
 
 

A Computer Vision-Based Structural Health Monitoring Framework: Feature-Mining of Damage 

for Predictive Numerical Simulations 

 

 

A Dissertation 

by 

Mehrdad Shafiei Dizaji 

 

 

Presented To 

The School of Engineering and Applied Science 

University of Virginia 

 

 

 

 

In partial fulfillment of the requirements for the degree of 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

May 2020 

 



 

A Computer Vision-Based Structural Health Monitoring Framework: Feature-Mining of Damage 

for Predictive Numerical Simulations 

 

 

A Dissertation 

by 

Mehrdad Shafiei Dizaji 

 

Presented To 

The School of Engineering and Applied Science 

University of Virginia 

 

 

In partial fulfillment of the requirements for the degree of 

 

 

DOCTOR OF PHILOSOPHY 

 

 

Approved by: 

 
Devin K. Harris (Advisor) 

 

Jose P. Gomez 

 

Osman E. Ozbulut 

 

Arsalan Heydarian 

 

Nada Basit 

 

 

 

  

May 2020 

 

 



 

ii 
 

ABSTRACT 

For the infrastructure in U.S., the structural health monitoring (SHM) community has generalized a strategy 

with a primary focus of accurately monitoring in-situ behavior to assess performance, detecting damage, and 

determining structural condition. At the core of this strategy is the need to identify and quantify damage, but also to 

predict the implications of this damage on the structural system. However, for scenarios where this damage is not 

visible, this challenge becomes amplified due to the potential for structural failure in the presence of this unknown 

risk. For these types of structures, a more local strategy is needed, one that is able to provide in-situ information about 

the current condition state of performance of an individual structure in the absence of previous baseline performance 

data. This need drives our research question; can internal damage be effectively identified using only limited surface 

observations obtained from image-based sensing techniques as a non-contact full-field approach?  

Recent advancements in camera technology, optical sensors, and image-processing algorithms have made 

optically-based and non-contact measurement techniques such as photogrammetry and 3D Digital Image Correlation 

(3D-DIC) appealing methods for non-destructive evaluation (NDE) and SHM. Conventional sensors (e.g. 

accelerometers, strain gages, string potentiometers, LVDTs) provide results only at a discrete number of points. 

Moreover, these sensors need wiring, can be time-consuming to install, may require additional instrumentation (e.g., 

power amplifiers, data acquisition), and are difficult to implement on large-sized structures without interfering with 

their functionality or may require instrumentation having a large number of data channels. On the contrary, optical 

techniques can provide accurate quantitative information about full-field displacement, strain and geometry of a 

structure without contact or interfering with the structure’s functionality.  

This dissertation centers around recovering unseen damage within a structural system using limited, but full-

field surface deformation measurements. The proposed approach leverages full-field surface deformation 

measurements of structural elements derived using 3D-DIC coupled within a structural optimization process to search 

for and identify the presence of invisible damage. The idea initiates from preliminary work that has proven successful 

in identifying constitutive properties implied for quantifying damage from material distribution in structural 

specimens. While this preliminary work was promising, the concept needed further research to extend the framework 

towards a more robust approach that can be used for in-situ assessment of in-service structural systems. The research 

herein centers on a laboratory scale investigation of structural components, which exhibits variability in its constitutive 
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properties that are typically uncertain within existing structures and is also vulnerable to internal damage and/or 

heterogeneous material distributions that are unseen from the surface. 

First, full-field sensing measurements from 3D-DIC was applied to update a finite element model (FEM) of 

a full-size I-shaped steel beam under flexural loading. A hybrid optimization algorithm consisting of a gradient-based 

and a genetic algorithm (GA) optimizer was introduced to attain and optimize the structural unknowns including 

constitutive properties and boundary condition assessments. The updated model was illustrated to generate improved 

estimations of the response through comparisons with ground truth measurements acquired from discrete sensors. 

Second, based on the previous fact that constitutive properties can be resolved accordingly using St-Id using full-field 

sensing, the framework was extended to identify regions with internal defects in steel specimens. This work employed 

a hybrid algorithm combining a GA and a limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS-

B) to execute the optimization problem. While the method showed promise in detecting the existence and vicinity of 

the defect, recovering the 3D shape of the defect was not possible.  

Most recently, the work went one step further and a new approach using full-field surface measurements 

coupled with topology optimization was proposed to localize and reconstruct the 3D shape of unseen subsurface 

defects. Thus it aimed to expand on the work and to demonstrate that unlike a limited set of discrete sensing data 

points or global dynamic properties, the rich data from full-field image-based measurements can enable the 

identification of a more detailed picture of the internal defects. The main contributions of this dissertation can thus be 

summarized as: 1) Unlike NDE/T techniques which depend upon specialized sensing equipment (e.g. radars or 

radiation-based scanners, etc.), the introduced method solely applied digital cameras coupled with structural 

mechanics to deduce subsurface conditions. 2) The proposed method leverages the rich full-filed response data from 

DIC to enable the reconstruction of the 3D shape of damage, representing an advancement over current practice which 

has been limited primarily to identification and basic localization. 
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1 CHAPTER 1 – Introduction   

 

1.1 Motivation and Scope  

 

         The aging infrastructure network in the United States and much of the developed world is reaching the end of 

its design service life. Nonetheless, a complete replacement is not feasible due to resource limitations. These aging 

infrastructure systems are not necessarily going to fail immediately; however, the aging process makes these systems 

highly vulnerable without assessment. As a result, infrastructure owners are exploring for solutions to mitigate this 

risk and vulnerability. The premise of SHM is a system performance evaluation strategy with the end goal of 

characterizing behavior and providing indications of damage and has demonstrated potential as a strategy for temporal 

condition assessment of the built environment, with a broader vision of exhibiting forewarning of impending failure 

[1-5].  

       Thus far, a significant body of SHM research has advanced the body of knowledge, especially in the scope of 

sensing and analysis techniques. However, a fundamental restriction that remains is the translation of measurable 

phenomena for full-scale physical systems into information that describes the system’s health and condition state. 

From a research and development perspective, these gaps indicate that SHM is still in its infancy with excellent 

opportunities for growth and development. As progress is made towards holistic strategies toward building smart and 

connected communities, the requirement for efficient, low-cost, non-invasive, and data-rich techniques is becoming 

increasingly essential to the SHM community. Although this dissertation does not propose a complete solution to these 

challenges, it does describe a novel concept that aims to leverage a data-rich and non-invasive measurement strategy 

to describe the local and global behavior of a structural system quantitatively and efficiently [6-9].  

        Figure 1.1 illustrates how the non-contact and non-invasive nature of the proposed approach can help facilitate 

the assessment of critical infrastructure with minimum disruption of service, while its continuous and full-field sensing 

provides a unique opportunity for behavior characterization. More broadly, this work aim to quantify structural 

behavior such as internal and external damage detection from a limited set of measurements on the visible side of a 

structure. This dissertation specifically describes a refined St-Id and damage detection approach using full-field 
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measurements derived from 3D-DIC to characterize uncertain parameters (i.e. constitutive properties, geometric 

description and boundary conditions) of a laboratory-scale structural component [6-15]. 

 

Figure 1.1. Concept of DIC for SHM: full-field data acquisition with minimum disruption of service 

 

      3D-DIC, describes a non-contact photogrammetric technique capable of measuring the full-field deformation 

response of a structural component under loading. DIC relies on tracking the movement and deformation of pixel 

patterns over a sequence of digital images. The measured component is typically patterned, creating a high-contrast 

speckled surface, with the correlation or pattern matching algorithm constrained to a subset region to ensure 

correspondence of unique patterns [16-21]. Across the sequence of images, deformations are measured by tracking 

pixel movements through space with interpolation used to describe the full-field response across the specimen surface. 

2D-DIC leverages planar image sets and can be used to measure in-plane deformation, whereas 3D-DIC extends the 

principles of photogrammetry using calibrated stereo-paired cameras to measure three-dimensional deformation [22-



 

3 
 

27]. The ability to measure deformation have always been vital to the field of experimental mechanics and recent 

advances in imaging tools and the availability of reliable commercial DIC tools has created opportunities for extending 

the technique to large scale infrastructure applications [28-32].  

        The motivation of this dissertation is centered around two essential trends; First, the US infrastructure faces 

challenges of unprecedented complexity from aging and deterioration, unparalleled demand for service, pressure to 

urbanize, and natural man-made hazards. Therefore, there is a need for low-cost, non-invasive, and data-rich 

techniques for the SHM community [5, 33-40]. Second, historically, much of the assessment strategies used to define 

performance have relied heavily on visual inspection or NDE/T as the standard method to characterize condition state, 

but research has shown that these strategies yield results that are subjective and somewhat unreliable [33, 38, 40]. 

Additionally, these condition characterization approaches only provide a description of current damage, but do not 

link to structural performance to quantify damage rate over time. On the other front of evaluation, there has been a 

major push in the area of NDE, sensing techniques and sensors, but these advances have also not succeeded in bridging 

the gap between measurement and performance. Although, both NDE and SHM strategies have demonstrated success 

for many scenarios, there are still many shortcomings that cannot be readily resolved without highly complicated 

equipment or costly monitoring systems. Consequently, there is demand for techniques that enable the identification 

of behavior of in-situ structures such as quantification of deteriorations, in a cost-effective and non-invasive manner. 

In response to these needs, the central hypothesis of this dissertation research is: 

“Structure subsurface conditions (e.g. material properties and internal defects) can be reconstructed within an 

optimization framework through full-field surface measurements of structural response, obtained from image-based 

sensing techniques such as 3D-DIC, coupled with a model-based simulation.” 

        In recent years, there have been significant advances in the field of image-based sensing [41]. While these 

traditional visual assessment techniques have a number of limitations when used in a subjective manner, vision as a 

quantitative tool has a number benefits for assessment including: 

 Image-based assessment is a non-contact technique that requires limited access; 

 Image-based assessment is non-invasive, and does not require physical instrumentation; 

 Quantitative vision-based techniques align with historical practices of qualitative vision-based inspection; 

 Condition and behavioral features can be linked over time scales 
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         This dissertation explores a novel concept that leverages advances in image-based assessment to develop an 

approach for integration into the domain of SHM. This work aligns with a thrust in the emerging area of image-based 

SHM (iSHM) and offers the potential for a low-cost high-impact assessment technique for characterizing the 

operational response of existing structures with minimal service disruption and minimal extensive instrumentation 

and monitoring equipment. Within the scope of this work, the capabilities of image-based deformation measurement 

approaches for describing condition state, system behavior, damage identification, and model updating were 

evaluated. A basic schematic of the image – based St-Id framework is illustrated in Figure 1.2. In summary, the 

proposed idea lies at the intersection of NDE and SHM and aims to employ full-field sensing to identify the 

constitutive properties to infer and reconstruct a detailed 3D shape of the internal properties of a structure from 

constitutive property distribution in the design domain. The measurements derived from DIC provide an 

unprecedented richness that cannot be acquired using traditional sensing, hence providing the localized detection 

characteristics of NDE techniques, while derived from mechanical behavior characteristic of SHM approaches.  

      Therefore, the dissertation leverages 3D-DIC sensing measurements procured from a mechanical loading 

scheme, for optimizing and updating a FEM to acquire constitutive properties (i.e., internal abnormality of structures 

is inferred from constitutive property distribution), geometric description, and boundary conditions of the initial 

numerically presented model. The model updating procedure is formulated as an optimization problem whereby the 

differences between the measured response and that predicted by the FEM model are iteratively pushed to a minimum. 

To solve the optimization problem, different optimization techniques are used such as a hybrid GA solver, that 

combines a metaheuristic evolutionary optimization method (GA) with an iterative gradient descent process and a 

topology optimization technique. The model parameters corresponding to the optimized model are the identified 

unknowns of the structural system. It is hypothesized that the full-field response measurements achieved through 3D-

DIC provide a robust basis for model updating, optimizing and St-Id. The results of this dissertation illustrate the 

opportunities offered by 3D-DIC in the SHM domain and demonstrate that tools such as DIC have the potential to 

provide decision-makers with a comprehensive assessment tool to better describe the performance of the infrastructure 

network while also being non-contact and non-invasive [6-15]. While these works are limited to laboratory scale 

experiments under controlled environments, results provide a proof of concept that has the potential for scaling to in-

situ evaluation of operational structural systems in the future. This dissertation is a collection of four manuscripts that 

describe the aforementioned research works. Through the presented results, this dissertation highlights the power of the 
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emerging full-field image-based sensing measurements based on DIC in the field of St-Id and damage detection and while 

the proposed research effort studied this problem in the context of structural engineering, the findings will potentially benefit 

a range of communities, including geotechnical, construction, biomedical, and mechanical engineering, all of whom face 

similar challenges with respect to damage characterization. 

 

 

Figure 1.2. Overview of Proposed Image-Based St-Id 

 

1.2 Image-Based Full-Field Sensing Technique  

 

       Deformation measurements are vital to the field of structural engineering and engineering mechanics; however, 

measurement capabilities have historically been limited to localized deformation measurement using classical tools 

such as strain gauges, linear variable displacement transducers and vibrating wire gauges, most of which require direct 

contact between the sensor and the specimen. These measurement techniques have been used extensively in SHM and 

St-Id in the past; however, emerging vision-based approaches have continued to acquire credibility in the field of 

SHM, as these approaches suggest an efficient approach to collect similar data without being in contact with the 

structure. DIC, which is one of these vision-based approaches, has roots in the field of experimental mechanics, but is 

gaining traction as a potential measurement technique suitable for accurately describing the mechanical response of 
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large scale members under loading. DIC builds on the fundamental principles of photogrammetry and provides a 

mechanism to quantify full-field surface deformation from a series of sequential images of a specimen subjected to 

loading. 

       Figure 1.3 conceptualizes the potential advantage of the proposed framework for model updating and St-Id using 

full-field response measurements (i.e. 3D-DIC) in comparison with those obtained by discrete point sensors (e.g. strain 

gages, LVDTs, etc.). The dotted line depicts the predictions of an FEM model updated by matching the measurements 

of only three discrete mechanical sensors. The dashed line reperesents a model updated using a fine grid of points on 

a full-field response contour (e.g. derived from DIC measurement). In this illustration, it becomes evident that 

matching a complex function using a limited set of discrete mechanical sensors may closely agree regarding the 

proximity of the sensors, but may not guarantee a good match in other locations on the specimen. On the other hand, 

matching an entire full-field response enables a more comprehensive representation of the global and local behaviors 

throughout the specimen. This advantage is expected to be realized in more complex structural systems, where only a 

few discrete points may be insufficient to describe the behavior [42]. An example is a structure with geometrical non-

uniformities (e.g. a hole or defect) or complicated boundary conditions where the response cannot be uniquely 

represented by a few discrete sensors. The experimental setup examined in this work is a relatively simple structural 

system and the work presented in this research represents a series of laboratory examples that provide the foundation 

for expanding this concept. Future works by the authors aim to illustrate these advantages in more complex structural 

systems such as full-scale highway bridge structures.  
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Figure 1.3. Conceptual illustration of impact of full-field sensing on St-Id framework. 

      

1.3 St-Id within SHM Framework  

 

       Within the aforementioned SHM framework, numerical models (typically FEM) are commonly used in 

collaboration with sensing methods to describe the behavior of structural systems. FEM has been used with great 

success to simulate structural response of idealized systems, but its approximate nature and simplifying assumptions 

coupled with uncertainties associated with boundary conditions and condition state inherently result in errors when 

describing existing structural systems [43]. St-Id describes an approach that emphasizes correlation of the response 

characteristics between a model and experiment or measurement, providing a basis for employing an 

updated/optimized FE model to characterize critical performance measures of existing structural systems. St-Id is the 

solution to an inverse problem and aims to minimize differences between analytical and experimental results. The 

unknown parameters designated as design variables in the FEM are iteratively tuned so as to match the experimentally 

measured and the numerically computed response as closely as possible. So, this solution is typically formulated as 

an optimization problem, with an objective of identifying the unknown or uncertain features within the problem space. 

Satisfactory correlation between the observed experimental behavior and the analytical results is critical, but equally 

essential in maintaining the physical significance of updated parameters [44]. For this purpose, setting up of an 
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objective or cost function and selecting updating parameters are crucial steps in St-Id. The changes in these parameters 

are then determined iteratively and pushed to a minimum via an optimization algorithm. St-Id aims to bridge the gap 

between the model and the real system by developing reliable estimates of the performance and vulnerability through 

improved simulations. In many St-Id scenarios a cost function is developed and defined in terms of differences 

between numerical and experimental displacement fields. This function is then minimized on part of the system 

boundary in an iterative manner, for example by changing the material parameters (constitutive properties) and 

boundary conditions. Given a unique set of system geometry, material parameters, traction and displacement boundary 

conditions, the displacement and deformation response of a system is also unique. Hence, assuming the system 

geometry and boundary conditions are correctly replicated in the FEM, convergence between numerical and 

experimental displacement fields is achieved only when the constitutive parameters approach their true values. 

Examples of this optimization concept are available across numerous fields, but representative St-Id examples are 

available in the literature [45-47]. Within the context of in-service infrastructure systems, St-Id provides a pathway 

by which the operational response characteristics of a system can be used to characterize performance of the system 

within its environment. 

 

1.4 Literature review of SHM, NDE and Image-Based techniques 

 

     Assessing and quantifying the condition of aging structures is essential to verifying structural integrity, ensuring 

long-term reliability, and determining when component repair or replacement should be made. A goal in industry is 

to move away from schedule-based maintenance and toward condition-based monitoring in order to perform 

assessment of factors that can jeopardize the system’s performance [2, 33, 35, 37, 38, 48]. Identifying a strategy to 

detect damage for engineering systems, structures, and infrastructure is called SHM. SHM involves the observation 

of the targeted system over time to extract damage-sensitive features, determine the current health state, and predict 

future condition [2] which is important for damage prognosis and future structure life prediction. SHM plays a key 

role in the prevention of catastrophic failures, improving the safety of structures and infrastructure, and reducing 

maintenance downtime and costs. Thus, it is a method for tracking the health of an engineering system by combining 

damage detection algorithms with structural monitoring devices (e.g., sensors). SHM is often carried out in 

conjunction with another closely related discipline: NDE often referred to as Non-Destructive Testing (NDT). Those 
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techniques consist of evaluation methods to assess the condition of a targeted system without affecting the system’s 

functionality [40]. Both SHM and NDE techniques aim for early detection and assessment of structural damage to 

ensure that structures continue to meet life-safety requirements. Human visual inspection techniques are labor-

intensive and based on the inspector’s opinion and are, thus, subject to variability motivating the need for automated 

computer-based monitoring systems. Contact-based sensors are commonly used for monitoring a variety of structural 

systems. One of the most common practices is to record and analyze the data from a network of sensors, either passive 

or active, embedded or attached onto the monitored structure [49]. These methods include both dynamic and static 

analyses and have significantly improved over time. Contact-based sensors such as strain-gages, accelerometers, linear 

voltage displacement transducers (LVDTs), inclinometers, and extensometers are commonly used for SHM and NDE 

applications [1, 4]. Fiber optic sensors have proven to be valid alternatives to the conventional sensors due to their 

flexibility, Electro Magnetic Interference (EMI) immunity, and scalability [50, 51]. However, these sensors can be 

difficult to implement, need wiring, are costly, require power, and once attached are generally not portable for 

interrogation on multiple engineering systems. For resolving these problems, several researchers proposed using 

Wireless Sensor Networks [37, 39]. Nevertheless, even these sensors are typically not durable enough to be attached 

or embedded in the structure and perform measurements throughout a structures lifespan which may be years or 

decades after its construction (when failures are more likely to occur). Furthermore, most of these sensors can only 

provide information at a few discrete points [52]. Recent technological developments have provided new NDE 

techniques for the assessment of different engineering systems. Radiography [53], radioactive computerized 

tomography [54], radar [48], ultrasonic arrays and acoustic imaging systems [34], acoustic emission [36], and infrared 

thermography [55] have all been implemented for NDE and SHM and each possesses their advantages and challenges. 

The readers are referred to the studies of [3, 5, 33, 35, 38, 56, 57] for further information, depending on the specific 

SHM and NDE applications. New advances in camera technology, optical sensors, and image-processing algorithms 

allowed the development of a new generation of non-contact measuring methods. Optical-based techniques such as 

3D-DIC, have become valuable tools for performing non-contact measurements and extracting structural 

deformations, full-field displacement and strain and geometry profiles, in civil, and mechanical engineering systems. 
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1.5 Digital Image Correlation Technique  

 

      The ability to measure deformation has been vital to the development of structural engineering theory for decades; 

however, available methods have typically been limited to localized measurement tools such as strain gauges, linear 

variable displacement transducers, and vibrating wire gauges [58-60]. Recent advances in the use of laser 

extensometers and fiber-optic sensors have shown promise [61-65], but these systems require significant 

instrumentation and are still typically limited to predetermined locations of measurement. While these methods have 

a proven track record of success, they are not easily implemented on infrastructure applications because of their cost, 

labor required for setup, and the requirement to place the sensors in contact with the component. Photogrammetric 

assessment methods [66-68] have shown a great deal of promise for describing the behavior [69-75] and condition 

state [8, 76, 77] of civil infrastructure systems because of their noncontact nature, relative ease of deployment, and 

recent improvement of imaging technologies. Photogrammetry and image-based metrology have a long history across 

a number of engineering disciplines [15]. Stereo-photogrammetric techniques, developed in the early 1970’s by 

Butterfield [78], provide an early example of using image processing to quantify displacement fields. The early work 

by Peters and Ransom [79]  was credited for the concept of using image-based acquisition methods for deformation 

measurements. However, the numerical correlation algorithms developed by Sutton et al. [80] serve as the foundation 

for modern methods such as DIC. DIC can generally be described as a full-field noncontact photogrammetric surface 

measurement technique that utilizes image correlation and tracking techniques on a series of sequential images to 

describe shape, deformation, and movement of a specimen subjected to loading [15]. Figure 1.4 provides a generic 

illustration of the DIC workflow for material characterization used in this investigation. DIC extends the principles of 

photogrammetry, but instead of tracking the displacement of discrete targets, continuous surface displacement data 

are derived from incrementally tracking unique subsets, which are discretized areas with unique pixel features within 

the image and interpolation of deformation within the subsets. Surface displacement data, which can be transformed 

into strain via post-processing, are derived by comparing sequential pairs of digital images taken before and after the 

deformation. Images can be derived from a variety of sources (e.g., charge coupled device, digital single-lens reflex, 

etc.), with the choice of camera and lens configuration being influenced by factors such as camera noise, lighting, 

acquisition speed, and geometric relationships between area of interest (AOI) and field of view. 
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      Within a digital image, pixels are represented as a matrix of color intensities at corresponding locations within the 

image, thus enabling specific pixels to be tracked during movement or deformation. DIC typically utilizes grayscale 

images, which are most commonly stored as an 8-bit integer and vary between 0 and 255. To create a unique pattern 

for image tracking and mapping, a stochastic contrasting speckle pattern [19] is typically applied to the surface of the 

specimen; however, to improve the efficiency of matching and mitigate correspondence issues associate with pixel 

uniqueness, images are typically divided into smaller regions or subsets. Within this subset domain, correspondence 

is achieved by matching the grayscale intensity values of pixels in two successive images and tracking or correlating 

their movement from image to image. A correlation function is used to minimize the error in locating the unique pixel 

patterns within the image, which are in turn used to determine deformations from pixel tracking and movement. Eq. 

1 shows an example of a least squares approach for optimal correlation estimates [15], but other correlation functions 

can be found in literature [81, 82]. Sub-pixel resolution is then achieved through interpolation functions describing 

the continuous field, analogous to the interpolation functions used in the FEM. A more comprehensive treatment of 

the DIC analysis process for both two dimensions and three dimensions is available in literature [15]. 

 

Figure 1.4. Conceptual schematic of DIC 

𝐶(𝑥, 𝑦, 𝑢, 𝑣) = ∑ [𝐼(𝑥 + 𝑖, 𝑦 + 𝑗
𝑛/2
𝑖,𝑗=−𝑛/2 ) − 𝐼 ∗ (𝑥 + 𝑢 + 𝑖, 𝑦 + 𝑣 + 𝑗)]2                (1-1)                         

      In the Eq. (1), C is the correlation function, n is the subset size,  I is image before motion, 𝐼∗ is the image after 

motion, u, v are displacement in the x and y directions, x, y are pixel coordinates in reference image, 𝑥 + 𝑖, 𝑦 + 𝑗 is 

pixel value at (𝑥 + 𝑖, 𝑦 + 𝑗) and 𝑥 + 𝑢 + 𝑖, 𝑦 + 𝑣 + 𝑗 is pixel value at (𝑥 + 𝑢 + 𝑖, 𝑦 + 𝑣 + 𝑗). 
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       Within the family of DIC techniques, two-dimensional (2D-DIC) and three-dimensional (3D-DIC) DIC 

techniques are typically used to characterize planar and nonplanar (out-of-plane) full-field surface deformation, but 

volumetric DIC (V-DIC) is an emerging technique for internal deformation characterization. While V-DIC has a great 

deal of relevance to concrete behavior characterization, it is beyond the scope of this work and will not be discussed 

further. 2D-DIC requires a single camera to measure the full-field planar deformations on a surface perpendicular to 

the image plane. The primary limitation of this technique is that any out-of-plane movement or deformation can 

influence the accuracy of the measurements because of image distortion [83]. As with any photogrammetric 

measurement technique, the accuracy is highly dependent on the experimental setup. As an example, in a study by 

Hoult [84] in which out-of-plane movement was minimized, it was demonstrated that 2D-DIC could produce strain 

values with an error on the order of a few microstrain (~less than 5 microstrain), which is comparable to the anticipated 

error in conventional strain gauges. Similarly, 3D-DIC is analogous to the human vision system [85], but instead of 

human eyes, it uses stereo-paired cameras to capture the three dimensional shape and deformation of the specimen. 

The stereo imagery allows for the measurement of both in-plane and out-of-plane deformations, albeit out-of-plane 

deformations are measured at a slightly lower resolution. 3D-DIC is generally needed when the out-of-plane 

deflections are significant compared to in-plane deformations. It requires a comprehensive calibration that takes into 

account all of the affecting parameters including lighting, exposure, specking, etc. The accuracy of the calibration 

process has a direct correlation with the precision and accuracy of the results. 

 

1.6 Research Challenges 

 

     The extensive review of St-Id and damage detection literature presented in the previous section highlights a number 

of challenges and shortcomings that are listed in this section. 

 Challenge 1: In order to accurately evaluate the system-level behavior, an ideal approach would be the 

implementation of full scale field tests on a series of representative structures; however, this approach is 

neither feasible nor cost-effective. Laboratory testing can also be considered as an alternative approach, but 

challenges with dimensional scaling and simulation of exact boundary conditions are considered as 

limitations of this method, in addition to associated costs. With today’s computational resources and 
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capabilities, the development of an analytical model to study the performance of intact or damaged structural 

systems could be best handled numerically, using a tool such as the FEM. While FEM provides an efficient 

mechanism to simulate the structure system behavior, there are certain challenges that must be properly 

treated to yield representative results. Of most important challenges to use FE modeling, is how to simulate 

the constitutive properties, boundary conditions and geometric descriptions as precisely as possible to the 

actual model; especially if the structures are complicated enough to define those constitutive properties, 

boundary conditions and geometric description. SHM provides a system performance evaluation strategy 

with the end goal of characterizing behavior for better modeling of structures (e.g. FEM) and providing 

indications of damage and even forewarning of impending failure. The majority of existing works, within the 

domain of SHM measurement techniques, to obtain experimental data for validation purposes, have primarily 

relied on discrete sensing strategies using sensors physically attached to the structural system of interest. 

These sensors have proven effective in describing both global and local phenomena, but are limited to 

providing discrete response measurements of these systems. In fact, modeling of structures demands having 

enough information about the boundary conditions, geometry description and constitutive properties of the 

structural elements which cannot be obtained from discrete response measurements. Thus, it is necessary to 

develop a new SHM techniques. 

 Challenge 2: Within the current state of practice, a number of NDE techniques have been proposed that 

primarily leverage principles of wave propagation or radiation imaging in elastic solids. Of such methods 

include acoustic sounding, impact echo, ultrasonic waves, ground penetrating radar, or infrared 

thermography. As an alternative strategy, SHM approaches rely on structural sensing to monitor and infer 

the state of structural health. These approaches typically employ model-based or data-based techniques to 

identify anomalies in mechanical responses that point to damage. While the use of global dynamic responses 

or a set of isolated local strain and deformation responses has been relatively successful in providing 

information about basic constitutive properties and coarse-grained damage indication, the degree to which 

material or damage properties can be extracted has been limited. While both NDE and SHM strategies have 

proven to be successful for many scenarios, there are still many shortcomings that cannot be readily addressed 

without highly sophisticated equipment or costly monitoring systems. As such, there is a need for techniques 
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that enable the detection of such subsurface modes of deterioration in a cost-effective and non-invasive 

manner. 

 Challenge 3: There has been substantial work recently on the development of techniques for detecting 

structural defects and damage. The majority of these works have taken the form of SHM, using sensors and 

monitoring information to infer the behavior and performance of the underlying structural system. Many of 

these efforts have centered on how to extract global system characterization from embedded sensors networks 

(system identification), without focusing on understanding the impacts of localized defects. In parallel with 

these SHM efforts, the past decade has not seen enough research exploring how to leverage the results of 

NDE to provide a more global and local representation of system inspection results. To understand internal 

properties and the condition of structures, innovative methods of reconstructing the 3D geometry of of the 

defects can be essential. 

 

1.7 Investigation Approach and Dissertation Outline  

 

       The overarching goal of this dissertation is to develop efficient and robust methodologies for structural 

characterization of infrastructure through the application of image-based full-field sensing techniques. In this regard, 

a series of challenges were identified in the literature. To address these challenges, four areas of study were explained 

and results of these studies are presented in this dissertation; results are presented in the format of a collection of four 

manuscripts currently different stages of peer review in international research journals. These manuscripts constitute 

the next four chapters of this dissertation. 

 Chapter 2 -  explores the proposed idea of applying image analysis techniques through a case study 

on a series of structural test specimens analyzed using 3D-DIC for St-Id. Finite element model 

updating (FEMU) as an inverse problem was used as the technique for the St-Id. This research aims 

to address Challenge 1 as described in the previous section. Challenge 1 is addressed through the 

inclusion of full-field sensing measurements in identifying constitutive properties and boundary 

conditions. 3D-DIC results provided a rich full-field dataset for the identification process, which was 
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compared against measurements derived from traditional physical in-place sensors typically used in 

SHM.  

 Chapter 3 – is where the research went one step further and proposed an image-based tomography to 

detect internal abnormalities of structures using inverse engineering. Image-based techniques have 

been extensively deployed in the fields of condition assessment and structural mechanics to measure 

surface effects and deformations such as displacements or strains under loading. Challenge 2 is 

addressed through this research using 3D-DIC to detect interior anomalies of structural components, 

inferred from the discrepancy in constitutive properties such as the elasticity modulus distribution of 

a 3D heterogeneous/homogeneous sample using limited full-field boundary measurements. The 

proposed technique is an image-based tomography approach for St-Id to recover unseen volumetric 

defect distributions within the interior of a three-dimensional heterogeneous space of a structural 

component based on the iterative updating of unknown or uncertain model parameters.  

 Chapter 4 – addresses Challenge 3 by proposing a new approach using full-field surface measurements 

coupled with topology optimization to localize and reconstruct the 3D shape of unsee n subsurface 

defects. Therefore, this chapter aims to expand on the work in chapter 3 by Dizaji et al. [86] and to 

demonstrate that unlike a limited set of discrete sensing data points or global dynamic properties, the 

rich data from full-field image-based measurements can enable the characterization of defects in 

greater detail. Furthermore, this work demonstrates how perturbations in the observable full -field 

surface measurements can be used as a proxy to detect unobservable internal abnormalities. In this 

work, 3D-DIC is used to measure the full-field surface deformation coupled within a topology 

optimization schema to identify and reconstruct unseen three-dimensional damage.  

