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Abstract

This dissertation focuses on critical phenomena in statistical mechanics and Quantum Field Theory. This

involves the analysis of systems with infinitely many degrees of freedom across different length scales cou-

pled together via interactions which can be easy to describe locally but give rise to a rich class of emergent

phenomena. We adopt the framework of mathematical physics and probability where these systems are rep-

resented as measures on certain infinite dimensional spaces. The primary approach used in this dissertation

is the Renormalization Group, a powerful and elegant framework that reveals how the collective influence

of degrees of freedom manifest at different length scales within these systems. Pioneered by the physicist

Kenneth Wilson, the philosophy of the RG approach is to reduce the analysis of these complex systems to

the study of a “tractable” infinite dimensional dynamical system of effective potentials. The first project

develops a Renormalization Group for spatially inhomogenous systems that allows one to establish a rigorous

correspondence between orbits in Wilson’s dynamical system and the measures one expects them to represent

- this is done in the setting of a hierarchical approximation to Wilson’s 4 ´ ǫ expansion. This culminates

in the construction of a translation invariant, rotation invariant, and partially scale invariant generalized

random field corresponding to the Wilson-Fisher fixed point. The second project leverages methods from

statistical mechanics to strengthen this result and show that this generalized random field is in fact fully

scale invariant.
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0.1 Introduction

This dissertation lies at the intersection of the disciplines of Constructive Field Theory, in particular the

rigorous analysis of what are known as “Functional Integrals”, and of probability, more specifically the study

of self-similar random processes. We begin by describing the probabilistic approach to Axiomatic Quantum

Field Theory.

0.1.1 Axiomatic Quantum Field Theory

We start by giving one approach to precisely mathematically defining what constitutes a “relativistic quantum

field theory”. More specifically we state the G̊arding-Wightman Axioms for the case of a single Hermitean

scalar field. For the axioms we give in the Minkowski space setting we take our presentation from [26]. First

we list some preliminary definitions.

In follows we will use the notation x “ px0, x1, . . . , xd´1q “: px0, ~xq P Rd. We define the Minkowski inner

product on Rd

xx, yyM “ x0y0 ´
d´1ÿ

j“1

xjyj .

We say two points x, y P Rd are space-like separated if xx ´ y, x ´ yyM ă 0. We define the Lorentz group L

to be the group of dˆ d matrices Λ that preserve the Minkowski inner product, i.e. Λ P L if and only if for

all x, y P Rd

xΛx,ΛyyM “ xx, yyM .

We define the restricted Lorentz group LÒ
` to be the subgroup of L formed by those Λ with detpΛq “ 1 and

with

xe0,Λe0yM ą 0
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where e0 :“ p1, 0, . . . , 0q P Rd. The restricted Poincare group PÒ
` is the set of pairs pa,Λq where a P Rd and

Λ P LÒ
` with the group operation given by

pa,Λ1qpb,Λ2q “ pa` Λ1,Λ1Λ2q.

The natural action of PÒ
` on x P Rd is given by pa,Λqx “ Λx` a.

We can now state the G̊arding-Wightman Axioms (GW0) - (GW4).

(GW0) States. The states of the system are the unit rays of a separable complex Hilbert space H with a

distinguished state Ω which we call the vacuum.

In what follows we denote the inner product of H by p¨, ¨q.

(GW1) Fields and temperedness. There exists a dense subspace D Ă H, such that for each test function f in

the Schwartz space SpRd,Cq there exists a (possibly unbounded) operator φpfq with domain D, such

that:

(a) For all ψ1, ψ2 P D, the map f ÞÑ pψ1, φpfqψ2q is a tempered distribution.

(b) For real valued f , the operator φpfq is Hermitian.

(c) Ω P D
(d) φpfq leaves D invariant.

(e) Finite linear combinations of vectors of the form

φpf1q ¨ ¨ ¨φpfnqΩ

with n ě 0 and f1, . . . , fn P SpRd,Cq is dense in H.

(GW2) Relativistic covariance. There is a strongly continuous unitary representation Upa,Λq of the restricted

Poincare group PÒ
` such that for all pa,Λq P PÒ

`

(a) Upa,Λq leaves D invariant

(b) Upa,ΛqΩ “ Ω

(c) Upa,ΛqφpfqUpa,Λq´1 “ φpfpa,Λqq where

fpa,Λqpxq “ fpΛ´1px´ aqq.

(GW3) Spectral Condition. The joint spectrum of the infinitesimal generators of the translation subgroup

Upa,1q is contained in the forward light cone V̄` “ tp :“ pp0, ~pq P Rd : p0 ě |p|u.

(GW4) Locality. If f, g P SpRd,Cq have spacelike-separated supports, then the operators φpfq and φpgq com-

mute, i.e. rφpfqφpgq ´ φpgqφpfqsψ “ 0 for all ψ P D.

Thus a Hermitian scalar quantum field theory consists of a quadruple pH, U,D, φq that satisfies the

above properties - here we see φ as an operator-valued distribution, i.e. a map from SpRd,Cq into a family of

(possibly unbounded) operators on H.
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Of key interest in the above setting are the vacuum expectations of products of field operators, for n ě 1,

f1, . . . , fn P SpRd,Cq we define

Wnpf1, . . . , fnq “ pΩ, φpf1q ¨ ¨ ¨φpfnqΩq.

We have that for each n ě 1, Wn is an n-linear functional on SpRd,Cq and so by the Schwartz Kernel

Theorem one can identify Wn as an element of S1pRnd,Cq. For n “ 0 we can define W0 “ 1 - seen as a linear

functional on C which acts by multiplication.

Heuristically one can write

W px1, . . . , xnq “ pΩ, φpx1q ¨ ¨ ¨φpxnqΩq

where x1, . . . , xn P Rd. However the above expression is formal - in general neither side makes sense point-

wise.

The Wightman Reconstruction Theorem gives sufficient conditions (called the Wightman Axioms) under

which a family of such distributions tWnu8
n“0 uniquely determines a corresponding quadruple pH, U,D, φq

that satisfies the the G̊arding-Wightman axioms and realizes the tWnu8
n“0 as its vacuum expectation values.

We now state the Wightman Axioms (W0) - (W4). A proof for the Wightman Reconstruction Theorem

can be found in [66].

(W0) Temperedness and Hermiticity. The tWnu8
n“0 are tempered distributions, i.e. Wn P S1pRnd,Cq, with

W0 “ 1 and satisfying the hermitian condition

W px1, . . . , xnq “ W pxn, . . . , x1q.

(W1) Poincare Invariance.

WnpΛx1 ` a, . . . ,Λxn ` aq “ Wnpx1, . . . , xnq

for all pa,Λq P PÒ
`.

(W2) Positive Definiteness. For any almost finite sequence of test functions tfnu8
n“0 with fn P SpRd,Cq one

has ÿ

n,m

Wn`mpfn b fmq ě 0

where for g P SpRl,Cq and h P SpRk,Cq we define g b h P SpRl`k,Cq via

pg b hqpx, yq “ gpxqhpyq.

(W3) Spectral Condition. For each Wn, n ě 1, the Fourier transform of Wn, which we formally define via

xWnpp1, . . . , pnq “
ż

Rnd

ddx1 . . . ddxn exp

«
i

dÿ

j“0

xpj , xjyM
ff

ˆWnpx1, . . . , xnq
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is a tempered distribution supported in the set

#
pp1, . . . , pnq|

nÿ

j“1

pj “ 0 and

˜
kÿ

j“1

pj

¸
P V̄` for k “ 1, . . . , n´ 1

+

(W4) Locality. If xj and xj`1 are space-like separated then one has

Wnpx1, . . . , xj , xj`1, . . . , xnq “ Wnpx1, . . . , xj`1, xj , . . . , xmq.

The Wightman Reconstruction theorem allows us to work with simpler “numeric” distributions instead

of operator-valued distributions.

In [66, Theorem 3-5] it is shown that the spectral condition implies that the tempered distributions Wn

can be seen as the boundary values of analytic functions in a large complex domain. In particular they

can be analytically continued to imaginary time if evaluated at non-coinciding points. Given Wightman

distributions satisfying the Wightman axioms one can define Schwinger Functions, tSnu8
n“0, with Sn an

analytic function on Rnd­“ , via

Snpx1, . . . , xnq “ Wn

`
pix10, ~x1q, . . . , pixn0 , ~xnq

˘

where Rnd­“ denotes the subset of Rnd given by those px1, . . . , xnq with xi ­“ xj for i ­“ j. Additionally the

locality properties of the Wn force the Sn to be symmetric in x1, . . . , xn. The process of going to imaginary

time is called Wick rotation - it takes us from a Minkowski space-time to Euclidean space. The functions

tSnu8
n“0 are also called Euclidean Greens Functions.

The Osterwalder-Schrader Axioms [51],[52] give necessary and sufficent conditions under which a set

of candidate Schwinger functions uniquely determine a family of Wightman distributions which satisfy the

conditions given by the Wightman Reconstruction theorem (one can find a recent improvement on this result

in [77]).

We will not state the Osterwalder-Schrader axioms (henceforth called OS Axioms) in a form where they

are equivalent to the Wightman Axioms. We instead give a more probablistic formulation of the axioms which

give sufficient conditions for the Schwinger functions to uniquely determine a family Wightman distributions.

The key idea here is to think of the candidate Schwinger functions as distributions corresponding to the

moments of a probability measure on S1pRdq - that is for f1, . . . , fn P SpRd,Cq we will set

Snpf1, . . . , fnq :“
ż

S1pRdq
dµpφq φpf1q ¨ ¨ ¨φpfnq. (1)

Then the task of constructing the Wightman distributions comes down to constructing a measure µ on

S1pRdq with the correct properties. The probablistic approach to Euclidean quantum field theory in fact

predates the Osterwalder-Schrader approach - being pioneered by Nelson [49], [50] and the even earlier work

of Symanzik [69], [70].

We note that not all Wightman distributions can be specified in this way - models that allow for this

probabilistic representation are called Nelson-Symanzik positive.

Before stating a version of the OS axioms we give some more definitions.
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Let S`pRdq be the subspace of SpRdq consisting of functions f with supppfq Ă tpx0, ~xq P Rd| x0 ą 0u, i.e.
S`pRdq consists of test functions whose support is contained in the positive half-space defined with respect

to the first component.

We define θ to be the linear transformation on Rd given by reflection across the x0 “ 0 hyperplane - that

is for x “ px0, ~xq we define θx “ p´x0, ~xq. We define a corresponding transformation for f P SpRdq via

pΘfqpxq “ fpθxq

and a transformation on φ P S1pRdq via

pΘφqpfq “ φpΘfq.

We now state a probablistic formulation of the OS Axioms.

Let µ be a probability measure on S1pRdq equipped with its cylinder set σ-algebra. Suppose that µ

satisfies the following axioms.

(OS1) Regularity. There exists a seminorm | ¨ | on SpRdq, C ą 0, such that for all n ě 0 and f1, . . . , fn P SpRdq
one has ˇ̌

ˇ̌
ˇ

ż

S1pRdq
dµpφq

nź

j“1

φpfjq
ˇ̌
ˇ̌
ˇ ď Cn ˆ n! ˆ

nź

j“1

|fj |.

(OS2) Euclidean Invariance. The measure µ should be invariant under translations and rotations of Rd. In

particular it is sufficient that for every a P Rd, M P Opdq, and f P SpRdq one has that the random

variables φpfq and φpfpa,Mqq are equal in distribution if φ is distributed according to µ. Here

fpa,Mqpxq “ fpM´1px´ aqq.

(OS3) Osterwalder-Schrader Positivity Let A P L2
`
S1pRdq, µ

˘
and furthermore let A be measurable with

respect to the σ-algebra C` generated by the maps tφ ÞÑ φpfq| f P S`pRdqu. Then
ż

S1pRdq
dµpφq ApΘφqApφq ě 0

0.1.2 φ4 models

On a very formal (non-rigorous) level a φ4 model is a probability measure on the space of fields φ : Rd Ñ R

given by the expression

1

Z
exp

„
´
ż

Rd

ddx

ˆ
gφ4pxq ` m2

2
φ2pxq ` 1

2
|∇φpxq|2

˙ ź

xPRd

dφpxq (2)

where g ą 0, Z is a normalization factor, and
ś
xPRd dφpxq is “Lebesgue measure” on the space of functions

from Rd Ñ R. Assuming that one could construct the correlation functions of such a measure and construct

the corresponding scalar quantum field ϕ on Minkowski space one would expect this scalar quantum field ϕ
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would satisfy the non-linear field equation

p´l `m2qϕ` 4gϕ3 “ 0.

where l is the d’Alembertian, the differential operator on Minkowski space given by

l “ ´B2
0 `

d´1ÿ

j“1

B2
j .

The first step in making (2) a little more rigorous is absorbing the |∇φ|2 and m2φ2 terms of (2) into a

Gaussian measure. Then one can write (2) as

1

Z 1 exp

„
´
ż

Rd

ddx gφ4pxq

dµCpφq (3)

where dµCpφq is a Gaussian measure on real valued fields φ on Rd with a covariance given by

p´∆ `m2q´1.

where ∆ is the standard Laplacian on Rd. This means that

ż
dµCpφq φpxqφpyq “ p´∆ `m2q´1px´ yq.

The measure dµC is called a massive Gaussian Free Field (GFF) if m2 ą 0 and a massless GFF if m2 “ 0.

One can check that the correlation functions of the measure dµCpφq satisfy the OS axioms and give

rise to a scalar quantum field ϕ that satisfies the standard Klein-Gordon equation p´l ` m2qϕ “ 0. The

measure dµCpφq then corresponds to a field theory of non-interacting particles which earns it the moniker

of “free field”. The motivation behind the measure (3) is that it provides the simplest possible model of an

interacting field theory.

Even the slightly less formal expression (3) is still plagued with major issues for d ě 2. In the case

d “ 1 one is essentially in the setting one-dimensional stochastic processes (P pφq1 proccesses) and quantum

mechanics (via the Feynman - Kac Formula) - here one has a much larger arsenal.

For small |x ´ y| the kernel p´∆ ` m2q´1px ´ yq goes like |x ´ y|´d`2 for d ě 3 while for d “ 2 the

divergence is logarithmic. The covariance p´∆ ` m2q´1 is divergent at coinciding points and so the law of

the field φ is not supported on a space of real valued functions Rd, instead it is more natural to see this law

as living on the space of distributions S1. In particular, notions like the fields value at a point φpxq, or even
worse a pointwise product φpxqn are completely ill-defined. This singular short range behaviour of the field

φ is called an ultraviolet divergence - it is caused by the non-summability of fluctuations of the field at high

Fourier modes. More concretely the covariance

1

k2 `m2

is not integrable in k at infinity for d ě 2.
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Another major issue with the quantity (3) is the fact that the integral in the exponent is over all of Rd,

even if the short-range behaviour of the field φ is mollifed it is certainly not clear that this integral converges,

we will call this the infinite volume problem, or infrared problem.

When one works with a massive GFF, that is m2 ą 0, one expects |p´∆ `m2q´1px´ yq| ď e´m|x´y| for

large |x ´ y| - in other words distant regions of space should be approximately independent. In this setting

one can control the infrared problem by using a family of methods called cluster expansions [15].

Fundamentally both the ultraviolet and infrared problems come from the fact that the measures (3) are

meant to capture the behaviour of infinitely many degrees of freedom. In order to have an expression that

is well defined one implements cut-offs.

A possible ultraviolet cut-off would be replacing the Gaussian measure dµC with an alternative that is is

the same for low Fourier modes but sufficiently suppresses the fluctuations of high fourier modes so that the

corresponding law is supported on a space of functions defined pointwise. A simple infrared cut-off would

be replacing the integral over all of Rd with one over a large box. The idea here is that one can use these

cut-offs to define an analog of (3) that is a completely well defined measure. The central challenge is then

to show that the measures without cut-offs converge to a meaningful limiting measure whose correlations

satisfies the Osterwalder-Schrader axioms and so via analytic continuation give the Wightman distributions

of a Minkowski quantum field theory.

In the case d “ 2 there were major successes in the area of Constructive Field Theory when it came

to the analysis of massive P pφq2 models (here P pφq2 means a polynomial that is bounded below and of

degree at least 4, so this includes pφ4q2-models) - see [35] and for a wider overview [62]. Since the ultraviolet

divergence of the GFF becomes worse in higher dimensions the construction and analysis of the axioms for

massive φ4 in d “ 3 (denoted pφ4q3) was significantly more difficult - however this was successfully done

with the functional integral approach in [23] and [25]. For d ą 5 (and in some cases with d “ 4) it has been

proven that most attempts to define a measure corresponding to (3) will lead to a free field when one tries

to remove the ultraviolet cut-off - see [5], [27], and also the discussion at the end of [26].

We will now specialize to the models that are of interest in this dissertation. For references on the

functional integral approach to constructive field theory we point to [34], [56], and [11].

For the vast majority of the work above the infinite volume problem was approached via methods that are

restricted to the massive setting. In the massless setting, that is when m2 “ 0, the covariance p´∆q´1px ´
yq „ 1

|x´y|´d`2 for d ě 3 (defining the massless GFF for d “ 2 requires some technicality). Even if one

ignores the divergence near the diagonal the above covariance is not summable in y for fixed x - distant

regions of space remain fairly correlated. The process of taking the infinite volume limit in this setting is a

much deeper problem and there are far fewer results - for example see [29] and [24] where the infinite volume

limit of massless pφ4q4 is controlled.

However while they pose some technical difficulty these massless quantum field theories are of great

interest since they are are expected to coincide with scaling limits of certain models in statistical mechanics

at criticality.

0.1.3 Massless φ4 in three dimensions

Chapter 3 is essentially a slightly abridged version of the article [3] which was joint work with the author’s

advisor Abdelmalek Abdesselam, as well as Gianluca Guadagni. There we study an analog of a φ4 model
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studied by Brydges, Mitter, and Scoppola in the article [18]- formally the model they studied, which we call

the BMS model, corresponded to the measure on fields φ : R3 Ñ R given by

exp

„
´
ż

R3

g φ4pxq ` µφ2pxq d3x


dµC´8 pφq (4)

where g ą 0, µ ď 0 (we ignored this earlier but due to mass generation one expects to need µ ă 0 in order

to construct a massless theory). Here dµC´8 pφq is again the measure of the free field, a Gaussian measure

with covariance

C´8 “ p´∆q´ 3`ǫ
4 (5)

where for the time being one should take ǫ P r0, 1s. The correlations for the free field at different points in

space are given by

C´8px´ yq “ cǫ

|x´ y| 3´ǫ
2

“
ż
dµC´8 pφq φpxqφpyq.

where cǫ is some positive constant. Since this covariance is not summable at large distances it is natural to

think of µC´8 as a massless generalized free field.

We remark that for the given range of ǫ the free measure µC´8 satisfies all the Osterwalder-Schrader

axioms (including positivity), it is expected that the same should hold for the interacting field theory given by

(4) which means the corresponding Schwinger functions could be analytically continued to give the Wightman

distributions of a QFT on Minkowski space.

When ǫ “ 1 the measure dµC´8 is just the standard massless Gaussian Free Field on R3 and the measure

(4) would correspond to massless pφ4q3. It is believed that massless pφ4q3 governs the universality class which

contains the critical nearest-neighbor Ising model in three dimensions, in particular folklore says that the

generalized random field given by (4) is expected to be the scaling limit of the Ising models in this universality

class. However a detailed analysis of massless pφ4q3 and clear understanding of critical phenomena in this

universality class remain, for the most part, outside the reach of current methods in mathematical physics.

We take a quick aside to give a rudimentary explanation of what is meant by the term “universality” class

in the above paragraph. The term universal is applied in many ways in the context of probability theory, in

a general sense it refers to a family of random processes that satisfy identical scaling behaviour for a variety

of observables (such that pair correlations for example). In its stronger form the term university class refers

to a family of random processes that have an identical limiting process under some aggregate averaging and

scaling - the paradigmatic example being the university class of discrete sequences of i.i.d. random variables

which under appropriate averaging and scaling yield a Gaussian distribution - for our purposes one can take

this stronger notion of universality class.

One of the defining successes of Wilson’s Renormalization Group (RG) program was the article [75]

where the authors were able to apply an RG analysis in order to understand a critical φ4 model in d “ 4´ ǫ

dimensions - they used a method called dimensional regularization to work in non-integer dimensions. In

that article analysis of the RG flow when ǫ is small yields a non-trivial fixed point which corresponds to the

critical φ4 - one is then able to calculate expansions in ǫ for critical exponents and get an approximation for

critical exponents in d “ 3 by taking the first few terms and plugging in ǫ “ 1.

While dimensional regularization does not yet have a mathematical rigorous non-perturbative imple-

mentation the behaviour of RG flow in non-integer dimensions can be mimicked by working with fractional
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Laplacians - here the ǫ appearing in (5) plays the same role as the ǫ of the 4 ´ ǫ expansion.

In [18] the authors defined a formal infinite volume RG transformation and were able to find and construct

a fixed point in a space of effective potentials that is an analog of the Wilson-Fisher fixed point of [75]. We

mention that an earlier paper [17] also simulated the 4 ´ ǫ expansion via using covariance p´∆q´ 1`ǫ
2 over

R4 but this Gaussian measure is not Osterwalder-Schrader positive.

The work of [3] built on top of [18] to go beyond analyzing effective potentials to the construction of a

concrete measure that realizes the 4´ǫ model. However to simplify our analysis we worked in the hierarchical

approximation; we replaced the underlying space-time R3 with an ultrametric space. Previous work on a

hierarchical 4 ´ ǫ model can be found in [12], [13] ,[21], [28]; see also hierarchical work on the ǫ “ 1 case in

[41]. However [3] has some novelties - there we developed a framework that allows one to start from an RG

trajectories in a space of effective potentials and construct sufficiently many observables to rigorously obtain

a measure corresponding to the given trajectory (it should for example, be able to construct the measure

corresponding to the crossover trajectory in [1] connecting the BMS fixed point to the Gaussian one). An

additional major new result in [3] is the construction of a measure corresponding to the composite φ2 field -

we will return to this later in the introduction.

The hierarchical approximation has a long and successful history of clarifying multiscale phenomena, first

appearing in work by Dyson on the one dimensional Ising model with long range interactions [22]. See [2]

for more context on the role of hierarchical models in clarifying RG analysis.

The benefit of the hierarchical approximation is that it allows one to study a new system that has much

of the same properties as the original system but with much stronger locality properties. Ultrametric spaces

are characterized by having metrics/norms that satisfy the strong triangle inequality: |x`y| ď maxp|x|, |y|q.
Instead of working over R3 we carried out our analysis over Q3

p where Qp refers to the field of p-adic numbers

(note that our random fields are still real valued - φ : Q3
p Ñ R). Our choice to use the p-adics allows us to

set up a framework that mirrors the Euclidean case, in particular Qdp comes with a Fourier transform and

spaces of Schwartz functions and tempered distributions S and S1. In particular we have proven theorems

and used methods that are conducive to being applied to the original model over R3.

We now give part of the main theorem of [3], this theorem will be more precisely and completed stated

as Theorem 3.1 in Chapter 3.

Theorem 0.1 ([3]). For any p prime, L “ pl large enough, and ǫ small enough there exist sequences of

couplings tgr, µrurPZ such that if one defines the measures

dνr,spφq “ exp

„
´
ż

Λs

d3x gr φpxq4 ` µr φpxq2

dµCr

pφq

Then there there exists a limiting measure νBMS such that one has the following convergence of measures

(at the level of moments) on S 1pQ3
pq:

lim
rÑ´8
sÑ8

νr,s “ ν

Here dµCr
is a UV regularized version of a fractional Gaussian Free Field with covariance C “ p´∆q´ 3`ǫ

4 ,

we index the cutoff so limrÑ´8 Cr “ C´8 is the limit where the UV cutoff is removed. Λs is the closed unit

ball of radius Ls which serves as an IR cutoff.
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The measure ν is translation invariant, rotation invariant, non-Gaussian, and has partial scale invariance:

one has LκφpL‚q d“φp‚q for any n P Z and κ “ 3´ǫ
4
.

This construction is based on getting control over the measures νr,s uniform in r and s via iteratively

integrating out degrees of freedom - we tile space with blocks of side length L and integrate out short range

degrees of freedom so we are left with an expression that involves only scaled averages of the field over each L -

block. The distribution of these averages is again described by a functional of the form e´V 1pφq “ e´g1φ4´µ1φ2

where V 1 is a new effective potential.

This map V Ñ V 1 (formally given by pg, µq Ñ pg1, µ1q) is our dynamical system of effective potentials 1.

The measure constructed above corresponds to choosing the couplings so that the flow of effective potentials

stays at the BMS fixed point in this system. Our scale invariance result is a direct consequence of the fact

that νBMS is described by the same effective potential at all scales. We also have a mild universality result,

there is an entire family of sequences of couplings which all yield the same measure νBMS .

Prior rigorous work on the RG has been mostly focused on establishing control over flows of effective

potentials. For constructing a concrete limiting measure we must prove the convergence of the expectations

of a sufficiently rich class of observables as we take r Ñ ´8, s Ñ 8. This is done in [3] via a generalization

to a larger dynamical system that involves more complicated spatially varying effective potentials that have

been influenced by the presence of observables.

We were also able to successfully construct and study a measure on S1 corresponding to the φ2 field,

this requires additional renormalizations due to the singular behaviour of the φ field. Denote the suitably

renormalized field N rφ2s. We prove scale invariance with an anomalous exponent for this renormalized field,

that is

L2κ´ηN rφ2spL‚q d“N rφ2sp‚q

where κ as defined as before and η ą 0 is the anomalous part of the exponent. This gives a rigorous proof of a

conjecture made by Wilson in [73]. The key point is that the anomalous scaling comes from a multiplicative

renormalization that is made necessary by an anomalous eigenvalue of the BMS fixed point. For more details

on this see the discussion right before section 3.8.

0.1.4 Proving Full Scale Invariance

Chapter 4 is part of [4] which is joint work with the author’s advisor Abdelmalek Abdesselam and Gianluca

Guadagni. We give a short overview below.

The RG transformations mentioned above yield discrete dynamical systems where the transformation

involves iteratively “zooming” out by a fixed “demagnification” ratio L. Our generalization of the RG

dynamical system allows us to prove that constant trajectories based at fixed points of this dynamical

system correspond to measures with some scale invariance, in particular they are invariant with respect to

the discrete scaling group generated by the ratio L. However this ratio is an artifical length parameter which

is not intrinsic to the model we are studying and one expects that these partially scale invariant measures are

actually fully scale invariant. In the Euclidean case the natural approach to constructing measures with full

scale invariance would be defining a continuous renormalization group and constructing measures defined in

1Note that this is a simplification, the effective potentials are in fact parameterized by an infinite dimensional space and a

central challenge is to define RG transformation so that this dynamical system is primarily governed by a finite set of couplings.
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terms of fixed points of the corresponding continuous dynamical system. However it seems difficult to make

this approach rigorous for bosonic field theories - in this case it helps to take L large in order to win the

contraction of irrelevant operators in spite of various combinatorial factors.

Our results over Q3
p in [3] suffer from a similar defect. Here the full scaling group is generated by powers

of the underlying prime p and RG arguments allow us to prove scale invariance with respect to powers of

L “ pl where l ą 1 must be a sufficiently large integer. However we overcome these difficulties in [4] and are

able to show full scale invariance for the measures constructed in [3]. The proof involves defining two RG

transformations defined via two length parameters L1 and L2 which together generate the full scaling group.

These two transformations give two different dynamical systems and possible two different fixed points. If we

prove that there is an non-empty intersection between the stable manifolds of the two fixed points then this

implies that the measures corresponding to the two fixed points coincide and are then fully scale invariant.

However the stable manifolds constructed via the RG transformations are not given explicitly and are thus

hard to compare directly.

Our solution to this problem is to argue by contradiction - in particular we assume that fixed points from

the two RG constructions do not coincide. We then show, via correlation inequalities, that this assumption

forces there to be an open set of “critical” parameters in the pg, µq plane. To generate the desired contra-

diction we combine a sharpness of transition results of Aizenman, Barsky, and Fernandez in [7] and combine

this with a Gibbs variational principle in the context of superstable Gibbs measures ([58],[59],[45]) in order

to show that such an open set of critical pg, µq points cannot exist. The consequence of all of this is that

the fields φ and N rφ2s constructed in [3] are seen to be fully scale invariant, and the anomalous exponent

of the N rφ2s can be written in a way where it is seen to not depend on L. The arguments we used should

have analogs in the Euclidean case where one will want to take a finite set of lengths Li that generate the

multiplicative group of the positive reals and show all these different RG transformations yield the same

measure νBMS .

0.1.5 Overview of the rest of the dissertation

Sections 0.1.3 and 0.1.4 discuss the main results of this dissertation - a more comprehensive exposition of

these results is given in chapters 3 and 4. In chapter 1 we give an introduction to the p-adics and the

construction of measures on distributional spaces (in what follows we call such measures generalized random

fields). In chapter 2 we give a result on the classification of generalized random fields with certain invariance

properties.
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Chapter 1

Preliminaries

1.1 Preliminaries on the p-adic rationals

1.1.1 Ultrametric Spaces

Our work over the p-adics fits into the larger framework of hierarchical approximations in probability and

mathematical physics. These approximations have been used to study random processes indexed by some

metric space where the law of the process exhibits a spatial structure. The key step of the hierarchical

approximation is to replace the underlying Euclidean space with an ultrametric space.

Definition. An ultrametric space pY, dq is a non-empty set Y equipped with a distance function d : Y ˆY Ñ
Rě0 that satisfies the following properties for all x, y, z P Y

(i) dpx, yq “ dpy, xq

(ii) dpx, yq “ 0 if and only if x “ y

(iii) dpx, zq ď maxtdpx, yq, dpy, zqu

Condition (iii) is often called the strong triangle inequality in contrast with the orindary triangle inequality

for metric spaces, the weaker requirement that dpx, yq ď dpx, yq ` dpy, zq. As a result ultrametric spaces

have certain topological properties that can be non-intuitive.

Proposition 1.1. Let pY, dq be an ultrametric space. Then the following statements hold.

(i) Any two balls (open or closed) in Y are either nested within each other or disjoint.

(ii) For any r ą 0 the set Y can be decomposed into a partition of disjoint open (resp. closed) balls of

radius r.

(iii) All open balls in pY, dq are closed sets and all closed balls of positive radius in pY, dq are open sets.

All three of the above statements are straightforward consequences of the the strong triangle inequality.

One way to understand the second statement is that for any r ą 0 the strong triangle inequality makes the
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relation x „r y ðñ dpx, yq ă r an equivalence relation (the same is true if ă r is replaced by ď r ) and

statement (ii) is just the corresponding decomposition into equivalence classes. Additionally if r1 ă r the

the equivalence classes of „r consist of disjoint unions of equivalence classes of „r1 ; this picture motivates

the term “hierarchical”.

We mention one more consequence: every point within an open ball can be considered the center of that

open ball, that is given an open ball B “ ty P Y : |x ´ y| ă ru one has that for all z P B, ty P Y : |y ´ z| ă
ru “ B.

1.1.2 The p-adic rationals

We will define the p-adic rationals Qp as the completion of the rationals Q with respect to the metric induced

by a particular absolute value on Q.

Definition. An absolute value on a field F is a map | ¨ | : F Ñ r0,8q such that for all x, y P F one has

(i) |x| “ 0 ðñ x “ 0

(ii) |xy| “ |x| ¨ |y|

(iii) |x` y| ď |x| ` |y|

For any prime p we now define the p-adic absolute value | ¨ |p on Q. First note that for any non-zero x P Q

there is a unique integer k such that one can write x “ pk a
b
where a, b are integers and a, b and p coprime;

for such x we define |x|p “ p´k and we set |0|p “ 0. It is immediate that | ¨ |p satisfies conditions (i) and (ii)

and not hard to see that | ¨ |p satisfies a “strong triangle inequality”, that is one has |x`y|p ď maxp|x|p, |y|pq.
It follows that if dpx, yq “ |x´ y|p then pQ, dq is an ultrametric space.

We denote the standard absolute value on Q by | ¨ |8, that is |x|8 “ signpxq ¨ x for non-zero x and

|0|8 “ 0. The field Q is not complete (as a metric space) under any of the metrics induced by the absolute

values | ¨ |p for p prime or p “ 8. For p “ 8 the corresponding completion of Q is of course R. For p prime

we define Qp to be the completion of Q with respect to | ¨ |p. It is not hard to check that the field structure

of Q and the absolute value | ¨ |p naturally extends to Qp making it a field with an absolute value.

We remark that when looking at sequences in Q there is no simple implication between being Cauchy

with respect to | ¨ |p or | ¨ |p1 for p ­“ p1. As a consequence one cannot hope to canonically identify any of the

elements in QpzQ with elements of Qp1 zQ (this includes the p “ 8 case, that is Q8 “ R).

The recipe of defining an absolute value on Q and then forming the completion gives an easy way to

construct field extensions K of Q which are equipped with an absolute value and are metrically complete.

An easy way to generate a new absolute values from an existing one | ¨ | is to take | ¨ |α for suitable positive

real numbers α. However this new absolute value will generate the same topology and the same completion

of Q as | ¨ | does. In fact a theorem of Ostrowski completely characterizes absolute values on Q (and in doing

so essentially characterizes the normed completions of Q).

Theorem 1.1 (Ostrowski). Let | ¨ | be an absolute value on Q, then there exists a positive real number α

such that | ¨ | “ p| ¨ |pqα for some p prime or p “ 8

15



Proof: See Theorem 1.3.2 in Chapter 1 of [9].

For the rest of this section we specialize to p ­“ 8.

Every element of x P Qp has a unique series expansion of the form

x “
8ÿ

n“´8
anp

n where an P t0, 1, . . . , p´ 1u and D N P Z such that an “ 0 for n ď N (1.1)

In other words Qp is in one-to-one correspondance with Laurent series with poles of finite order and

coefficients taken from t0, 1, . . . , p ´ 1u. Given such a representation (1.1) for an element x ­“ 0 one can

calculate the p-adic absolute value of x, in particular |x|p “ p´vppxq where vppxq “ inftn P Z : an ­“ 0u (we

can extend this definition to x “ 0 with the convention that vpp0q “ 8).

Note that large integer powers of p inside of Qp are seen as small by the absolute value | ¨ |p, that is

|pN |p “ p´N .

When reading the above equation one should remember that the pN on the right hand side is an element of

Qp while the p´N on the left hand side is an element of R which is where | ¨ |p takes its values. It is easily

seen that all elements j of Z Ă Qp have |j|p ď 1. The closure of Z with respect to | ¨ |p will be denoted by

Zp and is precisely the closed unit ball centered at the origin in Qp. We also note that Zp forms a subring

of Qp.

We now make some remarks that will hopefully help the reader develop an accurate (but perhaps blurry)

mental picture of Qp. One can represent “´1” , that is the additive inverse of 1 in the form (1.1):

´1 “
8ÿ

n“0

pp´ 1qpn.

Arithmetic computations with p-adic numbers can be carried out in terms of these Laurent expansions

using the typical “carrying rules” one uses for computation with decimal expansions in R. We also note that

unlike R one cannot impose a total ordering on Qp that is consistent with its field structure (what we mean

here is a total ordering ĺ such that x ĺ y ñ x ` z ĺ y ` z and 0 ĺ x, y ñ 0 ĺ xy for any x, y, z P Qp ).

To prove such a total ordering cannot exist one can assume the existence of such an ordering and generate

a contradiction by showing that one can find some z ĺ 0 such that z is in fact a perfect square. We remark

that Qp is not algebraicaly closed. With regards to its topology every closed ball in Qp is homeomorphic to

the Cantor set.

While Qp may have properties that seem bizarre we believe that it is the ideal setting for hierarchical

models. We are able to state (and prove) theorems that are formulated nearly identically to the theorems

one would like to prove over R. In particular our main constructive results describe probability measures on

spaces of distributions over Qp. The description of this setting will be the goal of this section.

1.1.3 Norms and integration on Q
d
p

For d P N we define Qdp to be the Qp-vector space consisting of tuples x “ px1, . . . , xdq with xi P Qp for

1 ď i ď d. Vector addition is defined component-wise and scalar multiplication is defined in the typical way,
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that is for any λ P Qp, x P Qdp we define λx “ pλx1, . . . , λxdq. We will also fix a norm on Qdp.

Definition. Let V be a Qp-vector space. A map | ¨ | : V Ñ r0,8q is a norm on V if for all x, y P V and

λ P Qp one has

(i) |x| “ 0 ðñ x “ 0

(ii) |λx| “ |λ|p ˆ |x|

(iii) |x` y| ď |x| ` |y|

Definition. We say a norm | ¨ | on a vector space V satisfies the strong triangle inequality if for all x, y P V
one has |x` y| ď maxp|x|, |y|q

While there are multiple choices one could make for a norm on Qdp the one we default to is |x| “
max p|x1|p, . . . , |xd|pq - this norm is natural as up to a constant it is the unique norm preserved by GLdpZdpq
which is the unique maximal compact subgroup (up to conjugation) of GLdpQpq. Our choice here is analogous

to the choice of the standard Euclidean norm on Rd given by |x| “
břd

j“1 x
2
j which is the unique norm (up

to a constant) which is preserved by the orthogonal group Opdq which is the unique maximal compact (up

to conjugation) subgroup of GLdpRq.
It is notd hard to see that |¨| satisfies the strong triangle inequality and it follows that Qdp is an ultrametric

space when equipped with the metric induced by this norm. Before moving on we note a useful fact about

norms satisfying the strong triangle inequality.

Proposition 1.2. Let | ¨ | be a norm on a vector space V that satifies the strong triangle inequality. Then

for x, y P V with |x| ą |y| one has |x` y| “ |x|.

The closed unit ball in Qdp is precisely Zdp “ Zp ˆ ¨ ¨ ¨ ˆ Zplooooooomooooooon
d times

. It is easy to see that Qdp splits into a disjoint

union of Zdp and its translates. In particular if a, b P Qp with |a´ b| ď 1 it follows that a` Zdp “ b` Zdp (see

Proposition 1.1). On the other hand if |a´ b| ą 1 it follows that pa` Zdpq X pb` Zdpq “ H. We note that one

can similarly decompose Qdp into translates of p´1Zdp, the closed ball of radius p containing the origin, and

these larger balls individually decompose into pd different translates of Zdp, this gives us the “hierarchical”

structure in Qdp.

The space Qdp will be our continuum space-time but we will implement a UV cut-off which resembles the

lattice UV regularization in Euclidean Field Theory where one replaces the space-time Rd with Zd. When

working over Qdp the role of the unit lattice L will be played by a family of equivlaence classes in Qdp - the

closed unit ball Zdp and its disjoint translates. More concretely we define L as the collection of subsets

ta` ZpuaPQd
p
.

Since Zdp is an additive sub-group of Qdp one can also take L “ Qdp{Zdp where the quotient operates in on

the level of metric spaces and of additive groups. One particular choice of coset-representives are the p-adic

vectors x whose components xi all have representations in the sense of (1.1) with only negative powers of p.

With this in mind one can immediately see that L is countable and discrete.

Before continuing we make the remark that while the role of “space-time” is played by Qdp the “fields”

that we construct will be real valued. One could work with models where one has p-adic valued observables

in addition to a p-adic space-time but we do work in that setting at all in this thesis.
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We turn Qdp into a measurable space by equipping it with its Borel σ-algebra. For a measurable set A Ă Qdp

we use 1Ap¨q to denote the indicator function for the set A. Since Qdp is a locally compact abelian topological

group we are guaranteed a non-trivial σ-finite Haar measure on Qdp which is unique up to normalization. We

denote this measure ddx where we have fixed a normalization such that

ż

Zd
p

ddx “ 1

By uniqueness of Haar measures we note that ddx coincides with the d-fold product of the Haar measure

dx on Qp normalized to give Zp measure 1. We say a Borel measurable function f : Qdp Ñ R is integrable ifş
|f |ddx ă 8. We say a Borel measurable function f : Qdp Ñ C is integrable if its real and imaginary parts

are both integrable.

Let GLdpQpq be the set of invertible dˆd matrices with entries in Qdp. Given a dˆd matrixM and x P Qdp

we write Mx to denote M ’s action on x corresponding to left multiplication by M where x is considered a

column vector. We have the following elementary change of variable theorem:

Proposition 1.3. Suppose that M P GLdpZpq. Then for any Borel measurable f : Qp Ñ Rě0 one has

ż
fpMxqddx “ |detpMq|´1

p

ż
fpxqddx

Proposition (1.3) can be proven by noting that µpAq “
ş

1ApMxqddx is a translation invariant measure

and computing µpZdpq “ |detpMq|´1
p , the assertion then follows by appealing to the uniqueness of Haar

measure (up to normalization).

We remark that the above theorem says
ş
fppxqddx “ pd

ş
fpxqddx (we would expect to see a p´d on

the right hand side if we were working with Lebesgue measure over Rd).

1.2 Some Distribution Theory and Fourier Analysis on Q
d
p

The material in this section can be found in the references [71] and [9]. The Schwartz-Bruhat space of

test functions over Qdp, which we denote by SpQdpq, is an analog of the more familiar Schwartz space of test

functions over Rd. We start with defining what it means for a function on Qdp to be locally constant.

Definition. A function f : Qdp Ñ C is said to be locally constant if for each x P Qdp there exists a rpxq P Z

such that for all y with |y ´ x| ď prpxq one has fpyq “ fpxq.

Local constancy will play the role of smoothness when dealing with functions on Qdp. Note that it is the

ultrametricity of Qdp that allows us to have non-trivial locally constant functions (a simple example being

1Zd
p
which is constant over closed balls of radius 1).

We say that a function f : Qdp Ñ C is compactly supported if there exists some s P Z such that fpxq “ 0

for all x with |x| ą ps. We now define SpQdpq to be the space of all functions f : Qdp Ñ R which are locally

constant and compactly supported. Such functions will often be called test functions. In certain cases we

will want to allow for complex valued test functions in which case we will write SpQdp,Cq which we view as

a complex vector space.
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So far SpQdpq, resp. SpQdp,Cq, is just a real, resp. complex, vector space. We will now give a topological

structure. We start with some definitions.

Definition. Given a vector space V over R or C a map N : V Ñ r0,8q is a seminorm on V if for all

u, v P V and any scalar λ one has:

(i) N pλvq “ |λ| N pvq

(ii) N pu` vq ď N puq ` N pvq

Given a vector space V we define the finest locally convex topology on V to be the coarsest topology that

makes all seminorms on V continuous. An equivalent definition is as follows:

Definition. A subset U of a vector space V is open in the finest locally convex topology on V if and only

if for every x P U there exists ǫ ą 0 and finitely many seminorms N1, . . . ,Nk such that Xk
j“1ty P V :

Njpy ´ xq ă ǫu Ď U .

We turn SpQdpq into a topological vector space by equipping it with its finest locally convex topology. We

give a quick proposition which says that in this setting linearity is enough for continuity.

Proposition 1.4. Let V be a topological vector space equipped with its finest locally convex topology. Let W

be a locally convex topological vector space. Then any linear map L : V Ñ W is continuous.

Proof: Since W is a locally convex topological vector space its topology is generated by some family of

seminorms tNαu. By linearity one immediately has NαpLp¨qq is a seminorm on V . The result then follows

by the definition of the finest locally convex topology.

We denote by S1pQdpq the corresponding topological dual, i.e. the space of continuous linear functionals

on SpQdpq. Note that any linear map φ : SpQdpq Ñ R is automatically continuous (in particular |φp¨q| defines a
seminorm on SpQdp). It follows that S1pQdpq coincides with the algebraic dual of SpQdpq. The notations pφ, fq
and φpfq denote the duality pairing of φ P S1pQdpq and f P SpQdpq. Note that every locally integrable real

valued function Gpxq on Qdp can be seen as an element of S1pQdpq via

pG, fq “
ż

Qd
p

Gpxqfpxq ddx for f P SpQdpq.

However not every element of S1pQdpq is given by integration against a function. We will still sometimes write

pGpxq, fpxqq for the duality pairing, motivated by the above integral expression even if G P S1pQdpq is not

given by integration against a function.

We turn S1pQdpq into a topological vector space by equipping it with its cylinder set topology - this is the

coarsest topology on S1pQdpq such that for any f1, . . . , fn P SpQdpq one has that the map φ Ñ pφpf1q, . . . , φpfnqq
is continuous map from S1pQdpq to Rn where the latter space is given its standard topology.

We define the topological vector space S1pQdp,Cq as the dual of SpQdp,Cq in the same fashion. Note that

we can canonically identify any φ P S1pQdpq with an element of S1pQdp,Cq by having it act separately on the

real and imaginary parts of any complex valued test function.

An important observation is that if f is locally constant and compactly supported then a straightforward

compactness argument shows that f is “uniformly” locally constant, that is there exists r P N such that
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|x ´ y| ď pr ñ fpxq “ fpyq. With this in mind we can think of SpQdpq as a union of finite dimensional

subspaces. For r, s P Z we define

Sr,spQdpq :“ tf : Qdp Ñ R| |x| ą ps ñ fpxq “ 0 and |y ´ x| ď pr ñ fpxq “ fpyqu

Thus in the above definition r parameterizes the degree of required constancy and s parameterizes the

size of the support. Clearly r1 ď r ď s ď s1 ñ Sr,spQdpq Ď Sr1,s1 pQdpq Ă SpQdpq. If s ă r then Sr,spQdpq contains

only the 0 function while if r ď s then Sr,spQdpq is a pdps´rq dimensional subspace of SpQdpq, one basis being

the individual indicator functions for the pdps´rq translates of p´rZdp contained in p´sZdp. More concretely

we define Ir,s Ă Qdp as the set of vectors z whose components pz1, . . . , zdq are each of the following form (in

the sense of 1.1):

zi “
sÿ

n“r`1

anp
´n

Then the basis in question is given explicitly by

!
1z`p´rZd

p
pxq

)
zPIr,s

(1.2)

It is also clear that

SpQdpq “
8ď

n“0

S´n,npQdpq

Note that we define Sr,spQdp,Cq in the natural way and analogous statements to those above hold for the

complex case.

1.2.1 The Fourier transform on Q
d
p

Having a theory of Fourier transforms over Qdp allows the correspondance between our model and the corre-

sponding Euclidean model to be seen much more clearly. Additionally harmonic analysis over Qdp can be more

forgiving, for example we will see that functions can be compactly supported in both position and Fourier

space. We will also see that analogously to the real case the Fourier transform will be a linear isomorphism

on the space SpQdpq.
We first define the polar part map t¨up : Qp Ñ R. If u P Qp has a Laurent representation

8ÿ

n“´8
anp

n

then we set

tuup :“
´1ÿ

n“´8
anp

n

where the right hand side of the above definition is taken as an element of R instead of Qp - it is important

to remember that this sum will have only finitely many non-zero terms.

We remark that tuup “ 0 if and only if u P Zp. We also define a dot product on Qdp in the standard way,

i.e. for x, y P Qdp we set x ¨ y “ řd
i“1 xiyi P Qdp. Observe that |x ¨ y|p ď max 1 ď i ď d|xiyi| ď |x| ¨ |y|.
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We now note that for any z P Qdp the function ξz : Qdp Ñ C given by

ξzpxq “ exp r2πitz ¨ xus

is a multiplicative map on the additive group Qdp - i.e. ξzpx ` yq “ ξzpxqξzpyq ( similarly one also has

ξz1ξz2 “ ξz1`z2 for any z1, z2 P Qdp). The key fact behind these properties is that tz ¨ px ` yqup and

tz ¨xup ` tz ¨ yup differ by an integer. In particular Qdp can be identified as its own Pontryagin dual, with the

correspondance being given by z Ñ ξz.

Speaking more concretely, the functions exp r2πitz ¨ xus will play the role that the functions exprik ¨ xs
do in Fourier analysis over Rd. For an integrable function f : Qdp Ñ C we define the Fourier transform of f ,

Frf s : Qdp Ñ C as follows: for any k P Qdp

Frf spkq :“
ż
fpxq expr´2πitk ¨ xups ddx.

We will also use the standard notation f̂pkq to denote the Fourier transform of a function fpxq. The next

proposition gives a useful Fourier transform to know:

Proposition 1.5.

Fr1Zd
p
s “ 1Zd

p
.

Proof: Note that for any a, b P Qp the quantities ta ` bup and taup ` tbup differ by an integer so one has

expr´2πita` bups “ expr´2πitaups ˆ expr´2πitbups. We can then write

ż

Qd
p

1Zd
p
pxq expr´2πitk ¨ xups ddx “

dź

i“1

˜ż

Qp

1Zp
pxiq expr´2πitki ¨ xiups dxi

¸
.

This shows that it is sufficient to prove the proposition for d “ 1 so we specialize to this case.

Suppose that k P Zp, then one has expr´2πitkxups1Zp
pxq “ 1Zp

pxq since kx P Zp for all x P Zp. It

follows that for k P Zp one has Fr1Zp
spkq “

ş
1Zp

dx “ 1.

Suppose instead that k R Zp, then |k|p “ pj with j ě 1. We then fix ξ “ ppkq´1 P Zp. It follows that

Fr1Zp
spkq “

ż
1Zp

px´ ξ ` ξq exp r´2πiptk ¨ px´ ξqup ` tkξupqs dx

“ expr´2πip´1s
ż

1Zp
px´ ξ ` ξq expr´2πitk ¨ px´ ξqups dx

“ expr´2πip´1s
ż

1Zp
px´ ξq expr´2πitk ¨ px´ ξqups dx

“ expr´2πip´1s
ż

1Zp
pyq expr´2πitkyups dy “ expr´2πip´1sFr1Zp

spkq.

In going to the third line note that since ξ P Zdp and Zdp is an additive subgroup of Qdp it follows that

px´ ξq ` ξ P Zdp ðñ px´ ξq P Zdp. For going to the fourth line we applied a change of variable x´ ξ Ø y.

Since expr´2πip´1s ­“ 1 the above computation shows Fr1Zp
spkq “ 0 for k R Zp. This finishes the proof

that Fr1Zp
spkq “ 1Zp

pkq.
We will now show that the Fourier transform leaves the space SpQdp,Cq invariant. First, a simple lemma:
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Lemma 1.1. Let f : Qdp Ñ C be an integrable function. Suppose that λ P Qp with λ ­“ 0 and y P Qdp. Then

if gpxq “ fpλpx´ yqq one has

Frgspkq “ |λ|´dp expr´2πitk ¨ yupsf̂pλ´1kq

Where again we use the notation f̂pkq “ Frf spkq.

Proof: Apply a change of variable (see Proposition 1.3 ) in the integral defining F .

We now show that in addition to the position-space basis (1.2) of Sr,s one also has a simple Fourier-mode

basis of Sr,spQdp,Cq.

