑒𝑓 = (𝑙�̈�𝑒𝑓 − 𝑙�̇�𝑒𝑓�̇�𝑟𝑒𝑓
2) 𝑐𝑜𝑠 𝜗𝑟𝑒𝑓 − (2𝑙�̇�𝑒𝑓�̇�𝑟𝑒𝑓 + 𝑙𝑟𝑒𝑓�̈�𝑟𝑒𝑓) 𝑠𝑖𝑛 𝜗𝑟𝑒𝑓 (5.37)

�̈�𝑟𝑒𝑓 = (𝑙�̈�𝑒𝑓 − 𝑙�̇�𝑒𝑓�̇�𝑟𝑒𝑓
2) sin𝜗𝑟𝑒𝑓 + (2𝑙�̇�𝑒𝑓�̇�𝑟𝑒𝑓 + 𝑙𝑟𝑒𝑓�̈�𝑟𝑒𝑓) cos𝜗𝑟𝑒𝑓 (5.38)

5.3 Control System for Polynomial Cylindrical Guidance

 With these transformations made, the reference profiles are followed using equations from

Klump, Ref. [5]. Through the below equations the control system can adjust the commanded

accelerations based on measured deviations from the position and velocity reference profiles. The

vehicle state information comes from the navigational system. For the work herein, perfect

navigation is assumed, because it is desired to evaluate the OATP guidance based on its capabilities

alone, and not on the influences of IMU and navigational errors.

�̈�𝐶𝑀𝐷 = �̈�𝑟𝑒𝑓 + (�̇�𝑟𝑒𝑓 − �̇�𝑚)
𝐾𝐷,𝑥
𝑡𝑔𝑜

+ (𝑥𝑟𝑒𝑓 − 𝑥𝑚)
𝐾𝑃,𝑥

𝑡𝑔𝑜
2 (5.39)

�̈�𝐶𝑀𝐷 = �̈�𝑟𝑒𝑓 + (�̇�𝑟𝑒𝑓 − �̇�𝑚)
𝐾𝐷,𝑦

𝑡𝑔𝑜
+ (𝑦𝑟𝑒𝑓 − 𝑦𝑚)

𝐾𝑃,𝑦

𝑡𝑔𝑜
2 (5.40)

�̈�𝐶𝑀𝐷 = �̈�𝑟𝑒𝑓 + (�̇�𝑟𝑒𝑓 − �̇�𝑚)
𝐾𝐷,𝑧
𝑡𝑔𝑜

+ (𝑧𝑟𝑒𝑓 − 𝑧𝑚)
𝐾𝑃,𝑧

𝑡𝑔𝑜
2 (5.41)

The commanded acceleration vector is

�⃑�𝐶𝑀𝐷 = [

�̈�𝐶𝑀𝐷
�̈�𝐶𝑀𝐷
�̈�𝐶𝑀𝐷

] (5.42)

and total commanded thrust

𝐹𝑥,𝐶𝑀𝐷 = 𝑚‖�⃑�𝐶𝑀𝐷‖ (5.43)

Equations (5.39) through (5.43) determine the direction and magnitude of the commanded thrust.

At this point, a check must be made on the commanded acceleration vector. As mentioned before,

polynomial guidance does not enforce the maximum or minimum thrust constraints. Therefore, it

must be checked before sending the commands to the thruster controller. This is done by

�⃑�𝐶𝑀𝐷 = Λ�̂�𝐶𝑀𝐷 (5.44a)

97

𝛬 =
1

𝑚
{

𝑇𝑇𝑜𝑡𝑀𝑎𝑥, 𝐹𝑥,𝐶𝑀𝐷 ≥ 𝐹𝑇,𝑇𝑜𝑡𝑀𝑎𝑥
𝐹𝑥,𝐶𝑀𝐷, 𝑇𝑇𝑜𝑡𝑀𝑖𝑛 < 𝐹𝑥,𝐶𝑀𝐷 < 𝐹𝑇,𝑇𝑜𝑡𝑀𝑎𝑥
𝑇𝑇𝑜𝑡𝑀𝑖𝑛, 𝐹𝑥,𝐶𝑀𝐷 ≤ 𝐹𝑇,𝑇𝑜𝑡𝑀𝑖𝑛

 (5.44b)

�̂�𝐶𝑀𝐷 =
1

‖�⃑�𝐶𝑀𝐷‖
[

�̈�𝐶𝑀𝐷
�̈�𝐶𝑀𝐷
�̈�𝐶𝑀𝐷

] (5.44c)

where the total maximum and minimum thrust that the PDV is capable of are computed as

𝐹𝑇,𝑇𝑜𝑡𝑀𝑎𝑥 = 𝑡𝑚𝑎𝑥𝐹𝑇,𝑀𝑎𝑥 ∑ 𝜚(𝑖)

𝑁𝐸𝑛𝑔

𝑖=1

 (5.45)

𝐹𝑇,𝑇𝑜𝑡𝑀𝑖𝑛 = 𝑡𝑚𝑖𝑛𝐹𝑇,𝑀𝑎𝑥 ∑ 𝜚(𝑖)

𝑁𝐸𝑛𝑔

𝑖=1

 (5.46)

The variables 𝑡𝑀𝑎𝑥 and 𝑡𝑀𝑖𝑛 represent the maximum and minimum allowable throttle settings of

the rocket engine. The adaptive control allocation method, from Chapter 4, has a tie-in here through

the parameter estimate, 𝜚(𝑖). Performing the calculations in Eqs. (5.44) to (5.46) ensure that the

vehicle is pointing its thrust in the correct direction even though it may not be able to realize the

full thrust determined by Eqs. (5.39) to (5.43).

 Note that the PDV engines only thrust along the PDV 𝑋𝑏 axis. Therefore, the thrust direction

of the vehicle defines the vehicle attitude in the North-East-Down frame. To get the PDV oriented

properly, pitching and yawing moments must be applied. Commands for these moments, 𝑀𝑦,𝐶𝑀𝐷

and 𝑀𝑧,𝐶𝑀𝐷 are calculated from �⃑�𝐶𝑀𝐷 . First, the �⃑�𝐶𝑀𝐷 is used to determine commanded pitch,

𝜃𝐶𝑀𝐷, and yaw, 𝜓𝐶𝑀𝐷, angles defined as

𝜃𝐶𝑀𝐷 = sin
−1(�̈�𝐶𝑀𝐷 ‖�⃑�𝐶𝑀𝐷‖⁄) (5.47)

𝜓𝐶𝑀𝐷 = tan
−1(− �̈�𝐶𝑀𝐷 −�̈�𝐶𝑀𝐷⁄) (5.48)

The �̈�𝐶𝑀𝐷 and �̈�𝐶𝑀𝐷 terms in Eq. (5.48) are negated because the vehicle points its thrust in the

opposite direction to the acceleration commands. The magnitudes of the 𝑀𝑦,𝐶𝑀𝐷 and 𝑀𝑧,𝐶𝑀𝐷 are

dependent on the errors between the commanded and measured pitch and yaw angles. A simple

proportional, integral, derivative (PID) controller is used here. However, to avoid the singularities

in the proportional channel due to the Euler angles, a quaternion controller is used [121, 122]. First,

the pitch and yaw commands are converted into a commanded quaternion array

98

𝜀𝐶𝑀𝐷 = [𝜀0,𝐶𝑀𝐷 𝜀1,𝐶𝑀𝐷 𝜀2,𝐶𝑀𝐷 𝜀3,𝐶𝑀𝐷] (5.49)

There are no moments modeled about the roll axis. Therefore, the roll command, 𝜙𝐶𝑀𝐷, is assumed

zero, which brings the corresponding rolling moment command, 𝑀𝑥,𝐶𝑀𝐷 , to zero as well. The

commanded quaternion, 𝜀𝐶𝑀𝐷, is computed using Eqs. (5.5) to (5.8). The moments commanded by

the quaternion controller are

𝑀𝑦,𝐶𝑀𝐷 = 𝑀𝑃,𝜃 +𝑀𝐼,𝜃 +𝑀𝐷,𝜃 (5.50a)

𝑀𝑃,𝜃 = 𝜀2,𝑒𝑟𝑟𝐾𝑃,𝜃 (5.50b)

𝑀𝐼,𝜃 = 𝐾𝐼,𝜃∫𝜀2,𝑒𝑟𝑟 𝑑𝑡 (5.50c)

𝑀𝐷,𝜃 = 𝐾𝐷,𝜃𝑝 (5.50d)

𝑀𝑧,𝐶𝑀𝐷 = 𝑀𝑃,𝜓 +𝑀𝐼,𝜓 +𝑀𝐷,𝜓 (5.51a)

𝑀𝑃,𝜓 = 𝜀3,𝑒𝑟𝑟𝐾𝑃,𝜓 (5.51b)

𝑀𝐼,𝜓 = 𝐾𝐼,𝜓∫𝜀3,𝑒𝑟𝑟 𝑑𝑡 (5.51c)

𝑀𝐷,𝜓 = 𝐾𝐷,𝜓𝑟 (5.51d)

The quaternion errors, 𝜀𝑒𝑟𝑟 are computed using the Kronecker product [121]

𝜀𝑒𝑟𝑟 = [

𝜀0,𝑒𝑟𝑟
𝜀1,𝑒𝑟𝑟
𝜀2,𝑒𝑟𝑟
𝜀3,𝑒𝑟𝑟

] = 𝜀𝐶𝑀𝐷⊗ 𝜀∗ (5.52)

where 𝜀∗ signifies the complex conjugate

 Conj(𝜀) = 𝜀∗ = [

𝜀0
−𝜀1
−𝜀2
−𝜀3

] (5.53)

With the moment commands calculated, they must be checked against the maximum and minimum

limits. This is another place where the adaptive control allocation method, discussed in Chapter 4,

ties-in with the parameter estimate, 𝜚(𝑖). For the engine configuration shown in Figure 3.3, the

maximum and minimum moments are implemented as follows

99

𝑀𝑦,𝐶𝑀𝐷 = {

𝑀𝑦,𝑀𝑎𝑥, 𝑀𝑦,𝐶𝑀𝐷 ≥ 𝑀𝑦,𝑀𝑎𝑥
𝑀𝑦,𝐶𝑀𝐷, 𝑀𝑦,𝑀𝑖𝑛 < 𝑀𝑦,𝐶𝑀𝐷 < 𝑀𝑦,𝑀𝑎𝑥
𝑀𝑦,𝑀𝑖𝑛, 𝑀𝑦,𝐶𝑀𝐷 ≤ 𝑀𝑦,𝑀𝑖𝑛

 (5.54a)

𝑀𝑦,𝑀𝑎𝑥 = −𝐹𝑇,𝑀𝑎𝑥 (𝑡𝑀𝑖𝑛∑𝜚(𝑖)

4

𝑖=1

𝑧𝐶𝑜𝑀2𝐸𝑛𝑔(𝑖) + 𝑡𝑀𝑎𝑥∑𝜚(𝑗)

8

𝑗=5

𝑧𝐶𝑜𝑀2𝐸𝑛𝑔(𝑗)) (5.54b)

𝑀𝑦,𝑀𝑖𝑛 = −𝐹𝑇,𝑀𝑎𝑥 (𝑡𝑀𝑎𝑥∑𝜚(𝑖)

4

𝑖=1

𝑧𝐶𝑜𝑀2𝐸𝑛𝑔(𝑖) + 𝑡𝑀𝑖𝑛∑𝜚(𝑗)

8

𝑗=5

𝑧𝐶𝑜𝑀2𝐸𝑛𝑔(𝑗)) (5.54c)

𝑀𝑧,𝐶𝑀𝐷 = {

𝑀𝑧,𝑀𝑎𝑥, 𝑀𝑧,𝐶𝑀𝐷 ≥ 𝑀𝑧,𝑀𝑎𝑥
𝑀𝑧,𝐶𝑀𝐷, 𝑀𝑧,𝑀𝑖𝑛 < 𝑀𝑧,𝐶𝑀𝐷 < 𝑀𝑧,𝑀𝑎𝑥
𝑀𝑧,𝑀𝑖𝑛, 𝑀𝑧,𝐶𝑀𝐷 ≤ 𝑀𝑧,𝑀𝑖𝑛

 (5.55a)

𝑀𝑧,𝑀𝑎𝑥 = 𝐹𝑇,𝑀𝑎𝑥 (𝑡𝑀𝑖𝑛∑𝜚(𝑖)

𝑖

𝑧𝐶𝑜𝑀2𝐸𝑛𝑔(𝑖) + 𝑡𝑀𝑎𝑥∑𝜚(𝑗)

𝑗

𝑦𝐶𝑜𝑀2𝐸𝑛𝑔(𝑗)) ;

𝑖 = 1,2,7,8; and 𝑗 = 3,4,5,6

(5.55b)

𝑀𝑧,𝑀𝑖𝑛 = 𝐹𝑇,𝑀𝑎𝑥 (𝑡𝑀𝑎𝑥∑𝜚(𝑖)

𝑖

𝑧𝐶𝑜𝑀2𝐸𝑛𝑔(𝑖) + 𝑡𝑀𝑖𝑛∑𝜚(𝑗)

𝑗

𝑦𝐶𝑜𝑀2𝐸𝑛𝑔(𝑗)) ;

𝑖 = 1,2,7,8; and 𝑗 = 3,4,5,6

(5.55c)

With the moment limits enforced, the total thrust command, the pitching moment command, and

the yawing moment command,[𝐹𝑥,𝐶𝑀𝐷 𝑀𝑦,𝐶𝑀𝐷 𝑀𝑧,𝐶𝑀𝐷], can be sent to thruster controller, Eq.

(4.21b). From there the individual throttle commands, 𝑇, are determined, which can then be sent to

the propulsion model (Eqs. (5.22) through (5.24)), to be incorporated into the EoM.

5.4 Evaluation of Candidate Trajectories

5.4.1 Trajectory Pruning Metrics

 The final piece of the OATP guidance is the method used for evaluating each candidate

trajectory, which is performed in two stages: trajectory pruning, and scoring. There are five

trajectory pruning metrics, put into the array 𝑀𝑒𝑡, and these are used to rule out trajectories that

violate a given condition. The first metric is the only one that is evaluated at each integration step

of the internal six DoF simulation. It checks whether the trajectory enters an area it should be

100

avoiding, such as terrain or already established assets, and is labeled here as the keep-out-zone

metric. The number of keep-out-zones is dictated by the user, and evaluates

𝑀𝑒𝑡(1) = {
1, 𝑅𝑧𝑜𝑛𝑒 ≤𝑅𝐾𝑂𝑍
0, 𝑅𝑧𝑜𝑛𝑒 >𝑅𝐾𝑂𝑍

 (5.56a)

𝑅𝑧𝑜𝑛𝑒 = √(𝑥𝐾𝑂𝑍 − 𝑋𝑃)
2 +(𝑦𝐾𝑂𝑍 − 𝑌𝑃)

2 (5.56b)

where the radius of the zone is 𝑅𝐾𝑂𝑍 , and its location in the North-East-Down frame is

(𝑥𝐾𝑂𝑍, 𝑦𝐾𝑂𝑍). Currently, the keep-out-zone exists for any location along the 𝑍𝑃 axis. However,

future implementations could include a 𝑍𝑃 axis constraint. Should the 𝑀𝑒𝑡(1) flag be turned on at

any point along the candidate trajectory, it will be discounted from further consideration.