 Chapter 5 - illustrates that the proposed method is able to successfully recover fine-grained subsurface 

damage information from large scale structural components which is otherwise costly and cumbersome to 

pull out with specialized state-of-the-art NDE/T or SHM methods and can therefore be employed as a 

promising subsurface damage detection method. To that extent, for very large components, a multi-step 

procedure can be followed which starts by locating the vicinity of the damage using traditional global-

response methods, and then using the proposed technique to obtain a fine-grained and detailed view of the 

internal damage. Therefore, this chapter intends to address Challenge 3 by proposing a new approach using 
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full-field sensing integrated with topology optimization to uncover the interior condition of structures 

followed by finding the location and then reconstructing the 3D geometry of subsurface of the defects.  

 

 

1.8 Research Significance  

 

        The significance of this research centers primarily around a new approach for connecting SHM with NDE to 

create a structural components condition assessment method based on basic structural response (strains and 

deformations). This approach differs from traditional NDE, in that it does not rely on specialized NDE equipment 

(e.g. wave and radiation tomography), but also extends traditional SHM approaches by leveraging the full-field 

response measurement more typical of NDE methods. This is achieved by interfacing a FEM with full-field and fine-

grained measurements from DIC through a topology optimization framework. While model-based damage detection 

per se is not new, the innovative idea of reconstructing the 3D geometry of subsurface defects via rich full-field surface 

sensing data can lead to major improvements in our understanding of internal properties and conditions of structures.  

      

 

 

 

 

 

 

 

 

 



 

17 
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2.1 Abstract 

  

Within the domain of SHM measurement techniques have primarily relied on discrete sensing strategies using 

sensors physically attached to the structural system of interest. These sensors have proven effective in describing both 

global and local phenomena, but are limited to providing discrete response measurements of these systems. With the 

introduction of novel imaging tools and image analysis techniques, such as DIC, the ability to measure the full-field 

response of these systems provides a novel approach to refining St-Id approaches used in SHM.   

This paper explores this proposed concept through a case study on a series of structural test specimens analyzed 

using 3D-DIC for St-ID. FEMU was used as the technique for the St-Id. For the identification process, ABAQUS was 

interfaced with MATLAB to converge on the optimal unknown/uncertain system parameters of the experimental 
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setup. 3D-DIC results provided a rich full-field dataset for the identification process, which was compared against 

measurements derived from traditional physical in-place sensors typically used in SHM. In this work a Hybrid Genetic 

Algorithm (HGA), which combines the GA as a global optimization and a gradient-based method as a local 

optimization, was used for the FEMU based on 3D-DIC results of structural specimen subjected to variable loading. 

To minimize the error between the full field 3D-DIC measurements and FEA model updating results, an objective 

function was introduced that included the full-field contributions of strains and deformation response. The evolution 

of this objective function illustrated satisfactory convergence of the identified parameters and the excellent agreement 

of the experimental and numerical strain and displacement responses after the model updating process confirmed the 

success of the proposed approach. The results of this study highlight the advantage of this hybrid approach and provide 

the foundation for effective deployment of the proposed strategy for large-scale structural systems.  

Keywords: 3D-DIC, system identification, St-Id, SHM, St-Id, FEMU, SHM, Hybrid Genetic Algorithm (HGA) 

 

2.2 Introduction 

 

Much of the physical infrastructure across the globe was built during eras of growth and with a finite intended 

service life, but in many cases these systems have continued to operate and have remained in service well beyond this 

intended period [7]. Infrastructure owners and managing entities have proven capable of keeping these systems 

functional through routine and preventative maintenance strategies, but often these strategies are reactive in nature 

and are deployed in response to an observable deterioration mechanism. However, recent structural failures have 

demonstrated that this approach is not always effective and can have catastrophic and even fatal consequences [87, 

88]. The concept of SHM has shown promise as a strategy for temporal condition assessment of the built environment. 

SHM provides a system performance evaluation strategy with the end goal of characterizing behavior and providing 

indications of damage and even forewarning of impending failure.  

The concept of SHM has existed for several years in various forms across multiple engineering disciplines [89] 

and has been likened to a human health management system [90], with well-person checkups, preventative 

intervention, and treatment/surgery being analogized to inspection, maintenance, and repair/retrofit, respectively. The 

body of knowledge in SHM has grown considerably over the past few decades, but a fundamental challenge that 
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remains is the translation of measurable phenomena derived from full-scale physical systems into information that 

describes the system’s health and condition. To date, significant research has been performed on condition assessment 

[6, 8] and SHM [91] of infrastructure with advances in novel technologies [92-94] and assessment techniques [95-97]. 

However, a comprehensive solution also requires integrated strategies for routine inspection, data management, result 

interpretation and decision support, demonstrating that SHM is still in its infancy with excellent opportunities for 

growth and development. As society pushes towards a more holistic strategy of smart and connected communities, 

the need for low cost, non-invasive, and data rich techniques is becoming paramount to the SHM community. This 

manuscript describes an experimental study that aims to address this challenge by leveraging DIC for St-Id within the 

SHM framework as a strategy of collecting rich, full-field data without the need for fixed in place sensors. With the 

challenges associated with an aging infrastructure network [98], non-invasive tools such as DIC have the potential to 

provide decision-makers with a comprehensive assessment tool to better describe the performance of this network. 

This paper presents an experimental study that leverages 3D-DIC as a full-field measurement approach within the 

broader SHM framework. A synthesis of the findings of this study are presented and organized as follows: first, a 

strategy for full-field St-Id within the SHM framework is investigated. Next, the experimental setup along with the 

3D-DIC configuration is described including the testing objectives and key DIC parameters. A description of the 

ground truth measurements collected from traditional affixed sensors is also presented. Finally, the preliminary 

modeling approach using the FEM is described.  Leveraging results from the 3D-DIC measurements, a St-Id 

optimization using the preliminary FEM updated with full-field 3D-DIC results to converge on boundary and 

constitutive properties of the test specimen. Critical to this updating process was the concept of interpolation between 

DIC results and FEA results, and optimization process, which is described in detail. Finally, a discussion of the results 

and conclusions are presented.  

2.2.1 Structural Identification within SHM Framework 

 

Within the traditional SHM framework, numerical models, typically FEM, are commonly used to describe the 

behavior of structural systems. FEM has been used with great success to simulate structural response of idealized 

systems, but its approximate nature and simplifying assumptions coupled with uncertainties associated with boundary 

conditions and condition inherently result in errors when describing existing structural systems [14]. St-Id describes 



 

20 
 

an approach that emphasizes correlation of the response characteristics between a model and experiment, providing a 

basis for using an updated FEM to characterize critical performance measures of existing structural systems. Within 

St-Id, this inverse problem aims to minimize differences between analytical and experimental results and is usually 

formulated as an optimization problem. Satisfactory correlation between the observed experimental behavior and the 

analytical results is critical, but equally essential is maintaining the physical significance of updated parameters [44]. 

For this purpose, setting up of an objective or cost function and selecting updating parameters are crucial steps in St-

Id. The changes in these parameters are then determined iteratively and pushed to a minimum via an optimization 

algorithm. St-Id aims to bridge the gap between the model and the real system by developing reliable estimates of the 

performance and vulnerability through improved simulations. This work describes an experimental case study that 

leverages 3D-DIC for St-Id.  

3D-DIC leverages calibrated stereo-paired cameras to enable 3D imaging, allowing for shape and out-of-plane 

surface deformations to be measured. A comprehensive treatment of DIC is available in the literature [8, 15, 19, 58-

85] and not presented here, but additional details on the DIC deployment used in this investigation are provided in a 

later section. An interesting characteristic of DIC is that the representation of full-field surface deformations is 

analogous to results derived from FEA, creating the potential for full-field St-Id, a capability that is not possible with 

discrete sensors. Figure 2.1 provides a generalized illustration of the proposed St-ID strategy used in this investigation, 

which will be described in more depth in the following sections.  
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Figure 2.1. Overview of the proposed full-field St-Id process 

 
 

Generally, for St-Id, a cost function, defined in terms of differences between numerical and experimental 

displacement fields, is minimized on part of the system boundary in an iterative manner by changing the material 

parameters and boundary conditions. Given a unique set of system geometry, material parameters, traction and 

displacement boundary conditions, the displacement and deformation response of a system is also unique. Hence, 

assuming the system geometry and boundary conditions are correctly replicated in the FEM, convergence between 

numerical and experimental displacement fields is achieved only when the constitutive parameters approach their true 

values. Examples of this optimization concept are available across numerous fields, but representative St-Id examples 

are available in [45-47, 99, 100]. 

This work explores a new vision-based St-Id framework that allows for full-field structural behavior matching 

and identification and can result in significant enhancements compared with the use of traditional discrete-point 

mechanical sensors that are typically used in current SHM and St-Id applications. Figure 2.2 conceptualizes the 

potential advantage of the proposed framework for model updating and St-Id using full-field response measurements 

(i.e. 3D-DIC) in comparison with those obtained by discrete point sensors (e.g. strain gages, LVDTs, etc.). The dotted 

line depicts the predictions of an FEM model updated by matching measurements of only two discrete mechanical 

sensors. The dashed line is a model updated using a fine grid of points on a full-field response measurement. In this 

illustration, it becomes evident that matching a complex function using a limited set of discrete mechanical sensors 
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may result in good agreement in the proximity of the sensors, but does not guarantee a good match in other locations 

on the specimen. On the other hand, matching an entire full-field response enables a more comprehensive 

representation of the global and local behaviors throughout the specimen. This advantage is expected to be realized in 

more complex structural systems, where only a few discrete points may be insufficient to describe the behavior. An 

example is a structure with geometrical non-uniformities (e.g. a hole or defect) or complicated boundary conditions 

where the response cannot be uniquely represented by a few discrete sensors.  

 

2.3 Experimental Study and Numerical Simulation 

 

For a proof of concept to the proposed full-field St-ID framework, an experimental study was performed. The 

experimental specimen examined in this work is a relatively simple structural system and the work presented in this 

paper include a series of laboratory and corresponding numerical model case studies that provide the foundation for 

expanding this concept. Future works by the authors aim to illustrate these advantages in more complex structural 

systems such as full-scale highway bridge structures.  

 

Figure 2.2. FEA model updating using discrete sensors versus full-field response 
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2.3.1 Experimental Setup 

In this investigation, an experimental program was developed to evaluate the feasibility of leveraging 3D-DIC in 

a St-ID/SHM framework. The experimental program included a laboratory scale investigation of a representative steel 

beam subjected to various loading and boundary conditions. The structural configurations used in this investigation 

are illustrated schematically in Figure 2.3 and can be described as:  

1) Configuration 1 (CF1): structural component simply supported (Cylinder) subjected to concentrated load at 

midspan (Figure 2.3a). 

2) Configuration 2 (CF2): structural component simply supported (Half Cylinder) subjected to concentrated 

load at midspan (Figure 2.3b). 

3) Configuration 3 (CF3): structural component with simple and partial support restraints subjected to a 

concentrated load at midspan (Figure 2.3c). 

The restraint configurations illustrated in Figure 2.4 were intended to mimic idealized boundary and loading 

conditions and provide a basis for characterizing the differences these idealized conditions and real systems. Figure 2.4 

shows the actual boundary and loading fixtures used in experimental set up for different configurations. 

The testing program consisted of a series of flexural loading cycles within the elastic range (𝜎𝑦𝑖𝑒𝑙𝑑= 50 ksi) on a 

wide-flange hot-rolled structural steel beam (ASTM A992 W10x22). The 172-inch beam was tested in the Structures 

Laboratory at the University of Virginia and configured for strong-axis bending. The beam was instrumented with 

Bridge Diagnostic Inc. (BDI) sensors at both midspan and support locations to provide a comparison between 

traditional SHM sensor results and those derived from the 3D-DIC measurements (Correlated Solutions VIC-3D) at 

the same locations. Three paired DIC camera (Point Grey Grasshopper 2.0 CCD with 5.0MP resolution) systems were 

used to evaluate the midspan (Schneider 8 mm lens) and two end span (Schneider 12 mm lenses) locations. The 

midspan camera system utilized a different lens configuration due to the physical constraints of the load frame location 

relative to the test specimen.   

The end and midspan locations were patterned over the full depth of the beam web over 24 in. with the pattern 

created by applying a flat white paint base coat, followed by random speckle pattern with a permanent marker. 

Additional details on the pattern and camera setup are provided in a later section. The DIC data acquisition (DAQ) 

integrated output signals (load and displacement) from MTS actuators and controller to allow for simultaneous 
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acquisition of load, displacement, and images. The BDI DAQ system was not directly linked, but was synchronized 

manually at the start of each test. Figure 2.5a provides a basic illustration of the experimental setup and instrumentation 

configuration used during testing. 

 
 

 

Figure 2.3. Schematic of the steel beam (a) loading and boundary conditions used during experimental testing (b) 

Configuration 1 (c) Configuration 2 (d) Configuration 3 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.4. Boundary and loading fixtures (a) different supports used in the tested configurations (b) supports used for the first 

configuration (c) supports used for the second configuration (d) support used for the third configuration. 

 

(a) 
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(b) 

Figure 2.5. Experimental setup and camera configuration (a) 6 camera setup (3 systems or 3 camera pairs) 1 pair at midspan (8 

mm lens) and 1 pair at each support (12 mm lens) (b) Diagram of the optical setup (Left), Field of view, speckle pattern and 

subsets 

2.3.1.1 Loading regime 

For each of the configurations, the beam was loaded monotonically under displacement-control, with the beam 

response maintained within the elastic range. The loading sequence consisted of loading the beam to a displacement 

of 0.05 inch at a rate of 0.002 inch per second, followed by a two-cycle sinusoidal loading from 0.05 inch up to a peak 

displacement of 0.3 inch, and concluding with an unloading through the reverse of the initial loading sequence. The 

initial loading and final unloading occurred over a period of 50 seconds (25 seconds each), while the sinusoidal 

sequence occurred over a period of 500 seconds (250 seconds for each cycle). The BDI DAQ collected data during 

the loading sequence at 100 Hz while the DIC images were acquired at 2 Hz which resulted in 1143 images. 

2.3.1.2 DIC Setup 

As previously noted, the DIC image acquisition used three sets of stereo-paired digital cameras. Each camera had 

a 5-megapixel charge coupled device (CCD) image sensor with a resolution of 2448 × 2048. The image sensor for this 

camera was 2/3” format with dimensions of 0.35” × 0.26”, which accounted for a pixel size of 1.36×10-4 inch. The 

camera was connected to a C-mount optical lens and the acquired data was communicated to the control PC through 

FireWire cables. To accommodate the specimen within the field of view of cameras with the highest resolution, the 

design on the imaging setup was achieved by considering the geometrical restraints of the laboratory space (maximum 
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available space from cameras to the beam was about 50 inches) as well as the available optical lenses. Using 12 mm 

lenses for the end locations and 8 mm lenses for the middle location, the distance of the camera from the beam was 

calculated using equation 1, where w/h is the sensor width/height, W/H is the field of view width/height, d is the 

distance to the object, and f is the focal length (Figure 2.5b (Left)). Using the dimensions of the speckled region (24” 

× 9.5”) and leaving a space of at least one inch around each side of the region to accommodate deformations to be 

captured, the 8mm and 12mm lenses had to be placed at about 23.5” and 35” from the specimen (Figure 2.5b (Right)), 

respectively, to produce the same field of view. 

 

𝑤
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 (2-1) 

 

In preparation for testing, the surface of the test specimen was covered with a fine, dense and random speckle 

pattern for the correlation process. To achieve a high spatial resolution of calculated results while at the same time 

being large enough to be resolved in the images, the pattern had an average speckle size of 0.08 inch, which 

corresponds to approximately 8 pixels in the captured images. For the pixel tracking process in DIC, the area of interest 

on the speckle pattern is split into rectangular windows or “subsets” and unique patterns of speckles need to be 

available within each subset to allow for tracking in subsequent frames. The patterns in the subsets is tracked on a grid 

of a specific “step” size, which dictates the spatial resolution of the calculated points. To achieve a fine grid of unique 

patterns in subsets, the selection of the subset size was achieved through direct experimentation and a square subset 

of 35 pixels at a step of 7 pixels was selected (Figure 2.5b (Right)). 

2.3.2 Numerical Simulation 

As previously noted, St-ID requires the development of an initial numerical model that can be updated based on 

experimentally derived results. In this investigation, FEMs of each loading/boundary condition scenario were 

developed in ABAQUS, a robust commercially available finite element software package. For each scenario, the steel 

beam was modeled using a total of 4,300 Continuum 3D hexahedral solid elements (C3D8) with full integration. The 

geometry was developed from standard section properties available within the AISC Manual of Steel Construction 

[101].  
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The boundary supports were modeled as a series of springs (translational and rotational) to represent the deviation 

from ideal simple and fixed conditions and to allow for updating based on experimental measurements. A global view 

of the model of the steel beam has been shown in Figure 2.6. With the model representing a relatively non-complex 

structural component, a dense mesh was not required; however, the mesh density was initially developed and later 

refined to allow for alignment with the coordinate system of the DIC results. It should be noted that ABAQUS allowed 

for the development of a direct interface with MATLAB, a multi-paradigm numerical computing environment, which 

facilitated the iterative parameter optimization algorithm. 

 

Figure 2.6. Isometric view of representative FEM of the steel beam (Configuration 1 shown) 

 

2.4 Results and Discussion 

2.4.1 Measurement noise 

Prior to utilizing the DIC results in the St-ID framework, an analysis of the measurement noise was performed. 

To evaluate the noise in the measurements, a series of images were taken from the zero-load state of the specimen and 

processed using the same settings used for the rest of the data. While in theory the displacements and strains should 

be equal to zero in the zero-load state, in practice, noise from different sources affect the measurements. Some of these 

sources include lighting fluctuations and glare, irregularities and poor quality of speckle pattern, as well as noise 

resulting from image acquisition (e.g. sensor noise) and quantization [102]. Table 2.1, summarizes the average and 

standard deviation of the displacement (U, V, W) and strain (xx, yy, xy) measurements in 10 frames with zero load. 
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The standard deviation of the measurements quantifies the variation of the noise and can be used as an estimate of the 

resolution of the measurements [103]. To better see the distribution of noise in zero-load frames, Figure 2.7, illustrates 

histograms of the non-zero displacements and strains in a sample zero-load frame. It is notable that all of the no-load 

frames have a similar shape with a mean close to zero and a bell-shaped distribution which is in agreement with the 

expected random Gaussian noise. 

 

Table 2.1. Noise statistics from measurements in 10 frames with zero load at midspan 

Variable Mean StD 

U 

(1/1000 inch) 

-0.14 0.83 

V -0.50 0.99 

W -0.18 1.44 

xx 

() 

1.80 63.02 

yy 0.96 86.67 

xy -0.72 60.12 

 

 
(a) (b) 

Figure 2.7. Histogram of non-zero measurements in a sample zero-load frame (a) strain (b) displacement 

2.4.2 DIC results versus reference sensors 

Results from the experimental program provided a basis for comparison of the 3D-DIC measurements with the 

in-place mechanical sensors that are representative of those used in traditional structural testing and SHM applications. 

For comparison, a virtual gauge was selected in the DIC system to allow for local strains to be measured within both 

the tension and compression regions of the cross-section as shown in Figure 8. The evolution of strains (εxx) at the two 
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locations, A and B (Figure 2.8), along with the corresponding vertical deflection were extracted from the DIC results. 

Similarly, results from the support locations were extracted from the DIC; however, for this location, only 

displacements were considered as the strains near the supports are relatively low. Figure 2.9 illustrates a comparison 

of the results of selected sensors for one of the experiments relative to corresponding BDI sensors. Also, differences 

between BDI sensors and DIC are quantified in the Table 2.2.  The results demonstrate that the measurement derived 

from both systems are comparable, but the DIC results exhibit a noisier response. This outcome is expected, but it 

should also be noted that the full-field measurement capability derived from DIC cannot be achieved with local sensing 

techniques and the full-field measurement provides a unique capability for a more robust St-Id strategy. During the 

experiments, the DIC measurement also provided a supplemental benefit to the investigation in that vertical deflections 

were measured at the support locations, which were previously assumed to be fixed in this direction. 

 

 
Figure 2.8. Longitudinal 𝜀𝑥𝑥 DIC strain fields at the maximum load, t =150 sec, frame#300 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.9. Comparison of results obtained from DIC and mechanical sensors (a) midspan strain; (b) midspan deflection; (c) 

right support deflection; (d) left support deflection 

Table 2.2. Differences between DIC and LVDT 
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2.4.3 Structural identification using FEMU with DIC via HOA 

In a previous study [104], limited non-full-field data derived from DIC measurements were used in an FEMU 

scheme, but the sparse data used in the refinement was not sufficient for consistent model updating. However, the full-

field measurement derived from DIC provided a rational mechanism for performing multi-objective optimization for 

model updating. In this study, the initial FE models, developed in parallel with the experimental configurations, were 

updated using a robust optimization algorithm to converge on predictions of the beam’s Young’s Modulus (Es) and 

support stiffness parameters (K1, K2, K3, K4). As illustrated in Figure 2.3, three scenarios were selected for model 

updating with variations in the restraint conditions and objective function parameters. The optimization algorithm 

developed in this investigation incorporated the features of a GA and a gradient-based scheme to iterate on the 

unknown parameters.  

2.4.3.1 Definition of the objective function 

The identification problem consisted of the determination of structural parameters that minimize the difference 

between calculated data from a numerical model and a set of experimental data. In this research, the numerical model 

is a finite element model with the same geometry and boundary conditions as the experimental setup. The identification 

leverages a generalized cost function (e.g. Equation 2) to evaluate agreement between the numerical and experimental 

results. 

𝐹 =
1

𝑁𝑖

|𝑦𝑖
𝑛𝑢𝑚 − 𝑦𝑖

𝑒𝑥𝑝
| 

 (2 – 2) 

Where 𝐹 is the cost function, 𝑦𝑖
𝑛𝑢𝑚 is the i - th information obtained with the numerical simulation, 𝑦𝑖

𝑒𝑥𝑝
  is the i-th 

information obtained with the set of experiments conducted and 𝑁𝑖 is a weight factor. In this study, the experimental 

data utilized for the definition of the cost function are the strain and displacement fields; however, other measurement 

data could also be included in the St-Id process.  

2.4.3.2 Interpolation process 

For comparison of the results from these two analyses (e.g. FEM and DIC), a common grid was required to ensure 

that the measurement/analysis locations are equivalent. To achieve a common reference for comparison between the 

FEA and DIC results, it was necessary to interpolate the results from the DIC grid over to the FEA grid (or vice versa) 
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or interpolating both results on the new defined mesh grid. In this study, the mapping of both results to a new grid 

approach was selected. The concept of interpolation process is shown in Figure 2.10 schematically. FEA and DIC 

results have different mesh grid spacing in the x-y plane. With both results mapped to a common grid, the difference 

(or error) between FEA and DIC results can be used within the optimization process.   

 

Figure 2.10. Interpolation process 

 

In this work, the interpolation was performed using the MATLAB software. For this process a general mesh grid 

is first defined and the results from FEM and DIC are interpolated onto the newly defined mesh grid. A bilinear 

interpolation algorithm was developed for this process, where interpolated values of the new grid are obtained based 

on the values of the four nearest neighbors forming a quad surrounding the interpolated point. Following the alignment 

of the experimental and numerical results onto a common grid, the final version of the cost function developed in this 

study can be written as: 
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 (2-3) 

 

where 𝜀𝑥𝑥
𝑒𝑥𝑝

, 𝜀𝑥𝑦
𝑒𝑥𝑝

 𝑎𝑛𝑑 𝛿𝑦
𝑒𝑥𝑝

 represent the two components of the strain tensor and displacement, respectively that 

are extracted at a point 𝑖 of coordinates 𝑥𝑖  at time t. The values 𝜀𝑥𝑥
𝑛𝑢𝑚, 𝜀𝑥𝑦

𝑛𝑢𝑚 𝑎𝑛𝑑 𝛿𝑦
𝑛𝑢𝑚 represent the corresponding 

values computed from the FEM. In this study, the data for three representative time frames, namely t=100, 150, 175 

sec., were selected to be included in the cost function to provide a representation of different stages of loading while 

maintaining a reasonable computational cost.  

 

2.4.3.3 Optimization Process- Hybrid Genetic Algorithm (HGA) 

In this study a hybridized training algorithm was adopted to minimize the cost function (Equation 3) and derive 

unknown parameters (Es, K1, K2, K3, K4). The algorithm was based on the combination of a GA and a gradient-based 

algorithm. Both GA and gradient-based techniques are well-established optimization methods and have been used in 

numerous optimization problems [40]; however, previous literature has shown that in problems involving a large 

number of parameters, a combination of these two techniques yields superior optimization performance [99]. 

In the selected HGA, first a genetic optimization step is employed to explore the space of parameters and locate 

the approximate region of the optimum solution. In the second step, a gradient-based method is utilized to continue 

the search within the approximate region to quickly converge on the precise location of the optimum solution. As a 

result, the favorable characteristics of both methods namely the efficient exploration of the space by the GA and the 

superior convergence of the gradient-based methods are leveraged to achieve an efficient optimization. Figure 2.11 

illustrates a basic flowchart of the HGA procedure adopted in this work. As shown, a feasible initial guess for the 

parameters is used to start the process. The initial guess is used to generate an FEA model which upon analysis will 

be evaluated in the cost function. If the stopping criteria are not met, a new solution is generated through different 

operations in GA (e.g. selective reproduction, crossover and mutation). The new solution gives rise to a new FEA 

model and the process will be repeated as necessary. Once the stopping criteria are satisfied, the final solution of GA 
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will be used to initiate the gradient-based scheme. This step will continue until convergence criteria are satisfied when 

the final optimal solution is identified. 

 

Figure 2.11. Overview of the proposed HGA 

 

Table 2.3 shows the initial values selected within the feasible range (maximum and minimum values) used as the 

initial guess for the parameters in the HGA procedure. Before the updating process, an initial model was created based 

on the initial values shown in Table 2.3. Table 2.4 presents three representative sets of training parameters to be used 

within the GA based on literature [105]. For the parameters used in the algorithm, Npop represents the initial population, 

Nelites represents population of elites which go directly to the next generation, Nmut represents the population which are 

randomly selected for mutation,  represents the probability rate of mutation, Npairs represents the selecting parents for 

mating, and iterations describe stopping criteria for termination. It should be noted that optimization process 

represents a trade-off between computational time and solution accuracy and that the parameters selected in this study 

only represent three optimization scenarios aimed toward validity of the approach rather than convergence to the exact 

solution. 
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Table 2.3. Initial, minimum and maximum values of the updating parameters 

Material 

parameter 

Es  

(ksi) 

K1  

(lb/in.) 

K2  

(lb/in.) 

K3  

(Kip in./rad) 

K4  

(Kip in./rad) 

Initial 25,000 70,000 70,000 2,000 2,000 

min 20,000 50,000 50,000 50 50 

max 40,000 1,500,000 1,500,000 500,000 500,000 

 

Table 2.4. Parameters of the GA for the three identification tests for the first configuration 

GA Parameter 

Group (PG) 

Npop Nelites Nmut 𝜇 Npairs Iterations 

A 10 1 2 0.04 7 40 

B 20 2 4 0.04 14 20 

C 50 4 8 0.04 28 20 

 

2.4.3.4 Solution Convergence 

Configuration 1 (CF1) was used to evaluate the performance and efficiency of the parameter groups presented in 

Table 4. In this context, performance was described as the capability to converge to a rational solution of Es (assumed 

to be 29,000 ksi) at the global minima, with efficiency described by the time of solution. An illustration of the solution 

efficiency is shown in Figure 2.12, which highlights the evolution of the cost function as the parameters converge 

towards their optimal solution. As seen in this figure, the GA training was stopped in each case at 20 epochs where an 

obvious plateau would be reached in the cost function and the parameters. At this point, the gradient-based algorithm 

was initiated which further minimized the cost function and resulted in the final convergence. Table 2.5 includes the 

parameter results of the optimization solutions for this configuration. The results demonstrate that CF1B and CF1C 

both exhibit satisfactory performance when compared to CF1A, but the computational cost for CF1C is much higher 

without a significant improvement in performance. CF1A does not approach a rational solution for Es and appears to 

be stuck at some local minima, highlighting the importance of the number of individuals (Npop) used in the first 

generation of the hybrid-optimization algorithm. Our rationale for selecting the parameter group B was based primarily 

on solution time (or computational cost) along with the convergence outcome for the one parameter with a generally 
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well-known value, modulus of elasticity 𝐸𝑠. Future studies on this topic will explore the selection of optional 

parameters. 

Table 2.5. Identified optimal parameters based on HGA for different parameters of the GA for the first configuration 

Configuration/ 

Parameter 

Group  

Es (ksi) K1 (lb/in.) K2 (lb/in.) K3 (Kip in./rad) K4 (Kip in./rad) Solution time 

(Hour) 

CF1A 27,488 92,551 90,165 125 188 20 

CF1B 29,100 97,416 90,020 80 54 20 

CF1C 29,244 98,018 88,000 55 66 50 

 

As noted convergence for each of the final parameter selections manifested as a plateau in each parameter. For 

the modulus of elasticity parameter, the rational solution for steel provided a reference for comparison; however, for 

the restraint conditions no such comparison was available. To evaluate the final parameters for the boundary restraints 

a convergence study was performed to correlate the degree of model restraint relative to the idealized solution. For 

the pin-roller condition, the expectation was zero rotational restraint and infinite vertical restraint, whereas the 

expectation for the fixed condition maintained that same vertical restraint, but included infinite rotational restraint.  

The parametric study used for both types of boundary conditions were based on the assumption that for full 

restraint (either vertical or rotational), the displacement or rotations would converge to a value of zero (or near zero). 

For the displacement, this hypothesis was tested in the FEA model by selecting a target value in a displacement-

controlled analysis (i.e. 0.3 in) and evaluating the model response with varying restraint stiffness values. For the 

vertical support springs, this initially resulted in the springs deforming and the midspan displacement not reaching the 

0.3 threshold. This process was iterated until a plateau was reached in the midspan displacement (which was the 

threshold value selected). This plateau was assumed to represent full vertical restraint.  This value was considered 

100% fixity and all other values (%) were determined relative to this maximum.  A similar approach was used for the 

rotational restraint, but the threshold used was the end rotation value, which was assumed to converge to zero for full 

fixity. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.12. Evolution of unknown parameter convergence versus iterations for CF1B (a) Cost Function (b) Modulus of 

Elasticity (c) 𝐾1, 𝐾2 (d) 𝐾3, 𝐾4 

The convergence study used the FEM of the test beam with the boundary restraint stiffnesses parameterized. 

Using the model, the values of the boundary restraints (e.g. K1 /K2 and K3/ K4) were varied iteratively to establish the 

upper and lower bounds of the restraint stiffness required to mimic the idealized solutions (i.e. simple and fixed 

conditions). This idealized solution is realized when the selected degree of freedom converges to a plateau, indicating 

additional restraint stiffness does not yield additional restraint resistance. The resulting convergence study 

demonstrated that a fixed vertical restraint stiffness equates to 250,000 lb/in, whereas full rotational restraint equates 

to 500,000 Kip in./rad. For the configurations evaluated in this study, Figure 2.13 illustrates the evolution of restraint 

as the vertical and rotational restraints approach the idealized solutions. Also Figure 2.14 illustrate the evolution of 

rotational restraint values which is acquired by selecting different values for rotational spring stiffness of one of the 

supports and then analyzing the beam using ABAQUS to obtain the evolution of support rotation values.  
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When comparing the updated restraint stiffness values, it is evident that the boundary conditions of the three 

configurations represent some fraction of the idealized boundary conditions (0.016% for configurations 1 and 2, and 

0.04% for configuration 3). This level of rotational fixity was expected for the first two configurations which were 

designed to be rotationally unrestrained. However, for configuration 3, this percentage, while larger than the two 

unrestrained configurations, is much lower than expected (Figure 2.13a). This demonstrates the inefficiency of the 

designed clamping system in creating rotational fixity. Upon further examination, it was noted that the clamping 

device used in this configuration acted on a limited length (4 in.) of only the lower flange and was thus not able to 

effectively restrain the rotation of the beam end. A more robust mechanism for fixing the ends of both top and bottom 

flange over a sufficient length will be required for creating an actual rotationally fixed support conditions. 