Proposition 1.6. Let r ď s. The family of functions

!
p´ ds

2 expr2πitk ¨ xups1p´sZd
p
pxq

)
kPI´s,´r

is a basis for Sr,spQdp,Cq. In particular they are an orthonormal basis for Sr,spQdp,Cq seen as a subspace of

L2pQdp,Cq.

Proof: The fact that the above functions are of L2 norm 1 is immediate.

We now check that the functions (1.6) are contained in Sr,spQdp,Cq. They are clearly supported on x with

|x| ď ps so we check constancy over closed balls of radius pr. Note that the functions of (1.6) are clearly

locally constant outside of Λs.

Fix y with |y| ď pr. This implies that y P p´sZdp and it is then immediate that 1p´sZd
p
pxq “ 1p´sZd

p
px`yq

for all x P Qdp (p´sZdp is an additive subgroup of Qdp).

We claim that for k P I´s,´r, x P p´sZdp, and y P p´rZdp one has

expr´2πitk ¨ xups “ expr´2πitk ¨ xups expr´2πitk ¨ yups “ expr´2πitk ¨ px` yqups.

The key point is the first equality, to see this is true observe that |k ¨ y|p ď |k| ¨ |y| ď p´rpr “ 1 so tk ¨ yup is

an integer.

We now check orthogonality. Observe that for k, k1 P I´s,´r distinct one has:

ż

Qd
p

expr´2πitk ¨ xups expr2πitpk1 ¨ xups1p´sZd
p
pxqddx

“
ż

Qd
p

expr´2πtpk ´ k1q ¨ xups1p´sZd
p
pxqddx

“
ż

Qd
p

expr´2πtpk ´ k1q ¨ xups1Zd
p
ppsxqddx

“ pds1Zd
p

`
p´spk ´ k1q

˘

“ 0

The third equality follows from Proposition 1.5 and Lemma 1.1. The last equality comes from the fact

that one has |k ´ k1| ě p´s`1. This shows that (1.6) must be linearly independent in Sr,spQdpq and since

|I´s,´r| “ pdps´rq the family (1.6) must span.
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It immediately follows that

Proposition 1.7. For any r, s P Z the Fourier transform F is a linear isomorphism of complex vector spaces

taking Sr,spQdp,Cq onto S´s,´rpQdp,Cq.

Proof: The proposition is trivial in the case that s ă r so we assume s ě r. We show that F takes the basis

(1.2) for Sr,spQdp,Cq onto a basis for S´s,´rpQdp,Cq. By Proposition 1.5 and Lemma 1.1 one has

!
F
”
1z`p´rZd

p

ı
pkq

)
zPIr,s

“
!
F
”
1Zd

p
pprp¨ ´ zqq

ı
pkq

)
zPIr,s

“
!
pdr expr´2πitz ¨ kups1Zd

p
pp´rkq

)
zPIr,s

By Proposition 1.6 the family of functions on the last line are a basis for S´s,´rpQdp,Cq.

Corollary 1.1. The Fourier transform F is a continuous linear automorphism of SpQp,Cq. In particular

for f P SpQp,Cq one has F ˝ Frf spxq “ fp´xq.

Proof: The first assertion follows immediately from the above propositions and Proposition 1.4. The second

assertion is just a quick computation using the bases we gave in the above propositions.

Proposition 1.7 can be thought of as a simple Paley-Wiener theorem for Qdp where the roles of regularity

and spatial decay are played by the degree of local constancy and size of the support (respectively the r and

s of Sr,s).

We also note that we have a p-adic analog of Parseval’s theorem - this can be helpful for some of the

calculations that will come later.

Proposition 1.8. One has that F extends to a unitary map on L2pQdp,Cq. In particular for f, g P L2pQdpq
one has that ż

Qd
p

ddx fpxqgpxq “
ż

Qd
p

ddk f̂pkqĝp´kq

Proof: This can be proven from the above propositions via standard density arguments. A proof is also

given in [9, §4.8].

We define a Fourier transform F : S1pQdp,Cq Ñ S1pQdp,Cq via duality, that is for φ P S1pQdp,Cq, f P SpQdp,Cq
we define Fφ by setting pFφ, fq “ pφ,Ffq.

1.3 SpQdpq and S 1pQdpq as spaces of sequences

In the probablistic formulation of quantum field theory the construction of the field theory corresponds to

the construction of a probability measure on an appropriate distributional space which in our particular case

will be S1pQdpq. The problem of specifying measures on infinite dimensional topological vector spaces takes

some care. There is a great deal of literature on building measures on a class of topological vector spaces

called “nuclear spaces”. However in the case of the Schwartz-Bruhat spaces there is an easier method where

one realizes both S and S1 as spaces of sequences [61] which puts Kolmorogov’s Extension Theorem at one’s
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disposal - this approach applied to the case of reals is given in [63] and we reproduce it in section 1.4.2. The

analogous construction over Qdp will be much simpler. In this section we prepare for section 1.4 by realizing

both SpQdpq and S1pQdpq as spaces of real sequences. Along the way we will also prove assorted facts about

the finest locally convex topology on SpQdpq.

Lemma 1.2. There exists an orthonormal family of vectors tenu8
n“0 in L2pQdpq such that the following holds:

For every N P Ną0 one has tenup
2dN´1
n“0 span S´N,N (seen as a subspace of L2pQdpq).

Proof: Let V0 “ S0,0pQdpq. We remark that V0 is a one dimensional subspace and we set e0 “ 1Zd
p
. For

n ě 1 we set

Vn “ pS´pn´1q,pn´1qqK
č
S´n,n

where the orthogonal complement is taken in L2. Note that each Vn is just a p2dn ´ p2dpn´1q dimensional

subspace of L2. For n ě 1 we choose tejup
2dn

j“p2dpn´1q to be an orthonormal basis of Vj . This yields the basis

given in the assertion.

We denote by ℓ the vector space of almost finite real sequences:

ℓ :“
8à
i“0

R “ t txiu8
i“0 : xi P R are non-zero for only finitely many iu

We equip ℓ with its finest locally convex topology to turn it into a topological vector space. We now define

a linear map T : SpQdpq Ñ ℓ as follows. For f P SpQdpq we set the sequence Tf P RN to be given by

Tf :“ txei, fiyL2pQd
pqu8

i“0

We then have the following proposition

Proposition 1.9. The map T is a linear homeomorphism between the topological vector spaces SpQdpq and ℓ

Proof: We first note that since SpQdpq “ Ť8
n“0 S´n,npQdpq every f P SpQdpq has a unique representation

as a finite linear combination of the functions ei. It then follows that T is a linear isomorphism between

SpQdpq. The fact that T is a homeomorphism is immediate since any linear map between two topological

vector spaces equipped with their respective finest locally convex topologies is automatically continuous (T

is dominated by the seminorm |T |)

Unlike the Schwartz space of functions over Rd it turns out that the topological vector space SpQdpq cannot
be made into a Frechet space. In particular one can show that the topology on ℓ cannot be generated by a

countable set of seminorms:

1.3.1 The finest locally convex topology on ℓ (and SpQd
pq)

We begin with finding a concrete family of seminorms that generates the finest locally convex topology on

ℓ. Given a non-negative weighting µ “ tµiu8
i“0 (i.e. µi P Rě0@i) we define a seminorm Nµ on ℓ via

Nµptxiu8
0“1q :“

8ÿ

i“0

µi|xi|
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Proposition 1.10. For every seminorm N on ℓ there exists a non-negative weight µ such that N pxq ď Nµpxq
for all x P ℓ.

Proof: For j P N define δpjq P ℓ to be the sequence which is zero for all indices except the j-th one where

it takes the value 1. Given a seminorm N on ℓ define a non-negative weighting µ “ tµiu8
i“1 by setting

µi “ N pδpiqq. Then for every x P ℓ one has

N pxq ď
8ÿ

i“1

|xi| ˆ N pδpiqq “ Nµpxq

We immediately have the two following corollaries.

Corollary 1.2. The finest locally convex topology is the coarsest topology that makes the family of seminorms

tNµu continuous where µ ranges across all non-negative weightings.

Corollary 1.3. Given a sequence of sequences txpnqu8
n“1 Ă ℓ the two following statements are equivalent:

(i) limnÑ8 xpnq “ 0 P ℓ in the finest locally convex topology on ℓ.

(ii) limnÑ8 Nµpxpnqq “ 0 for every non-negative weighting µ.

Given a sequence of real or complex numbers x “ txiu8
0“1 we define supppxq “ ti P N : xi ­“ 0u. The next

proposition says that sequential convergence of sequences in ℓ is equivalent to component-wise convergence

with the condition that all the sequences are uniformly compactly supported.

Proposition 1.11. Given a sequence of sequences txpnqu8
n“1 Ă ℓ one has that limnÑ8 xpnq “ 0 if and only

if the following statements both hold:

(i) There exists M P N such that for all n one has supppxpnqq Ă t0, 1, . . . ,Mu

(ii) For all i P N one has limnÑ8 x
pnq
i “ 0

(ð) Suppose we are given txpnqu8
n“1 satisfying statements piq, piiq. Sequential convergence easily follows

by the criterion of Corollary 1.3.1 since for any µ, the quantity Nµpxpnqq is just a sum of M terms each of

which is going to 0.

(ñ) We prove this direction by contrapositive. Suppose we are given txpnqu8
n“1 for which statement

(i) does not hold. We will construct µ such that Nµpxpnqq does not convergence to 0 as n Ñ 8. By our

assumptions we can find sequences of indices nj , kj , both strictly increasing in j, such that for all j P N one

has

x
pnjq
kj

­“ 0.

Now define a non-negative weighting µ as follows:

µi “

$
&
%

ˇ̌
ˇxpnjq
kj

ˇ̌
ˇ
´1

, if i “ kj for some j P N

0 , otherwise

With this choice of µ it is clear that for all j P N one has Nµpxpnjqq ě 1.

We can now prove the theorem mentioned earlier
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Theorem 1.2. The finest locally convex topology on ℓ cannot be generated by a countable family of semi-

norms.

Proof: We proceed by contradiction and assume that tNju8
j“1 is a family of seminorms that generates the

finest locally convex topology on ℓ.

Then we claim that the following is a translation invariant metric dp¨, ¨q on ℓ

dpx, yq :“
8ÿ

j“1

2´j maxp1,Njpx´ yqq.

The symmetry of dp¨, ¨q and the fact that is satisfies the triangle inequality both follow easily from the

definition above. The fact that dpx, yq “ 0 ñ x “ y comes from the observation that the finest locally

convex topology ℓ is clearly Hausdorff. This means that it must be the case that for every non-zero x P ℓ

one can find j such that Njpxq ą 0.

By the assumptions made so far d must induce the finest locally convex topology on ℓ. It is clear that

in this topology for every k P N one has that ǫδpkq converges to 0 as ǫ Ñ 0 so it must be the case that

limǫÑ0 dp0, ǫδpkqq “ 0 for all k. It is then possible to choose constants ǫk,j ą 0 such that for every k, j P N

one has dp0, ǫj,kδpkqq ă 2´j .

Now define a sequence of elements typjqu8
j“1 Ă ℓ by setting ypjq “ ǫj,jδ

pjq. One must then have

limjÑ8 dp0, ypjqq “ 0 which means that ypjq converges to 0 in the finest locally convex topology as j Ñ 8.

However this is a contradiction; the sequence of sequences ypjq is not uniformly compactly supported and so

by Proposition 1.11 ypjq does not converge to 0 in the finest locally convex topology.

We have the following as an immediate corollary.

Corollary 1.4. The finest locally convex topology on SpQdpq cannot be generated by a countable family of

seminorms.

For X be a topological vector space we call a map

L : X ˆ ¨ ¨ ¨ ˆXloooooomoooooon
n times

Ñ R

an n-multilinear functional if it is linear in each of its components. We call the analogous map in the complex

setting an n-multilinear map as well. The definitions and proposition we give below show that the topics

such as the continuity of multi-linear functionals and the kernel theorem become trivial in this setting of the

finest locally convex topology. The content below is stated for the case of real functionals but can easily be

transferred to the complex case as well.

Definition. An n-linear functional L on a topological vector space X is said to be jointly continuous if for

every ǫ ą 0 there exists a n neighborhoods N1, . . . , Nn Ă X each containing 0 such that for every choice

f1 P N1, . . . , fn P Nn one has

|Lpf1, . . . , fnq| ă ǫ

We remark that if the topology on X is generated by a family of seminorms SN “ tNαuα then a sufficient

condition for an n multilinear functional L to be continuous is for there to exist seminorms N1, . . . , Nn P SN
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such that for every f1, . . . , fn P X one has

|Lpf1, . . . , fnq| ď
nź

j“1

Njpfjq. (1.3)

With this in mind one sees that multilinearity immediately implies joint continuity.

Proposition 1.12. Suppose that

L : SpQdpq ˆ ¨ ¨ ¨ ˆ SpQdpqloooooooooooomoooooooooooon
n times

Ñ R

be an n-multilinear map. Then L is jointly continuous in its n arguments.

Proof: By virtue of the correspondance between SpQdpq and ℓ it is sufficient to prove the assertion for

n-multilinear functionals in the case where X “ ℓ, that is multilinear functionals

L : ℓˆ ¨ ¨ ¨ ˆ ℓloooomoooon
n times

Ñ R.

Following our earlier remark it suffices to find seminorms for which we have a bound of the type (1.3). For

α “ pα1, . . . , αdq P Nd we define mα P R via

mα :“
ˇ̌
ˇL

´
δpα1q, . . . , δpαnq

¯ˇ̌
ˇ

Here for j P N denote by δpjq the sequence in ℓ that is given by zeroes everywhere except for the j-th location

where it takes the value 1. We define a non-negative weighting µk as follows:

µk :“ max

ˆ
1, max

||α||8ďk
mα

˙
.

where for a multi-index α we define ||α||8 “ max1ďjďn αj . The key property satisfied by the sequence

tµku8
k“0 is that for any α P Nd one has

mα ď
dź

j“1

µαj
.

Let Nµ be the corresponding seminorm. Now let xp1q, . . . , xpnq P ℓ with

xpjq “
8ÿ

k“0

aj,kδ
pkq

for 1 ď j ď n and constants aj,k (which are zero for all but finitely many k). One then has

ˇ̌
ˇL

´
xp1q, . . . , xpnq

¯ˇ̌
ˇ ď

ÿ

α

«
nź

j“1

|aj,αj
|
ff
mα ď

ÿ

α

«
nź

j“1

|aj,αj
|µαj

ff
“

nź

j“1

« 8ÿ

k“0

|aj,k|µk
ff

“
nź

j“1

Nµpxpjqq

(1.4)

For f P SpQmp q and g P SpQnp q we define fbg P SpQm`n
p q via pf b gq px, yq “ fpxqgpyq for px, yq P Qmp ˆQnp .

We can now state a kernel theorem for SpQdpq.
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Theorem 1.3. Given a jointly continuous n multilinear functional L on SpQdpq there is a unique continuous

linear functional L̃ P S1pQndp q such that one has

Lpf1, . . . , fnq “ L̃pf1 b ¨ ¨ ¨ b fnq. (1.5)

Proof: By the earlier proposition it is clear that we can drop the qualifier “jointly continuous” from the

above theorem. The key observation for the p-adic section is that every g P SpQndp q can be written as a linear

combination of functions of the form

f1 b ¨ ¨ ¨ b fn

with f1, . . . , fn P SpQdpq. To see this we remark that for r ď s one has that Sr,spQndp q is spanned by indicator

functions of the sets a ` prZndp for a P Qndp with |a| ď ps. However if we write a “ pa1, . . . , anq with

a1, . . . , an P Qdp then

1a`prZnd
p

“ 1a1`prZd
p

b ¨ ¨ ¨ b 1an`prZd
p
.

In particular each element of SpQndp q can uniquely be written as a finite linear combinations in the basis

 
bd
j“1eαj

(
αPNn

where the teku8
k“0 are the basis for SpQdpq given by Proposition 1.2.

It is then clear that every n-multilinear functional L uniquely determines an element L̃ P S1pQndp q by

enforcing that (1.5) hold for f1, . . . , fn chosen as basis elements in SpQdpq - L̃ can then be uniquely extended

to all of S1pQndp q via linearity. Uniqueness of such an L̃ is immediate.

We will now identify S1pQdpq with a sequence space. In particular we will identify it with the topological

(and algebraic) dual of ℓ which we denote by ℓ1.

It is not hard to see that ℓ1 can be realized as the space of all real sequences, that is ℓ1 “ ś
iPN R “ RN.

For a sequence y “ tyiu8
i“0 P ℓ1 and x “ txiu8

i“0 P ℓ the duality pairing py, xq is given by the (necessarily

finite) sum
ř8
i“0 xiyi. We view ℓ1 as a topological vector space by equipping it with the product topology

(which one can think of as the cylinder set topology when one keeps the duality pairing in mind).

We define the linear map T˚ : S1pQdpq Ñ ℓ1 via T˚pφq “ tyipφqu with yipφq “ φpeiq where the ei is given as

in Proposition (1.2). Since both S1pQdpq and ℓ1 are equipped with their respective cylinder set topologies it is

easy to see that T˚ is in fact a homeomorphism. In particular T˚ is the adjoint of T , i.e. pφ, Txq “ pT˚φ, xq
for x P ℓ and φ P S1pQdpq.

1.4 Measures on S 1

1.4.1 A Bochner-Minlos Theorem for S 1pQd
pq

We view S1pQdpq as a measurable space by equipping it with its the Borel σ-algebra - remember that S1pQdpq is
equipped with the cylinder set topology. The corresponding Borel σ-algebra will also be called the cylinder

set σ-algebra. Before describing the main result of this section we state an important definition:

Definition. Let X be a topological vector space. We say a function ψ : X Ñ C is positive definite if for
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all n P N and any ζ1, . . . , ζn P X the the n ˆ n matrix formed by the entries pψpζi ´ ζjqq
ij
, 1 ď i, j ď n, is

a Hermitian positive semidefinite matrix. Stating this condition explicitly one must have that the following

two conditions hold:

(i) ψp´ζq “ ψpζq for all ζ P X

(ii) For any z1, . . . , zn P C one has
nÿ

i,j“1

z̄iψpζi ´ ζjqzj ě 0

We now state one of the main theorems of this section.

Theorem 1.4 (Bochner - Minlos Theorem for S1pQdpq). There is a one-to-one correspondance between prob-

ability measures µ on the measure space pS1pQdpq, Cq and the set of functions θ : SpQdpq Ñ C which satisfy (i)

θp0q “ 1, (ii) θ is continuous on SpQdpq, (iii) θ is positive definite. The correspondance µ Ø θµ is given by

θµpfq “
ż

S1pQd
pq
dµpφq eipφ,fq,

i.e. θµ is the characteristic function for the measure µ. Note that pφ, fq denotes the duality pairing between

SpQdpq and S1pQdpq.

Here C denotes the cylinder σ-algebra. Given a topological vector space X and its topological dual X 1,

the cylinder σ-algebra C on X 1 is the coarsest σ-algebra on X 1 which makes evaluation at x a measurable

map from X 1 to R1 for any x P X.

Now using the maps T˚, T defined in the last section it follows that Theorem 1.4 is equivalent to the

following theorem.

Theorem 1.5 (Bochner - Minlos Theorem for ℓ1). There is a one-to-one correspondance between probability

measures µ on ℓ1 “ RN equipped with its cylinder σ-algebra (or equivalently its product σ-algebra) and the

set of functions θ : ℓ Ñ C which satisfy (i) θp0q “ 1, (ii) θ is continuous on ℓ, (iii) θ is positive definite. The

correspondance µ Ø θµ is given by

θµpxq “
ż

ℓ1

dµpyq eipy,xq,

Note that py, xq denotes the duality pairing between y P ℓ1 and x P ℓ

Our method of proof will involve applying Bochner’s Theorem on Rd which we give below.

Theorem 1.6 (Bochner’s Theorem for Rd). There is a one-to-one correspondance between Borel probability

measures µ on Rd and the set of functions θ : Rd Ñ C such that (i) θp0q “ 1, (ii) θ is continuous, (iii) θ is

positive definite.

The correspondance µ Ø θµ is given by

θµpξq “
ż

Rd

dµpxq eix¨ξ,

Proof: The hard direction is that conditions (i), (ii), and (iii) on θ are sufficient to guarantee the existence

of a Borel probability measure µ on Rd such that θ “ θµ. For a proof of this see [55, Theorem IX.9].
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For necessity of conditions (i), (ii), (iii) we note that for any µ and corresponding θµ condition (i) is

immediately, (ii) follows from Lebesgue dominated convergence, and condition (iii) comes from observing

that for any z1, . . . , zn P C, ξ1, . . . , ξn P R one has

0 ď
ż

R

dµpxq
ˇ̌
ˇ̌
ˇ
nÿ

i“1

zie
ix¨ξi

ˇ̌
ˇ̌
ˇ

2

“
ż

R

dµpxq
nÿ

i,j“1

ziz̄je
ix¨pξi´ξjq “

nÿ

i,j“1

ziz̄jθµpξi ´ ξjq.

For uniqueness we suppose that for Borel probability measures µ, ν on R we have θµ “ θν . Let f P C8
c pRdq,

i.e. a smooth function of compact support. In particular one has f, f̂ P L1pRd, ddxq. Then by the Fourier

inversion theorem and Fubini one has

ż

Rd

dµpxqfpxq “
ż

Rd

dµpxq
ˆż

Rd

ddξ eix¨ξ f̂pξq
˙

“
ż

Rd

ddξ f̂pξq
ˆż

Rd

dµpxqeix¨ξ
˙

“
ż

Rd

ddξ f̂pξq θµpξq “
ż

Rd

ddξ f̂pξq θνpξq “
ż

Rd

dνpxqfpxq.

Then by a simple approximation argument it follows that µ “ ν.

We will also need Kolmogorov’s Extension Theorem but first we introduce some notation. Let I be an

index set. We denote by BI the product Borel σ-algebra on RI . For any finite set F let πI,F : RI Ñ RF be

the canonical projection map. For any finite sets F,G with F Ă G Ă I Let πG,F be the canonical projection

from RG to RF .

Theorem 1.7 (Kolmogorov’s Extension Theorem). Let I be an index set. We see RI as a measure space

by equipping it with its product Borel σ-algebra. Suppose that we are given a family of consistent family of

finite dimensional distributions - that is we are given probability measures µF on pRF ,BF q for every finite

set F Ă I that together satisfy the following: for any two finite sets F Ă G Ă I every A P BF one has that

µG

´
π´1
G,F pAq

¯
“ µF pAq, i.e. µF is the pushforward of µG under πGF .

Then it follows that there exists a unique probability measure µ on pRI ,BIq such that for every finite set

F Ă I and A P BF one has µpπ´1
I,F pAqq “ µF pAq. In other words there is a unique probability measure µ

which has the measures µF as its finite dimensional marginals.

Proof: See almost any book that covers stochastic processes, for example [67, Theorem 1.1.10].

We can now prove Theorem 1.5.

Proof of Theorem 1.5: We need to show that for a given θ satisfying (i), (ii), and (iii) there exists a

unique probability measure µ on the infinite product space ℓ1 “ pRN,BNq with θ “ θµ.

First we focus on constructing such a measure µ from θ. For any finite set F Ă N and x P RF we write

xF to denote the element of ℓ with pxF qi “ xi for i P F and pxF qi “ 0 for i R F .
Now we define θF : RF Ñ C via θF pxq “ θpxF q. We claim that θF satisfies Theorem 1.6 - condition (i)

and condition (iii) both follow immediately from the analogous conditions on θ. We remark that x Ñ xF

is a continuous map between RF equipped with its standard topology and ℓ with its finest locally convex

topology (the standard topology RF coincides with its own finest locally convex topology, so one can apply

Proposition 1.4). Thus we are guaranteed a unique Borel probability measure µF on RF with θF as its
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characteristic function. Proceeding this way for all finite subsets of N gives us a family of finite dimensional

distributions.

We now show that this family is consistent. Suppose we have finite sets F,G Ă N with F Ă G. Let µ̃F

be the marginal of µG on RF (i.e. µ̃F is the pushforward of µG under the projection πG,F ). It is not hard to

see that the characteristic function of µ̃F is given by θF and so from the uniqueness assertion in Theorem 1.6

it follows that µF “ µ̃F . Thus the desired measure µ on RN can be constructed from the finite dimensional

measures µF via Kolmogorov’s Extension Theorem.

Now for any a P ℓ, there exists a finite set F Ă N and x P RF so that xF “ a. It then follows that

ż

ℓ1

dµpyq eipy,aq “
ż

RF

dµF pyq eipy,xq “ θF pxq “ θpxF q “ θpaq

so we have that θ “ θµ on ℓ. We remark that if for µ and ν on ℓ1 one has θµ “ θν then we can again use

Bochner’s Theorem over Rd to show that µ and ν1 have the same finite dimensional distributions, thus by

Kolmorogorov’s Extension Theorem one must have µ “ ν

We remark that we only needed the countable version of Kolmogorov’s Extension Theorem.

1.4.2 Bochner-Minlos Theorem for S 1pRdq

Identification with Sequences

We start by defining Schwartz space on Rd, denoted by SpRdq, and its correspond dual, the space of

tempered distributions which we denote by S1pRdq. We make frequent use of multi-index notation. For

α “ pα1, . . . , αdq P Nd and x P Rd we define xα “ śd
i“1 x

αi

i . We also define differential operators Dα acting

on functions over Rd by defining Dα :“ śd
i“1 Bαi

i .

Definition. Schwartz space over Rd, denoted by SpRdq, is defined to be the set of all smooth functions

f P C8pRdq such that for any multi-indices α, β P Nd one has

||f ||α,β :“ sup
xPRd

|xαDαfpxq| ă 8

We turn SpRdq into a topological vector space by equipping it with the topology induced by the countable family

of seminorms t|| ¨ ||α,βu
α,βPNd . In particular SpRdq is Frechet space with the mentioned topology coinciding

with the one induced by the metric

dpf, gq “
8ÿ

k“0

2´kmax p||f ´ g||k, 1q

where seminorms t||f ´ g||ku8
k“0 are an arbitrary enumeration of the seminorms t|| ¨ ||α,βu

α,βPNd .

In keeping with earlier conventions we will use SpRd,Cq to denote the corresponding space of complex

valued test functions, in particular SpRd,Cq is just the complexification of Rd.

Definition. The space of tempered distributions over Rd, denoted by S1pRdq, is defined to be the topological

dual of the space SpRdq, i.e. the space of all continuous linear functionals on SpQdpq. We turn S1pQdpq into a
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topological vector space by equipping it with its cylinder set topology.

We similarly define S1pRd,Cq to be the topological dual of SpRd,Cq. The complex case is not of interest

here but will come up in Chapter 2.

Again our first step is to identify the space SpRdq with a space of real sequences. As mentioned before

here we follow [61]. Since SpRdq Ă L2pRdq one can expand test functions in SpRdq in terms of the orthonormal

basis of Hermite polynomials, in other words harmonic oscillator wavefunctions.

For simplicity of notation we specialize to the case d “ 1, the generalization to higher dimensions is

straightforward. We define the n-th Hermite polynomial φn P SpRq

φnpxq “ π´ 1

4 2´ n
2 pn!q´ 1

2 e
1

2
x2

„ˆ
d

dx

˙n
e´x2


.

For f P SpRq we will identify f Ø tanu8
n“0 where the an are given by

an “
ż

R

dx fpxqφnpxq.

Clearly ||f ||L2 “ ||a||ℓ2 ă 8. However one can show stronger growth conditions on the Hermite expansion

coefficients f P SpRq, in particular these coefficient sequences decay faster than any polynomial. To see this

we start by defining the operator

H “ ´ d2

dx2
` x2 ` 1

on SpRq.

Proposition 1.13. Suppose that f P SpRq. Then the corresponding sequence of Hermite coefficients tanu8
n“0

satisfy
8ÿ

n“0

|an|2pn` 1qm ă 8 for all m

We observe that Hmφn “ 2mpn` 1qmφn and that Hmf P SpRq Ă L2pRq. One then has

2m
8ÿ

n“0

anpn` 1qm “ xf,HmfyL2 ă 8.

We define the norm | ¨ |m on sequences a “ tanu8
n“0 via setting

|a|m “
« 8ÿ

n“0

|an|2pn` 1qm
ff 1

2

.

This gives us a a corresponding norm | ¨ |m on SpRq via our linear map f Ñ tanu8
n“0.

We introduce some terminology - two families of seminorms are said to be equivalent if for each family,

each seminorm in that family can be bounded above by a finite linear combination of seminorms from the

other family. In particular equivalent families of seminorms generate the same topology. One can show that

the norms | ¨ |m are equivalent to the seminorms we gave when we defined Schwartz space.
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Proposition 1.14. The two families of seminorms on SpRq

t|| ¨ ||α,βuα,βPN1 and t| ¨ |mu8
m“0

on SpRq are equivalent

Proof: See [61, Lemmas 6,7,8,9].

We now define the sequence space

s “ ta “ tanu P RN| @ m P N, |a|m ă 8u.

From Proposition (1.14) it follows that f P L2pRq satisfies f P SpRq if and only if a “ tanu8
n“0 P s - so we

have a linear bijection between SpRq and s. Additionally if we turn s into a topological vector space by

equipping it with the family of seminorms t| ¨ |mu8
m“0 then SpRq and s are isomorphic as topological vector

spaces.

At this point we say a little about how this construction can be carried over to higher dimensions

expanding f P SpRdq as a sum of products of Hermite functions indexed by mult-indices, that is for α P Nd

one sets

φαpxq “
dź

i“1

φαi
pxiq.

Accordingly SpRdq can be identified with a space of “sequences” indexed by multi-indices, the corresponding

sequence space can be turned into a topological vector space by using the seminiorms similar to the seminorms

used in the definition of s. For example for fixed sequence a P RNd

and m P N one could set

|a|m “
ÿ

αPNd

«
dź

i“1

pαi ` 1qm
ff
aα.

In fact in [61, Theorem 9] the above identifications are used to prove the following result:

Proposition 1.15. For any dimension d the spaces SpRdq and SpRq are isomorphic as topological vector

spaces.

We now continue our analysis on SpRq, keeping in mind what we do can easily be generalized to SpRdq.
We remark that the | ¨ |m are a directed family of seminorms. A family of seminorms tNγuγPI is said to

be directed if for every finite collection γ1, . . . , γn P I there exists γ̄ P I and C ą 0 such that

nÿ

j“1

Nγj p¨q ď CNγ̄p¨q.

We also mention that the seminorms indexed by multi-indices we defined for SpRdq are also directed.

We now prove the following theorem about continuous linear functionals on SpRq

Lemma 1.3. A linear map T : SpRq Ñ C is continuous if and only if there exists some C ě 0, m P N such

that for all f P SpRq
|T pfq| ď C|f |m
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Proof: Sufficiency of the given inequality is immediate, we now show necessity. Suppose that T is a

continuous linear functional, then there must be a non-empty open set U Ă SpRq containing 0 such that for

all f P U one has T pfq ď 1.

We remark that by Proposition (1.14) one has the norms t| ¨ |ju8
j“0 generate the topology on U Ă SpRq,

so there must be an ǫ ą 0 and N P N such that

Nč

j“0

tf P SpRq| |f |j ă ǫu Ă U

However since the seminorms are directed we can find m P N, and A ą 0 such that

Nÿ

j“0

| ¨ |j ď Aˆ | ¨ |m.

The assertion is then proved by using this choice of M and letting C “ A
ǫ
.

We mention that it is easy to use the basic idea of Lemma 1.3 to show that tempered distributions

T P S1pR,Cq are of “finite order” - i.e. T pfq depends on only finitely many derivatives of f .

Now for T P S1pRq we identify T Ø tbnu8
n“0 P RN via setting

bn “ T pφnq

The next proposition shows that elements of SpRq correspond to sequences of at most polynomial growth.

Proposition 1.16. Suppose that T P S1pRq and let tbnu8
n“0 be the corresponding sequence of Hermite

coefficients. Then there exists C ě 0, m P N such that for all n P N

|bn| ď Cp1 ` nqm

Proof: We recall that |φn|m “ pn` 1qm
2 . Now let C,m be given as promised in Proposition 1.3. Then one

has |bn| “ |T pφnq| ď C|φn|m “ Cpn` 1qm
2 .

We now define the dual sequence space

s
1 “ tb “ tbnu8

n“0 P RN| Dm P N such that sup
n

|bn|p1 ` nq´m ă 8u

It then follows from Proposition 1.3 that every T P SpRq can be identified with a unique sequence b P s
1.

Additionally every b P s
1 defines a unique Tb P SpRq via defining Tbpfq “ ř8

n“0 bnan where an are the

Hermite expansion coefficients for f P SpRq - this is clearly a linear functional on SpRq - continuity follows

by showing the inequality stated in Lemma 1.3.

Thus our identification between elements T P S1pRq and sequences b P s
1 is a linear isomorphism of vector

spaces. It is not hard to see that s1 is the topological dual of the Frechet space s where the duality pairing

is given by

b ¨ a “
8ÿ

n“0

bnan

for b P s
1 and a P s

1
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We turn s
1 into a topological vector space by equipping it with its corresponding cylinder set topology.

With this topology this correspondance between S1pRq (which is equipped with its corresponding cylinder

topology) and s
1 is an isomorphism of topological vector spaces.

The characterization of Schwartz space in terms of Hermite expansions also gives a proof of the kernel

theorem.

Lemma 1.4. Let L be an n-multilinear functional on SpRdq. Then L is jointly continuous if and only if

there exist j1, . . . , jn and C ą 0 such that

|Lpf1, . . . , fnq| ď C

nź

k“1

|fk|jk

Proof: This lemma is proved just like Lemma 1.3.

Theorem 1.8. Given a jointly continuous n-multilinear functional L on SpRdq there is a unique distribution

L̃ P S1pRndq such that

Lpf1, . . . , fnq “ L̃pf1 b ¨ ¨ ¨ b fnq

for any f1, . . . , fn P SpRdq

Proof: We sketch the proof which is quite simple in this setting, we also restrict ourselves to the case n “ 2

- the general case follows by the same argument. The main idea is to construct L̃ via a Hermite expansion

in Hermite polynomials over Rnd.

For multi-indices α, β P Nd we define the multi-index pα, βq P N2d via concatenation, then our Hermite

basis over Rnd can be written

tφα,βuα,βPNd

where for x, y P Rd we have

φpα,βqpx, yq “ φαpxqφβpyq

and the φα, for α P N correspond to the Hermite basis for Rd.

The Hermite expansion coefficients for our desired L̃ are then given by

L̃pφpα,βqq “ Lpφα, φβq.

Now in order for these coeffiicents to determine an element of S1pR2dq we must find some m P Nsuch that

sup
α,βPNd

L̃pφpα,βqq ppα, βq ` 1q´m ă 8

where for a multi-index γ P Nk

pγ ` 1q “
kź

j“1

pγj ` 1qd.

However this is immediate from Lemma 1.4 since one has the existence of C ą 0 and r, s P N such that

L̃pφpα,βqq “ Lpφα, φβq ď C ˆ |φα|r ˆ |φβ |s “ C ˆ pα ` 1q r
2 ˆ pβ ` 1q s

2 ď C ˆ ppα, βq ` 1q
maxpr,sq

2 .
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Thus the given Hermite coefficients L̃pφpα,βqq determine a distribution L̃ P S1pRdq. Uniqueness of such an L̃

follows by a density argument.

We now turn our focus back to proving the Bochner Minlos Theorem for SpRdq. It will be more convenient

to use slightly different seminorms on SpRq. For a “ tanu8
n“0 P RN and m P Z we define the norm || ¨ ||m

||a||m “
« 8ÿ

n“0

pn2 ` 1qm|an|2
ff 1

2

Clearly the family of norms t|| ¨ ||mumPN and t| ¨ |mumPN are equivalent families for s and generate the same

topology on s.

We now define, for m P Z the sequence spaces

sm “ ta “ tanu8
n“0 P RN| ||a||m ă 8u

We can then write s “ Ş
mPZ sm and view s as a Frechet space with the topology generated by t|| ¨ ||mumPZ

(it is easy to see throwing in the negatively indexed norms doesn’t change the topology). Similarly we have

that s1 “ Ť
mPZ sm.

The Bochner-Minlos Theorem for S1pRdq

We now follow [63]. The theorem we seek to prove is

Theorem 1.9 (Bochner - Minlos Theorem for S1pRdq). There is a one-to-one correspondance between prob-

ability measures µ on the measure space pS1pRdq, Cq and the set of functions θ : SpRdq Ñ C which satisfy (i)

θp0q “ 1, (ii) θ is continuous on ℓ, (iii) θ positive definite. The correspondance µ Ø θµ is given by

θµpfq “
ż

S1pRdq
dµpφq eiφpfq,

Note that φpfq denotes the duality pairing between φ P S1pRdq and f P SpRdq

Owing to Proposition 1.15 and the identification of the topological vector spaces SpRq and S1pRq with s

and s
1 it suffices to prove

Theorem 1.10 (Bochner - Minlos Theorem for s1). There is a one-to-one correspondance between probability

measures µ on the measure space ps1, cq and the set of functions θ : s Ñ C which satisfy (i) θp0q “ 1, (ii) θ

is continuous on s, (iii) θ positive definite. The correspondance µ Ø θµ is given by

θµpaq “
ż

s

dµpbq exp ripb ¨ aqs ,

where pb ¨ aq denotes the duality pairing between b P s
1 and a P s. Here c denotes the cylinder set σ-algebra

on s
1.

Proof: As before the necessity of conditions (i), (ii), and (iii) are clear.

For any finite set F Ă N the map x Ñ xF defined in the proof of Theorem 1.5 is a continuous linear

map RF Ñ s. We can then proceed exactly as in the proof of Theorem 1.5 to use the function θ to define a
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family of consistent finite dimensional distributions which uniquely determine a measure µ on RN where RN

is equipped with its product σ-algebra. In particular µ is the unique measure on RN such that

θpaq “
ż

RN

dµpbq exp ripb ¨ aqs , (1.6)

for all almost finite sequences a, that is for a P ‘nPNR.

Note that the sets sm and s
1 are measurable subsets of RN and the cylinder σ-algebra on s

1 is just the

restriction of the product σ-algebra on RN to s
1. Now we show that the constructed measure µ on RN satisfies

µps1q “ 1.

It suffices to show that for any ǫ ą 0 there exists m P Z such that

µpsmq ě 1 ´ ǫ.

Now for α ą 0, and m,M P N we define the Gaussian measures σα,m,M on RM`1 via

dσα,m,M pyq “
Mź

j“0

1a
2παp1 ` j2qm

exp

«
´

y2j

2αp1 ` j2qm

ff
dyj .

Using the familiar formula for the characteristic function of a Gaussian we see that for any x “ px0, . . . , xM q P
RM`1 one has ż

RM`1

dσα,m,M pyq exp ripx ¨ yqs “ exp

«
´α

2

Mÿ

j“0

p1 ` j2qm|xj |2
ff

Now by applying monotone convergence and Fubini’s Theorem we see

µpsmq “ lim
αÑ0`

lim
MÑ8

ż

RN

dµpbq exp

«
´α

2

Mÿ

j“0

p1 ` j2qm|bj |2
ff

“ lim
αÑ0`

lim
MÑ8

ż

RN

dµpbq
ż

RM`1

dσα,m,M pyq exp ripb ¨ yqs

“ lim
αÑ0`

lim
MÑ8

ż

RM`1

dσα,m,M pyq
ż

RN

dµpbq exp ripb ¨ yqs

“ lim
αÑ0`

lim
MÑ8

ż

RM`1

dσα,m,M pyq θpyq

“ lim
αÑ0`

lim
MÑ8

ż

RM`1

dσα,m,M pyq ℜ rθpyqs

(1.7)

Note that above we abused notation, thinking of y P RM`1 as an almost finite sequence where only the

first M ` 1 entries are allowed to be non-vanishing.

Now let ǫ ą 0 be given, then since θ is continuous there exists some open set U Ă s containing 0 such

that for a P U one has |θpaq ´ 1| ă ǫ. Since the norms || ¨ ||m on s are directed it follows that there must be

some k P Z and δ ą 0 such that ||a||k ă δ ñ a P U - without loss of generality we assume δ ă 1.

With m given as above we claim that for all a P s one has

ℜ rθpaqs ě 1 ´ ǫ´ 2δ´2||a||2k. (1.8)
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We first observe that the above inequality holds if ||a||k ď δ2 since for such a one has |θpaq ´ 1| ă ǫ. For

||a||m ą δ2 the above inequality follows from the fact that one has the uniform bound ℜ rθs ě ´1. This

uniform bound comes the positive definiteness condition on θ which forces |θpaq| ď θp0q “ 1 for all a P s.

We fix m “ ´k ´ 1 and apply the bound (1.8) in (1.7) to get

µpsmq ě lim
αÑ0`

lim
MÑ8

1 ´ ǫ´ 2δ´2

ż

RM`1

dσα,m,M pyq ||y||2k

“ lim
αÑ0`

lim
MÑ8

1 ´ ǫ´ 2δ´2

ż

RM`1

dσα,m,M pyq
˜

Mÿ

j“0

p1 ` j2qk|yj |2
¸

“ lim
αÑ0`

lim
MÑ8

1 ´ ǫ´ 2δ´2

˜
Mÿ

j“0

αp1 ` j2qk`m
¸

“ 1 ´ ǫ´ lim
αÑ0`

2αδ´2

˜ 8ÿ

j“0

1

1 ` j2

¸
“ 1 ´ ǫ

where in going to the second to last line above we used that for 0 ď j ď M one has

ż

RM`1

dσα,m,M pyq y2j “ αp1 ` j2qm.

Now it follows that

θpaq “
ż

RN

dµpbq exp ripb ¨ aqs ,

for all almost finite sequences. However since both sides of the above equation are continuous as functions of

a P s and almost finite sequences are dense in s it follows that equality must hold on all of s. We remark that

uniqueness is already taken care of (we proved it at the level of measures on RN) so the proof is finished.

1.4.3 Moment Reconstruction Theorem for S 1pQd
pq

Our goal for this subsection is to prove the following theorem.

Theorem 1.11. Let pSnqně0 be a sequence of distributions with Sn P S1pQndp q which satisfies

1. S0 “ 1,

2. for any n, Sn is invariant by the permutation group Sn,

3. for all almost finite sequence of test functions phnqně0 with hn P SpQndp ,Cq one has

ÿ

n,mě0

Sn`mphn b hmq P r0,8q ,

4. For all finite dimensional complex subspace V of SpQdp,Cq there exists a semi-norm NV on SpQdp,Cq
such that for all n ě 0 and all f1, . . . , fn in V one has

|Snpf1 b ¨ ¨ ¨ b fnq| ď n! ˆ NV pf1q ˆ ¨ ¨ ¨ ˆ NV pfnq ;
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then there exists a unique probability measure with finite moments ν on the measurable space pS1pQdpq, Cq
such that for all f1, . . . , fn P SpQdp,Cq we have

Snpf1 b ¨ ¨ ¨ b fnq “
ż

S1pQd
pq

dνpφq φpf1q ¨ ¨ ¨φpfnq .

We will give the proof of Theorem 1.11 at the end of this subsection. Above we are naturally iden-

tifying Sn P S1pQndp q with corresponding elements of S1pQndp ,Cq. We also use the notational convention

that SpQ0
p,Cq “ C, and S1pQ0

p,Cq “ C, with the corresponding duality pairing given by multiplication.

Additionally for λ P SpQ0
p,Cq, f P SpQndp ,Cq the notation λb f just denotes λf .

As we did for Bochner-Minlos we will prove Theorem 1.11 by proving a similar theorem in the space ℓ1.

We will make frequent use of multi-indices in this section, in this setting some of these multi-indices will

live in the set Nn for some positive integer n and others will live in the set I “ ‘8
i“0N - in the latter case

these multindices will have infinitely many entries but only finitely many non-zero ones. For a multi-index α

we write |α| to denote the sum of the entries, i.e.
ř
i αi. For α P I we write supppαq to denote the support

of the multi-index, that is supppαq :“ ti P N| αi ­“ 0u. For any subset F Ă N we write IF for the subset of

I formed by multi-indices whose supports are contained in F .

The next theorem gives some conditions on a set of “candidate” moments tMαuαPI that are sufficient

for them to specify a unique probability measure µ on ℓ1 that satisfies

Mα “
ż

ℓ1

dµpxqxα (1.9)

where for x P ℓ1 we have xα “ ś8
i“0 x

αi

i .

Theorem 1.12. Suppose that the family of real numbers Mα indexed by α P I satisfy the following properties

(i) M0 “ 1

(ii) Positive-definiteness: For any finite subset J Ă I and for any collection of complex numbers zα indexed

by α P J one has ÿ

α,βPJ
zαz̄βMα`β ě 0.

(iii) Exponential Summability: For any finite subset F Ă N there exists CF ą 0 such that for all α P IF

one has

|Mα| ď C
|α|
F |α|!.

Then there exists a measure µ on ℓ1, equipped with its product σ-algebra, such that (1.9).

We first prove an analogous theorem that we can apply to specify measures on Rn from moments.

Theorem 1.13. Let n be some fixed positive integer and suppose that the family of real numbers Mα indexed

by α P Nn satisfy the following properties:

(i) M0 “ 1
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(ii) Positive-definiteness: For any collection of complex numbers zα indexed by α P Nn one has

ÿ

α,β

z̄αzβMα`β ě 0.

(iii) Exponential Summability: There exists C ą 0 such that

|Mα| ď C |α||α|!

Then there is a unique Borel probability measure ν on Rn such that

Mα “
ż

Rn

dνpxq xα

Finding conditions on a sequence of real numbers in order to be guaranteed a measure which has these

numbers as its moments is called the Moment Problem and has a long history as a problem of classical

analysis. One can find sufficient and necessary conditions on a sequence of candidate moments to uniquely

determine a measure on Rn that realizes those moments in the article [53]. We only concern ourselves with

sufficiency here - in particular we want analytic conditions to impose on the sequence of candidate moments

that can easily be checked via the RG machinery we develop. The bounds on moments we assume correspond

to exponential integrability for the corresponding measures - this will greatly simplify our task.

The measure described in the assertion of Theorem 1.13 will be constructed as a spectral measure for a

particular family of self-adjoint operators.

We now assume that for some n we are given a sequence of candidate moments tMαuαPNn that satisfy

the assumptions of 1.13. We remark that the positive-definiteness condition on the moments gives us the

“Cauchy-Schwartz” bound

M2
α ď M2α.

Let P “ Crx1, ...., xns. We are going to define a positive semidefinite sesquilinear form on p¨, ¨qP on P

which can be thought of as a pre-inner product. Let f, g P P be as follows:

f “
ÿ

α

gαx
α, g “

ÿ

β

gβx
β

We then define

pf, gqP “
ÿ

α,β

f̄αgβMα`β

The fact that the form is positive semidefinite comes from condition (ii). Now for 1 ď j ď n we define

linear operators Aj one P via

Ajf “ xjf

It is clear that all the Aj are symmetric with respect to our pre-inner product and commute on all of P.

Let Q “ th P P : ph, hqP “ 0u. We note that Q is an ideal of P. In particular our pre-inner product
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lifts to the complex vector space P{Q where it becomes a positive definite inner product which we denote

by p¨, ¨q. The Aj lift to linear operators Ãj on P{Q by virtue of the fact that Q is invariant under each Aj

(in particular Q is an ideal in P). To see this fact suppose h P Q. Then for any j one has

pAjh,AjhqP “ pA2
jh, hqP ď pA2

jh,A
2
jhq1{2

P ph, hq1{2
P “ 0.

We will abuse notation and continue to write Aj for Ãj .

Now define H as the completion of P{Q under the inner product p¨, ¨q. The Aj are then densely defined

symmetric operators on H with DpAjq “ P{Q Ă H. Our goal is to prove that the Aj have commuting

self-adjoint closures Âj . The measure we wish to construct will be the joint spectral measure of this family

of operators.

A crucial tool in establishing the above claims is Nelson’s Analytic Vector Theorem.

Definition. Let B be a densely defined symmetric operator on a Hilbert space H. A vector v P Ş8
n“1 DpBnq

is said to be analytic for B if:

8ÿ

n“0

||Bmv||
m!

tm converges for some t ą 0 (1.10)

Theorem 1.14 (Nelson’s Analytic Vector Theorem). Let B be a densely defined symmetric operator. If the

analytic vectors of B are dense in H then B is essentially self-adjoint.

Proof: See [54, Theorem X.39].

We now prove that the operators Aj are essentially self-adjoint.

Lemma 1.5. For all 1 ď j ď n we have that Aj maps P{Q to itself. Additionally @v P P{Q one has

8ÿ

q“0

||Aqjv||
q!

tq ă 8 for t P
„
0,

1

3C

˙

As a result each Aj is essentially self-adjoint.

Proof: The statement about the Aj leaving P{Q is clear.

It suffices to prove the second assertion for monomials v “ xα in P{Q. Below we use the notation δi to

denote the multi-index in Nn which zero for all the entries except the i-th one where it takes the value 1.

8ÿ

q“0

||Aqjxα||
q!

tq “
8ÿ

q“0

||xα`qδj ||
q!

tq

“
8ÿ

q“0

pM2α`2qδjq
1

2

q!
tq

ď
8ÿ

q“0

“
F 2|α|`2qp2|α| ` 2qq!

‰ 1

2

q!
tq
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ď 3|α|C |α|a|2α|!
8ÿ

q“0

3qCqtq ă 8 for t P
„
0,

1

3C

˙

In going from the third line to the fourth we used the bound:

p2|α| ` 2qq!
q!q!p2|α|q! ď 32|α|`2q

This proves the second assertion. The claim that the Aj are essentially self-adjoint follow from the first two

assertions, Theorem 1.14, and the fact that P{Q is dense in H.

We now show that the self-adjoint closures Âj all commute. This is equivalent to proving that the unitary

groups generated by the Âj commute. We would like to work at the level of power series expansions of the

unitary groups. To facilitate this we give the following lemma which uses part of the proof of Nelson’s

Analytic Vector Theorem.

Lemma 1.6. For any 1 ď j ď n and v P P{Q one has, for any s P
`
´ 1

3C
, 1
3C

˘
,

eisÂjv “
8ÿ

q“0

pisqq
q!

A
q
jv.

Proof: We first remark that the quantity on the right hand side of the asserted equality is absolutely

convergent by Lemma 1.5.

Now let µv be the spectral measure for the vector v under Âj . Then

pv, eisÂjvq “
ż

R

dµvpxq eisx “
ż

R

dµvpxq
« 8ÿ

q“0

xq

q!
pisqq

ff

Assuming that we were allowed to switch the integral and sum we would have

pv, eisÂjvq “ lim
NÑ8

Nÿ

q“0

„ż

R

dµvpxq x
q

q!
pisqq


“ lim

NÑ8

˜
v,

Nÿ

q“0

pisqq
q!