 The other four metrics concern meeting the final conditions. The attitude limit determines if

the total vehicle attitude angle from nadir is larger than the tolerance, as follows

𝑀𝑒𝑡(2) = {
1, Ψ𝑡𝑜𝑙 ≤ Ψ𝑓
0, Ψ𝑡𝑜𝑙 >Ψ𝑓

 (5.57a)

Ψ𝑓 = √𝜃𝑓
2 + 𝜓𝑓

2 (5.57b)

where Ψ𝑓 and Ψ𝑡𝑜𝑙 final off-nadir angle and tolerance off-nadir angle. The target point for each

candidate trajectory is just above the landing site (i.e. 𝑍𝑃 < 0, which is above ground as shown in

Figure 5.8). This is to create a buffer region to have the PDV fly out any errors that have

accumulated during EDL. During nominal operation this buffer region will be flown as a constant

velocity phase. For the work herein, a metric is created to evaluate if the PDV, upon concluding

the main descent phase is too low and too fast to reach a safe touchdown. This maximum velocity

– minimum altitude metric is determined using

𝑍𝑃(t) = 𝑍𝑃,𝑓 + �̇�𝑃,𝑓𝑡 +
1

2
𝜅𝑡2 (5.58a)

𝜅 = 𝑔𝑀𝑎𝑟𝑠 −
𝑇𝑀𝑎𝑥𝑡𝑀𝑎𝑥

𝑚
∑ 𝜚(𝑖)

𝑁𝐸𝑛𝑔

𝑖=1

 (5.58b)

The altitude at which the PDV has reached a safe velocity occurs at the minimum of Eq. (5.68a),

101

�̇�𝑃(t) = �̇�𝑃,𝑓 + 𝜅𝑡 (5.59)

Solving Eq. (5.59) for time provides

𝑡𝐿 =
�̇�𝑃,𝑓 + �̇�𝑡𝑜𝑙 − �̇�𝑃,𝑓

𝜅
 (5.60)

Substituting Eq. (5.60) into Eq. (5.58a) yields the altitude at which the PDV has reached a safe

touchdown velocity, 𝑍𝑃,𝐿. An altitude below ground means the PDV impacts the ground at too high

of a velocity. The minimum altitude – maximum velocity metric is summarized as

𝑀𝑒𝑡(3) = {
1, 0 < 𝑍𝑃,𝐿
0, 0 ≥ 𝑍𝑃,𝐿

 (5.61)

 The maximum allowable altitude metric, 𝑀𝑒𝑡(4), is captured using the following

𝑀𝑒𝑡(4) = {
1, (𝑍𝑃,𝑓 + 𝑍𝑃,𝑡𝑜𝑙) > 𝑍𝑃,𝑓

0, (𝑍𝑃,𝑓 + 𝑍𝑃,𝑡𝑜𝑙) ≤ 𝑍𝑃,𝑓
 (5.62)

 The final metric, 𝑀𝑒𝑡(5), checks the lateral velocity of the vehicle

𝑀𝑒𝑡(5) =

{

 1, √�̇�𝑃,𝑓
2 + �̇�𝑃,𝑓

2 > 𝑉𝐿𝑎𝑡𝑇𝑜𝑙

0, √�̇�𝑃,𝑓
2 + �̇�𝑃,𝑓

2 ≤ 𝑉𝐿𝑎𝑡𝑇𝑜𝑙

 (5.63)

 If any element in the Met array activated (value of 1), then the candidate trajectory will not be

considered. The candidate trajectories left after pruning will then be scored.

5.4.2 Trajectory Scoring Functions

 There are three scoring functions used to evaluate the candidate trajectories: distance from

target, fuel usage, and control authority. These metrics are combined into a cost function that is

built to balance their relative importance.

𝐶𝐹 = 𝐾𝐷2𝑇 (
𝑙𝑓

𝑅𝐿𝑆
)

2

+ 𝐾𝐹𝑢𝑒𝑙1𝑒
(𝐾𝐹𝑢𝑒𝑙2[%Fuel Used−%Target Usage]) + 𝐶𝐹𝐶𝐴 (5.64a)

where

102

𝐶𝐹𝐶𝐴 = {
𝐶𝐹𝐶𝐴, 𝐶𝐹𝐶𝐴 > 0
0, 𝐶𝐹𝐶𝐴 ≤ 0

 (5.64b)

𝐶𝐹𝐶𝐴 = 𝐾𝐶𝐴1 (
𝑡𝐴𝑡𝑀𝑎𝑥
𝑡𝑔𝑜

)

2

+ 𝐾𝐶𝐴2 (5.64c)

The distance from target term places a penalty based the radial distance from the landing target,

much as the name describes. The distance from target is normalized by 𝑅𝐿𝑆, the targeted radial

distance from the landing site the vehicle is desired to land within. This value is dictated by the

mission. The fuel usage term is built to take noticeable effect when the fuel usage becomes greater

than a targeted amount. The control authority term is based on the amount of time the control system

saturates the maximum thrust command, 𝑡𝐴𝑡𝑀𝑎𝑥, relative to the time-to-go, 𝑡𝑔𝑜. Some time spent

at maximum thrust is tolerable by the control system, especially if it occurs early in the PDV

trajectory. However, it is possible for some candidate trajectories to spend a significant portion of

the flight time with the maximum thrust command saturated, which leads to these trajectories not

being able to either handle small deviations from their reference, or becoming completely

unrealizable. The cost function has a number of gains, (𝐾𝐷2𝑇 , 𝐾𝐹𝑢𝑒𝑙1, 𝐾𝐹𝑢𝑒𝑙2, 𝐾𝐶𝐴1, 𝐾𝐶𝐴2), that are

used to tune the cost function. For the work herein the gains and targets used are provided in Table

5.6. Plotting Eq. (5.68), as shown in Figure 5.10, provides a visual representation of the relative

impact each term has. The gains used and the target percent fuel usage were determined empirically

for the PDV studied in the work herein.

Table 5.6: Cost function gains and target limits.

Cost Function Gains

Metric Applied To Variable Value

Distance from Target 𝐾𝐷2𝑇 1000.0

Fuel Usage
𝐾𝐹𝑢𝑒𝑙1 4.0

𝐾𝐹𝑢𝑒𝑙2 100.0

Control Authority
𝐾𝐶𝐴1 0.1

𝐾𝐶𝐴2 -260.0

Target Limits

Distance from Target 𝑅𝐿𝑆 50.024

Fuel Usage % Target Usage 0.9

Control Authority 𝑡𝑔𝑜 From Eq. (2.10)

24 Value is taken from the human Mars EDL architecture study [37].

103

Figure 5.10: Cost function used to evaluate candidate trajectories.

5.5 Onboard Autonomous Trajectory Planner Guidance Overview and

Performance Evaluation

 The previous sections of this chapter largely discuss in isolation the elements of the OATP

guidance: six DoF trajectory simulation, polynomial trajectory generation, control system, and cost

function. With an understanding of these elements, the following discusses how they operate

together, their implementation onto HPC hardware using OpenMP, and the performance of the

OATP guidance. Appendix E and Figure 5.11 are provided to aid discussion of the OATP guidance.

Vehicle states are sent to the guidance to the OATP guidance. The initialization process computes

𝑡𝑔𝑜 (Eq. (2.10)), and the 𝑟 and 𝑧 coefficients (Eqs. (2.11) and (5.29)). From there, OpenMP is used

to begin the 𝑁𝑇𝑟𝑎𝑗 threads that differ based on final arrival azimuth, 𝜗𝑓,𝑖, where 𝑖 = 1,2, … ,𝑁𝑇𝑟𝑎𝑗.

These threads are then sent to the logical cores on the processor hardware. The 𝜗 reference profile

coefficients are computed just before entering the integration loop. This begins with the control

module that determines the thrust from each engine. The control module implements the control

system discussed in Section 5.3, the thruster controller from Section 4.3, and the propulsion model

(Eqs. (5.20) through (5.24)). The solutions from the control module are used during the 4th order

Runge-Kutta integration method that calls the trajectory function at each step. The trajectory

function evaluates the gravity, atmospheric, and mass property models (discussed in Chapter 3).

From there the forces and moments are summed together, and the equations of motion are evaluated

104

(Eqs. (5.1), (5.2), (5.12), and (5.13)). At each time integration, the keep-out-zone pruning metric is

evaluated, (Eq. (5.56)). Once 𝑡𝑔𝑜 is reached, the time integration ends, and the trajectories are

pruned and scored using the equation from Section 5.4. These pruning metrics and scores are

combined into an array that is evaluated once the OATP guidance exits the parallel region. At this

point the OATP guidance determines the lowest cost trajectory that does not violate one of the

previous pruning metrics. The champion trajectory’s score is then compared to the previous

guidance solution (called at the last guidance update). The lowest scoring trajectory is saved and

passed out of the OATP guidance.

Figure 5.11: Diagram illustrating the calculations steps taken in the OATP guidance.

 There is both a standalone version and a POST2 integrated version of the OATP guidance.

Both versions are identical in core form and functionality, they only differ in their I/O operation.

The purpose of the standalone is to determine the time required to obtain a guidance solution

(reference trajectory solution) and is discussed in this section. The POST2 integrated version

demonstrates the capabilities for the guidance to meet the targeting requirements and is discussed

in Chapter 6.

105

 The standalone version reads vehicle state and landing site targeting information from a text

file, performs the guidance computations, and writes out solutions. The OpenMP directive-based

parallelization strategy is implemented to take advantage of the two HPC architectures shown in

Table 5.7. The memory usage per trajectory is 1.288 KB, stored in the tp structure, and there is a

1.105 KB shared array stored in the os structure. Note that the memory requirements for the OATP

guidance as a whole are less than the parallelized six DoF simulation discussed in Section 5.1. This

is due to three reasons. First, the parallelized simulation was developed in collaboration with other

NASA LaRC researchers to support broader NASA research objectives, and thus had other

requirements that were not needed for the OATP guidance routine. Second, the throttle profiles

were defined by a table in the assessment of the parallelized six DoF simulation, which added a

significant amount of memory per trajectory. Lastly, many of the lessons learned in developing the

parallelized six DoF simulation were applied to the fully integrated OATP guidance, which has

saved on redundant/unnecessary memory usage.

Table 5.7: Hardware specifications [123, 124].

 NASA LaRC Nodes

Hardware
Intel® Xeon® E5-

2680 (Broadwell)
Xeon Phi™ 7250

Label Used in Section CPU KNL

Manufacturer Launch Year 2012 2016

Number of Processor Cores 28 (Two 14-core) 64

Number of Threads

Supported Per Core
2 4

Processor Speed [GHz] 2.4 1.4

Cache [MB] 70 (35 per 14 cores) 34

Memory Size [GB] 126 (63 per 14 cores) 128

Memory Bandwidth [GB/s] 51.2 115.2

Thermal Design Power [W] 130 215

Voltage Range [V] 0.60-1.35 0.550-1.125

 In testing and evaluating the OATP guidance routine, 360 candidate trajectories (𝑁𝑇𝑟𝑎𝑗 = 360)

are generated, simulated, and evaluated per guidance call. This provides a 1.0° azimuth resolution

about the targeted landing site. The ideal number of threads needs to be evaluated, as was done in

Section 5.1.4.1. A major conclusion from the testing performed in that section, is that the Intel

compiler (icc) significantly outperformed the other compilers. So, only the icc compiler is

investigated here, and is shown in Figure 5.12. Each point in Figure 5.12 represents the average

obtained through 10 iterations at each testing point, and shaded regions mark the range of results.

106

Figure 5.12: Investigation into the effect the number of concurrent threads has on the

software execution time.

 The best timing for on the KNL hardware is 0.4497 s with 116 threads. The best timing for the

CPU hardware is 0.2944 s with 54 threads. An HPC system with similar capabilities to the Intel®

Xeon® E5-2680 (Broadwell) could run the OATP guidance with 54 threads, and have a call rate of

approximately 3 Hz.

5.6 Discussion, Limitations, and Future Work

 This chapter laid out the core functionality of the OATP guidance routine and the equations

behind its construction. Elements of the OATP guidance routine have been demonstrated on CPU,

KNL, and GPU hardware architectures using the OpenMP and OpenACC directive-based

parallelization approaches. The full OATP guidance routine has implemented OpenMP on the CPU

and KNL hardware architectures. Future work should investigate performance of the OATP

guidance software on the NVIDIA Tesla P100 and NVIDIA Tesla V100 hardware using OpenACC.

Once on GPU architecture, the utilization and occupancy will be evaluated, and comparisons can

be made between the full OATP guidance software and the parallelized six DoF simulation

discussed in Section 5.1. It is hypothesized that the full OATP guidance will be less memory bound

compared to the parallelized six DoF simulation, due to its decreased memory needs. Additionally,

the memory capabilities of the NVIDIA Tesla P100 and NVIDIA Tesla V100 hardware are larger

107

compared to the NVIDIA Tesla K40. Other areas of research to explore are implementing other

parallelization strategies, such as CUDA; optimizing the KNL implementation using its

vectorization capabilities; and increasing the simulation complexity by adding additional models,

such as aerodynamics.

108

6 Powered Descent Case Studies

 The PDV used for the following analysis is described in Section 3, and with the engine layout

shown in Figure 6.1. The vehicle initial conditions and targeting requirements are provided in Table

6.1. The initial conditions are the powered descent initiation conditions from the human Mars EDL

architecture study [36]. Using this information, the OATP guidance is put through several

scenarios: landing at five target locations, navigating around keep-out-zones, and switching landing

targets mid-flight. The landing targets consist of a nominal, and four divert locations, 300 m and 1

km crossrange (westward) and downrange (northward). Each landing site has the same planetodetic

altitude of -895.8 m, and each of their locations are provided in Table 6.2. The OATP guidance

guides the PDV from its initial conditions to 12.5 m above the landing target with a downward

velocity of 2.5 m/s.

 The target vehicle attitude at the end of OATP guidance and the beginning of vertical descent

is nadir. Once at these conditions, the vertical descent phase begins, where the PDV descends at

2.5 m/s with four active engines. Nominally, this would be on engines 1, 3, 5, and 7. Should an

engine failure occur, then the engines that are shutdown will change to accommodate.

Figure 6.1: Orientation of the eight thrusters with respect to the vehicle body reference frame

(br). These locations are from the human Mars EDL architecture study23. All dimensions are

in meters.

109

Table 6.1: Powered descent vehicle initial conditions and targeting requirements. The vehicle

flight path angle and attitude are provided relative to the North-East-Down frame.