Similarly, for the vertical spring stiffness (K1 and K2), the updated stiffness values are approximately 40% of the 

expected vertical restraint (Figure 2.13b). The reduction for the vertical restraint was attributed to the support 

deformation that occurred during the early stages of loading due minor gaps or spacing in the pedestals and associated 

fixtures. The support movement dissipated at approximately 86% of the peak load, which is illustrated in the load 

deflection response of the supports (Figure 2.13c – d), the slope of which correlates to the average support vertical 

restraint stiffness (K1 and K2).  

In Figure 2.13c – d: Left and Right support force-deflections are quite nonlinear (but elastic). As these values of 

reported stiffness are a representative average.  This turned out to be a by-product of the experimental setup and could 

not be easily controlled. Consideration was given to starting the analysis after the point of support stiffening, but it 

was decided to include this effect in the model updating process for illustrative purposes.  

In Figure 2.14, the evolution of rotational stiffness spring versus support rotation values, obtained from ABAQUS, 

is plotted for the purpose of knowing how we have selected maximum rotational spring stiffness domain for the 

optimization process appropriately. As it can be seen in Figure 2.14, beyond a support restraint stiffness of 500,000 

Kip-in/rad, little difference are observed within the support rotation values. Importantly, it has to be noted that in the 

optimization process if a large domain for the unknown parameters is selected, such as the rotational spring stiffness, 

poor parameter estimates are likely unless a large population for the GA is selected, which in turn would increase 

computational cost. Owing to that, selection of the domain of the parameters must be done with consideration of these 

tradeoffs. This concept is shown in Figure 2.14, in which an initial and maximum range for the rotational spring stiffness 
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were chosen accordingly. In future works, the sensitivity of optimization parameters such as population size will be 

studied in more depth.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

(e) 

Figure 2.13. Convergence study on restraint stiffness (a) evolution of rotational restraint fixity of the supports (b) evolution of 

vertical restraint rigidity of supports (c) force versus left support deflection (d) force versus right support deflection (e) 

Rotational 
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Figure 2.14. Rotational Spring Stiffness variance versus degree of rotations 

 

With the rationality of the optimized parameters established, it was determined that the parameter group B yielded 

the most efficient optimization solution and was selected for evaluation of the other two configurations (CF2 and 

CF3). Using this parameter group, the final identified parameters are presented in Table 2.6 for all three test 

configurations. 

 

Table 2.6. Identified optimal parameters for different configurations for group B set of parameters of the GA 

Configuration/ 

Parameter Group  

Es 

(ksi) 

K1 

(lb/in.) 

K2 

(lb/in.) 

K3 

(Kip in./rad) 

K4 

(Kip in./rad) 

CF1B 29,100 97,416 90,020 80 54 

CF2B 29,511 97,501 91,888 48 101 

CF3B 29,984 1,568,698 1,384,224 249 2,200 

 

A comparison between the full-field contours of the DIC and the updated FE model are presented in Figure 2.15 

and Figure 2.16 for the midspan and support locations, respectively for CF1B. Figure 2.15 illustrates a comparison of 

the longitudinal strain (xx), shear strain (xy), and vertical deflection (y). From this comparison, it is evident that the 
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updated model is able to reproduce the responses derived from the experiment as illustrated by the minimal error 

exhibited within the area of interest.  It should be noted that the localized errors in the longitudinal strain contours are 

likely associated with local stress concentrations that occur on the top of the beam at the location of the load 

application. Figure 2.16 illustrates a comparison of the deflections at the end locations showing excellent agreement. 

It is also notable that while the vertical deflection right above the supports were initially expected to be zero, some 

support settlement can be seen in the results. Similar to the midspan location, the error between the DIC measurement 

and updated model is minimal across the area of interest. Similar results were derived for CF2B and CF3B, but are 

not included in this manuscript. 

 

Figure 2.15. Contour plots of the experimental strain fields, the numerical strain fields and their absolute difference for the 

middle span for the components 𝜀𝑥𝑥, 𝜀𝑥𝑦 , 𝛿𝑦  at t=150 sec for CF1B. 
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Figure 2.16. Contour plots of the experimental strain fields, the numerical strain fields and their absolute difference for the 

component  𝛿𝑦 (first row for left span and second row for right span) at t=150 sec for CF1B 

 

 

2.4.4 Performance of Updated FE Model 

To investigate the effectiveness of the identification procedure, the performance of the model before and after 

updating can be evaluated versus the results derived from the experiments. For this evaluation, two points of interest 

for CF1B were selected for comparison, namely points A and B which were previously described in Figure 2.8. The 

temporal evolution of the longitudinal strain both before and after the updating process are shown in Figure 2.17a – b 

, respectively. Also, a summary of the percent difference, described as the mean absolute percentage error (MAPE) 

between DIC and FEM, for the three configurations before and after model updating, are presented in Table 2.7. 

Comparing the results from the updated model with those derived from the DIC measurements demonstrate the success 

of the identification procedure, in that the revised strain response now tracks along with those derived from the 

experiment. It is seen that the evolution of local strain is correctly described over the entire loading sequence, with 

comparable magnitudes and falls within about an 8% error window of the measured response. Similar results were 

derived for CF2B and CF3B, but are not included in this manuscript. This outcome demonstrates that full-field 

measurement techniques are sufficiently robust for use in the St-Id framework for SHM. 
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(a) 

 

(b) 

Figure 2.17. Comparison of the evolution of the longitudinal strains εxx for CFB1 between the numerically computed values 

and the values obtained using DIC at points A-B shown in Fig. 8, for (a) before model updating, (b) after updating 

 

Table 2.7. Summary of differences between DIC and FEM before and after model updating for the mentioned points. 

 

2.5 Conclusion 

 

In this study, a structural identification procedure was developed to identify the material properties and boundary 

conditions of the experimental setup of a steel beam under flexural loads using full field measurements derived from 

3D-DIC. This paper describes the core components of the St-Id process including the experimental setup, numerical 

model development, creation of common reference plane, and model updating. Conventional mechanical sensors 

typically used in St-Id applications were also installed on the experimental specimen to provide context for comparison 

with the current practice. In this work, both deflections and local strain fields were successfully used in the updating 

procedure through the deployment of a cost function that included the relevant components of full-field structural 

response in a number of different stages of loading. This cost function was then pushed to zero by leveraging an 

efficient optimization algorithm consisting of a hybrid of GA and a gradient-based optimizer. 
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A number of different optimization parameters were tested and compared in terms of convergence performance 

as well as computational efficiency. The examination of the evolution of the cost function as well as the identified 

parameters versus time demonstrated satisfactory convergence. The excellent agreement of the strain and displacement 

responses achieved after the completion of the updating process confirmed the efficacy of the proposed identification 

method. It was also observed that while the responses obtained through DIC were relatively noisier than the physical 

sensors, the full-field measurement provided a rich dataset for a stable and robust St-Id. Overall, the St-Id results 

obtained in this work suggest that image-based measurements sensing using 3D-DIC can be successfully used as an 

alternative to physical in-place sensors for characterizing the response of large scale structural systems.   

Future work is expected to further explore the potential for reducing the noise within the experiments, optimal 

parameter selection for the parameter identification, evaluation of the range of applicability with respect to uncertainty 

in the updated parameters and applying different boundary condition configurations to demonstrate the capability of 

the proposed approach.  These areas of focus are critical to the applicability of the proposed approach to more complex 

structural systems. 
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3 CHAPTER 3 – Image-based Tomography of Structures to Detect Internal 

Abnormalities using Inverse Approach 

 

Mehrdad S. Dizaji Mohamad Alipour, Devin K. Harris 

“Dizaji, M. Shafiei, M. Alipour, and D. K. Harris. " Image-based Tomography of Structures to Detect Internal Abnormalities using 
Inverse Approach." Experimental Techniques, Submitted.” 

 

 

3.1 Abstract 

 

Image-based techniques have been extensively deployed in the fields of condition assessment and structural 

mechanics to measure surface effects and deformations such as displacements or strains under loading. 3D-DIC is one 

technique frequently used to quantify full-field strain measurements. This research uses 3D-DIC to detect interior 

anomalies of structural components, inferred from the discrepancy in constitutive properties such as elasticity modulus 

distribution of a three-dimensional heterogeneous/homogeneous sample using limited full-field boundary 

measurements. The proposed technique is an image-based tomography approach for St-Id to recover unseen 

volumetric defect distributions within the interior of a three-dimensional heterogeneous space of a structural 
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component based on the iterative updating of unknown or uncertain model parameters. The approach leverages full-

field surface deformation measurements of structural elements as ground truth measurements coupled with a FEMU 

process that leverages a novel hybridized optimization algorithm for convergence. This paper presents a case study on 

a series of structural test specimens with artificial damage. An ABAQUS script tool was used to provide an iterative 

interface between the FEM script and an optimization package. Within the St-Id framework, the evolution of the 

selected objective function illustrated precise convergence of the identified elasticity modulus distribution and the 

resulting updated model at later stages of loading correlated with the ground truth experimental response. The results 

illustrate the potential to detect invisible internal defects from surface observations and to characterize internal 

properties of materials from their observed mechanical surface response. 

 

Keywords: Inverse Problem, 3D-DIC, Full-field measurement, Image based Tomography, Hybrid Algorithm, 

Optimization, Interior defects, damage identification 

 

3.2 Introduction 

 

Material properties such as elastic modulus, shear modulus or Poisson’s ratio are critical to both the design and 

evaluation processes of engineered systems ranging from buildings to aerospace structures, as these properties serve 

as the link (constitutive law) between stress and strain [106], which describe the response of these engineered systems. 

In many cases, these material properties can be derived using standard testing approaches, but these tests are typically 

suitable to virgin materials that are not part of an existing system [107]. Typically, the measurement of these 

constitutive properties for existing structural systems requires an indirect in-situ measurement that can be correlated 

with a specific material property or the destructive extraction of a representative sample for traditional testing. 

However, in many cases, these types of measurements are insufficient or representative samples cannot be extracted 

and alternative approaches are necessary. In these cases, an inverse engineering solution for St-Id aims to resolve the 

non-homogeneous material properties, demanding the knowledge of interior and exterior deformation fields such as 

displacement/strain fields and boundary conditions. One extension of this inverse engineering solution is in 

discovering the presence of internal abnormalities (e.g., internal geometric features such as voids or other types of 
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defects), presumed as a locally heterogeneous status inferred from non-uniform stochastic elastic modulus distribution 

in the interior of a three-dimensional region of a sample. 

Ideal solutions to this type of inverse problem require measurements of deformation fields such as 

displacement/strain fields internal to the body of the solid. In medical applications, internal properties of a sample can 

be observed by non-destructive imaging tools, such as ultrasound devices, which depend on utilizing high-frequency 

sound waves to produce dynamic visual images of a sample/organs. The sound waves are transmitted to the area to be 

examined and the returning echoes are captured to provide a “Live” image of the area. Magnetic resonance imaging 

(MRI) and optical coherence tomography (OCT), which are alternative non-invasive imaging technologies suitable 

for internal three-dimensional imaging, rely on magnets to produce a strong magnetic field that forces protons in a 

sample to align with that field. These technologies rely on the excitation and detection of changes in the direction of 

the rotational axis of protons found in the water that makes up living tissues [108], which can be used to identify 

displacement fields from the image sequences [108-116]. A more recent medical imaging modality, termed 

“elastography”, is based on mapping a sample’s stiffness via mechanical properties (i.e. elastic modulus, Poisson’s 

ratio, etc.) to known displacement fields [114-116]. These maps provide additional and complementary information 

to categorize material types or detect abnormal heterogeneous state of a sample based on changes in their material 

property distribution such as an elasticity property. These methods can serve to assess the volumetric displacement of 

a sample; however, their use is usually limited to biological tissues. For most materials of engineering interest, such 

as metals, concrete, reinforced concrete, etc., the previously denoted techniques cannot be practically applied. For 

instance, magnetic resonance imaging (MRI) technology cannot be employed on metals and reinforced concrete 

because the powerful magnetic field of the MRI system can attract objects made from certain metals and cause them 

to move suddenly with great force. Internal properties of a component can be observed using advanced non-destructive 

methods such as full-field optical techniques. Recently, the X-ray computed tomography (XCT), a 3D imaging 

technique commonly used in medicine, has been broadly employed to identify the internal properties of the structural 

components due to its high resolution, non-destructive nature and ability to clearly visualize details including internal 

anomalies such as different streams of defects. Moreover, XCT can be combined with Digital Volume Correlation 

algorithms (DVC) to map the relative deformations between consecutive XCT images with high resolution [117]. 

Although this technique is very promising, it presents a series of limitations: it requires expensive and complex 

equipment (e.g. X-ray computed tomography (XCT) [118, 119]), the investigated material needs to have a random 
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internal pattern (e.g. foams, bones tissue, composites etc. [120, 121]), and the correlation algorithms are 

computationally expensive. Moreover, the procedure to implement the XCT technology requires loading of the sample 

while scanning which is difficult, especially for complicated structures (i.e. in-situ full-scale and complicated 

structures) [122].  

A proposed alternative approach to address the inverse problem in elasticity is to solely use the exterior surface 

measurements of a sample. From an equipment perspective, measuring surface deformations requires only a set of 

cameras to capture the image of the surface of the sample during external loading. Thus, the experimental setup is 

significantly cheaper and less complex when compared to XCT. This approach has been successfully demonstrated to 

recover target material property distributions using limited surface observations with simulated and experimental data. 

More recently, Mei et al. [114, 123-125] proposed a strategy to solve the inverse problem in elasticity for a simulated 

experiment for the shear modulus distribution using only surface deformations. Their methodology does not require a 

priori information about the problem domain and is based on finite element techniques, where the shear modulus 

distribution is represented as unknowns on the mesh nodes and interpolated with finite element shape functions. Mei 

et al. [124] tested their method on a problem domain consisting of an inclusion embedded in a homogeneous 

background and recovered the shear modulus distribution using simulated surface displacement fields. While their 

approach proved successful for the tested scenario, the type of optimization algorithm used in their work has the 

potential for getting trapped in a local minimum for more complex problems.  

While state-of-the-art methods all need specialized scanners (e.g. XCT, ultrasound, OCT, MRI, etc.) or physics 

rules, the image-based tomography approach proposed in this paper utilizes digital cameras to gather exterior (i.e. 

surface in 3D sample) full-field measurements of a sample to adjust an initial FEM via an optimization algorithm and 

recover the elastic modulus distribution, from which the internal abnormalities can be inferred. Image-based 

techniques using digital cameras are frequently employed to measure surface displacements/strains on a sample under 

external loading. One of these image-based techniques, DIC, is a non-contact photogrammetric technique used to 

measure full-field deformation (2D and 3D) from a sequence of images. From the sequence of images, deformations 

are measured by tracking pixel movements through correlated speckle pattern subsets from image to image. 

Deformations within subsets are interpolated, similar to the FEM, providing the ability to describe the full-field 

deformation over the specimen surface. Some applications of the DIC technique can be found in the literature [8, 15, 

19, 58-85], with examples of displacement or strain measurements based on DIC typically used to adjust and improve 
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the mechanical characterization of solids [126-130]. A comprehensive treatment of DIC is available in the literature 

[16-21] and not presented herein, but additional details on the DIC deployment used in this investigation are provided 

in a later section. 

Recently, the authors took advantage of the DIC technique as a full-field measurement approach for constitutive 

property identification of a full-scale steel component using a St-Id approach [42, 104, 131, 132]. The results of these 

previous studies demonstrated the robustness of the proposed hybrid approach for identifying uncertain/unknown 

system parameters. In this paper, an experimental program was developed to evaluate the feasibility of extending this 

hybrid approach in an inverse problem to detect internal features of a structural components or systems merely by 

surface measurements, without a priori postulation about the internal features of a structure. As a preliminary 

investigation, an inverse problem methodology was established for FEMU with 3D-DIC measurements of four steel 

coupons with artificially simulated defects subjected to variable loadings. The defined inverse problem was then used 

for the St-Id including surface and internal defect geometries, constitutive properties and boundary conditions. To 

detect damage, sections of the FEM along with surface 3D-DIC measurements were considered as inputs into an 

objective function aimed at simultaneous local and global system parameter identification.  

 

3.3 Methodology 

   

The hypothesis of this work centers on the premise that internal defects can be delineated and/or inferred by their 

material constitutive properties distribution such as elastic modulus, shear modulus, density, or other material 

properties, and further described physical properties such as the shape, size, and position. The mechanisms employed 

herein to identify material properties of an internal area of a sample are informed by an image-based measurement 

approach which takes advantage of the heterogeneous characteristics of surface strains during loading to deduce 

internal properties (e.g. geometric features or defects) of the structure. Full-field surface deformation measurements 

derived from 3D-DIC have the potential to illustrate unseen anomalies within a solid body while also being non-

invasive and data-rich.  

Traditionally, to simulate a structural component, a FEM can be created, assuming the element is globally 

homogeneous. However, non-uniform distribution of materials, (e.g. porosity, etc.), interlayer fractures, and     defects 

are inherent to manufactured structural materials and can occur during the manufacture, resulting in a non-
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homogeneous internal property. For structural components with defects, the distribution of these internal non-

homogeneous properties under loading (i.e. mechanical/thermal loadings) manifest in the form of perturbed 

strains/deformation patterns on the surface of the component. An example of the effects of non-uniform properties on 

strain/displacement patterns is demonstrated in Figure 3.1, using a tensile test of four similar coupons with different 

artificially manufactured defect features on the back side to mimic damaged regions, which are described as follows: 

(a) coupon specimen without any defect on the surface, subjected to tensile load, (b) coupon specimen with two 

artificially manufactured defects on the back side of the sample, which are invisible from the front side of the specimen 

subjected to tensile load, (c)  coupon specimen with one artificially manufactured defect on the back side on the top 

region of the sample subjected to tensile load, and (d) coupon specimen with one artificially manufactured defect on 

the back side on the middle region of the sample subjected to tensile load.  

During measurement, all of the coupons were tested in the same way; nonetheless, due to the damaged features 

on the back side of the coupons in configurations 2-4, the surface full-field strain and displacement patterns in different 

directions were clearly differentiable between the four represented specimens at the same load level. The non-

homogeneous full-field strain/displacement patterns on the surface of the coupons can be inferred as a hologram of 

interior information such as existence of internal anomalies (e.g. defects). Therefore, in the proposed approach, an 

inverse problem is utilized to interpolate and tune those non-homogeneous surface patterns on the corresponding full-

field strain/displacement surface pattern from numerical model by adjusting the variables (e.g. constitutive properties, 

boundary conditions or geometric properties) to infer internal properties (e.g. internal defects). Extracting more 

information from the surface of a sample can help to better imply and interpret the interior properties.  
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Figure 3.1. Illustration of different specimens with DIC patterns (a) front side of coupon specimen with damage in the back, (b) 

back side of the coupon specimen with two rectangular damage, (c) longitudinal full-field strain pattern for the specimen without 

any dama 

 

By leveraging 3D-DIC as a full-field measurement technique, and the observed strain/displacement patterns, the 

non-homogeneous internal status of the samples can be extracted locally and globally, by interfacing the initial FEM 

with the measurements and updating the structural model until convergence. The proposed method is described as an 

image-based tomography of a structural components using an inverse approach.  

 

 

 

3.4 Experimental setup  

 

In this investigation, an experimental program was developed to evaluate the feasibility of leveraging 3D-DIC in 

a FEMU process to detect internal features of structural components. The experimental program included a laboratory-

scale investigation of four representative coupon samples subjected to the same displacement-controlled loading and 

boundary conditions. The structural configurations used in this work are illustrated schematically in Figure 3.2a and 

can be described as: 

1) Configuration 1: coupon specimen without any defect on the surface, subjected to tensile load. 

2) Configuration 2: coupon specimen with two artificially manufactured defects on the back side of the 

sample, subjected to tensile load. 
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3) Configuration 3: coupon specimen with one artificially manufactured defect on the back side on the top 

region of the sample, subjected to tensile load. 

4) Configuration 4: coupon specimen with one artificially manufactured defect on the back side on the middle 

region of the sample, subjected to tensile load.   

These test configurations give rise to heterogeneous and non-uniform in-plane strain fields, (i.e. longitudinal, 

transverse, and shear strain components), as well as in-plane/out-of-plane displacement fields (i.e. longitudinal, 

transverse, and out-of-plane components). The geometric dimensions of the coupon specimens are shown in Figure 

2(b). Also, the experimental and DIC setup are illustrated in Figure 3.3 where the Area of Interest (AOI) has been 

defined as the region on the specimen where the DIC measurements are compared with numerical simulations. For 

this experimental validation, four simple tension tests were performed using A36 steel coupon specimens according 

to the test method defined in ASTM E8 [107]. The mechanical response of the specimens was measured by 3D-DIC 

to describe full-field surface measurements of displacement and strain of the coupons, analogous to the types of results 

derived from a FEM. A commercially available DIC system from Correlated Solutions Inc. was used in this 

investigation [102].  

The DIC system components consisted of a camera system, an image acquisition package (VicSnap), and 3D-

DIC post-processing software (Vic-3D). The DIC image acquisition used one set of two stereo-paired digital cameras, 

5-megapixel charge coupled device (CCD) image sensor with a resolution of 2448× 2048. The camera was connected 

to a C-mount optical lens (12 mm) and the acquired data was communicated to the control PC through FireWire cables. 

The camera pair was positioned 0.6 m from the coupon which yielded a field of view (FOV) of 0.7 x 0.7 m. For the 

experiment, the basic process consisted of specimen preparation, camera setup (focusing, calibration, and image 

acquisition), and post-processing of results. Prior to testing, the surface of each specimen was covered with a fine, 

dense and random speckle pattern (flat white paint for base and fine tip permanent marker for pattern) for the 

correlation process. For the pixel tracking process in DIC, the area of interest on the speckle pattern was split into 

rectangular windows or “subsets” and unique patterns of speckles remained available within each subset to allow for 

tracking across subsequent frames. The patterns in the subsets were tracked on a grid of a specific “step” size, which 

dictated the spatial resolution of the calculated points. To achieve a fine grid of unique patterns in subsets, the selection 

of the subset size was determined through direct experimentation during post-processing and a square subset of 23 
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pixels at a step of 7 pixels was selected. For more details regarding DIC setup, the reader is referred to the authors’ 

previous works [42, 104, 131, 132]. 

 

 

(a) 

 

(b) 

Figure 3.2. Intact and simulated damage coupons (a) painted steel coupon specimens used in the experimental setups, and (b) 

geometric dimension of the coupon specimens 

 

Figure 3.3. Experimental and DIC setup configuration (one system including two CCD cameras) 
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3.5 Numerical implementation 

 

As previously noted, the FEM updating process requires the development of an initial numerical model that can 

be updated based on experimentally derived behavior results. In this investigation, the FEM model of the sample was 

developed in ABAQUS [10], a robust commercially available finite element software package. The specimen was 

modeled using a total of 4,300 continuum 3D hexahedral solid elements (C3D8) with full integration. The FEM and 

mesh configuration of the coupon specimens are shown in Figure 3.4a. In Figure 3.4b, the partitioned region for 

configuration 2, considered an optimization process, is described as an example and for the other configurations the 

same region is partitioned differently. It should be noted that ABAQUS allowed for the development of a direct 

interface with the optimization package, which facilitated the iterative parameter optimization algorithm via the 

Python tool. In this work, the initial FEM of the specimen was created using the Graphical User Interface (GUI) of 

ABAQUS allowing for the model developed script to be extracted. The extracted script was iteratively interfaced with 

the Python package, which are described in a later section. The basic procedures are described by the following steps: 

(1) create initial model and save the model, (2) use the saved ABAQUS model to create the script files of the model 

development, (3) create output (i.e. load/deformation response), (4) repeat the calculation by running the generated 

script files, and (5) adjust the script to create a different model or output. 

 

(a) 

 

 

(b) 
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Figure 3.4. FEM of the coupons, and (b) constraint boundary conditions, the direction of external loading and the partitioned 

regions considered in optimization process for configuration 2 

 

3.6 Definition of the objective function 

 

The proposed method is based on inverse problem and finite element techniques as well as special distribution of 

modulus of elasticity, represented as an unknown design variable, within the finite element mesh. The number of 

unknown design variables (i.e. elasticity modulus values) are equal to the total of finite elements plus unknown 

parameters belonging to boundary conditions of the structure. The basic principle of inverse problem is to minimize 

the discrepancy between the experimentally measured and numerically computed response by revising the unknown 

variables of the FEM. In this investigation a hybridized minimization algorithm was used to minimize the following 

cost function (Equation 1): 

 

𝐹(𝑬) = ∑ ∑ ∑ [(
𝜀𝑥𝑥,𝑖𝑗

𝑒𝑥𝑝
−𝜀𝑥𝑥,𝑖𝑗

𝑛𝑢𝑚(𝐸)

𝜀𝑥𝑥,𝑖𝑗
𝑒𝑥𝑝 )

2

+ (
𝜀𝑦𝑦,𝑖𝑗

𝑒𝑥𝑝
−𝜀𝑦𝑦,𝑖𝑗

𝑛𝑢𝑚(𝐸)

𝜀𝑦𝑦,𝑖𝑗
𝑒𝑥𝑝 )

2

+ (
𝜀𝑥𝑦,𝑖𝑗

𝑒𝑥𝑝
−𝜀𝑥𝑦,𝑖𝑗

𝑛𝑢𝑚(𝐸)

𝜀𝑥𝑦,𝑖𝑗
𝑒𝑥𝑝 )

2

+ (
𝛿𝑦𝑦,𝑖𝑗

𝑒𝑥𝑝
−𝛿𝑦𝑦,𝑖𝑗

𝑛𝑢𝑚(𝐸)

𝛿𝑦𝑦,𝑖𝑗
𝑒𝑥𝑝 )

2

]
𝑛𝑖
𝑗=1

𝑚
𝑖=1

𝑝
𝑘=1                 (3-1) 

 

With E is the vector of unknown design variables which are the constitutive properties of the finite elements, p 

the number of experimental tests (p = 1 in this work), m the number of load steps (m = 20 in this work) and 𝒏𝒊 the 

number of data points in the DIC measurement at load step i. The subscripts exp and num indicate the experimental 

and numerical responses, respectively. The three components of the strain tensor and the longitudinal component of 

displacement are represented by 𝜺𝒙𝒙
𝒆𝒙𝒑

, 𝜺𝒚𝒚
𝒆𝒙𝒑

, 𝜺𝒙𝒚
𝒆𝒙𝒑

 and 𝜹𝒚𝒚
𝒆𝒙𝒑

 respectively that are extracted at a point 𝑖 of coordinates 

𝑥𝑖  at time t. Similarly, 𝜺𝒙𝒙
𝒏𝒖𝒎, 𝜺𝒚𝒚

𝒏𝒖𝒎, 𝜺𝒙𝒚
𝒏𝒖𝒎 rand 𝜹𝒚𝒚

𝒏𝒖𝒎 represent the corresponding values computed from the FEM. The 

proposed objective function and its components are shown in Figure 3.5 schematically.   

Defining a proper model for the objective function can prevent the problem from having a non-unique solution. 

While from a purely mechanical point of view, it would be expected that such an approach would yield non-unique 

solutions, a successful solution is possible by using multiple load steps and boundary strains/displacement data sets 

from multiple load configurations, sequentially applied at discrete locations around the specimen [42, 104, 131, 132]. 

Therefore, to ensure uniqueness of the final solution of the inverse problem, a large value (note that the maximum 
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value for m is equal to the number of time steps. The larger the value of m applied in objective function, the higher 

the chance of ensuring uniqueness of the final solution, in an expense of more computational cost) of m was used in 

Equation 1.  

Another reason for using a large value for m is that the full-field DIC measurements can have noise and 

uncertainties in each load step. Some of the noise sources include lightning fluctuations, glare, irregularities, and poor 

quality of speckle pattern, as well as noise resulting from image acquisition (e.g. sensor noise) and quantization [102]. 

Moreover, the interpolation of DIC and FEM can also be a possible source of uncertainties. Therefore, to decrease 

such uncertainties, utilizing large numbers for m was chosen, in this work 𝑚 = 20 and 𝑝 = 1.  However, utilizing a 

large number for m can increase computational cost dramatically. As such, parallel optimization methods are used to 

decrease the high computational costs.  

 

 

Figure 3.5. Components of the objective function 

 

3.7 Description of optimization techniques 

 

Many optimization algorithms are available for minimizing an objective function. In this work, a hybrid algorithm 

combining a GA [105] and a limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS-B), is 
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introduced and used to solve the optimization problem. In this work, a GA was used to perform a preliminary search 

in the solution space for locating the neighborhood of the solution with the L-BFGS-B algorithm used to refine the 

best solution provided by the GA. Both GA and L-BFGS-B techniques are well-established optimization methods and 

have been used in numerous optimization problems [99]; however, previous literature has shown that in problems 

involving a large number of parameters, a combination of these two techniques yields superior optimization 

performance. The optimization scheme employed in this paper is a hybrid optimization algorithm (HOA) consisting 

of two steps. First, a genetic optimization step is employed to explore the space of parameters and locate the 

approximate region of the optimum solution. The stopping criteria is the number of iterations. After a certain number 

of iterations, which is selected according to population size and computational cost, the GA halts. After running the 

global optimization, it is often worthwhile to then use the global optimum as a starting point for a local optimization 

to “polish” the optimum to a greater accuracy. Many of the global optimization algorithms devote more effort to 

searching the global parameter space than in finding the precise position of the local optimum accuracy. In the second 

step, a gradient-based method is utilized to continue the search within the approximate region to quickly converge on 

the precise location of the optimum solution. As a result, the favorable characteristics of both methods, namely the 

efficient exploration of the space by the GA and the superior convergence of the gradient-based methods, are leveraged 

to achieve an efficient optimization. The stopping criteria for L-BFGS-B algorithm is realized when there is no more 

significant decrease in objective function. 

A feasible initial guess for the parameters is used to start the process. The initial guess is used to generate a FEM 

which, upon analysis, is evaluated within the objective function. If the stopping criteria are not met, a new solution is 

generated through different operations in the GA (e.g. selective reproduction, crossover, and mutation). The basic 

operations involved in the design of the GA developed in this study have been documented in various studies by Dizaji 

et. al [42, 104, 131, 132]. The new solution gives rise to a new FEA model and the process is repeated as necessary. 

Once the stopping criteria are satisfied, the final solution of GA is used to initiate the gradient-based scheme. A GA 

is utilized to perform a preliminary search in the solution space and to locate the neighborhood of the solution. Then, 

using the best solution found with the GA as initial guess, a gradient-based optimization method is implemented to 

quickly converge towards the optimum solution. The optimization tool (L-BFGS-B) is then used to refine the GA 

solution. This step will continue until convergence criteria are satisfied and the final optimal solution is identified. 

Those unknown design variables are determined iteratively by minimizing the objective function (Equation 1).  
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Table 3.1 presents an actual set of optimization parameters used with GA based on literature [133, 134]. The 

parameters used in the algorithm are described as follows: Npop represents initial population, Nelites represents 

population of elites which go directly to the next generation, Nmut represents the population which are randomly 

selected for mutation, 𝜇 represents the probability rate of mutation, Npairs represents the selecting parents for mating, 

and iterations describe the stopping criteria for termination.  