Â
q
jv

¸
“

˜
v,

8ÿ

q“0

pisqq
q!

Â
q
jv

¸
(1.11)

Now by polarization the above equality implies that for all u, v P P{Q one has

pu, eisÂjvq “
˜
u,

8ÿ

q“0

pisqq
q!

Â
q
jv

¸
. (1.12)

Since P{Q is dense the assertion would follow. We remark that it was important that we had a uniform

“radius of analyticity” for a dense set of analytic vectors - if the domain of s for which (1.11) was valid was

v-dependent then we would not have (1.12) for all u P P{Q.

The switching of the order of integration and summation is justified by Fubini along with the bound
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8ÿ

q“0

„ż

R

dµvpxq |x|q
q!

|s|q


ď
8ÿ

q“0

|s|q
q!

ˆż

R

dµvpxq |x|2q
˙ 1

2 |s|q
q!

ˆż

R

dµvpxq 1

˙ 1

2

“
8ÿ

q“0

|s|q
q!

´
v, Â

2q
j v

¯1{2
pv, vq1{2 “ ||v||

8ÿ

q“0

|s|q
q!

||Âqjv|| ă 8

where in the last line we used Lemma 1.5.

More generally the proof of the above lemma shows that if one has a dense set of analytic vectors for

a symmetric operator B with a uniform radius of analyticity then for any analytic vector h the quantity

eitB̂h can be represented by a power series within h’s radius of analyticity. The next lemma proves that our

unitary groups commute.

Lemma 1.7. @v P P{Q, 1 ď j, k ď n, and s P
`
´ 1

5C
, 1
5C

˘
one has that

eiÂjsv P
8č

m“1

DpÂmk q.

If both s, t P
`
´ 1

5C
, 1
5C

˘
and v P P{Q then one has that

eiÂkteiÂjsv “
8ÿ

m“0

pitqm
m!

Âmk e
iÂjsv “

8ÿ

m“0

8ÿ

q“0

pitqm
m!

pisqq
q!

Amk A
q
jv. (1.13)

It follows that for such t, s and v P P{Q one has

eiÂkteiÂjsv “ eiÂjseiÂktv. (1.14)

Finally one has that for any t, s one has that the operators eiÂkt and eiÂjs commute on all of H.

Proof: The assertion that eiÂjsv P Ş8
m“1DpÂmk q for v P P{Q follows from the fact that Âk is a closed

operator and Lemma 1.6. In particular we note that for all m P N

lim
NÑ8

Âmk

Nÿ

q“0

pisqq
q!

A
q
jv “ lim

NÑ8

Nÿ

q“0

pisqq
q!

A
q
jA

m
k v

where the final limit exists by Lemma 1.6 since Amk v P P{Q.

We now turn to proving (1.13) - without loss of generality it suffices to prove (1.13) for v “ xα. From

the proof of Lemma 1.6 and noting our remarks after that lemma we remark that in order to prove the first

equality of (1.13) it suffices to show that eiÂjsv is an analytic vector for Âk with radius 1
5C

. To see this we

note that

8ÿ

m“0

tm

m!
||Âmk eiÂjsxα|| “

8ÿ

m“0

tm

m!

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

8ÿ

q“0

pisqq
q!

Amk A
q
jx
α

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
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ď
8ÿ

m“0

8ÿ

q“0

tm|s|q
m!q!

b
M2pα`mδk`qδjq

ď
8ÿ

m“0

8ÿ

q“0

tm|s|q
m!q!

b
C2p|α|`q`mqp2|α| ` 2q ` 2mq!

ď p5Cq|α|ap2|α|q!
8ÿ

m“0

8ÿ

q“0

tm|s|qp5Cqq`m ă 8

In the second to last inequality we used the fact that

p2|α| ` 2q ` 2mq!
q!q!m!m!p2|α|q! ď 52|α|`2q`2m.

The last equality of (1.13) also follows. Assertion (1.14) follows for our regime of t, s since the operators

Aj and Ak commute and our uniform bounds allow us to change the order of summation for the rightmost

quantity in (1.13). Since the operators involved are bounded (1.14) must hold for all v P H - and at that

point one can use the group operation of these one parameter unitary groups to extend the commutation

relation to hold for all t, s P R.

We now prove Theorems 1.13 and 1.12

Proof of Theorem 1.13: Let R “ pa1, b1q ˆ ... ˆ pan, bnq be a rectangle on Rn. Define the projection

valued spectral measure of R as
śn
i“1 Pi,pai,biq where Pi,λ is the projection valued measure corresponding to

Âi. Then p1,śn
i“1 Pi,pai,biq1q is a premeasure on rectangles which extends to a Borel probability measure on

Rn, call this measure µ. From results proven in the appendix about the joint spectral measure we have:

ż

Rn

eit¨ydµpyq “
˜
1,

nź

j“1

Ujptjq1
¸

where Uj is the unitary group generated by Âj . Note that for sufficiently small t1, ..., tn the left hand side

is analytic in these arguments - the proof in Lemma 1.7 generalizes and one can expand the product of the

Uj ’s if supj |tj | ă 1
p2n`1qC . This allows us to take partial derivatives evaluated at 0. In this way one can

recover all the moments: ż

Rn

yαdµpyq “
˜
1,

nź

i“1

Âαi

i 1

¸
“ Mα.

We have established existence for our solution to the Moment Problem. Uniqueness comes from the

fact that our moment estimates allow us to determine the characteristic function from our moments - see

Theorems 5.2 and 5.3 in the appendix.

Proof of Theorem 1.12: The assumptions of Theorem 1.12 can be used to construct for each finite subset

F Ă N a Borel probability measure µF on RF with moments given by Mα with α P IF , additionally µF
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is the unique such measure on RF with those given moments. This uniqueness allows us to prove that the

family of finite dimensional distributions tµF u, F Ă N finite, are consistent. To see this suppose that that

F , G are finite subsets of N with F Ă G. Then the RF marginal of the measure µG has the same moments

as µF and thus the two must coincide.

This means that by Kolomogorov’s Extension Theorem there exists a unique measure µ on RN (where

RN is equipped with its product σ-algebra).

We can now prove Theorem 1.11.

Proof of Theorem 1.11:

Let the tenu8
n“0 be as given in Proposition 1.2. We now define a family of candidate moments which

when used as an input to Theorem 1.12 will specify a measure on ℓ. We set M0 :“ S0 “ 1. For α P I with

α ­“ 0 we set

Mα :“ S|α|
`
bjPsupppαqpbαj

k“1ejq
˘
.

We note that the argument of S|α| above is an element of SpQd|α|
p q. In particular for non-zero α P I it will

be useful to define

gα “ bjPsupppαqpbαj

k“1ejq P SpQd|α|
p q

while for α “ 0 we define g0 “ 1. With these definitions we have Mα “ S|α|pgαq.
We now check the positive definiteness condition of Theorem 1.12. Let J be a finite subset of I and zα

be some collection of complex numbers indexed by α P J . For n P N we set Jn :“ tα P J | |α| “ nu. We

then define

hn “
ÿ

αPJn

zαgα

We remark that phnqně0 is an almost finite sequence of test functions with hn P SpQndp ,Cq so by assumption

(3) stated in the theorem we have

ÿ

n,mě0

Sn`mphn b hmq P r0,8q.

Rewriting the summands above gives us

Sn`mphn b hmq “ Sn`m

˜« ÿ

αPJn

Ďzαgα
ff

b
« ÿ

βPJn

zβgβ

ff¸
“

ÿ

αPJn

βPJm

ĎzαzβSn`mpgα b gβq.

Now if one writes out the definitions of gα, gβ , and fα`β it is clear that the symmetry of the Sn`m with respect

to permutations of the n`m underlying variables implies that one must have Sn`mpgαbgβq “ Sn`mpgα`βq
for all α P Jn, β P Jm. It follows that

ÿ

n,mě0

Sn`mphn b hmq “
ÿ

n,mě0

ÿ

αPJn

βPJm

ĎzαzβSn`mpgα`βq “
ÿ

n,mě0

ÿ

αPJn

βPJm

ĎzαzβMα`β “
ÿ

α,βPJ
ĎzαzβMα`β ,

so positive definiteness is proved.

The final ingredient we need for applying Theorem 1.12 are the factorial bounds on the moments tMαu.
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Let F Ă N be a finite subset. We define V to be the subspace of SpQdp,Cq formed by the span of tejujPF .

Let NV be the seminorm on V that is given by assumption (4) of the theorem. We set

CF “ sup
jPF

NV pejq

Now choose some α P IF . If we set n “ |α| then gα is of the form gα “ f1 b¨ ¨ ¨bfn for f1, . . . , fn P tejujPF Ă
V . It follows that

|Mα| “ |Snpgαq| ď n! ˆ
nź

j“1

NV pfjq

ď n! ˆ CnF “ |α|! ˆ C
|α|
F .

Now by Theorem 1.12 the family of candidate moments tMαu determine a measure µ on ℓ1 with

ż

ℓ1

dµpyq yα “ Mα.

We define the measure ν on pS1pQdpq, Cq to be the pushforward of the measure µ under the isomorphism of

topological vector spaces pT˚q´1 : ℓ Ñ S1pQdpq ( see the end of 1.3.1). This map’s action is given by

y “ tyju8
j“0 ÝÑ

8ÿ

j“0

yjej P S1pQdpq.

We also make the trivial remark that µ coincides with the pushforward of ν under T˚ : SpQdpq Ñ ℓ1.

We must now check that the measure ν is the unique measure on S1pQdpq that satisfies

Snpf1 b ¨ ¨ ¨ b fnq “
ż

S1pQd
pq

dνpφq φpf1q ¨ ¨ ¨φpfnq (1.15)

all f1, . . . , fn P SpQdp,Cq and for all n.

We fix n. By the multilinearity of both sides of (1.15) in the fj ’s it suffices to show that (1.15) holds for

the case where f1, . . . , fn P tejujPN. By symmetry of both sides of (1.15) we can assume that for 1 ď j ď n

fj “ ekj

with kj P N non-decreasing in j. It follows there exists a unique α P I with |α| “ n and

gα “ f1 b ¨ ¨ ¨ b fn.

Thus with this choice of fj ’s and α fixed as above one has that the left hand side of (1.15) is given by Mα.

On the other hand if T˚φ “ y P ℓ1 then one has that

φpf1q ¨ ¨ ¨φpfnq “ yα.
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Then by a change of variable we have

ż

S1pQd
pq

dνpφq φpf1q ¨ ¨ ¨φpfnq “
ż

ℓ1

dµpyq yα “ Mα

and so (1.15) is proved for our specific choice of the fj ’s and the general case follows. The fact that the

measure ν is the unique measure that satisfies (1.15) for all n is a direct consequence of the uniqueness result

of Theorem 1.12.
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Chapter 2

Classification of translation, rotation,

and scale invariant Gaussian

generalized random fields

2.1 Gaussian Generalized Random Fields

It is common to learn during a first class on measure theory that there is no analog of Lebesgue measure

in infinite dimensions - there are non non-zero, locally finite, translation invariant measures on infinite

dimensional topological vector spaces. However thanks to the Bochner-Minlos Theorem, one can easily

construct a wide variety of Gaussian measures on S1pQdpq and S1pRdq. The main goal of this section is to

provide a classification of Gaussian measures on these spaces which satisfy certain invariance properties. In

what follows when we use the term Gaussian others might instead use the term centered Gaussian - that is

we focus entirely on Gaussians with mean 0.

For some of this section we will work over Qdp and Rd simultaneously. In particular we use the notation

SpKdq and SpKd,Cq with the understanding that one might have K “ Qp or K “ R.

Definition. A measure ν on S1pKdq is a Gaussian Generalized Random Field over Kd if for φ distributed

according to ν one has that for every f P SpKdq the distribution of the random variable φpfq is given by a

Gaussian distribution over R.

Gaussian measures on S1 can be characterized through their covariance bilinear forms.

Definition. We say a (jointly) continuous symmetric bilinear form Cp¨, ¨q on SpKdq is positive definite if

Cpf, fq ě 0 for all f P SpKdq.

One then has the following theorem

Theorem 2.1. There is a one - to - one correspondance between Gaussian measures µ on S1pKdq and

continuous symmetric bilinear forms C on SpKdq

µ Ø Cµ
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where the correspondance is given by

ż

S1pKdq
dµpφqeiφpfq “ exp

„
´1

2
Cpf, fq



where f is an arbitrary test function in SpKdq.

Proof: The fact that for a given Gaussian µ, there exists a unique continuous symmetric bilinear form

Cµ such that θµp¨q “ exp
“
´ 1

2
Cµp¨, ¨q

‰
is rather straightforward and follows from the definition of Gaussian

measures on S1pKdq given above and the fact that any Gaussian measure on R is exponentially integrable.

To show that given a continuous symmetric bilinear form C on S1pKdq there exists a Gaussian measure

µ on S1pKdq with Cµ “ C we can use the corresponding Bochner-Minlos Theorems (Theorems 1.5 and 1.9).

One must show that the function θ : SpKdq Ñ C given by

θpfq “ exp

„
´1

2
Cpf, fq



satisfies the necessary and sufficient conditions given in the Bochner-Minlos Theorem to be the characteristic

function of a measure µ on SpKdq. θp0q “ 1 and continuity of θ are immediate. For positive definiteness one

needs to show that for any n and any f1, . . . , fn P SpKdq the nˆ n matrix

Mi,j “ θpfi ´ fjq for 1 ď i, j ď n

is self-adjoint and positive (semi)definite on Cn. We now note that that the nˆ n matrix

C̊i,j “ Cpfi, fjq for 1 ď i, j ď n

is a symmetric matrix with real entries and by our assumption on Cp¨, ¨q is positive (semi)definite on Rn - it

follows that there is an finite dimensional Gaussian measure µn on Rn with C̊ as its covariance matrix, i.e.

ż

Rn

dµnpxqxixj “ Ci,j

and the characteristic function for µn, denoted by θµn
: Rn Ñ C can easily be checked to satisfy θµn

pxi´xjq “
Mi,j and from the positive definiteness of θµn

we see the matrix M must be self-adjoint and positive

(semi)definite.

2.2 Classification Results

We will start by defining precisely the transformations that correspond to the invariances of interest. The

most natural way to do this is to first give analogous transformations for observables, i.e. test functions in

SpKd,Cq
For functions f : Qdp Ñ C (resp. f : Rd Ñ Cq we define the following transformations:

(i) For y P Qdp (resp. y P Rd) we define the translation operators τy via τypfqpxq “ fpx´ yq.
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(ii) ForM P GLdpZpq (resp. M P Opdq) we define rotation operators RM via Qdp via RM pfqpxq “ fpM´1xq.

(iii) For λ P pZ (resp. λ P p0,8q ) we define scaling operators Sλ via Sλpfqpxq “ fpλ´1xq

Note that in the second definition when writing M´1x we are using the standard action of dˆd matrices

on Kd via matrix multiplication where elements of Kd are seen as column vectors.

We remark that the translation, rotation, and scaling operators of (2.2) take SpKd,Cq to itself and are

in fact continuous linear maps on SpKd,Cq that send real functions to real functions.

With this in mind we can define the following transformations acting on φ P S1 that agree with the

transformations of (2.2) for distributions given by functions. In what follows f is an arbitrary element of

SpKd,Cq.

(i) For y P Qdp (resp. y P Rd) we define the translation operators τ̂ via τ̂ypφqpfq “ φ pτ´yfq

(ii) For M P GLdpZpq (resp. M P Opdq) we define rotation operators R̂M via R̂M pφqpfq “ φ pRM´1pfqq

(iii) For λ P pZ (resp. λ P p0,8q) we define scaling operators Ŝλ via Ŝλpφqpfq “ |λ|dp ˆ φ pSλ´1pfqq (resp.

Ŝλpφqpfq “ λd ˆ φ pSλ´1fq ).

The transformations given in (2.2) are measurable linear maps from S1pKdq to itself. Given a measurable

map L : S1pKdq Ñ S1pKdq we denote its push-forward action on measures by L#.We can then define the

following notions of invariance for measures on S1pKdq.

Definition. Let ν be a cylinder set σ-algebra measure on S1pQdpq or S1pRdq. We say that ν is translation

invariant if τ̂#y ν “ ν for all y P Qdp (resp. y P Rdq. We say that ν is rotation invariant if R̂#
Mν “ ν for all

M P GLdpZpq (resp. M P Opdq). For κ P R we say ν is κ scale invariant if
´

|λ|´κp Ŝλ

¯#

ν “ ν for all λ P pZ

( resp.
´
λ´κŜλ

¯#

ν “ ν for all λ P p0,8q).

Informally if ν is κ scale invariant this means that for φ distributed according to ν one has λ´κφ
` ¨
λ

˘ d“φp¨q
(where the equality distribution holds in joint law).

Classifying Gaussians with the given invariances reduces to classifying continuous symmetric bilinear

forms with analogous invariances.

Proposition 2.1. Let C be a continuous symmetric bilinear form on SpKdq. Suppose that

(a) C is invariant under simultaneous translations in both arguments, that is for any f, g, P SpKdq one has

Cpτzf, τzgq “ Cpf, gq

for any z P Kd.

(b) C is invariant under rotation in both arguments, that is for any f, g, P SpKdq one has

C pRMf,RMgq “ Cpf, gq

for any M P Opdq in the case K “ R or for any M P GLdpZpq in the case K “ Qp.
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(c) For some κ P R the bilinear form C satisfies

For the case K “ Qp |λ|2dp ˆ C pSλ´1f, Sλ´1gq “ |λ|´2κ
p ˆ Cpf, gq for all λ P pZ

For the case K “ R λ2d ˆ C pSλ´1f, Sλ´1gq “ |λ|´2κ ˆ Cpf, gq for all λ P p0,8q.

It then follows that any Gaussian measure µ on SpKdq with Cµ “ C is translation invariant, rotation

invariant, and κ scale invariant.

Conversely if µ is translation invariant, rotation invariant, and κ scale invariant then Cµ must satisfy

the conditions given above.

Proof: This follows by seeing what the consequences for the invariances are at the level of characteristic

functions. Note that if the three conditions are proven for the case where f “ g then they extend to the

cases where f ­“ g by polarization.

Note that if C is a bilinear form that satisfies condition (c) above for some κ we will call C κ scale-

invariant.

We now give our classification theorem.

Theorem 2.2. Suppose that µ is a Gaussian measure on S1pQdpq not concentrated on the 0 distribution.

Then µ is translation invariant, GLdpZpq invariant, and κ-scale invariant if and only if κ ě 0 and there

exists a ą 0 such that for all f, g P SpQdpq one has

ż

S1pQd
pq
dµpφq φpfqφpgq “ aˆ f̂p0q ˆ ĝp0q if κ “ 0 and

ż

S1pQd
pq
dµpφq φpfqφpgq “ aˆ

ż

Qd
p

d3k
f̂pkqĝpkq
|k|d´2κ

for κ ą 0

The theorem is a direct consequence of and Propositions 2.1 and 2.4. In the above theorem the κ “ 0

case corresponds to φ being given by the constant distribution aX where X is a standard Gaussian on R of

mean 0 and variance 1. When d ą 2 the case κ “ d´2
2

corresponds to the massless Gaussian Free Field (up

to a constant) - we give more details.

There is no natural analog of differential operators that act on and then return functions f : Qdp Ñ C.

However we can use the corresponding Fourier multiplier as a stand-in. With this convention the p-adic

Laplacian can be identified with the Fourier multiplier ´|k|2. It then follows that for the case where d ą 2,

κ “ d´2
2

, a “ 1, one has

ż

S1pQd
pq
dµpφq φpfqφpgq “

ż

Qd
p

d3k
f̂pkqĝpkq

|k|2 “
@
f, p´∆q´1g

D

where on the far right hand side x¨, ¨y is the standard L2pQdpq inner product. Generically the κ ą 0 case

corresponds to a fractional Gaussian Free Field, i.e. a Gaussian measure with covariance operator given by

the inverse of a fractional Laplacian

p´∆q´p d´2κ
2 q.
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Similarly one has the following theorem in the real case.

Theorem 2.3. Suppose that µ is a Gaussian measure on S1pRdq not concentrated on the zero distribution.

Then µ is translation invariant, Opdq invariant, and κ-scale invariant if and only if κ ě 0 and there exists

a ą 0 such that for all f, g P SpQdpq one has

ż

S1pRdq
dµpφq φpfqφpgq “ aˆ f̂p0q ˆ ĝp0q if κ “ 0 and

ż

S1pRdq
dµpφq φpfqφpgq “ aˆ

ż

Rd

d3k
f̂pkqĘ̂pkqg
|k|d´2κ

for κ ą 0

Proof: The theorem follows from Propositions 2.1 and 2.9.

2.2.1 Lemmas for the classification - p-adic case

Lemma 2.1. For z P Qmp define Tz acting on f P SpQmp ˆ Qnp ,Cq via Tzpfqpx, yq “ fpx` z, yq (here x P Qmp

and y P Qnp ).

Suppose that φ P S1pQmp ˆQnp ,Cq satisfies the property φpTzfq “ φpfq for all z P Qmp and f P SpQmp ˆQnp ,Cq.
Then there exists ψ P S1pQnp ,Cq such that for all such f one has:

φpfq “
˜
ψpyq,

ż

Qm
p

dmx fpx, yq
¸
.

Proof: Note that by a density argument it suffices to prove the assertion for fpx, yq “ gpxqhpyq where

g P SpQmp ,Cq, h P SpQnp ,Cq. For arbitrary h P SpQnp ,Cq we define

ψphq “
´
φpx, yq,1Zm

p
pxqhpyq

¯
.

By our assumption of partial translation invariance it follows that for any j P Z one has

´
φpx, yq,1pjZm

p
pxqhpyq

¯
“ p´mj

´
φpx, yq,1Zm

p
pxqhpyq

¯
“ p´mjψphq

Of course the above equation still holds if we replace pjZmp by any of its translates. Now we fix j P Z

sufficiently large such that we can write gpxq “ řN
i“1 αi1∆i

pxq where αi P C and the t∆iuNi“1 are distinct,

disjoint translates of pjZmp . One then has

pφpx, yq, gpxqhpyqq “
Nÿ

i“1

αi pφpx, yq,1∆i
pxqhpyqq

“
Nÿ

i“1

αip
´mjψphq

“
˜ż

Qm
p

dmx gpxq
¸
ψphq
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Proposition 2.2. Let C be a bilinear form on SpQdp,Cq which satisfies Cpτzf, τzgq “ Cpf, gq for all z P Qdp

and f, g P SpQdp,Cq. Then there exists C̃ P S1pQdp,Cq such that for all such f, g one has

Cpf, gq “ C̃pf ‹̂ gq

where pf ‹̂ gqpxq “
ş
Qd

p
ddz fpzqgpz ´ yq

Proof: By the Theorem 1.3 there exists F P S1pQdp ˆ Qdpq such that for all f, g P SpQdpq one has

Cpf, gq “ pF px, yq, fpxqgpyqq .

By invoking the translation invariance of C it immediately follows that righthand side is also equal to

pF px, yq, fpx` zqgpy ` zqq for any z P Qdp. Since products fpxqgpyq span SpQdp ˆ Qdpq it then follows that for

any h P S1pQdp ˆ Qdpq one has pF px, yq, hpx` z, y ` zqq “ pF px, yq, hpx, yqq. We now use a change of variable

so that we are in the setting of Lemma 2.1. Define

´
F̃ px, yq, hpx, yq

¯
:“ pF px, yq, hpx` y, x´ yqq .

It is then easy to see that
´
F̃ px, yq, hpx, yq

¯
“

´
F̃ px, yq, hpx` z, yq

¯
for all z P Qdp and test functions h and

so by Lemma 2.1 there exists G P S1pQdpq such that

˜
Gpyq,

ż

Qd
p

ddx hpx, yq
¸

“
´
F̃ px, yq, hpx, yq

¯
.

Reversing the change of variable one has

pF px, yq, hpx, yqq “
ˆ
F̃ px, yq, h

ˆ
x` y

2
,
x´ y

2

˙˙

“
˜
Gpyq,

ż

Qd
p

ddx h

ˆ
x` y

2
,
x´ y

2

˙¸

“
˜
Gpyq, |2|dp

ż

Qd
p

ddz h pz, z ´ yq
¸
.

Setting C̃ “ |2|dpG and hpx, yq “ fpxqgpyq one then has

Cpf, gq “
˜
C̃pyq,

ż

Qd
p

ddz fpzqgpz ´ yq
¸

“ C̃pf ‹̂ gq

Note that ‹̂ is just a modified convolution where the second function has its argument multiplied by ´1

(note that ‹̂ is not commutative).

Given a translation invariant bilinear form C on SpQdpq we use the notation C̃ for the associated dis-

tribution in S1pQdpq given by Lemma 2.2. The goal of the remainder of this subsection is to classify such

distributions arising from the covariance forms of the measures µ described in Theorem 2.2.
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Definition. For α P C we say a distribution F P S1pQdp,Cq is homogenous of degree α if for all λ P pZ one

has ŜλF “ |λ|´αp F . We say F is rotation invariant if R̂MF “ F for all M P GLdpZdpq.

Above for s P p0,8q and α P C we define sα “ exp rLogrssαs where Log is the principal branch of the

logarithm. We will now construct a family tHαuαPC of rotationally invariant generalized functions where Hα

is homogenous of degree α. Following [30] we use the approach of analytic continuation to construct this

family.

Definition. Given an open domain D Ă C, an analytic generalized function on D is a map α P D Ñ Fα P
S1pQdp,Cq such that for every f P SpQdp,Cq one has that the map from D to C given by α Ñ Fαpfq is analytic

on D.

If one has two such maps Fα : U1 Ñ S1pQdp,Cq and Gα : U2 Ñ S1pQdp,Cq with U1 Ă U2 and Fα “ Gα for

α P U1 we then say that Gλ is an analytic continuation of Fλ.

For α satisfying ℜpαq ą ´d we define H̃α P S1pQdp,Cq via

H̃αpfq “
ż

Qd
p

ddx |x|αfpxq (2.1)

For test functions f that do not vanish at the origin the assumption ℜpαq ą ´d is clearly necessary for

the above integral to be well defined and it is not hard to see that H̃α is an analytic generalized function in

this region of the complex plane. Clearly H̃α is homogenous of degree α for ℜpαq ą ´d. The integral (2.1)

is valid for ℜpαq ď ´d if the test function f vanishes at 0 (which by local constancy implies vanishing in a

neighborhood of the origin). With this in mind we try to construct an analytic contination H̃α by rewriting

(2.1) as follows:

H̃αpfq “
ż

Qd
p

ddx |x|α
´
fpxq ´ 1Zd

p
pxqfp0q

¯
` fp0q ˆ

ż

Qd
p

ddx |x|α1Zd
p

“
ż

Qd
p

ddx |x|α
´
fpxq ´ 1Zd

p
pxqfp0q

¯
` fp0q ˆ 1 ´ p´d

1 ´ p´α´d .

(2.2)

In going to the second line we used that for α with ℜpαq ą ´d

ż

Zd
p

ddx |x|α “
8ÿ

γ“0

p´αγ ˆ vol pSγq

“
8ÿ

j“0

p´αγ ˆ pp´dγ ´ p´dpγ`1qq “ 1 ´ p´d

1 ´ p´α´d .

Here for γ P Z we use the notation Sγ “ tx P Qdp : |x| “ p´γ u and vol denotes the volume given by Haar

measure to a measurable subset of Qdp. In particular

volpSγq “ volppγZdpq ´ volppγ`1Zdpq “ p´dγ ´ p´dpγ`1q.

The second line of (2.2) is clearly analytic for α P C with the exception of α “ ´d where it has a simple pole

- thus (2.2) gives an analytic extension of H̃α to Czt´du.
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We cancel the simple pole by dividing by a non-vanishing normalizing factor that has a simple pole in

the same location - we choose this normalization to be “
´

|x|α,1Zd
p
pxq

¯
”. More concretely we introduce the

notation

Γdpαq “ 1 ´ p´d

1 ´ p´α´d .

We then define the analytic generalized function Hα “ 1

ΓdpαqH̃α which is analytic in the whole complex

plane (upon dealing with the removable singularity at α “ ´d). In particular one sees that for any test

function f one has

lim
αÑ´d

Hαpfq “ fp0q

i.e. H´d “ δ where δ P S1pQdp,Cq denotes the Dirac delta distribution at the origin. For α P R, Hα is given

by

Hαpfq “

$
’’’’’&
’’’’’%

1 ´ p´α´d

1 ´ p´d ˆ
ş
Qd

p
ddx |x|αfpxq if α ą ´d

fp0q for α “ ´d
1 ´ p´α´d

1 ´ p´d ˆ
ş
Qd

p
ddx |x|α

´
fpxq ´ 1Zd

p
pxqfp0q

¯
` fp0q for α ă ´d

(2.3)

Note that δ “ H´d is homogenous of degree ´d, we also have the more general statement

Lemma 2.2. For any α P C one has that Hα P S1pQdp,Cq is homogenous of degree α and rotation invariant.

Proof: This can be checked by direct computation for all α P C. One can also note that the quantity

ŜλHαpfq ´ |λ|´αHαpfq (2.4)

is entire in α for any test function f . At the same time since Hα is clearly homogenous of degree α for

α P p´d,8q so (2.4) vanishes on a non-isolated set of points which forces it to vanish for all α P C. The

argument for rotation invariance is similar.

We now show that the bilinear forms that we are interested in correspond to rotation invariant homoge-

nous distributions.

Lemma 2.3. Suppose that C is a bilinear form on SpQdpq which is translation invariant, rotation invariant,

and κ-scale invariant. Then the associated distribution C̃ P S1pQdpq is rotation invariant and homogenous of

degree ´2κ.

Proof: From the assumptions it follows that for any f, g P SpQdpq, M P GLdpZpq, and λ P pZ

C̃pf ‹̂ gq “ C̃ pRM pfq ‹̂ RM pgqq and

C̃µpf ‹̂ gq “ |λ|2κp ˆ |λ|2dp ˆ C̃µ pSλ´1pfq ‹̂ Sλ´1pgqq

Quick computations using changes of variable show that

RM pfq ‹̂ RM pgq “ RM pf ‹̂ gq and Sλ´1pfq ‹̂ Sλ´1pgq “ |λ|´dp ˆ Sλ´1pf ‹̂ gq.

It then follows that the generalized function C̃ satisfies the conditions needed for rotation invariance and
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homogeniety when applied to test functions of the form f ‹̂ g. The lemma will be proved if one shows that

any h P SpQdpq can be written in this form but this is not hard to show. For a given h fix j P Z sufficiently

large such that h is locally constant over translates of pjZdp. It is immediate that

hpyq “
ż

Qd
p

ddz hpzqp´dj1pjZd
p
pz ´ yq “ ph ‹̂ p´dj1pjZd

p
qpyq

While (2.3) gives examples of rotationally invariant homogenous distributions our goal is to show that

these are the only possibilities (up to a constant of proportionality). The first step is to characterize the

behaviour of rotationally invariant homogenous distributions away from the origin.

Lemma 2.4. Let F P S1pQdp,Cq be a rotation invariant distribution that is homogeneous of degree of α.

Then there exists K P R such that for all f P SpQdp,Cq that satisfy fp0q “ 0 one has

F pfq “ K

ż

Qd
p

ddx fpxq |x|α.

Proof:

For any f satisfying the assumptions of the lemma we define

f̃pxq “
ż

GLdpZpq
dM fpM´1xq

Here dM denotes the Haar measure on GLdpZpq normalized to have total mass 1.

For γ P Z we define Sγ “ tx P Qdp| |x| “ pγu. Since GLdpZpq acts transitively on Sγ for any fixed γ one

has x, y P Sγ ñ f̃pxq “ f̃pyq. Note that since f is locally constant the condition fp0q “ 0 means that f

vanishes in a neighborhood of the origin and since GLdpZpq preserves the norm on Qdp it follows that the same

holds for f̃ . In particular one can find integers j, k such that the support of f is contained in p´kZdpzp´jZdp
and it follows that one can then write f̃ in the form

f̃pxq “
kÿ

γ“j
cγ1Sγ

pxq

for some constants cγ P C. Note that f̃ P SpQdp,Cq, in particular 1Sγ
“ 1pγZd

p
´ 1pγ`1Zd

p
.

We now show that F pfq “ F pf̃q. Since F pRM pfqq is constant as M varies over GLdpZpq one can write

F pfq “
ż

GLdpZpq
dM

`
F pxq, fpM´1xq

˘
“

˜
F pxq,

ż

GLdpZpq
dM fpM´1xq

¸
“ F pf̃q.

We now find an explicit representation of F pf̃q. We first claim that the constants cγ are given by the formula

cγ “ 1

volpSγq

ż

Sγ

ddx fpxq,
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where volpSγq “
ş
Sγ
ddx “ p1 ´ p´dqpdγ . To prove this formula for cγ we observe that by Fubini

ż

Sγ

ddx f̃pxq “
ż

Sγ

ddx

ż

GLdpZpq
dM fpM´1xq

“
ż

GLdpZpq
dM

ż

Sγ

ddx fpM´1xq

“
ż

GLdpZpq
dM

ż

Sγ

ddx fpxq “
ż

Sγ

ddx fpxq.

When going from the second to the third line we used a change of variable M´1x Ñ x which gives

Jacobian of norm 1 and leaves the region of integration fixed. Now using the fact that f̃pxq is constant on

Sγ the calculation above shows

cγ ˆ volpSγq “
ż

Sγ

ddx f̃pxq “
ż

Sγ

ddx fpxq.

We now choose K to be the following f -independent constant.

K :“ 1

volpS0qF p1S0
q “ p1 ´ p´dqF p1S0

q

By the homogenity condition on F we have that:

F p1Sγ
q “ F

`
Sp´γ p1S0

q
˘

“ |pγ |´dp ˆ Ŝpγ pF qp1S0
q

“ pdγ ˆ |pγ |´αp ˆ F p1S0
q “ pγpd`αq ˆ volpS0q ˆK

The assertion of the lemma follows by observing

F pfq “ F pf̃q “
kÿ

γ“j
cγF p1Sγ

q

“
kÿ

γ“j
Kppd`αqγ ˆ volpS0q

volpSγq ˆ
ż

Sγ

ddx fpxq

“
kÿ

γ“j
K

ż

Sγ

ddx fpxq|x|α

“K
ż

Qd
p

ddx fpxq|x|α.

Definition. If a distribution F P S1pQdp,Cq satisfies F pgq “ 0 for all test functions g with gp0q “ 0 then we

say F is supported at the origin.

Lemma 2.5. Let F P S1pQdp,Cq be a distribution supported at the origin. Then there exists K P C such that
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for all test functions f one has

F pfq “ K ˆ δpfq “ K ˆ fp0q

Proof: Note that for any f P SpQdp,Cq one has that f ´ fp0q1Zd
p
vanishes in a neighborhood of the origin.

Thus by the support condition on F

F pfq ´ fp0qF p1Zd
p
q “ F

´
f ´ fp0q1Zd

p

¯
“ 0.

The lemma is proved if we set K :“ F p1Zd
p
q.

We give one more lemma and then prove a proposition that classifies homogenous (of real degree), rotation

invariant elements of S1pQdp,Cq.

Lemma 2.6. Suppose that F1, . . . , Fn P S1pQdpq are all non-zero and homogenous of distinct degrees α1, . . . , αn P
R respectively. Then the Fj are linearly independent - if there exist constants c1, . . . , cn P C such that

nÿ

j“1

cjFj “ 0

it follows that one must have c1 “ ¨ ¨ ¨ “ cn “ 0.

Proof: Without loss of generality suppose that αn “ max1ďjďn αj . It is clear that for any λ P pZ one has

nÿ

j“1

cjŜλFj “
nÿ

j“1

cj |λ|´αj
p Fj “ 0.

Multiplying both sides by |λ|αn
p and taking λ Ñ 0 (i.e. choosing λ “ pk and taking k Ñ 8) one sees

lim
λÑ0

nÿ

j“1

cj |λ|αn´αj
p Fj “ cnFn “ 0.

The assertion of the lemma follows by repeating this argument.

Proposition 2.3. Let F P S1pQdpq be rotation invariant and homogenous of degree α P R. Then F “ AHα

for some A P C where Hα is given by (2.3).

We first show that F takes the prescribed form when α ­“ ´d. . In this case Hα behaves like c|x|α away

from the origin for some c ­“ 0. Thus by Lemma 2.4 we can fix A P C such F ´ AHα is supported at the

origin .

We can then apply Lemma 2.5 which means that F´AHα must be some multiple of the delta distribution

δ - that is there is some F ´AHα ´Kδ “ 0 for some K P C. However since F ´AHα and δ are homogenous

of different degrees it follows by Lemma 2.6 that one must have K “ 0 which means F “ AHα.

Now suppose F is homogenous of degree α “ ´d. It is helpful to define I´d P S1pQdp,Cq via

I´dpfq “
ż

Qd
p

ddx
´
fpxq ´ fp0q1Zd

p
pxq

¯
|x|´d.
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Since I´d behaves like |x|´d away from the origin it follows that there exists some A P C such that F ´AI´d

is supported at the origin. As before this would force F ´ AI´d “ Kδ for some K P C. However I´d is not

homogenous of degree ´d, a simple calculation shows

ŜλI´dpfq “ |λ|dpI´dpSλ´1fq

“ |λ|dpI´dpfq ` |λ|dpfp0q
ż

Qd
p

ddx
´
1Zd

p
pxq ´ 1Zd

p
pλ´1xq

¯
|x|´d.

(2.5)

The second term on the second line is clearly non-zero for any f not vanishing at the origin and λ ­“ 1. Thus

the only way for AI´d “ F ´Kδ to hold is for A “ 0 since F ´Kδ is homogenous of degree ´d.
We now introduce the positivity criteria that we will use.

Lemma 2.7. Let Cp¨, ¨q be a real valued, translation invariant, symmetric bilinear form on S1pQdpq, let

C̃ P S1pQdpq satisfy Cpf, gq “ C̃pf ‹̂ gq for all f, g P SpQdpq. Then the following conditions are equivalent:

(i) C is positive definite

(ii) FrC̃sphq P r0,8q for all non-negative h P SpQdpq

Proof: C is positive definite if and only if Cpf, fq ě 0 for all (real) test functions f which is equivalent to

the condition

C̃pf ‹̂ fq ě 0 for all f P SpQdpq (2.6)

Viewing C̃ as an element of S1pQdp,Cq we claim that condition (2.6) is equivalent to:

C̃pg ‹̂ ḡq ě 0 for all g P SpQdp,Cq (2.7)

Clearly (2.7) ñ (2.6). For the other direction we write g “ u` iv with u, v P SpQdpq and observe that

C̃ ppu` ivq ‹̂ pu´ ivqq “ C̃pu ‹̂ uq ` C̃pv ‹̂ vq ` i
”
C̃pv ‹̂ uq ´ C̃pu ‹̂ vq

ı

“ C̃pu ‹̂ uq ` C̃pv ‹̂ vq.

In going to the last line we used the symmetry of C with forces C̃pv ‹̂ uq “ C̃pu ‹̂ vq. We now show condition

(ii) of the lemma is equivalent to (2.7). We have that

C̃pg ‹̂ ḡq “
´
FrC̃spkq,F´1rg ‹̂ ḡspkq

¯

“
´
FrC̃spkq,Frg ‹̂ ḡsp´kq

¯

“
´
FrC̃spkq,Frgsp´kqFrḡspkq

¯

“
´
FrC̃spkq, ĝp´kqĝp´kq

¯
“
´
FrC̃spkq, |ĝp´kq|2

¯
.

(2.8)

Above we used that for a, b P SpQdp,Cq on has Fra ‹̂ bspkq “ F ra ‹R´1pbqs pkq “ âpkqzR´1bpkq “
âpkqb̂p´kq and that Frḡspkq “ ĝp´kq.

It is clear that FrC̃sphq P r0,8q for all non-negative h P SpQdpq is sufficient for condition (i) to hold.
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We now show (i) ñ (ii), if we assume that the last line of (2.8) is non-negative for all g P SpQdp,Cq it is

clear that (ii) holds for all h P SpQdpq with h an indicator function - just set g “ Frhs and the result for all

non-negative h then follows by linearity.

Lemma 2.8. Let F P S1pKd,Cq with K “ Qp or Rd

(i) If F is rotation invariant then so is FrF s.

(ii) If F is homogenous of degree α then FrF s is homogenous of degree ´d´ α.

Proof: Both assertions, for either choice of K, follow immediately after computing a change of variable. In

the case of assertion (ii) in the p-adic case this takes the form:

´
Ŝλ ˝ F

¯
rF spfq “ |λ|dp ˆ FrF s pSλ´1pfqq

“ |λ|dp ˆ F pFrSλ´1pfqsq
“ F pSλ pFrf sqq
“ |λ|dp ˆ Ŝλ´1pF q pFrf sq
“ |λ|d`α

p ˆ F pFrf sq “ |λ|d`α
p ˆ FrF spfq.

In particular the Fourier transform leaves the class of distributions discussed Lemma 2.4 invariant and

one has the following corollary:

Corollary 2.1. For any α P R

FrHαs “ H´d´α

Proof: Since FrHαs is homogenous of degree ´d ´ α and rotation invariant it follows that FrHαs is

proportional to H´d´α so one just needs to check the constant of proportionality is 1. We note that for

arbitrary α P C one has

Hαp1Zd
p
q “ 1.

At the same time one has

FrHαsp1Zd
p
q “ Hα

´
F1Zd

p

¯
“ Hα

´
1Zd

p

¯
“ 1

which shows the mentioned constant of proportionality is 1.

Proposition 2.4. The class of symmetric, positive definite, bilinear forms C on SpQdpq which are symmetric,

translation invariant, rotation invariant, and κ - scale invariant are precisely given by the following families

each parameterized by c ě 0 :

• For κ “ d

2

Cpf, gq “ cˆ
ż

Qd
p

ddx fpxqgpxq (2.9)

or equivalently Cpf, gq “ cˆ
ż

Qd
p

ddk f̂pkqĝpkq

60



• For κ “ 0

Cpf, gq “ c

˜ż

Qd
p

ddx fpxq
¸

ˆ
˜ż

Qd
p

ddy gpyq
¸

(2.10)

or equivalently Cpf, gq “ cˆ f̂p0q ˆ ĝp0q

• For κ P
ˆ
0,
d

2

˙

Cpf, gq “ c

ż

Qd
pˆQd

p

ddx ddy fpxqgpyq|x´ y|´2κ (2.11)

or equivalently Cpf, gq “ cˆ 1 ´ p2κ

1 ´ p´2κ´d ˆ
ż

Qd
p

ddx
f̂pkqĝpkq
|k|d´2κ

• For κ ě d

2

Cpf, gq “ cˆ
ż

Qd
pˆQd

p

ddx ddy
´
fpxqgpyq ´ 1Zd

p
px´ yqfpxqgpxq

¯
|x´ y|2κ

` cˆ 1 ´ p´d

1 ´ p´2κ´d ˆ
ż

Qd
p

ddz fpzqgpzq
(2.12)

or equivalently Cpf, gq “ cˆ 1 ´ p´d

1 ´ p´2κ´d ˆ
ż

Qd
p

ddx
f̂pkqĝpkq
|k|d´2κ

In particular there are no such (non-zero) bilinear forms that are κ-scale invariant with κ ă 0. Above f, g

denote arbitrary elements of SpQdpq.

Proof: We first note that for κ ě 0 the bilinear forms with the desired invariance properties and κ - scale

invariance must be of the forms (2.9), (2.10), (2.11), or (2.12). This claim is justified via the following steps:

• Each such bilinear form C corresponds to a distribution C̃ P S1pQdpq - Proposition 2.2

• Each such distribution C̃ must be rotation invariant and homogenous of degree ´2κ - Lemma 2.3

• Such distributions C̃ are classified up to a constant of proportionality - Proposition 2.3.

Imposing positive definiteness will limit the allowed values of κ (and force c ě 0q. We now check that

(2.9), (2.10), (2.11), and (2.12) satisfy positive definiteness using Lemma 2.7 as our criterion.

For κ “ d
2
the listed class of bilinear forms are of the form Cpf, gq “ C̃pf ‹̂ gq with C̃ “ cδ “ cH´d. By

Lemma 2.1 one has FrC̃s “ cH0 “ c. It immediately follows that FrC̃sphq “ c
ş
h ě 0 for all non-negative

h P SpQdpq which establishes positive definiteness.

Similarly for κ “ 0 one has Cpf, gq “ C̃pf ‹̂gq “ c
ş
pf ‹̂ gq, so C̃ “ c. In this case FrC̃sphq “ cδphq “ chp0q

which is non-negative for all non-negative h.

For κ P p0,8q z
 
d
2

(
we have Cpf, gq “ C̃pf ‹̂ gq with C̃ “ c ˆ Γdp´2κqH´2κ. By Corollary 2.1 one has

FrC̃s “ cˆ Γdp´2κqH´d`2κpfq. Then since ´d` 2κ ą ´d it follows that

FrC̃spkq “ cˆ Γdp´2κq
Γdp´d` 2κq |k|´d`2κ (2.13)
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Since

Γdp´2κq
Γdp´d` 2κq “ 1 ´ p´2κ

1 ´ p´d`2κ
ě 0 for κ ą 0 (2.14)

it follows that FrC̃sphq ě 0 for any non-negative h P SpQdpq.
We now turn to the case κ ă 0 and show that any (non-zero) bilinear form C with the desired invariances

cannot satisfy the positive definiteness condition. Now by classification arguments mentioned at the begin-

ning of this proposition’s proof one has that Cpf, gq “ C̃pf ‹̂ gq with C̃pxq “ aH´2κ and FrC̃s “ aH´d`2κ.

Since ´d` 2κ ă ´d one has FrC̃s is of the form

FrC̃spfq “ a

«
´p´2κ ´ 1

1 ´ p´d

ż

Qd
p

ddx
´
fpxq ´ fp0q1Zd

p
pxq

¯
|x|´d`2κ ` δ

ff
.

It is not hard to see that by Lemma 2.7 C̃ is positive definite only if a “ 0. In particular positivity requires

FrC̃sp1Zd
p
q “ a ě 0

while

FrC̃sp1S0
q “ ´aˆ

`
p´2κ ´ 1

˘
ě 0.

which forces a “ 0.

2.2.2 Lemmas for the classification - real case

Lemma 2.9. For z P Rm define Tz acting on f P SpRm ˆ Rn,Cq via Tzpfqpx, yq “ fpx` z, yq (here x P Rm

and y P Rn).

Suppose that φ P S1pRmˆRn,Cq satisfies the property φpTzfq “ φpfq for all z P Rm and f P SpRmˆRn,Cq.
Then there exists ψ P S1pRnq such that for all such f one has:

φpfq “
ˆ
ψpyq,

ż

Rm

dmx fpx, yq
˙
.

Proof: This easily follows from the well known fact that if the derivative of a distribution is 0 then it is

given by a constant, the proof of this statement is included for completeness. We give the argument for

m “ 1 which can be repeated to get the result for all m.

For any fpx1, . . . , xn`1q P SpRn`1,Cq one has

lim
uÑ0

φpTufq ´ φpfq
u

“ φ

ˆ
lim
uÑ0

Tuf ´ f

u

˙

“ φ pBx1
fq “ 0

Thus φ vanishes on any test function g P SpRn`1,Cq of the form g “ Bx1
f for some f P SpRn`1,Cq.

We now state the well known fact that

"
g P SpRn`1,Cq : g “ Bx1

f for some f P SpRn`1,Cq
*

“
"
g P SpRn`1,Cq :

ż

R

dx1 gpx1, . . . , xn`1q “ 0

*
.
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In particular for g in the second set above it easy to check that ĝpkq
ik1

P SpRn`1,Cq and that the required f is

then given by F´1

„
ĝpkq
ik1


.

Now choose any h P SpR1,Cq with
ş
h “ 1. Define ψ P S1pRn,Cq via

pψpyq, jpyqq “ pφpx, yq, hpxqjpyqq

for any j P SpRn,Cq. The assertion then follows by observing that

φpfq ´
ˆ
ψpyq,

ż

R

dx fpx, yq
˙

“
ˆ
φpx, yq, fpx, yq ´ hpxq

ż

R

dt fpt, yq
˙

“ 0

where the last equality follows since

ż

R

dx

„
fpx, yq ´ hpxq

ż

R

dt fpt, yq


“ 0.

The next proposition and corollary give the classification of reflection invariant homogenous distributions

in S1pRzt0u,Cq which in turn characterizes the behaviour of reflection invariant homogenous distributions in

S1pR,Cq away from the origin.

For U Ă Rd which is open we define the space of test functions SpU,Cq to be closed subspace consisting

of all f P SpRd,Cq with f supported in U . We view SpU,Cq as a topological vector space with its inherited

topology and denote by S1pU,Cq the corresponding topological dual.

Proposition 2.5. Let U Ă Rd be an open set which is also homogenous (that is λU Ă U for any λ P r0,8q).
Suppose that F P S1pU,Cq. Then if F is homogenous of degree α it must satisfy the equation

α ˆ F pxq “
dÿ

j“1

xjBjF pxq. (2.15)

Proof: First assume that F is homogenous of degree α so for every λ P p0,8q one has ŜλpF q “ λ´αF , i.e.

for every f P SpU,Cq one has

λd ˆ F pSλ´1fq “ λ´αF pfq

Differentiating the above equation with respect to λ and then evaluating at λ “ 1 gives

dˆ F pfq `
nÿ

j“1

pF pxq, xjBjfpxqq “ ´α ˆ F pfq

Equation (2.15) then follows upon observing that

dÿ

j“1

pF pxq, xjBjfpxqq “
dÿ

j“1

´ pBj pxjF pxqq , fpxqq

“ ´dˆ F pfq ´
dÿ

j“1

pxjBjF, fq.

63



We remark that the converse statement to Proposition 2.5 is also true - satisfying (2.15) implies homoge-

niety - but we will not need that here. We have the following corollary.

Corollary 2.2. Suppose that F P S1 pp0,8q,Cq is homogenous of degree α then F is given by the function

A|x|α for some A P C. The same holds if F P S1pRzt0u,Cq is homogenous of degree α and is reflection

invariant.

For arbitrary F P S1pRzt0u,Cq which are homogenous of degree α one has that there exists A1, A2 P C

such that F is given by the function A1x
α
` `A2x

α
´ where xα`, x

α
´ : R Ñ R are given by

xα` “ |x|α if x ą 0, x` “ 0 if x ď 0

xα´ “ |x|α if x ă 0, x` “ 0 if x ě 0.