Quantity Variable Value

Initial Conditions25

Altitude Above Landing Site [m] 𝑍𝑃 -4443.9

(Planetodetic latitude, longitude) [deg] (𝜑, 𝜆𝐼) (-0.5032,181.1755)

Velocity [m/s] 𝑉 447.3

Flight Path Angle [deg] 𝛾𝑣𝑒𝑙 -20.8

Velocity Azimuth [deg] 𝜓𝑣𝑒𝑙 354.3

Attitude [deg] (𝜙, 𝜃, 𝜓) (0.0,0.0,0.0)

Attitude Rates [deg/s] (�̇�, �̇�, �̇�) (0.0,0.0,0.0)

End of Main Descent Phase Target Conditions

Radial Distance to Target [m] 𝑅 0 m

Altitude Above Landing Site [m] 𝑍𝑃 -12.5

Velocity [m/s] 𝑉 2.5

Flight Path Angle [deg] 𝛾𝑣𝑒𝑙 -90.0

End of Main Descent Phase Constraints

Off-Nadir Angle [deg] Ψ𝑓 <20.0

Min. Altitude – Max. Velocity See Eqs. (5.58)-(5.60)

Max. Altitude [m] −𝑍𝑃 <20.0

Flight Path Angle [deg] 𝛾𝑣𝑒𝑙 <-80.0

Touchdown Condition and Constraints

Altitude Above Landing Site [m] 𝑍𝑃 =0.0

Vertical Velocity [m/s] �̇�𝑃 <3.0

Horizontal Velocity [m/s] √�̇�𝑃
2 + �̇�𝑃

2 <1.4

Off-Nadir Angle [deg] Ψ𝑓 <6.0

Table 6.2: Landing site locations used for the study.

Landing Site
Approximate Location

Relative to Nominal

(Planetodetic

Latitude, Longitude)

Planetodetic

Altitude [m]

Target 1 (Nominal) - (-0.3550,181.1610) -895.81

Target 2 300 m downrange (-0.3500,181.1600) -895.81

Target 3 300 m crossrange (-0.3555,181.1560) -895.81

Target 4 1 km downrange (-0.1850,181.1597) -895.81

Target 5 1 km crossrange (-0.3582,181.1444) -895.81

25 Values provided through personal communication with Dr. Rafael Lugo, aerospace engineer for

the human Mars EDL architecture study, and researcher in the Atmospheric Flight and Entry

Systems Branch at NASA LaRC.

110

 The keep-out-zones are defined relative to the North-East-Down frame with origin at the

nominal (Target 1) landing site and define a circular area above which the PDV cannot fly over. In

this study, the keep-out-zones are defined arbitrarily to demonstrate a capability. Future work will

investigate keep-out-zones defined relative to future mission requirements. Table 6.3 defines the

keep-out-zones.

Table 6.3: Keep-out-zone definitions in the North-East-Down frame, with origin at the

nominal landing target. All zones have a radius of 50 m.

Keep-Out-Zone (𝑋𝑃 , 𝑌𝑃) Location [m]

1 (-4000,-400)

2 (-400,150)

3 (-200,-200)

 The OATP guidance demonstrates the capability to switch landing targets mid-flight. This is

useful should the original landing target not be suitable, due to boulders or unsuitable conditions

on the ground discovered mid-flight. In this study, this is demonstrated by moving from the nominal

target to one of the other four targets listed in Table 6.2. Lastly, the work demonstrated in Chapter

4 is incorporated into the OATP guidance to enable the guidance to adapt to degradations in

engine performance.

 As discussed in Section 5.5, the OATP guidance guides the PDV from the initial to target

conditions by generating candidate trajectories that are then simulated internally using a six DoF

trajectory simulation. Each candidate trajectory is then pruned and scored. From the surveyed

candidate trajectories, a champion trajectory is chosen, passed to the control system, and flown. In

this work, the OATP guidance uses 360 candidate trajectories that are discretized by final

arrival azimuth.

6.1 Meeting Landing Target Conditions and Keep-Out-Zone Avoidance

6.1.1 Nominal Landing Target

 Figures 6.2 – 6.4 show key information of the OATP guidance navigating the PDV from its

initial conditions to the nominal landing target. The main descent phase (from 0 to 51 s) is largely

uneventful. The vehicle is brought to the target location, as shown in Figure 6.2. Figure 6.3a shows

the velocity brought to the desired 2.5 m/s, and the pitch angle brought to the targeted -90⁰. The

flight path angle does see the desired drop, but then increase to -78⁰ just before the vertical descent

takes over. This increase in flight path angle is attributed to the horizontal velocity (velocity in the

111

𝑋𝑃𝑌𝑃 -plane) increasing to approximately 0.5 m/s. Although the targeting requirements on the

reference trajectory dictate that the flight path angle must remain below -80⁰, the controller did not

fully track the reference trajectory, which lead to the >-80⁰ flight path angle. This error in tracking

occurs because the control strategy used, Eqs. (5.39) to (5.41), switches to open loop (i.e. the 𝐾𝐷

and 𝐾𝑃 controller gains are set to zero) when the radial distance to target is less than 5 m. This was

done to protect the vehicle when it gets close to the target, which is a singularity point. Future work

should investigate other options to mitigate this issue. However, for the purposes herein, this

modification to the control strategy is suitable. At the bottom of Figure 6.3a are the commanded

throttle values. The aggregate of these commands meet the total thrust and moment commands that

are shown in Figure 6.3b. The observed spread in the throttle commands is indicative of increased

moment commands. Relatively large moment commands are observed in the first and final 10 s of

the trajectories. In the first 10s, the moments are required to adjust the attitude of the PDV. In the

final 10s, the switch to open loop control can be observed by the small uptick in throttle commands

and pitching moment command. The switch to the vertical descent guidance can be observed in

these values. At this point, engines 1, 3, 5, and 7 are shutdown and the remaining engines are used

to safely descend the PDV. The anomalous spike in yawing moment command at this transition is

an artifact of the simulation. The spike is 1/300th s in duration (two integration time steps in the

POST2 trajectory simulation), and is caused by how the simulation is calling the guidance and

controller, and should be addressed in future work. Unfortunately, this artifact is apparent for all

scenarios, but it does not otherwise impact the assessment of the OATP guidance.. The large

pitching moment commands observed at this point are due to the majority of the horizontal velocity

being in the forward direction, thus the vehicle flares in pitch to decrease the forward motion. This

flare in pitch can be seen in top of Figure 6.3a. By the time the vehicle reaches touchdown, the

horizontal motion of the vehicle is removed, and the vertical velocity remains at 2.5 m/s.

112

Figure 6.2: Two-dimensional trajectory to the nominal landing target.

113

a)

b)
Figure 6.3: a) Key parameters for the PDV following the OATP guidance to the nominal

target. The vertical descent phase operates from 51 s until touchdown. b) Thrust and moment

command profiles.

114

 The obstacle avoidance trajectory is more eventful. Figure 6.4 shows the vehicle avoiding the

three keep-out-zones defined in Table 6.3. The profiles shown in Figure 6.5. are similar to those

observed in Figure 6.3. Notable differences are related to the thrust and yawing moment commands.

The total thrust command reaches the full 80% thrust threshold; the remaining 20% is used for

control margin. The use of this margin is observed in the throttle commands, where two of the

engines are throttled to near 100%. The large yawing moments are used to avoid the keep-out-

zones.

Figure 6.4: Two-dimensional trajectory to the nominal landing target while avoiding keep-

out-zones.

115

a)

b)

Figure 6.5: a) Key parameters for the PDV following the OATP guidance to the nominal

target while avoiding keep-out-zones. b) Thrust and moment command profiles.

116

 For this scenario, it is useful to look at the other candidate trajectories to see how the OATP

guidance chooses the trajectory to follow. A sample of these are shown in Figure 6.6, along with

their corresponding pruning and scoring metrics in Table 6.4. The pruning metrics are ordered

(keep-out-zone, attitude, flight path angle, minimum-altitude maximum-velocity, maximum

altitude), where a value of 1 signifies a violation. The trajectory with 𝜗𝑓 = 174.46° is the same

trajectory observed in Figure 6.2. With the inclusion of the keep-out-zones, this candidate trajectory

is no longer viable. The trajectories in the 2nd-5th rows in Table 6.4 all violate multiple metrics. The

large arches requested by these candidate trajectories saturate the thrust and moment capabilites of

the vehicle. This leads to them failing one or more of the pruning metrics, and their removal from

consideration. Of the trajectories shown in Figure 6.6, the ones defined by 𝜗𝑓 = −176.54° and

165.46° are viable. These two trajectories consume similar resources, result in similar

performance, and similar scores. However, the 𝜗𝑓 = 165.46° edges out the other in terms of

distance to target. The scores between these two candidate trajectories lead to relatively small

changes in targeting accuracy. Since the distance to target constraint is <50.0 m, reformulating the

trajectory cost funciton, discussed in Section 5.4.2, could prove fruitful in future work. Losening

the constraints on distance to target if the vehicle is within the 50 m range would lead to trajectories

that focus more on minimizing fuel usage and maximizing the control authority.

Figure 6.6: Flown Trajectory along with a sample of the candidate trajectories investigated

by the OATP guidance.

117

Table 6.4: Pruning metrics (Section 5.4.1) and scores (Section 5.4.2) for the trajectories

provided in Figure 6.6.

Trajectory Pruning

Metrics

Distance to

Target [m]

% Fuel Used % Time at

Max Thrust

Score

𝜗𝑓 = −176.54° (0,0,0,0,0) 2.82 76.4 31.4 3.185

𝜗𝑓 = −166.54° (0,1,1,0,1) - - - -

𝜗𝑓 = −156.54° (1,1,1,0,1) - - - -

𝜗𝑓 = 143.46° (1,1,1,0,1) - - - -

𝜗𝑓 = 153.46° (0,1,1,0,1) - - - -

𝜗𝑓 = 165.46° (0,0,0,0,0) 2.44 76.2 31.7 2.385

𝜗𝑓 = 174.46° (1,0,0,0,0) - - - -

6.1.2 Divert Targets

 Traveling to the four divert targets without keep-out-zones is shown in Figure 6.7. The OATP

guidance directs the vehicle to head directly to the target location in the first guidance solution.

Some overall trends can be observed by looking at the parameter plotted for each trajectory (Figure

6.8 - Figure 6.11). The crossrange divert targets require larger thrust and yawing moment

commands early in the flight when compared to the nominal. The downrange divert targets have

decreased thrust commands in the beginning of the flight when compared to the nominal, but

becomes larger at the end of the main descent phase. The pitching moment commands are also

larger for the downrange divert trajectories. These trends are to be expected, given that the basis

for discretizing the trajectory design space are polynomial functions. Should a different method be

employed for discretizing this design space, the profiles observed here would change.

 In looking at specific trajectories, the 1 km crossrange divert target, Target 5, (shown in Figure

6.8) is the most difficult to reach. The maximum thrust command is saturated for nearly 25 s

(approximately half) of the main powered descent phase. Additionally, a small dip in thrust is

noticeable in the first 0.2 s of the trajectory and is caused by the large yawing moment command.

Total thrust is sacrificed to ensure the vehicle can realize the moments that place it in the correct

orientation. Lastly, there is a large yawing moment required at the end of the main descent phase

and the beginning of the vertical descent phase. This is due to a left over 1.42 m/s westerly velocity

that must be removed before touchdown. This large yawing moment at the conclusion of the main

descent phase is not ideal but does get the vehicle to successfully land at the designated target. It

may be possible to mitigate this through refinement of the controller gains, or a control strategy

change. The 300 m crossrange divert, Target 3, Figure 6.10, is more difficult to reach than the

118

nominal, but is not as much as the 1 km divert, as would be expected. Both the downrange divert

targets are arguably easier to reach than the nominal, which is also to be expected. This can be seen

by looking at the thrust command profiles. Comparing the thrust command to the nominal target,

Target 1 (Figure 6.3), to the 300 m downrange divert target, Target 2 (Figure 6.11) and the 1 km

downrange target, Target 4 (Figure 6.9) the initial commanded thrust decreases as the divert

distance increases from 300 m to 1 km. Since the vehicle must travel more distance, the guidance

requires less deceleration in the beginning, thus lower thrust command. Additionally, the pitching

moment tends to increase as the downrange divert distance increases. This is due to the need to

maintain a shallower flight path angle, enabling the vehicle to glide to the more distant target. The

downward acceleration profile (�̈�𝑃) for reaching either divert target remains unchanged, but the

lateral distance to the target grows, thus decreasing the initial lateral acceleration profiles (�̈�𝑃 and

�̈�𝑃). Therefore, the acceleration vector points further downward for the larger downrange divert

case, which causes a larger pitch command and consequently a larger pitching moment. The yawing

moment remains largely unchanged, since the diverts are predominantly downrange.

 A peculiarity in both the 300 m and 1 km downrange divert trajectories should be noted. The

OATP guidance guides the vehicle out of the vehicle-to-landing-target plane, which is not observed

for the nominal landing target. This is due to the current formulation of the cost function, Eq. (5.64).

The arched guidance trajectories resulted in marginally better performance in distance to target

(<0.1 m) than the in-plane trajectory. The fuel consumption for these trajectories is (<50 kg).

Incorporating a minimum limit on the distance to target cost function would resolve this peculiarity

and will be included in future work.

119

Figure 6.7: Two-dimensional trajectories of the vehicle traveling to the five possible targets

defined by Table 6.2.

 Table 6.5 provides information on the PDV when it concludes the main descent phase and

touchdown. The main takeaways from this table is the PDV is able to follow the trajectory solutions

from the OATP guidance, meet the targeting constraints, and do not utilize all of the fuel.

Table 6.5: Key vehicle information at the end of the main decent phase (MDP) and vertical

descent phase (VDP).

Trajectory

To

End of

Phase

Distance to

Target [m]

Velocity

Horz./Vert. [m/s]

Pitch

[deg]

Total Fuel

Usage [kg]

Target 1
MDP 2.92 0.53/2.46 -88.69 7111.74

VDP 3.61 0.00/2.50 -89.93 7324.36

Target 2
MDP 3.47 0.65/2.46 -88.22 7185.23

VDP 4.37 0.03/2.50 -89.93 7396.14

Target 3
MDP 3.01 0.52/2.45 -88.65 7137.68

VDP 3.67 0.01/2.50 -89.92 7350.05

Target 4
MDP 4.16 0.69/2.46 -87.68 7101.69

VDP 5.07 0.01/2.50 -89.92 7309.35

Target 5
MDP 10.21 1.42/2.41 -89.50 7314.69

VDP 7.43 0.20/2.49 -89.12 7532.20

120

a)

b)

Figure 6.8: a) Key parameters for the PDV following the OATP guidance to the 1 km

crossrange divert target, Target 5. b) Thrust and moment command profiles.

121

a)

b)

Figure 6.9: a) Key parameters for the PDV following the OATP guidance to the 1 km

downrange divert target, Target 4. b) Thrust and moment command profiles.

122

a)

b)

Figure 6.10: a) Key parameters for the PDV following the OATP guidance to the 300 m

crossrange divert target, Target 3. b) Thrust and moment command profiles.

123

a)

b)

Figure 6.11: a) Key parameters for the PDV following the OATP guidance to the 300 m

downrange divert target, Target 2. b) Thrust and moment command profiles.

124

6.2 Switching Landing Target Mid-Flight

 The following investigates switching the landing target mid-flight. At the start of the trajectory

solution, the OATP guidance provides a guidance solution to the nominal landing site, target 1. At

a later time, the landing target is switched to a secondary landing site, specified in Table 6.2. The

(𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃) coordinate frame moves to the new landing target, and all vehicle states are defined

relative to the new location. Once this occurs, the OATP guidance provides a new trajectory to the

secondary landing site. For this analysis, diverting to the secondary landing site is demonstrated

relative to flight time, in five second increments. The goal of this analysis is to determine when the

OATP guidance will fail to provide a viable trajectory to the secondary landing site, and once it

does determine why it failed to do so.