The L-BFGS-B algorithm requires the evaluation of the objective function and its gradient with respect to the 

modulus of elasticity. Since the real objective function is unknown, it is approximated by a second order Taylor series 

around the current design variables. The input arguments for the L-BFGS-B subroutine are the gradient of the objective 

function with respect to the unknown element elasticity modulus distribution and the functional value at each 

minimization call. The subroutine then returns with an updated estimate of the parameters and this process is repeated 

until the change in the objective function is smaller than a specified tolerance. To implement the L-BFGS-B algorithm, 

an open source Python optimization package was used [78]. The primary objective of the L-BFGS-B algorithm is to 

calculate gradient of the objective function, which is calculated using finite differentiation [135, 136].  

 

Table 3.1. Parameters of the GA for the three identification tests for the first configuration 

PG Npop Nelites Nmut 𝜇 Npairs Iterations Solution time 

(Hour) 

1 50 3 8 0.04 28 500 80 

2 20 2 4 0.04 14 500 30 

3 10 1 2 0.04 7 500 14 

 

 

3.8 Results and discussion 

The proposed technique performs modifications to the corresponding constitutive parameters in the affected 

regions while maintaining the original geometry. Refinements are comprised of adjustments to stiffness or overall 

scaling of material constitutive parameters. This approach aligns with constitutive law modifications based on 

traditional damage-mechanics theory, in which the effective stiffness is diminished based on the history of applied 

loads [10]. The ultimate goal of this work is not only to diagnose the current geometric description of a structure, but 

also to predict/project damage evolution of the structure, allowing for accurate evaluation of the capacity of the 

structural component.  



 

60 
 

During the optimization process, the properties of each partition are selected as design variables which can be 

modified iteratively, based on the optimization algorithm. For this study, parameter group 2 (PG2) was selected for 

the evaluation. For each load step, the results from 3D-DIC and FEA are interpolated onto a common grid, and the 

error, which is defined as the discrepancy between 3D-DIC and FEA results, is calculated. Then, the design variables 

are modified according to the optimization algorithm until the results of DIC and FEA are correlated with each other 

to within a tolerance of 5 percent error. The geometric features (e.g. the features which belong to internal and external 

defects) of the numerical simulation are iteratively recognized at the end of the optimization process via changes in 

the constitutive properties of the elements at the corresponding location. The initial FEM is then updated based on the 

heterogeneous DIC patterns which have evolved over the elastic region of the material to project initial geometric 

description. The initial geometry of a structure can consist of different features such as holes inside or existing defects. 

Those features would be expected to yield heterogeneous DIC patterns on the surface, which help to identify those 

features requiring tuning in the numerical results through the inverse method. During the inverse problem process, the 

finite elements are modified from the selected initial values to their expected values. If the finite element belongs to a 

defect (e.g. holes, damaged region etc.), its expected value will be adjusted through the optimization process from an 

initial value to near zero. All the regions were iteratively modified and updated to mimic the initial projected geometric 

description implied as the current damage.  

 

3.8.1 Defect detection using simulated experiment 

To evaluate the feasibility of the proposed approach using the simulated measurements, a FEM of a coupon 

specimen with simulated defects was created and analyzed within the elastic range. The objective was to evaluate the 

feasibility using idealized surface measurements (i.e. full-field strain and displacement measurements) analogous to 

those derived from a DIC measurements. A corresponding intact coupon model, without any simulated damage, was 

developed for initialization of the optimization process. Configuration 2 (Figure 2b) was used for this numerical study 

and the identification process included surface strain and displacement fields (i.e. 𝜺𝑥𝑥, 𝜺𝑥𝑦, 𝜺𝑦𝑦, and 𝜹𝑦𝑦) were used 

to reconstruct the elastic modulus distribution. Table 2 shows the initial values selected within the feasible range 

(maximum and minimum values) used as the initial guess for the parameters in the optimization procedure. As shown 

in Table 2, there are 10 unknown design variables which can be adjusted during the optimization process.  
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Results from that identification process are also presented in Table 3.2, which demonstrate that the updated elastic 

modulus is well adjusted using only 20 surface strain and displacement fields for the simulated surface measurements. 

In Table 2, 𝐸𝐴𝐷𝑆 stands for Artificially Damages Section (ADS) and 𝐸𝐼𝑆 stands for Intact Section (IS). To demonstrate 

performance of the proposed approach, Equation 2 is defined as follows:   

 

𝐸𝑇 =
𝐸𝑢𝑝𝑑𝑎𝑡𝑒𝑑 − 𝐸𝑚

𝐸𝑚
× 100                                                                                       (3-2) 

 

where 𝐸𝑚 was assumed as 200GPa for the idealized modulus of elasticity of the coupon for A36 steel [4].  

The partitions corresponding to the simulated defects, 𝐸1
𝐴𝐷𝑆 and 𝐸2

𝐴𝐷𝑆, exhibit dramatic reductions, 99 and 

98.9%, respectively, demonstrating that the defects were recovered properly.  Simultaneously, the intact regions all 

converge to within 1% of the idealized modulus of elasticity. These initial results demonstrated the feasibility of the 

proposed St-Id approach, prompting further evaluation using the proposed full-field experimental approach. 

Table 3.2. Initial, minimum and maximum, updated and target values of the updating parameters for configuration 2 

E (MPa) 𝐸1
𝐴𝐷𝑆 𝐸2

𝐴𝐷𝑆 𝐸1
𝐼𝑆 𝐸2

𝐼𝑆 𝐸3
𝐼𝑆 𝐸4

𝐼𝑆 𝐸5
𝐼𝑆 𝐸6

𝐼𝑆 𝐸7
𝐼𝑆 𝐸8

𝐼𝑆 

Initial 150,000 180,000 110,000 300,000 220,000 90,000 120,000 50,000 280,000 320,000 

min 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 

max 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 

Updated  1,122 2,050 199,223 200,776 197,990 201,999 199,001 200,333 200,888 201,992 

Expected Value 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

𝐸𝑇 (%) -99 -98.9 -0.38 +0.38 -0.1 +0.99 -0.49 +0.16 +0.44 +0.99 

 

3.8.2 Defect detection using experimental 3D-DIC measurements 

 

To evaluate the performance of the proposed approach, an experimental study was initiated where controlled 

rectangular zones of artificial damage were machined into the back side of the coupons (i.e. configurations 2-4) to 

simulate damage on a component (Figure 3.2) that would be unseen from the measurement surface.  For the defined 

configurations, the initial FEMs of the coupons were partitioned into 10 sections and material properties of each 

partition were considered within the updating process, as inputs into an objective function aimed at the simultaneous 
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local and global system parameter identification. The selection of 10 sections provided a rational selection for this 

evaluation; however, additional partitioning is feasible, but at an increased computational cost due to an expanded 

search region within the optimization process. In this work, defects on the unseen side of the model were constrained 

to locations that aligned with separate partitions, which limits the search space, but ensures that the entire structural 

component response is considered. The partitions which were considered within optimization process for all the 

configurations are illustrated in Figure 3.6. It should be noted that 𝐸𝐴𝐷𝑆 is the acronym for the elastic modulus of 

artificially damaged section (ADS) and 𝐸𝐼𝑆 is the acronym for the elastic modulus of intact section (IS). According to 

the proposed method, after the optimization process, the value of the elastic modulus for the partitions which belong 

to defects are expected to decrease dramatically to infer the existence of defects in that partition, similar to the 

observations within the simulated experiments. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.6. Divided partitions of the configurations to import into optimization process, (a) configuration 1, (b) configuration 

2, (c) configuration 3, and (d) configuration 4 
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For comparison of the results, it is necessary to interpolate the results from DIC and FEM on a new defined mesh 

grid. With both results mapped on a common grid, the discrepancy between FEA and DIC results can be used within 

the optimization process [42, 104, 131, 132]. Using the proposed hybridized algorithm, the minimization of the 

objective function was performed for 500 epochs where the first 50 epochs utilized the GA and the optimization 

process for the remaining epochs were performed using the L-BFGS-B method. It should be noted that the starting 

point of the L-BFGS-B algorithm is the last optimal point obtained from the GA. The summary of results for the 

elastic modulus of the selected partitions before and after optimization process for all configurations are illustrated in 

Table 3.3. As expected, it was observed that the elastic modulus belonging to the defect regions converged to 

significantly smaller values when compared to the region without any defect features. These results confirmed that 

the proposed approach was capable of inferring the existence of the defect regions from constitutive property of 

material properly. The convergence of the objective functions for all the configurations are plotted in the Figure 7. 

According to the results shown in Table 3 and Figure 3.7, it can be concluded that the proposed approach has the 

capability of converging to the desired global minimum.  

 

3.8.3 Optimization efficiency 

As previously noted, the selection of parameters for the hybrid optimization approach were selected based on 

available literature; however, these parameters have the potential to impact the convergence potential and efficiency. 

In this section, the performance and efficiency of the optimization parameters presented in Table 3.1 are evaluated 

using configuration 2 as a case study. In this study, the performance of the sets of the parameters of the GA can be 

defined as the capability to converge to a rational solution of E at the global minima with efficiency described by the 

computational cost. An illustration of the solution efficiency is shown in Figure 3.8, which highlights the evolution of 

the objective function as the design variables converge towards their optimal solutions. As it can be seen, the GA was 

halted in each case at 50 epochs where an obvious plateau was reached in the objective function and the parameters. 

After this point, the L-BFGS-B algorithm was initiated which further minimized the objective function and resulted 

in the final convergence. The results demonstrate that Parameter Group 1 (PG 1) and Parameter Group 2 (PG 2) both 

exhibit satisfactory performance when compared to Parameter Group 3 (PG 3), but the computational cost for PG 1 is 

much higher without an efficient improvement in performance such as applying multi-processing procedure in the 

algorithm and parallelizing the iterations, suggesting that PG 2 is more efficient. It is also worth noting that PG 3 does 
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not converge to the optimal solution, which implies that the solution may be stuck at a local minimum. This outcome 

highlights the importance of the number of population size, 𝑁𝑝𝑜𝑝, used in the GA. Parameter Group 2 was deemed the 

most effective amongst the available parameter options and was selected for further evaluation of the approach based 

primarily on computational cost; however, a more comprehensive study on optimal parameters may be warranted, but 

beyond the scope of this investigation. 

Table 3.3. Summary of differences between elasticity modulus of the selected partitions before and after optimization process for 

all the configurations 

Configuration 1 

E (MPa) 𝐸1
𝐼𝑆 𝐸2

𝐼𝑆 𝐸3
𝐼𝑆 𝐸4

𝐼𝑆 𝐸5
𝐼𝑆 𝐸6

𝐼𝑆 𝐸7
𝐼𝑆 𝐸8

𝐼𝑆 𝐸9
𝐼𝑆 𝐸10

𝐼𝑆 

Initial 420,000 160,000 180,000 220,000 120,000 70,000 80,000 110,000 220,000 400,000 

Updated  208,998 191114 203,224 195,444 198,001 188001 189,001 196,555 202114 210,012 

Expected Value  200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

𝐸𝑇 (%) +4.5 -4.4 +1.6 -2.5 -1.0 -6.0 -5.5 -2.0 +1.3 +5.0 

Configuration 2 

E (MPa) 𝐸1
𝐴𝐷𝑆 𝐸2

𝐴𝐷𝑆 𝐸3
𝐼𝑆 𝐸4

𝐼𝑆 𝐸5
𝐼𝑆 𝐸6

𝐼𝑆 𝐸7
𝐼𝑆 𝐸8

𝐼𝑆 𝐸9
𝐼𝑆 𝐸10

𝐼𝑆 

Initial 150,000 180,000 110,000 300,000 220,000 90,000 120,000 50,000 280,000 320,000 

Updated Value  6,557 9,122 189,223 208,776 191,990 209,999 189,001 206,333 204,888 209,992 

Expected Value 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

𝐸𝑇 (%) -96.0 -95.0 -5.5 +4.4 -4.0 +5.0 -5.5 +3.3 +2.5 +4.5 

Configuration 3 

E (MPa) 𝐸1
𝐴𝐷𝑆 𝐸2

𝐴𝐷𝑆 𝐸3
𝐴𝐷𝑆 𝐸4

𝐴𝐷𝑆 𝐸5
𝐼𝑆 𝐸6

𝐼𝑆 𝐸7
𝐼𝑆 𝐸8

𝐼𝑆 𝐸9
𝐼𝑆 𝐸10

𝐼𝑆 

Initial 110,000 250,000 130,000 290,000 180,000 60,000 220,000 180,000 250,000 420,000 

After  7,445 8,445 9,984 8,554 189,222 179,000 208,000 191,224 206,002 210,111 

Ideal  0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

𝐸𝑇 (%) -96.0 -95.7 -95.0 -95.7 -5.5 -10.5 +4.0 -4.4 +3.0 +5.0 

Configuration 4 

E (MPa) 𝐸1
𝐴𝐷𝑆 𝐸2

𝐴𝐷𝑆 𝐸3
𝐴𝐷𝑆 𝐸4

𝐴𝐷𝑆 𝐸5
𝐼𝑆 𝐸6

𝐼𝑆 𝐸7
𝐼𝑆 𝐸8

𝐼𝑆 𝐸9
𝐼𝑆 𝐸10

𝐼𝑆 

Initial 170,000 220,000 280000 130,000 100,000 140,000 220,000 170,000 70,000 150,000 

Updated Value  11,224 8,225 9,879 5,469 181,003 195,224 211,225 194,225 179,887 190,336 

Expected Value  0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

𝐸𝑇 (%) -94.0 -95.9 -95.0 -97.0 -9.5 -2.4 +5.5 -3.0 -10.5 -5.0 
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Figure 3.7. The convergence of the objective function for the defined configurations 

 

 

Figure 3.8. Convergence of the objective function with different sets of parameters for the GA 

 

For configuration 2, the optimization convergence of the objective function and elastic modulus of the partitioned 

sections are shown in Figure 3.9a – b.  In the first step of the optimization process, the objective function was reduced 

from 52 to 43 during the optimization process. In the second step of the optimization process, the objective function 

was reduced from 43 to 0.2 during the optimization process. Moreover, in order to show the superiority of the new 

proposed algorithm, the optimization process was conducted for three separate cases for 500 epochs: 1) only GA was 

used for optimization, 2) only the gradient-based algorithm was used for optimization and 3) Hybridized Genetic 

Algorithm (HGA) was used for optimization. As seen in Figure 3.9a, using the proposed hybrid algorithm, the 

objective function has decreased more than the two base algorithms when applied alone. This demonstrates the 

efficiency of the hybridized optimization scheme in reducing the objective function. Moreover, the initial values and 
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corresponding optimized solutions illustrated in Figure 3.9c show proper convergence of the initial values toward their 

expected solutions. It should be noted that for each partitioned section, a different initial value was selected to show 

the capability of the proposed method in converging to the expected target value accordingly regardless of the starting 

point. As can be seen from Figure 3.9b – c, even though initial design variables are different, their final updated values 

converged to the correct expected target value properly. 

The full-field strain measurements from DIC and FEA, along with the absolute error, before and after model 

updating, are shown in Figure 3.10 where the initial FEM yields distinctly different contour patterns for the 

longitudinal strain than the experimental response, but following convergence to the final solution, the patterns nearly 

mirror each other.  Through this convergence, the error, which describes the differences between the model prediction 

and experimental results, drops an order of magnitude from the initial prediction.  

 

(a) 

 

(b) 

 

(c) 

Figure 3.9. Objective function convergence for different optimization algorithms, (b) elasticity modulus convergence, and (c) 

initial and final values of design variables 

 



 

67 
 

 

 

Figure 3.10. Full-field measurements obtained from DIC and FE, along with the absolute error, before and after model updating 

(a) 3D-DIC results, (b) initial finite element results, (c) updated FEM, (d) the error between DIC and initial model, and (e) 

 

3.8.4 Optimization robustness 

 

Many optimization problems have multiple optima, i.e. non-unique solutions. The non-convexity typically means 

that several different local minima (which is what the gradient-based algorithms locates) and different solutions to the 

same discretized problem can be found when choosing different starting solutions and different parameters of the 

algorithms. Global optimization methods seem to be unable to handle problems of the size of a typical inverse problem 

with a large number of design variables; however, it is important to observe that most problems in inverse techniques 

are not convex.  In this work, additional results derived from the use of multiple load steps increments (i.e. 20 load 

step) were used to strengthen the convergence and ensure the uniqueness of the solution. To investigate the robustness 

of the method and ensure the results were not sensitive to and dependent on the initial values, a series of iterations 
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with different initial values were performed (Table 3.4). The values of the 𝐸1
𝐴𝐷𝑆, 𝐸2

𝐴𝐷𝑆 𝑎𝑛𝑑 𝐸3
𝐼𝑆 were used to evaluate 

the optimization performance with their convergence trends plotted in Figure 3.11. As can be noted from Figure 3.11a 

– c, even though the initial points are selected randomly for the 4 different initial sets, the proposed algorithm 

consistently converges to the optimal values. Also, the initial values and corresponding optimized solutions for 

different sets of initial scenarios are illustrated in the Figure 3.12. As shown in Figure 3.12, even though the initial 

values are selected randomly, the proposed approach is able to converge towards unique and consistent solutions 

accordingly. A summary of the initial design variables and their corresponding optimized solutions for the different 

initial configurations are presented in Table 3.4 for reference.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.11. Initializing the optimization procedure with different start point (a) the convergence of 𝐸1
𝐴𝐷𝑆,  (b) the convergence 

of 𝐸2
𝐴𝐷𝑆, and (c) the convergence of 𝐸3

𝐼𝑆 

 

 



 

69 
 

 

(a) 

 

(b) 

Figure 3.12. Comparison of initial and final properties for partitions within CF2 (a) initial properties, (b) final properties 

Table 3.4. Summary of elastic modulus convergence for selected partitions for different parameter initializations (Config. 2) 

Initial set 1 

E (MPa) 𝐸1
𝐴𝐷𝑆 𝐸2

𝐴𝐷𝑆 𝐸3
𝐼𝑆 𝐸4

𝐼𝑆 𝐸5
𝐼𝑆 𝐸6

𝐼𝑆 𝐸7
𝐼𝑆 𝐸8

𝐼𝑆 𝐸9
𝐼𝑆 𝐸10

𝐼𝑆 

Before  250,000 150,000 180,000 250,000 160,000 50,000 110,000 80,000 220,000 400,000 

Updated  5,445 7,889 188,811 220,110 192,001 180,330 202,001 190,111 200,002 209,002 

Expected  0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

𝐸𝑇 (%) -97.0 -96.0 -5.6 +10.0 -4.0 -9.8 +1.0 -5.0 +0.0 +4.5 

Initial set 2 

E (MPa) 𝐸1
𝐴𝐷𝑆 𝐸2

𝐴𝐷𝑆 𝐸3
𝐼𝑆 𝐸4

𝐼𝑆 𝐸5
𝐼𝑆 𝐸6

𝐼𝑆 𝐸7
𝐼𝑆 𝐸8

𝐼𝑆 𝐸9
𝐼𝑆 𝐸10

𝐼𝑆 

Before  100,000 225,000 160,000 270,000 170,000 70,000 150,000 110,000 250,000 420,000 

Updated   7,700 8,098 203,033 210,222 200,332 199,003 201,000 203,003 210,993 220,223 

Expected 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

𝐸𝑇 (%) -96.0 -95.9 +1.5 +5.1 +0.2 -0.5 +0.5 +1.5 +5.5 +10.0 

Initial set 3 

E (MPa) 𝐸1
𝐴𝐷𝑆 𝐸2

𝐴𝐷𝑆 𝐸3
𝐼𝑆 𝐸4

𝐼𝑆 𝐸5
𝐼𝑆 𝐸6

𝐼𝑆 𝐸7
𝐼𝑆 𝐸8

𝐼𝑆 𝐸9
𝐼𝑆 𝐸10

𝐼𝑆 

Before  150,000 170,000 220,000 100,000 60,000 220,000 80,000 140,000 110,000 90,000 

Updated  8,955 6,773 200,322 188,555 192,222 200,433 179,007 201,222 205,055 200,443 

Expected 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

𝐸𝑇 (%) -95.0 -96.6 +0.2 -5.7 -3.9 +0.2 -10.5 +0.6 +2.5 +0.2 

Initial set 4 

E (MPa) 𝐸1
𝐴𝐷𝑆 𝐸2

𝐴𝐷𝑆 𝐸3
𝐼𝑆 𝐸4

𝐼𝑆 𝐸5
𝐼𝑆 𝐸6

𝐼𝑆 𝐸7
𝐼𝑆 𝐸8

𝐼𝑆 𝐸9
𝐼𝑆 𝐸10

𝐼𝑆 

Before  270,000 200,000 230,000 150,000 110,000 130,000 210,000 170,000 70,000 150,000 

Updated  5,445 7,889 204,444 199,994 188,444 199433 200,345 192,022 195045 197,331 

Expected 0.0 0.0 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

𝐸𝑇 (%) -97.3 -96.0 +2.2 -0.0 -5.8 -0.3 +0.2 -3.9 -2.5 -1.3 
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3.8.5 Experimental validation 

 

Once internal defects inside a component are detected using the proposed image-based tomography method, the 

updated model, which includes the detected defects, should be able to describe future behavior of the component under 

future loads. To evaluate the updated model under new loads, the numerical model of the coupon was used to predict 

strain measurements for comparison with DIC results (Figure 3.13). The new loading included a displacement-

controlled tensile load applied using the testing machine as a separate test from those used in the updating process. 

Again, configuration 2 was used as the defective test specimen for this validation. Table 3.5 shows the comparison of 

strains at six selected regions of the specimen with those predicted using both the initial and updated models at the 

load level of 40 percent of the yielding load. This table shows a very good agreement (<10% maximum difference) 

between strains from the updated model and the experimental results. As expected, the error between the experimental 

and numerical values decreases significantly when using the updated model compared with the initial model. This 

verifies the effectiveness of the proposed approach in extracting the true properties of a component, which can be used 

for more realistic prediction of its response under future loads. 

 

(a) 

 

(b) 

Figure 3.13. Prediction correspondence between experimental and undated numerical results (a) 3D-DIC results at load level 

of 40% of yield, (b) FEMing results at load level of 40% of yield 
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Table 3.5. Longitudinal strain comparison of the experimental results with initial and updated model predications at 40% of yield 

stress (CF 2) 

Selected Regions Initial Model 

(με) 

|DIC-Initial|/DIC 

(%) 

Updated Model 

(με) 

|DIC-Updated|/DIC 

(%) 

DIC results 

(με) 

1 655 41.9 987 12.5 1,128 

2 744 66.0 412 8.0 448 

3 698 25.0 887 5.4 938 

4 877 15.0 702 7.8 762 

5 698 60.0 392 10.0 436 

6 790 33.0 1,102 7.0 1,185 

 

 

3.9 Conclusion 

 

The purpose of this preliminary investigation was to evaluate the feasibility of leveraging full-field measurements 

for St-Id, with a goal of recovering the volumetric interior defect distribution in structural components. Within this 

image-based tomography framework, steel coupon specimens with simulated defects were used to evaluate the 

performance of the St-Id approach that utilized an inverse approach to identify unknown and uncertain constitutive 

properties of the material based on full-field deformation measurements correlated with finite element predictions.  

DIC was utilized to extract full-field deformation measurements of the test specimen, subjected to standard ASTM 

E8 tension testing, with the measurements collected of only the intact surface (i.e. simulated defect unseen by the 

cameras). The corresponding FEMs of the specimens were divided into a set of regions with uniform modulus of 

elasticity, each of which had random initial stiffness values. To establish the FEMU scheme, the ABAQUS solver was 

interfaced with an optimization package and the unknown parameters were adjusted iteratively until finding the 

optimal values. The optimization strategy leverages a GA to perform the global search and a limited-memory Broyden-

Fletcher-Goldfarb-Shanno scheme for the local search for the optimal solution parameters. As a result of the 

optimization process, all of the intact regions converged to elastic modulus close to expected value of 200 GPA for 

A36 steel, with the exception of the notch regions that showed a dramatic reduction in elastic modulus, which 

approached the expected value of zero for a void. These outcomes demonstrated the ability of the proposed image-

based tomography framework to identify internal defects in the form of anomalies in material constitutive properties. 

Moreover, to evaluate the uniqueness of the solution of the proposed approach, different sets of initial values were 
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selected to show the insensitivity of the results to the selected initial values. The results showed that, even though the 

initial points were selected randomly for the 4 different sets, the proposed algorithm had the capability to converge to 

the optimal values.  

The results of this preliminary investigation and the ability of the proposed method to detect internal abnormalities 

hint at the possibility of determining not only the material distribution of a specimen, but also determining the location, 

dimensions, and shape of the defect. The results of this paper are encouraging and may open up new opportunities to 

characterize heterogeneous materials for their mechanical property distribution.  
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4.1 Abstract 

 

       Detecting subsurface defects in structural members is a challenging yet important part of condition assessment of 

structures. Existing methods in this regard are either based on NDE/T, or SHM concepts. NDE/T methods suffer from 

the need for expensive equipment usually based on wave propagation or radiation imaging. Damage detection based 

on SHM usually relies on global vibration response which has proven successful in informing the existence and 

sometimes coarse-grained location information about damage, but is fairly limited in reconstructing the 3D shape of 

internal damage. This paper proposes to leverage full-field response data obtained by DIC in a topology optimization 
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framework to reconstruct the internal damage in members. In other words, this paper shows how perturbations in the 

observable full-field surface measurements can be used as a proxy to detect the unobservable internal abnormalities.  

      An initial FEM of the structure is first created to discretize the member into elements whose constitutive properties 

(e.g. modulus of elasticity) are treated as unknowns in the optimization problem. The goal of the optimization is to 

minimize the differences between the observed full-field response measured experimentally using DIC, and that 

computed numerically using the model. To that end, an objective function is computed by interpolating both responses 

onto a common grid and summing up the residuals on relevant response terms, which was then pushed to a minimum 

via the method of moving asymptotes (MMA) as the optimization algorithm.  

      The framework was evaluated on a series of simulated and real-world experiments using steel coupon specimens 

with artificially manufactured defects. Results show that the proposed method is capable of detecting and 

reconstructing location extent, and shape of the damage with average F1-scores of 82.8% and 69.6% on simulated and 

real experiments, respectively. Furthermore, a detailed sensitivity analysis demonstrated the effect of various factors 

on the performance of the proposed approach, including different optimization starting points, defect severity, sensing 

density, and discretization density. Results from this have demonstrated that the proposed method is successfully able 

to extract detailed internal damage information that is otherwise expensive and difficult to achieve with state-of-the-

art methods and can therefore be used as a promising subsurface damage detection method. 

 
Keywords: Topology Optimization, 3D-DIC, Full-field measurement, Image based Tomography, Method of Moving 

Asymptotes (MMA), Optimization, Interior defects, SHM, St-Id. 

 
4.2 Introduction 

 

     Growing concerns over the state of health of the increasingly aging infrastructure have prompted the development 

of condition assessment methods for existing structures. While a myriad of innovative methods has been proposed to 

automate and facilitate the detection of externally visible defects in structural inspections [137-141], accurate 

identification of internal factors such as material constitutive properties, structural conditions (e.g. boundary 

conditions), and internal damage and deterioration mechanisms is equally important, if not more so, in ensuring the 

safety and integrity of infrastructure. In this regard, identifying unknown material and structural properties and 
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detecting damage in existing structures and constructed facilities has been a focus of significant attention in the 

research community [142]. Numerous innovations in the fields of nondestructive evaluation and testing (NDE/T) and 

SHM have been developed over the last decades. NDE/T techniques have been proposed that primarily leverage 

principles of wave propagation or radiation imaging in elastic solids [143]. Some of such methods include impact 

echo (IE), electrical resistivity (ER), ground-penetrating radar (GPR), half-cell potential (HCP), ultrasonic surface 

waves (USW), ultrasonic testing (UT), impulse response (IR), and infrared thermography (IRT). As the names of the 

methods imply, this approach relies upon specialized equipment and sensors, and the literature indicates a number of 

reliability and interpretability challenges for them [122, 125]. As an alternative strategy, SHM approaches rely on 

structural sensing to monitor and infer the state of structural health. These approaches typically employ model-based 

[144-146] or data-based [147-150] techniques to identify anomalies in mechanical response that point to underlying 

damage. While the use of global dynamic response [147] or a set of isolated strain and deformation response points 

[148] has been relatively successful in providing information about coarse-grained damage indication, the degree to 

which material or damage properties can be extracted has been limited. For example, using modal response for damage 

detection requires a minimum severity of damage to noticeably affect the measured response. On the other hand, using 

a discrete set of sensing points (e.g. strain gages) requires prior knowledge of the behavior to decide and optimize the 

sensor installation locations, and a series of works have been dedicated to studying the optimum sensor locations for 

damage detection [151-154]. Furthermore, even when the discrete sensor network is optimized, it may not provide 

sufficient sensing resolution to reconstruct damage [155]. While both NDE/T and SHM strategies have proven 

relatively successful for many scenarios, there are still many shortcomings that cannot be readily addressed without 

highly sophisticated equipment or costly monitoring systems. As such, there is an opportunity space for new 

approaches that enable the detection of such subsurface properties and modes of deterioration in a cost-effective and 

non-invasive manner.  

     One of the highly promising approaches to extracting such internal information is through solving an inverse 

problem, where observed experimental response and the rules of physics governing the problem are used to infer the 

underlying causal properties and damage responsible for the observed response. An inverse engineering solution for 

St-Id aims to reconstruct and recover structural unknowns (e.g. material properties, boundary conditions, and damage), 

given knowledge of interior and exterior deformation fields such as displacement/strain fields and boundary 

conditions. This information can be obtained by means of a variety of sensing equipment that measure the mechanical 
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response of the structure under external loading. One of the primary ways to solve the inverse problem is through 

FEMU, where a FEM model is iteratively fine-tuned until it can closely replicate the observed experimental response 

[156]. This is usually achieved by formulating the model tuning as an optimization problem that minimizes the residual 

between the ground truth observations and the predicted numerical counterparts. A successful inverse solution, 

therefore, depends on the adequacy of the response used for tuning the model, and the optimization scheme employed. 

Traditional St-Id and damage detection literature usually leverages experimental or operational observations in the 

form of global dynamic response (e.g. natural frequencies, mode shapes, damping ratios) usually captured via 

accelerometers [46], or local quasi-static strain and deformation response obtained from point sensors (e.g. strain 

gages) [45]. However, it has been shown that the limited sensing resolution provided by discrete point sensors, while 

useful to detect the existence of damage, may not be not sufficient for fine-grained damage localization and 

quantification [9, 22, 157, 158]. 

     In response, the use of a substantially finer and richer representation of local strain and deformation response in 

the form of full-field surface measurements captured via DIC has been recently studied as a damage detection method. 

Tools such as DIC have the potential to provide decision-makers with a comprehensive assessment tool to better 

describe the performance of SHM network while also being non-invasive and data-rich. 

LeBlanc et al. used 3D-DIC measurements of the surface of a large-scale composite wind turbine blade and observed 

good agreement between observed strain amplification and curvature discontinuity in DIC results with the location of 

cracks previously detected in visual inspections [28]. However, this work did not use the full-field information for 

updating a model or estimating unknown parameters. 