Proof: We first prove the assertion concerning F P S1 pp0,8q,Cq. Applying Proposition 2.5 with d “ 1 to

F gives us that F must satisfy the following on p0,8q:

BF pxq “ αx´1F pxq

It then immediately follows that derivative of the following distribution

F pxq
xα

(2.16)

vanishes. Then distribution (2.16) must be given by a constant which proves the assertion in question. (See

Lemma 2.9).

Note that this argument does not work for homogenous F P S1pRzt0u,Cq - in particular a distribution

on Rzt0u with vanishing distributional derivative need not be given by a constant. The proof of Lemma 2.9

breaks down in this case since a test function f P SpRzt0u,Cq with
ş
f “ 0 it is not true in general that

f “ Bg for a test function g supported on Rzt0u.
However the classification for homogenous F P S1pRzt0u,Cq can be proven by applying the preceding

argument once for test functions supported p0,8q and separately for test functions supported on p´8, 0q
(clearly every f P SpRz0,Cq is a sum of such test functions).

The statement about reflection invariant homogenous distributions is clear consequence of the other as-

sertions.

We now construct examples of homogenous distributions on R via analytic contination following [30]. We

use the same definitions of analytic generalized function and analytic continuation that were given in the

p-adic setting when working over Rd instead .

For α P C with ℜpαq ą ´1 it is clear that the function |x|α yields a well defined element of SpR,Cq that

is homogenous of degree α and reflection invariant. In particular for any test function f P SpRzt0uq the

quantity ż 8

´8
dx |x|αfpxq

is analytic in α for ℜpαq ą ´1. We now try to rewrite the integral above so it is valid for α in a larger region
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of the complex plane. For any f P SpR,Cq we define ψf P SpR,Cq via

ψf pxq “ fpxq ` fp´xq
2

.

Note that f Ñ ψf is a continuous linear map from SpR,Cq to itself.

For any α P C with ℜpαq ą ´1 we set

H̃αpfq “ p|x|α, ψf pxqq.

For such α clearly one has H̃αpfq “ p|x|α, fpxqq. We now rewrite H̃α in order to define an analytic

continuation.

For any n P N one can write

H̃αpfq “
ż 8

´8
dx |x|αψf pxq ˆ 1t|x| ą 1u `

ż 1

´1

dx |x|α
˜
ψf pxq ´

nÿ

j“0

f p2jqp0q
p2jq! x2j

¸
`

nÿ

j“0

„
f p2jqp0q

p2jq!

ż 1

´1

dx |x|αx2j


“
ż 8

´8
dx |x|αfpxq ˆ 1t|x| ą 1u `

ż 1

´1

dx |x|α
˜
ψf pxq ´

nÿ

j“0

f p2jqp0q
p2jq! x2j

¸
`

nÿ

j“0

„
f p2jqp0q

p2jq! ˆ 2

α ` 2j ` 1


.

(2.17)

We remark that the Taylor expansion of ψf about 0 reads

8ÿ

j“0

f p2jqp0q
p2jq! x2j

so that ˇ̌
ˇ̌
ˇψf pxq ´

2nÿ

j“0

f pjqp0q
j!

xj

ˇ̌
ˇ̌
ˇ ď Op|x|2n`2q

in the vicinity of x “ 0. It follows that the integral appearing in the second term of the last line of (2.17) is

well defined for ℜpαq ą ´2n´ 3. One then sees that the last line of (2.17) defines an analytic continuation

of H̃α to the domain

tα P C| ℜpαq ą ´2n´ 3 and α ­“ ´1 ´ 2j for j “ 0, ¨ ¨ ¨ , nu .

Since n P N was arbitrary clearly H̃α admits an analytic continuation to tα P C| α ­“ ´1 ´ 2j for j P
Nu which we also denote by H̃α,1. At the excluded values of α one has that H̃α has simple poles - the

corresponding residues given by

lim
αÑ´1´2j

pα ` 1 ` 2jqH̃α,1pfq “ 2

p2jq!f
p2jqp0q “ 2

p2jq!δ
p2jqpfq.

Again it is convenient to divide H̃α by a suitably chosen normalization factor to cancel these poles and

arrive at a an entire analytic generalized function.
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For ℜpαq ą ´1 one has:

`
|x|α, expr´x2s

˘
“ 2

ż 8

0

dx xα expr´x2s

“
ż 8

0

dt t
1

2
pα´1q expr´ts “ Γ

ˆ
α ` 1

2

˙
.

where the Gamma function Γpzq is given by

Γpzq “
ż 8

0

dt tz´1e´t

for z P C with ℜpzq but admits an analytic continuation (using the relation Γpz ` 1q “ zΓpzq) to the entire

complex plane except for simple poles at the non-positive integers. Γpzq is non-vanishing wherever it is

defined and its residue at z “ ´k for k P N is p´1qk
k!

.

With this in mind we define

Hα,1 “ 1

2Γ
`
α`1
2

˘H̃α,1

which yields an entire analytic generalized function - the singularities at α “ ´1´2j for j P N are removable.

In particular for α P R one has

Hα,1pfq “ 1

2Γ
`
α`1
2

˘
ż 8

´8
dx |x|αfpxq for α ą ´1

“ 1

2Γ
`
α`1
2

˘
ˆ ż 8

´8
dx |x|αfpxq ˆ 1t|x| ą 1u `

ż 1

´1

dx |x|α
˜
ψf pxq ´

nÿ

j“0

f p2jqp0q
p2jq! x2j

¸

`
nÿ

j“0

„
f p2jqp0q

p2jq! ˆ 2

α ` 2j ` 1

˙
for α P p´2n´ 1,´2n´ 3q, n P N

“ p´1qnn!
p2nq! δp2nqpfq for α “ ´2n´ 1, n P N

(2.18)

We now define a similar construction of rotationally invariant homogenous distributions over Rd for d ě 2.

In this setting it will be convenient to spherically average test functions. For f P SpRd,Cq we define the

function ψf : R Ñ C via

ψf prq “ 1

|r|d´1Ωd

ż

S|r|

dω fpωq for r ­“ 0 (2.19)

where for r ą 0 Sr denotes the d-dimensional sphere of radius r (i.e. Sr “
!
x P Rd| řd

i“1 x
2
i “ r2

)
). dω is

the standard surface area measure on the Sr.

Ωd “ 2
?
πd

Γ
`
d
2

˘

is the surface area of the d-dimensional unit sphere S1. Clearly we can extend ψf prq to r “ 0 continuously

by setting ψf p0q “ fp0q.
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For d ě 2 and α P C with ℜpαq ą ´d we define H̃α,d P S1pRd,Cq via

H̃α,dpfq “
ż

Rd

ddx |x|αfpxq

“ Ωd

ż 8

0

dr rd`α´1ψf prq.
(2.20)

The analytic continuation of H̃α,d will be constructed using the same ideas that appeared for the d “ 1

case. The next theorem gives the Taylor expansion of ψf prq about r “ 0.

Theorem 2.4. (Pizetti’s Formula) For f P SpRd,Cq for d ě 2 and let ψf be given as in (2.19). One then

has ψf P SpR,Cq and the derivatives of ψf prq at r “ 0 are given by

ψ
pnq
f p0q “

$
’’&
’’%

0 if n is odd

p2kq!∆kfp0q
2kk!

´śk´1
j“1 pd` 2jq

¯ if n “ 2k
(2.21)

where above ∆ is the d-dimensional Laplacian, that is ∆ “ řd
i“1 B2

i .

Proof: We refer the reader to [10].

We remark that we don’t actually need Pizetti’s formula in order to perform our computations, it just

makes our analytic continuation of H̃α,d more explicit. All one really needs to know is that ψf prq is smooth

with a Taylor expansion that only includes even powers of r - however this last fact is a direct consequence

of ψf prq being even.

Now for any n P N we can rewrite (2.20) as

H̃α,dpfq “ Ωd

ż 8

0

dr rd`α´1ψf prq

“ Ωd

« ż 8

1

dr rd`α´1ψf prq `
ż 1

0

dr rd`α´1

¨
˝ψf prq ´

nÿ

k“0

∆kfp0q
2kk!

´śk´1
j“1 pd` 2jq

¯r2k
˛
‚

`
nÿ

k“0

∆kfp0q
2kk!

´śk´1
j“1 pd` 2jq

¯
ż 1

0

dr rd`2k`α´1

ff

“ Ωd

« ż 8

1

dr rd`α´1ψf prq `
ż 1

0

dr rd`α´1

¨
˝ψf prq ´

nÿ

k“0

∆kfp0q
2kk!

´śk´1
j“1 pd` 2jq

¯r2k
˛
‚

`
nÿ

k“0

∆kfp0q
2kk!pd` α ` 2kq

´śk´1
j“1 pd` 2jq

¯
ff
.

(2.22)

Now by Theorem 2.4 one has

ˇ̌
ˇ̌
ˇ̌ψf prq ´

nÿ

k“0

∆kfp0q
2kk!

´śk´1
j“1 pd` 2jq

¯r2k
ˇ̌
ˇ̌
ˇ̌ ď Op|r|2n`2q
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in a vicinity of r “ 0. Thus the second integral on the last line of (2.22) is valid for ℜpαq ą ´d ´ 2n ´ 2.

Similarly to the d “ 1 case we can use this process to analytically continue H̃α,d to the entire complex plane

except for the values α “ ´d ´ 2k for k P N where H̃α,d has simple poles with the residue at α “ ´d ´ 2k

given by
Ωd∆

kδ

2kk!
´śk´1

j“1 pd` 2jq
¯

where δ denotes the d-dimensional delta function.

We define, for d ě 2 and α P C,

Hα,d :“
H̃α,d

Ωd ˆ Γ
`
α`d
2

˘ (2.23)

In particular for α P R one has

Hα,d “ 1

Ωd ˆ Γ
`
α`d
2

˘
ż

Rd

ddx |x|αfpxq for α ą ´d

Hα,d “ 1

Ωd ˆ Γ
`
α`d
2

˘
ż

Rd

ddx |x|αfpxq ˆ 1 t|x| ě 1u

` 1

Γ
`
α`d
2

˘
« ż 1

0

dr rd`α´1

¨
˝ψf prq ´

nÿ

k“0

∆kfp0q
2kk!

´śk´1
j“1 pd` 2jq

¯r2k
˛
‚

`
nÿ

k“0

∆kfp0q
2kk!pd` α ` 2kq

´śk´1
j“1 pd` 2jq

¯
ff
for α P p´2n´ 2 ´ d,´2n´ dq, n P N

Hα,d “ p´1qk∆kδpfq
2k

´śk´1
j“1 pd` 2jq

¯ for α “ ´d´ 2k, k P N

(2.24)

Proposition 2.6. Let d ě 2 and suppose that F P S1pRdzt0u,Cq is rotation invariant and homogenous of

degree α. Then F pxq “ A|x|α for some A P C.

Proof: Define L : Spp0,8q,Cq Ñ SpRnzt0u,Cq via

pLψqpxq “ ψp|x|q.

It is not hard to see that the L is a continuous linear map between the two mentioned test function spaces.

Now define G P S1pp0,8q,Cq via

Gpψq “ F pLψq.

Using the homogeniety of F we now observe that for any λ ą 0 and any ψ P Spp0,8q,Cq one has

ŜλGpψq “ λ pGprq, ψpλrqq “ λ pF pxq, ψpλ|x|qq “ λ1´d´α pF pxq, ψp|x|qq “ λ1´d´αGpψq.

So G is homogenous of degree α` d´ 1 and by Corollary 2.2 it follows that Gprq P S1pp0,8q,Cq is given by

Arα`d´1 for some constant A P C.
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Now for g P SpRnzt0u,Cq we define ψg P Spp0,8q,Cq via (2.19) for r ą 0. Observe that

F pLψgq “ Gpψgq “ A

ż 8

0

dr rα`d´1

„
1

rd´1Ωd

ż

Sr

dω gpωq


“ A

Ωd

ż 8

0

dr

ż

Sr

dω |ω|αgpωq

“ A

Ωd

ż

Rd

ddx |x|αgpxq.

The proposition will then follow if we show that for arbitrary g P SpRdzt0u,Cq one has F pgq “ F pLψgq. Fix
such a g and observe that for any x P Rd with |x| “ r ą 0 one has

ż

Opdq
dM gpM´1xq “ 1

rd´1Ωd

ż

Sr

dω gpωq

“ ψgprq “ Lψgpxq
(2.25)

where dM refers to Haar measure on Opdq normalized to have total mass 1. The first equality is just a

consequence of the fact that the pushforward of the measure dM via the map M Ñ M´1x is a rotationally

invariant measure on Sr of mass 1 which must then be given by the normalized surface area measure on Sr.

The proof is finished upon observing that

F pLψgq “ F

˜ż

Opdq
dM RMg

¸

“
ż

Opdq
dM F pRMgq “

ż

Opdq
dM F pgq “ F pgq.

We now give a classification of rotationally invariant generalized functions that are supported at the

origin.

Proposition 2.7. Let F P S1pRd,Cq be a rotation invariant (reflection invariant for d “ 1) and satisfy

F pfq “ 0 for all f P SpRd,Cq that vanish in some neighborhood of the origin. Then there exists N P N and

constants a0, a1, . . . , an P C such that

F “
Nÿ

k“0

ak∆
kδ

Proof: We first give the proof for d ě 2.

By the Paley-Wiener-Schwartz Theorem (see [38, Theorem 7.3.1]) one has that F̂ :“ FrF s is given by

an entire function which satisfies the bound

ˇ̌
ˇF̂ pzq

ˇ̌
ˇ ď p1 ` |z|qN

where N denotes the order of the distribution F . It follows by standard arguments that F̂ pzq is a polynomial

in the components of z of at most order N . Since for any multi-index α P Nd one has

F rBαδs pzq “ p2πq´ d
2 p´iq|α|zα
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our assertion will follow if we prove that F̂ pzq is in fact a polynomial in the quantity |z|2 “ řd
j“1 z

2
j and

then apply the inverse Fourier transform.

We restrict F̂ pzq to Rd, denoting the restriction by F̂ pxq “ F̂ px1, . . . , xdq. We remark that F̂ must

be invariant under rotations of Rd. In particular for any x “ px1, . . . , xdq P Rn with |x| “ r one must

have F̂ px1, . . . , xnq “ F̂ p0, . . . , rq. Since F̂ p0, . . . , 0, rq is a polynomial in r our assertion would follow if we

knew F̂ p0, . . . , 0, rq only contains even powers of r - however this is immediate upon observing that one has

F̂ p0, . . . , 0, rq “ F̂ p0, . . . , 0,´rq for any r P R.

The d “ 1 case is proved by a similar (and shorter) argument.

Proposition 2.8. Let F P S1pRd,Cq be rotation invariant (reflection invariant for d “ 1) and homogenous

of degree α P R. Then there exists A P C such that F “ AHα,d.

Proof: The proof proceeds along the same lines as Proposition 2.3. We first treat the case α ­“ ´d´2k with

k P N. Clearly F and Hα,d can be viewed as elements of S1pRdzt0u,Cq and since Hα,d is given by a non-zero

multiple of |x|α away from the origin it follows that one can find A P C such that F ´AHα,d vanishes on all

elements of SpRdzt0u,Cq. In particular by Proposition (2.7) one has

F ´AˆHα,d “
Nÿ

k“0

ak∆
kδ

for some N P N and constants ak. However since ∆kδ is homogenous of degree ´d ´ 2k ­“ α it follows by

the easily proven real analog of Lemma 2.6 that all the constants ak which means F “ AHα,d.

Now suppose F is instead homogenous of degree α “ ´d ´ 2k for some k P N. We treat the case d ě 2,

the method for d “ 1 is essentially the same. Define I´d´2k P S1pRd,Cq via

I´d´2kpfq :“
ż

Rd

ddx |x|´d´2kψf p|x|q1 t|x| ě 1u

`
ż

Rd

ddx |x|´d´2k

¨
˝ψf p|x|q ´

kÿ

j“0

∆jfp0q
2jj!

´śj´1
l“1 pd` 2lq

¯ |x|2j
˛
‚1 t|x| ď 1u

where ψf is defined via (2.19). We remark that by Theorem 2.4 the second integral appearing above is

convergent and it is not hard to see that I´d´2k is rotational invariant. Additionally for f P SpRdzt0u,Cq
one has

I´d´2kpfq “
ż

Rd

ddx |x|´d´2kfpxq.

It follows by Propositions 2.6 and 2.7 that for some K P C one has that F ´ KI´d´2k vanishes on all test

functions f P SpRdzt0u,Cq and that for some N P N and constants c0, . . . , cN P C one has

F ´KI´d´2k “
Nÿ

j“0

cj∆
jδ. (2.26)

We will now try to show that one must have K “ 0, if this is shown then the result will follow by the real

analog of Lemma 2.6 since ∆jδ is homogenous of degree ´d ´ 2j. To see this we first observe that I´d´2k

is not homogenous of degree ´d ´ 2k. A straightforward computation shows that for any f P SpRd,Cq and
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λ P p0,8q one has

λ´d´2kŜλI´d´2kpfq “ I´d´2kpfq `
ż

Rd

ddx |x|´d´2kψf p|x|q r1 t|x| ě λu ´ 1 t|x| ě 1us

`
ż

Rd

ddx |x|´d´2k r1 t|x| ď λu ´ 1 t|x| ď 1us

¨
˝ψf p|x|q ´

kÿ

j“0

∆jfp0q
2jj!

´śj´1
l“1 pd` 2lq

¯ |x|2j
˛
‚

“ I´d´2kpfq ´ Ωd

kÿ

j“0

∆jfp0q
2jj!

´śj´1
l“1 pd` 2lq

¯
ż λ

1

dr r´2k`2j´1

“ I´d´2kpfq ´ Ωd

»
–
k´1ÿ

j“0

∆jfp0q
2jj!

´śj´1
l“1 pd` 2lq

¯ pλ2j´2k ´ 1q
2j ´ 2k

` ∆kfp0q
2kk!

´śk´1
l“1 pd` 2lq

¯Logpλq

fi
fl

Now for arbitrary λ P p0,8q we apply
´
λ´d´2kŜλ ´ Id

¯
to both sides of (2.26) and feed them both an

arbitrary f P SpRd,Cq which yields

KˆΩdˆ

»
–
k´1ÿ

j“0

∆jδpfq
2jj!

´śj´1
l“1 pd` 2lq

¯ pλ2j´2k ´ 1q
2j ´ 2k

` ∆kδpfq
2kk!

´śk´1
l“1 pd` 2lq

¯Logpλq

fi
fl “

Nÿ

j“0

cjˆpλ2j´2k´1qˆ∆jδpfq

For fixed λ the above equation gives equality between two linear combinations of homogenous distributions

and applying the real analog of Lemma 2.6 one has for all λ P p0,8q

K ˆ Ωd ˆ Logpλq ˆ 1

2kk!
´śk´1

l“1 pd` 2lq
¯ “ 0

which forces K “ 0.

Lemma 2.10. Let α P R.

Then one has

FrHα,ds “ 2´α´ d
2 ˆH´d´α,d.

Proof: We prove the assertion for d ě 2, the one dimensional case follows by a similar argument.

By Lemma 2.8 and Proposition 2.8 it follows that

FrHα,ds “ KH´d´α,d

for some K P C, which we now calculate.

Let ηdpxq be the density function for a standard Gaussian on Rd, that is ηd : Rd Ñ R is given by

ηdpxq “ 1

p2πq d
2

e´ 1

2
|x|2 .

Clearly ηd P SpRdq and with our conventions for defining the Fourier transform on Rd we have that

Frηds “ ηd.
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We now claim that for all α P C one has

Hα,dpηdq “ 2
d`α
2

´1 ˆ p2πq´ d
2 . (2.27)

Since both sides of the above equation are analytic in α it suffices this equality for real α with α ą ´d, we
do this now. We note that

H̃α,dpηdq “ p2πq´ d
2 ˆ

ż

Rd

ddx |x|αe´ 1

2
|x|2

“ p2πq´ d
2 ˆ Ωd ˆ

ż 8

0

dr rα`d´1e´ 1

2
r2

“ p2πq´ d
2 ˆ Ωd ˆ 2

α`d´2

2 ˆ
ż 8

0

ds s
α`d´2

2 ˆ e´s

“ p2πq´ d
2 ˆ Ωd ˆ 2

α`d´2

2 ˆ Γ

ˆ
α ` d

2

˙
.

Recalling the definition given in (2.23) equation (2.27) now follows.

Since

H´d´α,dpηdq “ 2´ α
2

´1 ˆ p2πq´ d
2

and

FrHα,dspηdq “ Hα,d pFηdq “ Hα,dpηdq

it follows that

K “ 2
d`α

2
´1 ˆ p2πq´ d

2

2´ α
2

´1 ˆ p2πq´ d
2

“ 2α` d
2

We now need an analog of Bochner’s Theorem called the Bochner-Schwartz Theorem. Compared to

Bochner’s Theorem the Bochner-Schwartz Theorem has weaker conditions and a weaker conclusion. Instead

of applying to continuous functions it says that any generalized function which satisfies a certain positive

definiteness condition must be Fourier transform of a positive measure - however this measure may not be

of finite mass and instead only satisfies a temperedness condition.

We say a Borel measure ν on Rd is tempered if

ż

Rd

dνpxq p1 ` |x|qj ă 8 for some j ą 0.

Note that temperedness is a sufficient condition for a Borel measure to define an element of S1pRd,Cq.

Theorem 2.5 (Bochner-Schwartz). Suppose that F P S1pRd,Cq. The the two following conditions are

equivalent.

1. @ g P SpRd,Cq one has F rg ‹̂ ḡs ě 0
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2. There exists a positive Borel measure ν which is tempered such that for any h P SpRd,Cq one has

FrF sphq “
ż

Rd

dνpxq hpxq

Proof: One can find a proof [31, Chapter 2, Section 3]. See also [55, Problem 20, Section IX] for an outline

of a proof that resembles the one for Bochner’s Theorem.

Lemma 2.11. Let C be a continuous symmetric bilinear form on SpRdq that is invariant under simultaneous

translations in both arguments. Let C̃ be the corresponding element of S1pRdq that satisfies Cpf, gq “ C̃pf ‹̂gq
for all f, g P SpRdq. We view C̃ as an element of S1pRd,Cq in the natural way.

Then C is positive definite if and only if FrC̃s is given by a positive tempered measure µ.

Proof: Clearly C is positive definite if and only if C̃rf ‹̂f s ě 0 for all f P SpRdq. This can be extended

to complex functions using the symmetry of C - see Lemma 2.7. The assertion then follows by Theorem

2.5.

Proposition 2.9. The class of continuous, symmetric, positive definite, bilinear forms C on SpRdq which

are translation invariant, rotation invariant, and κ - scale invariant are precisely given by the following

families each parameterized by c ě 0 :

• For κ ą 0 one has

Cpf, gq “ cˆ
ż

Rd

ddk f̂pkq ˆ ĝpkq ˆ |k|´d`2κ (2.28)

• For κ “ 0 one has

Cpf, gq “ cˆ
ˆż

Rd

ddx fpxq
˙

ˆ
ˆż

Rd

ddy gpyq
˙

(2.29)

In particular there are no such non-zero bilinear forms for κ ă 0. We remark that here f, g are arbitrary

test functions in SpRdq.

Proof: The reasoning we use here is analogous to the reasoning we used for Proposition 2.4.

First suppose that we are given a continuous symmetric bilinear form C that is rotation invariant,

translation invariant, and κ-scale invariant with κ ě 0. Then from the real analog of Lemma 2.3 and

Proposition 2.8 it follows that

Cpf, gq “ KH´2κ,dpf ‹̂ gq

for some K P R. We remark that throughout the proof we restrict ourselves to f, g P SpRdq, i.e. real valued
test functions.

Now from Lemma 2.10 it follows that

Cpf, gq “ C̃pf ‹̂ gq “ K ˆH´2κ,dpf ‹̂ gq
“ K ˆ

`
FrH´2κ,dspkq,F´1rf ‹̂gspkq

˘

“ K ˆ 22κ´ d
2 ˆ

`
H´d`2κ,dspkq,F´1rf ‹̂gspkq

˘

“ K ˆ 22κ´ d
2 ˆ

´
H´d`2κ,dspkq, f̂p´kqĝp´kq

¯
.
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Specializing to the case κ “ 0 we have

Cpf, gq “ K ˆ 2´ d
2 ˆ

´
H´d,dpkq, f̂p´kqĝp´kq

¯
“ K ˆ 2´ d

2 ˆ f̂p0qĝp0q

“ K ˆ 2´ d
2 ˆ

ˆż

Rd

ddx fpxq
˙

ˆ
ˆż

Rd

ddy gpyq
˙

where we dropped the conjugate over the g since g is real valued. In this case by inspection we see that

positive definiteness holds for such the given C if and only if K ą 0. Thus the given C must be of the form

(2.29).

Now for the case κ ą 0 we have

Cpf, gq “ K ˆ 22κ´ d
2 ˆ

´
H´d`2κ,dpkq, f̂p´kqĝp´kq

¯

“ K ˆ 22κ´ d
2 ˆ 1

Ωd ˆ Γpκq ˆ
ż

Rd

ddk f̂p´kqĝp´kq ˆ |k|´d`2κ.

Here we used that ´d`2κ ą ´d. Now by Lemma 2.11 (or by inspection) it follows that C is positive definite

if and only if K ě 0, in which case C is of the form (2.28).

On the other hand by the calculations above and the lemmas of this section it is clear that bilinear forms

given by (2.28) and (2.29) are continuous, translation invariant, rotation invariant, and κ-scale invariant for

the given values of κ.

Now if C is a continuous, symmetric, bilinear form on SpRdq which is translation invariant, rotationally

invariant, and κ scale invariant, with κ ă 0, then proceeding as before we must have

FrC̃s “ K ˆ 22κ´ d
2 ˆ ˆH´d`2κ.

However it is trivial to check that unless K “ 0 the generalized function H´d`2κ is not given by a measure

so by Lemma 2.11 C cannot be positive definite. In fact it is not hard to show that for any K ­“ 0 one can

find f P SpRdq such that

Cpf, fq “ K ˆ 22κ´ d
2 ˆ

´
H´d`2κ,dpkq, |f̂p´kq|2

¯
ă 0.
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Chapter 3

Construction of a massless Quantum

Field Theory over Q3p

3.1 Formal Description of the Model

For ǫ P p0, 1s we define µC´8 to be the Gaussian measure on S1pQ3
pq with covariance bilinear form C´8 given

by

C´8pf, gq “
ż

Q3
p

d3k f̂pkqĝp´kq ˆ |k|´p 3`ǫ
2 q

“ 1 ´ p´p 3`ǫ
2 q

1 ´ p´p 3´ǫ
2 q ˆ

ż

Q3
pˆQ3

p

d3x d3y fpxqgpyq ˆ |x´ y|´p 3´ǫ
2 q

(3.1)

for f, g P SpQdpq. From Theorem 2.2 we know that µC´8 is (up to a constant of proportionality) the unique

translation and rotation invariant Gaussian measure on SpQ3
pq that is scale invariant with scaling exponent

κ “ 3 ´ ǫ

4
. In keeping with conventions of the literature we write rφs :“ 3 ´ ǫ

4
to denote the scaling

parameter, rφs is often called the “dimension of the field”. We remark that for our purposes rφs is a constant

that only depends on ǫ (not some function of φ).

We denote by C´8pxq the kernel corresponding to C´8p¨, ¨q.

C´8pxq “ χǫ

|x| 3´ǫ
2

, where χǫ :“
1 ´ p´p 3`ǫ

2 q

1 ´ p´p 3´ǫ
2 q

and as an operator

C´8 “ p´∆q´ 3`ǫ
4 .

In particular for ǫ “ 1 the measure µC´8 is a p-adic analog of the three dimensional massless Gaussian Free

Field. One of the central results of [3] is the construction and analysis of a translation, rotation, and scale

invariant non-Gaussian measure ν on S1pQ3
pq which is defined (in a formal sense) via perturbing µC´8 by
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the following Radon-Nikodym derivative:

exp

«
´
ż

Q3
p

d3x gφ4pxq ` µφ2pxq
ff
. (3.2)

All the results we outline will apply to the small ǫ regime and are in the spirit of the Wilson-Fisher 4´ ǫ

expansion of [75]. The choice of the covariance 3.1 is, as we mentioned in the introduction, inspired by the

choice made by Brydges, Mitter, and Scopolla in [18], there the authors used the covariance p´∆q´ 3`ǫ
4 over

R3 to mimic working in non-integer dimensions. Much of our analysis is based on the methods of [18] and so

we will call our model the “p-adic BMS model”. We mention that an earlier paper [17] also simulated the 4´ǫ
expansion via using covariance p´∆q´ 1`ǫ

2 over R4 but this Gaussian measure is not Osterwalder-Schrader

positive.

As mentioned before, the singular nature of the expression (3.2) is due to our Radon-Nikodym derivative

involving non-summable interactions between µC´8 ’s infinitely many degrees of freedom. To deal with these

singularities in the form of our pertubation we implement cut-offs - phrased differently we will essentially

replace the underlying Gaussian µC´8 with a finite dimensional marginal and study the consequences of the

perturbation there.

3.2 Slicing the covariance C´8

We now remind the reader of the well-known fact that decompositions of a covariance form into a sum of

covariance forms yields a decomposition of a Gaussian process as a sum of independent Gaussian Processes.

Concretely if the Gaussian process X is given by a covariance C and one C “ Γ1 ` Γ2 for Γ1,Γ2 both

covariance forms then it follows that the process X can be realized as the sum of two independent Gaussian

process Y1 and Y2 with Yi distributed according to Γi for i “ 1, 2.

With this in mind we start to decompose the C´8 in order to see it as a multitude of degrees of freedom

across different scales. We have

pC´8pkq “
8ÿ

j“´8
1
 
p´j´1 ă |k| ď p´j( |k|´p 3`ǫ

2 q.

Writing the same decomposition in terms of position variables gives

C´8pxq “
8ÿ

j“´8
p´2jrφs

”
1Z3

p
ppjxq ´ p´31Z3

p
ppj`1xq

ı

“
8ÿ

j“0

p´2jrφs Γ̃ppjxq
(3.3)

where we have defined

Γ̃pxq :“ 1Z3
p
pxq ´ p´31Z3

p
ppxq.

We remark Γ̃px ´ yq is also a covariance kernel - symmetry is immediate and positive definiteness is a

consequence of the fact that
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p̃Γpkq “ 1
 
p´1 ă |k| ď 1

(
|k|´p 3`ǫ

2 q ě 0

Let µΓ̃ be the corresponding Gaussian measure on S1pQ3
pq. We will later see that µΓ̃ is in fact supported

on a space of locally constant functions f : Q3
p Ñ R lying within S1pQ3

pq. This follows from Γ̃ being locally

constant - see Proposition 3.1.

We also remark that Γ̃ is an example of a finite-range covariance, i.e. it vanishes at some distance away

from the diagonal. It is easy to see that Γ̃pxq is supported on p´1Z3
p. It follows that for ξ distributed

according to µΓ one has

|x´ y| ą p ñ Erξpxqξpyqs “ 0

this means for such x, y the Gaussian random variables ξpxq and ξpyq are independent.

Now if φ is a generalized random field distributed according to µC´8 we can realize φ as a bi-infinite sum

φpxq “
8ÿ

j“´8
p´jrφsξjppjxq (3.4)

where the random fields tξjujPZ are independently and identically distributed according to µΓ̃. Note that

while each summand on the right hand side makes sense point-wise in x, the sum as whole only makes sense

as a distribution. This presents the UV divergence as the non-summability of fluctuations at arbitrarily

small length scales.

The index j parameterizes our length scales logarithmically (base p) where j Ñ ´8 corresponds to

short distance (high fourier mode) behaviour involving rougher fields with short range correlations and

j Ñ 8 corresponds to long-range (low fourier mode) behaviour involving smoother fields with long distance

correlations.

3.3 Implementation of Cut-offs

At this step we introduce an artificial scaling factor L “ pl for l some positive integer. L will determine our

step-size in the multiscale analysis that follows - i.e. how many degrees of freedom we integrate out in each

iteration. We will see that analytic control over the RG map will require taking l quite large. A key remark

to make is that L is not an intrinsic length scaling factor for our system - that role is played by p. This is

one difference in our setting compared to some previous RG work on hierarchical models. A failure to make

this distinction can lead to critical exponents and universality classes that depend on L - see [47, Section

5.2].

We define

Γpxq “
l´1ÿ

j“0

p´2jrφs
”
1Z3

p
ppjxq ´ p´31Z3

p
ppj`1xq

ı
(3.5)

so that

C´8pxq “
8ÿ

j“´8
L´2jrφsΓpLjxq. (3.6)

In the rest of this chapter our scale indices will be given in terms of L instead of p as before. For any
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r P Z we define the covariance with UV cut-off at scale r to be given by

Crpxq “
8ÿ

j“r
L´2jrφsΓpLjxq. (3.7)

Equivalently we could have defined Cr via Ĉrpkq “ 1 t|k| ď L´ru Ĉ´8pkq. We remark that Crpxq is locally

constant over the translates of L´rZ3
p.

As we alluded to before locally constant covariances will give rise to measures on locally constant field.

In preparation for that we introduce some notation. We set Lq “ Q3
p{pL´qZ3

pq, i.e. Lq is the lattice of

translates of L´qZ3
p which we individually call blocks. The unit lattice L0 will simply be denoted by L. We

will typically denote an element of the latter by ∆ (not to be confused with the Laplacian). We will call such

an element a unit cube, a unit block or simply a box. We will call the elements of L1 L-blocks, and note that

every L-block is of the form L´1∆ for some ∆ P L. We remark that every L-block can be partitioned into

L3 distinct unit blocks. For an L-block l P L1 we write rls for the set of L3 unit boxes ∆ contained in l.

The following proposition shows that the Gaussian measure µCr
on S1pQ3

pq is in fact supported on functions

that are constant over the blocks of Lr.

Proposition 3.1. Let Ωpx, yq : Qdp ˆ Qdp Ñ R be a covariance kernel and µΩ be the corresponding measure

on S1pQdpq. Suppose that there exists some r P Z such that for any z1, z2 P Qdp with |z1|, |z2| ď Lr one has

Ωpx` z1, y ` z2q “ Ωpx, yq

Then µΩ is supported on the set

tF P S1pQdpq| F pxq “
ÿ

∆PLr

α∆1∆pxq where α∆ P Ru

where for ∆ P Lr we write 1∆pxq for the corresponding characteristic function.

Proof: In some sense this is a p-adic analog of the Kolmogorov Continuity Theorem which links regularity

of a covariance to regularity of sample paths/fields. However in the p-adic case there is almost nothing

to show. Due to the local constancy of Ω one can view it as a map Γ : Lr ˆ Lr Ñ R which satisfies

the necessary symmetry and positive definiteness to determine (via the Kolmogorov Extension Theorem) a

Gaussian measure µ̃ on the direct product

ź

∆PLr

R “ ttα∆u∆PLr
u

where Eµ̃rα∆α∆1 s “ Ωp∆,∆1q. The assertion then follows from noting that the map

tα∆u∆PLr
Ñ

ÿ

∆PLr

α∆1∆

is a measurable map from
ś

∆PLr
R to S1pQdpq where both spaces are equipped with the cylinder σ-algebras.

The measure µΩ can then be realized as the pushforward of µ̃ under the above map whose codomain is

clearly the support set given in our assertion.
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We remark that our UV cut-off has left some of the invariances of µC´8 intact - µCr
is still translation

and rotation invariant but we have lost scale invariance.

The infrared behaviour of C´8 is not severe enough to require regularizing the sum (3.6) for large j (in

contrast with trying to define the Gaussian Free Field with covariance p´∆q´1 for d “ 1 or 2). However the

integral over all of Q3
p in (3.2) must be regularized - otherwise an argument via Jensen’s inequality shows

that this aspiring Radon-Nikodym derivative is µCr
almost surely 0.

For s P Z we set Λs :“ tx P Q3
p| |x| ď Lsu, i.e. Λs “ L´sZ3

p. Now for any r, s P Z the functional

exp

„
´
ż

Λs

d3x g φ4pxq ` µ φ2pxq


(3.8)

is strictly positive, bounded, and basically well-defined on the support of µCr
pφq within S1pQ3

pq - thus modulo

a (finite) normalization the functional (3.8) is the Radon-Nikodym derivative with respect to µCr
for some

probability measure which for now we call νr,s. We remark that if one reduces to marginals corresponding

to our field’s values within Λs the measures µCr
and νr,s are measures on the finite dimensional space RN

where N “ L3ps´rq (here we assume assume that s ě r).

The construction and analysis of ν entails control over the removal of the cut-offs, i.e. we want to show

the measures νr,s converge in some sense as we take r Ñ ´8 and s Ñ 8 to a non-Gaussian measure with

the desired invariance properties.

In order for this to be successful we will see in what follows that it will be necessary to replace the fixed

parameters g and µ inside the integrand in (3.8) with some parameters g̃r, µ̃r that are allowed to depend

on the ultraviolet cut-off r - these are called “bare couplings”. As a matter of convenience we will also

change the role of these parameters by rewriting the integrand as a linear combination of “Hermite” (Wick)

polynomials which we define now.

Definition. Let Ω be some set and C be a function C : ΩˆΩ Ñ R which is symmetric (i.e. Cpx, yq “ Cpy, xq
for all x, y P Ω).

Let P be the set of polynomials in commuting indeterminates tφpxquxPΩ with coefficients in R, i.e.

P :“ R rtφpxquxPΩs .

We define a map : ‚ :C : taking P Ñ P as follows. For P P P we set

: P pφq :C :“ e´∆CP pφq

where ∆C : P Ñ P is the differential operator defined via

∆C :“ 1

2

ÿ

x,yPΩ
Cpx, yq ˆ δ

δφpxq
δ

δφpyq

and e´∆C : P Ñ P is then defined via

e´∆C :“
8ÿ

n“0

p´1qn
n!

p∆Cqn .
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We will choose Ω to be index set for some Gaussian process on a product space and C is chosen to

be the corresponding covariance. In this setting the map P pφq Ñ: P pφq :C replaces a linear combination

of monomials with the same linear combination of corresponding partially “orthogonalized ” monomials in

L2pRΩ, µCq.

Lemma 3.1. Let tφpxquxPΩ be a Gaussian process indexed by Ω with covariance C.

Then for any x1, . . . , xm, y1, . . . , yn P Ω (not necessarily distinct) one has

EµC

«˜
:
mź

i“1

φpxiq :C
¸˜

:
nź

j“1

φpyjq :C
¸ff

“

$
&
%
0 if m ­“ m
ř
σPSn

´śn
j“1 EµC

rφpxiqφpyσpiqqs
¯

if m “ n

In the bottom sum we are summing over permutations on n-elements - the resulting expression is similar

to Wick’s rule for Gaussian expectations except that Wick contractions internal to a single Wick ordered

monomial are not allowed. For the case Ω a singleton and C “ 1 one has that : φn :C is just the n-th Hermite

polynomial in φ. In the more general context the transformation : ‚ :C is called Wick ordering.

For our Wick ordering we set Ω “ Q3
p (or equivalently Lr) and Cpx, yq “ Crpx ´ yq. Some of the key

Wick monomials for us will be

: φ4pxq :C“ φ4pxq ´ 6Crp0qφ2pxq ` 3Crp0q2 (3.9)

and

: φ2pxq :C“ φ2pxq ´ Crp0q. (3.10)

We can now give a precise formula for our cut-off measures. Given a sequence of bare couplings tg̃r, µ̃rurPZ

(where g̃r ą 0 , µ̃r P R) we define, for r, s P Z, the measures νr,s on S 1pQ3
pq via

dνr,spφq “ 1

Zr,s
exp

„
´
ż

Λs

d3x
 
g̃r : φ4pxq :Cr

`µ̃r : φ2pxq :Cr

(
dµCr

pφq

where the normalization factor Zr,s is chosen to make νr,s a probability measure, i.e.

Zr,s “
ż

S1pQ3
pq
dµCr

pφq exp
„

´
ż

Λs

d3x
 
g̃r : φ4pxq :Cr

`µ̃r : φ2pxq :Cr

(
.

We will also choose g̃r, µ̃r to be of the form

g̃r “ L´ǫrg , µ̃r “ L´p 3`ǫ
2 qrµ for some g ą 0, µ P R. (3.11)

The choice (3.11) corresponds to an attempt to construct a measure that looks the same at all scales (using

appropriate units at each scale).

It is not hard to see that Zr,s P p0,8q. Introducing the short hand

Ṽr,spφq “
ż

Λs

d3x
 
g̃r : φ4pxq :Cr

`µ̃r : φ2pxq :Cr

(
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by Lemma 3.1 one has that ż

S1pQ3
pq

dµCr
pφq Ṽr,spφq “ 0.

Since e´t is convex in t it follows by Jensen’s inequality that Zr,s ě 1. On the other hand since g̃r ą 0

and recalling definitions (3.10) and (3.9) it is immediate that Ṽr,spφq is bounded below which gives an upper

bound on Zr,s for fixed r, s.

3.4 Sketch of general strategy and main results

We start by introducing the main quantities we will achieve analytic control over in order to prove our main

results. The measure ν on S1pQ3
pq will be constructed via solving a moment problem, the candidates for the

moments will be the limits of corresponding moments of νr,s. Denoting x¨y for “expectation with respect to

ν” and x¨yr,s for expectation with respect to νr,s for f1, . . . , fn P SpQ3
pq we define candidate moments for ν

via C
nź

j“1

φpfjq
G

:“ lim
rÑ´8
sÑ8

C
nź

j“1

φpfjq
G

r,s

. (3.12)

With our methods the order of removing the UV-cutoffs and IR cut-offs does not need to be prescribed. The

key qualities needed for our candidate moments on the left hand side of (3.12) to be actual moments are

symmetry in the fj ’s, a positive definiteness condition, and certain n! bounds (see Theorem 1.12).

The first two of these immediately follow after one has established convergence of the right hand side of

(3.12). With regards to the n! bounds one needs to show that for each finite dimensional subspace U Ă SpQ3
pq

there exists KU such that for any n P N, and some seminorm NU on SpQ3
pq one has

ˇ̌
ˇ̌
ˇ

C
nź

j“1

φpfjq
G ˇ̌

ˇ̌
ˇ ď Kn

U ˆ n! ˆ
nź

j“1

NU pfjq (3.13)

for all choices of f1, . . . , fn P U . Clearly it is sufficient to establish the estimate (3.13) for all U of the form

Sq´,q` for q´, q` P Z where

Sq´,q` pQ3
pq :“

 
f P SpQ3

pq : f constant on translates of L´q´Z3
p and supppfq Ă L´q`Z3

p

(
.

This conflicts with earlier notation of section 1.2 but is consistent with scale indices being given in terms of

L, not p. Sq´,q` pQ3
p,Cq will denote the corresponding space of complex valued test functions. We will see

that analyticity methods will be used to establish both the convergence of the moments and the estimates

(3.13) for any subspace Sq´,q` . For f P SpQ3
p,Cq we define

Zr,spfq “
ż

S1pQ3
pq

dµCr
pφq exp

„
´
ż

Λs

d3x
´
L´ǫr g : φ4pxq :Cr

` L´ p3`ǫq
2

rµ : φ2pxq :Cr
´ φpxqfpxq

¯

so that

Sr,spfq :“ Zr,spfq
Zr,sp0q “ xexprφpfqsyr,s
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is the moment generating function for the measure νr,s. It is not hard to see that for any q´, q` P Z one

has that Sr,sp¨q seen as a function on the finite dimensional complex vector space Sq´,q` pQ3
p,Cq is entire. In

particular we can express n-th moments of νr,s as n-th order functional derivatives at f “ 0:

C
nź

j“1

φpfjq
G

r,s

“
˜

nź

j“1

B
Btj

¸ˇ̌
ˇ̌
ˇ
t1“¨¨¨“tn“0

Sr,s

˜
nÿ

j“1

tjfj

¸
.

We equip the finite dimensional complex vector space Sq´,q` pQ3
p,Cq with the supremum norm. The conver-

gence of moments and required estimate (3.13) would follow if one establishes the following result

For every q´ ď q` P Z there exist δq´,q` ą 0 such that the functions Sr,sp¨q converge uniformly to a

limiting function Sp¨q on the ball Bp0, δq´,q` q Ă Sq´,q` pQ3
p,Cq

The convergence of the moments is immediate and the bound (3.13) follows by a Cauchy estimate. Our

RG analysis will establish this uniform convergence as a consequence of establishing a particular expansion

across scales for Sr,spfq where each term corresponds to the contributions from the fluctuations assigned to

one of the r ´ s length scales.

However our methods can show the validity and uniform convergence of these expansions only for suffi-

ciently small f (where the degree of smallness) will depend on the length scales that f lives on - i.e. how

small and large q´ and q` must be so that f P Sq´,q` pQ3
p,Cq). This smallness requirement is the reason

that we use a moment argument to construct the measure ν ( as opposed to constructing the characteristic

function).

Note that ν automatically inherits both translation and rotation invariance - this is a consequence of the

fact that the measure νr,s is rotation invariant and due to ultrametricity is invariant under translations τz for

|z| ď Ls. The measure ν will also be partially scale-invariant, in particular one will have
´
λrφsŜλ

¯#

ν “ ν

for all λ P LZ. This follows from the forms we have chosen for the νr,s (in particular our choices of g̃r and

µ̃r). It can also be seen as a shift in the expansion we establish for Spfq.
The RG approach is also suited to the construction of a second measure on S1pQ3

pq which heuristically

corresponds to the law of “φ2” for φ distributed according to ν - we will denote this measure by νφ2 and will

sometimes denote the original measure ν by νφ. Higher powers of the field φ are called “composite fields” or

“operator products” [72]. Since νφ will not be be supported on actual functions making sense of pointwise

products like “φ2” is far from clear. In order to see how to overcome this problem it is instructive to look at

how one can make sense of of “φ2” for φ distributed according to νC´8 .

The strategy we describe is to implement cut-offs and make substractions. Note that as r Ñ ´8 the

quantity EµCr
rφ2pxqs “ Crp0q diverges like L´2rφsr. Wick ordering can then be seen as a method of UV

regularization by subtracting divergent counter terms coming from self-contractions. If φ is distributed

according to µCr
then : φ2p¨q :Cr

, seen as a random element of S 1pQ3
pq, converges in the sense of a moments

to a random generalized function which we denote : φ2 :C´8 (see [62, §V.1] for details). Writing E for the

expectation with respect to the law of : φ2 :C´8 then one has for any f, g P SpQ3
pq

E
“
: φ2 :C´8 pfq : φ2 :C´8 pgq

‰
“
ż

Q3
pˆQ3

p

d3x d3y fpxqC´8px´ yq2gpyq,

in particular : φ2 :C´8 is a non-degenerate process. : φ2 :C´8 is called a “normal ordered field” and
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we see that in case of the free field normal ordering is essentially given by Wick ordering. In fact when

defining perturbations of the form (3.2) in dimension d “ 2 with respect to the massive Gaussian Free Field

(the Gaussian measure on S1 with covariance p´∆ ` m2q´1 for some m2 ą 0) the problem of ultraviolet

singularities is reduced to Wick ordering - one can define any power of the field similarly to how we defined

: φ2 :C´8 and this makes a perturbation of the form (3.2) well defined (when in finite volume) with respect to

the Gaussian Free Fields without any UV regularization when φ4 and φ2 are replaced by their Wick ordered

counterparts. However the ultraviolet divergence in higher dimensions tends to be more severe - from d “ 3

up until 4 ´ ǫ dimensions this can only be done for the φ2 and for d ě 4 one does not expect to be able to

define any Wick ordered powers of the Gaussian Free Field as random elements of S1.

Our approach to defining the normal ordered φ2 with respect to the ν measure involves both an additive

and multiplicative renormalization. For φ distributed according to µCr
we define Nrrφ2spxq via

Nrrφ2spxq “ Zr2Y2 : φ2pxq :Cr
´Y0Zr0

where Z2, Y2, Z0, and Y0 are parameters which will be chosen based on the RG analysis. Constructing the

normal ordered φ2 with respect to our measure νφ now corresponds to showing convergence of the law of

Nrrφ2s as r Ñ ´8 to a limiting measure νφ2 on S1pQ3
pq - the corresponding limiting process will be denoted

by N rφ2s.
We will simultaneously construct the measures νφ and νφ2 by applying our yet to be defined RG map to

generate expansions, uniform bounds, and convergence for the joint moment generating functions:

Sr,spf̃ , j̃q :“ Zr,spf̃ , j̃q
Zr,sp0, 0q “

A
exprφpf̃q `Nrpj̃qs

E
r,s

(3.14)

where

Zr,spf̃ , j̃q “
ż

S1pQ3
pq

dµCr
pφ̃q exp

„
´
ż

Λs

d3x
!
L´ǫr g : φ̃4pxq :Cr

`L´ p3`ǫq
2

rµ : φ̃2pxq :Cr
´φ̃pxqf̃pxq ´Nrrφ̃2spxqj̃pxq

)

(3.15)

and f̃ , j̃ P SpQ3
p,Cq (the introduction of tildes is mostly vacuous and only preparation for an upcoming

changes of variable).

The main theorem of [3] is given below:

Theorem 3.1.

Dρ ą 0, DL0, @L ě L0, Dǫ0 ą 0, @ǫ P p0, ǫ0s, one can find ηφ2 ą 0 and functions µpgq, Y0pgq, Y2pgq of g in

the interval pḡ˚ ´ ρǫ
3

2 , ḡ˚ ` ρǫ
3

2 q, where

ḡ˚ “ pǫ ´ 1

36Lǫp1 ´ p´3q , (3.16)

such that if one sets µ “ µpgq, Z2 “ L´ 1

2
ηφ2 , Z0 “ Z2L

´2rφs, Y0 “ Y0pgq and Y2 “ Y2pgq in the previous

definitions, then for all collections of test functions f1, . . . , fn, j1, . . . , jm, the limits

@
φpf1q ¨ ¨ ¨φpfnqN rφ2spj1q ¨ ¨ ¨N rφ2spjmq

D
r,s

:“ lim
rÑ´8
sÑ8

@
φpf1q ¨ ¨ ¨φpfnqNrrφ2spj1q ¨ ¨ ¨Nrrφ2spjmq

D
r,s
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exist and do not depend on the order in which the r Ñ ´8 and s Ñ 8 limits are taken. Moreover, the

candidate moments (which we call correlators) satisfy the following properties:

1) They are invariant by any translations or rotations of all the test functions f1, . . . , fm, j1, . . . , jm.