 Four 2D flight profiles are shown in Figure 6.12. These are the successful diverts to the

secondary landing sites. For each secondary landing target, switch times longer than what are

plotted were not successful. The OATP guidance, for these switch times, was not able to find a

viable trajectory to reach the target location. Each of these trajectories are defined by the thrust and

moment profiles, which are shown in Figure 6.13 – Figure 6.20 along with plots of the throttle

commands. In looking at these figures it is noticeable that they continue the trends discussed in

Section 6.1.2, which become more severe as the time to switch landing targets grows longer. The

300 m and 1 km crossrange diverts experience increased thrust, while pitching moment is not

significantly impacted and yawing moment is increased. For the 300 m and 1 km downrange diverts

require less thrust in the beginning but increase later in the trajectory. The pitching moment also

increases, while the yawing moment is not significantly impacted. The noticeable differences

between the plots here and what is observed in Section 6.1.2, are the large discontinuities that occur

when the landing target switch occurs. This is to be expected due to the sudden errors that develop

between the current states of the vehicle and those of the new reference trajectory that the vehicle

is newly following.

125

Figure 6.12: Investigation into times to begin diverting to secondary targets (defined in Table

6.2) and the trajectories flown to get there26.

26 Note that the nominal landing target (Target 1) is located at the origin, and not any of the divert

trajectories. This is done for plotting purposes only. In practice, the origin moves to the new landing

target when the switch occurs.

126

 Table 6.6 through Table 6.9 provide information on the ability of the system to meet the

targeting conditions at the end of the main descent phase and touchdown. The OATP guidance was

successful in navigating the PDV to all of the divert trajectories studied and the switch times shown

here. The distance to target at touchdown for all diverts and switching times are within 10 m. For

all but the 1 km crossrange divert target (Target 5) and the 15 s switch time for the 300 m crossrange

divert target (Target 3) the distance to target at touchdown were within 5.07 m. The OATP guidance

was also able to bring the PDV to the 2.5 m/s touchdown velocity requirement for all diverts and

switching times shown. Lastly, the fuel usage is typically lower for the divert trajectories compared

to the trajectory to the nominal target (Target 1). This is due to the initial drop in the thrust command

for all trajectories when the switch occurs. This in-turn is due to the polynomial functions that make

the thrust profiles. Discretizing the trajectory design space using may lead to other fuel usage

trends. The decrease in fuel usage is also attributed to the assumption of a constant 𝐼𝑠𝑝 across all

throttle commands. Should the 𝐼𝑠𝑝 vary with respect to throttle, then the fuel consumption reported

here would change.

Table 6.6: Key vehicle information at the end of the main decent phase and vertical descent

phase for the 300 m downrange divert landing target, Target 2.

Switch

Time [s]

End of

Phase

Distance to

Target [m]

Velocity

Horz./Vert. [m/s]

Pitch

[deg]

Total Fuel

Usage [kg]

0.0
MDP 3.47 0.65/2.46 -88.22 7185.23

VDP 4.37 0.03/2.50 -89.93 7396.14

5.0
MDP 2.95 0.62/2.47 -88.38 7091.52

VDP 3.77 0.01/2.50 -89.93 7303.75

10.0
MDP 2.76 0.66/2.48 -88.17 7082.49

VDP 3.64 0.01/2.50 -89.92 7295.06

127

Figure 6.13: Thrust and moment profiles for diverting to secondary target (300 m downrange,

Target 2) at different times along the nominal trajectory.

128

Figure 6.14: Throttle command profiles for diverting to secondary target (300 m downrange,

Target 2) at different times along the nominal trajectory.

 The most interesting profile is for the 300 m crossrange divert (Figure 6.15 and Figure 6.16),

when the switch to the secondary landing target occurs at 15 s. There are large thrust and moment

spikes that are similar to the other divert scenarios. However, these spikes are in part due to a

shortcoming in the current implementation of the OATP guidance. At present, the OATP guidance

does not have a mechanism for providing a trajectory solution in the event that the surveyed 360

trajectories are not viable. Currently, when this occurs, the OATP guidance passes the previous

trajectory solution to the control system. What occurred in the results shown in Figure 6.15 and

Figure 6.16 is the trajectory definition used to guide to the nominal landing target was passed back

to the controller that is using vehicle states defined relative to 300 m crossrange divert landing

target. In this scenario, the control system was able to follow the old trajectory definition to the

divert landing target. The success of this scenario is the exception. Scenarios involving later

switching times have the same issue of not finding a viable trajectory out of the 360 candidate

trajectories. The original trajectory solution is passed to the control system that is not able to follow

129

it in the coordinate frame now anchored at the divert landing target. Future work is needed to

mitigate the no viable trajectory outcome to have the vehicle land as close as possible to the divert

landing target.

Table 6.7: Key vehicle information at the end of the main decent phase and vertical descent

phase for the 300 m crossrange divert landing target, Target 3.

Switch

Time [s]

End of

Phase

Distance to

Target [m]

Velocity

Horz./Vert. [m/s]

Pitch

[deg]

Total Fuel

Usage [kg]

0.0
MDP 3.01 0.52/2.45 -88.65 7137.68

VDP 3.67 0.01/2.50 -89.92 7350.05

5.0
MDP 4.97 0.59/2.43 -89.81 7135.16

VDP 4.24 0.09/2.50 -89.32 7347.90

10.0
MDP 4.18 0.50/2.41 -88.92 7127.10

VDP 3.44 0.07/2.50 -89.80 7341.83

15.0
MDP 13.14 2.16/2.42 -88.99 7472.39

VDP 9.42 0.31/2.48 -89.37 7694.06

Figure 6.15: Thrust and moment profiles for diverting to secondary target (300 m crossrange,

Target 3) at different times along the nominal trajectory.

130

Figure 6.16: Throttle command profiles for diverting to secondary target (300 m crossrange,

Target 3) at different times along the nominal trajectory.

131

Table 6.8: Key vehicle information at the end of the main decent phase and vertical descent

phase for the 1 km downrange divert landing target, Target 4.

Switch

Time [s]

End of

Phase

Distance to

Target [m]

Velocity

Horz./Vert. [m/s]

Pitch

[deg]

Total Fuel

Usage [kg]

0.0
MDP 4.16 0.69/2.46 -87.68 7101.69

VDP 5.07 0.01/2.50 -89.92 7309.35

5.0
MDP 3.72 0.82/2.49 -87.45 7057.89

VDP 4.85 0.01/2.50 -89.92 7266.83

10.0
MDP 3.69 0.95/2.52 -86.84 7058.77

VDP 4.98 0.01/2.50 -89.95 7266.85

Figure 6.17: Thrust and moment profiles for diverting to secondary target (1 km downrange,

Target 4) at different times along the nominal trajectory.

132

Figure 6.18: Throttle command profiles for diverting to secondary target (1 km downrange,

Target 4) at different times along the nominal trajectory.

Table 6.9: Key vehicle information at the end of the main decent phase and vertical descent

phase for the 1 km crossrange divert landing target, Target 5.

Switch

Time [s]

End of

Phase

Distance to

Target [m]

Velocity

Horz./Vert. [m/s]

Pitch

[deg]

Total Fuel

Usage [kg]

0.0
MDP 10.21 1.42/2.41 -89.50 7314.69

VDP 7.43 0.20/2.49 -89.12 7532.20

5.0
MDP 13.15 1.69/2.32 -89.79 7266.43

VDP 9.95 0.24/2.49 -89.43 7482.34

133

Figure 6.19: Thrust and moment profiles for diverting to secondary target (1 km crossrange,

Target 5) at different times along the nominal trajectory.

Figure 6.20: Throttle command profiles for diverting to secondary target (1 km crossrange,

Target 5) at different times along the nominal trajectory.

134

6.3 Discussion

 This chapter presents early investigations into the use of the OATP guidance and demonstrates

how it generates and evaluates candidate trajectories to supply a trajectory solution to the control

system. Scenarios involving the vehicle avoiding keep-out-zones and navigating to multiple divert

landing targets were shown. Through these scenarios, the OATP guidance was able to supply

trajectories that guided the PDV safely to the landing target while remaining within the constraints

imposed by the PDV system. However, there is room for significant improvements. First,

improvements can be made to the pruning and scoring metrics. The function could be refocused by

loosening the range to target condition and increasing the impact of fuel usage and control authority.

Second, changes could be made to the controller described by Eqs. (5.39) to (5.41). As the PDV

approaches the landing target, it approaches a singularity. Currently, this is mitigated by having the

control system go open-loop once the PDV is less than 5 m from the target. Future work will look

into other strategies, such as separating the landing target from the coordinate origin, or switching

to a separate guidance mode once the vehicle is close to the target.

 A key limitation of the current OATP guidance is apparent in the divert landing target

scenarios. Given the engine thrust limitations the OATP guidance currently cannot handle

situations where all trajectories are not viable. However, this could be mitigated in two ways. 1)

Changing how the reference trajectory profiles are discretized. This could be done within the

polynomial guidance framework by adding additional coefficient terms or adapting this strategy

from a two-point boundary value problem to a three or multi-point boundary value problem. The

reference trajectories could also be discretized outside of the polynomial guidance framework

through any one of the ways discussed in Section 2.2.1, or other ways to break up the trajectory

design space. 2) Enabling the OATP guidance to gracefully handle situations where all candidate

trajectories are not viable. Future work should investigate ways of determining landing locations

close to the desired landing target that are viable.

 Enabling the OATP guidance to gracefully handle the no viable trajectory situation could also

enable the targeting to divert landing targets that are closer to the PDV. From the perspective of the

PDV and its direction of travel, the divert landing targets studied here are all further away from the

PDV than the nominal landing target. Divert targets closer to PDV were not studied here, but it is

hypothesized that these diverts targets would be more difficult to reach by all metrics used in the

analysis herein. The time for switching to the divert landing target would be earlier in the trajectory,

compared to the divert landing targets studied here, and may not be possible. For divert trajectories

135

that are viable, the thrust commands would initially increase along with the moment commands.

This would lead to increased fuel usage.

 Lastly, incorporating the adaptive control allocation strategy into the overall guidance and

control strategy would provide crucial information on engine performance to the OATP guidance.

This would enable it to build reference trajectories that reflect the current capabilities of the PDV.

At this point in time, the implementation of these two systems together are not functional. It is

theorized that an assumption built into the thrust and moment constraints are to blame. Currently,

the control system assumes the minimum and maximum thrust, pitching moment, and yawing

moment constraints are independent. For the PDV used in this case study, these constraints are

interdependent, because differential thrusting of the main decent engines are used to create the

thrust and moments. Therefore, as larger thrust values are commanded, the moment capability of

the system decreases, and vice versa. A conceptual drawing of this coupled relationship is shown

in Figure 6.21. This was not an issue in the analysis conducted in Chapter 4, because the moment

commands needed to follow the gravity turn guidance trajectory are an order of magnitude less than

what are required for the polynomial guidance reference trajectories. Future work should

incorporate interdependent constraints on the thrust and moments.

Figure 6.21: An example of the allowable command space for thrust, pitching moment, and

yawing moment.

136

7 Conclusions

7.1 Contributions

 The goal of this research was to lay the groundwork for an autonomous guidance and control

strategy for pinpoint landings in uncertain and dynamic environments that is also robust to

component failures, such as engine failures. A guidance system of this nature would be able to

design and evaluate the performance of different trajectory choices available to it. This would be

similar to how flight mechanics engineers evaluate trajectories before the beginning of EDL to

meet mission requirements, but instead would be performed autonomously and onboard the vehicle.

To this end, two objectives were set, which lead to the novel contributions of this research.

 Develop an algorithm that enables a powered descent vehicle to adapt in real-time to

failures and degradations in its performance that change its dynamic behavior: Presented

herein is an adaptive control allocation strategy that analyzes onboard IMU measurements to

identify thruster effectiveness in real-time. The real-time adaptive control allocation is performed

using SLSFD onboard combined with a maneuver, designed using orthogonal multi-sine input

functions, to estimate the PDV plant model. The ability to generate a new plant model on-board

enables the PDV to identify underperforming and failed engines. The analysis here concludes that,

for the example PDV, a 1.5 s and 5.0% throttle amplitude maneuver provides sufficient data for the

SLSFD to generate the parameter estimates needed. This adaptive control allocation approach is

also robust to IMU errors. This approach applies a predominately software solution to the failure

mitigation problem, which can save on mass and system complexity. Lastly, this approach can be

readily applied to non-EDL flight systems, such as multi-rotor flight vehicles.

 Develop a guidance routine that can utilize high performance computing hardware to

design and evaluate trajectory designs through onboard real-time six degree-of-freedom

simulations: This research applies and expands upon concepts first explored by Rogers and Slegers

[29, 30, 31]. The OATP guidance software discretizes the trajectory design space and evaluates

each candidate trajectory using an internal simulation that evaluates kinematic and kinetic

equations that describe the PDV six DoF motion. Once a set of candidate trajectories simulated,

they are pruned and scored to determine a champion trajectory that is then passed to the control

system to follow. This work applies OpenMP directive-based parallelism to parallelize the OATP

guidance across COTS multi-core CPUs and demonstrates that it can operate at 3 Hz using the

Intel® Xeon® E5-2680 (Broadwell) compute hardware. The six DoF trajectory simulation, the most

137

computationally intensive component of the OATP guidance software, has been implemented on

GPU hardware using OpenACC directive-based parallelism.

 The OATP guidance is applied to the problem of guiding a human Mars mission PDV, defined

by the human Mars EDL architecture study, to safely land on the Martian surface. Using the POST2

trajectory simulation software, the capabilities of the OATP guidance software is demonstrated

through several scenarios: avoiding keep-out-zones, reaching divert landing targets, and switching

landing targets mid-flight. Through these scenarios, the OATP guidance is proven capable in

meeting the landing requirements defined by the human Mars EDL architecture study [33].

7.2 Future Work

 This dissertation provides the initial groundwork into enabling a PDV to perform trajectory

path re-evaluation and re-tuning onboard and in real-time using current vehicle and environmental

data. There are many areas for improvement and potential future research topics for increasing the

capabilities of the OATP guidance, which are listed below. These are needed for expanding the

failure detections capabilities of the adaptive control allocation method, and for improving process

in which candidate trajectories are evaluated.

 Areas for improving the adaptive control allocation method:

 Incorporate parameter uncertainties, confidence intervals, and signal-to-noise

calculations into the adaptive control allocation logic.

 Implement a navigational filter for processing IMU data.

 Implement a detection strategy that will be used to initiate the failure mitigation strategy.

This could be done by continuously measuring the frequency response of the PDV for

changes in its behavior.

 Investigate the effects engine dynamics have on the accuracy of the parameter estimates

used to update the plant model.

 Investigate the effects to the SLSFD method due to aerodynamics on the PDV.

 Investigate the effects to the SLSFD method due to aerodynamic interactions induced by

the engine plume on the freestream flow.

Areas for improving OATP guidance computational efficiency:

 Investigate the use of parallelized Runge-Kutta integration schemes. Evaluate the

computational performance and solution accuracy.

138

 Investigate the effects the internal integration rate has on targeting accuracy. This effects

the number of trajectories that can be evaluated.

 Optimize the OATP guidance for KNL hardware through vectorization of the software.

 Implement the OATP guidance software on NVIDIA Tesla P100 and NVIDIA Tesla

V100 hardware using OpenACC and CUDA. Then evaluate the performance of both

implementations and compare to the current implementation.

