
Cryptography: How to Build an Intuitive Cryptographic Library without Sacrificing
Power

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Daniel Evan Farmer

Spring, 2025

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

 Cryptography: How to Build an Intuitive Cryptographic Library
without Sacrificing Power

CS4991 Capstone Report, 2025

Daniel Farmer

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

gas2me@virginia.edu

ABSTRACT
Many cryptographic libraries exist in
computer programming, but most are either
easy to use or powerful, never both. To fix this,
I built a robust, cryptographic library in the C
programming language that prioritizes an
intuitive user experience, while still providing
extensive cryptographic operations. This
library modeled its semantics and style after
Libsodium, a modern crypto library that is
very intuitive but offers limited operations to
its users. The library was built on top of
Libgcrypt, a powerful toolkit with a high
learning curve, to make use of its low-level
encryption/decryption implementations. This
resulted in a comprehensive library that allows
the user to implement all necessary
cryptographic operations, plus some more
niche ones, in just a few lines. Future work on
this library could be done to increase the
support of different data types used to store
encrypted data. Currently the library accepts
and stores data as strings, but a second phase
would allow the user to be able to
encrypt/decrypt all popular data types.

1. INTRODUCTION
So why do we need cryptography, anyway?
Cryptography is the practice of hiding or
coding information so that only authorized
actors can read it. This is very important in the
digital age, as many computer programs
contain highly sensitive information like
passwords, bank account numbers and social

security numbers, among other things. As a
result, computer programmers use
cryptography to keep this information safe
from malicious actors.

Cryptographic libraries are toolkits of
programming methods used to streamline
cryptographic operations. Many of these
operations require certain algorithms to be
applied to information that needs to be hidden,
and rather than implementing that algorithm
oneself, users can make use of these libraries’
methods that already contain the
implementation. The problem lies in the fact
that many of these libraries have a very steep
learning curve. The libraries built to address
this problem are inflexible and not powerful.
My project addresses these issues by
constructing a powerful cryptographic library
that is both intuitive and powerful.

2. RELATED WORKS
Our work is based on Libgcrypt’s (2)
implementations of different crypto
algorithms. Libgcrypt’s documentation
contains all its methods and how to use them.
Immediately we can see several limitations
with these docs. First, there is no definition of
an s-expression (an important data type in this
library) and only a couple of real examples of
their use. Second, throughout the paper, most
methods do not include examples, and each
category usually only has one code example.
Essentially this document is an explanation of

each method in the library but provides no
documentation on how to use them, with only
limited examples showing how to apply them
to real code.

Whitten and Tygar discuss the useability of
PGP 5.0, one of the most widely used
encryption programs available. The authors
conclude that: “The analysis found a number
of user interface design flaws that may
contribute to security failures…” [1]. They cite
a study claiming that, given 90 minutes to
accomplish basic encryption protocols, most
users cannot figure it out. Useability is a
weakness of PGP, and this weakness results in
security failures and incorrect cryptographic
practices.

3. PROJECT DESIGN
This section dives into the construction of the
library. This will introduce what requirements
the library must meet as well as its actual
features. Additionally, it will go over the
challenges and solutions presented when
building the library.

3.1. Review of System Architecture
The library was built in the C programming
language. The goal is for the user to include
this file in their C code and immediately have
access to every cryptographic operation they
may need, while being able to easily
understand how to use them.

The project was built on top of Libgcrypt
because it contains the implementations of
many crypto algorithms that allow for
important cryptographic operations. The
library was built utilizing Libgcrypt for these
specific mathematic operations by importing it
in the header.

To promote usability and a short learning
curve, I modeled the library after Libsodium,
an easy-to-use modern cryptography toolset. I
not only mirrored its semantics, but also its

method’s arguments, allowing the user to store
variables as simple strings.

3.2. Requirements
The library was required to provide necessary
cryptographic functions for securing data at
rest and in transit. Furthermore, the library was
required to eliminate any memory leaks, and
was run with a popular tool, Valgrind, to
accomplish this. The library also needed to be
interchangeable with other cryptography
libraries, which means encrypting with our
library and decrypting with a common toolkit
like Libgcrypt, for example. This
interchangeability proves that the methods we
built accomplish our crypto protocols
successfully.

3.2.1. Client Needs
There are some key functions that every crypto
library should have to secure data at rest and in
transit: asymmetric encryption; symmetric
encryption; hashing; and password-based key
derivation. These four concepts and their
related methods should allow a user to
accomplish almost every operation they can
think of. This will allow the user to generate
keys, send encrypted messages back and force,
store their passwords, and much more. The
library also needs to be customizable, allowing
the user to choose among many different
algorithms. Some algorithms are faster on
certain operations; some are FIPS compliant
(the Federal Information Processing
Standard); and some are more secure.