     This paper proposes a new approach using full-field surface measurements coupled with topology optimization to 

localize and reconstruct the 3D shape of unseen subsurface defects. Therefore, this paper aims to demonstrate that 

unlike a limited set of discrete sensing data points or global dynamic properties, the rich data from full-field image-

based measurements can enable the identification of a more detailed picture of the internal defects. Furthermore, this 

work demonstrates how perturbations in the observable full-field surface measurements can be used as a proxy to 

detect the unobservable internal abnormalities. In this work, 3D-DIC is used to measure the full-field surface 

deformation and coupled within a topology optimization schema to identify and reconstruct unseen three-dimensional 

damage. The following subsections briefly describe 3D-DIC and topology optimization, but more comprehensive 
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reviews of these topics are available in the literature. The following section describes topology optimization as the 

process used to reconstruct such internal features from full-field sensing data. 

 

 
4.3 3D Digital Image Correlation Technique (3D-DIC) 

 
      3D-DIC is a well-established technique in the field of experimental mechanics and works by comparing digital 

photographs of a component or test piece at different stages of deformation and or tracking (via pattern correlating 

algorithms) pattern deformations between images. Through this pattern matching and process, the technique is able to 

describe full-field surface measurements of displacement and strain, analogous to the types of results derived from a 

FEM [16-21]. DIC builds on the fundamental principles of photogrammetry and provides a mechanism to quantify 

full-field surface deformation from a series of sequential images of a specimen subjected to loading. Surface 

displacement data, which can be transformed into strain via post-processing, is derived by correlating patterns within 

an image and comparing sequential pairs of digital images taken before and after the deformation [22-27]. This process 

involves a template matching and tracking scheme in which images taken from the surface of a loaded specimen are 

split to fine grids which act as reference templates. A search process attempts to find a match for each template in the 

subsequent image by maximizing the correlation of patterns of pixels, thereby determining the movement of points 

on the surface of the specimen. The tracking of these movements in the images throughout the loading provides the 

full-field surface deformation, from which other structural responses can be calculated. The DIC technique can be 

deployed using a single camera to quantify planar surface deformations (2D-DIC), or configured for three-dimensional 

surface deformation (3D-DIC) by using stereo-paired cameras (Figure 4.1).  

     Stereo-vision is a well-established problem in computer vision that involves triangulation and correspondence 

between images from different vantage points from which depth information can be recovered. Stereo calibration is a 

major part of the 3D-DIC process and determines the intrinsic (e.g. focal length) and extrinsic properties (relative 

location and orientation) of the system of cameras. Images can be derived from a variety of sources (e.g. CCD, DSLR, 

etc.) with the choice of camera and lens configuration influenced by factors such as camera noise, lighting, acquisition 

speed, and geometric relationships between area of interest and field of view. A comprehensive treatment of DIC is 

not presented in this paper, but is available in the literature [16, 20, 22, 70, 72, 77, 102, 159, 160]. 
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Figure 4.1. Schematic of the process of using 3D-DIC for structural response sensing including data acquisition and processing 

 
4.4 Topology Optimization 

 

     Topology optimization (TO) is a mathematical framework that seeks to find the optimum structural layout and 

material distribution under a set of loading scenarios, boundary conditions and constraints. This approach is effective 

for finding the optimum design of a structure, which can be defined as one with the minimum weight or alternatively 

minimum compliance with a fixed material weight. A topology optimization problem usually starts with a preliminary 

FE model whose performance is evaluated and is iteratively fine-tuned to optimize the desired performance. In the 

case of structural design, once the component is discretized into a mesh of finite elements, the material constitutive 

properties of each element can be treated as the unknown variables of the problem. The optimization can be solved 

using a number of different techniques including gradient-based methods such as the optimality criteria algorithm and 

the Method of Moving Asymptotes [161], or non-gradient-based algorithms such as Particle Swarm Algorithms or 

GAs.  

    While the two problems of structural design and condition assessment and damage detection are usually regarded 

as different problems with contracting objectives (creating a new structure versus evaluating an existing one), they are 

fundamentally similar in their use of structural mechanics to correlate structural properties to the observed response. 

This paper argues that the condition assessment and damage detection problem can be reformulated as a topology 
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optimization problem by considering the sensing data as an additional constraint. It follows that damage and defects 

in the existing structure being evaluated will be reproduced as cavities or soft regions within the optimized structure. 

A close look at the literature shows that there are a few examples of the use of topology optimization in damage 

detection problems, most of which use global frequency response. A closer look at the relevant literature shows that 

a few papers have used the topology optimization framework for structural damage detection. Using element-based 

topology optimization methods, Lee et al. utilized the Methods of Moving Asymptotes (MMA) to minimize 

discrepancy between some points of frequency response functions of the model and the real structure [162]. Nishizu 

et al. also exploited topology optimization to identify defects based on natural frequencies and by using MMA [163]. 

Recently, a level set based approach was proposed by Zhang et al. to find the location of damages again by considering 

natural frequencies [164].  

     Niemann et al. work focused on the development of a damage detection and localization tool using topology 

optimization approach [39]. The approach was based on the correlation of a local stiffness loss and the change in 

modal parameters due to damages in structures. The loss in stiffness is accounted by the topology optimization 

approach for updating undamaged numerical models towards similar models with embedded damages. In the process 

of experimental validation, their method could localize separate damage zones, but the results become less clear and 

the optimization might get stuck in wrong local optima regarding the results of CT-Scans of the specimens. But it can 

be assumed, that the poor results for some of their cases follow from the lack of constraint data and not taking into 

account stain and displacement data into their optimization process [165]. 

 
4.5 Research Significance 

 

     This paper investigates the use of full-field structural response (e.g. strains and deformations) in a structural 

component obtained by the DIC technique within a topology optimization framework to detect, locate, and reconstruct 

internal defects. In this framework, strain and deformation patterns perturbed by the existence of subsurface defects 

guide the reconstruction of the underlying material distribution that is responsible for the observed response patterns. 

To the best of the authors’ knowledge, this paper is the first to use full-field strain and deformation response using 

DIC within a topology optimization framework to detect and reconstruct the 3D shape of the defect. The main 

contributions of this paper can thus be summarized as: 
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 Unlike NDE/T techniques which rely on specialized sensing equipment (e.g. radars or radiation-based 

scanners, etc.), the proposed method used cameras coupled with structural mechanics to infer subsurface 

conditions. 

 The proposed method leverages the rich full-filed response data from DIC to enable the reconstruction of 

the 3D shape of damage, representing an advancement over current practice which has been limited 

primarily to identification and basic localization. 

 The sensitivity analysis performed in this paper studied the effect of different parameters such as sensing 

density and optimization starting points on the damage detection performance of the proposed method. It was 

shown that enhancing the sensing density increased the detection ability of the approach. This proves the 

value of using full-field DIC sensing data compared with a limited set of discrete point mechanical sensor in 

reconstructing the detailed shape of internal damage. Also, the proposed approach was exhibited to converge 

to indistinguishable detection results with a series of several different random starting points. 

 

     While the capability and promise of the proposed technique is shown in this paper, it should be noted that in order 

to detect damage in a large structural component, large areas may need to be subject to the surface preparation required 

for DIC, and multiple sets of cameras may be required to cover the area of interest. However, the DIC technique has 

been shown to continue to be effective in relatively large components, such as a wind turbine blade designed and 

tested by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. [166]. Furthermore, 

for very large components, a multi-step procedure can be followed which starts by locating the vicinity of the damage 

using traditional global-response methods, and then using the proposed technique to obtain a fine-grained and detailed 

view of the internal damage.  

 

4.6 Proposed Approach 

    The hypothesis of this work centers on the premise that internal defects can be delineated and inferred in terms of 

the distribution of material constitutive properties such as elastic modulus throughout the component. In other words, 

an internal void, crack, or delamination in a structure can be represented by a region with reduced elastic modulus, 

which will reflect in the form of disruptions to the strain and deformation fields once the model is analyzed under 

loads. The mechanism employed herein to identify such internal defects are therefore informed by an image-based 
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measurement approach which takes advantage of the heterogeneous characteristics of surface strains during loading 

to deduce internal properties (e.g. geometric features or defects) of the structure. Full-field surface deformation 

measurements derived from 3D-DIC have the potential to reveal unseen anomalies within a solid body while also 

being non-invasive and data-rich. The full-field data derived from 3D-DIC provides an advantage over discrete sensing 

as the measurement approach aligns with the continuum features of a numerical model. 

     Figure 4.2 shows this concept, using a tensile test of four similar steel coupon specimens with different artificially 

manufactured defects on the backside to mimic damaged regions. The selected deformation responses clearly illustrate 

that subsurface defects (or unseen defects) perturb the surface strain and deformation fields on the observed surface, 

and that the quantitative comparison of the uniform responses of the intact specimen with the perturbed fields of a 

defective sample can signify the potential for an underlying abnormality. 

  

Figure 4.2. Qualitative strain and deformation patterns generated using DIC for coupon specimens with different defects under 

uniaxial tensile loads: (a) without any defect, (b) with two defects on the back side, (c) with one defect on the back side on the 

      

     This paper proposes to leverage these full-field response patterns measured using DIC to reconstruct potential 

internal damage. In this framework, DIC provides a rich data set for evaluation when compared to physical sensors, 

and the full-field measurement derived from DIC provides a mechanism for performing multi-objective optimization 

to identify unknown internal stiffness distribution. Figure 4.3 illustrates the proposed optimization process. This 

process starts with an initial FEM model that is constructed based on nominal observable properties of the component 
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and without any prior knowledge of potential internal abnormalities. The residual between the full-field DIC response 

and that predicted by the initial model will then be pushed to a minimum in an optimization process by fine-tuning 

the initial model. During the optimization process, the properties of each element (e.g. modulus of elasticity) are 

selected as unknown parameters, and will be iteratively fine-tuned until a convergence criterion is satisfied. Once the 

optimization converges, the final modulus of elasticity distribution of the model will be used to decide the locations 

of internal damage by interpreting areas of low stiffness as internal damage. 

 

Figure 4.3. Flowchart represents a conceptual scheme for the topology optimization 

 

    In earlier investigations using FEMU, the structure would be subdivided to a few candidate regions likely to include 

damage and the model updating process would identify the region of interest [86]. The region-based damage detection 

is valid only when prior information on candidate damaged areas is available beforehand. This limitation may be 

overcome by applying topology optimization, which was originally developed to find an optimal material distribution 

for a structure having minimum compliance and subject to a given volume usage [161]. To the authors’ best 

knowledge, the present paper is the first study to formulate a damage detection problem as a topology optimization 

design problem. In this investigation, a topology design formulation suitable for full field measurement data-based 

damage detection is developed. The essential steps of the developed formulation are as follows: 
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1. The design domain is first discretized by the FEM representing an undamaged structure at the start of the 

topology optimization process. The damaged elements will later be identified as voids in the proposed 

method.  

2. After mapping to a common reference plane, full-field strains and displacement measurements using the DIC 

technique are compared with the corresponding response from the FE model and their residual is used in the 

objective function.  

3. In each optimization iteration, element properties are treated as damage variables and are varied such that the 

objective function is minimized. If the damage variables are not fully converged to either the value of a void 

(completely damaged) or the value of a solid (completely intact) after an optimization iteration, all elements 

having damage variables below a prescribed threshold are reused as damaged elements at the next 

optimization iteration and the remaining elements are considered intact. This process is repeated until 

convergence.  

 
4.7 Optimization Problem for Damage Detection 

 

    The damage detection problem can be defined in terms of an optimization problem where a numerical model is 

fine-tuned such that the residual difference between the numerical response and the experimental measurements is 

minimized. Fine-tuning of the model is carried out by varying the stiffness distribution throughout the structure 

through the damage variable (x). To perform the minimization, the residuals are summarized in the form of an 

objective (or penalty) function, (𝐶(𝐱)),  that usually has the general form of a summation of different components of 

the residuals between the two responses over the region of interest. In this investigation, quasi-static response data 

including strains and deformations were used in the following objective function: 
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𝛿𝑦𝑦,𝑖𝑗

𝑒𝑥𝑝
−𝛿𝑦𝑦,𝑖𝑗

𝑛𝑢𝑚(𝐱)

𝛿
𝑦𝑦,𝑖𝑗
𝑒𝑥𝑝 )

2

+ (
𝛿𝑧𝑧,𝑖𝑗

𝑒𝑥𝑝
−𝛿𝑧𝑧,𝑖𝑗

𝑛𝑢𝑚(𝐱)

𝛿
𝑧𝑧,𝑖𝑗
𝑒𝑥𝑝 )

2

]                (4-1) 
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     Where x is the vector of unknown design variables which are the constitutive properties of the finite elements, p is 

the number of experimental tests (p = 1 in this work), m is the number of load steps (m = 1 in this work) and q the 

number of data points in the DIC measurement at load step i. The subscripts exp and num indicate the experimental 

and numerical responses, respectively. Three components of the strain tensor and the corresponding component of 

displacement are represented by  𝜺𝒙𝒙
𝒆𝒙𝒑

, 𝜺𝒚𝒚
𝒆𝒙𝒑

, 𝜺𝒙𝒚
𝒆𝒙𝒑

  and , 𝜹𝒙𝒙
𝒆𝒙𝒑

, 𝜹𝒚𝒚
𝒆𝒙𝒑

, 𝜹𝒛𝒛
𝒆𝒙𝒑

respectively that are extracted at point j at the 

time i. Similarly, 𝜺𝒙𝒙
𝒏𝒖𝒎, 𝜺𝒚𝒚

𝒏𝒖𝒎, 𝜺𝒙𝒚
𝒏𝒖𝒎 rand 𝜹𝒙𝒙

𝒏𝒖𝒎 , 𝜹𝒚𝒚
𝒏𝒖𝒎, 𝜹𝒛𝒛

𝒏𝒖𝒎 represent the corresponding values computed from the 

FEM considering an assumed stiffness distribution denoted by damage variables x. The proposed objective function 

and its components are shown in Figure 4.4 schematically.   

 

 

Figure 4.4. Components of the objective function 

4.7.1 Interpolation procedure 

    Numerical results from an FEM model and experimental measurements from DIC are computed on two different 

grids determined independently through the FEM discretization and the DIC processing. As a result, to accurately 
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compare the two sets of responses and compute the objective function, a common reference grid is required to ensure 

that the measurement/analysis locations are equivalent. To that end, it is necessary to interpolate the results from the 

DIC grid over to the FEA grid (or vice versa) or to interpolate both results on a newly-defined mesh grid. The concept 

of interpolation process is schematically shown in Figure 4.5. FEA and DIC results have different mesh grid spacing 

in the x-y plane. With both results mapped onto a common grid, the residuals between FEA and DIC results can be 

calculated within the optimization process. A bilinear interpolation algorithm has been developed for such 

interpolation, where interpolated values of the new grid are obtained based on the values of the four nearest neighbors 

forming a quad surrounding the interpolated point. The mapping scheme has proven effective in prior works related 

to global system identification [42, 104]. 

 

Figure 4.5. Interpolation of the experimental and numerical measurements into a common grid 

4.7.2 Damage Detection Using Topology Optimization 

     In this research, topology optimization is used as a tool to find damaged regions in the structure. To achieve this, 

damage is assumed to manifest as a stiffness reduction and therefore the stiffness material is decreased in damaged 

areas throughout the structure. A topology optimization routine is used to find the material distribution that most 
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closely replicates the observed surface response (strains and deformations). For this purpose, the Solid Isotropic 

Material with Penalization (SIMP) model is used and is described within this section. 

     SIMP, which was originally proposed by Bendsoe and Kikuchi (1988) and Rozvany and Zhou (1992) [167, 168], 

is one of the most effective mathematical methods for topology optimization. This method predicts an optimal material 

distribution within a given design space, under prescribed loading scenarios, boundary conditions, manufacturing 

constraints, and performance requirements. The SIMP method is based on a heuristic relation between (relative) 

element stiffness density 𝑥𝑖  and element Young’s modulus (Elastic Modulus) 𝐸𝑖  given by 

𝐸𝑖 = 𝐸𝑖(𝑥𝑖) = 𝑥𝑖
𝑝

𝐸0,  𝑥𝑖  𝜖(0,1]                                                          (4-2) 

     Where 𝐸0 is the elastic modulus of the base solid material and p is the penalization power (p>1). To account for 

lower-stiffness material that can be considered voids in the structure, the modified SIMP approach is given by 

𝐸𝑖 = 𝐸𝑖(𝑥𝑖) = 𝐸𝑚𝑖𝑛 + 𝑥𝑖
𝑝

(𝐸0 − 𝐸𝑚𝑖𝑛),  𝑥𝑖  𝜖(0,1]                            (4-3) 

     Where 𝐸𝑚𝑖𝑛 is the elastic modulus of the low-stiffness material (void), which is small but non-zero to avoid 

singularity of the finite element stiffness matrix. Topology optimization methods are known to encounter numerical 

difficulties such as mesh-dependency, checkerboard patterns and local minima [161], Therefore to mitigate such 

issues, researchers have proposed the use of regularization techniques [169, 170] that aim to prevent encountering 

aforementioned numerical difficulties. One of the most common approaches is the use of density filters that is shown 

in Eq. (4). A basic filter density function can be defined as  

�̃�𝑖 =
∑ 𝐻𝑖𝑗𝜐𝑗𝑥𝑗𝑗∈𝑁𝑖

∑ 𝐻𝑖𝑗𝜐𝑗𝑗∈𝑁𝑖

                                                (4-4) 

     Where 𝑁𝑖 is the neighborhood of an element 𝑥𝑖 with volume 𝜐𝑖 and 𝐻𝑖𝑗 is a weight factor. The neighborhood is 

defined as  

𝑁𝑖 = {𝑗 ∶ 𝑑𝑖𝑠𝑡(𝑖, 𝑗) ≤ 𝑅}                                                                        (4 − 5) 

     Where the operator 𝑑𝑖𝑠𝑡(𝑖, 𝑗) computes the distance between the centers of the elements i and j, and R is the size 

of the neighborhood or filter size. The weight factor 𝐻𝑖𝑗  may be defined as a function of the distance between 

neighboring elements, for example 
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𝐻𝑖𝑗 = 𝑅 − 𝑑𝑖𝑠𝑡(𝑖, 𝑗),                                                                            (4 − 6) 

     Where 𝑗 ∈  𝑁𝑖. The filtered density �̃�𝑖 defines a modified (physical) stiffness density field that is now incorporated 

in the topology optimization formulation and the SIMP model as  

𝐸𝑖 = 𝐸𝑖(𝑥𝑖) = 𝐸𝑚𝑖𝑛 + �̃�𝑖
𝑝

(𝐸0 − 𝐸𝑚𝑖𝑛),  �̃�𝑖  𝜖(0,1]                                    (4-7) 

The regularized SIMP interpolation formula by Eq. (7) was used in this work.  

     Finite Element Analysis: Following the regularized SIMP method given by Eq. (7) and generalized Hooke’s law, 

the three-dimensional constitutive matrix for an isotropic element i can be interpolated from void to solid as  

𝐶𝑖(�̃�𝑖) = 𝐸𝑖(�̃�𝑖)𝐶𝑖
0, 𝑥𝑖  𝜖(0,1]                                  (4 − 8)     

 Where 𝐶𝑖
0 is the constitutive matrix with unit Young’s modulus, which is given by 

𝐶𝑖
0 =

1

(1+𝜈)(1−2𝜈)
× [

1 − 𝜈 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ (1 − 2𝜈)/2

]                                                           (4-9) 

 

     Where 𝜈 is the Poisson’s ratio of the isotropic material. Using the FEM, the elastic solid element stiffness matrix 

is the volume integral of the elements constitutive matrix 𝐶𝑖(�̃�𝑖) and the strain-displacement matrix B in the form of  

𝑘𝑖(�̃�𝑖) = ∭ 𝐵𝑇𝐶𝑖(�̃�𝑖)𝐵𝑑𝜉1𝑑𝜉2𝑑𝜉3 
+1

1
                                               (4-10) 

     Where 𝜉𝑒 are the natural coordinates used in FEM. The strain-displacement can be obtained from 𝜀 = 𝑩𝑢 in which 

B is the strain-displacement matrix.  

Using the SIMP method, the element stiffness matrix is interpolated as 

𝑘𝑖(�̃�𝑖) = 𝐸𝑖(�̃�𝑖)𝑘𝑖
0                                                                         (4-11) 

Where  𝑘𝑖
0(�̃�𝑖) is defined as follows 

𝑘𝑖
0(�̃�𝑖) = ∭ 𝐵𝑇𝐶0𝐵𝑑𝜉1𝑑𝜉2𝑑𝜉3 

+1

1
                                                        (4-12) 

The global stiffness matrix K is obtained by the assembly of element-level counterparts 𝑘𝑖  as 



 

88 
 

  𝐾(�̃�) = 𝒜𝑖=1
𝑛 𝑘𝑖(�̃�𝑖) = 𝒜𝑖=1

𝑛 𝐸𝑖(�̃�𝑖)𝑘𝑖
0                                                                  (4-13) 

     Where n is the total number of elements. Using the global versions of the element stiffness matrices 𝐾𝑖 and 𝐾𝑖
0, the 

previous equation is expressed as  

𝐾(�̃�) = ∑ 𝐾𝑖(�̃�𝑖)
𝑛
𝑖=1 = ∑ 𝐸𝑖(�̃�𝑖)𝐾𝑖

0𝑛
𝑖=1                                              (4-14) 

Where 𝐾𝑖
0 is a constant matrix. Using the interpolation function defined in (4-7), it can be rewritten as 

𝐾(�̃�) = ∑ [𝑛
𝑖=1 𝐸𝑚𝑖𝑛 + �̃�𝑖

𝑝
(𝐸0 − 𝐸𝑚𝑖𝑛)]𝐾𝑖

0                                             (4-15) 

Finally, the nodal displacement vector 𝑈(�̃�) is the solution of the equilibrium equation 

𝐊(x̃)𝐔(x̃) = 𝐅                                                         (4-16) 

  Where F is the vector of nodal forces which is independent of the physical stiffness densities x.  

To summarize, the following formulation presents the proposed topology optimization setup for interior defect 

detection: 

𝑭𝒊𝒏𝒅                   𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑒 , … , 𝑥𝑛]𝑇 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆         𝑪(�̃�) 

                         F = 𝐊U  

                            x ∈  χ ,          χ = {x ϵℝ𝑛     ∶    0 ≤ x ≤ 1}     

 

where the physical densities �̃� = �̃�(𝑥) are defined by (4-4), 𝑛 is the number of elements used to discretize the design 

domain  
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4.8 Optimization Algorithm 

 

     A fundamental component of the proposed approach is to use optimization to push the objective function to a 

minimum. For this objective function, the goal centers on minimizing the difference in responses between the finite 

element results and experimental DIC results, along with the elimination of elements describing unseen damaged 

regions. In this paper, the Method of Moving Asymptotes (MMA) is used to minimize the objective function. This 

algorithm has proven to be versatile and well-suited for large-scale topology optimization problems [161, 167-

169].  MMA is a mathematical algorithm for solving smooth nonlinear optimization problems through an iterative 

process where a new strictly convex sub-problem is generated and solved for each iteration. Each generated convex 

sub-problem is an approximation of the original problem with a set of parameters that set the curvature of the 

approximation and act as asymptotes for the associated sub-problem. The convergence of the overall process is 

stabilized by moving these asymptotes between each iteration. The details of the method are explained as follows: 

4.8.1 Method of Moving Asymptotes (MMA)  

Given the current design 𝑥𝑘 , the MMA approximation of the objective function leads to the following linear 

programming problem: 

𝑓𝑖𝑛𝑑                               𝒙  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑒                   ∑ [
(𝒙𝒊

(𝒌)
−𝑳𝒊

(𝒌)
)

𝟐

𝒙𝒊−𝑳𝒊
(𝒌)

𝒏
𝒊=𝟏  

𝝏𝒄

𝝏𝒙𝒊
 (𝒙(𝒌))]  ,   𝑥 ∈ 𝜒(𝑘) 

Where  

𝜒(𝑘) = {𝑥 ∈ 𝜒|0.9𝐿𝑖
(𝑘)

+ 0.1𝑥𝑖
(𝑘)

≤ 𝑥𝑖 ≤ 0.9𝑈𝑖
(𝑘)

+ 0.1𝑥𝑖
(𝑘)

, 𝑖 = 1, … , 𝑛. } 

The lower and upper asymptotes 𝐿𝑖
(𝑘)

 and 𝑈𝑖
(𝑘)

 are iteratively updated to mitigate oscillation or improve convergence 

rate. The heuristic rule proposed by Svanberg (1987) [171] is as follows: for k=1 and k=2, 

𝑈𝑖
(𝑘)

+ 𝐿𝑖
(𝑘)

= 2𝑥𝑖
(𝑘)

                                                   (4-17) 

𝑈𝑖
(𝑘)

− 𝐿𝑖
(𝑘)

= 1                                                          (4-18) 
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For 𝑘 ≥ 3, 

𝑈𝑖
(𝑘)

+ 𝐿𝑖
(𝑘)

= 2𝑥𝑖
(𝑘)

                                                    (4-19) 

𝑈𝑖
(𝑘)

− 𝐿𝑖
(𝑘)

= 𝛾𝑖
(𝑘)

                                                     (4-20) 

Where  

𝛾𝑖
(𝑘)

= {

0.7 (𝑥𝑖
(𝑘)

− 𝑥𝑖
(𝑘−1)

)(𝑥𝑖
𝑘−1 − 𝑥𝑖

𝑘−2) < 0

1.2 (𝑥𝑖
(𝑘)

− 𝑥𝑖
(𝑘−1)

)(𝑥𝑖
𝑘−1 − 𝑥𝑖

𝑘−2) > 0

1 (𝑥𝑖
(𝑘)

− 𝑥𝑖
(𝑘−1)

)(𝑥𝑖
𝑘−1 − 𝑥𝑖

𝑘−2) = 0

                                         (4-21) 

     Note from (17) that the signs of three successive iterations are stored. If the signs are opposite, meaning 𝑥𝑖 oscillate, 

the two asymptotes are brought closer to 𝑥𝑖
(𝑘)

 to have a more conservative MMA approximation. On the other hand, 

if the signs are same, the two asymptotes are extended away from 𝑥𝑖
(𝑘)

 in order to speed up the convergence. The 

MMA algorithm is described in Algorithm 1: 

Algorithm 1 MMA Algorithm 

Choose an initial feasible design 𝑥(0); set 𝑘 ← 0; 

while (convergence criteria are not met) do 

         if      k=1 or k=2 then 

                    Update 𝐿𝑖
𝑘  and  𝑈𝑖

𝑘 using (4-17, 4-18) 

        else 

                    Update 𝐿𝑖
𝑘  and  𝑈𝑖

𝑘 using (4-19, 4-20) and (4-21) 

       end if 

       Calculate derivative of objective function 

       Solve the MMA sub-problem (41) to obtain �̃�𝑘+1; 

       Set 𝑥𝑘−2 ← 𝑥𝑘−1, 𝑥𝑘−1 ←, 𝑥𝑘 ← 𝑥𝑘+1; 

       Set  𝑘 ← 𝑘 + 1; 

end while 

 

    In this paper, an implementation of the MMA provided in the NLOPT package [47] was used. The optimization 

was run for a maximum of 500 iterations as convergence is known to happen within 250-350 iterations, based on our 

trial and error and recommendations from the literature [161].  
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4.9 Experimental Design  

 

     An experimental program was executed to demonstrate the potential of the proposed framework. The experimental 

program was designed to evaluate the feasibility of leveraging 3D-DIC in a topology optimization framework to detect 

internal features of structural components. This program included a formulation evaluation, sensitivity study, and a 

laboratory-scale investigation of three representative steel coupon specimens subjected to the same displacement-

controlled tensile loading and boundary conditions. The structural configurations used in this work are illustrated 

schematically in Figure 5 and can be described as follows: 

1. Configuration 1: intact coupon specimen with no defects. 

2. Configuration 2: coupon specimen with two artificially-manufactured defects on the back side, which are 

shown in Figure 5 with corresponding dimensions. 

3. Configuration 3: coupon specimen with one artificially-manufactured defect on the back side at the middle 

region of the specimen; the exact location and shape of the defects are depicted in Figure 5. 

4. Configuration 4: coupon specimen with one artificially manufactured defect on the back side on the top 

region of the specimen; corresponding dimensions for the defect is described in Figure 5.  

 

(a)                                                                                                                         (b) 
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(c) 

Figure 4.6. (a) Geometric dimensions of the specimens (Back side of the specimen), (b) Coupon specimens and their speckled 

front side, (c) the dimensions of the defects. 

4.9.1 Quasi-Static Mechanical Testing 

 

     The experimental program consisted of a series of quasi-static tests under uniaxial tensile loading within the elastic 

range of the structural steel coupon specimens. These test configurations give rise to heterogeneous and non-uniform 

in-plane strain fields, (i.e. longitudinal, transverse and shear strain components), as well as in-plane/out-of-plane 

displacement fields (i.e. longitudinal, transverse and out-of-plane components). The experimental setup including the 

DIC system employed is illustrated in Figure 4.6. In this figure, the Area of Interest (AOI) has been defined, which is 

the zone where the DIC measurements are compared with numerical simulations. For this experimental validation, a 

simple tension test was performed using three A36 structural steel coupon specimens according to the test method 

defined in ASTM E8 [107]. The mechanical response of the specimens was measured by 3D-DIC to describe full-

field surface measurements of displacement and strain, analogous to the types of results derived from a FEM.  

     A commercially available DIC system from Correlated Solutions Inc. was used in this investigation [102]. This 

system consists of a camera system, an image acquisition package (VicSnap), and 3D-DIC post-processing software 

(Vic-3D). The DIC image acquisition used one set of stereo-paired digital cameras with a 5-megapixel charge coupled 

device (CCD) image sensor. The cameras were outfitted with a C-mount optical lens (12 mm focal length) and the 

acquired data was communicated to the control PC through FireWire cables. The camera pair was positioned 2 feet 
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from the coupon which yielded a field of view (FOV) of 2.4 x 2.4 feet. For the experiment, the basic process consisted 

of specimen preparation, camera setup (focusing, calibration, and image acquisition), and post-processing of results. 

To perform the testing, the surface of the specimen was covered with a fine, dense and random speckle pattern (flat 

white paint for base and fine tip permanent marker for pattern) to help with the correlation process. For the correlation 

process in DIC, the area of interest on the speckle pattern was split into rectangular windows or “subsets” such that 

unique patterns of speckles remained available within each subset to allow for tracking in subsequent frames. The 

patterns in the subsets were tracked on a grid of a specific “step” size, which dictated the spatial resolution of the 

calculated points. To achieve a fine grid of unique patterns in subsets, the selection of the subset size was determined 

through direct experimentation during post-processing and a square subset of 23 pixels at a step of 7 pixels was 

selected (Figure 4.7). For more details regarding DIC setup, the reader is referred to the authors’ previous works [42, 

104, 131, 132]. The DIC data acquisition (DAQ) integrated output signals (load and displacement) from MTS actuators 

to allow for simultaneous acquisition of load, displacement, and images.  

 

Figure 4.7. Experimental DIC setup configuration (one system including two cameras) 

4.9.2 Measurement noise 

     This section presents an analysis of the measurement noise performed on DIC measurements. Before the actual 

tensile tests, a series of images were taken where no load was applied to the specimen which were then processed 
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using the same settings used for the rest of the data. It is widely known that noise from different sources affect the 

measurements resulting in displacements and strains that are not equal to zero under no loads (as theoretically 

expected). Examples of sources of measurement noise in DIC include non-uniform lighting and glare, poor quality of 

speckle pattern, as well as image acquisition (e.g. sensor noise) and quantization noise [42, 104, 132]. The average 

and standard deviation of the three components of displacement (U, V, W) and strain (𝜀𝑥𝑥 , 𝜀𝑦𝑦, 𝜀𝑥𝑦) measurements in 

10 unloaded frames are summarized in Table 4.1. Ideally, the mean value of the zero-load measurements should be 

close to zero and the standard deviation quantifies the variation of the noise and can be used as a metric for the noise 

level in the measurements [103]. Based on this table, the measurements have an estimated deformation and strain 

noise level of about 0.00077 in and 28, respectively. Finally, Figure 4.8 illustrates histograms of the non-zero 

displacements and strains in a sample zero-load frame to illustrate the distribution of noise in each configuration. It 

can be observed in Figure 4.8 that the measurements of all configurations show a bell-shaped distribution with a mean 

close to zero, which is in agreement with the expected random Gaussian noise. 