Areas for improving OATP guidance solutions:

 Currently, the guidance uses vehicle states that are sensed just prior to the guidance call.

The guidance requires a small amount of time to compute a guidance solution. During

this time the PDV is still in motion. Therefore, when the guidance solution is provided

to the control system, PDV will not be at the initial conditions that the guidance used to

generate the trajectory solution. It is recommended that future work propagates vehicle

states forward in time to when the guidance solution will be available, and use those

vehicle states as the initial conditions for the trajectory design and evaluation process.

 Mitigate current controller issues that occur when the PDV is close to target. Some

recommended options to investigate are: separating the landing target from the

coordinate origin, and switching to a separate guidance mode once the vehicle is close

to the target.

 Mitigate the no-viable-trajectory outcome that is a challenge for the current

OATP guidance.

 Incorporate Monte Carlo analysis for evaluating candidate trajectories. This will provide

robustness statistics to uncertainties in vehicle navigational states, and modeling

uncertainties in both vehicle and planetary parameters.

 Increase the fidelity of the models used within the internal six DoF simulation to increase

the accuracy of the trajectory calculations. This could be done by including an

aerodynamic model; an atmospheric model that is dependent not only on altitude, but

also latitude and longitude; and by incorporating spherical harmonic terms into the 1/𝑅2

gravity model.

 Evaluate the ability of the OATP guidance to guide around keep-out-zones defined

relative to future mission requirements.

 Evaluate other methods for discretizing the trajectory design space for generating the

candidate trajectories. This could be done within the polynomial guidance framework by

139

adding additional coefficient terms, or adapting this strategy from a two-point boundary

value problem to a three or multi-point boundary value problem. The reference

trajectories could also be discretized outside of the polynomial guidance framework

through any one of the ways discussed in Section 2.2.1, or other ways to break up the

trajectory design space.

140

References

[1] Drake, B. G., “Human Exploration of Mars Design Reference Architecture 5.0,” NASA-

SP-2009-566, 2009.

[2] Masciarelli, J., ROUSSEAU, S., FRAYSSE, H., and PEROT, E., “An Analytic

Aerocapture Guidance Algorithm For The Mars Sample Return Orbiter,” Atmospheric

Flight Mechanics Conference, Denver, CO, 2000, pp. 525-532.

[3] Adler, M., Wright, M., Campbell, C., Clark, I., Engelund, W., and Rivellini, T., “Entry,

Descent, and Landing Roadmap Technology Area 09,” National Aeronautics and Space

Administration, Washington DC, April 2012.

[4] Way, W. D., Davis, L. J., and Shidner, D. J., "Assessment of the Mars Science

Laboratory Entry, Descent, and Landing Simulation," 23rd AAS/AIAA Space Flight

Mechanics Meeting, Kauai, 2013.

[5] Klumpp, A. R., "Apollo Guidance, Navigation, and Control," Charles Stark Draper

Laboratory of the Massachusetts Institute of Technology, Massachusetts, 1971.

[6] Braun, R. D., and Manning, R. M., "Mars Exploration Entry, Descent, and Landing

Challenges," Journal of Spacecraft and Rockets, Vol. 44, No. No. 2, March-April 2007,

pp. 310-323.

[7] Way, D., Dutta, S., Zumwalt, C. and De León, S. S., "EDL Simulation Results for the

Mars 2020 Landing Site Safety Assessment," IEEE Aerospace Conference, Big Sky,

2018.

[8] Chu, L. E., Brown, K. M., and Kriechbaum, K., "Mars 2020 Sampling and Caching

Subsystem Environmental Development Testing and Preliminary Results," IEEE

Aerospace Conference, Big Sky, 2017.

[9] Way, D., "Preliminary Assessment Of The Mars Science Laboratory Entry, Descent, and

Landing Simulation," 2013 IEEE Aerospace Conference, Big Sky, 2013, pp.1-16.

[10] Way, D., "On The Use Of A Range Trigger For The Mars Science Laboratory Entry,

Descent, And Landing," 2011 IEEE Aerospace Conference, Big Sky, 2011.

141

[11] Wolf, A. A., Casoliva, J., Manrique, J. B., Acikmese, B., and Ploen, S., "Improving The

Landing Precision Of An MSL-Class Vehicle," 2012 IEEE Aerospace Conference, Big

Sky, 2012.

[12] Garcia-Llama, E., Ivanov, M. C., Winski, R. G., Grover, M. R., Shidner, J. D., and

Parkash, R., "Mars Science Laboratory Event Guidance Improvements Study For The

Mars 2018 Mission," 2012 IEEE Aerospace Conference, Big Sky, 2012.

[13] Scharf, D. P., Ploen, S. R., and Acikmese, B., "Interpolation-Enhanced Powered Descent

Guidance for Onboard nominal, Off-Nominal, and Multi-X Scenarios," AIAA Guidance,

Navigation, and Control Conference, Kissimmee, 2015.

[14] Scharf, D. P., Regehr, M. W., Vaughan, G. M., Benito, J., Ansari, H., Aung, M., Johnson,

A., Casoliva, J., Mohan, S., Dueri, D., Acikmese B., Masten, D., and Nietfeld,

S.,"ADAPT Demonstrations of Onboard Large-Divert Guidance with a VTVL Rocket,"

2014 IEEE Aerospace Conference, Big Sky, 2014, pp. 1-18.

[15] Acikmese, B., Blackmore, L., Scharf. D. P., and Wolf, A., "Enhancements on the Convex

Programming Based Powered Descent Guidance Algorithm for Mars Landing,"

AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, 2008.

[16] Desai, P. N., Prince, J. L., Queen, E. M., Schoenenberger, M., Cruz, J. R., and Grover, M.

R., "Entry, Descent, and Landing Performance of the Mars Pheonix Lander," Journal of

Spacecraft and Rockets, Vol. 48, No. 5, pp. 798-808, 2011.

[17] Mendeck, G. F., and McGrew, L. C., "Entry Guidance Design and Postflght Performance

for 2011 Mars Science Laboratory Mission," Journal of Spacecraft and Rockets, Vol. 51,

No. 4, 2014, pp. 1094-1105.

[18] Edquist, K. T., Dyakonov, A. A., Wright, M. J., and Tang, C. Y., "Aerothermodynamic

Design of the Mars Science Laboratory Backshell and Parachute Cone," 41st AIAA

Thermophysics Conference, San Antonio, 2009.

[19] Knocke, P. C., Wawrzyniak, G. G., Kennedy, B. M., Desai, P. N., Parker, T. J.,

Golombek, M. P., Duxbury, T. C., and Kass, D. M., "Mars Exploration Rovers Landing

Dispersion Analysis," AIAA/AAS Astrodynamics Specialist Conference and Exhibit,

Providence, 2004.

142

[20] Prince, J. L., Desai, P. N., Queen, E. M., and Grover, M. R.,"Mars Phoenix Entry,

Descent, and Landing Simulation Design and Modeling Analysis," Journal of Spacecraft

and Rockets, Vol. 48, No. 5, 2011, pp. 756-764.

[21] Dutta, S., and Way, D. W., "Comparison of the Effects of Velocity and Range Triggers

on Trajectory Dispersions for the Mars 2020 Mission," 2017 AIAA Atmospheric Flight

Mechanics Conference, Grapevine, 2017.

[22] Kornfeld, R. P., Prakash, R., Devereaux, A. S., Greco, M. E., Harmon, C. C., and Kipp,

D. M., "Verification and Validation of the Mars Science Laboratory/Curiosity Rover

Entry, Descent, and Landing System," Journal of Spacecraft and Rockets, Vol. 51, No. 4,

2014, pp. 1251-1269.

[23] Edquist, K. T., Hollis, B. R., Dyakonov, A. A., Laub, B., Wright, M. J., Rivellini, T. P.,

Slimko, E. M., and Willcockson, W. H., "Mars Science Laboratory Entry Capsule

Aerothermodynamics and Thermal Protection System," IEEE Aerospace Conference, Big

Sky, 2007.

[24] Weiss, J. M., and Guernsey, C. S., “Design and Development of the MSL Descent Stage

Propulsion System,” AAS/AIAA Space Flight Mechanics Meeting, Kauai, 2013, AAS 13-

458.

[25] Klein, V., Morelli, E. A., Aircraft System Identification: Theory and Practice, AIAA

Education Series, AIAA, Reston, VA, 2006.

[26] Brandon, J. M., Derry, S. D., Heim, E. H., Hueschen, R. M., Bacon, B. J., “Ares-I-X

Stability and Control Flight Test: Analysis and Plans,” AIAA Space 2008 Conference &

Exposition, San Diego, 2008, AIAA 2008-7807.

[27] Grauer, J., “Aircraft Fault Detection using Real-Time Frequency Response Estimation,”

AIAA Guidance, Navigation, and Control Conference, San Diego, 2016, AIAA 2016-

0372.

[28] Song, Y., Campa, G., Napolitano, M., Seanor, B., and Perhinschi, M. G., "Online

Parameter Estimation Techniques Comparison Within a Fault Tolerant Flight Control

System," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 3, 2002, pp. 528-

537.

143

[29] Rogers, J., and Slegers, N., "Terminal Guidances for Complex Drop Zones Using

massively Parallel Processing," Aerodynamic Decelerator Systems Technology

Conferences, Daytona Beach, 2013.

[30] Rogers, J., and Slegers, N., "Robust Parafoil Terminal Guidance Using Massively

Parallel Processing," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 5, 2013,

pp. 1336-1345.

[31] Slegers, N., Brown, A., Rogers, J., “Experimental investigation of stochastic parafoil

guidance using a graphics processing unit,” Control Engineering Practice, Vol. 36, Mar.

2015, pp.27-38.

[32] Striepe, S. A., Powell, R. W., Desai, P. N., Queen, E. M., Way, D. W., Prince, J. L.,

Cianciolo, A. M., Davis, J. L., Litton, D. K., Maddock, R. M., Shidner, J. D., Winski, R.

G., O’Keefe, S. A., Bowes, A. G., Aguirre, J. T., Garrison, C. A., Hoffman, J. A., Olds,

A. D., Dutta, S., Zumwalt, C. H., White, J. P., Brauer, G. L., Marsh, S. M., Lugo, R. A.,

Green, J. S., “Program To Optimize Simulated Trajectories II (POST2): Utilization

Manual,” Vol. 2, Ver. 4.0.0.r1173, July 2017.

[33] Dwyer Cianciolo, A. M., Davis, J. L., Komar, D. R., Munk, M. M., Samareh, J. A.,

Willimas-Byrd, J. A., Zang, T. A., Powell, R. W., Shidner, J. D., Stanley, D. O., Wilhite,

A. W., Kinney, D. J., McGuire, M. K., Arnold, J. O., Howard, A. R., Sostaric, R. R.,

Studak, J. W., Zumwalt, C. H., Llama, E. G., Casoliva, J., Ivanov, M. C., Clark, I., and

Sengupta, A.,"Entry, Descent and Landing Systems Analysis Study: Phase 1 Report,"

NASA/TM-2010-216720, 2010.

[34] Cianciolo, A. D. , and Polsgrove, T.,"Human Mars Entry, Descent, and Landing

Architecture Study Overview," AIAA SPACE Conference and Exposition, AIAA 2016-

5494, 2016.

[35] Cianciolo, A. D., and Polsgrove, T. T., "Human Mars Entry, Descet and Landing

Architecture Study: Phase 2 Summary," 2018 AIAA SPACE and Astronautics Forum and

Exposition, Orlando, 2018.

[36] Dwyer-Cianciolo, A., Polsgrove, T., “Human Mars Entry, Descent, and Landing

Architecture Study Overview,” AIAA SPACE Conferences and Exposition, September

2016, AIAA 2016-5494.

144

[37] Polsgrove, T., Chapman, J., Sutherlin, S., Taylor, B., Fabisinski, L., Collins, T., Dwyer-

Cianciolo, A., Samareh, J., Robertson, E., Studak, B., Vitalpur, S., Lee, A., Rakow, G.,

“Human Mars Lander Design for NASA’s Evolvable Mars Campaign,” 2016 IEEE

Aerospace Conference, Big Sky, 2016.

[38] Ball, A. J., Garry, J. R. C., Lorenz, R. D., and Kerzhanovich, V. V., Planetary Landers

and Entry Probes, Cambridge, Cambridge University Press, New York, 2007.

[39] Hirschel, E. H., and Weiland, C., Selected Aerothermodynamic Design Problems of

Hypersonic Flight Vehicles, Springer-Verlag, Berlin, 2009.

[40] Regan, F. J., and Anandakrishnan, S. M., Dynamics of Atmospheric Re-Entry, American

Institute of Aeronautics and Astonautics, Inc., Washington DC, 1993.

[41] Launius, R. D., and Jenkins, D. R., Coming Home: Reentry and Recovery from Space,

U.S. Government Printing Office, Washington, DC, 2011.

[42] NASA, "Orion: America’s Next Generation Spacecraft," [online], URL:

https://www.nasa.gov/pdf/491544main_orion_book_web.pdf [cited 28 March 2019].

[43] Couluris, J., and Garvey, T., "SpaceX Mission Operations," SpaceOps 2010 Conference,

Huntsville, 2010.

[44] Blue Origin, "Meet New Shepard," [online], URL: https://www.blueorigin.com/

new-shepard [cited 4 January 2019].

[45] Boeing, "CST-100 Starliner," [online], URL: http://www.boeing.com/space/starliner/

[cited 4 January 2019].

[46] Howard, R. D., Krevor, Z. C., Mosher, T., Scott, K. P., Voss, J. S., Sanchez, M. J., and

Curry, J. M., "Dream Chaser Commercial Crewed Spacecraft Overview," 17th AIAA

International Space Planes and Hypersonic Systems and Technologies Conference, San

Francisco, 2011.

[47] Virgin Galactic, "SpaceshipTwo: An Introductory Guide for Payload Users," [online],

Rev. WEB005, URL: https://static1.squarespace.com/static/540c8aace4b08e28fe4ab77a/

t/57f28789579fb34c246868d4/1475512271922/VG_PUG_WEB005_20160503.pdf,

[cited 9 March 2019].

https://www.blueorigin.com/
http://www.boeing.com/space/starliner/

145

[48] Green, J. S., “Morphing Hypersonic Inflatable Aerodynamic Decelerators,” M.S. Thesis,

Mechanical and Aerospace Engineering Dept., Univ. of Virginia, Charlottesville, VA,

2012.

[49] Polsgrove, T. P., Percy, T. K., Garcia, J. C., Ciandiolo, A. D., Samareh, J. A., Lugo, R.

A., Robertson, E. A., Cerimele, C. J., Sostaric, R. R., and Garcia, J. A., "Human Mars

Entry, Descent and Landing Architecture Study: Rigid Decelerators," 2018 AIAA SPACE

and Astronautics Forum and Exposition, Orlando, 2018.

[50] Cerimele, C. J., Robertson, E. A., Sostaric, R. R., Campbell, C. H., Robinson, P., Matz,

D. A., Johnson, B. J., Stachowiak, S. J., Garcia, J. A., Bowles, J. V., Kinney, D. J., and

Theisinger, J. E., "A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry,

Descent, and Landing," AIAA Guidance, Navigation, and Control Conference,

Grapevine, 2017.

