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Optimization of VDOT Safety Service Patrols to Improve VDOT Response to Incidents 

 

I. Introduction 

With the responsibility of building, maintaining, and operating transportation infrastructure 

across the state, the Virginia Department of Transportation (VDOT) must balance the priorities of 

safety and economic value with each new initiative brought to the state. Noticing a need for 

roadside assistance and traffic management, VDOT deployed a fleet of Safety Service Patrols 

(SSPs) in the 1960s to patrol interstates for drivers in peril and help clear incidents quickly. SSP 

operators are routed to patrol areas of the greatest need. They continuously patrol between set mile 

markers during specified hours of the day and stop to assist citizens or they are dispatched to a 

scene. These mile marker and hour designations are known as patrol schedules. Typically, SSPs 

stay within their assigned patrol schedule, but they are sometimes permitted to travel off their route 

if they detect or are notified about problematic incidents close by. In addition to patrol, police 

officers and other state personnel can request SSP assistance. The use of SSP operators has helped 

reduce congestion while minimizing secondary crashes [1]. Since their introduction, VDOT has 

expanded SSP coverage to include 846 miles on all major interstates in Virginia within the Central, 

Eastern, Northern, Northwestern, and Southwestern regions of the state [2]. 

 VDOT aims to ensure that their current patrol schedules optimize their limited resources 

while also maximizing their impact. The resources include a fleet of 156 vehicles and a $2.9 

million budget [3]. Current patrol routes are county based and do not employ the use of any 

optimization or analytical algorithm, leading to potential inefficiencies in time and resources. With 

the goals of both VDOT and SSPs in mind, we are seeking an optimal schedule to distribute the 

covered mileage on Interstate-95 into routes that minimize the time vehicles are stranded in need 

of assistance. The I-95 roadway includes current patrol routes in the Northern and Central regions 



3 

 

of the SSP program. VDOT has accrued vast amounts of incident and traffic data that make a more 

analytical selection of route schedules within reach. Using complex algorithms, optimization of 

their current route schedules could lead to faster response times, thus increasing safety and 

reducing costs. 

II. Data and Evaluation Metrics 

A. Data 

The analysis is based on two main datasets: incident data and traffic volume data. The incident 

data was created by combining four datasets that were provided by VDOT. Data pertaining to 

roadway incidents was reported by the existing SSP program. Incidents used in analysis were 

recorded from August 2017 through October 2019 along I-95, I-195, I-295, I-395, and I-495. The 

current SSP program includes 14 routes along I-95 and the connecting interstates, with 9 focused 

exclusively on I-95. Recorded incidents that had 

the same mile marker, date, and time were 

deemed duplicate entries and thus removed 

from the dataset. After this, we had a working 

dataset of 88,703 records with 47 attributes that 

were identified as useful for further analysis. 

Key attributes for this analysis include: date and 

time of incident, mile marker, route, direction, 

and SSP response time. The interstate crosses 

through two of the state’s largest metropolitan 

areas: Richmond and Northern Virginia. 

Naturally, these urban areas see the greatest 
Fig. 1. Map of I-95 in Virginia with markers sized by incident 

density. 
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spikes in traffic density and incident records. The mile markers of I-95 span from 0 to 177 crossing 

several counties throughout the state. Figure 1 shows the volume of incidents along SSP patrol 

schedules. The size of the markers show the volume of incidents occurring at that mile marker. It 

can be seen that in the Northern Virginia and Richmond areas, more incidents have occurred.  

To understand typical traffic patterns along I-95, we used traffic volume data.  VDOT’s Traffic 

Counts program collects information with regard to hourly traffic density monitored by mile 

markers in Virginia. Using the hourly volumes, estimates were calculated for the average daily 

traffic at each mile bin for every day of the week. Estimates were obtained from 2014 to 2018 for 

I-95, I-195, I-295, I-395, and I-495. 

Overall, the data describes SSP activity and incident frequency throughout the state. Over half 

the incidents SSPs respond to are disabled vehicles, with the second most common incident type 

being a vehicle accident. 

B. Metric of Evaluation 

VDOT has a wide array of information surrounding traffic incidents, SSP operations, and daily 

traffic volumes. However, currently there is not a single, comprehensive metric to evaluate SSP 

performance in response to incidents. Therefore, we developed a new metric that fuses these 

information sources in order to capture the overall influence of the program. The SSP program’s 

goal is to quickly respond to incidents in order to minimize the amount of time a vehicle is 

disrupting traffic. The ideal scenario for the SSP program would be to instantly detect every traffic 

incident. As this is not always possible, patrol schedules should be designed such that SSP 

patrollers can minimize the amount of time that drivers in need are waiting for assistance. Thus, 

the metric for route optimization is the total time a vehicle is waiting for SSP assistance or total 

time stranded. The metric combines the response time to incidents and the amount of incidents by 
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summing the estimated incident counts per mile marker multiplied by their corresponding response 

time. This motivates the creation of shorter routes over mile markers with high incident counts to 

achieve faster response times. Although SSPs cannot control incident rate, they can control how 

long they take on  average to respond to an incident by having shorter routes. Overall, this metric 

gives a comprehensive score to route schedules which allows for comparison of route schedules 

and optimization. 