2) They satisfy the partial scale invariance property

@
φ pSλf1q ¨ ¨ ¨φ pSλfnq N rφ2s pSλj1q ¨ ¨ ¨N rφ2s pSλjmq

D
“

|λ|p3´rφsqn`p3´2rφs´ 1

2
ηφ2 qm

p

@
φpf1q ¨ ¨ ¨φpfnq N rφ2spj1q ¨ ¨ ¨N rφ2spjmq

D

for all λ P LZ.

3) They satisfy the nontriviality conditions

xφp1Z3
p
q4y ´ 3xφp1Z3

p
q2y ă 0 ,

xN rφ2sp1Z3
p
q2y “ 1 .

4) The pure φ correlators are the moments of a unique probability measure νφ on S1pQ3
pq with finite

moments. This measure is translation and rotation invariant. It is also partially scale invariant with scaling

parameter rφs with respect to the scaling subgroup LZ - i.e.
´

|λ|´rφs
p Ŝλ

¯#

νφ “ νφ for all λ P LZ
5) The pure N rφ2s correlators are the moments of a unique probability measure νφ2 on S1pQ3

pq with finite

moments. This measure is translation and rotation invariant. It is also partially scale invariant with scaling

parameter 2rφs ` 1
2
ηφ2 with respect to the scaling subgroup LZ - i.e.

ˆ
|λ|´p2rφs` 1

2
ηφ2 q

p Ŝλ

˙#

νφ2 “ νφ2 for all

λ P LZ.

6) The measures νφ and νφ2 satisfy a mild form of universality: they do not depend on g in the above-

mentioned interval.

Our first remark is that a major weakness of the above result is the restriction of the scaling group to

LZ instead of the full scaling group pZ. Unfortunately it is expected that L0 ą p so different techniques are

required to upgrade the scale invariance given by the Theorem above - this is the focus of Chapter 4.

The parameter ηφ2 is called the anomalous dimension of the composite field N rφ2s, it represents the

discrepancy in scaling between N rφ2s and the corresponding power of the free field : φ2 :C´8 . The law of

the elementary field νφ has the same scaling parameter as the free field µC´8 , that is we have ηφ “ 0. The

absence of an anomalous dimension for the elementary field φ and the presence of the anomalous dimension

for the composite field N rφ2s agree with predictions made for the real BMS model and for an analogous

model [73]. In fact the value of ηφ2 “ 2
3
ǫ` opǫq agrees with the calculation Wilson made in [73].

However in certain computations in the 4´ǫ expansion one sees anomalous dimension for elementary field

φ of order ǫ2 [76, p. 133] while both the p-adic and real BMS models are not able to capture this behaviour.

This is a shortcoming of using fractional Laplacians to mimic non-integer space-times. One expects such an

anomalous dimension to develop due to wave-function renormalizations, i.e. the flow of a |∇φ|2 term which

are comparable to the quantity pφ,´∆φq which is responsible for the Gaussian measure. This flow is dealt

with by multiplicative renormalizations of φ which cumulatively lead to a change in scaling behaviour.

The p-adic models, like other implementations of hierarchical RGs, are not expected to manifest wave

function renormalization. One does not expect appearance of derivatives in the flow, in fact derivatives
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are usually not natural to define on these spaces. Additionally the usual mechanism for the generation of

derivatives, that is writing the difference of nonlocal relevant terms with local subtractions, is not applicable

to the hierarchical case because there we keep locality.

However even the RG flow for the real BMS models does not generate wave function renormalizations

- here the Gaussian measure comes from a term pφ, p´∆q 3`ǫ
4 φq and no terms like this will be produced by

the RG flow. Additionally if one puts in a gradient squared term by hand one will see, by power counting

when ǫ P p0, 1q, that such a term is an irrelevant operator (it will be washed out by the iteration of the RG

transformation).

3.4.1 Heuristic overview of the RG transformation and associated expansion

In this subsection we sketch how the RG allows us to expand the partition functions Zr,spf̃ , j̃q. Applying this

separately to the numerator and denominator of (3.14) then yields the expansion of Sr,spf̃ , j̃q. We assume

that f̃ , j̃ P Sq´,q` pQ3
p,Cq for some fixed q´ and q` and we assume that r ď q´ and s ě q`. Again we remark

that we want to control the r Ñ ´8, s Ñ 8 limit so one should think of r as being a negative integer of

large magnitude and s being a positive integer of large magnitude.

Our first step is to perform a change of variable so we replace our very rough field distributed according

to µCr
with a smoother one distributed according to µC0

.

An important fact is that our covariances with different UV cut offs are related via scale transformations

- for any r P Z one has Crpx´ yq “ L´2rrφsC0pLrx´ Lryq. As a direct consequence of this if φ̃ is a random

field distributed according to Cr and φ is a random field distributed according to C0 then φ̃p¨q d“L´rrφsφpLr¨q
.

By applying this change of variables in φ and also applying a change of variable Lrx Ø x for the integral

over Q3
p we arrive at

Zr,spf̃ , j̃q “ exp

˜
´Y0Zr0L2rφsr

ż

Q3
p

jpxq d3x

¸
ˆ
ż

S1pQ3
pq
dµC0

pφq exp
`
´Vr,spφq ` φpfq ` Y2Z

r
2 : φ2 :C0

pjq
˘

(3.17)

where

fpxq “ Lp3´rφsqrf̃pL´rxq and jpxq “ Lp3´2rφsqr j̃pL´rxq

and

Vr,spφq “
ż

Λs´r

d3x
“
g : φ4pxq :C0

`µ : φ2pxq :C0

‰
.

One can imagine this rescaling as zooming in our field and so we trade dealing with a multitiude of short-range

degrees of freedom (the UV problem) in exchange for having a larger box (exacerbating the IR problem). We

also note that 3´ rφs, 3´2rφs ą 0 so our observables have been scaled in such a way that makes their values

smaller in magnitude while their supports have grown larger. In particular since f̃ and j̃ were constant over

the blocks of Lq´ and r ă q´ the functions f and j will be constant over the blocks of L. We introduce some

notation related to the scaling of observables, we write
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fÑqpxq “ L´p3´rφsqqfpLqxq
jñqpxq “ L´p3´2rφsqqjpLqxq

(3.18)

With the above notation one then has f “ f̃Ñ´r and j “ j̃ñ´r.

In our change of variable the quantities with tildes can be imagined as living at their native (true) scale

while those without tildes are living at what we call unit scale. The RG will traverse small length scales to

large length scales but will always take as input and produce as output quantities at unit scale.

Before continuing our discussion we quickly describe a few more conventions. For an arbitrary function

or field ψ : Q3
p Ñ C which is constant over the blocks of L we often identify ψ with a L-indexed complex

vector, i.e. we identify ψ Ø tψ∆u∆PL P CL with ψpxq “ ψ∆pxq for all x P Q3
p - here ∆pxq denotes the unique

∆ P L that contains x.

For the time being we ignore the field independent prefactor appearing in (3.17). Since a field φ distributed

according to C0 is almost surely constant on blocks of L we can realize the integrand as a product of functions

of a single real variable, each evaluated on our field’s value on a particular block ∆:

ż

S1pQ3
pq
dµC0

pφq exp
`
´Vr,spφq ` φpfq ` Y2Z

r
2 : φ2 :C0

pjq
˘

“
ż

S1pQ3
pq
dµC0

pφq
ź

∆PL
∆ĂΛs´r

F0,∆pφ∆q (3.19)

where for a given ∆ P L the functions F∆ : R Ñ R are given by

F0,∆pφ∆q “ exp
“
´g : φ4∆ :C ´ pµ´ Y2Z

r
2j∆q : φ2∆ :C `f∆φ∆

‰
. (3.20)

Note that the above definition of F0,∆pφ∆q makes sense for all ∆ P L, even those not part of the product

above. Referring back to the definitions (3.5) and (3.7) one has the covariance decomposition

C0 “ Γ ` C1

which immediately means if φ is distributed according to C0 one can write

φ “ φ1 ` ζ

where the random fields φ1 and ζ are independent with φ1 distributed according C1 and ζ distributed

according to Γ. The field ζ is called the fluctuation field while φ1 is called the background field.

The function Γp¨q is constant over the blocks of L and is also of finite range, being supported on L´1Z3
p.

This means that the ζ can be seen as a random field indexed by the lattice L whose values in different

L-blocks are independent, i.e. EΓrζpxqζpyqs “ 0 if |x ´ y| ą L. The function C1p¨q is constant over ∆ P L1

and so the field φ1 is almost-surely constant over L-blocks. In particular since C1p¨q “ L´rφsC0pL ¨q it follows
that if φ is distributed according to C0 one has

L´rφsφpL ¨q d“φ1p¨q. (3.21)
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The RG expansion of (3.19) comes out of careful iterative partial integration which we now describe. First

we realize φ as the sum of independent fields ζ`φ1 and integrates out the fluctuation field ζ. Afterwards we

performs a change of variable corresponding to (3.21) to again arrive at an integrand that is being integrated

with respect to the measure dµC0
. We now write this process out, assuming r ă s (note that we will

sometimes refrain from writing S1pQ3
pq under our integrals to lighten notation):

ż
dµC0

pφq
ź

∆PL
∆ĂΛs´r

F0,∆pφ∆q “
ż
dµC1

pφ1q
ż
dµΓpζq

ź

lPL1

lĂΛs´r

ź

∆PL
∆Ăl

F0,∆pφ1,∆ ` ζ∆q

“
ż
dµC1

pφ1q
ź

lPL1

lĂΛs´r

»
—–
ż
dµΓpζq

ź

∆PL
∆Ăl

F0,∆pφ1,l ` ζ∆q

fi
ffifl

“
ż
dµC0

pφq
ź

∆1PL
∆1ĂΛs´r´1

»
—–
ż
dµΓpζq

ź

∆PL
∆ĂL´1∆1

F0,∆pφ1,L´1∆1 ` ζ∆q

fi
ffifl

“
ż
dµC0

pφq
ź

∆1PL
∆1ĂΛs´r´1

»
—–
ż
dµΓpζq

ź

∆PL
∆ĂL´1∆1

F0,∆pL´rφsφ∆1 ` ζ∆q

fi
ffifl

“
ż
dµC0

pφq
ź

∆1PL
∆1ĂΛs´r´1

F̊1,∆1 pφ∆1 q

(3.22)

where

F̊1,∆1 pφ∆1 q “
ż
dµΓpζq

ź

∆PL
∆ĂL´1∆1

F0,∆pL´rφsφ∆1 ` ζ∆q. (3.23)

In the first line of (3.22) we decomposed our field and we broke up the product over unit blocks within Λs´r

into two products - the first product being over the L-blocks contained in Λs´r and then the second product

being over the L3 unit boxes contained within each fixed L-block.

In going to the second line of (3.22) the interchange of integral and product is allowed since for any

two distinct L-blocks l1,l2 one has that the collections of random variables tζ∆u∆Ăl1
and tζ∆u∆Ăl2

are

independent. Here the fact that we are working over an ultrametric space is quite important - for ∆1 Ă l1

and ∆2 Ă l2 one must have |∆1 ´∆2| ą L. We also use the notation φ1,l since φ1 is constant over L-blocks

l.

In the third line of (3.22) we have just re-parameterized the product over L-blocks, noting that there is a

one-to-one correspondance between L-blocks contained in Λs´r and unit blocks ∆1 in Λs´r´1 via L´1∆1 Ø
∆1. In going to the third line we have applied the change of variable corresponding to (3.21).

This transforms our integral expressed as a product of local functionals of the field into another integral

which is also given by a product of local functionals but this time the product involves a smaller volume. We

remark that this process is much cleaner than what happens in the Euclidean case where locality cannnot be

perfectly perserved, in particular in step 2 one would have to worry that unit blocks in distinct but adjacent

L-blocks can be close. However this can be dealt with in Brydges’ RG formalism which works with a similar
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approximate factorization involving functionals with weaker locality properties (polymer activities) - this

was first developed in [19], also see [16] for a pedagogical introduction to an updated version in the situation

where one uses finite range fluctuation covariances.

While the steps of (3.22) have reduced the number of degrees of freedom in our original integral we

have only won some understanding of the quantity we’re trying to calculate if we have a sufficiently good

understanding of the functionals tF̊1,∆u∆ĂΛs´r´1
that appear in our new integral. Calculating the integral

by iterating this partial integration requires understanding the dynamical system generated by the iteration

of this transformation on functionals.

Note that while constant functions are easy to track under this transformation they are very unstable, if

for all ∆ P L we set F∆ “ c for some c P R then one will have F̊∆ “ cL
3

. A remedy to this is to extract a

carefully chosen constant at each step - our transformation on functionals will actually take the form

Fk`1,∆1 pφ∆1 q “ e´δbrFks
∆1

ż
dµΓpζq

ź

∆PL
∆ĂL´1∆1

Fk,∆pL´rφsφ∆1 ` ζ∆q. (3.24)

One can think of the constants δbrFks∆1 , called vacuum renormalizations, as being chosen as functions of

tF k∆u∆ĂL´1∆1 in order to guarantee some approximate normalization condition, for example one could ask

that for all ∆ and k one has Fk,∆p0q “ a « 1. We will see in later subsections that the collection of vacuum

renormalizations across all scales will in fact contain the computation of S.

We also remark that just as the initial data tF0,∆u∆PL was defined in infinite volume (all of L) we can

also define our transformation tFk,∆u∆PL Ñ tFk`1,∆u∆PL in infinite volume - each iteration of the RG

transformation boils down to parallel (that is independent) transformations on each L-block.

3.4.2 Relevant and irrelevant operators

At this point it is instructive to turn our focus to how this process of iterative integration looks when being

applied to the partition function Zr,sp0, 0q. Since in (3.20) one will have f “ j “ 0 our initial functions

are spatially homogenous, i.e Fk,∆ is given by an expression independent of ∆ when k “ 0. Due to the

translation invariance of our covariances and the lack of boundary effects this property will be preserved for

all values of k. Thus we only need to keep track of a transformation acting on some space of functions of

a single variable which we write Fk Ñ Fk`1. We refer to the spatially homogenous evolution as the “bulk”

flow.

While this is simpler then the spatially inhomogenous case we are still dealing with an infinite dimensional

dynamical system. The RG approach involves introducing a coordinate system to parameterize the state

space of this dynamical system which allows us to establish analytic control of the associated flow by studying

how the flow acts on just finitely many coordinates - these coordinates representing the “relevant operators”

of [74].

Working formally suppose that we used a coordinate system pβk,nq8
n“0

Ø Fk where the correspondance

is given by

Fkpφ∆q :“ exp r´Vkpφqs :“ exp

«
´

8ÿ

n“1

βk,n : φn∆ :C0

ff
.

We note that this expression is formal but it includes the original form of our functional F0, it can also be
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seen as the most general way to parameterize our functions as exponentials. We investigate the first order

(linear) part of the flow pβk,nq8
n“0

Ñ pβk`1,nq8
n“0

.

ż
dµΓpζq

ź

∆PL
∆ĂL´1∆1

exp r´Vkpφ1,∆ ` ζ∆qs “
ż
dµΓpζq exp

»
—–´

ÿ

∆PL
∆ĂL´1∆1

Vkpφ1,∆ ` ζ∆q

fi
ffifl

«
ż
dµΓpζq

»
—–1 ´

ÿ

∆PL
∆ĂL´1∆1

Vkpφ1,∆ ` ζ∆q

fi
ffifl

“ 1 ´
ż
dµΓpζq

ÿ

∆PL
∆ĂL´1∆1

« 8ÿ

n“1

βk,n : pφ1,∆ ` ζ∆qn :C0

ff

“ 1 ´
ż
dµΓpζq

ÿ

∆PL
∆ĂL´1∆1

« 8ÿ

n“1

βk,n

˜
nÿ

m“0

ˆ
n

m

˙
: φm1,∆ :C1

ˆ : ζn´m
∆ :Γ

¸ff

“ 1 ´
ÿ

∆PL
∆ĂL´1∆1

8ÿ

n“1

βk,n : φn1,∆ :C1

Ñ 1 ´
ÿ

∆PL
∆ĂL´1∆1

8ÿ

n“1

L´nrφsβk,n : φn∆1 :C0

« exp

«
´

8ÿ

n“1

L3´nrφsβk,n : φn∆1 :C0

ff
“ e´Vk`1pφ

∆1 q

While many of the steps and expressions above were formal, in going to the fourth line we used a binomial

identity for Wick powers

: pφ1,∆ ` ζ∆qn :C0
“

nÿ

m“0

ˆ
n

m

˙
: φm1,∆ :C1

ˆ : ζn´m
∆ :Γ

and in going to the fifth line we used the fact that

ż
dµΓpζq : ζl∆ :Γ“ δl,0.

In going to the sixth line we just rescaled from φ1 to φ. We see that under this linear approximation

of the RG flow βk`1,n “ L3´nrφsβk`1,n. Remembering that rφs “ 3`ǫ
4

we see that for n ě 5 one has that

L3´nrφs ă 1. Thus the coefficients of the terms : φn∆ :C0
appearing in (3.4.2) are all contracting for n ě 5

- these terms are called irrelevant. However for 1 ď n ď 4 one has the L3´nrφs ą 1 and the corresponding

terms : φ1∆ :C0
, . . . , : φ4∆ :C0

are called relevant. The picture one expects to hold is that the irrelevant

parameters should stay small because they are contracting at first order and the important qualitiative and

quantitative features of the dynamical system should be recoverable through studying the flow of just the

relevant parameters.

Clearly F “ 1, or βn “ 0 for all n ě 1 corresponds to a fixed point of our dynamical system which we
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call the Gaussian fixed point. The observations above suggest that the gaussian fixed point has an infinite

dimensional stable manifold and a finite dimensional unstable manifold. Obsterve the the coefficient of the

term : φ4∆ :C0
expands weakly, being scaled by Lǫ. When ǫ “ 0 (in which case our model should resemble

massless φ4 in four dimensions) the : φ4∆ :C0
is marginal. The picture put forth by [75] is that if one takes

ǫ “ 0 and slowly increases ǫ one will see a new fixed point emerge out of the Gaussian fixed point in the φ4

direction - ǫ then plays the role of a bifurcation parameter. When one takes ǫ all the way to ǫ “ 1 one gets

a model of great interest - massless φ4 in 3 dimensions. However the at ǫ “ 1 the non-trivial fixed point

is no longer a small perturbation of the Gaussian fixed point which puts it outside the purview of our RG

machinery which depends on working close to the Gaussian fixed point.

3.4.3 The bulk flow in second order perturbation theory

In order to see the emergence of the non-trivial fixed point one must work at second order in g. In light of

the above discussion we will only use two coordinates to parameterize our functionals - setting Fkpφ∆q “
exp

“
´gk : φ4∆ :C0

´µk : φ2∆ :C0

‰
(we won’t include wick monomials of order 3 or 1, one expects that under

the bulk RG flow the functions Fk will stay even). We will expand e´V « 1´V ` V 2

2
and ignore terms that

are higher than order 2 in g and µ or irrelevant.

ż
dµΓpζq

ź

∆PL
∆ĂL´1∆1

Fk,∆pφ1,∆ ` ζ∆q

“
ż
dµΓpζq exp

»
—–

ÿ

∆PL
∆ĂL´1∆1

´Vkpφ1,∆ ` ζ∆q

fi
ffifl

«
ż
dµΓpζq

»
——–1 ´

ÿ

∆PL
∆ĂL´1∆1

Vkpφ1,∆ ` ζ∆q ` 1

2

ÿ

∆1,∆2PL

∆1,∆2ĂL´1∆1

Vkpφ1,∆ ` ζ∆1
qVkpφ1,∆ ` ζ∆1

q

fi
ffiffifl

Ñ 1 ` δbk`1 ´ gk`1 : φ4∆1 :C0
´µk`1 : φ2∆1 :C0

«eδbk`1 exp
“
´gk`1 : φ4∆1 :C0

´µk`1 : φ2∆1 :C0

‰

where the evolution pgk, µkq Ñ pgk`1, µk`1q is given by

gk`1 “ Lǫgk ´A1g
2
k

µk`1 “ L
3`ǫ
2 µk ´A2g

2
k ´A3gkµk

(3.25)

with the constants above given by

A1 “ 36L3´4rφs
ż

Q3
p

Γpxq2 d3x

A2 “ 48L3´2rφs
˜ż

Q3
p

Γpxq3 d3x

¸
` 144L3´4rφsC0p0q

˜ż

Q3
p

Γpxq2 d3x

¸
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A3 “ 12L3´2rφs
ż

Q3
p

Γpxq2 d3x .

We then see that there is a fixed point for the flow of g given by

ḡ˚ “ Lǫ ´ 1

A1

“ pǫ ´ 1

36Lǫp1 ´ p´3q ą 0

where we have used Lemma 5.5 which gives that

A1 “ 36Lǫ ˆ p1 ´ p´3qpLǫ ´ 1q
pǫ ´ 1

.

We remark that for any fixed value of L “ pl ě 1 one has

ḡ˚
ǫ

ÝÑ log p

36p1 ´ p´3q

as ǫ Ñ 0 so when working in the small ǫ regime we have that ḡ˚ is of Opǫq.
In the what follows we will define an exact renormalization group transformation that does not disregard

higher order terms or irrelevant operators. The exact flow equations for g and µ will be given by (3.25) with

additional Opǫ3q corrections. Our functions Fk will take the form

Fkpφ∆q “ exp
“
´gk : φ4∆ :C0

´µk : φ2 :C0

‰
`Rkpφ∆q

where at each stage k the function Rk : R Ñ R will live in an appropriately chosen infinite dimensional

Banach space and should be thought of as containing all the irrelevant operators. We will not have explicit

formulas for Rk’s but only show that they stay small and that the corrections they induce in (3.25) are small.

The above discussion focused entirely on the bulk, in the presence of observables we will have spatially

inhomogenous collection of functions Fk,∆ which will have a more complicated preserved functional form:

F∆pφ∆q “ ef∆φ∆ ˆ
˜
exp

«
´

4ÿ

k“1

βk,∆ : φk∆ :C0

ff
ˆ
`
1 `W5,∆ : φ5∆ :C0

`W6,∆ : φ6∆ :C0

˘
`R∆pφ∆q

¸

where β1,∆, . . . , β4,∆, f,W5,∆,W6,∆ are numeric parameters and R∆ again is a function of one real variable

which we track in a Banach space.

3.5 Defining the Extended RG transformation

3.5.1 The state space of the Extended RG transformation

The functions R∆ mentioned above will lie in the space C9
bdpR,Cq, namely, the space of nine times con-

tinuously differentiable functions from R to C which, together with their derivatives up to order nine, are

bounded. We again remark this functional space is parameterizing an infinitude of irrelevant coordinates

when it comes to our RG - we won’t have an explicit understanding of the form of R at each step but we

want to show that it stays small in the RG flow and that it’s influence on the flow of the relevant parameters
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is negligible.

We will use seminorms || ¨ ||Bφ,ψ,θ defined for K P C9
bdpR,Cq by

||Kpφq||Bφ,ψ,θ “
9ÿ

j“0

θj

j!

ˇ̌
ˇ̌d
jK

dφj
pψq

ˇ̌
ˇ̌ .

Here Bφ is merely a symbol which indicates the variable with respect to which the derivatives are taken.

This will be especially useful when the function may depend on several such variables. By contrast, ψ is an

argument of the seminorm. The derivatives are evaluated at φ “ ψ and therefore the result depends on ψ.

Finally θ P r0,8q is a parameter used to properly calibrate this seminorm. We will mainly use two values

for this parameter denoted by h and h˚ to be specified later. As an example of use of the previous notation,

we have ||φ2||Bφ,ψ,θ “ |ψ|2 ` 2θ|ψ| ` θ2. In the important special case where ψ “ 0, we will abbreviate the

notation as

|Kpφq|Bφ,θ “ ||Kpφq||Bφ,0,θ .

We will often call the above seminorm a “kernel” seminorm. A nice property of all of these seminorms is

multiplicativity. Indeed for any two functions K1, K2 in C9
bdpR,Cq we have

||K1pφqK2pφq||Bφ,ψ,θ ď ||K1pφq||Bφ,ψ,θ ˆ ||K2pφq||Bφ,ψ,θ

which is an easy consequence of the Leibniz rule and the choice of 1
j!

weights.

To a parameter ḡ ą 0 called a calibrator we associate a norm ||| ¨ |||ḡ on the complex Banach space

C9
bdpR,Cq defined by

|||K|||ḡ “ max

#
|Kpφq|Bφ,h˚ , ḡ

2 sup
φPR

||Kpφq||Bφ,φ,h
+
.

While the coefficient of φ4 in our problem will be a dynamical variable which generically does not stay fixed

we expect to work in a regime where it stays in the neighborhood of ḡ˚. We will set ḡ “ ḡ˚, thinking of ḡ

as something of order ǫ that we use to measure the size of certain quantities appearing in our RG analysis.

In particular it serves as an upper bound (with an Op1q constant) on the size of the relevant couplings

β4, β3, β2, β1.

We will choose h “ c1ḡ
´ 1

4 and h˚ “ c2L
3`ǫ
4 for some specifically chosen fixed constants c1, c2 ą 0. We

will try to give some motivation for having two seminorms with two different values of θ.

Evaluating Rpφq at φ “ 0 in some sense measures the cumulative size of all the “irrelevant couplings”

inside of R - the kernel seminorm will be our tool for keeping track of this. Later we will see that the

kernel seminorm also directly determines the magnitude of the correction generated by the (non-explicit)

irrelevant couplings to the approximate flow equations for the relevant couplings (3.25). However control of

a function Rpφq at φ “ 0 does not immediately translate to good control of
ş
dµΓpζq Rpφ ` ζq at φ “ 0.

We need to understand R across the distribution of ζ. The kernel seminorm of R tries to capture a helpful

amount information of R’s behaviour near 0 with an eye towards helping control the fluctuation integral -

the quantity h˚ in some sense is an order of magnitude estimate for |ζ| see Lemmas 3.3 and 3.4 for example.

However the kernel seminorm by itself is not enough to control the fluctuation integration, we will need some

control at the tails of the distribution of ζ.
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The norm ||Rpφq||Bφ,φ,h is used to give more uniform control in φ. At the price of consuming the decay

factors e´gφ4

with g ą 0 one will be able to bound |φ| by a factor of g´ 1

4 - this motivates our choice of h.

The g2 appearing within the definition of ||| ¨ |||ḡ fixes the discrepancy between the two norms we use

to measure the R. Since R involves terms formed by three vertices we expect the kernel seminorm of R to

be approximately order g3 but in order to establish a contractive bound we’ll want an exponent drop and

impose that the kernel seminorm of R is of order g
11

4 . Now when using the h-norm to measure R we have to

pay a price to bound powers of the field φ - the worst vertices come with a power of φ3 and a single power of

g - thus we expect the h-norm of K to be approximately of order pg ˆ g´ 3

4 q3 “ ḡ
3

4 . Thus we need an extra

g2 so the h-norm is of the same magnitude as the kernel seminorm. This ḡ2 discrepancy in turn effects the

number of derivatives appearing in our seminorms - see in particular Lemma 3.11.

The space of collections of functions tF∆u∆PL will be parameterized by the Banach space Eex. An element

of the space Eex is an indexed family
~V “ pV∆q∆PL

where

V∆ “ pβ4,∆, β3,∆, β2,∆, β1,∆,W5,∆,W6,∆, f∆, R∆q P C7 ˆ C9
bdpR,Cq.

We define the norm

||V∆|| “ max
!

|β4,∆|ḡ´ 3

2 , |β3,∆|ḡ´1, |β2,∆|ḡ´1, |β1,∆|ḡ´1,

|W5,∆|ḡ´2, |W6,∆|ḡ´2, |f∆|Lp3´rφsq, |||R∆|||ḡ ḡ´ 21

8

)
.

We also define

||~V || “ sup
∆PL

||V∆||

and

Eex “
#
~V P

ź

∆PL

`
C7 ˆ C9

bdpR,Cq
˘

| ||~V || ă 8
+
.

Now the correspondence between vectors ~V and integrands is given by defining (for t a non-negative integer):

Itr~V spφq :“
ź

∆PL
∆ĂΛt

I∆r~V spφq

where

I∆r~V spφq :“ ef∆φ∆ ˆ texp
“
´β4,∆ : φ4∆ :C0

´β3,∆ : φ3∆ :C0
´β2,∆ : φ2∆ :C0

´β1,∆ : φ∆ :C0

‰
ˆ

`
1 `W5,∆ : φ5∆ :C0

`W6,∆ : φ6∆ :C0

˘
`R∆pφ∆qu .

The most general of the Renormalization Group transformations we define will be a map RGexr¨s : Eex Ñ Eex.

We call this map the extended RG map and the dynamical system generated by ~V Ñ RGexr~V s is called

the extended RG flow. Along with the extended RG transformation we will also define associated vacuum

renormalization maps δb∆r¨s : Eex Ñ C for each ∆ P L. We remark that we will be able to establish analyticity
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and our core estimates for RGex only within a rather small open set U Ă Eex.

The algebraic definition of this map will be quite involved and we leave that to the next subsection. The

key identity that RGex and vacuum renormalizations satisfy which will yield the expansion across scales

described in Section 3.4 is:

I∆1

”
RGexr~V s

ı
“ exp

„
1

2
pf,ΓfqL´1∆1 ` δb∆1 r~V s


ˆ
ż

S1pQ3
pq
dµC0

pφq
ź

∆ĂL´1∆1

I∆r~V spφq (3.26)

where we write

pf,ΓfqX “
ż

X2

d3x d3y fpxq Γpx´ yq fpyq

for any measurable subset X of Q3
p and by f we refer to the corresponding component of ~V . We remark that

in (3.26) we have broken up the vacuum renormalization, the first part corresponding to what one would get

from just the Gaussian measure. Linking back to our earlier discussion (3.26) is just a way of writing (3.24).

Applying (3.27) for an integrand over a box Λt with t ě 1 yields:

ż

S1pQ3
pq
dµC0

pφq Itr~V spφq “ exp

»
—–1

2
pf,ΓfqΛt

`
ÿ

∆PL
∆ĂΛt´1

δb∆r~V s

fi
ffifl ˆ

ż

S1pQ3
pq
dµC0

pφq It´1

”
RGexr~V s

ı
pφq.

(3.27)

It is useful to compactly write an element ~V P Eex in the form

~V “ pβ4, β3, β2, β1, β1,W5,W6, f, Rq

where each entry on the righthand side itself corresponds to a collection of L - indexed quantities, for example:

β4 “ pβ4,∆q∆PL where β4,∆ P C

or equivalently we can imagine β4 as being a function β4pxq on Q3
p constant on unit blocks. Now the vector

~V pr,rqpf̃ , j̃q is the initial data for the RG flow involved in the computation of (3.19):

~V pr,rqpf̃ , j̃q “ pβ4, β3, β2, β1,W5,W6, f, Rq (3.28)

where

β3 “0

β1 “0

W5 “0

W6 “0

R “0

f “Lp3´rφsqrf̃pL´rxq for all x

β4pxq “g for all x

β2pxq “µ´ Y2Z
r
2 L

p3´2rφsqr j̃pL´rxq for all x

(3.29)

94



so

Zr,spf̃ , j̃q “ exp

˜
´Y0Zr0L2rφsr

ż

Q3
p

jpxq d3x

¸
ˆ
ż
dµC0

pφq Is´rr~V pr,rqpf̃ , j̃qspφq.

We remark that ~V pr,rqpf̃ , j̃q specifies the integrand for any value of s, it in fact represents a global configu-

ration of functionals for each ∆ P L. The map RGext will generate a sequence

~V pr,rqpf̃ , j̃q Ñ ~V pr,r`1qpf̃ , j̃q Ñ ~V pr,r`2qpf̃ , j̃q Ñ ¨ ¨ ¨

where for every scale q ě r one has ~V pr,qqpf̃ , j̃q :“ RGq´r
ex

”
~V pr,rqpf̃ , j̃q

ı
. Now iterating the identity (3.27)

gives

Zr,spf̃ , j̃q “ exp

˜
´Y0Zr0L2rφsr

ż

Q3
p

jpxq d3x

¸

ˆ exp

»
—–

ÿ

rďqăs

¨
˚̋1

2
pf pr,qq,Γf pr,qqqΛs´q

`
ÿ

∆PL
∆ĂΛs´q´1

δb∆r~V r,qpf̃ , j̃qs

˛
‹‚

fi
ffifl ˆ

ż
dµC0

pφq I0r~V pr,sqpf̃ , j̃qspφq

for every scale t with r ď t ă s. here f pr,qq denotes the f component of ~V pr,qqpf̃ , j̃q. We note that the last

integral on the right hand side is just a Gaussian integral on R. We will write

BZr,spf̃ , j̃q :“
ż
dµC0

pφq I0r~V pr,sqpf̃ , j̃qspφq.

3.5.2 Algebraic Definition of the extended RG map

The full RG transformation ~V Ñ ~V 1 “ RGexr~V s will be defined by specifying

~V 1 “ pβ1
4, ..., β

1
1,W

1
5,W

1
6, f

1, R1q

starting from the analogous unprimed quantities. We will also give formulas for the corresponding vacuum

renormalizations tδbr~V su∆PL.

We introduce the short hand

V∆pφ∆q “ exp

«
´

4ÿ

k“1

βk,∆ : φk∆ :C0

ff
.

Note that there is a namespace collision with the V∆ mentioned in the definition Eex but the difference

should be clear from context (the V∆p¨q above is a function of one real variable determined by V∆ of the last

section.). We also define

Qpφ∆q “
`
W5,∆ : φ5∆ :C0

`W6,∆ : φ6∆ :C0

˘

and

K∆pφ∆q “ Qpφ∆qe´V∆pφ∆q `R∆pφ∆q (3.30)

so that

I∆r~V spφ∆q “ ef∆φ∆ ˆ
´
e´V∆pφ∆q `K∆pφ∆q

¯
(3.31)
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where one should think of the two terms within the parentheses on the right hand side of (3.31) as respectively

the relevant part and irrelevant part of our functional form. In the definition (3.30) we see the irrelevant

part K is further decomposed into an explicit part Qe´V which should be thought of as containing irrelevant

terms coming from V 2 terms and the R which contains terms that are of order 3 and higher in V . By V

here we mean vertices.

By our earlier discussion we have

ż
dµC0

pφq Itr~V spφq “
ż
dµC0

pφq
ź

∆PL
∆ĂΛt

!
ef∆φ∆ ˆ

”
e´V∆pφ∆q `K∆pφ∆q

ı)

“
ż
dµC0

pφq
ż
dµΓpζq

ź

∆PL
∆ĂΛt

!
ef∆φ1,∆`f∆ζ∆ ˆ

”
e´V∆pφ1,∆`ζ∆q `K∆pφ1,∆ ` ζ∆q

ı)
.

For the above formula and what follows the φ1 should be thought of as function of the random field φ, in

particular φ1 is constant over the blocks of L for all ∆ P L we set φ1,∆ “ L´rφsφ∆1 where ∆1 P L is the

unique unit block with ∆ Ă rL´1∆1s. We remark that with this convention φ being distributed according to

C0 means that φ1 is distributed according to C1.

We then organize the product according to the L-blocks containing ∆ and use the independence of the

ζ random variables living in different L-blocks to obtain

ż
dµC0

pφq Itr~V spφq “
ż
dµC0

pφq
ź

∆1PL
∆1ĂΛt´1

¨
˚̋
ż
dµΓpζq

ź

∆PrL´1∆1s

!
ef∆φ1,∆`f∆ζ∆ ˆ

”
e´V∆pφ1,∆`ζ∆q `K∆pφ1,∆ ` ζ∆q

ı)
˛
‹‚

“
ż
dµC0

pφq
ź

∆1PL
∆1ĂΛt´1

´
ef

1
∆1φ∆1 ˆ B∆1

¯

where

B∆1 “
ż
dµΓpζq

ź

∆PrL´1∆1s

!
ef∆ζ∆ ˆ

”
e´V∆pφ1,∆`ζ∆q `K∆pφ1,∆ ` ζ∆q

ı)
.

and

f 1
∆1 “ L3´rφs avg

∆PrL´1∆1s

f∆ (3.32)

where “avg” means average. The formula (3.32) gives the evolution of the f component and we remark that

it evolves autonomously of all the other parameters.
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Now the linear flow of the relevant parameters is given by

β̂k,∆1 “ L3´krφs avg

∆PrL´1∆1s

βk,∆ (3.33)

for 1 ď k ď 4.

With a slight abuse of notation we define

Ṽ∆pφ1q “
4ÿ

k“1

βk,∆ : φk1 :C1

and

V̂∆1 pφq “
4ÿ

k“1

β̂k,∆1 : φk :C0
.

Note that
ř

∆PrL´1∆1s Ṽ∆pφ1q “ V̂∆1 pφq where φ is in fact the component φ∆1 of the field but we suppressed

this from the notation. Now define

p∆ “ p∆pφ1, ζq “ V∆pφ1 ` ζq ´ Ṽ∆pφ1q

namely

p∆ “
ÿ

a,b

1

#
a` b ď 4

a ě 0 , b ě 1

+
pa` bq!
a! b!

βa`b,∆ : φa1,∆ :C1
ˆ : ζb∆ :Γ .

The terms within p∆ are what we were refering to as “vertices” in our earlier discussion. Now let

P∆pφ1, ζq “ e´V∆pφ1`ζq ´ e´Ṽ∆pφ1q .

We expand B∆1 by writing the factors as

e´V∆pφ1,∆`ζ∆q `K∆pφ1,∆ ` ζ∆q “ e´Ṽ∆pφ1q ` P∆pφ1, ζq `K∆pφ1,∆ ` ζ∆q .

This results in

B∆1 “ e
1

2
pf,Γfq

L´1∆1 ´V̂
∆1 pφq ` K̂∆1 pφq (3.34)

where

K̂∆1 pφq “
ÿ

YP ,YK

ż
dµΓpζq e

ş
L´1∆1 fζ ˆ

ź

∆PrL´1∆1s
∆RYP YYK

”
e´Ṽ∆pφ1q

ı
ˆ

ź

∆PYP

rP∆pφ1, ζqs ˆ
ź

∆PYK

rK∆pφ1 ` ζqs

where the sum is over pairs of disjoint subsets YP , YK of rL´1∆1s such that at least one of them is nonempty.

One can interpret (3.34) as the new functional we would get for the unit block ∆1 if we performed no

extraction, that is if we just let the relevant parameters flow according to linear flow. While K̂∆1 would

aspire to be the irrelevant part of our new functional it is not irrelevant or even approximately irrelevant.

The process of removing relevant operators from K̂ by “moving” them to V̂ will be called extraction. We
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now describe this process.

Assume that we are given collections of numbers δβk,∆1 for 0 ď k ď 4 and ∆1 P L. For 1 ď k ď 4 these

will represent the corrections to the linear flow given by (3.33) arising from the extraction process. The

k “ 0 quantity corresponds to the vacuum renormalization - we will write δb∆1 “ δβ0,∆1 . We remark that

the vacuum renormalization will be implemented differently then the other extractions. We have the trivial

identity

ż
dµC0

pφq Itr~V spφq “ exp

¨
˚̊
˝
1

2
pf,ΓfqΛt

`
ÿ

∆1PL
∆1ĂΛt´1

δb∆1

˛
‹‹‚ˆ

ż
dµC0

pφq
ź

∆1PL

!
ef

1
∆1φ∆1 ˆ

”
e´V̂

∆1 pφ
∆1 q´δb

∆1 ` K̂∆1 pφ∆1 qe´δb
∆1 ´ 1

2
pf,Γfq

L´1∆1

ı)
.

Define

δV∆1 pφq “
4ÿ

k“0

δβk,∆1 : φk :C0
.

Post-extraction our “new V∆” will be denoted by V 1
∆1 and will be given by

V 1
∆1 pφq “

4ÿ

k“1

pβ̂k,∆1 ´ δβk,∆1 q : φk :C0
.

In particular

V 1
∆1 pφq “ V̂∆1 pφq ´ δV∆1 pφq ` δb∆1 .

Now one can check

ż
dµC0

pφq Itr~V spφq “ exp

¨
˚̊
˝
1

2
pf,ΓfqΛt

`
ÿ

∆1PL
∆1ĂΛt´1

δb∆1

˛
‹‹‚ˆ

ż
dµC0

pφq
ź

∆1PL
∆1ĂΛt´1

!
ef

1
∆1φ∆1 ˆ

”
e´V 1

∆1 pφ
∆1 q `K 1

∆1 pφ∆1 q
ı)

where

K 1
∆1 pφq “ e´δb

∆1 ´ 1

2
pf,Γfq

L´1∆1 ˆ
!
K̂∆1 pφq ´ e´V̂

∆1 pφq` 1

2
pf,Γfq

L´1∆1

´
eδV∆1 pφq ´ 1

¯)
.

K 1
∆1 will be the irrelevant part of the new functional we output - extraction will involve choosing the

constants δβk,∆1 so that particular relevant terms do not appear in K 1
∆1 .

We will remove from K̂ the following types of relevant terms

(i) Relevant terms appearing from a contraction of a term in V with the observable f - the corresponding

counter terms will be explicit and of order ḡ.

(ii) Relevant terms coming from a V 2 terms or from Q either of which could involve contractions with our

observables. These counterterms will be explicit and of order ḡ2.
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(iii) Relevant terms coming from R that are first order in R. These will not be explicit, and will mostly be

specified by a linear functional of R. These counter terms are morally of order ḡ3.

Note that we do not extract all relevant parts of K̂, only enough to maintain analytic control of the RG

flow. In particular we don’t immediately extract relevant terms that are second order or higher in Q or R

or of order 3 or higher in V - these will be buried in the new R1 with enough powers of ḡ to keep them quiet

for the time being.

The ḡ2 counterms appearing in our flow equations for relevant parameters will need to be explicit - this

is necessary to clearly see that the bulk flow of g and µ has a non-trivial fixed point. It will be useful to

include a complex parameter λ into many of our expressions that keeps track of how many V ’s (and thus

how many ḡ’s) are contained in the various parts of K 1 - we call this process λ-deformation. In particular the

form of our extractions and the functionals we output will be explicit up to order λ2. The final λ-dependent

expressions we produce will define our extended RG map when we fix λ “ 1. We define

r1,∆ “ r1,∆pφ1, ζq “ e´Ṽ∆pφ1q
„
e´p∆ ´ 1 ` p∆ ´ 1

2
p2∆



and let

P∆pλ, φ1, ζq “ e´Ṽ∆pφ1q
„

´λp∆ ` λ2

2
p2∆


` λ3r1,∆pφ1, ζq

so that

P∆pλ, φ1, ζq|λ“1 “ P∆pφ1, ζq .

We also define

K∆pλ, φ1, ζq “ λ2Q∆pφ1 ` ζq e´Ṽ∆pφ1q ` λ3
”
Q∆pφ1 ` ζq

`
e´p∆ ´ 1

˘
e´Ṽ∆pφ1q `R∆pφ1 ` ζq

ı

so that

K∆pλ, φ1, ζq|λ“1 “ K∆pφ1 ` ζq.

We use the same expansion formula as before in order to define the λ-deformation

K̂∆1 pλ, φq “
ÿ

YP ,YK

ż
dµΓpζq e

ş
L´1∆1 fζ ˆ

ź

∆PrL´1∆1s
∆RYP YYK

”
e´Ṽ∆pφ1q

ı
ˆ

ź

∆PYP

rP∆pλ, φ1, ζqs ˆ
ź

∆PYK

rK∆pλ, φ1, ζqs .

(3.35)

This is a polynomial expression in λ with no constant term. We can write it as

K̂∆1 pλ, φq “ Aλ` Bλ2 ` Cλ3 ` K̂ě4
∆1 pλ, φq

where K̂ě4
∆1 pλ, φq contains the terms of order 4 or more in λ.

We now implement a λ grading for our proposed counterterms - we assume that there are numbers δβk,j,∆1

for 0 ď k ď 4, 1 ď j ď 3 and ∆1 P L such that

δβk,∆1 “ δβk,1,∆1 ` δβk,2,∆1 ` δβk,3,∆1
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and we define

δβk,∆1 pλq “ λ δβk,1,∆1 ` λ2δβk,2,∆1 ` λ3δβk,3,∆1 .

In particular this defines δb∆1 pλq “ δβ0,∆1 pλq. We also let

δV∆1 pλ, φq “
4ÿ

k“0

δβk,∆1 pλq : φk :C0
.

Using the same formula as before for K 1
∆1 , we define the corresponding λ-deformation:

K 1
∆1 pλ, φq “ e´δb

∆1 pλq´ 1

2
pf,Γfq

L´1∆1 ˆ
!
K̂∆1 pλ, φq ´ e´V̂

∆1 pφq` 1

2
pf,Γfq

L´1∆1

´
eδV∆1 pλ,φq ´ 1

¯)
. (3.36)

We again expand this in λ up to order 3:

K 1
∆1 pλ, φq “ A

1λ` B
1λ2 ` C

1λ3 `Opλ4q .

We will give an explicit formula for A
1. Note that the quantity in the braces of (3.36) contains terms of

order at least order 1 in λ. The order 1 term of K̂∆1 pλ, φq, which was denoted by A, is given by the terms

(3.35) with YP a singleton and YK empty (since K∆pφ, λq is of order 2 in λ) where for the YP singleton we

take only the first order part of P∆.

A “
ÿ

∆PrL´1∆1s

ż
dµΓpζq e

ş
L´1∆1 fζ ˆ

¨
˚̊
˝

ź

∆1PrL´1∆1s
∆1 ­“∆

”
e´Ṽ∆1

pφ1q
ı
˛
‹‹‚ˆ

´
e´Ṽ∆pφ1q p∆

¯

“ e´V̂
∆1 pφq

ż
dµΓpζq e

ş
L´1∆1 fζ ˆ

»
– ÿ

∆PrL´1∆1s
p∆

fi
fl

“ e´V̂
∆1 pφq

4ÿ

a“0

L´arφs : φa∆1 :C0

ÿ

b

1

#
a` b ď 4

b ě 1

+
pa` bq!
a! b!

ˆ
ÿ

∆PrL´1∆1s

ż
dµΓpζq e

ş
L´1∆1 fζ ˆ βa`b,∆ˆ : ζb∆ :Γ

“
4ÿ

a“0

L´arφs : φa∆1 :C0

ÿ

b

1

#
a` b ď 4

b ě 1

+
pa` bq!
a! b!

ˆ
ż

pL´1∆1qb`1

d3x d3y1 ¨ ¨ ¨ d3yb βa`bpxq ˆ
bź

i“1

rΓpx´ yiq fpyiqs .

(3.37)

We note that the final integral could also be written in the form

ÿ

∆,∆1,...,∆bPrL´1∆1s
βa`b,∆ ˆ

bź

i“1

rΓp∆,∆iq f∆i
s

where Γp∆,∆iq “
ş
dµΓ ζ∆ζ∆i

.

These terms represent all the contractions of a single vertex from V with external legs coming from f
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along with an overall factor of exp
“
1
2

pf,ΓfqL´1∆1

‰
.

We take a short detour to explain how one can compute the Gaussian integral with respect to µΓ above.

One way to do this is via the translation trick which we now explain. Suppose that H is a function on

RrL´1∆1s such that ż
dµΓpζq |Hpζq| ă 8.

Then one has ż
dµΓpζqe

ş
L´1∆1 fζHpζq “ e

1

2
pf,Γfq

L´1∆1

ż
dµΓpζq Hpζ ` Γfq

where pΓfqpxq “
ş
Q3

p
Γpx´ yqfpyq - we remark that Γf is also constant over blocks of L.

This identity essentially boils down to “completing the square” or equivalently a change of variable

ζ Ø ζ ´Γf in the left hand integral. One has to take some care to be precise however since Γ is not positive

definite but this can be handled easily by using a change of variable taking one to the subspace of RrL´1∆1s

where µΓ is supported. To apply this to compute (3.37) we observe that for ∆ P rL´1∆1s one has

ż
dµΓpζq e

ş
L´1∆1 fζ ˆ βa`b,∆ˆ : ζb∆ :Γ

“ e
1

2
pf,Γfq

L´1∆1

ż
dµΓpζq βa`b,∆ˆ : pζ∆ ` pΓfq∆qb :Γ

“ e
1

2
pf,Γfq

L´1∆1

ż
dµΓpζq βa`b,∆ ˆ

bÿ

l“0

ˆ
b

l

˙
: ζl∆ :Γ ˆ pΓfqb´l

∆

“ e
1

2
pf,Γfq

L´1∆1 ˆ pΓfqb∆ “
ÿ

∆1,...,∆bPrL´1∆1s

bź

i“1

rΓp∆,∆iq f∆i
s

which yields the last line of (3.37).

We now end the detour and write out A1 which denoted the second order part of K 1
∆1 pφ, λq - one has

A
1 “e´V̂

∆1 pφq ˆ

$
’’’’&
’’’’%
e´ 1

2
pf,Γfq

L´1∆1 ˆ

¨
˝
ż
dµΓpζq e

ş
L´1∆1 fζ ˆ

»
– ÿ

∆PrL´1∆1s
p∆

fi
fl
˛
‚

´ e
1

2
pf,Γfq

L´1∆1

4ÿ

k“0

δβk,1,∆1 : φk∆1 :C0

,
////.
////-
.

We note that the quantity A
1, apart from an overall factor of e´V̂

∆1 pφq, is just some polynomial in φ∆1 or

equivalently a linear combination of the : φj∆1 :C0
- note that one will have 0 ď j ď 4 so all these terms are

relevant. We now specify a choice of the counterterms δβk,1,∆1 to make A
1 vanish.
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Namely, for any k, 0 ď k ď 4, we let

δβk,1,∆1 “ ´
ÿ

b

1

#
k ` b ď 4

b ě 1

+
pk ` bq!
k! b!

L´krφs

βk`b

f f
b

(3.38)

where

βk`b

f f
b

“
ż

pL´1∆1qb`1

d3x d3y1 ¨ ¨ ¨ d3yb βk`bpxq ˆ
bź

i“1

rΓpx´ yiq fpyiqs .

We remark that these counterterms correspond to item (i) on the list of the types of relevant terms we

will extract.

We now describe the order 2 in λ part of the K̂ 1
∆1 pφ, λq given in (3.36), i.e. B

1. First we investigate the

order 2 portion of K̂∆1 pφ,Λq, i.e. B. The quantity B involves terms where in (3.35) where |YP | “ 2 and

YK “ H, |YP | “ 1 and YK “ H, and YP “ H and |YK | “ 1. Writing this out one has

B “
ż
dµΓpζq e

ş
L´1∆1 fζ ˆ

»
————–

ÿ

∆1,∆2PrL´1∆1s
∆1 ­“∆2

ź

∆PrL´1∆1s
∆ ­“∆1or∆2

”
e´Ṽ∆pφ1q

ı
ˆ
´
e´Ṽ∆1

pφ1q p∆1

¯
ˆ
´
e´Ṽ∆2

pφ1q p∆2

¯

`
ÿ

∆3PrL´1∆1s

ź

∆PrL´1∆1s
∆ ­“∆3

”
e´Ṽ∆pφ1q

ı
ˆ
ˆ
e´Ṽ∆3

pφ1q 1

2
p2∆3

˙

`
ÿ

∆4PrL´1∆s

ź

∆PrL´1∆1s
∆ ­“∆4

”
e´Ṽ∆pφ1q

ı
ˆQ∆4

pφ1q

fi
ffiffiffiffifl
.