 

 

  

 

(a) 

 

(b) 

 

(c) 
Figure 4.8. Histogram of non-zero measurements in a sample zero-load frame for the coupons with various associated defects 

in the back side, (a) Configuration 2, (b) Configuration 3, (c) Configuration 4 

Table 4.1. Noise statistics from measurements in 10 frames with zero load for the defined configurations. 
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Variable 

Configuration 2 Configuration 3 Configuration 4 

Mean StD Mean StD Mean StD 

U 

(
1

1000
 𝑖𝑛. )  

0.55 0.65 0.65 0.55 0.51 0.45 

V -0.39 0.77 0.35 0.66 -0.55 0.48 

W 0.61 0.58 -0.51 0.44 0.64 0.68 

𝜀𝑥𝑥 

(µε) 

0.45 54.02 0.45 15.02 0.33 38.02 

𝜀𝑦𝑦 -0.64 56.67 0.55 45.67 -0.39 45.55 

𝜀𝑥𝑦 0.55 49.12 -0.48 18.12 0.61 18.12 

 

4.9.3 Numerical implementation 

     The proposed damage detection method relies on the fine-tuning of a representative FEM model of the component 

to match the experimentally-measured response. To develop the FEM models in this paper, ABAQUS, a robust 

commercially available finite element software package was used [10]. The specimen was modeled using a total of 

3,360 continuum 3D hexahedral solid elements (C3D8) with full integration. The FEM and mesh configuration of the 

coupon specimens are illustrated in Figure 4.9. As shown in this figure, the middle region of the specimen for which 

DIC measurements exist, was used for extracting strains and deformations, and the stiffness of the corresponding 

elements were used as design variables in the topology optimization process. In this work, the initial FEM of the 

specimen was created using the Graphical User Interface (GUI) of ABAQUS, which then allows the model to be 

described by a script that contains all modeling decisions and parameters. The extracted script was iteratively 

interfaced with Python optimization packages to carry out the topology optimization procedure outlined in the 

previous sections. The basic steps involved in this process can be described as: (1) Creating the initial model and 

saving it, (2) Using the saved ABAQUS model to create a script that contains all modeling parameters, (3) Creating 

output (i.e. load/deformation response), (4) Redoing the calculation by running the generated script file, (5) Adjusting 

the script to create a different model according to the optimization process. The results of this process yields a FEM 

with individual elements updated with reduced constitutive properties representing the damaged regions.  



 

96 
 

 

Figure 4.9. FEM of the coupons 

 

4.10 Performance Evaluation 

 

    To examine and quantify the damage detection performance of the proposed approach, a number of performance 

metrics were used as defined and described in this section. Accuracy (ACC) is the ratio of all correct predictions over 

all predictions, and recall (REC) and precision (PRE) are the ratios of correct defect predictions to total defective 

elements, and to all defect predictions, respectively. F1 score is the harmonic mean of precision and recall and is used 

to provide an aggregate metric of classification performance. Equations 18 to 21 summarize the definitions for these 

performance metrics. In defining these criteria, defective and intact elements were referred to as positive (+) and 

negative (−) instances, respectively, and TP, TN, FP, and FN refer to true positives, true negatives, false positives, and 

false negatives, respectively, and shown in Figure 4.10. 

 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
                                                (4-18) 

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (4-19) 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                            (4-20) 

𝐹1 =
2×𝑃𝑅𝐸×𝑅𝐸𝐶

(𝑃𝑅𝐸+𝑅𝐸𝐶)
                                                        (4-21) 
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Figure 4.10. Performance metrics 

 

     To further demonstrate the performance of the proposed structural optimization, receiver operating characteristic 

(ROC) curves were also plotted for the optimized design variables. ROC curves plot true positive rate (TPR), which 

is equal to REC, against false positive rate (FPR), which is the ratio of elements incorrectly classified as defective 

over all intact elements as shown in Eq. 22. ROC curve examines the performance of the system throughout the full 

range of TPR-FPR trade-offs, where a curve with a higher area denotes a better classifier.  

 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
                                                                    (4-22) 

 

4.11 Formulation Evaluation and Sensitivity Analysis 

 

     To evaluate the feasibility of the proposed approach using simulated measurements, a FEM of a coupon specimen 

with simulated defects was created and used as a preliminary substitute for laboratory experiments. The objective was 

twofold; first to evaluate the feasibility and performance of the proposed approach on a fully-controlled specimen 
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using idealized surface measurements analogous to those to be derived from a DIC measurements, and second to 

conduct a sensitivity analysis on the main parameters affecting the performance (including the number of sensing 

points, mesh density, etc.). An intact coupon model, without any simulated damage was developed to initialize the 

optimization process. Configurations 2-4 (Figure 4.6) were used for this numerical study and the identification process 

using surface strain and displacement fields were used to reconstruct the elastic modulus distribution. The baseline 

model used for these experiments was discretized into 70×12×4 finite elements (an element size approximately equal 

to 1mm), with an initial element stiffness of one and 70×12 sensing points on the surface. Convergence of the objective 

function and accuracy of the specimens is presented in Figure 4.11, which demonstrates that the updated elastic 

modulus is well adjusted using surface strain and displacement fields and that both the objective function and accuracy 

reach a stable plateau with sufficient iterations. 

 

(a) 

 

(b) 

Figure 4.11. Convergence of the defect detection process: (a) objective function, (b) accuracy 

 

     The initial and target configurations of the models are shown in Figure 4.12, and the updated configurations after 

500 iterations are shown in Figure 4.13, to Figure 4.15. In Figure 4.13 to Figure 4.15, the color levels of the finite elements 

correspond to the 𝑥𝑖  values, therefore, lower values indicate reduced stiffness denoting the existence of damage. As 

can be seen in each one of the results in Figure 4.13 to Figure 4.15, the general location of the damage is successfully 

identified in each case together with minor spurious detection noise.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.12. (a) Initial values at the beginning of  topology optimization, and target values for (b) configuration 2, (c) 

configuration 3, (d) configuration 4. 
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(a) 

 

 

 

(b) 

 

(c) 

 

 

(d) 

 

(e) 

 

(f) 

Figure 4.13. Topology Optimization results for configuration 2 in the simulated experiments, (a) element stiffness parameter 

(𝑥𝑖), (b) binary detections after thresholding, (c) true positives, (d), false positives, (e) false negatives, and (f) true negatives 
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(a) 

 

 

 

(b) 

 

(c) 

 

 

(d) 

 

(e) 

 

(f) 

Figure 4.14. Topology Optimization results for configuration 3 in the simulated experiments, (a) element stiffness parameter 

(𝑥𝑖), (b) binary detections after thresholding, (c) true positives, (d), false positives, (e) false negatives, and (f) true negative 
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(a) 

 

 

 

(b) 

 

(c) 

 

 

(d) 

 

(e) 

 

(f) 

Figure 4.15. Topology Optimization results for configuration 4 in the simulated experiments, (a) element stiffness parameter 

(𝑥𝑖), (b) binary detections after thresholding, (c) true positives, (d), false positives, (e) false negatives, and (f) true negatives 
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     To better understand the performance of the proposed approach, Figure 4.16 quantifies and summarizes the detection 

results of the optimization for configurations 2-4 in Figure 4.16 in the form of confusion matrices, and generally shows 

the higher concentration of the detections around the true-prediction diagonal. Figure 4.16d also shows the ROC curves 

for the three configurations, which illustrates the trade-off between the ability of the model to detect truly defective 

elements, while avoiding false alarms, with varying values of threshold. As shown in this figure, the three 

configurations show a relatively similar detection behavior.  

 

 

(a)                                                    (b)                                                    (c) 

 

(d) 

Figure 4.16. Performance of the damage detection method on simulated experiments, confusion matrix with threshold of 0.5 for 

(a) Configuration 2, (b) Configuration 3, (c) Configuration 4, (d) ROC curves for the three configurations with varying thresholds. 

     Table 4.2 summarizes the corresponding accuracy metrics computed based on the confusion matrices shown in 

Figure 4.16. It can be seen that the proposed approach provides an overall accuracy above 94% with precision and 
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recall values above 80%, which demonstrates the ability of the optimization process in detecting the damage in the 

simulated experiments. A number of factors can affect the performance of the proposed approach and a series of 

sensitivity analyses will be carried out in the next section to describe their effect. 

 

Table 4.2. Performance of the damage detection method on simulated experiment (threshold=0.5) 

Configuration ACC PRE REC F1 

2 96.3 84.8 90.6 87.6 

3 94.3 79.4 81.7 80.5 

4 94.4 80.7 80.0 80.3 

 

 

4.11.1 Effect of Sensing Density 

 
     It was argued in the previous sections that the increased sensing density in the form of full-field response 

measurements achieved by DIC provides the improved ability to reconstruct internal damage. In this section a 

sensitivity analysis is conducted to compare the detection performance with varying numbers of sensing points. Using 

the simulated experiment for configuration 2, the number of sensing points (n) used in the objective function (Eq. 1) 

was gradually varied from 6 to 6,720. Figure 4.17 shows the sensing grid used in each case and the resulting sensing 

density, where the lower bound (e.g. the 2x3 grid) and the upper bound represent the traditional use of discrete sensors, 

and the use of full-field sensing with DIC, respectively. Figure 4.18 shows that increasing the sensing density 

significantly improves the detection performance and that high accuracy (e.g. higher than 90%) is not achievable 

without the use of full-field DIC data. This highlights the fundamental contribution of this paper which is the 

introduction of the method for internal damage reconstruction through the use of full-field sensing using DIC. 
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Figure 4.17. The grid used for the sensitivity analysis on sensing density 

 

 

(a) 

 

 

(b) 

Figure 4.18. Analysis of the effect of sensing density on (a) objective function, and (b) accuracy 

4.11.2 Effect of Defect Severity 

 
     The proposed technique relies on the detectability of the internal defects by matching the effect they have on the 

external surface strain and deflection patterns. As a result, it is expected that a shallow defect that is far from the 

surface of the specimen may not produce a noticeable effect on the strain patterns, thus limiting the capability of the 

proposed approach to detect the underlying defect. To investigate this effect, using the FEM simulated experiment, 

the performance of the proposed technique was evaluated for varying thicknesses of the simulated defect. Three defect 

thicknesses (3𝑡
4⁄ , 2𝑡

4⁄ , 𝑡
4 ⁄ , where t denotes the overall specimen thickness) were simulated on configuration 2 and 

Table 4.3 shows the resulting defect detection performance. Moreover, to better realize the performance of the 
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introduced approach, Figure 4.19 quantifies and summarizes the detection results of the optimization for configurations 

2 with different thickness for the defects within the specimen in Figure 4.19 in the form of confusion matrices, and 

generally shows the higher concentration of the detections around the true-prediction diagonal. Based on Table 3, all 

performance metrics consistently improve with higher defect depth, which can be attributed to the corresponding 

increased effect on strain and displacement patterns. It is however noted that even in the case of the thinnest defect 

(𝑡 4⁄ ), the proposed approach maintains a reasonable detection performance. Convergence of the objective function 

and accuracy of the specimens is illustrated in Figure 4.20, which demonstrates that the optimized elastic modulus is 

well tuned by surface strain and displacement fields and that both the objective function and accuracy reach a stable 

plateau with sufficient iterations. 

  

 

 

Figure 4.19. Performance of the damage detection method on simulated experimental results with different thickness defined for 

the defects on the back side of the specimen for configuration 2, (threshold=0.5), (a) 1/4t 2, (b) 2/4t, (3) 3/4t 
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Table 4.3. Performance of the damage detection method on DIC experimental results (threshold=0.5) 

Damage Thickness ACC PRE REC F1 

t/4 95.2 63.2 79.6 70.4 

2t/4 96.3 84.8 90.6 87.6 

3t/4 96.8 89.2 96.9 92.9 

 

 

 

(a) 

 

(b) 

Figure 4.20. Performance of the damage detection method on DIC experimental results 

 

4.11.3 Effect of Mesh Density  

 

      The density of the finite element mesh used in the discretization of the model affects the degree to which potential 

damage can be localized in detail. A finer mesh provides a higher level of flexibility in reconstructing damaged areas. 

At the same time, the number of elements used in the discretization determines the number of unknown variables to 

be optimized during the proposed process. In order to investigate the effect of mesh size and density on the 

performance, the optimization was repeated for the simulated experiment with configuration 2 with varying mesh 

sizes and the resulting accuracy is plotted against the number of elements as shown in Figure 4.21a. Based on this 

figure, increasing the mesh size results in improved detection accuracy. It should also be mentioned that the finer 

discretization with a finer mesh comes with an increase in the computational demand. To observe this effect, Figure 
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4.21b plots the computation time spent on the optimization with each mesh density against the number of elements, 

which shows a constant increase in time as the number of elements increase. 

 

 

(a) 

 

(b) 

Figure 4.21. Finite element mesh sensitivity analysis on configuration 2 

  

     Therefore, it is necessary to investigate the effect of different partitioning configurations of the initial FEM on the 

size and location of the discovered damaged region. 

 

4.11.4 Effect of Initial Optimization Starting Points 

 

A different choice of initial stiffness parameter can affect the ability of the process to hone in on the damage patterns. 

To investigate the robustness of the proposed method and ensure that the results are not sensitive to and dependent on 

the initial values, a series of experiments with different random initial values were performed. Six sets of randomly-

selected initial values were used in configuration 2 to evaluate the optimization performance with their convergence 

trends plotted in Figure 4.22. As can be noted from Figure 4.22, the proposed algorithm consistently converges to the 

optimal values, thus maximizing the accuracy and minimizing the objective function to approximately the same values. 

This demonstrates the robustness of the proposed approach to initial values used in the optimization. 
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(a) 

 

(b) 

Figure 4.22. Comparison of performance with different starting points; (a)convergence of accuracy (b) convergence of 

objective function 

 

4.12 Results and Discussion 

 

Defect Detection Using Experimental 3D-DIC Measurements 

 

     To evaluate the performance of the proposed approach on real-world sensing data, an experimental study was 

conducted where rectangular zones of damage were machined into the back side of the coupons to simulate damage 

unseen from the measurement surface (i.e. configurations 2-4 in Figure 4.6). For the defined configurations, the FEMs 

of the coupons were discretized using a mesh with an approximate element size equal to 1mm, and initially intact 

stiffness to initiate the optimization process. The optimization algorithm was then applied to the model of each steel 

coupon specimen. The response data used in the objective function was experimental static response obtained using 

DIC. Using the proposed hybridized algorithm, the minimization of the objective function was performed for 500 

epochs. A summary of the results for the elastic modulus of the selected domain before and after optimization process 

for all configurations are illustrated in Figure 4.23, Figure 4.24 and Figure 4.25. As expected, it can be observed that the 

elastic modulus belonging to the defective regions converged to significantly smaller values when compared to the 

regions without any defect features. These results confirmed that the proposed approach is capable of inferring the 

existence and location of internal defective regions from real-world full-field sensing data, albeit the experimental 

data is expected to be noisier than the idealized simulation results described in the previous sections.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.23. Topology Optimization results for configuration 2 in laboratory DIC experiments, (a) element stiffness parameter 

(𝑥𝑖), (b) binary detections after thresholding, (c) true positives, (d), false positives, (e) false negatives, and (f) true negati 

 

 

 

 



 

111 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

Figure 4.24. Topology Optimization results for configuration 3 in laboratory DIC experiments, (a) element stiffness parameter 

(𝑥𝑖), (b) binary detections after thresholding, (c) true positives, (d), false positives, (e) false negatives, and (f) true negati 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.25. Topology Optimization results for configuration 4 in laboratory DIC experiments, (a) element stiffness parameter 

(𝑥𝑖), (b) binary detections after thresholding, (c) true positives, (d), false positives, (e) false negatives, and (f) true negati 

      

      To quantify the performance with experimental data, confusion matrices and ROC curves are plotted for the 

defined configurations (Figure 4.26) and performance metrics are summarized in Table 4.4. It can be noted from these 

results and those in Table 4.4 that while the proposed method can successfully detect and locate damage, the 

performance slightly deteriorated compared with simulated experiments. This performance reduction can be attributed 

to potential internal non-homogeneity and the noise and uncertainties involved in the experimental setup. Some of the 

sources of these uncertainties include lightning fluctuations, glare, irregularities, poor quality of speckle pattern, as 

well as noise resulting from image acquisition (e.g. sensor noise) and quantization [49]. Moreover, the interpolation 

of DIC and FEM can also be a possible source of uncertainties. Briefly, in Figure 4.27, all the results of defect detections 
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in the defined configurations are illustrated after conducting interpolation post-processing on the optimized design 

variables to better recognize the shape and location of the damaged region on the specimens.  

 

 

Figure 4.26. Performance of the damage detection method on simulated experiments, confusion matrix with threshold of 0.5 for 

(a) Configuration 2, (b) Configuration 3, (c) Configuration 4, (d) ROC curves for the three configurations with varying thresholds. 

 

Table 4.4. Performance of the damage detection method on DIC experimental results (threshold=0.5) 

Item ACC PRE REC F1 

Configuration 2 91.9 69.2 77.9 73.3 

Configuration 3 91.0 66.3 74.4 70.1 

Configuration 4 88.3 56.6 77.3 65.3 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

(f) 

Figure 4.27. Interpolation of results for DIC and simulated data for all the configurations (a) configuration 2, simulated data, 

(b) configuration 2, DIC data, (c) configuration 3, simulated data, (d) configuration 3, DIC data, € configuration 4, simulated 

data, (f) configuration 4, DIC data 
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4.13 Alignment of Response from Experiment with the Optimized Model 

 

     To illustrate the success of the proposed method in adjusting the model to replicate the sensed surface response of 

components, Figure 4.28 show a comparison of ground truth surface strains and deflection measured using DIC with 

those obtained from the model after optimization together with the residual between the two. In these figures, 

𝜀𝑥𝑥 , 𝜀𝑦𝑦, 𝜀𝑥𝑦 and W denote longitudinal, transverse, and shear strain, and longitudinal deformation, respectively. As 

can be clearly seen from Figure 4.28, the optimized model is able to replicate experimental full-field strain distributions 

including the complex disruptions incurred due to internal damage. It should be noted that in all of the cases, the initial 

model before optimization is a fully-intact specimen with a uniform stress and deflection map, and the proposed 

approach is shown to be able to adjust the model such that the estimated surface response closely matches that of 

defective specimens, thus helping to reconstruct the underlying structural deficiencies. 

   

  
 

Figure 4.28. Contour plots of the experimental strain fields, the numerical strain fields and their absolute difference for the 

coupon with 2 defects on the back for the components 𝜀𝑥𝑥 , 𝜀𝑦𝑦 , 𝜀𝑥𝑦, U, V, W at the peak of the loading 
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4.14 Conclusion 

 

       This paper studied the employment of full-field structural response data obtained by DIC coupled with topology 

optimization for damage identification in structural components. A Solid Isotropic Material with Penalization (SIMP) 

based material model was defined to parametrize the optimization problem, and the discrepancy of response between 

real structure and the model was minimized to find the material distribution in the design domain. The proposed 

method was evaluated on a series of simulated and real-world experiments on tensile steel coupon specimens with 

artificially manufactured defects, and the following conclusions were drawn: 

 

 The proposed approach has capability of reconstructing the damage with average accuracy-score of 96.30% 

and 91.90% on simulated and real experiments for configuration 2, respectively, which is indication of 

predicting very small number of false positive and false negative elements at the end of topology 

optimization. Therefore, the proposed idea was able to detect most of the elements as true positive and true 

negative elements. So, the proposed idea was able to find a unique solution for damage detection problem.   

 Also, the ability of the proposed idea was demonstrated using average precision and recall-scores. For 

simulated experiments these values are 84.08% and 90.60% respectively. Also, the values for DIC 

experiments are 69.20% and 77.90% respectively. Interpretation of recall is that the most of the true defective 

elements are detected correctly. Also, interpretation of precision is that most of the defective elements are 

located in the true locations. Therefore, these measurements scores prove that the proposed approach was 

able to find a unique solution for the topology optimization problem.   

 The proposed method was capable of reconstructing the damage with average F1-scores of 87.60% and 

73.30% on simulated and real experiments, respectively. Three-dimensional visualization of the damage 

confirmed the overall success of the method in reconstructing the 3D shape of the damage, with a limited 

amount of spurious noisy detections that are mainly attributed to measurement noise. 

 A detailed sensitivity analysis studied the effect of various factors on the performance of the proposed 

approach, including different optimization starting points, defect severity, sensing density, and discretization 

density. The method was shown to converge to similar detection results with a series of different random 

initiation points. 



 

117 
 

 According to the sensitivity analysis on the number of sensing points analysis, increasing the sensing density 

increased the detection capability of the method. This confirms the value of using full-field DIC sensing data 

compared with a limited set of discrete point mechanical sensor in reconstructing the detailed shape of 

internal damage. 

 The conducted sensitivity analysis on various thicknesses for the defined defects shown that while more 

severe defects (higher volume) are easier to detect with the F1-score increasing by about 20% between defects 

of ¼ to ¾ thickness of the specimen, the proposed approach was still able to reasonably detect lower thickness 

defects. 

        In summary, the proposed approach demonstrated that the proposed method is able to successfully extract fine-

grained subsurface damage information which is otherwise costly and difficult to achieve with state-of-the-art NDE/T 

or SHM methods and can therefore be used as a promising subsurface damage detection method. 
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5 CHAPTER 5 – Detecting and Reconstructing the 3D Geometry of Subsurface 

Structural Damage Using Full-Field Image-Based Sensing and Topology Optimization 

 

Mehrdad S. Dizaji, Mohamad Alipour, Devin K. Harris 

“Dizaji, M. Shafiei, M. Alipour, and D. K. Harris. " Detecting and Reconstructing the 3D Geometry of Subsurface Structural 
Damage Using Full-Field Image-Based Sensing and Topology Optimization", to be submitted.” 

 

 

 

5.1 Abstract 

 

       Most of the critical defects in structural components can be invisible on the surface, mainly throughout early 

stages of deterioration, causing their timely detection to be a challenge. Assessing the actual and accurate 3D form 

and extent of interior defects is a complicated and also cumbersome task, unexpectedly with the developments in NDE 

techniques. Unlike the majority of traditional methods based on specialized forms of surface-penetrating waves or 

radiation imaging, this research uses optical cameras for full-field sensing of surface strains and deformations using 

the 3D-DIC technique as the basis for damage identification. This data-rich representation of behavior of the structural 
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component is then leveraged in an inverse mechanical problem to reconstruct the underlying subsurface abnormalities. 

The inverse problem is solved through a topology optimization formulation that iteratively adjusts a fine-tuned FEM 

of the structure to infer abnormalities within the structure.  

     Recently illustrated the feasibility of detecting and reconstructing the existence of 3D defects within small scale 

structural components such as coupons using the proposed idea. Owing to previous research, this work focuses on 

expanding on the work by the authors to reveal that the proposed idea can be employed on large scale structural 

components using the rich data from full-field image-based measurements to enable the identification of a more 

detailed picture of the internal defects. Thus, the goal of this research is to demonstrate the practicability and 

investigate the performance of the previously proposed method through an experimental program in which a sets of 

large scale structural components such as steel beams with and without buried defects are tested with full-field DIC 

sensing. A corresponding set of research steps with an increasing level of sophistication are designed to assess the 

capability of the approach to estimate steel material properties then to extent to infer the 3D shape of embedded 

defects. Upon completion, this research is expected to demonstrate the feasibility and practicality of the proposed 

subsurface structural components condition assessment technique and pave the way for its future implementation in 

existing structures. 

Keywords: Internal damage, SHM, St-Id, 3D-DIC, FEM, Topology Optimization, Steel Beams 

 

 

5.2 Introduction  

 

     Deterioration and damage within large scale structural components comes in a variety of forms some of which are 

the result of poor construction practices, while others are often the result of environmental exposure or operational 

conditions.  Detecting structural damage is an important part of condition assessment and quality assurance of the 

physical infrastructure and the built environment. At the same time, it is widely known that structural damage and 

defects, especially those originating from adverse environmental exposure, tend to have stochastic and irregular shapes 

that are at least partially internal to the structural components or on hard-to-reach surfaces, and their detection and 

quantification is often not a trivial task. In the case of surface corrosion and distributed section loss of steel members, 

even when the defect is not completely invisible or internal, it can be hard to quantify on the surface, especially during 
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earlier stages of deterioration before the defect has grown into extensive section loss, making their timely assessment 

and quantification challenging.  

     One of the approaches that can be used for assessing structural damage is NDE/T. Broadly speaking, NDE/T 

approaches detect internal damage based on observing differences in a physical phenomenon between an intact 

structure and its damaged condition. Several such methods employed on structural components to detect interior 

unseen defects include impact echo (IE), electrical resistivity (ER), ground-penetrating radar (GPR), half-cell potential 

(HCP), ultrasonic surface waves (USW), ultrasonic testing (UT), impulse response (IR), and infrared thermography 

(IRT). While these techniques have shown promise in detecting damage that will otherwise go undetected in manual 

visual inspections, they have their own disadvantages. Foremost, these techniques rely on the availability and usage 

of highly sophisticated testing equipment, usually including radars, scanners, or specialized signal recorders. This in 

turn, limits their usage to highly trained professionals and will involve high equipment and training costs. Secondly, 

the review of the NDE/T literature shows a widespread challenge highlighted by many researchers related to the 

reliability and interpretability of the results [1-5, 33-40, 48-57]. In other words, the signals obtained by these 

techniques can be affected in complex ways not only by the potential damage, but also by the existence of embedded 

reinforcing rebars, environmental effects (ambient temperature, humidity, sunlight, etc.), and surface coatings. These 

effects sometimes result in uncertainties and noise that can make the reliability and interpretability of the methods 

challenging.   

     A different approach to detecting damage in structures that employs mechanical response (vibrations, deformations, 

strains, etc.) is SHM. The mechanical response can be considered to have arguably simpler physics-based relations to 

underlying damage and has thus provided robust and relatively reliable damage detection performance [144-150]. 

SHM is a system performance evaluation strategy that describes the current state or health of an aging infrastructure 

through the examination of structural response recorded by means of a variety of sensing techniques. In this 

framework, detecting damage is usually achieved by monitoring the response of the structure and pinpointing 

deviations from a healthy baseline or detecting anomalies in the continuous trends of the response. Many SHM 

techniques have been successful in detecting damage at a global and coarse-grained level. For instance, SHM 

techniques based on vibration frequencies and mode shapes can inform the existence and location of damage along 

the length of a beam [147]. However, unlike NDE/T techniques, they can rarely provide detailed information about 

the shape and depth of damage and have proven most successful for large scale global damage mechanisms.    
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     This paper introduces a new damage detection technique that has commonalities with both NDE/T and SHM 

approaches, but proposes new improvements that enhance its detection capability while addressing some of the 

limitations of these approaches. The proposed technique uses optical cameras for full-field sensing of surface strains 

and deformations using the 3D-DIC technique. This fine-grained and data-rich representation of behavior of the 

structural components is then leveraged in an inverse structural mechanics problem to reconstruct the underlying 

subsurface abnormalities. The resulting inverse problem is solved through a topology optimization formulation that 

iteratively adjusts a fine-tuned FEM of the structure. The feasibility of the proposed approach has been previously 

shown in a proof of concept by the authors on small-scale structural components (i.e., steel coupon specimens) [86]. 

Results from this proof of concept demonstrated that the disruptions to strain and deformation patterns on the surface 

of structural specimens can point to underlying damage (Figure 5.1).  The current research therefore aims to expand 

on the work by Dizaji et al. [86] and to demonstrate that the rich data from full-field image-based measurements of 

larger-scale structural members (steel beams) can enable the identification of a more detailed picture of the internal 

defects at the component-level, which includes more complex damage characteristics and loading characteristics. 

 

Figure 5.1. Qualitative strain and deformation patterns generated using DIC for steel beam specimens with random defects under 

flexural loads: (a) without any defect, (b) with two defects on the back side  
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5.3 Literature of the Related Work 

5.3.1  3D-DIC and its applications in Civil Engineering  

    3D-DIC is a non-contact, full-field, optical measuring method capable of extracting surface displacement from 

images through a synchronized stereo camera configuration. 3D-DIC is a photogrammetric technique that leverages a 

correlation algorithm to map and track pattern movement and deformation from a series of sequential digital images; 

the sequence of images is typically captured during various stages of a specimen subjected to loading [16-21]. Images 

can be derived from a variety of sources (e.g. CCD, DSLR, etc.) with the choice of camera and lens configuration 

influenced by factors such as camera noise, lighting, acquisition speed, and geometric relationship between area of 

interest and field of view. A comprehensive treatment of DIC is not presented in this paper, but is available in the 

literature [16, 20, 22, 41, 70, 72, 77, 102, 159, 160]. 

     Photogrammetry techniques have been investigated for assessing the structural integrity and the condition of 

engineering systems. They have proven to be practical approaches that can be used to evaluate the state of structural 

health and identify damage before in-service failures occur. In this section, a description of the principal SHM 

applications of DIC presented. Bridges are among the most monitored civil structures due to their strategic importance 

and safety issues. Nonis et al. [172] used 3D-DIC for periodic inspection of concrete bridges to locate non-visible 

cracks in concrete, quantify spalling, and measure bridge deformation. In a laboratory test, they demonstrated that 

optical based measurement correlated well with those performed using fiber optic strain gauges during three and four-

point bending tests conducted on a concrete beam. Then, they used photogrammetric targets as extensometers to track 

the opening of joints and cracks over a 4.5-month period and a stochastic pattern to monitor the strain fields over two 

bridges in service. In the same study, they also used a projected pattern to quantify spalling phenomena. The same 

bridges were monitored for almost one year using 3D-DIC by [31, 173]. The researchers proposed a novel approach 

that combines the use of an unmanned aerial vehicle (UAV) and 3D-DIC to perform non-contact, optically based 

measurements to monitor the health of bridges. By installing a stereovision camera system on a drone payload, 

extensive laboratory tests, and long-term monitoring campaigns, they demonstrated the accuracy of this system in 

detecting structural changes and monitoring the dynamic behavior of hairline cracks and expansion joints over time. 

Results show that the combined 3D-DIC UAV system was able to perform structural investigations and detect changes 
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to the bridge geometry with an uncertainty on the order of 10-5 m. These results outperformed the resolution that can 

be obtained when visual inspection techniques are employed, while also improving accessibility [31, 32, 173]. 

     3D-DIC has also been employed for several other applications in the field of civil engineering. For instance, in 

2017, Kohut et al. [174] proposed a vision-based method based on DIC to measure deformations of civil engineering 

structures under loading condition. The DIC technique and its suitability to achieve the SHM and NDE goals of 

identifying strain amplification or excessive deformation in regions of damage have been explored in several studies. 

Between 2011 and 2013, LeBlanc et al. [28-30] used 3D-DIC for the full field inspection of a 9 m long wind turbine 

blade manufactured for Sandia National Laboratories. The goal of the study was to extract full-field displacement and 

strain measurements from a composite turbine blade subjected to increasing static loading. The use of 3D-DIC allowed 

for observation of significant strain amplification in damaged areas, as well as discontinuities in the curvature of the 

blade at locations of damages. The optically-based technique was used to quantify the progression of damage as the 

load was applied during laboratory tests, providing more structural information than discrete point-strain 

measurements. Other studies performed on the same 9 m blade with embeded defects (i.e. wave defects of well-known 

geometry inserted at specified locations along the blade length) aimed to compare the pros and cons of different 

sensing techniques (e.g., DIC, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and 

piezoelectric sensing) as SHM tools for detecting the defects and track the resultant damage due to fatigue testing. 