III. Methodology 

Our goal is to leverage the total time waiting metric in order to develop optimized patrol 

schedules along I-95. To do this, we created an optimization model using a genetic algorithm (GA). 

Inspiration for the use of a GA comes from police patrol routes which have used GAs in the past 

to optimize police response to crime [4]. Police routes aim to fulfill a similar goal to SSPs since 

“police must proactively patrol and prevent offenders from committing crimes but must also 

reactively respond to real-time incidents” [4]. Similarly, SSPs patrol for undetected incidents and 

respond to incidents where they are dispatched. In addition, a GA was chosen as it is flexible to fit 

with the scheduling constraints for the routes and their evaluation. The flexibility allowed for 

combining and changing routes to score a variety of options while maintaining the constraints. 

GAs do not guarantee that a global minimum is found, but they can provide an improvement. Any 

improvements can be valuable to VDOT as other optimization methods have not been tried for 

their route schedules. For example, the improvements could be used as a starting point for further 

optimization efforts or provide general insight to factors influencing route performance.  

A GA is based on the phrase “survival of the fittest” often used in evolution [5]. It uses the 

notion that an offspring's set of optimization rules can derive better results than its parent by pulling 

from solutions of the parent’s set of optimization rules [5]. The fittest offspring in this case, which 
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are the routes with the lowest wait time, get passed to the next generation and influence the search 

towards an optimal solution. GAs are useful in a scenario when there is limited information about 

certain separate parts of the solution [5]. For detecting incidents, VDOT has reliable information 

on daily traffic volumes and past detected incidents, but lacks information on incidents in the future 

which makes finding a solution more difficult. 

To calculate the total time stranded metric, we created models to estimate incident rates and 

response time of an SSP to an incident by mile marker. The incident and response time estimates 

serve as input to the GA and are the key aspects of scoring the route schedules. 

A. Estimating Incident Rate 

VDOT collects information about all the incidents that SSP patrollers respond to across the 

state, however the transportation agency may not be made aware of every incident that occurs. We 

determined that regions outside of SSP coverage had disproportionately lower incident counts 

compared to areas of similar traffic volume that are currently covered by SSP patrol schedules. 

This bias in the incident reporting illustrates the effectiveness of SSP patrollers when they are 

deployed to new coverage areas, but to find the optimal locations for patrol we must use statistical 

modeling to address these concerns and estimate incidents in areas that previously have not been 

covered. 

In order to predict incidents, we used VDOT daily traffic data. VDOT collects data on the 

average daily traffic volume broken down by the time of day and mile marker. We hypothesized a 

relationship between the daily traffic and the number of incidents at a specific mile marker and 

hour of the day. Below is a scatterplot displaying the relationship where each point on the graph 

represents a mile marker at a specific hour.  
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Fig. 2. Scatterplot of incidents vs. traffic volume. 

The scatter plot indicates two trends in the data. We previously noticed a difference in the data 

collection processes of the Northern and Central region, so we proposed those differences may 

describe the two trends in the data. Below is the scatterplot displaying the same relationships but 

controlling for regional differences.  

 

Fig. 3. Scatterplot of incidents vs. traffic volume controlling for region. 

These trends show a relationship between traffic volume and incidents in both regions. 

However, the trend for the Northern region suggests that this area experiences fewer incidents than 

the Central region. Based on discussion with VDOT and the strong positive trend in the Central 

region, the low incident rate in the Northern region is unexpected. The daily traffic volumes that 

are experienced in Northern Virginia do not rationalize the vastly lower levels of observed 
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incidents as compared to the Central region. In fact, more incidents would be expected in the 

Northern region based on the traffic volume. The discrepancy between the two regional models 

for incidents may be explained by differences in data reporting. Without reason to believe the 

Northern region has less incidents, we moved forward with predicting incidents using only the 

Central region. We believe that the reporting in this region is closer to the true level of observed 

incidents.  

 We determined that the most appropriate model to predict incident counts based on average 

daily traffic volume data is a Poisson regression model. Poisson regression is designed to predict 

count data, like incidents. Due to this, it is the most commonly used approach in traffic modeling. 

Basu and Saha described useful modeling techniques for traffic crashes that provided a basis for 

our investigation [6]. The ultimate model selected is: 

 𝑙𝑜𝑔 (𝑢𝑖̂ ) =  1.603 + 0.0000351𝑊𝑖  

Where 𝑢𝑖  represents the predicted number of incidents and 𝑊𝑖 represents the reported average 

daily traffic volume. 