(3.39)

From the third term we see that the only way the old K can contribute to B is through its explicit Q part

- this is due to the imposed λ-grading in our definition of the λ-deformed K∆pφ, λq. The first two terms in

the formula are precisely the content of second order pertubation theory, that is the V 2 terms. Simplifying

the above expression gives

B “ e´V̂
∆1 pφq ˆ

ż
dµΓpζq e

ş
L´1∆1 fζ ˆ

»
—–1

2

¨
˝ ÿ

∆PrL´1∆1s
p∆

˛
‚
2

`Q∆4
pφ1qe´Ṽ∆4

pφ1q

fi
ffifl .

Along with an overall factor e´ 1

2
pf,Γfq

L´1∆1 the quantity B will contain the terms described in item (ii) of

our list of relevant terms that will be extracted. It also contains products of relevant terms from item (i)

on our list - however our previous counterterms δβk,1,∆1 will precisely cancel these products. Finally B also

contains : φ5∆ :C0
and : φ6∆ :C0

terms but we do not extract these - we will leave these terms to form the our
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new Q1
∆1 . We make this more precise: the order 2 in λ part of K 1

∆1 pλ, φq is given by

B
1 “ e´ 1

2
pf,Γfq

L´1∆1 ˆ
˜

´δβ0,1,∆1 ˆ
«
A ´ e´V̂

∆1 pφq
8ÿ

k“0

δβk,1,∆1 : φk∆1 :C0

ff¸

`

»
–B ´

ÿ

k“0

δβk,2,∆1 : φk∆1 :C0
´
˜ÿ

k“0

δβk,1,∆1 : φk∆1 :C0

¸2
fi
fl .

(3.40)

The first vanishes immediately since that is precisely how the δβk,1,∆1 we chosen. We remark that the

second line of the above expression is what we refering to in the earlier paragraph. We will choose the yet

to be defined order 2 counterterms δβk,2,∆1 so that

B
1 “ e´V̂

∆1 pφqQ1
∆1 pφq

where Q1
∆1 pφq is of the form

Q1
∆1 pφq “ W 1

5,∆1 : φ5∆1 :C0
`W 1

6,∆1 : φ6∆1 :C0

and W 1
5,∆1 , W 1

6,∆1 are new coefficients.

In particular we choose the counterterms δβk,2,∆1 so that when writing out the quantity within brackets

on the second line of (3.40) in terms of the powers : φk∆1 :C0
there are no such terms with k “ 0, 1, 2, 3, 4.

This fixes the choice

δβk,2,∆1 “
ÿ

a1,a2,b1,b2,m

1

$
’&
’%

ai ` bi ď 4

ai ě 0 , bi ě 1

1 ď m ď minpb1, b2q

,
/.
/-

pa1 ` b1q! pa2 ` b2q!
a1! a2! m! pb1 ´mq! pb2 ´mq!

ˆ1

2
Cpa1, a2|kq ˆ L´pa1`a2qrφs ˆ C0p0q

a1`a2´k

2 ˆ
βa1`b1 βa2`b2

b1´m b2´mm

ff

f f

`
ÿ

b

1

#
k ` b “ 5 or 6

b ě 0

+
pk ` bq!
k! b!

L´krφs

Wk`b

f f
b

(3.41)

where

βa1`b1 βa2`b2

b1´m b2´mm

ff

f f

“
ż

pL´1∆1qb1`b2´2m`2

d3x1 d3x2 d3y1 ¨ ¨ ¨ d3yb1´m d3z1 ¨ ¨ ¨ d3zb2´m

βa1`b1px1q βa2`b2px2q Γpx1 ´ x2qm ˆ
b1´mź

i“1

rΓpx1 ´ yiq fpyiqs ˆ
b2´mź

i“1

rΓpx2 ´ ziq fpziqs

Wk`b

f f
b

“
ż

pL´1∆1qb`1

d3x d3y1 ¨ ¨ ¨ d3yb Wk`bpxq ˆ
bź

i“1

rΓpx´ yiq fpyiqs
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and where Cpa1, a2|kq are connection coefficients for Hermite polynomials. More precisely

Cpa1, a2|kq “ 1

#
|a1 ´ a2| ď k ď a1 ` a2

a1 ` a2 ` k P 2Z

+
ˆ a1! a2!`

a1`a2´k
2

˘
!
`
a1`k´a2

2

˘
!
`
a2`k´a1

2

˘
!
.

These satisfy the property

: φa1∆1 :C0
ˆ : φa2∆1 :C0

“
ÿ

k

Cpa1, a2|kq C0p0q
a1`a2´k

2 : φk∆1 :C0
.

Now considering the δβk,2,∆1 given as above we reading the coefficents of : φ5∆1 :C0
and φ6∆ :C0

terms that

are left in (3.40) to give us our formulas for W 1
5,∆1 and W6,∆1 -

W 1
6,∆1 “ L3´6rφs avg

∆PrL´1∆1s

W6,∆ ` 8L´6rφs
β4β4

and

W 1
5,∆1 “ L3´5rφs avg

∆PrL´1∆1s

W5,∆ ` 6L´5rφs
W6

f

` 12L´5rφs
β4 β3

` 48L´5rφs

β4β4

f

The Feynman diagrams are given explicitly by

β4β4
“
ż

pL´1∆1q2
d3x d3y β4pxq Γpx´ yq β4pyq

W6

f

“
ż

pL´1∆1q2
d3x d3y W6pxq Γpx´ yq fpyq

β4 β3
“
ż

pL´1∆1q2
d3x d3y β4pxq Γpx´ yq β3pyq

and

β4β4

f

“
ż

pL´1∆1q3
d3x d3y d3z β4pxq Γpx´ yq β4pyq Γpy ´ zq fpzq.

The order 3 counterterms δβk,3,∆1 will be defined as p~β, fq-dependent linear functions of R. This is a bit

lengthy so we need a few preparatory steps before we can give the explicit formulas for these counterterms.

We split the third order part of K̂∆1 pφ, λq, which we denoted by the quantity C, as C “ C0 `C1. Here C0

contains the three vertex terms coming from products involving p∆’s and Q∆’s while C1 contains the terms

containing R.

C0 “ ´1

6

ÿ

∆1,∆2,∆3PrL´1∆1s
distinct

e´V̂
∆1 pφq

ż
dµΓpζq e

ş
L´1∆1 fζ p∆1

p∆2
p∆3
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´1

2

ÿ

∆1,∆2PrL´1∆1s
distinct

e´V̂
∆1 pφq

ż
dµΓpζq e

ş
L´1∆1 fζ p∆1

p2∆2

´
ÿ

∆1,∆2PrL´1∆1s
distinct

e´V̂
∆1 pφq

ż
dµΓpζq e

ş
L´1∆1 fζ p∆1

Q∆2
pφ1 ` ζq

`
ÿ

∆1PrL´1∆1s
e´V̂

∆1 pφq
ż
dµΓpζq e

ş
L´1∆1 fζ Q∆1

pφ1 ` ζq
`
e´p∆1 ´ 1

˘

`
ÿ

∆1PrL´1∆1s

¨
˚̊
˝

ź

∆PrL´1∆1s
∆‰∆1

e´Ṽ∆pφ1q

˛
‹‹‚ˆ

ż
dµΓpζq e

ş
L´1∆1 fζ r1,∆1

and

C1 “
ÿ

∆1PrL´1∆1s

¨
˚̊
˝

ź

∆PrL´1∆1s
∆‰∆1

e´Ṽ∆pφ1q

˛
‹‹‚ˆ

ż
dµΓpζq e

ş
L´1∆1 fζ R∆1

pφ1 ` ζq .

Note that we will not need the detailed evaluation of C0, but we simply need the remark that it is R-

independent. We remark that we will not extract any terms from C0. Note that since each R∆ comes with

a λ3 the quantity C1 is linear in the R∆’s.

We now define

δVj,∆1 pφq “
4ÿ

k“0

δβk,j,∆1 : φk :C0

for 1 ď j ď 3 so that

δVj,∆1 pφ, λq “
3ÿ

j“1

δVj,∆1 pφqλj .

Then the λ3 coefficient of K 1
∆1 pλ, φq is given by C

1 “ C
1
0 ` C

1
1 where

C
1
0 “ e´ 1

2
pf,Γfq

L´1∆1 C0 ´ e´V̂
∆1 pφq

ˆ
1

6
δV1,∆1 pφq3 ` δV1,∆1 pφq δV2,∆1 pφq

˙
´ e´V̂

∆1 pφq Q1
∆1 pφq δβ0,1,∆1

and

C
1
1 “ e´ 1

2
pf,Γfq

L´1∆1 C1 ´ e´V̂
∆1 pφq δV3,∆1 pφq .

The order 3 counterterms δβk,3,∆1 in δV3,∆1 pφq will be chosen to eliminate the zeroth through fourth order

terms in the Taylor expansion for C
1
1 around φ “ 0 - this is what the removal of relevant terms looks like

at this order. Due to the spatial inhomogeniety of the terms R∆ we arrive at our order 3 counterms by

defining counterterms corresponding to each of the unit blocks ∆ P rL´1∆s. More concrerely we will define

δβk,3,∆1,∆1
for 0 ď k ď 4, ∆1 P L and ∆1 P rL´1∆1s such that

δβk,3,∆1 “
ÿ

∆1PrL´1∆1s
δβk,3,∆1,∆1

.
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We then have

C
1
1 “

ÿ

∆1PrL´1∆1s

¨
˚̊
˝

ź

∆PrL´1∆1s
∆‰∆1

e´Ṽ∆pφ1q

˛
‹‹‚ˆ J∆1,∆1

pφq

where

J∆1,∆1
pφq “ e´ 1

2
pf,Γfq

L´1∆1 ˆ
ż
dµΓpζq e

ş
L´1∆1 fζ R∆1

pφ1 ` ζq

´
˜

4ÿ

k“0

δβk,3,∆1,∆1
: φk :C0

¸
ˆ e´Ṽ∆1

pφ1q . (3.42)

The quantities δβk,3,∆1,∆1
are uniquely determined by imposing the following normalization conditions on

the derivatives up to order 4:

J
pνq
∆1,∆1

p0q “ 0

for all ∆1 P L, ∆1 P rL´1∆1s and ν such that 0 ď ν ď 4.

Write J∆1,∆1
pφq “ J`pφq ´ J´pφq where

J`pφq “ e´ 1

2
pf,Γfq

L´1∆1 ˆ
ż
dµΓpζq e

ş
L´1∆1 fζ R∆1

pφ1 ` ζq

and

J´pφq “
˜

4ÿ

k“0

δβk,3,∆1,∆1
: φk :C0

¸
ˆ e´Ṽ∆1

pφ1q .

For any ν, 0 ď ν ď 4, we have

J
pνq
` p0q “ L´νrφs e´ 1

2
pf,Γfq

L´1∆1 ˆ
ż
dµΓpζq e

ş
L´1∆1 fζ R

pνq
∆1

pζq .

Whereas

J´pφq “ upφq evpφq

with

upφq “ u4φ
4 ` u3φ

3 ` u2φ
2 ` u1φ` u0

and

vpφq “ v4φ
4 ` v3φ

3 ` v2φ
2 ` v1φ` v0

with coefficients explicitly given by

u4 “ δβ4

u3 “ δβ3

u2 “ δβ2 ´ 6Cδβ4

u1 “ δβ1 ´ 3Cδβ3

u0 “ δβ0 ´ Cδβ2 ` 3C2δβ4
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and

v4 “ ´L´4rφsβ4

v3 “ ´L´3rφsβ3

v2 “ ´L´2rφsβ2 ` 6CL´4rφsβ4

v1 “ ´L´rφsβ1 ` 3CL´3rφsβ3

v0 “ CL´2rφsβ2 ´ 3C2L´4rφsβ4 .

Note that we used the abbreviated notation δβk “ δβk,3,∆1,∆1
, βk “ βk,∆1

and C “ C0p0q. Using Maple we

found for the Taylor expansion of J´pφq up to order 4:

J´pφq “ ev0 ˆ
"
u0 ` pu0 v1 ` u1qφ`

ˆ
u1 v1 ` u0 v2 ` 1

2
u0 v1

2 ` u2

˙
φ2

`
ˆ
u1 v2 ` 1

2
u1 v1

2 ` u2 v1 ` u0 v3 ` u0 v1 v2 ` 1

6
u0 v1

3 ` u3

˙
φ3

`
ˆ
u4 ` u1 v3 ` u1 v1 v2 ` 1

6
u1 v1

3 ` u0 v4 ` u0 v1 v3

`1

2
u0 v2

2 ` 1

2
u0 v2 v1

2 ` 1

24
u0 v1

4 ` u2 v2 ` 1

2
u2 v1

2 ` u3 v1

˙
φ4
*

`Opφ5q .

Write aν “ e´v0J pνq
` p0q. We therefore have to solve for u0, . . . , u4 in the triangular polynomial system

a0 “ u0

a1 “ u1 ` u0 v1
1

2
a2 “ u2 ` u1 v1 ` u0 v2 ` 1

2
u0 v1

2

1

6
a3 “ u3 ` u1 v2 ` 1

2
u1 v1

2 ` u2 v1 ` u0 v3 ` u0 v1 v2 ` 1

6
u0 v1

3

1

24
a4 “ u4 ` u1 v3 ` u1 v1 v2 ` 1

6
u1 v1

3 ` u0 v4 ` u0 v1 v3

`1

2
u0 v2

2 ` 1

2
u0 v2 v1

2 ` 1

24
u0 v1

4 ` u2 v2 ` 1

2
u2 v1

2 ` u3 v1 .

This is straightforward but leads to complicated intermediate formulas which we skip. We then replace

the v1s by their expressions in terms of the β’s. Finally we use the obtained formulas for the u’s in order to

get

δβ4 “ u4

δβ3 “ u3

δβ2 “ u2 ` 6Cu4

δβ1 “ u1 ` 3Cu3

δβ0 “ u0 ` Cu2 ` 3C2u4 .

The final result, obtained with the help of Maple, can be found on [3, p. 23].
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Using the notation

ai “ exp

„
´CL´2rφsβ2 ` 3C2L´4rφsβ4 ´ 1

2
pf,ΓfqL´1∆1



ˆL´irφs ˆ
ż
dµΓpζq e

ş
L´1∆1 fζ R

piq
∆1

pζq . (3.43)

The final formulas are of the form

δβk “
4ÿ

i“0

Mk,i ai

where the matrix elements Mk,i are given by finite sums of the form

Mk,i “
ÿ

# CjL´pl1`¨¨¨`lnqrφs βl1 ¨ ¨ ¨βln (3.44)

with j ě 0, n ě 0, and 1 ď lm ď 4 for every m, 1 ď m ď n. Here the symbol # stands for some purely

numerical constants. Furthermore, the terms which appear satisfy the homogeneity constraint

l1 ` ¨ ¨ ¨ ` ln ´ 2j “ k ´ i . (3.45)

We also have a limitation on the range of allowed n’s:

n ď pk ´ iq ` 2

Z
4 ´ k

2

^
.

This completes the definition of the δβk,3,∆1,∆1
and therefore of the order 3 counterterms

δβk,3,∆1 “
ÿ

∆1PrL´1∆1s
δβk,3,∆1,∆1

.

We then define

L
p~β,fq
∆1 pRq “ C

1
1

with the previous choices for the δβk,3,∆1,∆1
. This makes Lp~β,fq a p~β, fq-dependent linear operator on the

space where R lives (in particular R and both the left and right sides of the equation above are seen as L

indexed vectors of elements in C9
bdpR,Cq). We have arrived at a complete definition of

K 1
∆1 pλ, φq “ λ2e´V̂

∆1 pφqQ1
∆1 pφq ` λ3C1

0 ` λ3C1
1 `Opλ4q .

Looking to the desired output of the RG map we remark that the new couplings β1
k,∆1 as well as the quantities

δb∆1 are fully defined. We just need the new R. It is given by

R1
∆1 “ L

p~β,fq
∆1 pRq ` ξR,∆1 p~V q
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where the formula for remainder term is

ξR,∆1 p~V qpφq “ 1

2πi

¿

γ0

dλ

λ4
K 1

∆1 pλ, φq
ˇ̌
R“0

(3.46)

` 1

2πi

¿

γ01

dλ

λ4pλ´ 1qK
1
∆1 pλ, φq (3.47)

`
´
e´V̂

∆1 pφq ´ e´V 1
∆1 pφq

¯
Q1

∆1 pφq (3.48)

where γ0 is any positively oriented contour around λ “ 0, and γ01 is any positively oriented contour which

encloses both λ “ 0 and λ “ 1. With these choices our new K 1 takes the form of our old K, that is

K 1
∆1 pλ, φq

ˇ̌
λ“1

“ Q1
∆1 pφqeV 1

∆1 pφq `R1
∆1 .

In [18] the three terms for the remainder (3.46) are respectively denoted by Rmain, R3, and R4. It is

important to note that in the first term we set R “ 0, which means that all δβk,3,∆1 are set equal to zero.

Also note that Lp~β,fqpRq corresponds to the Rlinear notation in [18].

To finish setting up the notation we write for 1 ď k ď 4

ξk,∆1 p~V q “ ´δβk,3,∆1

whereas

ξ0,∆1 p~V q “ δβ0,3,∆1 .

In this way the RG evolution for the couplings is

β1
k,∆1 “ β̂k,∆1 ´ δβk,1,∆1 ´ δβk,2,∆1 ` ξk,∆1 p~V q

for 1 ď k ď 4. and the vacuum renormalizations are given by

δb∆1 r~V s “ δβ0,1,∆1 ` δβ0,2,∆1 ` ξ0,∆1 p~V q.

3.6 Estimates on the extended RG map

While we won’t directly use the following lemma to prove the main theorem of this section (Theorem 3.2)

it will be crucial to leveraging the results of that theorem - in particular it allows us to use analyticity and

strong uniform bounds to get crucial Lipschitz estimates that will be used when analyzing the RG flow. For

a reference on the theory of analytic maps in the complex Banach space context see [20]. Below we use

the notation Bpx0, rq for the open ball of radius r centered at x0. We likewise use B̄px0, rq to denote the

corresponding closed ball.

Lemma 3.2. Let X and Y be two complex Banach spaces. Suppose r1 ą 0 and r2 ě 0. Let x0 P X and

y0 P Y , and let f be an analytic map

f : Bpx0, r1q ÝÑ B̄py0, r2q .
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Let ν P p0, 1
2

q, then for any x1, x2 P B̄px0, νr1q

||fpx1q ´ fpx2q|| ď r2p1 ´ νq
r1p1 ´ 2νq ||x1 ´ x2|| .

Proof: Suppose x1 ‰ x2 satisfy the hypothesis of the proposition. For z P C define

gpzq “ f

ˆ
x1 ` x2

2
` z

x1 ´ x2

2

˙
´ y0 .

We first find a bound on |z| which guarantees that the argument of f is in the ball Bpx0, r1q. Since ν ă 1
2
,

we have

2r1p1 ´ νq ą 2νr1 ě ||x1 ´ x0|| ` ||x2 ´ x0|| ě ||x1 ´ x2|| .

Therefore

Rmax “ 2r1p1 ´ νq
||x1 ´ x2|| ą 1 .

Now the open interval p1, Rmaxq is nonempty, and for any R in this interval as well as for any z with |z| ď R

we have

||x1 ` x2

2
` z

x1 ´ x2

2
´ x0|| ď νr1 ` R

2
||x1 ´ x2|| ă r1 .

Let γ be the circle of radius R around the origin in the complex plane. For such an R P p1, Rmaxq we have

by Cauchy’s Theorem

fpx1q ´ fpx2q “ gp1q ´ gp´1q “ 1

πi

¿

γ

gpzq
z2 ´ 1

dz .

Hence

||fpx1q ´ fpx2q|| ď 1

π
ˆ 2πRr2 ˆ max

|z|“R

1

|z2 ´ 1| “ 2Rr2
R2 ´ 1

.

We now minimize this bound with respect to R P p1, Rmaxq. Since R ÞÑ 2R
R2´1

is decreasing on p1,8q,

inf
RPp1,Rmaxq

2R

R2 ´ 1
“ 2Rmax

R2
max ´ 1

.

Inserting the formula for Rmax in the upper bound for ||fpx1q´fpx2q|| and simplifying the resulting expression

gives the desired Lipschitz estimate.

3.6.1 Exponential Bounds and Stability Estimates, and comments on the Func-

tional norms

The background field φ and fluctuation field ζ that appear in expressions will be estimated by exponential

bounds. For the background field φ this exponential bound will taking advantage of factors e´β4φ
4

while for

the ζ we will steal from the Gaussian measure µΓ and so we will use exponential estimates using eκζ
2

for

some κ sufficiently small (see Lemma 3.4).

At this point we remark that for certain stability estimates it will be crucial that the possibly complex

φ4 couplings β4 are “mostly positive real”, by the assumptions of Theorem 3.2, they will sit in an open ball
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of the form |β4 ´ ḡ| ă 1
2
ḡ with ḡ ą 0. By elementary trigonometry it easily follows that ℜβ4

|β4| ě
?
3
2
. We of

course also have 1
2

ă ℜβ4

ḡ
ă 3

2
.

Lemma 3.3. [Lemmas 8,9 of [3]]

@j P N, @κ ą 0, @ζ P R we have

|ζ|j ď
ˆ
j

2e

˙ j
2

κ´ j
2 eκζ

2

while @ḡ ą 0, @γ ą 0, @β4 P C such that |β4 ´ ḡ| ă 1
2
ḡ, @φ P R we have

|φ|j ď
ˆ
j

4e

˙ j
4

pγℜβ4q´ j
4 eγpℜβ4qφ4 ď

ˆ
j

2e

˙ j
4

pγḡq´ j
4 eγpℜβ4qφ4

Above we use the convention jj “ 1 if j “ 0.

Proof: The first assertion follows from noting that the function u
j
2 eu for u ě 0 is maximized when u “ j

2

and then applying thus fact with u “ κζ2. For the second asserition one notes that the function u
j
4 e´u for

u ě 0 is maximized when u “ j
4
. Now simply apply this to u “ γpℜβ4qφ4 and use 1

2
ă ℜβ4

ḡ
for the second

inequality.

Lemma 3.4. Let ∆1 be a block in L. Let the real parameter α satisfy 0 ď α ď
?
2
4
L´p3´2rφsq. If f is a

real-valued function on L´1∆1 which is constant on unit cubes and such that ||f ||L8 ď 1
2
L´ 1

2
p3´2rφsq, then

for any finite set X Ă rL´1∆1s we have the bound

ż
dµΓpζq e

ş
L´1∆1 fζ

ź

∆PX
eαζ

2

∆ ď 2|X|e
1

2
pf,Γfq

L´1∆1 .

Proof:

First note that one can view the integral we would like to bound, I, as an expectation with respect to

the centered Gaussian vector pζ∆q∆PrL´1∆1s in RL
3

with covariance Epζ∆1
ζ∆2

q “ Γ∆1,∆2
“ Γpx1 ´x2q where

x1 is any point in ∆1 and likewise for x2 in ∆2. Let u1, . . . , uL3 be an orthonormal basis which diagonalizes

Γ (seen as an L3 ˆ L3 matrix). Let λ1, . . . , λL3 be the corresponding eigenvalues and suppose we arranged

the numbering so that λ1 ě λ2 ě ¨ ¨ ¨ . Note that the matrix Γ is singular and therefore only positive semi-

definite, because of the property that
ş
L´1∆1 ζ “ 0 almost surely. We therefore introduce m “ maxti|λi ą 0u.

We now have that ζ has the same law as
řm
i“1 aiui where the ai’s are independent centered Gaussian random

variables with variance λi. Thus

I “
mź

i“1

p2πλiq´ 1

2 ˆ
ż

Rm

da1 . . . dam exp

»
——–´1

2

mÿ

i“1

a2i
λi

`
ÿ

∆PrL´1∆1s
1ďiďm

f∆aiui,∆ ` α
ÿ

∆PX

˜
mÿ

i“1

aiui,∆

¸2

fi
ffiffifl .

Since X Ă rL´1∆1s
ÿ

∆PX

˜
mÿ

i“1

aiui,∆

¸2

ď
ÿ

∆PrL´1∆1s

˜
mÿ

i“1

aiui,∆

¸2

“
mÿ

i“1

a2i
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because of the orthonormality of the u’s. Therefore a sufficient condition for the convergence of the integral

is that 2αλi ă 1 for all i, 1 ď i ď m. Granting this condition for now, we define f̃i “ ř
∆PrL´1∆1s f∆ui,∆ and

use the standard ‘completing the square’ trick by writing

´1

2

mÿ

i“1

a2i
λi

`
mÿ

i“1

aif̃i “ ´1

2

mÿ

i“1

1

λi
pai ´ λif̃iq2 ` 1

2

mÿ

i“1

λif̃
2
i

and changing variables to ai ´ λif̃i. Hence

I “
mź

i“1

p2πλiq´ 1

2 ˆ
ż

Rm

da1 . . . dam exp

»
–´1

2

mÿ

i“1

a2i
λi

` 1

2

mÿ

i“1

λif̃
2
i ` α

ÿ

∆PX

˜
mÿ

i“1

pai ` λif̃iqui,∆
¸2

fi
fl .

Note that

mÿ

i“1

λif̃
2
i “

mÿ

i“1

ÿ

∆1,∆2PrL´1∆1s
λif∆1

f∆2
ui,∆1

ui,∆2

“
ÿ

∆1,∆2PrL´1∆1s
f∆1

f∆2
Γ∆1,∆2

“ pf,ΓfqL´1∆1

by construction of the u’s. We also have

mÿ

i“1

pai ` λif̃iqui,∆ “ ζ∆ `
mÿ

i“1

ÿ

∆1PrL´1∆1s
λif∆1

ui,∆1
ui,∆

“ ζ∆ `
ÿ

∆1PrL´1∆1s
Γ∆,∆1

f∆1

“ ζ∆ ` pΓfq∆

where we reverted to the use of the ζ∆ variables of integration which have the same law as the quantitiesřm
i“1 aiui∆, and where pΓfqpxq denotes

ş
Q3

p
d3y Γpx´ yqfpyq. By the finite range property of Γ we have, for

x P ∆ P rL´1∆1s, pΓfqpxq “ pΓfq∆ “ ř
∆1PrL´1∆1s Γ∆,∆1

f∆1
. As a result of the previous calculations

I “ e
1

2
pf,Γfq

L´1∆1 ˆ
ż
dµΓpζq eα

ř
∆PXppΓfq∆`ζ∆q2 .

We now expand the square in the last exponential and we also introduce the covariance matrix ΓX for the

marginal random vector ζ|X “ pζ∆q∆PX in order to write

I “ e
1

2
pf,Γfq

L´1∆1 `αpΓf,ΓfqX ˆ
ż
dµΓX

pζ|Xq eαxζ|X ,ζ|Xy`2αxΓf |X ,ζ|Xy

where the inner products are the ones of l2pXq, namely xw,w1y “ ř
∆PX w∆w

1
∆ for vectors in l2pXq which

are indexed by boxes in the finite set X.

Let pviq1ďiď|X| be an orthonormal basis diagonalizing the symmetric positive semi-definite matrix ΓX ,

with eigenvalues µi arranged so that µ1 ě µ2 ě ¨ ¨ ¨ and let n “ maxti|µi ą 0u. As before, we have that the
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random vector ζ|X has the same law as
řn
i“1 bivi where the bi are independent centered Gaussian random

variables with variance µi. Following this change of variables of integration xζ|X , ζ|Xy becomes
řn
i“1 b

2
i

whereas xΓf |X , ζ|Xy becomes
řn
i“1 gibi with gi “ ř

∆PXpΓfq∆vi,∆. Hence

ż
dµΓX

pζ|Xq eαxζ|X ,ζ|Xy`2αxΓf |X ,ζ|Xy “
nź

i“1

„
1?
2πµi

ż

R

dbi e
´ b2i

2µi
`αb2i `2αgibi



“
nź

i“1

»
– 1?

2πµi
ˆ

d
2π

ˆ
1

µi
´ 2α

˙´1

ˆ e
1

2

´
1

µi
´2α

¯´1

p2αgiq2
fi
fl

“
nź

i“1

„
1?

1 ´ 2αµi
e
2α2 µi

1´2αµi
g2i



provided 2αµi ă 1 for all i, 1 ď i ď n.

Now µi ď ||ΓX || where the latter quantity is the operator norm of ΓX induced by the norm on l2pXq
coming from the inner product x¨, ¨y. For v a real vector in l2pXq, we have ||ΓXv||2 “ ř

∆PXpΓXvq2∆ “ř
∆PXpΓwq2∆ where w P l2prL´1∆1sq is the extension of v by zero outside X. Thus

||ΓXv||2 ď
ÿ

∆PrL´1∆1s
pΓXwq2∆ “ ||Γw||2 ď ||Γ||2||w||2 “ ||Γ||2||v||2.

As a result ||ΓX || ď ||Γ|| where the latter is the operator norm of the matrix Γ coming from the inner

product norm of l2prL´1∆1sq. However we have the bound ||Γ|| ď ||Γ||L1 “
ş
Q3

p
|Γpxq|d3x. Indeed, given

w P l2prL´1∆1sq which we can identify with a function wpxq on Q3
p with support in L´1∆1 and which is

constant on unit blocks, we have

||Γw||2 “
ż

Q3
p

rpΓwqpxqs2 d3x

“
ż

Q
3ˆ3
p

Γpx´ yqΓpx´ zqwpyqwpzq d3x d3y d3z

ď
ż

Q
3ˆ3
p

|Γpx´ yq| |Γpx´ zq| |wpyq| |wpzq| d3x d3y d3z

ď
ż

Q
3ˆ3
p

|Γpx´ yq| |Γpx´ zq|
ˆ
1

2
|wpyq|2 ` 1

2
|wpzq|2

˙
d3x d3y d3z

“ 2 ˆ 1

2
ˆ ||Γ||2L1 ||w||2L2 .

Therefore from Corollary 5.1 we get ||Γ|| ď ||Γ||L1 ă 1?
2
L3´2rφs. Since the λi are bounded by ||Γ|| (the case

where X “ rL´1∆1s), the hypothesis α ď
?
2
4
L´3`2rφs implies that the previous convergence requirement

2αλi ă 1 is satisfied and also that not only 2αµi ă 1 holds but so does the stronger inequality 2αµi ď 1
2
.

From the latter we have µi

1´2αµi
ď 2µi and thus

ż
dµΓX

pζ|Xq eαxζ|X ,ζ|Xy`2αxΓf |X ,ζ|Xy ď
nź

i“1

´?
2e4α

2µig
2

i

¯
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ď 2
|X|
2 exp

˜?
2

4
L´p3´2rφsq

nÿ

i“1

g2i

¸

where we used n ď |X|, α ď
?
2
4
L´p3´2rφsq and µi ă 1?

2
L3´2rφs. Besides, gi “ ř

∆PXpΓfq∆vi,∆ “ xvi, pΓfq|Xy
and therefore

nÿ

i“1

g2i ď
|X|ÿ

i“1

xvi, pΓfq|Xy2 “ xpΓfq|X , pΓfq|Xy “ pΓf,ΓfqX .

But pΓf,ΓfqX “ ř
∆PXpΓfq2∆ and clearly |pΓfq∆| ď ||Γ||L1 ||f ||L8 so pΓf,ΓfqX ď |X| ||Γ||2L1 ||f ||2L8 .

Putting all the previous bounds together we see that the desired inequality holds provided

exp

„?
2

4
L3´2rφs||f ||2L8


ď

?
2

which is true since, by hypothesis, ||f ||L8 ď 1
2
L´ 1

2
p3´2rφsq and 4?

2
ˆ 1

2
log 2 » 0.980 . . . ą 1

4
.

Now we state the key stability bound that allows us to use e´V pφq to control growth in the field φ when

using our norm || ¨ ||Bφ,φ,h.

Lemma 3.5. Let Upφq “ a4φ
4 ` a3φ

3 ` a2φ
2 ` a1φ ` a0 where the possibly complex coefficients a0, . . . , a4

satisfy |a4| ą 0, ℜa4 ě
?
3
2

|a4|, |a4| ď 1
3
log

´
1`

?
2

2

¯
|ak| k

4 for k “ 1, 2, 3, and |a0| ď log 2. Then

1. the condition

0 ď θ ď
?
2 ´ 1

4
e´918785 ˆ |a4|´ 1

4

implies

||e´Upφq||Bφ,φ,θ ď 2e´ 1

2
pℜa4qφ4

for all φ P R;

2. the condition

0 ď θ ď p
?
2 ´ 1q2
e

ˆ |a4|´ 1

4

implies

|e´Upφq|Bφ,θ ď 2 .

Proof: It follows from the definition of our seminorms that

||e´Upφq||Bφ,φ,θ “ e´ℜUpφq `
9ÿ

n“1

θn

n!

ˇ̌
ˇDne´Upφq

ˇ̌
ˇ

where D denotes the differentiation operator d
dφ

. An easy induction provides the following explicit formula

of Faa di Bruno type for the derivatives of functions of the form efpφq:

Dnefpφq “
ÿ

kě0

1

k!

ÿ

m1,...,mkě1
Σmi“n

n!

m1! ¨ ¨ ¨mk!

˜
kź

i“1

Dmifpφq
¸
efpφq . (3.49)

This will be used in order to bound the quantities
ˇ̌
Dne´Upφq ˇ̌. First, let us introduce the notation α “

?
3
2
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and r “ 1
3
log

´
1`

?
2

2

¯
. We have

´ℜUpφq “ ´
4ÿ

k“0

pℜakqφk

ď ´1

2
pℜa4qφ4 ´ α

2
|a4|φ4 `

˜
3ÿ

k“1

|ak| |φ|k
¸

` |a0|

from the hypothesis ℜa4 ě α|a4|. Using the assumption |ak| ď r|a4| k
4 we then obtain

´ℜUpφq ď ´1

2
pℜa4qφ4 ` Ω1p|a4| 1

4 |φ|q ` |a0|

where Ω1pxq “ ´α
2
x4`rpx3`x2`xq. We note that with our numeric values of r, α one has supxě0 Ω1pxq ă 3r.

As a result

e´ℜUpφq ď e´ 1

2
pℜa4qφ4`3r`|a0| .

We now use the formula (3.49) and write, for 1 ď n ď 9,

Dne´Upφq “ e´Upφq ˆ
nÿ

k“1

1

k!

ÿ

1ďm1,...,mkď4
Σmi“n

n!

m1! ¨ ¨ ¨mk!
ˆ

kź

i“1

p´DmiUpφqq .

Using the condition Σmi “ n for handling the θ exponents we get the bound

θn

n!

ˇ̌
ˇDne´Upφq

ˇ̌
ˇ ď e´ℜUpφq ˆ

nÿ

k“1

1

k!

ÿ

1ďm1,...,mkď4
Σmi“n

kź

i“1

„
θmi |DmiUpφq|

mi!


. (3.50)

We now assume θ ď γ1|a4|´ 1

4 for some suitable γ1 ě 0 to be specified later. We insert this inequality in

(3.50) and pull out γ1
Σmi “ γ1

n before throwing away the constraint Σmi “ n which results in

θn

n!

ˇ̌
ˇDne´Upφq

ˇ̌
ˇ ď e´ℜUpφqγ1

n ˆ
nÿ

k“1

1

k!

˜
4ÿ

m“1

|a4|´ m
4

m!
|DmUpφq|

¸k

ď γ1
n exp

«
´ℜUpφq `

4ÿ

m“1

|a4|´ m
4

m!
|DmUpφq|

ff
.

The individual quantities in the last exponential are bounded in terms of x “ |a4| 1

4 |φ| as follows:

|a4|´ 1

4 |DUpφq| “ |a4|´ 1

4 ˆ |4a4φ3 ` 3a3φ
2 ` 2a2φ` a1|

ď 4x3 ` 3rx2 ` 2rx` r ,

|a4|´ 2

4

2

ˇ̌
D2Upφq

ˇ̌
“ |a4|´ 1

2 ˆ |6a4φ2 ` 3a3φ` a2|

ď 6x2 ` 3rx` r ,
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|a4|´ 3

4

3!

ˇ̌
D3Upφq

ˇ̌
“ |a4|´ 3

4 ˆ |4a4φ` a3|
ď 4x` r ,

whereas
|a4|´ 4

4

4!

ˇ̌
D4Upφq

ˇ̌
“ 1 .

Therefore
4ÿ

m“1

|a4|´ m
4

m!
|DmUpφq| ď 4x3 ` p3r ` 6qx2 ` p5r ` 4qx` p3r ` 1q

and

´ℜUpφq `
4ÿ

m“1

|a4|´ m
4

m!
|DmUpφq| ď ´1

2
pℜa4qφ4 ` Ω2p|a4| 1

4 |φ|q ` |a0|

where

Ω2pxq “ ´α

2
x4 ` pr ` 4qx3 ` p4r ` 6qx2 ` p6r ` 4qx` p3r ` 1q .

We remark that supxě0 Ω2pxq ă 918785. We denote the latter numerical constant by M . The previous

considerations now give

||e´Upφq||Bφ,φ,θ ď e´ 1

2
pℜa4qφ4`3r`|a0|

`
9ÿ

n“1

γ1
n exp

„
´1

2
pℜa4qφ4 `M ` |a0|



ď e´ 1

2
pℜa4qφ4 ˆ e|a0| ˆ

„
e3r ` eM ˆ γ1

1 ´ γ1



provided γ1 ă 1. If one requires the stronger condition γ1 ď 1
2
then e3r ` eM ˆ γ1

1´γ1 ď e3r ` 2eMγ1.

From our choice for r we have e3r “ 1`
?
2

2
. If we now set γ1 “

?
2´1
4

e´M which clearly is less than 1
2
then

e3r ` 2eMγ1 “
?
2. On the other hand, by assumption on a0 we have e|a0| ď

?
2. The statement in 1) is

therefore proved.

For the statement in 2) concerning the bound on |e´Upφq|Bφ,θ “ ||e´Upφq||Bφ,0,θ, with derivatives taken at

zero, we follow the same steps. However, the situation simplifies considerably. Indeed,

|e´Upφq|Bφ,θ “ e´ℜUp0q `
9ÿ

n“1

θn

n!

ˇ̌
ˇ̌Dne´Upφq

ˇ̌
ˇ
φ“0

ˇ̌
ˇ̌

can be bounded as we did before, under the new hypothesis θ ď γ2|a4|´ 1

4 for suitable γ2 P r0, 1q, by the

estimate

|e´Upφq|Bφ,θ ď e´ℜa0 ` γ2

1 ´ γ2
ˆ exp

«
´ℜUp0q `

4ÿ

m“1

|a4|´ m
4

m!
|DmUp0q|

ff
.

Now
4ÿ

m“1

|a4|´ m
4

m!
|DmUp0q| “

4ÿ

m“1

|a4|´ m
4 |am| ď 3r ` 1 .
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If one imposes the condition γ2 ď 1
2
, then

|e´Upφq|Bφ,θ ď e|a0| ˆ
“
1 ` 2γ2e

3r`1
‰
.

Because of the chosen value of r, one will have 1 ` 2γ2e
3r`1 “

?
2 if one now sets γ2 “ p

?
2´1q2
e

» 0.0631 . . .

which is less than 1
2
. The statement in 2) then follows easily.

We will now specify the numeric parameters

c1 “ 2´ 9

4 p
?
2 ´ 1qe´918785 and c2 “ 2

3

4

which are used to calibrate the parameters

h “ c1ḡ
´ 1

4 and h˚ “ c2L
3`ǫ
4

for the seminorms we use.

With these choices the norm

|||R|||ḡ “ max

#
|Rpφq|Bφ,h˚ , ḡ

2 sup
φPR

||Rpφq||Bφ,φ,h
+

is now unambiguously defined in terms of the calibrator ḡ. We give one more lemma before stating the main

estimates theorem.

Lemma 3.6. For all unit cube ∆1 and for all subset Y0 Ă rL´1∆1s we have

@φ P R ,

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
ź

∆PY0

e´Ṽ∆pφ1q

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Bφ,φ,h

ď 2

as well as ˇ̌
ˇ̌
ˇ
ź

∆PY0

e´Ṽ∆pφ1q

ˇ̌
ˇ̌
ˇ
Bφ,h˚

ď 2 .

If |Y0| ě L3

2
(which holds if |Y0| “ L3 or L3 ´ 1 because L ě 2) then we have the improved bound

@φ P R ,

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
ź

∆PY0

e´Ṽ∆pφ1q

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Bφ,φ,h

ď 2e´ ḡ
16
φ4

.

Here φ1 denotes the rescaled field L´rφsφ.

Proof: One needs to unwrap the definitions of the quantities above and apply Lemma 3.5, keeping in mind

that we have φ1 “ L´rφsφ but derivatives are with respect to φ.

3.6.2 Main Estimates Theorem

Below we give a version of [3, Theorem 4] which gives the fundamental estimates on the single iteration of

the map RGex
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Theorem 3.2. DBRL ě 0, @L “ pl ą 1, DB0, . . . , B4, BRξ ě 0,

Dǫ0 ą 0, @ǫ P p0, ǫ0s, and ∆1 P L, then on the domain

@∆ P rL´1∆1s,

$
’’’’’’&
’’’’’’%

|β4,∆ ´ ḡ˚| ă 1
2
ḡ

|βk,∆| ă ḡ for k “ 1, 2, 3

|Wk,∆| ă ḡ2 for k “ 5, 6

|f∆| ă L´p3´rφsq

|||R∆|||ḡ ă ḡ
21

8

the maps ξ0,∆1 , . . . , ξ4,∆1 , L∆1 and ξR,∆1 are well-defined, analytic, send real data to real data and satisfy the

bounds

|ξk,∆1 p~V q| ď Bk max
∆PrL´1∆1s

|||R∆|||ḡ for k “ 0, . . . , 4 ,

|||L~β,f∆1 pRq|||ḡ ď BRLL
3´5rφs max

∆PrL´1∆1s
|||R∆|||ḡ ,

and

|||ξR,∆1 p~V q|||ḡ ď BRξ ḡ
11

4 .

We remark the above theorem is formulated completely locally - it gives estimates RGextr~V s∆1 that are

depend on hypothesises that depend only on those components of ~V that lie in L´1∆1, i.e. tV∆u∆PrL´1∆1s.

Some important facts about the content of the above theorem and how we use it are

(i) In the statement of the above theorem L is an arbitrary positive integer power of p - ǫ will then need

to be taken sufficiently small depending on how large L is.

(ii) While this is not done right now we remark that L will be taken large sufficently large and then fixed

to beat the L independent combinatorial factor BRL to guarantee that the linear map L
~β,f
∆1 p¨q is a

contraction.

(iii) The higher order contributions in R denoted by ξR,∆1 p~V q are of order BRξ ḡ
11

4 - what’s important is by

taking ǫ small we can make this negligible relative to the linear flow since BRξ depends only on L and

so the remainder comes with an extra factor of ḡ
1

8 - then by making ǫ sufficiently small this term can

be made negligible compared to the linear term.

(iv) The non-explicit counterterms tζk,∆1 r~V su4k“1 that will appear in the exact flow equations of the coupling

constants tβk.∆1 u4k“1 are of order ḡ
21

8 and since 21
8

ą 2 these exact flows will be primarily governed by

the approximate flows given by second order perturbation theory.

We abuse notation and will write ḡ˚ for our approximate fixed point in Eex, using the notation pβ4, β3, β2, β1,
W5,W6, f, Rq for an element of Eex, then by ḡ˚ P Eex we mean the element with β4pxq “ ḡ˚ as specified in

(4.1) and all other entries set to 0. The estimates above then show that RGex is an analytic map on any

open ball of radius less than 1 around ḡ˚ in Eex.

Analyticity methods are crucial to our approach. As we mentioned before complex analyticity in f and

j of the moment generating functions is what allows us to recover moments with the necessary n! bounds.

Additionally complex analyticity of the various maps involved in our RG analysis will be crucial to prove
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Lipschitz estimates for certain maps that are given by contractive linear part and a higher-order non-explicit

terms that we only have uniform bounds on. This is why we work with complex Banach spaces for all of our

parameters even though in our final application we are mostly concerned with real data.

In [3] the proof of Theorem 3.2 involves around 54 different lemmas. Our strategy for proving Theorem

3.2 (and the nature of the actual theorem) closely follows what is done in [18]. Our work is more general

in the sense that we work in a setting where our RG data is not translation invariant, on the other hand

since we work in the easier hierarchical setting we don’t have to worry about polymer activities (non-local

functionals of the field).

We do not prove Theorem 3.2 here, all the steps are given in explicit detail in [3]. For the exposition

here we will restrict ourselves to explaining how one proves L
~β,f
∆1 p¨q is contractive.

Proving L
~β,f is contractive

First we give a simple estimate helpful for working with one of our seminorms:

Lemma 3.7. For any 0 ď k ă 9 and γ P p0, 1s one has

||ψk||Bψ,ψ,h ď 27 ˆ γ´ k
4 ḡ´ k

4 eγpℜβ4,∆qφ4

1

Proof: We note that

||ψk||Bψ,ψ,h “ ph` |ψ|qk “
kÿ

n“0

˜
k

n

¸
pc1ḡ´ 1

4 qk´n|ψ|n .

We use Lemma 3.3 to write, for γ P p0, 1s,

|ψ|n ď
´ n
2e

¯n
4 rγḡs´ n

4 eγpℜβ4,∆qψ4

which proves the assertion.

Throughout this whole section φ1 should be seen as a shorthand for L´rφsφ - this corresponds to the

rescaling of the field.

Lemma 3.8. For any K P C9
bdpR,Cq

||Kpφ1q||Bφ,φ1,h “ ||Kpψq||Bψ,φ1,L´rφsh ď ||Kpψq||Bψ,φ1,h

|Kpφ1q|Bφ,h˚ “ |Kpψq|Bψ,L´rφsh˚
ď |Kpψq|Bψ,h˚

For K P C9
bdpR,Cq such that for some n one has dj

dψjKpψq
ˇ̌
ˇ
ψ“0

“ 0 for 0 ď j ă n

|Kpφ1q|Bφ,h˚ ď L´nrφs|Kpψq|Bψ,h˚

Proof: The equalities in the first two assertions follows from definition of the seminorms and the chain rule,

the inequalities in the first two assertions follow since L´rφs ď 1.

For the third assertion we assume that n ď 9 since the inequality is trivial otherwise. Now one only needs
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to observe that

|Kpφ1q|Bφ,0,h˚ “ |Kpψq|Bψ,L´rφsh˚
“

9ÿ

j“0

pL´rφsh˚qj
j!

ˇ̌
ˇ̌ d

j

dψj
Kp0q

ˇ̌
ˇ̌

“
9ÿ

j“n

pL´rφsh˚qj
j!

ˇ̌
ˇ̌ d

j

dψj
Kp0q

ˇ̌
ˇ̌

ď L´nrφs
9ÿ

j“n

ph˚qj
j!

ˇ̌
ˇ̌ d

j

dψj
Kp0q

ˇ̌
ˇ̌ “ L´nrφs|Kpψq|Bψ,h˚

We remark that we similarly have the bound

|Kpφq|Bφ,0,Lrφsh˚
ď L´nrφs|Kpφq|Bφ,0,h˚

for Kpφq with Kpjqp0q “ 0 for 0 ď j ď n. This is the form of the third assertion that will appear in our

lemmas.

The key point of the above lemma is that if our function has its first few derivatives at 0 vanish then

rescaling gives us a strict contraction in the kernel seminorm. The contractivity L
~β,f
∆1 will come from the

“normalization conditions” we implemented in its definition which require the vanishing of the first four

derivatives - this will give a factor of L´5rφs after rescaling which is enough to beat the volume factor L3

that will appear in the linear flow for R. However we are subjecting the kernel seminorm to both a rescaling

and a fluctuation integral - as we discussed earlier controlling the integration requires more than the kernel

seminorm. This is why we have the supremum norm inside of ||| ¨ |||ḡ. However this adds a new challenge,

as now one must prove a contractive estimate in terms of ||| ¨ |||ḡ.
The main tool for dealing with the above problems are the following two lemmas which relate our

seminorms.

Lemma 3.9. For all K P C9
bdpR,Cq and for all σ P R we have

||Kpψq||Bψ,σ,h˚ ď O1e
h

´2

˚ σ2 ˆ
«

|Kpψq|Bψ,h˚ ` h9˚h
´9 sup

ψPR

||Kpψq||Bψ,ψ,h˚

ff

where

O1 “ 1 ` 511 ˆ max
0ďjď9

ˆ
j

2e

˙ j
2

.

Proof: Recall that by definition

||Kpψq||Bψ,σ,h˚ “
9ÿ

n“0

hn˚
n!

|Kpnqpσq| .

The term with n “ 9 is bounded by writing

h9˚
9!

|Kp9qpσq| “ h9˚h
´9 ˆ h9

9!
|Kp9qpσq| ď h9˚h

´9 ˆ sup
ψPR

||Kpψq||Bψ,ψ,h˚ .
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For terms with 0 ď n ď 8 we use a Taylor expansion around zero of order 8´n so that the integral remainder

involves p9´nq-th derivatives of Kpnq, i.e., 9-th derivatives of the original function K. Indeed, one can write

Kpnqpσq “
8´nÿ

m“0

σm

m!
Kpn`mqp0q ` 1

p8 ´ nq!

ż 1

0

p1 ´ sq8´nσ9´nKp9qpsσq ds

and therefore

|Kpnqpσq| ď
8´nÿ

m“0

|σ|m
m!

pn`mq! h´pn`mq
˚ |Kpψq|Bψ,h˚

` 1

p8 ´ nq! |σ|9´n ˆ 9! h´9

˜
sup
ψPR

||Kpψq||Bψ,ψ,h
¸ż 1

0

p1 ´ sq8´n ds .

We use Lemma 3.3 with κ “ h´2
˚ in order to bound powers of |σ| by

|σ|m ď
´m
2e

¯m
2 ˆ hm˚ e

h
´2

˚ σ2

which inserted in the previous inequality gives

hn˚
n!

|Kpnqpσq| ď
˜

max
0ďjď9

ˆ
j

2e

˙ j
2

¸
ˆ eh

´2

˚ σ2

ˆ
«

8´nÿ

m“0

pn`mq!
n!m!

|Kpψq|Bψ,h˚ ` 9! h9´n
˚

n!p9 ´ nq!h
n
˚h

´9 sup
ψPR

||Kpψq||Bψ,ψ,h
ff
.