3.2.2. System Limitations
Our library is limited to the cryptographic
algorithms that Libgcrypt supports. Libgcrypt
supports many algorithms but lacks options for
elliptic curves. Our library is essentially only
as powerful as Libgcrypt and can only do
operations it supports.

3.3. Specifications

The methods this library was built to include
are:

- Symmetric encryption and decryption
o Symmetric key generation
o Authenticated tag generation

- Asymmetric encryption and decryption
o Public private key generation
o Diffie Hellman key exchange
o Authenticated Encryption
o Anonymous encryption with

ephemeral keys
o Elliptic Curve Cryptography
o EdDSA (Edwards Digital

Signature Algorithm)
- Hashing
- Password-Based Key Derivation

3.3.2. Challenges
The main challenge with designing this library
was getting around Libgcrypt’s use of s-
expressions and multi-precision integers
(mpis). S-expressions are treelike structures
used to store large pieces of data. Libgcrypt
utilizes these data structures because some of
the keys and information it needs to do
cryptographic operations are so large the C
programming language cannot store them as
strings. However, they are not used for
anything else in the modern workplace and are
very cumbersome to work with. So, I decided
to let the user keep all their keys/authentication
information as strings and to handle the s-
expression conversion myself before and after
encryption.

This was very hard to accomplish, as there is
little online about working with s-expressions
in cryptography and next to no information in
the Libgcrypt manual. Multi-precision integers
(MPIs) are typically present within s-
expressions and are also used to represent
enormous numbers. These were challenging to
work with because they also lack online
resources, and it is necessary to convert parts

of your string to an MPI before converting
them to an s-expression.

Another challenge with the design of this
library had to do with elliptic curves. Elliptic
curves are very useful in cryptography for
encryption, key generation and Diffie-
Hellman exchanges. However, Libgcrypt does
not provide methods to accomplish these
protocols directly. It does, however, allow one
to do curve multiplication over two different
curves. This meant doing the key generation or
encryption by hand in the library. This was
challenging because these methods took MPIs
or strings as arguments, which means
converting a key to a string or extracting a
specific MPI from an s-expression in order to
do this math. This was a tedious task and took
a lot of testing and trial and error

One main challenge with this library design
was the lack of resources online about dealing
with Libgcrypt. The online community for
libgcrypt is extremely small and mostly
contains basic questions about its operations,
rather than the advanced methods the library
dealt with.

3.3.3. Solutions
To solve the challenge of converting s-
expressions to and from strings, I had to figure
out an advanced use of Libgcrypt’s methods
for s-expression conversion. This method
takes in certain key words as arguments and
those key words don’t have much explanation
in the documents. Through trial and error, I
had to utilize different combinations of these
key words to find out what they mean and
determine the right arguments for my
purposes. There were no resources regarding
this online, but I was able to figure it out
through essentially brute force. Another
solution to the issue of converting s-expression
to strings was to add an intermediary step of
converting to a multi precision integer before
converting to or from string. This means

converting an s-expression to mpi, then to
string or vice versa. The libgrypt library
doesn’t say anything about this, but it is a
crucial step I discovered for proper
conversions.

4. RESULTS
The result was a robust cryptographic library
that had no memory leaks and accomplished
all basic cryptographic functions plus a few
advanced ones. This library successfully
allowed the user to generate and store keys,
authentication data, hashed passwords and
other items as user-friendly strings. The library
was also extremely easy to use, cutting the
amount of user code needed to accomplish a
basic crypto scheme by about two thirds. The
library was also successfully interchangeable
with popular libraries like Libgcrypt and
Libsodium, which allowed the user to encrypt
data, send it over a tcp socket to another file
that would decrypt it with a mainstream
library, and vice versa.

5. CONCLUSION
The result of this project is a robust
cryptographic library that has all the necessary
features one could need to accomplish just
about any cryptographic protocol they may
want to implement. This library’s
development was important because not many
cryptographic libraries are intuitable and
require a steep learning curve. Not to mention,
many cryptographic libraries that claim to be
easy to use are not very powerful and provide
little to no customization to the user. The
library built successfully addressed the gap
between usability and power. For the client,
this means less lines of code, less time spent
debugging code, and overall increased
productivity.

6. FUTURE WORK

Next possible steps for this project would be to
include support for more elliptic curves, this
would include the actual detailed low-level
implementation of such curves. Additionally,
curve conversion could be implemented to
allow users to accomplish authenticated
encryption and signature.

Another area of expansion could add support
for additional data types. Right now, users can
give the library strings to go through a
cryptographic protocol (encryption,
signatures, hashing, etc.). It could be
convenient for the user to be able to send in
integers, doubles, or other popular types to the
library.

REFERENCES
1. Tygar, J., & Whitten, A. (1999). (rep.).

Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0 (pp. 1–15).

2. The LIBGCRYPT Reference Manual. (n.d.)
Top (The Libgcrypt Reference Manual).
https://www.gnupg.org/documentation/
manuals/gcrypt/