[51] Sallazzo, C., Wheadon, J., Lebreton, J. P., Clausen, K., Blancquaert, T., Witasse, O.,

Perez Ayucar, M., Schipper, A. M., Couzin, P., Salt, D., Hermes, M., and Johnsson, M.,

"The Huygens Probe Mission to Titan: Engineering the Operational Success," SpaceOps

2006 Conference, Rome, 2006.

[52] Munk, M., Prince, J., Chandler, F., Campbell, C., Cheatwood, F. M., Moholt, M.,

Steltzner, A., Venkatapathy, E., and Wright, M., "NASA Technology Roadmaps - TA 9:

Entry, Descent, and Landing Systems," National Aeronautic and Space Administration,

Washington DC, 2015.

[53] Braun, R. D., Sforzo, B., and Campbell, C.,"Advancing Supersonic Retropropulsion

Using Mars-Relevant Flight Data: An Overview," AIAA SPACE and Astronautics Forum

and Exposition, Orlando, 2017.

[54] Edquist, K. T., Korzun, A. M., Dyakonov, A. A., Studak, J. W., Kipp, D. M., and

Dupzyk, I. C., "Development of Supersonic Retropropulsion for Future Mars Entry,

Descent, and Landing Systems," Journal of Spacecraft and Rockets, Vol. 51, No. 3, 2014,

pp. 650-663.

[55] Korzun, A. M., Braun, R. D., and Cruz, J. R., "Survey of Supersonic Retropropulsion

Technology for Mars Entry, Descent, and Landing," Journal of Spacecraft and Rockets,

Vol. 46, No. 5, 2009, pp. 929-937.

146

[56] Korzun, A. M., Cordell Jr., C. E., and Braun, R. D., "Computational Aerodynamic

Predictions of Supersonic Retropropulsion Flowfields," Journal of Spacecraft and

Rockets, Vol. 50, No. 5, 2013, pp. 950-960.

[57] Korzun, A. M., and Braun, R. D., "Performance Characterization of Supersonic

Retropropulsion for High-Mass Mars Entry Systems," Journal of Spacecraft and Rockets,

Vol. 47, No. 5, 2010, pp. 836-848.

[58] Edquist, K. T., Korzun, A. M., Bibb, K. L., Schauerhamer, D. G., Ma, E. C., McCloud, P.

L., Palmer, G. E., and Monk, J. D., "Comparison of Navier-Stokes Flow Solvers to

Falcon 9 Supersonic Retropropulsion Flight Data," AIAA SPACE and Astronautics

Forum and Exposition, Orlando, 2017.

[59] Sell, S. W., Davis, J. L., San Martin, A. M., and Serricchio, F., "Powered Flight Design

and Performance Summary for the Mars Science Laboratory Mission," Journal of

Spacecraft and Rockets, Vol. 51, No. 4, 2014, pp. 1197-1207.

[60] Dunbar, B., "Apollo 12 and Surveyor 3,"[online], URL: https://www.nasa.gov/

mission_pages/LRO/multimedia/lroimages/lroc_20090903_apollo12.html [cited 7

January 2019].

[61] Zvara, J., and Bryson, A. E., "Entry Vehicle Control," NASA SP-8028, Washington, DC,

1969.

[62] Harpold, J. C., and Gavert, D. E., "Space Shuttle Entry Guidance Performance Results,"

Journal of Guidance, Control, and Dynamics, Vol. 6, No. 6, 1983, pp. 442-447.

[63] Ingoldby, R. N., "Guidance and Control System Design of the Viking Planetary Lander,"

Journal of Guidance and Control, Vol. 1, No. 3, 1978, pp. 189-196.

[64] Klumpp, A. R., "Apollo Lunar Descent Guidance," Automatica, Vol. 10, 1974, pp. 133-

146.

[65] Singh, G., SanMartin, A. M., and Wong, E. C., "Guidance and Control Design for

Powered Descent and Landing on Mars," 2007 IEEE Aerospace Conference, Big Sky,

2007, pp. 1-8.

147

[66] Forest, L. M., Kessler, L. J., and Homer, M. L., "Design of a Human-Interfactive

Autonomous Flight Manager (AFM) for Crewed Lunar Landing," AIAA Infotech

conference and Exhibit, Rohnert Park, 2007.

[67] Steinfeldt, B. A., Grant, M. J., Matz, D. A., Braun, R. D., and Barton, G. H., "Guidance,

Navigation, and Control System Performance Trades for Mars Pinpoint Landing,"

Journal of Spacecraft and Rockets, Vol. 47, No. 1, 2010, pp. 188-198.

[68] Blackmore, L., Acikmese, B., and Scharf, D. P., "Minimum-Landing-Error Powered-

Descent Guidance for Mars Landing Using Convex Optimization," Journal of Guidance,

Control, and Dynamics, Vol. 33, No. 4, 2010, pp. 1161-1171.

[69] Acikmese, B., and Ploen, S. R., "Convex Programming Approach to Powered Descent

Guidance for Mars Landing," Journal of Guidance, Control, and Dynamics, Vol. 30, No.

5, 2007, pp. 1353-1366.

[70] Ploen, S. R., Behcet, A., and Wolf, A., "A Comparison of Powered Descent Guidance

Laws for Mars Pinpoint Landing," AIAA/AAS Astrodynamics Specialist Conference and

Exhibit, Keystone, 2006.

[71] Rea, J. R., and Bishop, R. H., "Analytical Dimensional Reduction of a Fuel Optimal

Powered Descent Subproblem," AIAA Guidance, Navigation, and Control Conference,

Toronto, 2010.

[72] Cerimele, C. J., and Gamble, J. D., "A Simplified Guidance Algorithm for Lifting

Aeroassist Orbital Transfer Vehicles," AIAA 23rd Aerospace Sciences Meeting, Reno,

1985.

[73] Higgins, J. P., "An Aerobraking Guidance Concept for a Low L/D AOTV," The Charles

Stark Draper Laboratory, Inc., Cambridge, 1984.

[74] Lugo, R. A., Karlgaard, C. D., Powell, R. W., and Cianciolo, A. D., "Integrated Flush Air

Data Sensing System Modeling for Planetary Entry Guidance with Direct Force Control,"

AIAA SciTech 2019 Forum, San Diego, 2019.

[75] Masciarelli, J., Deppen, J., Bladt, J., Fleck, J., and Lawson, D., "Demonstration of an

Aerocatpure GN&C System Through Hardware-in-the-Loop Simulations," AAS 10-032,

2010.

148

[76] Gamble, J. D., Cerimele, C. J., Moore, T. E., and Higgins, J., "Atmospheric Guidance

Concepts for an Aeroassist Flight Experiment," Journal of the Astronautical Sciences,

Vol. 36, 1968, pp. 45-71.

[77] Masciarelli, J. P., and Queen, E. M., "Gudance Algorithms For Aerocapture At Titan,"

39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, 2003.

[78] Scharf, D. P., Acikmese, B., Cueri, D., Benito, J., and Casoliva, J., "Implementation and

Experimental Demonstration of Onboard Powered-Descent Guidance," Journal of

Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 213-229.

[79] Boisard, R., Delattre, G., and Falissard, F., "Computational Fluid Dynamics as a Support

to Counter-Rotating Open-Rotor Wind-Tunnel Test Analysis," Journal of Aircraft, Vol.

51, No. 2, 2014, pp. 614-628.

[80] Turley, J., "Introduction to Intel Architecture: The Basics," Intel White Paper, [online],

URL: https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-

introduction-basics-paper.pdf [cited 6 January 2019].

[81] Steinicke, F., Being Really Virtual: Immersive Natives and the Future of Virtual Reality,

Springer Nature, Cham, 2016.

[82] Peper, F., "The End of Moore’s Law: Opportunities for Natural?," New Generation

Computing, Vol. 35, No. 3, 2017, pp. 253-269.

[83] Rauber, T., and Rünger, G., Parallel Programming: for Multicore and Cluster Systems,

2nd ed., Springer-Verlag, Berlin, 2013.

[84] NVIDIA, "NVIDIA Tesla P100: The Most Advanced Datacenter Accelerator Ever Built,"

NVIDIA White Paper, [online], URL: https://images.nvidia.com/content/pdf/tesla/

whitepaper/pascal-architecture-whitepaper.pdf, [cited 6 January 2019] 2016.

[85] Meuer, H., Strohmaier, E., Dongarra, J., Simon, H., and Meuer, M., "Top 500 The List.,"

[online], URL: https://www.top500.org/ [cited 30 January 2019].

[86] Moore, A., and Wilson, R., FPGAs for Dummies, 2nd ed., John Wiley & Sons, Inc.,

Hoboken, 2017.

149

[87] Lovelly, T. M., and George, A. D., "Comparative Analysis of Present and Future Space-

Grade Processors with Device Metrics," Journal of Aerospace Information Systems, Vol.

14, No. 3, 2017, pp. 184-197.

[88] Powell, W. A., Johnson, M. A., Wilmot, J., Some, R., Gostelow, K. P., Reeves, G., and

Doyle, R. J., "Enabling Future Robotic Missions with Multicore Processors,"

Infotech@Aerospace Conferences, St. Louis, 2011.

[89] Maurer, R. H., Fraeman, M. E., Martin, M. N., and Roth, D. R., "Harsh Environments:

Space Radiation Environments, Effects, and Mitigation," John Hopkins APL Technical

Digest, Vol. 28, No. 1, 2008, pp. 17-29.

[90] Lin, Y., Zwolinski, M., and Halak, B., "A Low-Cost, Radiation-Hardened Method for

Pipeline Protection in Microprocessors," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 24, No. 5, 2016, pp. 1688-1701.

[91] Schmidt, A. G., French, M., and Flatley, T., "Radiation Hardening by Software

Technique on FPGAs: Flight Experiment Evaluation and Results," 2017 IEEE Aerospace

Conference, Big Sky, 2017.

[92] Goh, E. L., "High Performance Commercial Off-The-Shelf (COTS) Computer System on

the ISS (Spaceborne Computer)," [online]. URL: https://www.nasa.gov/mission_pages/

station/research/experiments/2304.html [cited 2 February 2019].

[93] Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., and Menon, R., Parallel

Programming in OpenMP, Morgan Kaufmann Publishers, San Francisco, 2001.

[94] Buttlar, D., Farrell, J., and Nichols, B., PThreads Programming: A POSIX Standard for

Better Multiprocessing, O'Reilly Media, Sebastopol, 2013.

[95] Sanders, J., and Kandrot, E., CUDA By Example: An Introduction to General-Purpose

GPU Programming, NVIDIA Corporation, Boston, 2011.

[96] Palnitkar, S., Verilog HDL: A Guide to Digital Design and Synthesis, 2nd ed., Prentice

Hall, Palo Alto, 2003.

[97] Pacheco, P. S., Parallel Programming with MPI, Morgan Kaufmann Publishers, Inc., San

Francisco, 1997.

150

[98] Farber, R., Parallel Programming With OpenACC, Elsevier, Inc., Cambridge, 2017.

[99] Justh, H. L., "Mars Global Reference Atmosphere Model 2010 Version: Users Guide,"

NASA/TM-2014-217499, 2014.

[100] Karlgaard, C. D., O'Farrell, C., Ginn, J. M., and Van Norman, J. W., "Supersonic Flight

Dynanmics Test 2: Trajectory Atmosphere, and Aerodynamics Reconstruction,"

AAS/AIAA Spaceflight Mechanics Meeting, Napa, AAS 16-217, 2016.

[101] System IDentification Programs for AirCraft (SIDPAC), Software Package, Ver. 3.0,

Morelli, E. A., Hampton, VA, 2014.

[102] Morelli, E. A., "Multiple Input Design for Real-Time Parameter Estimation in the

Frequency Domain," 13th IFAC Conference on System Identification, Rotterdam, 2003.

[103] Gainer, T. G., and Hoffman, S., "Summary of Transformaiton Equations and Equations

of Motion Used in Free-Flight and Wind-Tunnel Data Reduction and Analysis," NASA

SP-3070, Washington, DC, 1972.

[104] Robers, W. R., "Apollo Experience Report - Lunar Module Landing Gear Subsystem,"

NASA TN D-6850, 1972.

[105] Honeywell Aerospace, "HG9900 Navigation-Grade Inertial Measurement Unit (IMU),"

N61-0491-000-001, [online], URL: https://aerocontent.honeywell.com/aero/common/

documents/myaerospacecatalog-documents/MilitaryAC/HG9900_IMU.pdf [cited 15

February 2018].

[106] NASA JPL, “Mars Science Laboratory: Curiosity Rover,” LS-2013-01-007A-JPL-JPL

400-1516A, [online], URL: https://mars.nasa.gov/files/resources/MSLLithoSet2013.pdf

[cited 10 February 2019].

[107] NASA, "Mars Insight Mission," [online], URL: https://mars.nasa.gov/insight/timeline/

landing/entry-descent-landing/ [cited 10 February 2019].

[108] NASA, "Mars In Our Night Sky," [Oonline], URL: https://mars.nasa.gov/allaboutmars/

nightsky/mars-close-approach/ [cited 23 March 2019].

151

[109] NASA, "Challenges of Getting to Mars: Curiosity's Seven Minutes of Terror," [Online],

URL: https://mars.nasa.gov/resources/20049/challenges-of-getting-to-mars-curiositys-

seven-minutes-of-terror/ [cited 10 Februrary 2019].

[110] Dunbar, J., "Pleiades Supercomputer," [online], URL: https://www.nas.nasa.gov/hecc/

resources/pleiades.html [cited 5 October 2017].

[111] Intel, "Intel Xeon Phi Processor 7210," [online], URL: https://www.intel.com/content/

www/us/en/products/processors/xeon-phi/xeon-phi-processors/7210.html [cited 5

October 2017].

[112] Intel, "Intel Xeon Processor E5-2670," [online], URL: https://ark.intel.com/products/

64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI [cited

5 October 2017].

[113] NVIDIA, "Tesla K40 GPU Accelerator: Board Specification," BD-06902-001_v05,

[online], URL: http://international.download.nvidia.com/tesla/pdf/tesla-k40-passive-

board-spec.pdf [cited 5 October 2017].

[114] NVIDIA, "NVIDIA’s Next Generation CUDA™ Computer Architecture: Kepler™

GK110," Whitepaper V1.0, [online], URL: www.nvidia.com/content/pdf/kepler/nvidia-

kepler-gk110-architecture-whitepaper.pdf [cited 5 October 2017].

[115] Press, W. H., Teukolsky, S. A., Vellerling, W. T., Flannery, B. P., Numerical Recipies in

C The Art of Scientific Computing, 2nd ed., Cambridge University Press, New Deli, 1992.

[116] Gallais, P., Atmospheric Re-Entry Vehicle Mechanics, Springer-Verlag, Berlin, 2007.

[117] Sutton, G. P., and Biblarz, O., Rocket Propulsion Elements, 7th ed., John Wiley & Sons,

Inc., New York, 2001.

[118] Bienia, C., Kumar, S., Jaswinder, P. S., Kai, L., "The PARSEC Benchmark Suite:

Characterization and Architectural Implications," 2008 International Conference on

Parallel Architectures and Compilation Techniques (PACT), Toronto, 2008, pp. 72-81.