Putting together the bounds for the different values of n we obtain

||Kpψq||Bψ,σ,h˚ ď h9˚h
´9 sup

ψPR

||Kpψq||Bψ,ψ,h

`eh´2

˚ σ2

˜
max
0ďjď9

ˆ
j

2e

˙ j
2

¸
8ÿ

n“0

«˜
8´nÿ

m“0

pn`mq!
n!m!

¸
|Kpψq|Bψ,h˚ ` 9!

n!p9 ´ n!qh
9
˚h

´9 sup
ψPR

||Kpψq||Bψ,ψ,h
ff
.

The result as well as the given value of O1 then follow since

8ÿ

n“0

8´nÿ

m“0

pn`mq!
n!m!

“
8ÿ

n“0

9!

n!p9 ´ n!q “ 29 ´ 1 “ 511.

Lemma 3.10. For all K P C9
bdpR,Cq, β4 P C such that |β4 ´ ḡ| ă 1

2
ḡ, γ P p0, 1s and φ P R we have

||Kpφq||Bφ,φ,h ď O2γ
´ 9

4 eγpℜβ4qφ4

«
|Kpψq|Bψ,h ` L´9rφs sup

ψPR

||Kpψq||Bψ,ψ,Lrφsh

ff

with

O2 “ 1 `
`
p1 ` c´1

1 q9 ´ 1
˘

ˆ max
0ďjď9

ˆ
j

2e

˙ j
4

.

121



Proof: We proceed as in the proof of the previous lemma and write

h9

9!
|Kp9qpφq| “ L´9rφs ˆ pLrφshq9

9!
|Kp9qpφq| ď L´9rφs ˆ sup

ψPR

||Kpψq||Bψ,ψ,Lrφsh

in order to handle the n “ 9 term in the sum defining ||Kpφq||Bφ,φ,h. For the other terms with 0 ď n ď 8

one has, as before,

|Kpnqpφq| ď
8´nÿ

m“0

|φ|m
m!

pn`mq! h´pn`mq|Kpψq|Bψ,h

` 1

p9 ´ nq! |φ|9´n ˆ 9!pLrφshq´9 sup
ψPR

||Kpψq||Bψ,ψ,Lrφsh .

We this time use Lemma 3.3 in order to bound powers of |φ| by

|φ|m ď
´m
2e

¯m
4

γ´ m
4 ḡ´ m

4 eγpℜβ4qφ4

.

Note that γ´ m
4 ď γ´ 9

4 since 0 ă γ ď 1, 0 ď n ď 8 and 0 ď m ď 9´n. Besides ḡ´ m
4 “ pc´1

1 hqm and therefore

hn

n!
|Kpnqpφq| ď

˜
max
0ďjď9

ˆ
j

2e

˙ j
4

¸
ˆ γ´ 9

4 ˆ eγpℜβ4qφ4

ˆ
«

8´nÿ

m“0

hmc´m
1

m!

hn

n!
pn`mq!h´pn`mq|Kpψq|Bψ,h ` 9!

n!p9 ´ nq!h
nh9´nc´p9´nq

1 pLrφshq´9 sup
ψPR

||Kpψq||Bψ,ψ,Lrφsh

ff
.

Altogether this gives the estimate

||Kpφq||Bφ,φ,h ď L´9rφs sup
ψPR

||Kpψq||Bψ,ψ,Lrφsh

`
˜

max
0ďjď9

ˆ
j

2e

˙ j
4

¸
ˆ γ´ 9

4 ˆ eγpℜβ4qφ4 ˆ
#˜

8´nÿ

m“0

ˆ
n`m

m

˙
c´m
1

¸
|Kpψq|Bψ,h

`
ˆ
9

n

˙
c

´p9´nq
1 L´9rφs sup

ψPR

||Kpψq||Bψ,ψ,Lrφsh

+
.

The result with the given value for O2 follows from this last inequality since

8ÿ

n“0

8´nÿ

m“0

ˆ
n`m

m

˙
c´m
1 “ c1

“
p1 ` c´1

1 q9 ´ 1
‰

ă p1 ` c´1
1 q9 ´ 1 “

8ÿ

n“0

ˆ
9

n

˙
c

´p9´nq
1 .

Now we recall that from our definition of the extended RG map one has

L
~β,f
∆1 pRq “

ÿ

∆1PrL´1∆1s

¨
˚̊
˝

ź

∆PrL´1∆1s
∆‰∆1

e´Ṽ∆pφ1q

˛
‹‹‚ˆ J∆1,∆1

pφq (3.51)
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where for ∆1 P rL´1∆1s we have

J∆1,∆1
pφq “ J`pφq ´ J´pφq (3.52)

with

J`pφq “ e´ 1

2
pf,Γfq

L´1∆1 ˆ
ż
dµΓpζq e

ş
L´1∆1 fζ R∆1

pφ1 ` ζq

J´pφq “
˜

4ÿ

k“0

δβk,3,∆1,∆1
: φk :C0

¸
ˆ e´Ṽ∆1

pφ1q .
(3.53)

Note that the notation above suppresses a lot of dependences, in particular the numeric quantities

δβk,3,∆1,∆1
are defined as linear functions of R∆1

- see (3.43) and (3.44).

The next lemma gives a kernel seminorm bound on J`, using Lemma 3.9 to control the fluctuation

integral inside of J`.

A notational note: to realize the rescaling contraction we get bounds on quantities of interest with respect

to a “shifted” kernel seminorm |¨|Bφ,Lrφsh˚
, then the rescaling contraction will appear when we unshift Lrφsh˚

to h˚.

Lemma 3.11. For all ∆1 P L and ∆1 P rL´1∆1s the quantity J`pφq satisfies the bound

|J`pφq|Bφ,Lrφsh˚
ď O3|||R∆1

|||ḡ

where O3 “ 4O1 ˆ exp
´
2´ 3

2

¯
.

Proof: From the definition of J`pφq we immediately have:

|J`pφq|Bφ,Lrφsh˚
ď e´ 1

2
ℜpf,Γfq

L´1∆1

ż
dµΓpζq e

ş
L´1∆1 pℜfqζ |R∆1

pφ1 ` ζq|Bφ,Lrφsh˚
.

By the definitions of the seminorms and the chain rule one has

|R∆1
pφ1 ` ζq|Bφ,Lrφsh˚

“ ||R∆1
pφ1 ` ζq||Bφ,0,Lrφsh˚

“ ||R∆1
pψ ` ζq||Bψ,0,h˚ “ ||R∆1

pψq||Bψ,ζ,h˚ .

From Lemma 3.9 we then derive

|R∆1
pφ1 ` ζq|Bφ,Lrφsh˚

ď O1e
h

´2

˚ ζ2
∆1

«
|R∆1

pψq|Bψ,h˚ ` h9˚h
´9 sup

ψPR

||R∆1
pψq||Bψ,ψ,h

ff

ď O1e
h

´2

˚ ζ2
∆1 |||R∆1

|||ḡ
`
1 ` h9˚h

´9ḡ´2
˘

ď 2O1e
h

´2

˚ ζ2
∆1 |||R∆1

|||ḡ.

In going to the last line we remark that h9˚h
´9ḡ´2 “ c92c

´9
1 ḡ

9

4
´2, now since ḡ is Opǫq we can make this term

arbitrary sufficiently small. As a result

|J`pφq|Bφ,Lrφsh˚
ď e´ 1

2
ℜpf,Γfq

L´1∆1 ˆ 2O1 ˆ |||R∆1
|||ḡ ˆ

ż
dµΓpζq e

ş
L´1∆1 pℜfqζeh

´2

˚ ζ2
∆1 .
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Now by our choice of c2 we can use Lemma 3.4 with α “ h´2
˚ to the effect that

|J`pφq|Bφ,Lrφsh˚
ď 4O1 ˆ |||R∆1

|||ḡ ˆ exp

"
´1

2
ℜpf,ΓfqL´1∆1 ` 1

2
pℜf,ΓℜfqL´1∆1

*

holds. Note that

ℜpf,ΓfqL´1∆1 “ pℜf,ΓℜfqL´1∆1 ´ pℑf,ΓℑfqL´1∆1

and thus

|J`pφq|Bφ,Lrφsh˚
ď 4O1 ˆ |||R∆1

|||ḡ ˆ exp

"
1

2
pℑf,ΓℑfqL´1∆1

*
.

But

|pℑf,ΓℑfqL´1∆1 | ď
ż

pL´1∆1q2
d3xd3y |Γpx´ yq| |ℑfpxq| |ℑfpyq|

ď ||f |L´1∆1 ||2L8 ˆ L3 ˆ ||Γ||L1

ď L´2p3´rφsq ˆ L3 ˆ L3´2rφs
?
2

ď 1?
2

because of our assumptions on ||f || in Theorem 3.2, the finite range property of Γ and the bound in Corollary

5.1. Inserting this last inequality in the previous estimate for J` gives the wanted bound.

In order to estimate J´pφq we will need estimates on the third order counterterms which due to the

consequences of the enforced normalization condition boil down to using the estimate of (3.12) along with

some knowledge of the general structure of the counter-terms.

Lemma 3.12. For all ∆1 P L, ∆1 P rL´1∆1s and integer k such that 0 ď k ď 4 the δβ quantities defined in

§3.5.2 satisfy

|δβk,3,∆1,∆1
| ď O4 ˆ

´
Lrφsh˚

¯´k
ˆ |||R∆1

|||ḡ

and

|δβk,3,∆1 | ď O4 ˆ L3´krφs ˆ max
∆1PrL´1∆1s

|||R∆1
|||ḡ

with

O4 “ 48 ˆ O3 ˆ
4ÿ

i“0

ÿ

j,n,l

|#k,i,j,n,l| 2j
ˆ
3

2

˙n

where #k,i,j,n,l denote the numerical coefficients in the explicit formulas produced by Maple from §3.5.2.

Proof: Recall that

δβk,3,∆1,∆1
“

4ÿ

i“0

Mk,iai

where

ai “ exp

„
´C0p0qL´2rφsβ2,∆1

` 3C0p0q2L´4rφsβ4,∆1
´ 1

2
pf,ΓfqL´1∆1



ˆL´irφs ˆ
ż
dµΓpζq e

ş
L´1∆1 fζR

piq
∆1

pζq

“ exp
”
´C0p0qL´2rφsβ2,∆1

` 3C0p0q2L´4rφsβ4,∆1

ı
ˆ J

piq
` p0q

124



and

Mk,i “
ÿ

j,n,l

#k,i,j,n,lC0p0qjL´pl1`¨¨¨`lnqrφsβl1,∆1
¨ ¨ ¨βln,∆1

.

Using |β2,∆1
| ă ḡ, |β4,∆1

| ă 3
2
ḡ, C0p0q ă 2, and L´rφs ď 1 gives the bound

|ai| ď |J piq
` p0q| ˆ e20ḡ ď 2|J piq

` p0q| .

for ǫ taken sufficiently small. By definition of the seminorms

|J piq
` p0q| ď i!pLrφsh˚q´i|J`p0q|Bφ,Lrφsh˚

.

Since i ď 4 we then get from the last inequality

|ai| ď 48pLrφsh˚q´i|J`p0q|Bφ,Lrφsh˚
.

Now recall that the sum expressing the Mk,i is quantified over j ě 0, n ě 0 and l “ pl1, . . . , lnq P t1, . . . , 4un.
For the numerical coefficients #k,i,j,n,l to be nonzero the constraint

l1 ` ¨ ¨ ¨ ` ln ´ 2j “ k ´ i

must be satisfied. The βlν ,∆1
are bounded by a worst case scenario of 3

2
ḡ. We can thus write

|Mk,i| ď
ÿ

j,n,l

|#k,i,j,n,l|2jL´pl1`¨¨¨`lnqrφs ˆ
ˆ
3

2
ḡ

˙n
.

We now consider two different cases in order to continue estimating the |Mk,i|.
1st case: Suppose i ě k. Since the l’s are positive, we have L´pl1`¨¨¨`lnqrφs ď 1. We use the coarse bound

ḡ ď 1 and then simply write

|Mk,i| ď
ÿ

j,n,l

|#k,i,j,n,l|2j ˆ
ˆ
3

2

˙n
.

2nd case: Suppose i ă k. Since j ě 0, the previous constraint implies

l1 ` ¨ ¨ ¨ ` ln “ 2j ` k ´ i ě k ´ i

and therefore L´pl1`¨¨¨`lnqrφs ď L´pk´iqrφs. One can also infer that n ě 1 since l1 ` ¨ ¨ ¨ ` ln ě k´ i ą 0. The

bound on |Mk,i| which results from these remarks can be reorganized as

|Mk,i| ď
ÿ

j,n,l

|#k,i,j,n,l|2j ˆ
´
h˚L

rφs
¯´pk´iq

ˆ
ˆ
3

2

˙n
ḡhk´i

˚ .

Since 0 ď i ă k ď 4, h˚ ě 1 and ǫ ď 1 we have

hk´i
˚ ď h4˚ “

´
2

3

4L
3`ǫ
4

¯4

ď 8L4 .
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By taking ǫ sufficiently small (dependent on L) we can assume 8ḡL4 ă 1 so

|Mk,i| ď
´
h˚L

rφs
¯´pk´iq

ˆ
ÿ

j,n,l

|#k,i,j,n,l|2j
ˆ
3

2

˙n

which is the wanted bound for |Mk,i| in this second case.

We now combine the previous consideration and get

|δβk,3,∆1,∆1
| ď

4ÿ

i“k
|Mk,i| |ai| `

ÿ

0ďiăk
|Mk,i| |ai|

ď
4ÿ

i“k
48pLrφsh˚q´i|J`p0q|Bφ,Lrφsh˚

ˆ
ÿ

j,n,l

|#k,i,j,n,l|2j ˆ
ˆ
3

2

˙n

`
ÿ

0ďiăk
48pLrφsh˚q´k|J`p0q|Bφ,Lrφsh˚

ˆ
ÿ

j,n,l

|#k,i,j,n,l|2j ˆ
ˆ
3

2

˙n
.

Since Lrφs and h˚ are greater than 1 we have pLrφsh˚q´i ď pLrφsh˚q´k when i ě k. We can then more

conveniently write

|δβk,3,∆1,∆1
| ď 48pLrφsh˚q´k|J`p0q|Bφ,Lrφsh˚

ˆ
4ÿ

i“0

ÿ

j,n,l

|#k,i,j,n,l|2j ˆ
ˆ
3

2

˙n

from which the desired follows thanks to Lemma 3.11. Finally the second bound on |δβk,3,∆1 | follows simply

by summing over ∆1 P rL´1∆1s and discarding the factors h´k
˚ ď 1.

Lemma 3.13. For all ∆1 P L and ∆ P rL´1∆1s we have

|J∆1,∆1
pφq|Bφ,Lrφsh˚

ď O5|||R∆1
|||ḡ

where O5 “ O3 ` 250O4.

Proof: By definition

J∆1,∆1
pφq “ J`pφq ´ J´pφq

where

J`pφq “ e´ 1

2
pf,Γfq

L´1∆1 ˆ
ż
dµΓpζqe

ş
L´1∆1 fζR∆1

pφ1 ` ζq

and

J´pφq “
˜

4ÿ

k“0

δβk,3,∆1,∆1
: φk :C0

¸
ˆ e´Ṽ∆1

pφ1q .

By Lemma 3.11 we have

|J`pφq|Bφ,Lrφsh˚
ď O3|||R∆1

|||ḡ .

By Lemma 3.12 we also have

|δβk,3,∆1,∆1
| ď O4L

´krφsh´k
˚ |||R∆1

|||ḡ .
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We have the bound

| : φk :C0
|Bφ,Lrφsh˚

ď 25 max
0ďaďk

|φa|Bφ,Lrφsh˚
ď 25Lkrφshk˚

since |φa|Bφ,Lrφsh˚
“ pLrφsh˚qa and Lrφsh˚ ě 1. Finally, by the chain rule

|e´Ṽ∆1
pφ1q|Bφ,Lrφsh˚

“ |e´Ṽ∆1
pψq|Bψ,h˚ ď 2

by Lemma 3.6. As result we easily arrive at

|J´pφq|Bφ,Lrφsh˚
ď 250O4|||R∆1

|||ḡ .

The latter as well as the previous inequality for J` imply the desired estimate.

That finishes our kernel norm estimates, we then have

Lemma 3.14. For all ∆1 P L, ∆ P rL´1∆1s and φ P R we have

||J∆1,∆1
pφq||Bφ,φ,Lrφsh ď O6ḡ

´2|||R∆1
|||ḡ

where

O6 “ exp

ˆ?
2

2

˙
` 155O4 .

Proof: Clearly, we have

||J∆1,∆1
pφq||Bφ,φ,Lrφsh ď ||J`pφq||Bφ,φ,Lrφsh ` ||J´pφq||Bφ,φ,Lrφsh

and both terms will be bounded as follows. We first write

||J`pφq||Bφ,φ,Lrφsh ď e´ 1

2
ℜpf,Γfq

L´1∆1 ˆ
ż
dµΓpζq e

ş
L´1∆1 pℜfqζ ||R∆1

pφ1 ` ζq||Bφ,φ,Lrφsh

and then use the chain rule as well as the definition of the ||| ¨ |||ḡ norm in order to derive

||R∆1
pφ1 ` ζq||Bφ,φ,Lrφsh “ ||R∆1

pψ ` ζq||Bψ,φ1,h “ ||R∆1
pψq||Bψ,φ1`ζ,h ď ḡ´2|||R∆1

|||ḡ .

Besides, as shown before |pf,ΓfqL´1∆1 | ď 1?
2
. Hence

||J`pφq||Bφ,φ,Lrφsh ď expr2´ 3

2 sḡ´2|||R∆1
|||ḡ

ż
dµΓpζq e

ş
L´1∆1 pℜfqζ

ď expr2´ 3

2 sḡ´2|||R∆1
|||ḡe

1

2
pℜf,Γℜfq

L´1∆1

by Lemma 3.4 with X “ H or simply exact computation. Again one easily gets that |pℜf,ΓℜfqL´1∆1 | ď 1?
2

which results in

||J`pφq||Bφ,φ,Lrφsh ď expr2´ 1

2 sḡ´2|||R∆1
|||ḡ .
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From the definition of J´pφq we immediately get

||J´pφq||Bφ,φ,Lrφsh ď
4ÿ

k“0

|δβk,3,∆1,∆1
| ˆ || : φk :C0

||Bφ,φ,Lrφsh||e´Ṽ∆1
pφ1q||Bφ,φ,Lrφsh .

By the chain rule and Lemma 3.6

||e´Ṽ∆1
pφ1q||Bφ,φ,Lrφsh “ ||e´Ṽ∆1

pψq||Bψ,φ1,h ď 2e´ 1

2
pℜβ4,∆1

qφ4

1 .

Again by undoing the Wick ordering we have

|| : φk :C0
||Bφ,φ,Lrφsh ď 25 max

0ďaďk
||φa||Bφ,φ,Lrφsh .

But

||φa||Bφ,φ,Lrφsh “ pLrφsh` |φ|qa ď pLrφsh` |φ|qk

since Lrφsh ě 1. Now

|| : φk :C0
||Bφ,φ,Lrφsh ď 25pLrφsh` |φ|qk “ 25

kÿ

n“0

ˆ
k

n

˙ ´
Lrφsc1ḡ

´ 1

4

¯k´n
|φ|n

ď 25
kÿ

n“0

ˆ
k

n

˙ ´
Lrφsc1ḡ

´ 1

4

¯k´n ´ n
2e

¯n
4 pγḡq´ n

4 eγpℜβ4,∆1
qφ4

by Lemma 3.3 and for any γ ą 0. Here we choose γ “ 1
2
L´4rφs which entails

|| : φk :C0
||Bφ,φ,Lrφsh ď 25 ˆ

ˆ
max
0ďnď4

´ n
2e

¯n
4

˙
ˆ e

1

2
pℜβ4,∆1

qφ4

1

ˆ
kÿ

n“0

ˆ
k

n

˙ ´
Lrφsc1ḡ

´ 1

4

¯k´nˆ1

2
L´4rφsḡ

˙´ n
4

.

As a result of the previous considerations we arrive at

||J´pφq||Bφ,φ,Lrφsh ď 50 ˆ
ˆ

max
0ďnď4

´ n
2e

¯n
4

˙

ˆ
4ÿ

k“0

|δβk,3,∆1,∆1
| ˆ Lkrφsḡ´ k

4

˜
kÿ

n“0

ˆ
k

n

˙
ck´n
1 2

n
4

¸
.

Since n ď 4 we simply bound n
2e

by 1. We also use Lemma 3.12 in order to write

||J´pφq||Bφ,φ,Lrφsh ď 50 ˆ O4|||R∆1
|||ḡ ˆ

kÿ

n“0

ḡ´ k
4 h

´ k
4

˚ pc1 ` 2
1

4 qk .

Now we bound h´1
˚ by 1, ḡ´ k

4 by the worst case scenario ḡ´1 ď ḡ´2 and finally c1 ` 2
1

4 by 2. Since
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1 ` 2 ` ¨ ¨ ¨ ` 24 “ 31 we then obtain

||J´pφq||Bφ,φ,Lrφsh ď 50 ˆ 31 ˆ O4ḡ
´2|||R∆1

|||ḡ .

The latter inequality, combined with the previous one for J`, gives us the desired result.

Finally we prove the contractive bound. We mention that Lemma (3.10) is essential for getting the

contractive estimate for both parts of the triple norm ||| ¨ |||ḡ:

Lemma 3.15. For all unit cube ∆1 P L we have

|||Lp~β,fq
∆1 pRq|||ḡ ď O7 ˆ L3´5rφs ˆ max

∆1PrL´1∆1s
|||R∆1

|||ḡ

where

O7 “ 210 ˆ O2 ˆ pO5 ` O6q .

Proof: Recall that

L
p~β,fq
∆1 pRq “

ÿ

∆1PrL´1∆1s

¨
˚̊
˝

ź

∆PrL´1∆1s
∆‰∆1

e´Ṽ∆pφ1q

˛
‹‹‚ˆ J∆1,∆1

pφq .

Hence

|Lp~β,fq
∆1 pRq|Bφ,h˚ ď

ÿ

∆1PrL´1∆1s

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ź

∆PrL´1∆1s
∆‰∆1

e´Ṽ∆pφ1q

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Bφ,h˚

ˆ |J∆1,∆1
pφq|Bφ,h˚ .

Now by Lemma 3.6 with Y0 “ rL´1∆1szt∆1u we have

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ź

∆PrL´1∆1s
∆‰∆1

e´Ṽ∆pφ1q

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Bφ,h˚

ď 2 .

Now by the construction in §3.5.2, the derivatives J
pnq
∆1,∆1

p0q vanish when 0 ď n ď 4. As a result

|J∆1,∆1
pφq|Bφ,h˚ “

9ÿ

n“5

hn˚
n!

|J pnq
∆1,∆1

p0q| ď L´5rφs|J∆1,∆1
pφq|Bφ,Lrφsh˚

and thus by Lemma 3.13 we have

|Lp~β,fq
∆1 pRq|Bφ,h˚ ď 2L´5rφs

ÿ

∆1PrL´1∆1s
O5|||R∆1

|||ḡ

ď 2O5L
3´5rφs max

∆1PrL´1∆1s
|||R∆1

|||ḡ .
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Likewise, we have

||Lp~β,fq
∆1 pRq||Bφ,φ,h ď

ÿ

∆1PrL´1∆1s

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ź

∆PrL´1∆1s
∆‰∆1

e´Ṽ∆pφ1q

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Bφ,φ,h

ˆ ||J∆1,∆1
pφq||Bφ,φ,h .

If we let Y0 “ rL´1∆1szt∆1u, then |Y0| ě L3

2
and by Lemma 3.6 we have

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ź

∆PrL´1∆1s
∆‰∆1

e´Ṽ∆pφ1q

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Bφ,φ,h

ď 2e´ ḡ
16
φ4

.

By Lemma 3.10 with β4 “ ḡ and γ “ 1
16

one has

||J∆1,∆1
pφq||Bφ,φ,h ď O216

9

4 e
ḡ
16
φ4

«
|J∆1,∆1

pφq|Bφ,h ` L´9rφs sup
ψPR

|J∆1,∆1
pψq|Bψ,ψ,Lrφsh

ff
.

By the same argument utilizing the vanishing of the first few derivatives at the origin as before, with h

instead of h˚, we get

|J∆1,∆1
pφq|Bφ,h ď L´5rφs|J∆1,∆1

pφq|Bφ,Lrφsh .

Now by Lemma 3.13

|J∆1,∆1
pφq|Bφ,Lrφsh ď O5|||R∆1

|||ḡ

whereas, by Lemma 3.14, one has

sup
ψPR

|J∆1,∆1
pψq|Bψ,ψ,Lrφsh ď O6ḡ

´2|||R∆1
|||ḡ .

We then arrive at the estimate

||J∆1,∆1
pφq||Bφ,φ,h ď O2 ˆ 29 ˆ e

ḡ
16
φ4 |||R∆1

|||ḡ ˆ
”
L´5rφsO5 ` L´9rφsḡ´2O5

ı
.

Using L´5rφsḡ´2 as a common bound of L´9rφsḡ´2 and L´5rφs we immediately get

||Lp~β,fq
∆1 pRqpφq||Bφ,φ,h ď

ÿ

∆1PrL´1∆1s
210O2pO5 ` O6qL´5rφsḡ´2|||R∆1

|||ḡ

and hence

ḡ2 ˆ ||Lp~β,fq
∆1 pRqpφq||Bφ,φ,h ď 210O2pO5 ` O6qL3´5rφs max

∆1PrL´1∆1s
|||R∆1

|||ḡ .

The latter inequality, combined with the previous one for the | ¨ |Bφ,h˚ seminorm, give

|||Lp~β,fq
∆1 pRq|||ḡ ď L3´5rφs

ˆ
max

∆1PrL´1∆1s
|||R∆1

|||ḡ
˙

ˆ max
“
2O5, 2

10O2pO5 ` O6q
‰
.
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Since clearly O2 ą 1, the last maximum reduces to the second term, i.e., the given value of O7.

3.7 The bulk RG and analysis of the non-trivial fixed point

3.7.1 The bulk RG

As mentioned in section §3.4.3 we call the RG flow associated with calculation of Zr,sp0, 0q the bulk RG flow.

Refering back to the definition for the initial RGex data ~V pr,rqpf̃ , j̃q corresponding to Zr,spf̃ , j̃q we see that

in the case where f̃ “ j̃ “ 0 the initial data is spatially homogenous and it is clear from the definition of

RGext that property will continue to hold for ~V pr,qqp0, 0q for all q ě r. In the discussion at the end of §3.4.3

we also claimed that the preserved functional form for the bulk flow is simpler, in what follows we set up a

simple Banach space in which the bulk flow will live.

We define E “ C2 ˆ C9
bd,evpR,Cq where C9

bd,evpR,Cq denotes the closed subspace of even functions in

C9
bdpR,Cq, i.e. elements Kpφq that satisfy Kpφq “ Kp´φq. We can write an element V P E in the form

V “ pg, µ,Rq where g, µ P C and R P C9
bdpR,Cq. For now we equip E with the norm

||V || “ ||pg, µ,Rq|| “ max
´

|g|ḡ´ 3

2 , |µ|ḡ´1, |||R|||ḡ ḡ´ 21

8

¯
.

However later we will shift coordinates (and with it the norm) for E . It is clear that E can be identified with

a subspace of Eex via an isometric map V Ñ ~V with ~V P E of the form

~V “ pβ4,∆, β3,∆, β2,∆, β1,∆,W5,∆,W6,∆, f∆, R∆q∆PL

with the above parameters given by

β4,∆ “ g

β3,∆ “ 0

β2,∆ “ µ

β1,∆ “ 0

W5,∆ “ 0

W6,∆ “ 0

f∆ “ 0

R∆ “ R

for all unit cubes ∆.

Using this identification the next proposition claims that space E is invariant under the extended RG

map RGex. Note that in what follows we drop ∆ indices from many quantities due to spatial homogeneity.

We also write Lpg,µq instead of the notation Lp~β,fq we used earlier.
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Proposition 3.2. The space E is invariant by the map RGex. The restricted transformation

RG : E ÝÑ E

pg, µ,Rq ÞÝÑ pg1, µ1, R1q

which we call the bulk RG is given by

g1 “ Lǫg ´A1g
2 ` ξ4pg, µ,Rq

µ1 “ L
3`ǫ
2 µ´A2g

2 ´A3gµ` ξ2pg, µ,Rq
R1 “ Lpg,µqpRq ` ξRpg, µ,Rq

(3.54)

where

A1 “ 36L3´4rφs
ż

Q3
p

Γpxq2 d3x

A2 “ 48L3´2rφs
˜ż

Q3
p

Γpxq3 d3x

¸
` 144L3´4rφsC0p0q

˜ż

Q3
p

Γpxq2 d3x

¸

A3 “ 12L3´2rφs
ż

Q3
p

Γpxq2 d3x .

(3.55)

In addition, the vacuum counter-term δb “ δbpg, µ,Rq is given by

δb “ A4g
2 `A5µ

2 ` ξ0pg, µ,Rq

where

A4 “ 12L3

˜ż

Q3
p

Γpxq4 d3x

¸
` 48L3´2rφsC0p0q

˜ż

Q3
p

Γpxq3 d3x

¸
` 72L3´4rφsC0p0q2

˜ż

Q3
p

Γpxq2 d3x

¸

A5 “ L3

ż

Q3
p

Γpxq2 d3x .

Partial Proof: This is Proposition 2 in [3] and there the assertion is carefully checked step-by-step by

studying the transformation ~V ÞÑ ~V 1 defined in §3.5.2. Instead of giving the details here we remark that

proving the simplified form the bulk flow boils down to parity considerations - if one starts with even terms

for all the inputs then then RGex produces even outputs.

However the continued vanishing of the W6 term has a different cause which we now describe. Clearly

since f∆ “ 0, the new f 1
∆1 ’s defined in (3.32) are identically zero. Likewise, since theW6 are zero the equation

for the new one reduces to

W 1
6,∆1 “ 8L´6rφs

ż

pL´1∆1q2
d3x d3y β4pxq Γpx´ yq β4pyq “ 8L´6rφsg2

ż

pL´1∆1q2
d3x d3y Γpx´ yq .
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But for x P L´1∆1, by a simple change of variables z “ x´ y,

ż

L´1∆1

d3y Γpx´ yq “
ż

L´1∆p0q
d3z Γpzq “

ż

Q3
p

d3z Γpzq “ pΓp0q “ 0

because of the finite range property and the vanishing property at zero momentum. ThereforeW 1
6,∆1 vanishes

identically.

3.7.2 The infrared fixed point and local analysis of the bulk RG

In this section we will find a non-zero fixed point for the flow given by (3.54); we will call this the non-trivial

infrared fixed point. As we mentioned in §3.4.3 the equations (3.54) are in close correspondance to the flow

equations (3.25) given by second order perturbation theory with the addition of some remainder terms and

a flow equation for the irrelevant part R. We will now fix a choice of L, once and for all, so

BRLL
3´5rφs ď 1

2
(3.56)

holds. We remark that BRL was a purely numeric constant independent of both L and ǫ. Note that

3´5rφs “ ´ 3
4

` 5
4
ǫ. If we add the harmless condition ǫ ď 1

5
which we now assume, then 3´5rφs ď ´ 1

2
. Now

we pick L large enough so that BRLL
´ 1

2 ď 1
2
and therefore (3.56) holds. Now that L is considered fixed the

only free parameter in our construction is ǫ.

We now apply Theorem 3.2 with the choices just mentioned and in concert with Proposition 3.2 to obtain

that, provided ǫ is small enough, the bulk RG transformation is well-defined and analytic on the domain

|g ´ ḡ| ă 1

2
ḡ , |µ| ă ḡ , |||R|||ḡ ă ḡ

21

8

and therein satisfies

|ξ4pg, µ,Rq| ď B4|||R|||ḡ
|ξ2pg, µ,Rq| ď B2|||R|||ḡ

|||ξRpg, µ,Rq|||ḡ ď BRξ ḡ
11

4

|||Lpg,µq|||ḡ ď 1

2

where |||Lpg,µq|||ḡ is the operator norm of the linear operator Lpg,µq (with respect to the R variable) corre-

sponding to the norm ||| ¨ |||ḡ. Note that the statement on analyticity applies not only to the full map RG

but also to the constituent pieces such as ξ4, ξ2, ξR and Lpg,µqpRq.
In our search for a non-zero fixed point to (3.54) we will change our coordinate system so that we write

our data as a perturbation of the approximate fixed point pḡ, 0, 0q - when the flow (3.54) is studied in

this coordinate system the perturbation in the g direction will be contracting. Concretely we change from

pg, µ,Rq to pδg, µ,Rq where δg “ g ´ ḡ. In this new coordinate system, the bulk RG transformation, still
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denoted by RG for simplicity, becomes pδg, µ,Rq ÞÝÑ RGpδg, µ,Rq “ pδg1, µ1, R1q with

δg1 “ p2 ´ Lǫqδg ` ξ̃4pδg, µ,Rq

µ1 “ L
3`ǫ
2 µ` ξ̃2pδg, µ,Rq

R1 “ L̃pδg,µqpRq ` ξ̃Rpδg, µ,Rq

(3.57)

where

ξ̃4pδg, µ,Rq “ ´A1δg
2 ` ξ4pḡ ` δg, µ,Rq

ξ̃2pδg, µ,Rq “ ´A2pḡ ` δgq ´A3pḡ ` δgqµ` ξ2pḡ ` δg, µ,Rq
ξ̃Rpδg, µ,Rq “ ξRpḡ ` δg, µ,Rq
L̃pδg,µqpRq “ Lpḡ`δg,µqpRq

as follows from an easy computation using the relation A1ḡ “ Lǫ ´ 1. We remark that 2 ´ Lǫ ă 1. We will

commit a similar abuse of notation for the function δb. Namely, we will write δbpδg, µ,Rq for what in fact is

δbpḡ ` δg, µ,Rq. We will also translate the norms we use for v “ pδg, µ,Rq P E , namely,

||v|| “ max
!

|δg|ḡ´ 3

2 , |µ|ḡ´1, |||R|||ḡ ḡ´ 21

8

)
.

The following Lipschitz estimates are crucial ingredients for our analysis near the nontrivial infrared fixed

point. In particular these estimates show that the expansion and contraction rates of our δg, µ, and R flow

are not significantly influenced by the presence of each of the corresponding remainder terms.

Lemma 3.16. For ǫ small enough we have for all v “ pδg, µ,Rq, v1 “ pδg1, µ1, R1q in E such that ||v||,
||v1|| ď 1

8
,

|ξ4pḡ ` δg, µ,Rq ´ ξ4pḡ ` δg1, µ1, R1q| ď 2B4ḡ
21

8 ||v ´ v1|| ,

|ξ2pḡ ` δg, µ,Rq ´ ξ4pḡ ` δg1, µ1, R1q| ď 2B2ḡ
21

8 ||v ´ v1|| ,

|||Lpḡ`δg,µqpRq ´ Lpḡ`δg1,µ1qpR1q|||ḡ ď 3

4
ḡ

21

8 ||v ´ v1||

and

|||ξRpḡ ` δg, µ,Rq ´ ξRpḡ ` δg1, µ1, R1q|||ḡ ď 3BRξ ḡ
11

4 ||v ´ v1|| .

Proof: If ||v|| ă 1
2
, then since ḡ ď 1 for ǫ small we have

|δg| ă 1
2
ḡ

3

2 ď 1
2
ḡ

|µ| ă 1
2
ḡ ď 1

2
ḡ

|||R|||ḡ ă 1
2
ḡ

1

8 ď 1
2
ḡ

21

8 .

Hence, by Theorem 3.2

|ξ4pḡ ` δg, µ,Rq| ď B4|||R|||ḡ ď 1

2
B4ḡ

1

8 .

Therefore the analytic map v ÞÑ ξ4pḡ ` δg, µ,Rq satisfies the hypotheses of Lemma 3.2 with r1 “ 1
2
and
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r2 “ 1
2
B4ḡ

1

8 . We pick ν “ 1
4
which results in

r2p1 ´ νq
r1p1 ´ 2νq “ 3

2
B4ḡ

1

8 .

With these choices, Lemma 3.2 implies the desired Lipschitz estimate where we replaced the numerical factor
3
2
by 2 for a simpler looking formula. The proof of the Lipschitz estimate for ξ2 is exactly the same apart

from changing ξ4, B4 to ξ2, B2 respectively.

We now do the same for the analytic map v ÞÑ Lpḡ`δg,µqpRq. For ||v|| ă 1
2

“ r1 we obtain, as before from

Theorem 3.2 and from the choice we made when fixing L,

|||Lpḡ`δg,µqpRq|||ḡ ď 1

2
|||R|||ḡ ď 1

2
||v||ḡ 1

8 ď r2

with r2 “ 1
4
ḡ

1

8 . Lemma 3.2 with ν “ 1
4
now immediately implies the wanted estimate.

Finally, for ξR we again note that ||v|| ă 1
2

“ r1 implies

|||ξRpḡ ` δg, µ,Rq|||ḡ ď r2

with r2 “ BRξ ḡ
11

4 . Again, Lemma 3.2 with ν “ 1
4
does the rest.

In what follows we will construct the nontrivial fixed point v˚ and patches of the corresponding local

stable and unstable manifolds. Before giving the details we give a pedagogical explanation.

From the flow equations and our estimates on the remainders it is not very difficult to show that if there

is a nontrivial infrared fixed point v˚ “ pδg˚, µ˚, R˚q with ||v˚|| ď Op1q (i.e. close to our approximate

fixed point) then it must be a hyperbolic fixed point. In particular it would have two contracting directions

(corresponding to δg and R) and one expanding direction (corresponding to µ). The linearization of the RG

at the v˚ should have no eigenvalues on the unit circle.

Now assume that one wants to find a v “ pδg, µ,Rq close to v˚ with limnÑ8 RGnrvs. Then the value of

v’s component in the expanding direction, i.e. µ, must be tuned carefully in a way dependent on δg and R

in order for v to be driven to v˚ - this value µspδg,Rq is called the critical mass corresponding to pδg,Rq.
In what follows we will construct this function µs for a particular pδg,Rq domain.

The graph of the function µs , i.e v of the form pδg, µspδg,Rq, Rq, will correspond to a piece of the stable

manifold of v˚. We remind the reader that the stable manifold of the fixed point v˚ is the set of all v in the

domain of the RG such that limnÑ8 RGnrvs Ñ v˚.

Our argument will proceed in an order that is reverse to the above explanation. In order to find the

nontrivial fixed point v˚ our first step will be to find a function µs defined for some non-empty open set of

pδg,Rq such that any point pδg, µspδg,Rq, Rq remains within our domain after arbitrarily many iterations of

the RG map. We will then show that the RG map restricted to a portion of the graph of µs is a contraction

mapping - this will yield a fixed point v˚. It then follows that this portion of the graph of µs is a patch of

the stable manifold of v˚ containing v˚ . A heuristic explanation of why this works is that if for some fixed

δg,R one chooses µ either lower or higher than the critical mass then one expects that our system will be

driven to the high temperature or low temperature fixed point both of which are far outside of the domain

of where we defined the RG - (this picture would assume that there is no intermediate phase - that topic

will be taken up in Chapter 4).
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Our next step will then be to construct a local patch of the unstable manifold. The unstable manifold

of a fixed point v˚ is the set of all v such that we can find a backward sequence of preimages of v under

the RG map which converge to v˚. More concretely the unstable manifold is the set of all v such that one

can find tvnu´8ănď´1 such that RGjrv´js “ v and limjÑ8 v´j “ v˚. Just as the stable manifold can be

parameterized via coordinates for the contracting directions we will construct the local patch of the unstable

manifold as the graph of a function µ Ñ pδgupµq, Rupµqq, i.e. it will be parameterized by the expanding

direction.

3.7.3 The local stable manifold

We now proceed with the first step which is the construction of the stable manifold also using the Banach

Fixed Point Theorem in a space of one-sided sequences, in the spirit of Irwin’s method [39]. This method

is based on the same idea that is used for the the construction solutions to finite dimensional ODEs - we

reformulate the problem as a fixed point problem and applying the contraction mapping theorem.

The general idea is as follows: given a starting δg and R we will define a map m that acts on the Banach

space of all bounded sequences tpδgn, µn, Rnqu8
n“0 such that a fixed point of m in this space of sequences will

be a sequence that is consistent with the flow equations (3.57) and satisfies particular boundary conditions

at n “ 0 and n “ 8 - these conditions being that δg0 “ δg, R0 “ R, and that µn does not blow up as

n Ñ 8.

We give the precise implementation of the above strategy now. Let B` be the Banach space of sequences

~u “ pµ0, pδg1, µ1, R1q, pδg2, µ2, R2q, . . .q P C ˆ
ź

ně1

“
C2 ˆ C9

bd,evpR,Cq
‰

which have finite norm given by

||~u|| “ sup
!

|δgj |ḡ´ 3

2 for j ě 1; |µj |ḡ´1 for j ě 0; |||Rj |||ḡ ḡ´ 21

8 for j ě 1
)
.

We will define a map m on this space of sequences which depends on parameters δg0, R0 serving as boundary

conditions. Given δg0 and R0, the image ~u1 “ mp~uq is defined as follows. For n ě 1, we let

δg1
n “ p2 ´ Lǫqnδg0 `

n´1ÿ

j“0

p2 ´ Lǫqn´1´j ξ̃4pδgj , µj , Rjq

and

R1
n “ L̃pδgn´1,µn´1q ˝ ¨ ¨ ¨ ˝ L̃pδg0,µ0qpR0q

`
n´1ÿ

j“0

L̃pδgn´1,µn´1q ˝ ¨ ¨ ¨ ˝ L̃pδgj`1,µj`1q
´
ξ̃Rpδgj , µj , Rjq

¯
.

For n ě 0, we let

µ1
n “ ´

8ÿ

j“n
L´pj´n`1qp 3`ǫ

2 qξ̃2pδgj , µj , Rjq .

As an aside we make a remark to motivate the last formula above. Here we are propagating the µ boundary
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condition backwards. If one writes the µ evolution of (3.57) in reverse one has

µk “ L´ 3`ǫ
2

”
µk`1 ´ ξ̃2pδgk, µk, Rkq

ı

Now if one sets a boundary condition µq for some scale q ě 0, then propagating this backwards to scale

n ď q would give an equation

µ1
n “ L´ 3`ǫ

2
pq´nq ´

qÿ

j“n
L´pj´n`1qp 3`ǫ

2 qξ̃µpδgj , µj , Rjq .

This equation agrees with the earlier one given when we take q Ñ 8 assuming the µq are bounded.

The next Proposition shows that given a sufficiently small ρ ą 0 this map m is well defined and analytic

on the open ball Bp~0, ρq P B` in the regime of small ǫ (made small after fixing ρ).

Proposition 3.3. If 0 ă ρ ă 1
12
, |δg0| ă ρ

12
ḡ

3

2 and |||R0|||ḡ ă ρ
8
ḡ

21

8 then the map m is well defined, analytic

on Bp~0, ρq and takes its values in the closed ball B̄p~0, ρ
4

q, provided ǫ is made sufficiently small after fixing ρ.

Moreover, m is jointly analytic in ~u and the implicit variables δg0 and R0.

Proof: We do not reproduce the proof here, this is Proposition 3 of [3].

Using Lemma 3.2 with r1 “ ρ, r2 “ ρ
4
and ν “ 1

3
so that

r2p1 ´ νq
r1p1 ´ 2νq “ 1

2

we immediately see that, under the hypotheses of Proposition 3.3, the closed ball B̄
´
~0, ρ

3

¯
is stable by m

and is a contraction. More precisely, for any ~u1 and ~u2 in that ball, we have

||mp~u1q ´ mp~u2q|| ď 1

2
||~u1 ´ ~u2|| .

By the Banach Fixed Point Theorem we then have the existence of a unique fixed point denoted by ~u˚ for

the map m in the ball B̄
´
~0, ρ

3

¯
. Using the representation of this fixed point as

~u˚ “
8ÿ

n“0

”
m
n`1p~0q ´ m

np~0q
ı

and by uniform absolute convergence, it is easy to see that ~u˚ is analytic in the implicit data pδg0, R0q. In

particular we will define µspδg0, R0q as the µ0 component of the sequence ~u˚ and remark that µspδg0, R0q is

analytic on the domain given by |δg0| ă ρ
12
ḡ

3

2 and |||R0|||ḡ ă ρ
8
ḡ

21

8 .

As we mentioned before the graph pδg, µspδg,Rq, Rq will be a local patch of the stable manifold of the

sought after nontrivial infrared fixed point. We will denote this patch byW s,loc, we give a concrete definitions

below (here the patch is determined in terms of a radius ρ which must be chosen satisfy the hypothesis of

Proposition 3.3)

W s,loc “
!

pδg, µ,Rq P E | |δg| ď ρ

13
ḡ

3

2 , |||R|||ḡ ď ρ

13
ḡ

21

8 , µ “ µspδg,Rq
)
.
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We then have the following proposition which claims that W s,loc is all of the local stable manifold.

Proposition 3.4. For fixed ρ P p0, 1
12

q and for ǫ small enough, an equivalent description of W s,loc is as the

set of triples pδg, µ,Rq P E that satisfy all of the following properties:

• |δg| ď ρ
13
ḡ

3

2 ,

• |||R|||ḡ ď ρ
13
ḡ

21

8 ,

• there exists a sequence pδgn, µn, Rnqně0 in E such that δg0 “ δg, µ0 “ µ, R0 “ R, @n ě 1, |δgn| ď ρ
3
ḡ

3

2

and |||Rn|||ḡ ď ρ
3
ḡ

21

8 , @n ě 0, |µn| ď ρ
3
ḡ, and @n ě 0, pδgn`1, µn`1, Rn`1q “ RGpδgn, µn, Rnq.

Proof: We don’t give a full proof but the steps are straightforward - one can find details in [3, Proposition

4]. When showing that Ws,loc is contained in the set described in the assertion one just needs to check that

the fixed point ~u˚ “ mp~u˚q satisfies the third condition - i.e. a sequence that satisfies the flow equations.

The other conditions are automatic.

Showing the reverse inclusion involves observing that a sequence ~u that satisfies the conditions of the

assertion must be a fixed point of m in the ball Bp0, ρ
3

q - then one must have ~u “ ~u˚ due to the uniquess

of the fixed point delivered by the contraction mapping theorem. In particular the µ0 component of ~u must

coincide with the µ0 component of ~u˚ which is given by µspδg,Rq.

A dichotomy lemma

We now state an important lemma which gives quantitative growth and decay estimates which will establish

separation between expanding and contracting directions. This will be important in the actual construction

of the non-trivial fixed point and for analysis of the unstable manifold and the composite field.

We first perform a crude splitting of E into contracting and expanding directions, writing E “ E1 ‘ E2

where

E1 “ tpδg, 0, Rq|δg P C, R P C9
bd,evpR,Cqu

and

E2 “ tp0, µ, 0q|µ P Cu .

We denote by v1 and v2 the pieces of the unique decomposition v “ v1 ` v2 of an element v P E . Note that

we will commit a slight abuse of notation by writing v1 “ pδg,Rq and v2 “ µ if v “ pδg, µ,Rq. We then have

||v1|| “ max
”
|δg|ḡ´ 3

2 , |||R|||ḡ ḡ´ 21

8

ı
and ||v2|| “ |µ|ḡ´1 .

Finally if v is in the domain of definition for the map RG we write RG1pvq “ rRGpvqs1 and RG2pvq “
rRGpvqs2 for better readability. Our dichotomy lemma, in the spirit of [39, Lemma 2.2] is the following

result.

Lemma 3.17. There exists ǫ0 ą 0 and functions c1pǫq, c2pǫq, c3pǫq, c4pǫq, on p0, ǫ0q which satisfy 0 ă
c1pǫq ă 1, L

3

4 ě c2pǫq ą 1, 2L
3

2 ě c3pǫq ě L
3

2 and 0 ă c4pǫq ă 1 (in fact limǫÑ0 c4pǫq “ 0) on that interval

such that for all v, v1 P B̄
`
0, 1

8

˘
Ă E the following statements hold:

1. unconditionally, ||RG1pvq ´RG1pv1q|| ď c1pǫq||v ´ v1||;
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2. if L
3

4 ||v2 ´ v1
2|| ě ||v1 ´ v1

1|| then ||RG2pvq ´RG2pv1q|| ě c2pǫq||v ´ v1||;

3. unconditionally, ||RG2pvq ´RG2pv1q|| ď c3pǫq||v ´ v1||;

4. unconditionally,

||RG2pvq ´RG2pv1q ´ L
3`ǫ
2 pv2 ´ v1

2q|| ď c4pǫq||v ´ v1|| .

where the cpǫq functions are given by the formulas

c1pǫq “ max

„
1 ´ 3

4
pLǫ ´ 1q ` 2B4ḡ

21

8
´ 3

2 ,
3

4
` 3BRξ ḡ

11

4
´3η´ηR



c2pǫq “ L
3

4 ´ 9

4
A2,maxḡ

3

2
´1`1 ´ 5

4
A3,maxḡ ´ 2B2ḡ

21

8
´1

c3pǫq “ L
3`ǫ
2 ` 9

4
A2,maxḡ

3

2
´1`1 ` 5

4
A3,maxḡ ` 2B2ḡ

21

8
´1

c4pǫq “ 9

4
A2,maxḡ

3

2
´1`1 ` 5

4
A3,maxḡ ` 2B2ḡ

21

8
´1

with

A1,min “ 35p1 ´ p´3ql, A1,max “ 37p1 ´ p´3ql

A2,max “ 2 ˆ r4 ` 144s ˆ 1

36
ˆA1,max

A3,max “ 12L2 ˆ 1

36
ˆA1,max.

(3.58)

Proof: For a full proof see [3, Proposition 5]. We remark that the constants (3.58) are just uniform bounds

on the constants (3.55). A key ingredient for these estimates is Lemma (3.16).

3.7.4 The infrared RG fixed point

We now show how one can use Lemma (3.17) to show that the RG map restricted to W s,loc is a strict

contraction.

The idea of the next lemma is as follows. If one has two points v, v1 P E with full forward RG trajectories

that stay in our domain then at every RG step the magnitude of their difference between the images of the

two points in the contracting directions must dominate the difference in the expanding direction. If at any

stage the difference in the expanding directions dominates the difference in the contracting direction then

||RGnrvs ´RGnrv1s|| will blow up as n Ñ 8.