DIC measurements were able to reveal the areas characterized by higher levels of the strain compared to the 

surrounding footprint, revealing the location of the defects [166]. 

     In addition, DIC has the potential to provide the linkage between experimental testing and computational 

simulations, by generating a rich full-field data-set that can be used for validation of the proposed numerical models 

and corresponding failure theories. It is also beneficial to use DIC to evaluate the performance of existing theoretical 

models in predicting the behavior of traditional civil engineering materials (e.g. concrete) across different scale levels. 

The discrepancies that may arise from comparing the numerical and image-based experimental data can help improve 

the existing models to better accommodate the size effect across scales. In 2018, Gheitasi et al. [83] developed an 

experimental-computational correlated study for describing the failure characteristics of concrete across two scale 

levels. Their work explored the extension of DIC to fully characterize the behavior of concrete across different 

structural scales. The investigation leveraged results from an experimental testing program at both mixture and 
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structural member scale levels to evaluate the performance of two representative plasticity-based numerical models 

commonly used to describe the failure characteristics of concrete subjected to various states of stresses. 

5.3.2 3D-DIC for Material Identification Using Inverse Problem 

     Moreover, DIC has potential use in the inverse problems and the identification of mechanical material behaviors 

by generating a rich full-field data-set that can be used for validation. In 2008, Cooreman et al. [127] developed an 

identification strategy using DIC measurements to identify mechanical material behavior of steel materials through an 

inverse problem. The basic principle of the inverse method is the comparison between experimentally measured strain 

fields and those computed by the FEM. The unknown material parameters in the FEM are iteratively tuned so as to 

match the experimentally measured and the numerically computed strain fields as closely as possible. In 2011, Robert 

et al. [130] used DIC to identify the hardening parameters of aluminum through developing a FEMU process which 

was based on different specimen geometries which induced heterogeneous strain fields. In 2015, another interesting 

application of DIC was studied on shape memory alloy to analyze the deformation paths and thermomechanical 

parameter identification. In this study the strain fields computed numerically were compared with experimental values 

obtained by DIC to find model parameters [126]. In 2018, Coppieters et al. applied FEMU technique and DIC to 

inversely identify the Hill48 yield function via a perforated cruciform specimen under biaxial tension. The FEMU 

technique was evaluated by comparing the results with experimental data gained from biaxial tensile testing using 

cruciform specimens [128].  

5.3.3 NDE/T, SHM and Damage Identification 

     Structure damage and deterioration comes in a variety of forms some of which are the result of poor construction 

practices, while others are often the result of environmental exposure or operational conditions. Regardless of the 

cause, a primary challenge is that many of these mechanisms are internal to the structures and difficult to identify 

using traditional assessment strategies (i.e. visual inspection). These defects are usually internally localized and thus 

invisible during a portion of the service life of the structural member before the defect develops into a larger problem 

that affects the integrity of the member. Within the current state of practice, a number of NDE techniques have been 

proposed that primarily leverage principles of wave propagation or radiation imaging in elastic solids [143]. Some of 

such methods include acoustic sounding, impact echo, ultrasonic waves, ground penetrating radar, or infrared 
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thermography. As an alternative strategy, SHM approaches rely on structural sensing to monitor and infer the state of 

structural health. These approaches typically employ model-based [144-146] or data-based [148-150] techniques to 

identify anomalies in mechanical response that point to damage. While the use of global dynamic response [147] or a 

set of isolated local strain and deformation response [148] has been relatively successful in providing information 

about basic constitutive properties and coarse-grained damage indication, the degree to which material or damage 

properties can be extracted has been limited. For example, using modal response for damage detection requires a 

minimum severity of damage to affect the measured response, and using a discrete set of sensing points (e.g. strain 

gages) requires prior knowledge of the behavior to decide and optimize the sensor locations and may not provide 

sufficient sensing resolution to reconstruct damage. While both NDE and SHM strategies have proven successful for 

many scenarios, there are still many shortcomings that cannot be readily addressed without highly sophisticated 

equipment or costly monitoring systems.  

5.3.4 Topology Optimization and Damage Detection 

     Topology optimization is a mathematical framework that seeks to find the optimum structural layout and material 

distribution under a set of loading scenarios, boundary conditions and constraints. This approach is effective for 

finding the optimum design of a structure, which can be defined as one with the minimum weight or alternatively 

minimum compliance with a fixed material weight. A topology optimization problem usually starts with a preliminary 

FE model whose performance is evaluated and is iteratively fine-tuned to optimize the desired performance. In the 

case of structural design, once the component is discretized into a mesh of finite elements, the material constitutive 

properties of each element can be treated as the unknown variables of the problem. The optimization can be solved 

using a number of different techniques including gradient-based methods such as the optimality criteria algorithm and 

the Method of Moving Asymptotes, or non-gradient-based algorithms such as Particle Swarm Algorithms or GAs.  

 While the two problems of structural design and condition assessment and damage detection are usually 

regarded as different problems with construction objectives (creating a new structure versus evaluating an existing 

one), they are fundamentally similar in their use of structural mechanics to correlate structural properties to the 

observed response. This paper argues that the condition assessment and damage detection problem can be reformulated 

as a topology optimization problem by considering the sensing data as an additional constraint [161, 167-171, 175]. 

It follows that damage and defects in the existing structure being evaluated will be reproduced as cavities or soft 
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regions within the optimized structure. A closer look at the relevant literature shows that a few papers have used the 

topology optimization framework for structural damage detection [162, 163, 165]. Using element-based topology 

optimization methods, Lee et al. utilized the Methods of Moving Asymptotes (MMA) to minimize discrepancy 

between some points of frequency response functions of the model and the real structure [162]. Nishizu et al. also 

exploited topology optimization to identify defects based on natural frequencies and by using MMA [163]. Recently, 

a level set based approach was proposed by Zhang et al. to find the location of damages again by considering natural 

frequencies [164].  

     Niemann et al. work focused on the development of a damage detection and localization tool using topology 

optimization approach [165]. The approach was based on the correlation of a local stiffness loss and the change in 

modal parameters due to damages in structures. The loss in stiffness is accounted by the topology optimization 

approach for updating undamaged numerical models towards similar models with embedded damages. In the process 

of experimental validation, their method could localize separate damage zones, but the results become less clear and 

the optimization might get stuck in wrong local optima. But it can be assumed, that the poor results for some of their 

cases follow from the lack of constraint data and not taking into account stain and displacement data in their 

optimization process [165]. These few works highlight to potential for using topology optimization within a damage 

identification framework, but also point to opportunities for refinement.  

 

5.4 Proposed Study 

 

       This research aims to demonstrate the feasibility and investigate the performance of the proposed method through 

an experimental program in which several structural steel beam specimens with artificially embedded defects are 

tested with full-field DIC sensing. The proposed approach leverages full-field surface deformation measurements of 

structural elements derived using DIC coupled within an optimization process to search for and identify the presence 

of unseen damage. Figure 5.1 obviously indicates that interior damage patterns influence the surface strain and 

deformation fields, reflected in DIC measurements. While this prior work is promising, the concept needs further 

research to extend the framework towards a more robust approach that can be used for in-situ assessment of in-service 

structural systems. The research proposes herein centers on a laboratory scale investigation of large scale steel 
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structural components, which exhibits variability in its constitutive properties that are typically uncertain within 

existing structures and is also vulnerable to internal damage that is unseen from the surface. 

       The proposed approach focuses on modifications to the corresponding constitutive relationships in the affected 

regions while maintaining original geometry. Modifications include adjustments to stiffness or overall scaling of 

material constitutive relationships. This approach aligns with topology optimization modification based on an iterative 

optimization algorithm, in which the effective stiffness (i.e. stiffness tensor components) is reduced based on the load 

configurations and defined objective functions. This concept is described in Figure 5.2 schematically. As it can be 

noted, all the elements belonging to the damaged areas such as section losses caused by corrosion are modified and 

optimized iteratively in order to mimic existence damage such as corrosion. Preliminary small scale steel specimen 

results were encouraging and opened up new opportunities to characterize the mechanical property distribution 

properties of structural components and damage in more complex systems such as large scale steel beams.  

 

Figure 5.2. Representation of proposed modeling strategies 
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5.5 Research Challenges, Significance and Contributions 

 

     While both NDE and SHM strategies have proven successful for many scenarios, there are still many shortcomings 

that cannot be readily addressed without highly sophisticated equipment or costly monitoring systems. As such, there 

is a need for techniques that enable the detection of such subsurface modes of deterioration in a cost-effective and 

non-invasive manner. In response to these needs, the central hypothesis of this proposed research is to examine 

whether subsurface conditions (e.g. material properties and internal defects) can be reconstructed within a topology 

optimization framework through full-field surface measurements of structural response coupled with a model-based 

simulation. As a result, the significance of this proposed research stems primarily from its new approach to connecting 

SHM with NDE to create a condition assessment method based on basic structural response (strains and deformations) 

that does not rely on specialized NDE equipment. This is achieved by interfacing a FEM with full-field and fine-

grained measurements from DIC through a topology optimization framework. The proposed concept introduces two 

major improvements over existing techniques:  

 Unlike NDE/T techniques which depend upon specialized sensing equipment (e.g. radars or radiation-based 

scanners, etc.), the proposed approach applied digital cameras integrated with structural mechanics to imply 

subsurface conditions. 

 The idea leverages the rich full-filed response data from DIC to enable the reconstruction of the 3D shape 

of damage, representing an advancement over current practice which has been limited primarily to 

identification and basic localization. 

 

     The idea of reconstructing the 3D geometry of subsurface defects via rich full-field surface sensing data can lead 

to major improvements in our understanding of internal properties and conditions of structures. More importantly, the 

proposed approach is flexible, allowing for multiple parameter identification (e.g. constitutive properties, damage and 

boundary conditions), which is another important improvement over the state-of-the-art NDE and SHM techniques. 
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5.6 Method of Study 

 

     In previous work, we proposed a new approach using full-field surface measurements together with topology 

optimization, on small scale structural components, to localize and reconstruct the 3D shape of unseen subsurface 

defects. This research aimed to expand on the previous work by the authors [86] on large scale structural components 

such as steel beams and to demonstrate that unlike a limited set of discrete sensing data points or global dynamic 

properties, the rich data from full-field image-based measurements can enable the identification of a more detailed 

picture of the internal defects.  

    The proposed idea aims to show that full-field experimental surface deformation measurements of structural 

members under loads can be used to optimize a FEM such that it reflects unknown internal material and damage 

properties. The proposed approach starts with a basic FE model of the member and compares its numerical response 

with DIC full-field experimental measurements.  

The unknown parameters (e.g. material properties, boundary conditions, and internal damage) are then identified by 

iteratively minimizing the residual between the simulation and the experimental responses. The proposed process is 

depicted in Figure 5.3. 
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Figure 5.3. The optimization process of matching numerical (FEM) and experimental response (DIC) 

      

     The overall process used to formulate the damage detection problem in terms of a structural optimization problem 

can be summarized as the following step-by-step procedures: 

1. At the beginning of the topology optimization process, the design region is initially discretized using the 

FEM introduced as an intact domain without any defects within the structure. The defected finite elements 

will later be recognized as voids at the end of optimization process.   

2. Following interpolating both DIC and FEM responses to a common reference plane, full-field strains and 

displacement measurements using the DIC technique are compared with the corresponding response from 

the FE model and their residual is used in the objective function.  

3. In each optimization iteration, element properties are treated as damage variables and are varied such that the 

objective function is minimized. If the damage variables are not fully converged to either the value of a void 

(completely damaged) or the value of a solid (completely intact) after an optimization iteration, all elements 
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having damage variables below a prescribed threshold are reused as damaged elements at the next 

optimization iteration and the remaining elements are considered intact. This process is repeated until 

convergence.  

4. Based on the prescribed threshold, the damaged elements are distinguished from the intact elements. Then 

the 3D shape and location of the damaged regions are recovered successfully.  

 

5.7 Damage Detection as a Structural Topology Optimization Problem 

 

      The optimization problem iteratively updates the material and geometrical properties such that the response (e.g. 

strains, deformations) obtained from the model approaches those experimentally observed via DIC. While the 

feasibility of the optimization procedure to identify a limited set of parameters in structural steel has been previously 

demonstrated by the authors [86], this work proposes to extend the feasibility study to fine-grained detection of 

material properties and damage at the element level in large scale steel beam members. To achieve this goal, the 

problem is formulated as a topology optimization problem, which is a mathematical method used to find the optimum 

design of a structure given a set of loads and constraints. The fundamental contribution proposed in this work is 

therefore to reformulate damage detection in steel members as a topology optimization problem where defects are 

seen as areas with significantly lower modulus of elasticity and/or mass. In other words, damage detection is achieved 

through optimizing the constitutive matrices (stiffness and mass) by matching fine-grained full-field measurements 

between the model and the experiment.  

5.7.1 Optimization Problem for Damage Detection  

      The defect detection problem can be represented as an optimization problem where a simulated model is refined 

such that the residual discrepancy between the numerical response and the experimental measurements is minimized. 

Fine-tuning of the numerical model is executed by adjusting the stiffness distribution all over the structure through 

the damage variable (x). To carry out the minimization, the residuals are encapsulated in the manifestation of an 

objective (or penalty) function, that generally has the common form of a summation of different components of the 
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residuals between the two responses over the region of interest. Quasi-static response data consisting of strains and 

deformations were utilized in the following objective function: 

𝐹(𝑬) = ∑ ∑ ∑ [(
𝜀𝑥𝑥,𝑖𝑗

𝑒𝑥𝑝
−𝜀𝑥𝑥,𝑖𝑗

𝑛𝑢𝑚(𝑥)

𝜀
𝑥𝑥,𝑖𝑗
𝑒𝑥𝑝 )

2

+ (
𝜀𝑦𝑦,𝑖𝑗

𝑒𝑥𝑝
−𝜀𝑦𝑦,𝑖𝑗

𝑛𝑢𝑚(𝑥)

𝜀
𝑦𝑦,𝑖𝑗
𝑒𝑥𝑝 )

2

+ (
𝜀𝑥𝑦,𝑖𝑗

𝑒𝑥𝑝
−𝜀𝑥𝑦,𝑖𝑗

𝑛𝑢𝑚(𝑥)

𝜀
𝑥𝑦,𝑖𝑗
𝑒𝑥𝑝 )

2

+ (
𝛿𝑦𝑦,𝑖𝑗

𝑒𝑥𝑝
−𝛿𝑦𝑦,𝑖𝑗

𝑛𝑢𝑚(𝑥)

𝛿
𝑦𝑦,𝑖𝑗
𝑒𝑥𝑝 )

2

]
𝑛𝑖
𝑗=1

𝑚
𝑖=1

𝑝
𝑘=1                 (5-1) 

 

     Where x is the vector of unknown design variables which are the constitutive properties of the finite elements, p is 

the number of experimental tests (p = 1 in this work), m is the number of load steps (m = 1 in this work) and q the 

number of data points in the DIC measurement at load step i. The subscripts exp and num indicate the experimental 

and numerical responses, respectively. Three components of the strain tensor and the corresponding component of 

displacement are represented by 𝜀𝑥𝑥,𝑖𝑗
𝑒𝑥𝑝

, 𝜀𝑦𝑦,𝑖𝑗
𝑒𝑥𝑝

, 𝜀𝑥𝑦,𝑖𝑗
𝑒𝑥𝑝

,  , and 𝛿𝑦𝑦,𝑖𝑗
𝑒𝑥𝑝   respectively, that are extracted at point j at the time i. 

Similarly, 𝜀𝑥𝑥,𝑖𝑗
𝑛𝑢𝑚, 𝜀𝑦𝑦,𝑖𝑗

𝑛𝑢𝑚, 𝜀𝑥𝑦,𝑖𝑗
𝑛𝑢𝑚  and 𝛿𝑦𝑦,𝑖𝑗

𝑛𝑢𝑚 represent the corresponding values computed from the FEM considering an 

assumed stiffness distribution denoted by damage variables x. The proposed objective function and its components 

are shown in Figure 5.4 schematically. 

 

Figure 5.4. Systematic updating process between numerical and experimental results to identify unseen damage  

 

    To that end, it is required to interpolate both results on a newly-defined mesh grid. The concept of interpolation 

process is schematically illustrated in Figure 5.5. As it can be seen from Figure 5.5, FEA and DIC responses have 
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different mesh grid spacing in the x-y plane. With both results mapped into a common grid, the residuals between 

FEA and DIC results can be calculated within the optimization process. 

 

Figure 5.5. Interpolation of the experimental and numerical measurements into a common grid 

 

5.7.1.1 Method of Moving Asymptotes 

     A fundamental component of the proposed approach is to use optimization to push the objective function to a 

minimum. For this objective function, the goal centers on minimizing the difference in responses between the finite 

element results and experimental DIC results, along with the elimination of elements describing unseen damaged 

regions. For this study the Method of Moving Asymptotes (MMA) optimization algorithm will be used within the 

optimization solution to minimize objective function. This algorithm has proven to be versatile and well-suited for 

large-scale topology optimization problems. MMA is a mathematical algorithm for solving smooth nonlinear 

optimization problems through an iterative process where a new strictly convex sub-problem is generated and solved 

for each iteration [171]. Each generated convex sub-problem is an approximation of the original problem with a set 

of parameters that set the curvature of the approximation and act as asymptotes for the associated sub-problem. The 
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convergence of the overall process is stabilized by moving these asymptotes between each iteration. Additional details 

on the MMA optimization algorithm are available in the literature, but it should be noted that this algorithm was 

successfully utilized in the author’s previous proof of concept study. The following section describes a proposed 

laboratory experimental program used to evaluate the hypothesis of the study. 

 

5.8 Experimental Study 

 

     To investigate the hypothesis, an experimental study was performed. The focus of the experimental study was 

centered around a series of six steel beam specimens tested using the full-field 3D-DIC measurement capabilities of 

the structures laboratory at the University of Virginia. These include three 8 feet-long and three 4 feet-long flexural 

specimens to investigate the effects of member dimensions as well as damage type, size and location on the ability of 

the proposed approach to reconstruct material properties and damage. The selection of the specimens was based on 

the structural laboratory limitations such as the capacity of the actuators, boundary condition setups in the structural 

laboratory and the position of the actuator frames. Artificial volumetric defects representing corrosion-induced 

deterioration were created by a milling machine. Table 5.1 summarizes the specimens used and Figure 5.6 illustrates the 

geometrical properties of the beams with the embedded defects. 

Table 5.1. Array of experimental specimens for the study 

Configurations Section Length (ft.) Web thickness (in.) Defect thickness (in.) Defect type 

Intact W10×33 8 0.29 0.15 None 

1 W10×33 8 0.29 0.15 Controlled damage 

2 W10×33 8 0.29 0.15 Random damage 

Intact W10×17 4 0.24 0.12 None 

3 W10×17 4 0.24 0.12 Controlled damage 

4 W10×17 4 0.24 0.12 Random damage 

 

The specimens were subjected to concentrated loads at midspan. The loading frame consisted of a 110-kips MTS 

servo-hydraulic actuator to produce a concentrated load at the mid-span of the beam. In this study, a displacement-

controlled loading setup was adopted, with a pre-determined maximum midspan deflection set as the limit. This limit 
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was evaluated based on a preliminary numerical analysis to establish the minimum range of deformations that would 

cause the designed beam to experience flexural stresses in the linear elastic range.   

 

 

Figure 5.6. The dimension of the corresponding defects 

     Intact beams provided an essential ground truth reference for the overall modeling strategy, but also provide a 

mechanism to guide the experimental design, such that loading configurations can be tailored to yield a response 

pertinent to the specific state under evaluation. Also, it can provide sufficient information regarding boundary 

conditions. An investigation regarding the boundary conditions provides confidence that the updating process of 

structures for constitutive properties will not compensate with the effects of the existing boundary conditions. For 

these works with multiple unknowns, sensitivity of the boundary conditions versus constitutive properties of structures 

should be studied carefully so that the inverse problem will be executed accordingly. Therefore, the boundary 

conditions of the structures need to be modelled appropriately. For this purpose, two intact steel beams (configuration 

00 and configuration 01) were tested to evaluate the boundary condition effects. The intact models were used in 

conjunction with the corresponding intact experimental specimens to update boundary conditions throughout the 

loading. This updating process is critical as uncertainty in the boundary conditions can have a significant effect on the 

overall structural behavior. Building from the intact modeling approach, models of the damaged members were 

developed.  
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      After evaluating the full field displacement results from 3D-DIC on the support locations, the sufficient constraints 

are applied to secure miner movements of the supports. Thus, these sensitivity analysis of the boundary conditions 

provided confidence regarding the proper numerical simulation of boundary conditions. As it can be seen from Figure 

5.7, after finishing the test and extracting the full field sensing measurements using 3D-DIC technique on intact beams, 

the results reveal some vertical displacements under the support which can be attributed to some flexibility of 

cylinders, steel pedestal and even the ground by itself. A similar observation was made in previous works by the 

authors [42, 104, 131, 132]. The initial goal of the updating boundary conditions was to spatially align the geometries, 

primarily the boundaries of the deterioration mechanisms and the numerical model.    

 

(a) 
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(b) 

Figure 5.7. 3D-DIC experiment on support conditions (a) steel beam 8 feet long, (b) steel beam 4 feet long 

5.9 Experimental setup 

 

      Illustrative experimental laboratory tests for the steel beams are shown in Figure 5.8. The tests consisted of a series 

of flexural loading cycles within the elastic range (ASTM A992 W10x33 and W10x17, 𝜎𝑦𝑖𝑒𝑙𝑑= 50 ksi) of a wide-

flange hot-rolled structural steel beams. The beams were tested in the Structures Laboratory at the University of 

Virginia and configured for strong-axis bending. Three paired DIC camera (Point Grey Grasshopper 2.0 CCD with 

5.0MP resolution) systems were used to evaluate the midspan (Schneider 8 mm lens) and two end span (Schneider 12 

mm lenses) locations. The midspan camera system will utilize a different lens configuration due to the physical 

constraints of the load frame location relative to the test specimen.   

       The whole beam surface was patterned over the full depth of the beam web by applying a flat white paint base 

coat, followed by random speckle pattern with a permanent marker. The DIC data acquisition (DAQ) integrated output 

signals (load and displacement) from MTS actuators and controller to allow for simultaneous acquisition of load, 

displacement, and images. Figure 5.9 provides a basic illustration of the experimental setup and instrumentation 

configuration during testing. For each of the configurations, the beam was loaded monotonically under displacement-

control, with the beam response kept within the elastic range.  
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Figure 5.8. Experiment setups for steel beams, (a) Overview of experimental setups, (b) configuration, intact, (c) configuration1, 

(d) configuration 2, (e) configuration, intact, (f) configuration 3, (g) configuration 4 

 

(a) 
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(b) 

Figure 5.9. (a) Boundary and loading fixtures for configuration 1 – 2 (b) Boundary and loading fixtures for configuration 3 – 4 

configurations 

5.9.1 Loading regime  

     For each of the configurations, the beam was loaded monotonically under displacement-control, with the beam 

response maintained within the elastic range. The loading sequence consisted of loading the beam to a displacement 

of 0.05 in. at a rate of 0.002 in. per second, followed by a two-cycle sinusoidal loading from 0.05 in. up to a peak 

displacement of 0.4 in., for the large beam and a peak displacement of 0.15 in. for the small beams and concluding 

with an unloading through the reverse of the initial loading sequence. The initial loading and final unloading occurred 

over a period of 50 s (25 s each), while the sinusoidal sequence occurred over a period of 500 s (250 s for each cycle) 

(Table 5.2). 
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Table 5.2. The loading regime for the defined configurations 

Configurations Maximum Force (lbs) Maximum Displacement (in.) Rate of loading (in. per second) Duration (Sec) 

1 57000 0.40 0.002 550 

2 57000 0.40 0.002 550 

3 33000 0.15 0.002 550 

4 33000 0.15 0.002 550 

 

5.9.2 Design of the 3D-DIC Setup (partly from our previous papers) 

    The instrumentation consisted of a series of paired camera systems for acquisition of 3D–DIC images. As it is 

depicted in Figure xx, whole areas of the beam were painted with a random speckle pattern. For each area, a pair of 

CCD cameras (a total of 6 cameras in 3 systems for large beams and a total of 2 cameras in only one system for small 

beams) was used for data acquisition. The focal lengths of the deployed lenses as well as the distance of the cameras 

were adjusted to the new scale level. Accordingly, for large beams 8 mm lenses were used for the systems collecting 

data at the middle span, while 12 mm lenses used for the system aligned with the left/right-span of the beam (Figure 

5.10). Also, for small beams 8 mm lenses were used for the system collecting data at the whole span (Figure 5.11). The 

corresponding details on the DIC system setup including focusing, lighting, calibration, and data acquisition followed 

the approach used at the mixture level, with adjustments made as needed to accommodate the conditions (e.g. field of 

view, lighting, etc.) associated with destructive testing at the structural component scale level. 
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(a) 

 

 

(b) 

Figure 5.10. (a) Schematic of the DIC setup for configuration 1 – 2, (b) DIC setup for configuration 1 – 2 
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(a) 

 

(b) 

Figure 5.11. (a) Schematic of the DIC setup, (b) DIC setup for configurations 3 – 4 

 

        In terms of hardware for the image acquisition, a digital camera with an appropriate lens to provide the 

magnification required to see the target is needed. To determine the required specifications, the relationship between 

internal imaging system parameters (e.g., focal length, sensor size, pixel resolution) and the field of view (FOV) can 

be leveraged, using the pinhole camera relationship integrated with known camera parameters (Figure 5.12), the FOV 
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can be written in terms of sensor size (w×h), focal length (f), and imaging distance (d) (Eq. (5-2)). As it can be noted 

for FOV = 36 in. The size of the lens was designed to be 12 mm for system 1 and 3. Also, due to some laboratory 

limitation for the middle area of the beam, the imaging distance was required to be less than 3ft. Therefore, based on 

the calculations, the lens focal length for system 2 was selected as 8 mm. Using the proportions between the image 

size of objects in pixels and the physical size in millimeters, Eq. (5-3) provides a means to calculate the required 

dimensions. Eq. (5-4) calculates the size of objects (e.g., speckle dots) in millimeters (Sm) in terms of the pictured 

size in pixels (𝑆𝑝), FOV, and the image width (or height) in pixels (𝑊𝑝). For example, for an FOV of 914.4×228.6 mm 

(36×9.0 in.) and a 5-megapixel photo of size of 2448×2048 pixels, if a speckle pattern of 5 pixels is desired, the size 

of the dots to be painted on the target will be 2 mm (Figure 5.12b).  

𝑤
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                                                                    (5-2) 

𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 (𝑝𝑖𝑥𝑒𝑙𝑠)

𝐹𝑂𝑉 (𝑚𝑚)
=

 𝑜𝑏𝑗𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 (𝑝𝑖𝑥𝑒𝑙)

𝑜𝑏𝑗𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 (𝑚𝑚)
                              (5-3) 

𝑆𝑚 =
𝐹𝑂𝑉

𝑊𝑝
𝑆𝑝                                                                  (5-4) 

       In preparation for testing, the surface of the test specimen was covered with a fine, dense and random speckle 

pattern for the correlation process. To achieve a high spatial resolution of calculated results while at the same time 

being large enough to be resolved in the images, the pattern had an average speckle size of 0.0787 inch (2 mm), which 

corresponds to approximately 5 pixels in the captured images. For the pixel tracking process in DIC, the area of interest 

on the speckle pattern is split into rectangular windows or “subsets” and unique patterns of speckles need to be 

available within each subset to allow for tracking in subsequent frames. The patterns in the subsets are tracked on a 

grid of a specific “step” size, which dictates the spatial resolution of the calculated points. To achieve a fine grid of 

unique patterns in subsets, the selection of the subset size was achieved through direct experimentation and a square 

subset of 23 pixels at a step of 5 pixels was selected (Figure 5.12b). Also the detailed characteristics of 3D-DIC for all 

the beams are described in  

Table 5.3.  
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Figure 5.12. The design of DIC experiment and parameters, (a) The pinhole camera relationship integrated with known camera 

parameters, (b) Selection of subset size 

 

Table 5.3. Characteristic of 3D-DIC for 8 feet long steel beam 

DIC setup characteristics and 
Experimental setup 

DIC stereo systems, 8 feet long beam DIC stereo systems, 4 feet long beam 

Left Region  Middle Region  Right Region Whole region 

Focal Length (mm) 12 8 12 8 

speckle size (Pixel) 5 5 5 5 

Noise Floor (microstrain) 20 25 22 20 

Distance from specimen (in.) 48 36 48 36 

Distance of cameras (in.) 45 20 45 45 

Cameras angles (°) 46 28 46 49 

Height from ground (in) 15.7 16.0 15.7 15 

AOI (in. × in.) 36×9 24×9 36×9 48×9 

Pixel resolution (Pixels/in.)  64 64 64 64 

Subset Size (Pixel) 23 23 23 23 

Step Size (Pixel) 7 7 7 7 

Calibration Grid (mm) 28 28 28 28 

Software  VIC-3D-8 VIC-3D-8 VIC-3D-8 VIC-3D-8 

Loading Frame 100 – kip servo-hydraulic load frame 

Type of DIC cameras Point Grey Grasshopper 2.0 CCD with 5.0MP resolution 

Image Acquisition Images acquired every 0.5 seconds, set of images acquired at tare load for noise estimates ~ 50 images, 

Load line recorded by DIC to synchronize with data acquisition system, VIC-3D Real-time module used 

during testing: each of the three systems was monitored. DIC results compared to predictions in real-time 
to identify anomalies that could influence loading decisions 
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5.9.3 Measurement noise  

    Prior to employing the DIC results in the St-Id framework, it was essential to determine the acceptable noise-floor 

for each test. Therefore, an analysis of the measurement noise was performed. The noise-floor can be assessed during 

the design of the measurement to aid in the selection of different DIC hardware (i.e. camera and lens, patterning 

technique, lightning, etc.) and processing parameters (i.e. subset size, step size, etc.).  

      To assess the noise in the measurements, a series of images were captured from the zero-load state of the specimen 

and processed using the same settings utilized for the rest of the data. While in theory the displacements and strains 

should be equal to zero in the zero-load state, in practice, noise from different sources influence the measurements. 

Some of these sources include lighting fluctuations and glare, irregularities and poor quality of speckle pattern, as well 

as noise resulting from image acquisition (e.g. sensor noise) and quantization.  

      Table 5.4 to Table 5.6, summarizes the average and standard deviation of the displacement (U, V, W) and strain 

(εxx, εyy, εxy) measurements in 50 frames with zero loads. The standard deviation of the measurements quantifies the 

variation of the noise and can be employed as an estimate of the resolution of the measurements. To better comprehend 

the distribution of noise in zero-load frames, Figure 5.13, Figure 5.14 and Figure 5.15, exemplifies histograms of the 

non-zero displacements and strains in a sample zero-load frame. It is important that all of the no-load frames have a 

similar shape with a mean close to zero and a bell-shaped distribution/frequency which is in accord with the expected 

random Gaussian noise. 
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Figure 5.13. Histogram of non-zero measurements in a sample zero-load frame for configuration 1, the left column is for left 

region of the beam, the middle column is for the middle region of the beam and the right column is for the right region of the 

beam. 