[119] NVIDIA, "Profiler User’s Guide," DU-05982-001_v9.0, [online], URL: https://nw.tsuda.

ac.jp/lec/cuda/doc_v9_0/pdf/CUDA_Profiler_Users_Guide.pdf [cited 15 February 2018].

152

[120] NVIDIA, "NVIDIA Tesla V100 GPU Architecture," WP-08608-001_v1.1, [online],

URL: https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-

whitepaper.pdf [cited 15 February 2017].

[121] Fresk, E., and Nikolakopoulos, G., "Full Quaternion Based Attitude Control for a

Quadrotor," 2013 European Control Conference , Zürich, 2013.

[122] Wong, E. C. , Singh, G., and Masciarelli, J. P., "Autonomous Guidance and Control

Design for Hazard Avoidance and Safe Landing on Mars," AIAA Atmospheric Flight

Mechanics Conference and Exhibit, Monterey, 2002.

[123] Intel, "Intel® Xeon® Processor E5-2680," [online], URL: https://ark.intel.com/

products/64583/Intel-Xeon-Processor-E5-2680-20M-Cache-2-70-GHz-8-00-GT-s-Intel-

QPI- [cited 14 February 2019].

[124] Intel, "Intel® Xeon Phi™ Processor 7250," [online], URL: https://ark.intel.com/products/

94035/Intel-Xeon-Phi-Processor-7250-16GB-1-40-GHz-68-core- [cited 14 February

2019].

[125] Intel, "Intel® Xeon® Processor E5-2620 v4," [online], URL: https://ark.intel.com/

content/www/us/en/ark/products/92986/intel-xeon-processor-e5-2620-v4-20m-cache-2-

10-ghz.html [cited 23 March 2019].

[126] Seshardi, V., Mutlu, O., Kozuch, M. A., Mowry, T. C., "The Evicted-Address Filter: A

Unified Mechanism to Address Both Cache Pollution and Thrashing," 21st International

Conference on Parallel Architectures and Compilation Techniques (PACT), Minneapolis,

2012, pp. 355-366.

[127] Lombardo, S. A.; Stathis, J. H.; Linder, B. P.; Pey, K. L.; Palumbo, F.; Tung, C. H.,

"Dielectric Breakdown Mechanisms in Gate Oxides," Journal of Applied Physics, Vol.

98, No. 2, 2005, pp. 121301.1-121301.36.

[128] Kindratenko, V., Numerical Computations with GPUs, Springer International Publishing,

New York, 2014.

153

[129] Chin, J., Coelho, R., Foley, J., Johnstone, A., Nugent, R., Pignatelli, D., Pignatelli, S.,

Powell, N., and Puig-Suari, J., "CubeSat 101: Basic Concepts and Processes for First-

Time CubeSat Developers," NASA CubeSat Launch Initiative, [online], URL:

https://www.nasa.gov/sites/default/files/atoms/files/nasa_csli_cubesat_101_508.pdf

[cited 23 March 2019].

154

Appendices

A Collaboration with Hewlett Packard Enterprise

 In September 2018, researchers at Hewlett Packard Enterprise (HPE) offered a collaboration

opportunity with their research on high performance computing (HPC) hardware operating on the

International Space Station (ISS). This chapter discusses the Spaceborne Computer project by HPE,

and the execution of the OATP guidance software on their commercial off-the-shelf (COTS) HPC

hardware located on the ISS. Much of the information on the Spaceborne Computer project is

unpublished. Some of the information reported here is derived from presentations by the

researchers at HPE and personal communications with them. The HPE Spaceborne Computer Team

were generous enough to review, edit, and approve this appendix.

A.1 Spaceborne Computer Project

 Goh et al. [92], developed a novel software approach to protect computers while operating in

the radiation environment of the ISS without expensive, time-consuming or bulky protective

radiation shielding. Since September 2017, their Spaceborne Computer project has successfully

demonstrated their software-hardening approach on COTS HPC processors aboard the ISS.

 For demonstrating their software-hardening approach, the researchers used four two-socket

COTS Intel® Xeon® E5-2620 (Broadwell) v4 central processing unit (CPU) servers (each of the

four is also referred to as a node). The specifications of the computer hardware are provided in

Table A.1. These four nodes are grouped into two identical systems (each a pair of Broadwell

nodes). The first pair are the space-based computer (SBC) system (located in the ISS), and the

second pair are the Earth-based computer (EBC) system (located in a HPE lab). Within each pair,

one Broadwell node operates at 2.1 GHz, and the second operates at 1.2 GHz. This was done to

determine if processor frequency affected the experiment. Each system is a 4U, approximately 50

kg, and uses 390 W of power27. The SBC system is installed in a side-by-side EXPRESS locker

within the ISS EXPRESS Rack28 [92].

27 The abbreviation U is a size classification typically used for CubeSats; 1U represents a 10 cm

cube [129]. Here the 4U corresponds to a 10X20X20 cm volume.
28 The abbreviation EXPRESS is an acronym for EXpedite the PRocessing of Experiments to Space

Station.

155

Table A.1: Specifications of the Spaceborne Computer project hardware [125].

Hardware
Intel® Xeon® E5-

2620 v4 (Broadwell)

Manufacturer Launch Year 2016

Number of Processor Cores 16 (Two 8-core)

Number of Threads

Supported Per Core
2

Processor Speed [GHz] 2.1/1.2

Cache [MB] 20

Memory Size [GB] 128

Memory Bandwidth [GB/s] 68.3

Thermal Design Power [W] 85

 The software-hardening approach developed by Goh et al. [92] takes two approaches to protect

the computer hardware during high radiation events. 1) Each Broadwell node monitors the power

consumption and thermal output of itself and its neighbor. Each node has the ability to slowdown

either itself or its neighbor. Should a power or temperature anomaly be detected, a node (or its

neighbor) will first slow down the affected node. If the anomaly continues, then the node will

progress to idle and then be shutdown. 2) If an area of memory continuously experiences a change

of state (a bit flipping from 0 to 1 or vice versa), it will be mapped out of use. Through all of the

testing on the ISS, neither node has needed to map out a section of memory; repeated bit flipping

in a particular location in memory was not observed.

 The software-hardening is intended to execute alongside project relevant software. To stress

the computer resources while the software-hardening is operating, HPE had the Broadwell nodes

execute a continuous series of standard benchmark tests. These benchmark tests include, but are

not limited to: High Performance Computing Linpack (HPL), High Performance Conjugate

Gradients (HPCG), and NASA Parallel Benchmarks (NPB). At the time of this writing, much of

the results and data from the Spaceborne Computer project is yet to be published. It is anticipated

that publications will occur after the SBC systems are returned to Earth on SpaceX Commercial

Resupply Service – 17. Once back on Earth, a post-flight analysis will investigate the wear on the

computer hardware. It is notable that the Spaceborne Computer project, for over 18 months, has

been the first to successfully demonstrate the near-continuous operation of COTS HPC hardware

in the radiation environment inside the ISS. This demonstration is a first step in enabling cutting

edge COTS computer hardware for space applications.

156

A.2 Onboard Autonomous Trajectory Planner Guidance Operating in

Space

 On December 20th, 2018 the OATP guidance software was incorporated into the suite of

benchmarking tests that HPE uses for the SBC and EBC systems. The goals of testing the OATP

guidance software on the SBC on the ISS were: 1) determine if the OATP guidance could operate

in a space relevant environment on the HPC hardware equipped with the software-hardening, and

2) determine performance of the OATP guidance on the SBC system equipped with

software-hardening.

 To meet the above goals, a test package was built to exercise the OATP guidance29. First, this

test package compared saved results to a check file. This check file contained the standard outputs

that are expected from the OATP guidance. Comparing to the check file helped determine the extent

the radiation environment and the software-hardening process effected the OATP guidance results.

Second, the execution time was tracked by both the OATP test package and the HPE test

suite manager.

 All tests began with a text file of 510 sample vehicle states used as initial conditions for the

OATP guidance software. These states consist of 51 unique vehicle states that are repeated 10

times30. The sample vehicle states are taken at 1 s intervals from the trajectory to the nominal

landing target, (Target 1 in Chapter 6), as shown in Figure A.1. Vehicle states are passed to the

OATP guidance software that then generates, simulates, and evaluates 360 candidate trajectories.

For each of these candidate trajectories, the following was saved to a report file: the five pruning

metrics (from Section 5.4.1), three score elements in Eq. (5.64a), nine variables defining the

candidate trajectory (three coefficients for 𝑙, three coefficients for 𝜗, two coefficients for 𝑧, and

𝑡𝑔𝑜). Calculations for these candidate trajectory definitions are Eqs. (5.29), (2.11), and (2.10). At

the conclusion of the OATP guidance benchmark, data for 183,600 candidate trajectories (510•360)

are saved to a report file. This report file is then compared to a check file in two ways. The first

checks for bitwise equivalence between the report and check files, which determines if the two files

are identical to the bit. The second computes and saves the percent difference of each value between

the two files.

29 Test package was built with the aid of R. Anthony Williams, NASA LaRC.
30 This was done due to one iteration through the 51 sample states executing too quickly on the

Broadwell nodes to be useful to HPE.

157

Figure A.1: Sampling of the vehicle states used as initial conditions for the OATP guidance

software testing.

 At the time of this writing, the OATP guidance software continues to operate aboard the SBC

and EBC systems, and continues to provide data on its execution. Between December 20th, 2018

and March 23rd, 2019, the OATP guidance software testing package performed 1,251 executions

on SBC-1, and 808 executions on SBC-2. In total, the OATP guidance software has been called

1,050,090 times31, on software-hardened COTS processors aboard the ISS. To date, no differences

have been observed between the check file and the report files generated by the OATP guidance,

as desired.

 Execution timing information is provided by HPE through their Spaceborne Computer project

dashboard. A sample image of the dashboard from January 30th, 2019 is shown in Figure A.2. This

dashboard is used by the engineers at HPE as an initial look at the performance and operation of

both the SBC and EBC systems. The top left of the dashboard provides the current time across

several time zones. Just below the clocks are the total number of orbits the ISS has completed since

31 2,059 test calls × the 510 calls to the OATP guidance per test call.

158

the SBC began operating on the ISS. A map containing the current position of the ISS along its

orbit is located on the top right. The bottom of the dashboard contains the performance information

of each computer system (SBC and EBC) for comparison. Each row of data corresponds to a

particular node, indicated by ‘sbc-1,’ ‘sbc-2,’ ‘ebc-1,’and ‘ebc-2.’ Just below each node name is

the processor speed; it’s either 2.1 GHz or 1.2 GHz. Each column after the node names are the

benchmark test suites. The OATP guidance software test package is indicated by “LaRC_OATP.”

Under each benchmark test suite is “r/iter/time”. This indicates if the benchmark is currently

running, followed by the number of completed iterations to date for that benchmark and the

execution time of the last successful benchmark run. The OATP guidance was operating at the time

Figure A.2 was taken. This is indicated by the 1 in the “r” slot for the sbc-2 and ebc-2 nodes. As of

January 30th, 2019, the number of executions on the sbc-1, sbc-1, ebc-1, and ebc-2 nodes were 507,

334, 1007, and 694, respectively. There are more executions on the EBC systems, because they

were used to verify the correct operation of the OATP guidance software test package before it was

transmitted to the SBC systems. After each benchmark test completes, its execution time is shown

in the “time” slot. Note that the execution time on sbc-1 and ebc-1 are approximately half of the

sbc-2 and ebc-2 nodes, which is directly related to the processor speed. If a benchmark test is

currently operating, then how long that benchmark has been running is indicated. At the time Figure

A.2 was taken, the sbc-2 and ebc-2 nodes had been operating on the LaRC_OATP test for 5.80 and

5.83 minutes, respectively.

 From Figure A.2, the execution time for the OATP guidance test package was 9.93 and 19.33

minutes for the sbc-1 and sbc-2 nodes. This timing information includes the overhead of the

software-hardening approach developed by HPE, the OATP guidance testing package, and all I/O.

Figure A.3 shows a subset of the execution times recorded internally by the OATP guidance

software on both SBC systems. This subset of timing data is for the OATP guidance operating on

the initial conditions taken at 0 s from Figure A.3. Each dot in Figure A.3 represents one call by

the HPE test manager, and is an average of the 10 iterations performed per call. The overall average

execution times for the OATP guidance on sbc-1 and sbc-2 are 2.06 s and 3.98 s.

 Comparing the timing results found here to those in Section 5.5 is difficult. The Intel® Xeon®

E5-2680 processors, used in Section 5.5, operate at 2.4 GHz and have 56 available threads. The

Intel® Xeon® E5-2620 v4 processors, that comprise the SBC systems, operate at maximum of 2.1

GHz and have 32 threads available. Additionally, the testing performed in Section 5.5 did not

require I/O, which has a significant impact on the OATP guidance execution time.

159

Figure A.2: A snapshot of the Spaceborne Computer Project dashboard from January 30th, 2019. Image credit: John Kichury, HPE.

160

Figure A.3: Execution time results of the OATP guidance software on the two SBC nodes aboard the ISS.

161

 The gaps in data observed in Figure A.3 are times when the SBC systems were idle or powered

down. Idling or powering down the SBC systems were either scheduled, due to ISS operations, or

unscheduled, due to certain types of anomalies. Three payload Ethernet network anomalies (on 1/4,

1/31, and 2/7) forced the SBC systems to idle, and can be seen by the associated gaps in Figure

A.3. Gaps not around these dates were due to shutdowns required by the normal operations aboard

the ISS. Two L3 cache error anomalies also occurred: one on 1/4 on sbc-1, and another on 1/5 on

sbc-2. The current hypothesis for these L3 cache errors is that they were due to radiation hits on

the hardware. Both cache errors were corrected by ECC, and did not require the nodes to idle or

power down. However, after sbc-1 was brought back from idle, the execution time approximately

doubled, which can be seen in Figure A.3 by the group of 19 outliers at approximately 4 s of

execution time. These outliers were due to human error. For safety, the EBC and SBC systems must

be manually brought back from idle. In bringing back the sbc-1 node from idle, the processor

frequency was mistakenly not set to 2.1 GHz, which resulted in the slow execution times.

 The researchers at HPE have laid the groundwork for the utilization of COTS HPC hardware

for space applications. Historically, these applications have required radiation hardened processors

that typically lag several generation behind COTS processor hardware. The ability to use COTS

HPC hardware in space enables new algorithms and programming paradigms for space-bound

computing, which includes the use of the OATP guidance software. The collaboration with HPE

has demonstrated that the OATP guidance software reliably provides correct results while operating

in a space relevant environment on HPC hardware equipped with software-hardening. It is

recommended that future work also investigates the performance of the OATP guidance operating

on HPC hardware that is experiencing the high accelerations and vibrations associated with EDL.

162

B Maneuver Effects on Model Fit Error for Studied Engine Failure

Modes

 Maneuvers are used to increase the data information content used by the adaptive control

allocation method. These maneuvers can vary in duration (maneuver time length) and amplitude

(maneuver multiplier). The changes in data information content that these maneuvers provide

directly affect how well the model created by the SLSFD fits. The following are results of maneuver

parameters and their effect on the overall model fit error, described by Eq. (4.35). The box-and-

whisker plots (in blue and red) show the result of a PDV implementing the corresponding maneuver

time length and multiplier. The box-and-whisker plots provide a rough statistical interpretation of

the 10 versions of the maneuver time length. Plant models are created for a PDV experiencing two

failure scenarios: Loss of thrust, and thrust stuck full-on. These scenarios are applied to each of the

eight engines from the PDV defined in Chapter 4.