B. Expected Response Time 

 The VDOT reported incident data included a field for response time. These response times were 

measured from the time the SSP knew the incident location to when the SSP arrived at the scene. 

This resulted in reports of zero and one minute response times which indicated that the SSP 

detected the incident and therefore was already on scene when they knew the incident location. 

This does not represent the metric of time a vehicle is waiting for assistance before SSP arrival. 

This motivated the following model for expected response time.  

 The expected response time for an incident occurring within route coverage is modeled based 

on route length. The route length is the number of mile markers covered multiplied by two since 



9 

 

the SSPs travel the route in both directions. At each mile marker on a given route, the time in 

minutes required to travel to any other mile marker can be calculated by multiplying the number 

of miles between the two mile markers by minutes the SSP can travel per mile. We set the speed 

of an SSP to a constant 55 miles per hour, since it is the minimum speed limit throughout I-95. 

Then, to calculate minutes traveled per mile, we divided 60 by 55 which resulted in about 1.09 

minutes needed to travel one mile. At the time of an incident, we assume that the probability of an 

SSP being at any given mile marker is equal. This simplifies the response time to an average of 

travel times along a route. The minimum distance needed to travel is one mile and the maximum 

is the entire route length. The minimum and maximum times correspond to an incident happening 

just before or after an SSP passes it. Given route length n, the expected on route response time can 

written as: 

 
60

55
∗

1

𝑛
∑ 𝑖𝑛

𝑖=0   

 The expected response time for an incident occurring outside of route coverage was calculated 

as a linearly interpolated value between the modelled response times of the closest routes in either 

direction plus an additional dispatch time. The dispatch time accounts for the time taken for an 

alternative detection source to discover the incident and report it to an SSP. The interpolated value 

then accounts for the response time of the dispatched SSP from the closest route to the incident 

outside of coverage.  

 The response time is a maximum expected time as it only considers SSP detections for on route 

coverage. There are other methods of detection for on route incidents, such as the Virginia State 

Police, which could notify an SSP dispatcher and expedite the SSPs arrival. Another assumption 

is that the SSP will not see an incident in the other direction of travel and be able to turn around 

early. 
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C. Optimization 

In order to schedule new optimal routes, we employed the use of a GA. GAs are designed to 

mimic Darwin’s theory of evolution through natural selection. The process designs an algorithm 

where “the fittest individuals are selected for reproduction in order to produce offspring of the next 

generation” [7]. The GA has five components: an initial population, fitness function, selection, 

crossover, and mutation. The initial population corresponds to randomly generated route schedules 

on the exit numbers along I-95. Nine routes were used to match the current amount on I-95 and 

they needed to be at exits to ensure that the SSP vehicle can efficiently loop around the route. The 

number of start and end point groupings represents how many routes are in each schedule. The 

translation of the vector input (v) by mile marker used in the GA to the routes (r) in a schedule is 

in Equation 3. 

 v = [51, 73, 73, 83, … , 170, 177]                 (3) 

r1 = I-95 Exit 51-73 

r2 = I-95 Exit 73-83 

rn = I-95 Exit 170-177 

The overall set of random schedules should be comprehensive to ensure a varied initial 

population. We generated a total of 970 schedules in the initial population. The schedules were 

created by randomly selecting the start and end points from a list of all of the exit numbers or 

subsets of the exit numbers to increase the variety of coverage areas.   

Next, the fitness function evaluates the metric of performance, defined as total time waiting for 

SSP assistance. The fitness function calculates the response time per mile marker based on the 

model described previously. It then sums the multiplication of the estimated response time and the 

corresponding number of incidents per mile marker to obtain the score. After each schedule is 
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scored, selection occurs by picking the top half of the population as the parents of the generation. 

Since our initial population is 970, the algorithm will select the top 485 route schedules with the 

lowest scores.  

Crossover creates the second half of the generation, called offspring, by combining information 

from the parents. This is done by merging the first half of the routes from one parent and the second 

half of the routes from another parent. If the schedule assumptions are not preserved in an 

offspring, such as no overlapping routes, the schedule is modified. In the case of an overlap, the 

schedule will have less routes than required. This is solved by splitting the longest routes until the 

necessary number of routes is reached.  

Finally, mutation occurs on the offspring to preserve the previous best solutions, the parents. 

Mutation ensures diverse solutions and explores other potential route options that may not have 

otherwise been considered by the crossover function. To mutate the offspring, we change one of 

the start or end exit numbers of a route in each schedule at random. The exit number can change 

to the next or previous one or two exit numbers. Again, we check to ensure that the schedule 

assumptions are preserved after the mutation. Since parents are not mutated, the next generation 

will either find a more optimal solution through crossover and mutation, or maintain the same most 

optimal solution from the parents of the previous generation. This ensures that the score will not 

become worse over the generations. If crossover does not find a better solution, mutations on the 

parents would risk the previous best score to increase and thus make the next generation worse 

than before.  