 

   

 
  

Figure 5.14. Histogram of non-zero measurements in a sample zero-load frame for configuration 2, the left column is for left 

region of the beam, the middle column is for the middle region of the beam and the right column is for the right region of the 
beam. 
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Figure 5.15. Histogram of non-zero measurements in a sample zero-load frame for configuration 3 (Top), configuration 4 

(bottom) 

Table 5.4. Noise statistics from measurements in 10 frames with zero load for configuration 1 

Variable 
Left region Middle region Right region 

Mean StD Mean StD Mean StD 

U 

(
1

1000
 𝑖𝑛. )  

-0.10 0.63 0.09 0.41 -0.14 0.31 

V -0.12 0.67 -0.11 0.84 -0.12 0.77 

W -0.13 0.55 0.14 0.45 -0.18 0.48 

𝜀𝑥𝑥 

(µε) 

-0.13 32.01 -0.74 32.44 -0.54 32.33 

𝜀𝑦𝑦 -0.86 55.12 0.66 55.23 -0.46 32.11 

𝜀𝑥𝑦 0.52 23.12 -0.32 33.12 -0.52 28.18 

 

Table 5.5. Noise statistics from measurements in 10 frames with zero load for configuration 2 

Variable 
Left region Middle region Right region 

Mean StD Mean StD Mean StD 

U 

(
1

1000
 𝑖𝑛. )  

0.15 0.51 0.17 0.61 0.23 0.71 

V 0.11 0.57 0.45 0.47 0.15 0.37 

W 0.14 0.63 0.25 0.43 0.38 0.55 

𝜀𝑥𝑥 

(µε) 

0.69 28.02 0.61 38.20 0.45 43.24 

𝜀𝑦𝑦 -0.85 42.02 -0.75 43.25 0.55 28.29 

𝜀𝑥𝑦 0.43 23.02 0.63 54.12 0.57 17.02 
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Table 5.6. Noise statistics from measurements in 10 frames with zero load for configuration 3 and 4 

Variable 
Left region Middle region 

Mean StD Mean StD 

U 

(
1

1000
 𝑖𝑛. )  

-0.35 0.51 0.65 0.45 

V -0.25 0.47 -0.29 0.67 

W -0.41 0.44 -0.71 0.77 

𝜀𝑥𝑥 

(µε) 

0.61 41.45 0.55 55.44 

𝜀𝑦𝑦 -0.71 32.64 0.74 23.88 

𝜀𝑥𝑦 -0.62 25.09 -0.60 17.08 

 

5.10 Numerical Simulation  

     St-Id requires the development of an initial numerical model that can be updated based on experimentally derived 

results. In this investigation, FEMs of each loading/boundary condition scenario were developed in ABAQUS [10], a 

robust commercially available finite element software package. For configuration 1 - 2 scenarios, the steel beam was 

modeled using a total of 5442 Continuum 3D hexahedral solid elements (C3D8) with full integration and for 

configuration 3 - 4 scenarios, the steel beam was modeled using a total of 2214 finite elements. The size of the biggest 

element for the configuration 1-2 and 3-4 were 0.5 and 0.2 mm respectively. According to the view of the cross section 

(I) with its mesh that shows 8 and 4 element layers are used along the thickness of the web for configurations 1-2 and 

3-4 respectively, with 4 elements used along the thickness of the web. The geometry was developed from standard 

section properties available within the AISC Manual of Steel Construction [101]. A global view of the model of the 

steel beam has been shown in Figure 5.16. With the model representing a relatively non-complex structural component, 

a dense mesh was not required; however, the mesh density was initially developed and later refined to allow for 

alignment with the coordinate system of the DIC results. It should be noted that ABAQUS allowed for the development 

of a direct interface with Python packages, a multi-paradigm numerical computing environment, which facilitated the 

iterative parameter optimization algorithm. 
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Figure 5.16. Experimental setups and FEM of the steel beams (a) Steel beam 8 feet long, (b) Steel beam 4 feet long 

5.11 Performance Evaluation 

 

       To examine and quantify the damage detection performance of the proposed approach, a number of performance 

metrics were used as defined and described in this section. Accuracy (ACC) is the ratio of all correct predictions over 

all predictions, and recall (REC) and precision (PRE) are the ratios of correct defect predictions to total defective 

elements, and to all defect predictions, respectively. F1 score is the harmonic mean of precision and recall and is used 

to provide an aggregate metric of classification performance. Equations 5 to 8 summarize the definitions for these 

performance metrics. In defining these criteria, defective and intact elements were referred to as positive (+) and 

negative (−) instances, respectively, and TP, TN, FP, and FN refer to true positives, true negatives, false positives, and 

false negatives, respectively, and shown in Figure 5.17. 

 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
                                                (5-5) 

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (5-6) 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                            (5-7) 

𝐹1 =
2×𝑃𝑅𝐸×𝑅𝐸𝐶

(𝑃𝑅𝐸+𝑅𝐸𝐶)
                                                        (5-8) 
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Figure 5.17. Performance metrics 

 

5.12 Discussion and Results 

  

         To evaluate the performance of the proposed approach, controlled rectangular/random distributed zones of 

artificial damage to mimic the effect of real corrosion, were fabricated into the back side of the steel beams (i.e. 

configurations 1-4) to mimic invisible damage on a component.  For the defined configurations, to detect the unseen 

damage by the proposed technique, the initial FEM of the beams was created and all the finite elements were 

considered within the updating process, as inputs into an objective function aimed at simultaneous local and global 

system parameter identification. According to the proposed method, after the optimization process the value of the 

elasticity modulus for all the elements which belong to defects would be expected to decrease dramatically to infer of 

existence defects in the regions.  

    To compare the results from DIC and FEM, it was necessary to interpolate the data from DIC and FEM onto a new 

defined mesh grid. With both results mapped onto a common grid, the discrepancy between FEA and DIC results 

could be used within optimization process. For configuration 1-2, the number of the discretized grid points from FEM 

and DIC before the interpolation process and also the number of sensing points after interpolation on the common grid 
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were 600×80, 350×70 and 160×24 respectively. Also, for configuration 3-4, the number of the discretized grid points 

from FEM and DIC before the interpolation process and also the number of sensing points after interpolation on the 

common grid were 300×50, 250×40 and 80×24 respectively. Within the interpolation process both results from DIC 

and FEM were mapped within a common introduced grid to acquire residual of both results to utilize in the defined 

objective function during optimization procedure.  

Using the proposed topology optimization algorithm, the minimization of the objective function was performed 

for 500 epochs. In Figure 5.18, the region of interest of the steel beams which are selected as design variables to be 

modified during topology optimization process are shown. As illustrated in Figure 5.18, in the FEM of the beams, the 

stiffness of the corresponding elements belongs to the selected regions which are chosen as design variables are 

adjusted during topology optimization process.  

The summary of results for the elastic modulus of the elements after the optimization process for the 

configurations 1 and 2 are illustrated in Figure 5.18. As previously mentioned, configuration 1 is 8 feet long steel 

beam with fabricated controlled rectangular defects within the back region. Moreover, configuration 2 is 8 feet long 

steel beam with machined random defects within the back region to mimic the effects of real corrosion. For the 

introduced configuration, after the topology optimization process, it was observed that most of the elastic modulus of 

the elements belonging to the defect regions exhibit values less than those in the region without any defects. Thus, the 

proposed topology optimization based approach manifested the capability of implying the existence of defect regions 

from constitutive property of material appropriately. In Figure 5.18, the color levels of the finite elements correlate to 

the 𝑥𝑖 values (𝑥𝑖 is defined as design) consequently, lower values stipulate decreased stiffness indicating the existence 

of damage. According to each one of the results in Figure 5.18, the general shape and location of the damage is 

successfully recognized in each case together with some fictitious noise detections. 

Furthermore, to study the performance of the proposed method on different structural elements, configurations 3 

and 4 are selected. The summary of results for the constitutive properties of the design variables after the optimization 

process for the configurations 3 and 4 are displayed in Figure 5.19. Configuration 3 and 4, the four feet long steel 

beam with manufactured defects on the back region. Similar to previous configurations, following the topology 

optimization process, the observation indicates that the majority of the constitutive properties (elastic modulus) of the 

elements affiliated with the defect regions exhibit lower values when compared to the regions with no defects. 

Therefore, again the approach illustrated the capability of implying the existence of defect regions from constitutive 
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property of material appropriately. According to the results in Figure 5.19, the general shape and location of the damage 

is properly replicated in each case together with minor factitious detection noise which are removed after utilizing 

post processing step accordingly. Convergence of the objective function and accuracy of the specimens is denoted in 

Figure 5.20, revealing that the optimized constitutive properties belonging to each of the finite elements is well tuned 

using merely surface strain and displacement fields and that both the objective function and accuracy come to a steady 

plateau with adequate iterations. 

     To enhance accuracy of the detected damage regions a post-processing approach has been applied: an algorithm 

that looks at the positive detections (elements detected as defect, those with k<0.5). A general assumption regarding 

the continuity of the defects, and their manifestation within a structural component allows for a smoothing of FP/FN 

predictions that are in isolation. The assumption builds from the premise that defects in the systems are seldomly a set 

of isolated and disconnected points which means if a defective element is alone by itself or by less than a number of 

elements (e.g. the number is less than 10 elements), it probably belongs to the incorrect prediction rather than a defect. 

In another way, also, we can set a threshold for the size (volume) of individual connected components and remove 

those below a specific threshold volume. The rationale for selecting 10 as the number of isolated elements is that the 

defect size of interest can be determined by the expert based on the application; for example, a corrosion detection 

smaller than 25 mm by 48 mm is not large scale structural application. The results after applying the post processing 

step are shown in Figure 5.21. As seen in Figure 5.21, the minor spurious detection noises (False Positive elements) 

are eliminated using post processing step accordingly. The results for configurations emphasize high performance of 

the proposed method in detecting and correlating the shape and location of the defect properly.  

     To quantify the performance of the topology optimization based approach on identifying damage region within the 

defined configurations, confusion matrices and ROC curve are depicted for the configurations (Figure 5.22) and 

performance metrics are outlined in Table 5.7. The appearance of confusion matrix generally displays the higher 

concentration of the detections around the true-prediction diagonal. Figure 5.22b also exhibits the ROC curve for the 

configurations, which demonstrates the trade-off between the ability of the model to recognize truly defective 

elements, while avoiding false alarms, with varying values of threshold. As it can be realized from the figures, all the 

four configurations show a relatively similar detection behavior. 
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(c) 

 
(d) 

Figure 5.18. Topology Optimization results for configuration 1 – 2, non-binary architecture containing varying mixtures of 

solid and void at all locations, (a) The web region for configuration 1, (b) The web region for configuration 2, (c) non-binary 

results for configuration 1, (d) non-binary results for configuration 2 
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(c) 

 
(d) 

Figure 5.19. Topology Optimization results for configurations 3 – 4, non-binary architecture containing varying mixtures of 

solid and void at all locations, (a) The web region for configuration 3, (b) The web region for configuration 4, (c) non-binary 

results for configuration 3, (d) non-binary results for configuration 4 

 

 

(a) 

 

(b) 

Figure 5.20. Convergence of the defect detection process: (a) objective function, (b) accuracy 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 5.21. Topology Optimization results, binary architecture containing solid and void at all locations, (a) configuration 1 

before post processing, (b) configuration 1 after post processing, (c) configuration 2 before post processing, (d) configuration 

2 before post processing, (e) configuration 3 before post processing, (f) configuration 3 after post processing, (g) configuration 

4 before post processing, (h) configuration 4 before post processing 

 

         Moreover, to well perceive the performance of the introduced approach, Figure 5.22 quantifies and outlines the 

discovered results of the optimization for configurations 3 in Figure 5.22 in the form of confusion matrices, and usually 

stipulates the higher concentration of the detections around the true-prediction diagonal. Figure 5.22b also specify the 
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ROC curves for the configuration, which illustrates the trade-off between the ability of the model to detect truly 

defective elements, while avoiding false alarms, with varying values of threshold.   

     Table 5.7 sums up the corresponding accuracy metrics computed according to the confusion matrices shown in 

Figure 5.22. It can be realized that for configuration 1, the proposed approach performed an accuracy 94.85% which 

signifies the capability of the topology optimization based technique in detecting the damage in large scale structural 

component experiment. Moreover, it can be denoted that for the configuration, the proposed approach performed the 

precision and recall 64.74 and 74.83 which shows that the existence of spurious detection noise (i.e., False Positive) 

are relatively higher. It can be realized from the results in Table 5.7 that although the proposed method can properly 

detect the shape and position of the existence damage, the performance moderately decayed. This performance 

deterioration can be attributed to potential internal non-homogeneity and the noise and uncertainties involved in the 

experimental setup. Some of the sources of these uncertainties include lightning fluctuations, glare, irregularities, poor 

quality of speckle pattern, as well as noise resulting from image acquisition (e.g. sensor noise) and quantization. 

Furthermore, the interpolation of DIC and FEM can also be a possible source of uncertainties.  

      Also, for configuration 3, to improve accuracy of the detected damage regions the proposed post-processing 

approach was applied with results shown in Table 5.7 alongside pre-presented results. Results highlighted that many 

of the minor erroneous predictions were eliminated using post processing step accordingly and the performance of the 

precision and recall were enhanced to 77.05 and 84.25 respectively. Additionally, the accuracy was improved to 96.80 

which indicates the overall success of the proposed approach in reconstructing the 3D shape of the damage.  

    Also, in Table 5.7 the correlating accuracy metrics computed stems from the confusion matrices are described for 

configuration 3. It shows that for configuration 3, the proposed approach performed an accuracy 90.93% which 

successfully highlights the capability of the optimization in detecting the damage within another different large 

specimen. However, it also shows that the accuracy is slightly decreased compared to configuration 1, which also, can 

be attributed to the existence of noise measurements. The precision and recall values are obtained 48.87 and 79.50 

which after post processing step ameliorated to 69.81 and 85.16.    
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(a) 

 

(b) 

Figure 5.22. (a) Confusion matrix, Top is for configuration 1 and bottom is for configuration 3, (b) ROC 

Table 5.7. Performance of the damage detection method on DIC experimental results (threshold=0.5) 

Item 

ACC PRE REC F1 

Before post 

processing 

After post 

processing 

Before post 

processing 

After post 

processing 

Before post 

processing 

After post 

processing 

Before post 

processing 

After post 

processing 

Configuration 1 94.85 96.80 64.74 77.05 74.83 84.25 69.20 80.64 

Configuration 3 90.93 95.91 48.87 69.81 79.50 85.16 60.70 76.17 
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5.13 Comparison of Response from DIC, initial model and the Optimized Model 

 

     To demonstrate the capability of the proposed topology optimization based technique in modifying the model for 

replicating the surface response of components, Figure 5.23 to Figure 5.30 display a comparison of ground truth 

surface strains and deflection measured by 3D-DIC, with those acquired from the model before (Initial model) and 

after optimization (Updated or optimized model) together with the residual between the two of the results. In the 

figures, 𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑥𝑦 and W indicate longitudinal, transverse, and shear strain, and out of plane deformation, 

respectively. Figure 5.23 to Figure 5.30, illustrate that the optimized model\are able to reproduce  experimental full-

field strain distributions including the complicated disruptions incurred due to backside damage machined into the 

beams.  
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Figure 5.23. Full field measurements from DIC for configuration 1, left region. 
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Figure 5.24. Full field measurements from DIC for configuration 1, the middle region. 
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Figure 5.25. Full field measurements from DIC for configuration 1, right region. 
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Figure 5.26. Full field measurements from DIC for configuration 2, left region. 
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Figure 5.27. Full field measurements from DIC for configuration 2 middle region. 
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Figure 5.28. Full field measurements from DIC for configuration 2, right region. 
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Figure 5.29. Full field measurements from DIC for configuration 3. 
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Figure 5.30. Full field measurements from DIC for configuration 4. 
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5.14 Conclusion  

 

           The scope of this study was to assess the practicality of a non-invasive image-based measurement approach to 

characterize unknown/uncertain properties and damage mechanisms inherent to large scale structural components. 

The presented approach leverages the full-field measurement capabilities of DIC within a hybrid SHM/NDE 

framework to converge on material properties and damage mechanisms unique to steel such as corrosions. The 

approach offers a strategy that links global response-based SHM with the localized capabilities of NDE without 

discrete sensors or specialized measurement equipment. Building from the previous investigations using a full-field 

St-Id approach for structural components, unseen or internal damage was successfully identified. A more recent proof 

of concept of this strategy successfully leveraged a topology optimization approach, allowing the identification to 

move beyond limitations associated with a priori information on the candidate damaged area.  

      With large scale structural components such as steel beams, the identification challenge is further complicated due 

to boundary condition complexity, and variety of damage mechanisms; hence, further study was necessary to explore 

the robustness of the proposed approach. The method was evaluated on a series of steel beam structural components 

with artificially fabricated defects, representing section loss and the following conclusions were drawn:  

 Average three-dimensional visualization of the damage confirmed the overall success of the method in 

reconstructing the 3D shape of the damage, with a limited amount of spurious noisy detections that are mainly 

attributed to noise or incorrect estimates.  

 The proposed approach was capable of reconstructing the damage with average accuracy-score of 96.80% 

and 95.91% on configuration 1 and configuration 3, respectively. This outcome indicates that approach is 

able to predict a very small number of false positive and false negative elements at the end of topology 

optimization, with most of the predictions being designated as true positive and true negative elements.  

 These accuracy outcomes were reinforced with strong average precision and recall and precision scores, 

which are the ratios of correct defect predictions to total defective elements, and to all defect predictions, 

respectively. For configuration 1 these values are 84.025% and 77.05% respectively. Also, the values for 

configuration 3 are 85.15% and 69.81% respectively. The concept is shown in Figure 5.17 schematically.   
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 To improve the reliability of the proposed approach for detecting damage region a post-processing 

enhancement was employed, which relies on the premise of damage continuity to eliminate spurious 

predictions. After applying the post-processing step for configuration 1 the accuracy, precision and recall 

scores improved from 94.85%, 64.74% and 74.83% to 96.80%, 77.05% and 84.25% respectively. Similarly, 

for configuration 3, the post-processing step enhanced those score values from 90.93%, 48.87% and 79.50% 

to 95.91%, 69.81% and 85.16%.  

     This paper proved that the proposed method has capability of successfully extracting fine-grained subsurface 

damage information from large scale structural components which is otherwise costly and difficult to achieve with 

state-of-the-art NDE/T or SHM methods and can therefore be used as a promising subsurface damage detection 

method. While the capability and promise of the proposed technique is shown in this paper, it should be noted that in 

order to detect damage in a large structural component, large areas may need to be subject to the surface preparation 

required for DIC, and multiple sets of cameras may be required to cover the area of interest. However, the DIC 

technique has been shown to continue to be effective in relatively large components. Furthermore, for very large 

components, a multi-step procedure can be followed which starts by locating the vicinity of the damage using 

traditional global-response methods, and then using the proposed technique to obtain a fine-grained and detailed view 

of the internal damage. 
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6 CHAPTER 6 – Summary and Future Work 

 

        As structures age, routine inspection and repair become more frequent. In the United States of America, most 

infrastructures must to be subjected to routine inspections during their life-cycle. Civil infrastructure systems must 

undergo periodic or condition-driven inspections to assess their integrity. These assessments are designed to capture 

a range of changes such as systemic corrosion, damage from a natural disaster and, more generally, changes that affect 

performance under operating conditions. Beyond immediate and fundamental safety assessments, the desired goal of 

these evaluations is to provide maintenance engineers and managers with projections of the expected remaining service 

life, as well as to provide a foundation for decision support strategies applicable to a portfolio of similar assets. 

However, it is difficult to quantify inspection observations in a manner that illustrates the capacity of infrastructure, 

consequently making it extremely challenging to create numerical predictions suitable to prognose remaining service 

life from these observations. Improvements in simulation would ultimately lead to improved decision making for both 

system and network level asset management, with direct economic and safety benefits across a broad range of 

infrastructure sectors as a result. And, given the aging state of infrastructure in the United States, improving such 

assessment capabilities is both an economic and public safety priority. 

      The focus of this dissertation was on the quantification and modeling of non-visually observable geometric 

manifestations of damage. Such defects have a direct impact on the mechanical performance of infrastructure systems, 

and the advancement of new analytical techniques for the modeling of such defects would improve decision-support 

capabilities across a variety of infrastructure sectors. However, the arbitrary geometric complexities and stochastic 

evolution of such defects inhibits both high-fidelity numerical simulations of the impacts of defects. The primary 

objective of the proposed research was to develop an image - based SHM mechanism for integrating damage into a 

measure of system performance. Additionally, the goals aim to correlate the influence of damage on the capacity of 

the structural elements so as to predict updated numerical simulation of structural systems. This introduced concept 

represents a fundamental shift in current industry practice, which has no apparent linkage between decisions and 

practices in design, maintenance, and repair over the life of a structure.  In order to accurately evaluate the system-

level behavior, an ideal approach would be the implementation of full scale field tests on a series of representative 

structures; however, this approach is neither feasible nor cost-effective. Laboratory testing can also be considered as 
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an alternative approach, but challenges with dimensional scaling and simulation of exact boundary conditions are 

considered as limitations of this method, in addition to associated costs. With today’s computational resources and 

capabilities, the development of an analytical model to study the performance of intact or damaged structural systems 

could be best handled numerically, using a tool such as the FEM. While FEM provides an efficient mechanism to 

simulate the structure system behavior, there are certain challenges that must be properly treated to yield representative 

results. Of most important challenges to use finite element modeling, is how to simulate the constitutive properties, 

boundary conditions and geometric descriptions as precise as possible to real model; especially if the structures are 

complicated enough to define those constitutive properties, boundary conditions and geometric description.  

 

6.1 Summary 

 

     This dissertation presents the results of a study on St-Id to recognize the constitutive properties and boundary 

conditions using image based full field sensing measurements attained from 3D-DIC by inferring internal 

abnormalities from constitutive property distribution. The outcomes demonstrate that full-field measurement 

techniques are sufficiently robust for use within a St-Id framework for SHM. This dissertation describes the core 

components of the proposed full-field St-Id process including the experimental setup, numerical model development, 

creation of common reference plan, and model updating methods as optimization techniques. Based on the findings 

of these laboratory studies, the following outcomes were realized: 

6.1.1 Global Boundary and Constitutive Property Identification Using DIC 

     In the first step of the research a full-field measurement from 3D-DIC technique for St-Id of a large scale steel 

beam is leveraged. The research investigated the use of full-field sensing of structural response coupled with St-Id as 

a promising tool for SHM applications. Specifically, 3D-DIC was used to measure mechanical response of a 

laboratory-scale simply supported steel I-beam specimen. The measured responses were then used for St-Id of the 

unknown parameters of the system through FEMU. To this end, the problem was formulated as an optimization 

problem where objective functions signifying the differences between the actual experimental response and that 

predicted by the model was pushed to a minimum. For the identification, a novel hybrid algorithm, incorporating a 

combination of a GA and a gradient-based scheme was utilized for updating the FEA model and obtaining the optimal 
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values of the selected parameters. Overall, the St-Id results obtained in this work suggested that image-based 

measurements sensing using 3D-DIC can be successfully used as an alternative to physical in-place sensors for 

characterizing the response of large scale structural systems. Based on the findings of this laboratory study, the 

following conclusions were drawn:   

 

 The St-Id results obtained in this work suggest that image-based full-field measurements sensing using 3D-

DIC can be successfully employed as an alternative to physical in-place sensors for characterizing the 

response of large scale structural systems. Overall, the excellent agreement of the strain and displacement 

responses achieved after the completion of the updating process confirmed the efficacy of the proposed 

identification method. The observed advantage in the developed full-field approach is expected to enable to 

usage of a reduced sensor suite for St-Id as the rich data derive across the surface is more informative than a 

local sensing approach. 

 Features observed using 3D-DIC are available in post-processing, allowing for the identification of 

unforeseen behavior. In this work, in terms of boundary condition modeling, support deflections were 

identified from the 3D-DIC measurements and would have gone unmeasured using a traditional sensing if 

this response was not expected a priori. 

 The spatial correspondence between the DIC measurements and finite element simulation results provided a 

basis for further identification of highly localized features that may not present in local sensor measurements. 

An example of this phenomena was present when evaluating the local strain concentrations that manifested 

at the location of the load application. 

6.1.2 Image-based Tomography of Structures Using DIC 

     In the next step, the research went one step further and the purpose was to evaluate the feasibility of leveraging 

full-field measurements for St-Id, with a goal of recovering the volumetric interior defect distribution in structural 

components. Within this image-based tomography framework, steel coupon specimens with simulated defects were 

used to evaluate the performance of the St-Id approach to identify unknown and uncertain constitutive properties of 

the material based on full-field deformation measurements correlated with finite element predictions. DIC was utilized 

to extract full-field deformation measurements of the test specimen, subjected to standard ASTM E8 tension testing, 
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with the measurements collected of only the intact surface. The results of this investigation and the ability of the 

proposed method to detect internal abnormalities hint at the possibility of determining not only the material 

distribution of a specimen, but also determining the location, dimensions, and shape of the defect. The results of this 

research were encouraging and may open up new opportunities to characterize heterogeneous materials for their 

mechanical property distribution. Based on the findings of this laboratory study, the following are all of these 

conclusions were drawn: 

 The technique was proposed to recover volumetric interior defect distribution inferred from discrepancy in 

constitutive property distribution analysis implicitly. Analysis using the proposed technique could be 

employed to detect both natural and induced defects such as voids, inclusions, impurities, contaminants, and 

other defects that may occur within a structure and may therefore not be visible (i.e., visible with a naked eye 

because the defect is contained within the structure) on the surface. 

 The research aligned with St-Id work using 3D-DIC measurements, constitutive properties of small-scale 

element level validation were studied by conducting laboratory test on a small scale structural elements such 

as several steel coupons. The goal of this investigation was to evaluate the capability of utilizing full-field 

measurements on St-Id to find constitutive properties of materials with the assumption that the coupon 

specimens has sections with different material properties.  

 This approach can not only determine material distribution of a sample that is homogenous or (intentionally) 

non-homogenous in its properties, but also determine the location size, dimensions, and shape and to 

determine quantitative values for the material properties of defects that imply defects such as internal 

abnormalities, including those that may develop inside structural elements, or manufacturing defects that 

may also include voids or contaminants. 

 The results of this work demonstrates the potential to identify invisible internal defect by the proposed 

computer vision technique and established the potential for new opportunities to characterize internal 

heterogeneous materials for their mechanical property distribution and condition state. 
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6.1.3  Subsurface Condition Assessment and SHM of Structures:  

     In earlier investigations using FEMs, either few partitions or only a part of a structure was considered as the 

damaged region, but neither the total number of elements nor an entire structure. The small-region damage assumption 

is valid only when the information on the candidate damaged area is available. This limitation may be overcome by 

applying topology design method for damage identification because this approach has been used to design an entire 

structure. The topology design method was originally developed to find an optimal material distribution of a structure 

having the minimum compliance and subject to a given mass usage. In this investigation, a topology design 

formulation suitable for full field measurement data-based damage detection was developed applied to non-complex 

specimens. Based on the findings of this laboratory study, the following conclusions were drawn: 

 

 This study introduces to take advantages of image-based full-field sensing measurement acquired from DIC 

in a topology optimization framework to recover the interior damage in structural components which in turn 

means, to illustrate how perturbations in the observable full-field surface measurements can be used as a 

proxy to detect the unobservable internal abnormalities.   

 The proposed Topology optimization based approach uses the Solid Isotropic Material with Penalization 

(SIMP) based material model to parametrize the optimization problem, and the discrepancy of response 

between real structure and the model was minimized to find the material distribution in the design domain to 

eventually infer internal defects from material distributions. 

 Finally, this paper denoted that the proposed method has the capability of properly extracting fine-grained 

subsurface damage information which is otherwise costly and difficult to attain with state-of-the-art NDE/T 

or SHM methods and can hence be employed as a promising subsurface damage detection method. 

 

6.1.4 Detecting and Reconstructing the 3D Geometry of Subsurface Structural Damage  

     The final phase of this investigation focused on extending the topology optimization St-Id approach to more 

complex structural components with internal damage to demonstrate the feasibility and investigate the performance 

of the previously proposed method through an experimental program in which a few steel beams with and without 

buried defects are tested with full-field DIC sensing. A corresponding set of research tasks with an increasing level of 
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sophistication were designed to evaluate the capability of the approach to estimate steel material properties and extent 

and 3D shape of embedded defects. Upon completion, this investigation demonstrated the feasibility and practicality 

of the proposed subsurface steel condition assessment technique Based on the findings of this laboratory study, the 

following conclusions were drawn: 

 

 Average three-dimensional visualization of the damage confirmed the overall success of the method in 

reconstructing the 3D shape of the damage, with a limited amount of spurious noisy detections that are mainly 

attributed to noise or incorrect estimates. 

 The proposed approach leverages full-field surface deformation measurements of structural elements 

derived using DIC coupled within a topology optimization based technique to search for and identify 

the presence of unseen damage components. 

 The work described herein centers on a laboratory scale investigation of large scale steel structural 

components, which exhibits variability in its constitutive properties that are typically uncertain within 

existing structures and is also vulnerable to internal damage that is unseen from the surface.  

 The investigation proved that the proposed method has capability of successfully extracting fine-grained 

subsurface damage information from large scale structural components which is otherwise costly and difficult 

to achieve with state-of-the-art NDE/T or SHM methods and can therefore be used as a promising subsurface 

damage detection method. While the capability and promise of the proposed technique is shown in this 

investigation, it should be noted that in order to detect damage in a large structural component, large areas 

may need to be subject to the surface preparation required for DIC, and multiple sets of cameras may be 

required to cover the area of interest. However, the DIC technique has been shown to continue to be effective 

in relatively large components. Furthermore, for very large components, a multi-step procedure can be 

followed which starts by locating the vicinity of the damage using traditional global-response methods, and 

then using the proposed technique to obtain a fine-grained and detailed view of the internal damage 
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6.2 Future work  

 

      Based on the analyses performed and reported in this dissertation, the following road map for future work is 

recommended to further improve the state of St-Id: 

6.2.1 Subsurface Condition Assessment and SHM of Concrete Structures Using the Proposed Approach 

      Based on the outcomes of this dissertation, it is evident that there is great potential for leveraging 3D-DIC as a 

tool for efficient St-Id. The study evaluated the feasibility of the technique using a large experimental program. Future 

work in this area should evaluate the robustness of the proposed framework on more complex structural systems. This 

complexity should include large scale structural systems with more complex load sharing characteristic, variations in 

materials used and additional uncertainty in the condition state and boundary conditions. As an example, subsurface 

condition assessment and SHM of concrete structures using the proposed approach can shed light on the potentials for 

performance improvement on realizing structure behavior. Because many internal defects in concrete structures are 

invisible on the surface, especially during early stages of deterioration, making their timely detection challenging. In 

addition, evaluating the accurate 3D shape and extent of internal defects is a daunting task, even with the advances in 

NDE techniques. This fine-grained and data-rich representation of behavior of the concrete member can be then 

leveraged in an inverse mechanical problem to reconstruct the underlying subsurface abnormalities.  

6.2.2 Integrating the Proposed Approach with Photogrammetry Methods 

       Another future goal can be merging photogrammetry methods with the proposed approach to characterizing 

structure condition on a local level while also describing the impact on structural component and system behavior. In 

the photogrammetry methods, a combination of high-resolution 3D laser scanning and computer vision can be used 

to detect and measure observable defects in structural components. The localized measurements are then mapped into 

numerical simulations capable of describing the in-situ behavior of the structural component. Complementary to this 

direct scan-to-modeling approach, a second strategy is based on the proposed approach, a refined St-Id approach using 

full-field deformation measurements derived from 3D-DIC coupled with a topology optimization strategy to detect 

internal abnormalities. In this indirect approach, measurements derived from the measured structural components will 

be used to characterize and refine uncertain parameters (i.e. boundary and constitutive properties). The research 

provides a pathway for future work in the area of identification of unseen damage using the same basic St-Id approach. 
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While the proposed research effort studied this problem in the context of structural engineering, the findings will 

potentially benefit a range of communities, including geotechnical, construction, biomedical, and mechanical 

engineering, all of whom face similar challenges with respect to damage characterization. 
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