B.1 Engine Failure – Total Loss of Thrust

Figure B.1: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a complete loss of thrust in engine one.

163

Figure B.2: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a complete loss of thrust in engine two.

Figure B.3: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a complete loss of thrust in engine three.

164

Figure B.4: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a complete loss of thrust in engine four.

Figure B.5: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a complete loss of thrust in engine five.

165

Figure B.6: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a complete loss of thrust in engine six.

Figure B.7: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a complete loss of thrust in engine seven.

166

Figure B.8: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a complete loss of thrust in engine eight.

B.2 Engine Failure – Engine Thrust Stuck Full-On

Figure B.9: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a thrust stuck full-on failure in engine one.

167

Figure B.10: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a thrust stuck full-on failure in engine two.

Figure B.11: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a thrust stuck full-on failure in engine three.

168

Figure B.12: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a thrust stuck full-on failure in engine four.

Figure B.13: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a thrust stuck full-on failure in engine five.

169

Figure B.14: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a thrust stuck full-on failure in engine six.

Figure B.15: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a thrust stuck full-on failure in engine seven.

170

Figure B.16: Model fit error versus throttle multiplier and maneuver time length. Models are

generated for a PDV experience a thrust stuck full-on failure in engine eight.

171

C Maneuver Effects on Targeting Capability for Studied Engine Failure

Modes

 As shown in Appendix B, maneuver duration (maneuver time length) and amplitude (maneuver

multiplier) directly affect the accuracy in identifying the vehicle model, and these in turn affect the

ability of the control system to safely land the vehicle in the event of an engine failure. Plots in this

section show the end effects maneuver parameters have on the ability of the control system to meet

target conditions in the event of an engine failure. Plots are organized in increasing maneuver

throttle multiplier and show the PDV targeting conditions. These figures show the PDV conditions

planet-relative velocity, flight path angle, and pitch angle at key targeting points on the trajectory.

The 𝑥-axis of each plot correspond to the different maneuver lengths of time studied. Within each

figure the black dashed line represents the nominal flight of the PDV, where no failure occurred.

The green diamonds represent a PDV experiencing a failure, without implementing the adaptive

control allocation method. The box-and-whisker plots (in blue and red) show the result of a PDV

implementing the corresponding maneuver time length and multiplier. The box-and-whisker plots

provide a rough statistical interpretation of the 10 versions of the maneuver time length. Plots in

Sections C.1 and C.2 investigate the effects maneuver parameters have in meeting target conditions

for the loss of thrust and thrust stuck full-on engine failure scenarios. In Section C.1, the left column

of each plot are the conditions at the initiation of vertical descent, and the right column are

conditions at touchdown. In Section C.2, the vertical descent phase is skipped and the vehicle

follows the gravity turn guidance trajectory to the ground. So, only the conditions at touchdown

are shown in that section.

172

C.1 Engine Failure – Total Loss of Thrust

Figure C.1: Maneuver throttle amplitude of 5% of max thrust applied to the loss of thrust in

engine one scenario.

Figure C.2: Maneuver throttle amplitude of 10% of max thrust applied to the loss of thrust

in engine one scenario.

173

Figure C.3: Maneuver throttle amplitude of 20% of max thrust applied to the loss of thrust

in engine one scenario.

Figure C.4: Maneuver throttle amplitude of 30% of max thrust applied to the loss of thrust

in engine one scenario.

174

Figure C.5: Maneuver throttle amplitude of 5% of max thrust applied to the loss of thrust in

engine two scenario.

Figure C.6: Maneuver throttle amplitude of 10% of max thrust applied to the loss of thrust

in engine two scenario.

175

Figure C.7: Maneuver throttle amplitude of 20% of max thrust applied to the loss of thrust

in engine two scenario.

Figure C.8: Maneuver throttle amplitude of 30% of max thrust applied to the loss of thrust

in engine two scenario.

176

Figure C.9: Maneuver throttle amplitude of 5% of max thrust applied to the loss of thrust in

engine three scenario.

Figure C.10: Maneuver throttle amplitude of 10% of max thrust applied to the loss of thrust

in engine three scenario.

177

Figure C.11: Maneuver throttle amplitude of 20% of max thrust applied to the loss of thrust

in engine three scenario.

Figure C.12: Maneuver throttle amplitude of 30% of max thrust applied to the loss of thrust

in engine three scenario.

178

Figure C.13: Maneuver throttle amplitude of 5% of max thrust applied to the loss of thrust

in engine four scenario.

Figure C.14: Maneuver throttle amplitude of 10% of max thrust applied to the loss of thrust

in engine four scenario.

179

Figure C.15: Maneuver throttle amplitude of 20% of max thrust applied to the loss of thrust

in engine four scenario.

Figure C.16: Maneuver throttle amplitude of 30% of max thrust applied to the loss of thrust

in engine four scenario.

180

Figure C.17: Maneuver throttle amplitude of 5% of max thrust applied to the loss of thrust

in engine five scenario.

Figure C.18: Maneuver throttle amplitude of 10% of max thrust applied to the loss of thrust

in engine five scenario.

181

Figure C.19: Maneuver throttle amplitude of 20% of max thrust applied to the loss of thrust

in engine five scenario.

Figure C.20: Maneuver throttle amplitude of 30% of max thrust applied to the loss of thrust

in engine five scenario.

182

Figure C.21: Maneuver throttle amplitude of 5% of max thrust applied to the loss of thrust

in engine six scenario.

Figure C.22: Maneuver throttle amplitude of 10% of max thrust applied to the loss of thrust

in engine six scenario.

183

Figure C.23: Maneuver throttle amplitude of 20% of max thrust applied to the loss of thrust

in engine six scenario.

Figure C.24: Maneuver throttle amplitude of 30% of max thrust applied to the loss of thrust

in engine six scenario.

184

Figure C.25: Maneuver throttle amplitude of 5% of max thrust applied to the loss of thrust

in engine seven scenario.

Figure C.26: Maneuver throttle amplitude of 10% of max thrust applied to the loss of thrust

in engine seven scenario.

185

Figure C.27: Maneuver throttle amplitude of 20% of max thrust applied to the loss of thrust

in engine seven scenario.

Figure C.28: Maneuver throttle amplitude of 30% of max thrust applied to the loss of thrust

in engine seven scenario.

186

Figure C.29: Maneuver throttle amplitude of 5% of max thrust applied to the loss of thrust

in engine eight scenario.

Figure C.30: Maneuver throttle amplitude of 10% of max thrust applied to the loss of thrust

in engine eight scenario.

187

Figure C.31: Maneuver throttle amplitude of 20% of max thrust applied to the loss of thrust

in engine eight scenario.

Figure C.32: Maneuver throttle amplitude of 30% of max thrust applied to the loss of thrust

in engine eight scenario.

188

C.1 Engine Failure – Engine Thrust Stuck Full-On

Figure C.33: Maneuver throttle amplitude of 5% of max thrust applied to the where engine

one is stuck full-on.

Figure C.34: Maneuver throttle amplitude of 10% of max thrust applied to the where engine

one is stuck full-on.

189

Figure C.35: Maneuver throttle amplitude of 20% of max thrust applied to the where engine

one is stuck full-on.

Figure C.36: Maneuver throttle amplitude of 30% of max thrust applied to the where engine

one is stuck full-on.

190

Figure C.37: Maneuver throttle amplitude of 5% of max thrust applied to the where engine

two is stuck full-on.

Figure C.38: Maneuver throttle amplitude of 10% of max thrust applied to the where engine

two is stuck full-on.

191

Figure C.39: Maneuver throttle amplitude of 20% of max thrust applied to the where engine

two is stuck full-on.

Figure C.40: Maneuver throttle amplitude of 30% of max thrust applied to the where engine

two is stuck full-on.

192

Figure C.41: Maneuver throttle amplitude of 5% of max thrust applied to the where engine

three is stuck full-on.

Figure C.42: Maneuver throttle amplitude of 10% of max thrust applied to the where engine

three is stuck full-on.

193

Figure C.43: Maneuver throttle amplitude of 20% of max thrust applied to the where engine

three is stuck full-on.

Figure C.44: Maneuver throttle amplitude of 30% of max thrust applied to the where engine

three is stuck full-on.

194

Figure C.45: Maneuver throttle amplitude of 5% of max thrust applied to the where engine

four is stuck full-on.

Figure C.46: Maneuver throttle amplitude of 10% of max thrust applied to the where engine

four is stuck full-on.

195

Figure C.47: Maneuver throttle amplitude of 20% of max thrust applied to the where engine

four is stuck full-on.

Figure C.48: Maneuver throttle amplitude of 30% of max thrust applied to the where engine

four is stuck full-on.

196

Figure C.49: Maneuver throttle amplitude of 5% of max thrust applied to the where engine

five is stuck full-on.

Figure C.50: Maneuver throttle amplitude of 10% of max thrust applied to the where engine

five is stuck full-on.

197

Figure C.51: Maneuver throttle amplitude of 20% of max thrust applied to the where engine

five is stuck full-on.

Figure C.52: Maneuver throttle amplitude of 30% of max thrust applied to the where engine

five is stuck full-on.

198

Figure C.53: Maneuver throttle amplitude of 5% of max thrust applied to the where engine

six is stuck full-on.

Figure C.54: Maneuver throttle amplitude of 10% of max thrust applied to the where engine

six is stuck full-on.

199

Figure C.55: Maneuver throttle amplitude of 20% of max thrust applied to the where engine

six is stuck full-on.

Figure C.56: Maneuver throttle amplitude of 30% of max thrust applied to the where engine

six is stuck full-on.

200

Figure C.57: Maneuver throttle amplitude of 5% of max thrust applied to the where engine

seven is stuck full-on.

Figure C.58: Maneuver throttle amplitude of 10% of max thrust applied to the where engine

seven is stuck full-on.

201

Figure C.59: Maneuver throttle amplitude of 20% of max thrust applied to the where engine

seven is stuck full-on.

Figure C.60: Maneuver throttle amplitude of 30% of max thrust applied to the where engine

seven is stuck full-on.

202

Figure C.61: Maneuver throttle amplitude of 5% of max thrust applied to the where engine

eight is stuck full-on.

Figure C.62: Maneuver throttle amplitude of 10% of max thrust applied to the where engine

eight is stuck full-on.

203

Figure C.63: Maneuver throttle amplitude of 20% of max thrust applied to the where engine

eight is stuck full-on.

Figure C.64: Maneuver throttle amplitude of 30% of max thrust applied to the where engine

eight is stuck full-on.

204

D Software Framework for the Six Degree-of-Freedom Simulation

D.1 Main Function - CPU

main{

 struct tp // integration loop data structure

 // read input data from file

 // Start Timer

 // Loop over the number of trajectories

 #pragma omp parallel for private(tp) nowait

 for(number of trajectories){

 // Initialize data structures

 // Integrate trajectories

 for(number of integration steps){

 runge_kutta(tp); // 4 step Runge-Kutta routine

 // Save current time step to datalog structure

 }

 }

 // End Timer

 // Store output to files

}

D.2 Main Function - GPU

main{

 struct tp // integration loop data structure

 // read input data from file

 // Start Timer

 // Loop over the number of trajectories

 #pragma acc data create(tp)

 {

 #pragma acc parallel loop independent gang vector

 for(number of trajectories){

 // Initialize data structures

 }

 // Integrate trajectories

 #pragma acc loop seq

205

 for(number of integration steps){

 // Loop over the number of trajectories

 #pragma acc parallel loop independent gang vector

 for(number of trajectories){

 runge_kutta(tp); // 4 step Runge-Kutta routine

 }

 // Save current time step to datalog structure

 #pragma acc update host(tp)

 }

 }

 // End Timer

 // Store output to files

}

D.3 Runge-Kutta Function

runge_kutta(tp){

 // Save off state

 ysave = tp->y;

 // Obtain outer loop rates

 tp->dydt = trajectory_funct(time,tp->y);

 // Perform inner loop integration

 // Compute first step

 // Compute second step

 // Compute third step

 // Compute fourth step

 // Perform outer loop integration

 tp->y = ysave + step1 + step2 + step3 + step4;

}

206

D.4 Trajectory Simulation Function

trajectory_funct(time,temp){

 // Gravity model

 grav_model(temp->altitude,temp->force_grav);

 // Atmospheric model

 atmo_model(temp->altitude,temp->pres);

 // Throttle and propulsion models

 prop_model();

 // Sum forces and moments

 // Solve EoM to obtain rates

 eom_solver(temp);

}

207

E Software Framework for the Onboard Autonomous Trajectory

Planner Guidance Software

E.1 Interface Function

Interface(input_struct, output_struct){

 // Initialize Data Structures

 struct os // data structure shared amongst all trajectories

 struct tp // data structure private to each trajectory

 // Collect Inputs

 // Estimate Time-to-Go

 if (t_go > t_go_minimum){

 // Calculate values shared amongst all trajectories

 // Values in os structure defined here

 // Enter main guidance function

 oatp_guidance(os,tp,champion_traj,valid_sln_flg);

// If a viable solution is found pass champion trajectory

// solution to outputs

 if (valid_sln_flg == 1){

 // A viable solution was found. Pass new trajectory

 // solution

 output_struct = champion_struct;

 }

 else{

 // A viable solution was not found. Therefore, do not

 // pass a trajectory solution back

 }

 }

 else{

 // Close to target, therefore follow previous trajectory

 }

}

E.2 Main Guidance Function

oatp_guidance(os,tp,champion_traj,valid_sln_flg){

 score_array[N_traj][N_var] // Array holding each trajectories

 // score and defining data

 // Calculate the l and z polynomial coefficients in

 // cylindrical coordinates

 os->cz2

 os->cz1

208

 os->cl3

 os->cl2

 os->cl1

 // Set up parallel region and define shared data

 #pragma omp parallel shared(os,score_array)

 // Parallelize for loop that iterates the number of

 // trajectories and define data private to each trajectory

 #pragma omp parallel for private(tp) nowait

 for(number of trajectories){

 // Initialize data structures

 // Calculate the arrival azimuth unique to this trajectory

 // Compute psi polynomial coefficients

 tp->cp3

 tp->cp2

 tp->cp1

 // Integrate trajectory

 for(number of integration steps){

 // Call control system

 oatp_control_system(tp,os);

 // Call Runge-Kutta Integrator

 runge_kutta(tp,os); // 4 step Runge-Kutta routine

 // Check keep-out-zones

 oatp_zones(tp);

 }

 // Verify constraints are met and score trajectory

 oatp_score(tp,os,score_array);

 }

 // Check if valid solution was found

 // Save valid solution that is the lowest cost

 if (valid){

 // Save lowest cost trajectory solution

 champion_traj = score_array[i];

 // Valid Solution True

 }

 else{

 // Valid Solution False

 }

}

209

E.3 Control System Function

oatp_control_system(tp,os){

 // Reference profiles

 oatp_refprof(tp,os);

 // Thrust and moment commands

 oatp_commands(tp,os);

 // Throttle commands

 oatp_thruster_controller(tp,os);

// Propulsion model

oatp_prop_model(tp,os);

}

	Title
	Approval
	Dissertation v7_body