The GA continues to run until the termination condition is reached. This occurs when the score 

of the most optimal schedule remains consistent for 50 generations. The final outcome is a route 
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schedule based on exit numbers that minimize the total estimated time a vehicle is stranded without 

SSP assistance. 

IV. Results 

The majority of VDOT’s routes on I-95 run 24 hours or 16 hours a day and seven days a week 

with eight hour shifts. This does not account for potential variance of traffic patterns on the 

weekend or weekday or during different hours of the day. The results aim to determine whether 

there can be a significantly improved overall schedule and if specific schedules based on traffic 

patterns should be considered.  

Each schedule was created using a subset of estimated incidents that represent weekday, 

weekend, and each day of the week and are further divided into three eight hour shifts. This totals 

27 subsets of estimated incidents per mile marker to input into the GA. The overall schedule was 

built using the sum of the estimated incidents.  

The significance between the fitness scores of the initial and overall optimized schedule was 

evaluated by a one sided Wilcoxon signed-rank test. This tested if the median of the differences 

between the current and optimal schedule scores can be considered greater than zero or not. A 

median greater than zero would indicate the optimal schedule has a lower, and therefore better, 

score of total time waited. The sample consisted of the scores of the two schedules over each of 

the 27 estimated incident subsets. The assumptions of this test include paired samples, independent 

differences, and symmetric distribution of the paired distribution. The results showed that a greater 

difference was significant at the 0.01 level. This shows that the overall optimized schedule can 

increase performance despite differences in estimated incidents from varied levels of traffic. The 

average percent difference between the scores was a decrease of 13%. Based on the metric, this 
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corresponds to saving an estimated 442,000 minutes of total time waiting for SSP services over 

one year.  

 The routes and average route lengths of the specific schedules provide insight on how 

schedules could be adjusted to improve performance depending on the time of day. The overall 

route and day to day specific routes cover a similar region to the current coverage over mile 

markers 50 to 177. The average route length of these schedules ranges from 20 to 25 miles, which 

is lower than the current average of 28 miles. The greatest difference was in the routes generated 

to optimize response to the subset of weekday incidents. These schedules were concentrated from 

mile markers 70 to 177 with an average route length of 10 to 15 miles. This is reasonable as this 

goes from the beginning of Richmond and up through Northern Virginia, which are areas of higher 

traffic.  

Overall, these results recommend further consideration of maintaining separate weekend and 

weekday route schedules due to high traffic volume. It also supports VDOT’s current practice of 

keeping routes less than 30 miles and not having routes on the lower part of I-95. 

V. Conclusion 

Although the results can potentially save over 400,000 minutes of drivers in need of help, the 

GA can reach far beyond the drivers of Virginia. The data-driven solution VDOT leaders are 

seeking can help save lives, improve safety, reduce congestion, and reduce fuel consumption. The 

GA can improve services and lower inefficiencies for any department of transportation looking to 

optimize their efforts. The system that was built can be applied to other patrol services like 

ambulances, food trucks, and police officers. With slight modifications, the system outlines the 

process of implementing a GA, from the data cleaning, boundary definitions, response time 

estimation, and incident predictions. 



14 

 

VI. Limitations 

A large portion of time was spent cleaning the data and ensuring that it was fit to apply to a 

model. There is a difference in reporting methodology between the regions associated with I-95 

routes that created a disparity in data which needed to be resolved with statistical modeling. This 

process, though fit to Interstate 95, has not been tested on other roadways. This creates an 

individualized use case that has not yet been evaluated on other interstates. Additionally, GAs 

create solutions that are not guaranteed most optimal, but rather work towards an optimum. 

Therefore, it is not possible to say that the results are the best possible solution, but rather an 

improvement in minimizing total time waiting. 

VII. Future Work 

This model for the current route can be expanded upon in the future to be more robust and 

applied to more routes. The model in place should fit to new data in other regions and expand to 

other routes and interstates. With more accurate reporting of data and equal quality reporting of 

data amongst all regions, the model can be expanded and iterated over to create a more precise 

result. The use of other tools that the VDOT records can be supplemental to this work. Closed 

Circuit Televisions (CCTVs), or traffic cameras, are placed along much of the interstate and can 

be used as supplementary information to provide real time information to SSPs. In the future, if 

these improvements are implemented, the developed models for predicting incidents and response 

time can be tested against new data to evaluate their performance. If the models are not accurate 

to the region of patrol, they will need to be adjusted accordingly based on this more precise data. 
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