Lemma 3.18. If v ‰ v1 belong to W s,loc then ||v1 ´ v1
1|| ą L

3

4 ||v2 ´ v1
2||.

Proof: Note that by the prevailing assumptions we have ρ ă 1
12

ă 1
8
and thus Lemma 3.17 is applicable

to all elements of W s,loc and their RG iterates by stability of that set. We proceed by contradiction and

suppose that ||v1 ´ v1
1|| ď L

3

4 ||v2 ´ v1
2||. Then by Lemma 3.17 Part 1) and 2)

||RG1pvq ´RG1pv1q|| ď c1pǫq||v ´ v1|| ď c1pǫqc2pǫq´1||RG2pvq ´RG2pv1q|| .

139



From the bounds we have on c1pǫq and c2pǫq we trivially get c1pǫqc2pǫq´1 ă L
3

4 and therefore

||RG1pvq ´RG1pv1q|| ď L
3

4 ||RG2pvq ´RG2pv1q|| ,

i.e., the first iterates RGpvq and RGpv1q satisfy the same hypothesis as v and v1. By an easy induction we

then have

@n ě 0, ||RGn1 pvq ´RGn1 pv1q|| ď L
3

4 ||RGn2 pvq ´RGn2 pv1q||

for the higher iterates where RGn1 p¨q means pRGnp¨qq1 and likewise for the second components. By Lemma

3.17 Part 2) we obtain, for all n ě 0,

||RGn`1
2 pvq ´RGn`1

2 pv1q|| ě c2pǫq||RGnpvq ´RGnpv1q|| ě c2pǫq||RGn2 pvq ´RGn2 pv1q|| .

Again by a trivial induction we get, for all n ě 0,

||RGn2 pvq ´RGn2 pv1q|| ě c2pǫqn||v2 ´ v1
2|| .

But c2pǫq ą 1, so if ||v2 ´ v1
2|| ą 0 we have

lim
nÑ8

||RGn2 pvq ´RGn2 pv1q|| “ 8

which contradicts the stability and boundedness of the set W s,loc. Therefore ||v2 ´v1
2|| “ 0 which also entails

||v1 ´ v1
1|| “ 0 by the assumtion made at the beginning of this proof. This therefore leads to v “ v1 which is

the desired contradiction.

This then yields the contractive bound which is given in the next lemma.

Lemma 3.19. For all v, v1 P W s,loc we have ||RGpvq ´RGpv1q|| ď c1pǫq||v ´ v1||.

Proof: By the previous lemma and the stability of W s,loc we have

||RG2pvq ´RG2pv1q|| ď L´ 3

4 ||RG1pvq ´RG1pv1q|| ď ||RG1pvq ´RG1pv1q||

and therefore

||RGpvq ´RGpv1q|| “ ||RG1pvq ´RG1pv1q|| .

As a result, the desired conclusion follows from Lemma 3.17 Part 1).

By applying the contraction mapping theorem one immediately has

Proposition 3.5. The map RG is a contraction when restricted to W s,loc and thus has a unique fixed point

v˚ “ pδg˚, µ˚, R˚q in that set. In fact v˚ belongs to the interior of W s,loc which we denote W s,loc
int .

Proof: Note thatW s,loc is a closed subset of the Banach space E . Indeed, µs is analytic and thus continuous

on an open domain containing that given by the condition ||pδg,Rq|| ď ρ
13
. Since W s,loc is therefore a

complete metric space for the distance coming from the || ¨ || norm, and since RG restricted to this set is

a contraction as follows form Lemma 3.19 and c1pǫq ă 1, the Banach Fixed Point Theorem establishes the

present lemma. The fixed point is inW s,loc
int since v˚ is its own image by application of the stronger conclusion

of Proposition 3.17.
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3.7.5 The unstable manifold

We now construct the local unstable manifold following a procedure similar to that of §3.7.3 but give some

exposition before getting down to details. We remind the reader that the unstable manifold will turn out

to be the graph of a function µ Ñ pδgupµq, Rupµqq. The situation here is somewhat dual to the situation

in §3.7.3 - for fixed µ we want to find δgupµq, Rupµq such that one can find a backwards sequence of RG

pre-images of pδgupµq, µ,Rupµqq denoted tpδgn, µn, Rnqu´8ănă0

i.e. RG´nrpδgn, µn, Rnqs “ pδgupµq, µ,Rupµqq

with δgn and Rn bounded as n Ñ ´8. Essentially the roles of expanding and contracting directions are

reversed since we are working with backward trajectories. Later on we will see that such a trajectory will in

fact satisfy limnÑ´8pδgn, µn, Rnq “ pδg˚, µ˚, R˚q.
For a fixed µ we will define a map n on this space of backwards sequences whose fixed point will correspond

to a backwards RG trajectory tpδgn, µn, Rnqu´8ănď0 which satisfies the boundary condition µ0 “ µ and

δgn and Rn bounded as n Ñ ´8.

We now give the precise implementation. Let B´ be the Banach space of backwards sequences

~u “ p. . . , pδg´2, µ´2, R´2q, pδg´1, µ´1, R´1q, δg0, R0q P
ź

nď´1

“
C2 ˆ C9

bd,evpR,Cq
‰

ˆ C ˆ C9
bd,evpR,Cq

which have finite norm given by

||~u|| “ sup
!

|δgj |ḡ´ 3

2 for j ď 0; |µj |ḡ´1 for j ď ´1; |||Rj |||ḡ´ 21

8 for j ď 0
)
.

We define the map n on this space of sequences which depends on the parameter µ0. Given µ0, the image

~u1 “ npuq is defined as follows. For n ď 0, we let

δg1
n “

ÿ

jďn´1

p2 ´ Lǫqn´1´j ξ̃4pδgj , µj , Rjq

and

R1
n “

ÿ

jďn´1

L̃pδgn´1,µn´1q ˝ ¨ ¨ ¨ ˝ L̃pδgj`1,µj`1q
´
ξ̃Rpδgj , µj , Rjq

¯
.

Again in the two equations above we are propagating the δg and R boundary conditions backwards.

For n ď ´1, we let

µ1
n “ Lnp 3`ǫ

2 qµ0 ´
´1ÿ

j“n
L´pj´n`1qp 3`ǫ

2 qξ̃µpδgj , µj , Rjq .

As before for ρ1 ą 0 one can show that this map is well defined and analytic on the open ball Bp~0, ρ1q P B´

in the regime of small ǫ (made small after fixing ρ1).

Proposition 3.6. If 0 ă ρ1 ď 1
8
, |µ0| ă ρ1

8
ḡ then the map n is well defined, analytic on Bp~0, ρ1q and takes its

values in the closed ball B̄p~0, ρ1

4
q, provided ǫ is made sufficiently small after fixing ρ1. Moreover, n is jointly

analytic in ~u and the implicit variable µ0.
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Proof: See [3, Proposition 7].

Again using Lemma 3.2 with r1 “ ρ1, r2 “ ρ1

4
and ν “ 1

3
so that

r2p1 ´ νq
r1p1 ´ 2νq “ 1

2

we see that, under the hypotheses of Proposition 3.6, the closed ball B̄
´
~0, ρ

1

3

¯
is stable by n and is a

contraction. More precisely, for any ~u1 and ~u2 in that ball, we have

||np~u1q ´ np~u2q|| ď 1

2
||~u1 ´ ~u2|| .

By the Banach Fixed Point Theorem we have the existence of a unique fixed point which we again denote

by ~u˚ for the map n in the ball B̄
´
~0, ρ

1

3

¯
. Using the representation of this fixed point as

~u˚ “
8ÿ

n“0

”
n
n`1p~0q ´ n

np~0q
ı

and by uniform absolute convergence, we see that ~u˚ is analytic in the implicit data µ0. In particular the

δg0, R0 components of the sequence ~u˚ which we will denote by δgupµ0q, Rupµ0q respectively are analytic

on the domain given by |µ0| ă ρ1

8
ḡ.

We now let

W u,loc “
"

pδg, µ,Rq P E | |µ| ă ρ1

8
ḡ, δg “ δgupµq, R “ Rupµq

*
.

Analogously to the case of the stable manifold we have

Proposition 3.7. For fixed ρ1 P p0, 1
8

s and for ǫ small enough, an equivalent description of W u,loc is as the

set of triples pδg, µ,Rq P E that satisfy all of the following properties:

• |µ| ă ρ1

8
ḡ,

• there exists a sequence pδgn, µn, Rnqnď0 in E such that δg0 “ δg, µ0 “ µ, R0 “ R, @n ď 0, |δgn| ď ρ1

3
ḡ

3

2

and |||Rn|||ḡ ď ρ1

3
ḡ

21

8 , @n ď ´1, |µn| ď ρ1

3
ḡ, and @n ď ´1, pδgn`1, µn`1, Rn`1q “ RGpδgn, µn, Rnq.

Proof: See [3, Proposition 8].

It follows form the precise characterization of W u,loc given in the last lemma that the fixed point

pδg˚, µ˚, R˚q must be an element of W u,loc.

Lemma 3.20. Provided ρ and ρ1 are chosen so that ρ ă 3
8
ρ1, we have v˚ P W u,loc as well as the equations

µ˚ “ µspδg˚, R˚q , δg˚ “ δgupµ˚q , R˚ “ Rupµ˚q .

Proof: This is [3, Lemma 61].

3.7.6 Study of the differential of the RG at the nontrivial infrared fixed point

We now give results about the differential Dv˚RG of the map RG at the fixed point v˚ in relation to the

invariant linear subspaces Es and Eu corresponding to the tangent spaces to the stable and unstable manifolds
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at the fixed point respectively. We define Es as the kernel of the C-linear form

pδg, µ,Rq ÞÑ µ´Dv˚,1
µsrδg,Rs

where Dv˚,1
µs is the differential of µs at v˚,1 “ pδg˚, R˚q. This linear form is clearly nonzero. It is also

continuous by analyticity of µs. Therefore Es is a closed complex hyperplane in E .

We likewise define Eu as the kernel of the C-linear map

#
E ÝÑ E1

pδg, µ,Rq ÞÝÑ pδg ´Dv˚,2
δgurµs, R ´Dv˚,2

Rurµsq

in terms of the differentials at v˚,2 “ µ˚ of the analytic maps δgu and Ru. Again, E
u is a closed subspace of

E . In fact, it is easy to see that Eu is equal to the complex line Ceu with

eu “ pDv˚,2
δgur1s, 1, Dv˚,2

Rur1sq .

In the following lemma Dv˚RG denotes the differential of the bulk RG map at v˚ “ pδg˚, µ˚, R˚q

Lemma 3.21. One has the direct sum decomposition E “ Es ‘ Eu. Additionally both the subspaces Es and

Eu are left invariant by Dv˚RG.

Proof: See [3, Lemmas 63, 64, and 65].

We will denote by Ps and Pu the projection operators from E to Es and Eu respectively.

We remark that since Eu is a one dimensional space Dv˚RG’s action on Eu must just be multiplication

by some scalar αu. The next lemma gives more detail about the action of Dv˚RG on each of the tangent

spaces.

Lemma 3.22. The restriction Dv˚RG
ˇ̌
Eu

is the multiplication by an eigenvalue αu which is real and greater

than 1. One also has the more precise estimate

|αu ´ L
3`ǫ
2 | ď c4pǫq

where c4pǫq has been defined in Lemma 3.17.

The restriction Dv˚RG
ˇ̌
Es

is a contraction on the subspace Es. More precisely, for every v P Es, we have

Dv˚RGrvs P Es and

||Dv˚RGrvs|| ď c1pǫq||v||

where c1pǫq P p0, 1q has been defined in Lemma 3.17.

Proof: See [3, Lemmas 66, 67].

We give a few remarks on the importance of αu. One should imagine eu as an Opǫq perturbation of eφ2 P E

where eφ2 “ p0, 1, 0q (using the pδg, µ,Rq notation for elements of E). The vector eφ2 is an eigenvector of

the differential of the RG at the Gaussian fixed point corresponding to the RG’s most strongly expanding

direction there - the corresponding eigenvalue is given by L3´2rφs “ L
3`ǫ
2 .
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Later we will see that αu ă L
3`ǫ
2 , that is the eigenvalues of eu and eφ2 differ by a quantity of order ǫ.

The fact that αu, not L
3`ǫ
2 , governs the expansion of mass perturbations off of the stable manifold of the

non-trivial fixed point is what makes the multiplicative renormalization Z2 necessary in order to end up with

a non-degenerate N rφ2s field, this also leads to the anomalous dimension for N rφ2s. In particular we now

fix

Z2 “ αuL
´ 3`ǫ

2 . (3.59)

3.7.7 Some context for the preceding results

We close this section by putting our analysis of the nontrivial infrared fixed point in context. After we

constructed the local stable manifold and the nontrivial infrared fixed point we finished all the work necessary

to control the evolution of the bulk potentials ~V pr,qqp0, 0q. Denote by ~V˚ the element of Eext corresponding

to the nontrivial infrared fixed point v˚ “ pδg˚, µ˚, R˚q.
The function µpgq referenced in Theorem 3.1 will be set as µpgq :“ µspg ´ ḡ, 0q - i.e. we pick our initial

bulk data to lie on the stable manifold. It then follows by the analysis of this section that for any integer r

one will have limqÑ8 ~V pr,qqp0, 0q “ ~V˚ (we remark that one will also have limrÑ´8 ~V pr,qq “ ~V ˚ for fixed q).

We will establish control over the flow of the potentials ~V r,qpf̃ , j̃q for non-zero f̃ or j̃ by treating their

flow as a perturbation of the flow of ~V pr,qqp0, 0q. We will employ different strategies to do this, each strategy

being used in one of three different scale regimes - the ultraviolet regime where q ă q´, the middle regime

where q´ ď q ă q` and the infrared regime where q ě q`.

The core of the work to analyze the composite field is careful analysis of the influence of j̃ in the ultraviolet

regime. When r ăă q´ one has that the quantity jñ´r (see (3.18) for the definition ) appearing in Ṽr,spf, jq
is spatially spread out and acts like a bulk perturbation in the µ direction which lifts us off the stable

manifold. Our analysis of the local unstable manifold and the partial diagonalization of the linearized RG at

the non-trivial infrared fixed point are just the first steps in understanding the behaviour of these bulk mass

perturbations. The central ingredient for controlling this perturbations is the partial analytic linearization

theorem of the next section.

3.8 Partial Analytic Linearization

3.8.1 Some preliminaries and intermediate estimates

Before talking about the main results of this section we give a concrete example which should clarify the

issues of the ultraviolet regime for the composite field. We take j̃ “ 1Z3
p
, f̃ “ 0 - thus we can fix q´ “ q` “ 0.

In this scenario one should imagine r ăă 0. The inital RG data relevant to Zr,spj̃, 0q is then given by

~V pr,rqp0, j̃q “ pβ4,∆, β3,∆, β2,∆, β1,∆,W5,∆,W6,∆, f∆, R∆q∆PL

with

β4,∆ “ g
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β3,∆ “ 0

β1,∆ “ 0

W5,∆ “ 0

W6,∆ “ 0

f∆ “ 0

R∆ “ 0

for all unit cubes ∆, while

β2,∆ “

$
&
%
µspg ´ ḡ, 0q if ∆ Ć Λ´r

µspg ´ ḡ, 0q ´ Y2Z
r
rL

´p3´2rφsqr if ∆ Ă Λ´r
.

Since ~V pr,rqp0, j̃q is not spatially homogenous it cannot be directly identified with a single element of the

bulk RG space E . However it can be identified as an amalgamation of two bulk elements. The element

v “ pg´ ḡ, µspg´ ḡ, 0q, 0q P E specifies ~V r,r∆ p0, j̃q for ∆ Ć Λ´r. while the element v´Y2Z
r
rL

´p3´2rφsqreφ2 P E

specifies ~V r,r∆ p0, j̃q for ∆ Ă Λ´r.

Due to the strict locality of extended RG map one can view RGex as a direct product of maps each

acting on a single L-block. When we look at the transformation RGex acting on ~V
r,q
∆ p0, j̃q for r ď q ă 0 the

individual local RG transformations occurring on each L-block are given by the bulk RG map acting on one

of the two mentioned bulk data points.

We make this more concrete. Let ιp‚q : E Ñ Eex be the map that takes an element of E to the corre-

sponding spatially homogenous element of Eex. Then for r ď q ă 0 and ∆ P L one has that

~V
r,q
∆ p0, j̃q “

´
RGq´r

ex

”
~V r,rp0, j̃q

ı¯
∆

“

$
&
%

pι pRGq´rpvqqq∆ if ∆ Ć Λ´q
`
ι
`
RGq´rpv ´ Y2Z

r
rL

´p3´2rφsqreφ2q
˘˘

∆
if ∆ Ă Λ´q

where the RG without the subscript ex again refers to the bulk RG analyzed in the previous section. The

central problem of understanding the total ultraviolet regime contribution of an arbitrary j̃ is controlling

where we end up at scale q “ q´ as we take r Ñ ´8. In the particular example we took above this involves

understanding

lim
rÑ´8

RG´rpv ´ Y2Z
r
rL

´p3´2rφsqreφ2q

We note that we have chosen Z2 in (3.59) precisely so ZrrL
´p3´2rφsqr “ αru. In general we will want to control

a limit of the form

lim
nÑ8

RGnpv ` α´n
u wq (3.60)

for v, w P E where v lies on v˚’s stable manifold. We will denote the quantity (3.60), when it exists, as

Ψpv, wq. In our concrete example w “ ´Y2eφ2 and for the purpose of constructing the composite field we

will be interested in w’s that are some multiple of eφ2 , that is w pointing in an expanding direction.

Iterating the RG infinitely many times from a point that is off the stable manifold clearly is a recipe for

disaster, however in the above quantity the perturbation w is being deamplified by α´n
u which we hope will
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precisely balance the expansion that will occur from RGn in the n Ñ 8 limit.

Theorems 3.3 and 3.4, the central results of this section, will state that for v on the stable manifoldW s,loc

and suitably small w the limit (3.60) exists, is analytic in w (this is essential, as it gives analyticity in j̃ which

is needed for moment bounds), and is in some sense non-degenerate. What we mean by non-degeneracy is

that Ψpv, wq should not be constant in w (i.e. one shouldn’t have Ψpv, wq “ v˚ for all w). If Ψpv, wq is

constant in w this means that the presence of j̃ will be rubbed out completely in the ultraviolet regime - the

functional derivatives in j̃ will all be 0 and the corresponding normal ordered field N rφ2s will be the 0 field.

In particular the deamplification has to be chosen precisely or else the resulting normal ordered field

N rφ2s will be degenerate. It follows from Theorem 3.3 that if one chooses α ą αu and takes the limit

lim
nÑ8

RGnpv ` α´nwq

then one will just get v˚ for all w - the w will be washed out. This shows that one must have Z2 “ αuL
´ 3`ǫ

2

(and by a slightly longer argument this idea shows that the anomalous dimension ηφ2 is independent of L).

The function Ψpv, wq can be considered to be a partial linearization for the RG map in the vicinity in

v˚. A linearization for a dynamical system at a particular fixed point is a change of coordinate system for

an open set around that fixed point which makes the action of the dynamical system linear.

Koenig’s theorem of holomorphic dynamics (see [48] ) states that this can always be done for one dimen-

sional holomorphic dynamical systems. Concretely the theorem states that for a dynamical system given by

an analytic function f : C Ñ C and a fixed point at 0 and f 1p0q “ λ with |λ| ­“ 1 then there exists an an

analytic map ϕ defined in a neighborhood of U of 0, and satisfying ϕp0q “ 0 and

`
ϕ´1 ˝ f ˝ ϕ

˘
pzq “ λz

for all z P U .

Rearranging this one sees φ satisfies an “intertwining” relation, i.e. pf ˝ ϕq pzq “ φpλzq. If Ψpv, wq exists

then a similar intertwining relation holds just by appealing to the continuity of the RG map. Observe that

RGpΨpv, wqq “ RG
´
lim
nÑ8

RGnpv ` α´n
u wq

¯

“ lim
nÑ8

RGn`1pv ` α´pn`1q
u αuwq

“ Ψpv, αuwq.

One can view the construction of Ψpv, wq as mimicing the construction of a curvilinear coordinate for

the unstable direction in which the RG takes a linear form.

The hope for controlling an object like (3.60) is that the large n limit action of RGnpv ` α´n
u ‚q should

be comparable to v˚ ` α´n
u pDv˚RGqn‚. However comparing these maps is not trivial for two reasons piq in

general one will have v ­“ v˚ and piiq the RG map does not coincide with its differential.

However ignoring these issues and observing that (by Lemma (3.22)) one has

α´n
u pDv˚RGqn Ñ

nÑ8
Pu

our intuition would be that limnÑ8 RGnpv ` α´n
u wq « v˚ ` Puw for tiny w. Our main theorem states that
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one will actually have Ψpv, wq P W u,loc.

Both issues piq and piiq must be dealt with in order to prove Theorem 3.3. For issue piiq we remark

that it is is straightforward to show an Op1q bound on the second order differential of the map RG in the

small ǫ-regime (see [3, Lemma 69]). One then has quantities like RGpv ` wq can be replaced by RGrvs `
DvRGrws `Op1q||w||2.

Issue piq is much deeper, it requires performing a “parallel transport” along the RG orbit connecting v

to v˚. For each v P W s,loc we define a linear operator Tnpvqr‚s via

Tnpvqrws “ α´n
u DvRG

nrws.

We remark that DvRG
j denotes the differential at v of the j-fold iteration of the RG map. One can imagine

as Tnpvq corresponding to a parallel transport from v to RGnpvq with regards to the unstable direction. The

following lemma gives the key facts about these parallel transports. When we write ||Tnpvq|| the notation

|| ¨ || denotes the operator norm for bounded linear operators on E .

Lemma 3.23. • For all v P W s,loc and all n ě 0 we have

||Tnpvq|| ď 10 ˆ C1pǫq,

where C1pǫq “ exp

„
85

αup1 ´ c1pǫqq


.

• For v P W s,loc and n ě 0

||Tn`1pvq ´ Tnpvq|| ď 10 ˆ C3pǫqc1pǫqn
2

where C3pǫq “ C1pǫq
„
85 ` p1 ` α´1

u c1pǫqq
„
1 ` 85C1pǫq

c1pǫqp1 ´ c1pǫqq


.

• There exists bounded operators T8pvq such that

lim
nÑ8

Tnpvq “ T8pvq

in the operator norm. One has ||T8pvq|| ď C1pǫq and additionally PsT8pvq “ 0, in particular the linear

operator T8pvq is a multiple of Pu.

Proof: See [3, Lemmas 70,71,72,73]

We remark that some of these estimates become singular when ǫ Ñ 0. The main culprit here is the slow

convergence of RGnpvqto v˚ for v on the stable manifold. Our best estimate for this is ||RGnpvq´v˚|| ď c1pǫq
with c1pǫq ă 1 for ǫ ą 0. However as ǫ Ñ 0 one has c1pǫq Ñ 1 as (morally c1pǫq “ 2´Lǫ, the linear contraction
rate of δg, slowest of the contracting directions.) As a result the quantity C1pǫq appearing in this section

blows up as e
1

ǫ as ǫ Ñ 0.
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Sketch of the proof of Theorems 3.3 and 3.4

We will now sketch some of the ideas of the proof of Theorems 3.3 and 3.4. The idea is to control the limit

(3.60) by controlling the telescoping series

8ÿ

n“0

RGn`1pv ` α´n´1wq ´RGnpv ` α´nwq. (3.61)

In particular the strategy is to try to establish a geometric in n bound on

||RGn`1pv ` α´n´1wq ´RGnpv ` α´nwq||. (3.62)

For the proof of Theorem 3.3 we will further break up (3.62) before estimating it. For 0 ď k ď n we

write

||RGn`1pv ` α´n´1wq ´RGnpv ` α´nwq||
ď

ˇ̌ˇ̌
RGn`1

`
v ` α´n´1w

˘
´RGk

`
RGn`1´kpvq `DvRG

n`1´krα´n´1ws
˘ˇ̌ˇ̌

`
ˇ̌ˇ̌
RGk

`
RGn`1´kpvq `DvRG

n`1´krα´n´1ws
˘

´RGk
`
RGn´kpvq `DvRG

n´krα´nws
˘ˇ̌ˇ̌

`
ˇ̌ˇ̌
RGk

`
RGn´kpvq `DvRG

n´krα´nws
˘

´RGn
`
v ` α´nw

˘ˇ̌ˇ̌
(3.63)

In the above estimate we simply added and subtracted the two terms appearing in the third line of (3.63).

Another telescoping argument will be used for both the second and fourth lines while the third line will be

estimated via repeated Lipschitz estimates. After arriving at a bound for(3.63) one then optimizes the choice

of k in order to for the bound on (3.63) to be summable in n. In particular k will be chosen dependently on

n - for the proof of Theorem 3.3 it turns out to be sufficient to take k “ tσnu with

σ “ 1

2
ˆ ´ log pc1pǫqq

log pc3pǫqq ´ log pc1pǫqq P
ˆ
0,

1

2

˙
.

We now show the second telescoping argument that will be used for the quantities on the second and

fourth lines of (3.63). One expands and bounds

||RGnpv ` α´nwq ´RGkpRGn´kpvq `DvRG
n`1´krα´nwsq||

ď
n´1ÿ

j“k

ˇ̌ˇ̌
RGj`1

`
RGn´j´1pvq `DvRG

n´j´1rα´n
u ws

˘
´RGj

`
RGn´jpvq `DvRG

n´jrα´n
u ws

˘ˇ̌ˇ̌ (3.64)

Now for k ď j ď n ´ 1 one can just apply the most brutal Lipschitz estimate we have on the bulk RG map
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given to us in Lemma 3.17 j-times to get

||RGj`1
`
RGn´j´1pvq `DvRG

n´j´1rα´n
u ws

˘
´RGj

`
RGn´jpvq `DvRG

n´jrα´n
u ws

˘
||

ďc3pǫqj ||RG
`
RGn´j´1pvq `DvRG

n´j´1rα´n
u ws

˘
´RGn´jpvq ´DvRG

n´jrα´n
u ws||

“c3pǫqj ||RG
`
RGn´j´1pvq `DvRG

n´j´1rα´n
u ws

˘
´RGn´jpvq ´DRGn´j´1pvqRG

“
DvRG

n´j´1rα´n
u ws

‰
||

ďc3pǫqj ˆOp1q ˆ ||DvRG
n´j´1rα´n

u ws||2

“c3pǫqj ˆOp1q ˆ
”
α´pj`1q
u ||Tn´j´1pvqrws||

ı2

ďOp1qC1pǫq2||w||2 ˆ α´2
u ˆ

“
c3pǫqα´2

u

‰j
.

(3.65)

In going to the third line of (3.65) we just used the chain rule, that is DvpA ˝ Bq “ DBpvq ˝ DvB. Now the

quantity on the third line of (3.65) can be estimated as a second order Taylor remainder which is how we

go the fourth line. In going to the last line we used Lemma 3.23.

We remark on why this estimate requires w to be very small (which is why this requirement is propagated

to Theorem 3.3). Our control of the RG transformation is limiting to a ball of Op1q radius in the || ¨ || norm
in E - the crude Lipschitz estimates we used require that quantities like

RGa
`
RGbpvq `DvRG

brα´n
u ws

˘
where a` b ď n

stay within this ball. Estimating the size of the above quantities using inductive telescoping arguments very

similar to (3.65), and these produce factors like C1pǫq2||w||2 which must be Op1q so ||w|| must be tiny in the

small ǫ regime. The root of these singular estimates come from our singular bounds on the Tnrvs. However
in the case v “ v˚ this estimate is trivial. Observe that

Tnrv˚s “ α´n
u Dv˚RG

n “
`
α´1
u Dv˚RG

˘n

where we used the chain rule and the fact that RGpv˚q “ v˚. Since ||α´1
u Dv˚ || ď 1 one has ||Tnrv˚s|| ď 1.

In particular for w P Eu one has Tnpv˚qrws “ w. This is the main reason for the difference between the

conditions on w in Theorem 3.3 and Theorem 3.4, the latter theorem specializes to Ψpv˚, wq for w P Eu.

We remark that the estimate (3.65) is summable in j since pα´2
u c3pǫqq ă 1 - morally both c3pǫq and αu

are within Opǫq of L
3`ǫ
2 (see [3, pg 101]). In particular, since the sum starts at j “ k then for sufficiently

tiny ||w||, i.e. ||w|| ď Op1qC1pǫq´1, one will have

||RGnpv ` α´nwq ´RGkpRGn´kpvq `DvRG
n`1´krα´nwsq|| ď Op1q

“
c3pǫqα´2

u

‰k
. (3.66)

This gives the estimate for the fourth line of (3.63), one can get the same estimate for the second line of

(3.63). Note the bound above will have to be summable in n, here k is some function of n. To continue

our proof of Theorem 3.3 we must now look at the third line of (3.63) where we will directly encounter the

discrepancy between v and v˚ - this estimate is what necessitates a careful choice of k dependent on n. We

note that for v “ v˚ and w P Eu - i.e. the circumstances of Theorem 3.4 - the third line (3.63) vanishes.

To estimate the third line (3.63) we again start by applying crude Lipschitz estimates to get
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ˇ̌
ˇ
ˇ̌
ˇRGk

´
RGn`1´kpvq `DvRG

n`1´krα´pn`1q
u ws

¯
´RGk

`
RGn´kpvq `DvRG

n´krα´n
u ws

˘ˇ̌
ˇ
ˇ̌
ˇ

ďc3pǫqk||RGn`1´kpvq `DvRG
n`1´krα´pn`1q

u ws ´RGn´kpvq ´DvRG
n´krα´n

u ws||

ďc3pǫqk
”
||RGn`1´kpvq ´RGn´kpvq|| ` ||DvRG

n`1´krα´pn`1q
u ws ´DvRG

n´krα´n
u ws||

ı

“c3pǫqk
“
||RGn´k pRGpvqq ´RGn´kpvq|| ` α´k

u ||Tn´k`1pvqrws ´ Tn´kpvqrws||
‰

ďc3pǫqk
“
c1pǫqn´k||RGpvq ´ v|| ` α´k

u ˆ ||Tn´k`1pvq ´ Tn´kpvq|| ˆ ||w||
‰

ďOp1qc3pǫqkc1pǫqn´k ` c3pǫqkα´k
u ˆ 10 ˆ C3pǫqc1pǫqn´k

2 ˆ ||w||.

(3.67)

In going to the fifth line from the fourth line we used Lemma 3.19 - since both v and RGpvq are in W s,loc

we now that their distance is contracting under the RG flow with rate c1pǫq. In going from the fifth line to

the last line we used ||RGpvq ´ v|| ď ||RGpvq|| ` ||v|| ď Op1q when bounding the first term. For the second

term we used Lemma 3.23.

The final steps to controling the limit (3.60) are applying the estimates (3.65) and (3.67) to (3.63) and

choosing k “ tσnu for σ P p0, 1
2

q and summing in n. The main theorems are given by

Theorem 3.3. For v P W s,loc and ||w|| ď 1

240C1pǫq the quantity

Ψpv, wq “ lim
nÑ8

RGnpv ` α´n
u wq exists in E

and defines a function of pv, wq with the following properties:

1. Ψ is continuous in the domain v P W s,loc and ||w|| ď 1
240C1pǫq . Over this set one has the uniform bound

||Ψpv, wq|| ď 1

8
.

2. Ψ is jointly analytic in v1 and w in the domain ||v1|| ă ρ

13
, ||w|| ă 1

240C1pǫq where we have implied

the use of the parameterization

v1 ÞÑ v “ pv1, v2q “ pv1, µspv1qq of W s,loc
int .

3. For all v P W s,loc, w such that ||w|| ď 1

240C1pǫqαu

we have the intertwining relation

RGpΨpv, wqq “ Ψpv, αuwq.

4. For all v P W s,loc, w such that ||w|| ď 1

2400C1pǫq2 , and all integers q ě 0, we have

Ψpv, wq “ ΨpRGqpvq, Tqpvqrwsq.
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5. For all v P W s,loc and w such that ||w|| ď 1

2400C1pǫq2 , we have

Ψpv, wq “ Ψpv˚, T8pvqrwsq.

Proof: See [3, Theorem 5]. Analyticity again is a simple consequence of the absolute uniform convergence

of the telescoping series defining Ψpv, wq. The intertwining relation of Part 3) is an immediate consequence

of the definition of Ψpv, wq as we mentioned earlier. The argument for Part 4) is as follows:

Ψpv, wq “ lim
nÑ8

RGn`qrv ` α´pn`qq
u ws

“ lim
nÑ8

RGn
“
RGqpvq ` α´n

u

`
α´q
u DvRG

qrws
˘‰

“ΨpRGqpvq, Tqpvqrwsq

where the second equality is shown by taking the difference of the two quantities at finite n, writing it as a

telescoping series similar to (3.64), and showing it vanishes as n Ñ 8. Part 5) follows from Part 4). Note

that the above theorem does not show non-degeneracy of Ψpv, ¨q but Part 5) will let one pass the buck to

showing Ψpv˚, T8pvq¨q is non-degenerate.

Theorem 3.4. On the domain ||w|| ă 1
24

of the one-dimensional space Eu the limit

lim
nÑ8

RGnpv˚ ` α´n
u wq

exists and defines an analytic function of w which will be denoted by Ψpv˚, wq since it coincides with previous

one given for Ψp¨, ¨q on the common domain of definition. On the domain B
`
0, 1

24

˘
XEu, this function satisfies

the bound

||Ψpv˚, wq|| ď 1

8

as well as

||Ψpv˚, wq ´ v˚ ´ w|| ď 17

8
||w||2 .

In particular, the differential with respect to w at w “ 0 is the identity on Eu. On the domain B
`
0, 1

24

˘
X Eu

we also have the intertwining relation

RGpΨpv˚, α
´1
u wqq “ Ψpv˚, wq .

For w small enough in Eu we have Ψpv˚,wq P W u,loc

Proof: See [3, Theorem 6].

For the non-degeneracy, i.e. the second inequality of the above assertion, one can use the estimates of
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(3.65) with k “ 0, which gives

||RGnpv˚ ` α´n
u wq ´ pRGnpv˚q `Dv˚RGrα´n

u wsq|| ď
n´1ÿ

j“0

c3pǫqj ˆ 17

2

”
α´pj`1q
u ||Tn´j´1pv˚qrws||

ı2

but we can simply rewrite the righthand side

||RGnpv˚ ` α´n
u wq ´ v˚ ´ w|| ď

n´1ÿ

j“0

c3pǫqj ˆ 17

2

”
α´pj`1q
u ||w||

ı2

from which the wanted estimate follows by taking n Ñ 8. The intertwining relation follows as in Part 3)

of Theorem 3.3. By the intertwining relation one has that tΨpv˚, αnuwqu´8ănď0 is a backwards trajectory

emanating form the fixed point v˚ (clearly limnÑ´8 Ψpv˚, αnuwq “ Ψpv˚, 0q “ v˚.) Thanks to the criterion

in Proposition 3.7 we see that Ψpv˚, wq is then on the local unstable manifold W u,loc.

3.9 Control of the deviation from the bulk

3.9.1 Algebraic considerations

We now pick up the thread from §3.5.2 where we consider for test functions f̃ , j̃ P Sq´,q` pQ3
p,Cq the quantity

Sr,spf̃ , j̃q “ Zr,spf̃ , j̃q
Zr,sp0, 0q

which is the moment generating function with UV and IR cutoffs r and s respectively.

Introduce

ST
r,spf̃ , j̃q “ ´ Y0Z

r
0

ż

Q3
p

j̃pxq d3x` 1

2

ÿ

rďqăs

´
f pr,qq,Γf pr,qq

¯
Λs´q

`
ÿ

rďqăs

ÿ

∆PL
∆ĂΛs´q´1

´
δb∆

”
~V pr,qqpf̃ , j̃q

ı
´ δb∆

”
~V pr,qqp0, 0q

ı¯

` Log

˜
BZr,spf̃ , j̃q
BZr,sp0, 0q

¸

where Log is the principal logarithm with argument in p´π, πs.

We will show that it is indeed a well defined quantity which boils down to making sure all the RG iterates
~V pr,qq are in the domain of definition and analyticity for RGex provided by Theorem 3.2. One also needs to

check that
BZr,spf̃ , j̃q
BZr,sp0, 0q is well defined and nonzero.

Once this is verified then it immediately follows from the considerations in §3.5.2 that
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Sr,spf̃ , j̃q “ exp
´
ST
r,spf̃ , j̃q

¯
.

In particular ST
r,spf̃ , j̃q generates truncated correlation functions.

The brunt of the remaining work is controlling the r Ñ ´8 and s Ñ 8 limits of the log-moment gener-

ating function ST
r,spf̃ , j̃q.

Recall that for the denominator, i.e. when f̃ , j̃ “ 0, the initial condition for the RGex iterations is

~V pr,rqp0, 0q “ pg, 0, µcpgq, 0, 0, 0, 0, 0q
with µcpgq “ µspg ´ ḡ, 0q by definition.

If ι is the affine isometric injection E Ñ Eex which sends pδg, µ,Rq to the vector

~V “ pβ4,∆, β3,∆, β2,∆, β1,∆,W5,∆,W6,∆, f∆, R∆q
∆PL

where for all ∆ P L

β4,∆ “ ḡ ` δg

β3,∆ “ 0

β2,∆ “ µ

β1,∆ “ 0

W5,∆ “ 0

W6,∆ “ 0

f∆ “ 0

R∆ “ R

then ~V r,rp0, 0q “ ιpvq with v “ pδg, µspδg, 0q, 0q where δg “ g ´ ḡ.

By construction v P W s,loc and therefore all of its iterates are well defined and we have

~V pr,qqp0, 0q “ ι
`
RGq´rpvq

˘
ÝÑ ιpv˚q where r Ñ ´8 with q fixed.

The purpose of this section is to derive estimates which control the deviations from this bulk trajec-

tory due to the test functions f̃ and j̃. An important fact is that when comparing ~V pr,qqpf̃ , j̃q to the

corresponding bulk ~V pr,qqp0, 0q any differences between ~V
pr,qq
∆ pf̃ , j̃q and ~V

pr,qq
∆ p0, 0q must be constrainted to

those ∆ Ă Λminp0,q`´qq. The disturbances caused by observables can’t propagate any further due to the

strict locality of the RG map. One immediate consequence is that δb∆1 r~V pr,qqpf̃ , j̃qs “ δb∆1 r~V pr,qqp0, 0qs for

∆1 Ć Λminp0,q`´q´1q and so at a fixed scale q we will get contributions from only finitely many blocks ∆.

We will break up the log-moment generating function into five pieces which will be analyzed separately.
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Namely, we write

ST
r,spf̃ , j̃q “ST,FR

r,s pf̃ , j̃q ` ST,UV
r,s pf̃ , j̃q ` ST,MD

r,s pf̃ , j̃q
` ST,IR

r,s pf̃ , j̃q ` ST,BD
r,s pf̃ , j̃q

where

ST,FR
r,s pf̃ , j̃q “1

2

ÿ

rďqăs

´
f pr,qq,Γf pr,qq

¯
Λs´q

ST,UV
r,s pf̃ , j̃q “ ´ Y0Z

r
0

ż

Q3
p

j̃pxq d3x`
ÿ

rďqăq´

ÿ

∆PL
∆ĂΛs´q´1

´
δb∆r~V pr,qqpf̃ , j̃qs ´ δb∆r~V pr,qqp0, 0qs

¯

ST,MD
r,s pf̃ , j̃q “

ÿ

q´ďqăq`

ÿ

∆PL
∆ĂΛs´q´1

´
δb∆r~V pr,qqpf̃ , j̃qs ´ δb∆r~V pr,qqp0, 0qs

¯

ST,IR
r,s pf̃ , j̃q “

ÿ

q`ďqăs

ÿ

∆PL
∆ĂΛs´q´1

´
δb∆r~V pr,qqpf̃ , j̃qs ´ δb∆r~V pr,qqp0, 0qs

¯

and

ST,BD
r,s pf̃ , j̃q “Log

˜
BZr,spf̃ , j̃q
BZr,sp0, 0q

¸
.

The subscript “FR” stands for the free contribution. Indeed, an easy exercise shows that

lim
rÑ´8
sÑ8

ST,FR
r,s pf̃ , j̃q “ 1

2

´
f̃ , C´8f̃

¯

which corresponds to the free massless measure without cut-offs, i.e., the Gaussian measure with covariance

C´8.

The quantity ST,UV
r,s pf̃ , j̃q collects the ultraviolet contributions while ST,IR

r,s pf̃ , j̃q contains the infrared

contributions. Most of the influence of the test functions is felt in the middle regime q´ ď q ă q`, hence

the abbreviation “MD”. Finally ST,BD
r,s pf̃ , j̃q corresponds to the a boundary term left after the RG iterations

have shrunk the confining volume Λs down to a single unit cube.

The analysis will make use of the following observations which are of an algebraic or combinatorial na-

ture. Since the RG runs from UV scales to IR scales we will first have a closer look at the terms featuring

in ST,UV
r,s pf̃ , j̃q.

From the definition of RGex in §3.5.2 one sees that this map is given by a collection of independent

operations performed locally.
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Indeed the output
`
β1
4,∆1 , . . . , β1

1,∆1 ,W 1
5,∆1 ,W 1

6,∆1 , f 1
∆1 , R∆1

˘
as well as the output δb∆1 produced for a cube

∆1 only involves the data pβ4,∆, . . . , β1,∆,W5,∆,W6,∆, f∆, R∆q
∆PrL´1∆1s.

We define E1B to be the “one block space”, i.e Eex “ ś
∆PL E1B . With those notation RGex is made up

of independent copies of a map pE1BqˆL3 ÝÑ E1B.

Let r∆ P Lq´ so that f̃ and j̃ are constant on r∆ taking the values f̃ r∆ and j̃ r∆ respectively. If r∆ R Λq`

then f̃ r∆ “ j̃ r∆ “ 0.

First let us see what happens for the first iteration, i.e., q “ r.

If a unit cube ∆ is in Λs´rzΛq`´r then the ∆ component of ~V pr,rqpf̃ , j̃q of ~V pr,rqpf̃ , j̃q is exactly the same

as that of the bulk ~V pr,rqp0, 0q “ ιpδg, µ, 0q with µ “ µspδg, 0q.

If ∆ P Λq`´r then there is a unique r∆ P Lq´ ,
r∆ Ă Λq` such that ∆ Ă Lr r∆

In this case:

~V pr,rqpf̃ , j̃q “ pg, 0, µ´ Y2Z
r
2L

p3´2rφsqr j̃ r∆, 0, 0, 0, L
p3´rφsqr f̃ r∆, 0q.

Now since we chose Z2 “ αuL
´p3´2rφsq and thus

~V
pr,rq
∆ pf̃ , j̃q “ pg, 0, µ´ Y2α

r
uj̃ r∆, 0, 0, 0, L

p3´rφsqr f̃ r∆, 0q.

If q “ r ă q´ then all immediate neighbors ∆ carry the same data. Here by neighbors we mean the

L3 ´ 1 other unit cubes contained in the same L-block L´1∆1 as ∆. The fact that our data is constant over

L-blocks make this situation reminiscent of the bulk RG.

We claim that the computation producing δb∆1 r~V pr,rqpf̃ , j̃qs as well as ~V
pr,r`1q
∆1 pf̃ , j̃q is the same as the

RG acting on the space E , except for the presence of the f -component Lp3´rφsqrf̃ r∆ which evolves by averaging

without influencing or being influenced by the other variables.

This again results from the property that

ż

L´1∆1

Γpx ´ yqd3y “ 0 for all x P L´1∆1, as in the proof of

Proposition 3.2.

Indeed for the explicit diagrams in the RG transformation the possible effect of f is through legs attached

to f -vertices of valence 1 which precisely contribute a factor of the type

ż

L´1∆1

Γpx ´ yqd3y “ 0 because f

is constant over the L-block L´1∆1.

For the other L or ξ terms, observe that one has e
ş
L´1∆1 fζ “ 1 because f is constant on L´1∆1 andż

L´1∆1

ζ “ 0 almost surely by the property of the fluctuation covariance Γ.

As a result
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~V
pr,r`1q
∆1 pf̃ , j̃q “ pg1, 0, µ1, 0, 0, 0, Lp3´rφsqpr`1qf̃ r∆, R

1q

where

pg1 ´ ḡ, µ1, R1q “ RGpg ´ ḡ, µ´ αruY2j̃ r∆, 0q

and also

δb∆1 r~V pr,rqpf̃ , j̃qs “ δbpg ´ ḡ, µ´ αruY2j̃ r∆, 0q.

The same decoupling applies to subsequent iterates ~V pr,q`1qpf̃ , j̃q “ RGexr~V pr,qqpf̃ , j̃qs as long as q ă q´,

i.e. as long as f pr,qq is constant over each individual L-block.

Hence, in the quantity

ÿ

rďqăq´

ÿ

∆PL
∆ĂΛs´q´1

´
δb∆r~V pr,qqpf̃ , j̃qs ´ δb∆r~V pr,qqp0, 0qs

¯

appearing in ST,UV
r,s pf̃ , j̃q, only boxes ∆ Ă Λq`´r´1 will contribute and these can be organized according to

r∆ P Lq´ ,
r∆ Ă Λq` such that Lq`1 r∆ contains ∆. All L3pq´´q´1q boxes ∆ which satisfy that condition for

given r∆ produce the same contribution.

In other words, the previous expression can be rewritten as

ÿ

r∆PLq´

r∆ĂΛq`

ÿ

rďqăq´

L3pq´´q´1q `δb
“
RGq´r `v ´ αruY2j̃ r∆eφ2

˘‰
´ δb

“
RGq´rpvq

‰˘

where v “ pδg, µspδg, 0q, 0q with δg “ g ´ ḡ

and eφ2 “ p0, 1, 0q P E .

Here eφ2 gives the direction of pure : φ2 : perturbations in the bulk.

We are thus reduced to L3pq`´q´q separate and independent bulk RG trajectories as considered in §3.7.1,

one for each r∆. Also note that the effect of f̃ is completely absent form the UV regime contribution.

By also organizing the explicit extra linear term in j̃ according to boxes r∆ of size Lq´ we can write

ST,UV
r,s pf̃ , j̃q “

ÿ

r∆PLq´

r∆ĂΛq`

K r∆
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with

K r∆ “ ´Y0Zr0L3q´ j̃ r∆ `
ÿ

rďqăq´

L3pq´´q´1q `δb
“
RGq´r `v ´ αruY2j̃ r∆eφ2

˘‰
´ δb

“
RGq´rpvq

‰˘
.

That concludes our organization of UV contributions.

As soon as q ě q´ and we enter the middle regime we are not guaranteed that our RG data is constant

over L-blocks - we may have to deal with inhomogenieties within L-blocks and so we must use the extended

RG map RGex. We will want to take the Lq`´q´ different bulk data point points we tracked in the UV

regime along with the f -component that has been flowing by averaging and amalagmate all of this into the

corresponding data point in Eex.

We now give the notation used to describe the above process which at scale q “ q´ will take us from

bulk data to data in Eex.

For m ě 0 we introduce the reinjection map

Jm : S0,mpQ3
p,Cq ˆ

¨
˚̋ ź

∆PL
∆ĂΛm

E

˛
‹‚ÝÑ Eex

ˆ
F, pδg∆, µ∆, R∆q ∆PL

∆ĂΛm

, pδg, µ,Rq
˙

ÞÑ ~V 1 “
`
β1
4,∆, . . . , β

1
1,∆,W

1
5,∆,W

1
6,∆, f

1
∆1 , R1

∆1

˘
∆PL

defined as follows.

We let

β1
4,∆ “

$
&
%
ḡ ` δg∆ if ∆ Ă Λm

ḡ ` δg if ∆ Ć Λm

β1
2,∆ “

$
&
%
µ∆ if ∆ Ă Λm

µ if ∆ Ć Λm

R1
∆ “

$
&
%
R∆ if ∆ Ă Λm

R if ∆ Ć Λm

β1
3,∆ “ β1

1,∆ “ W 1
5,∆ “ W 1

6,∆ “ 0

and finally f 1
∆ is defined by

f 1
∆pxq “ F pxq for all x P Q3

p.

Recall that since F P S0,mpQ3
p,Cq is assumed constant on unit cubes and with support contained in Λm.
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Now it is easy to see from the previous considerations that

~V pr,q´qpf̃ , j̃q “ Jq`´q´

ˆ
f̃Ñp´q´q,

`
RGq´´r `v ´ αruY2j̃L´q´∆eφ2

˘˘
∆PL

∆ĂΛq`´q´

, RGq´´rpvq
˙
.

Note in particular that f pr,q´q “
´
f̃Ñp´rq

¯
Ñpq´´rq

“ f̃Ñp´q´q.

We also have the special case

~V pr,q´qp0, 0q “Jq`´q´

ˆ
0,
`
RGq´´rpvq

˘
∆PL

∆ĂΛq`´q´

, RGq´´rpvq
˙

“ι
`
RGq´´rpvq

˘
.

We now look at the middle regime and note that

ST,MD
r,s pf̃ , j̃q “

ÿ

q´ďqăq`

ÿ

∆PL
∆ĂΛq`´q´1

´
δb∆r~V pr,qqpf̃ , j̃qs ´ δb∆r~V pr,qqp0, 0qs

¯
.

Here we replaced the s that appeared earlier with q` when describing the summation over boxes ∆. Indeed,

if ∆ Ă Λs´q´1 is outside the rescaling Λq`´q´1 of the set Λq` containing the supports of the f̃ and j̃, then

the effect of ∆ is nil.

Finally we turn to the infrared regime. Here we have

ST,IR
r,s pf̃ , j̃q “

ÿ

q`ďqăs

ÿ

∆PL
∆PΛs´q´q

´
δb∆

”
RGq´q`

´
~V pr,q`qpf̃ , j̃q

¯ı
´ δb∆

”
RGq´q`

´
~V pr,q`qp0, 0q

¯ı¯

where ~V pr,q`qpf̃ , j̃q “ RGq`´q´

´
~V pr,q´qpf̃ , j̃q

¯
.

Since ~V pr,q´qpf̃ , j̃q agrees with ~V pr,q´qp0, 0q on all unit cubes ∆ Ć Λq`´q´ , it is easy to see that

RGq`´q´

´
~V pr,q´qpf̃ , j̃q

¯
agrees with RGq`´q´

´
~V pr,q´qp0, 0q

¯

on all unit cubes ∆ Ć Λ0 “ ∆p0q the unit cube containing the origin.

We denote by Ept those elements of Eex that are supported on ∆p0q. Thus

~V pr,q`qpf̃ , j̃q ´ ~V pr,q`qp0, 0q P Ept

or

~V pr,q`qpf̃ , j̃q P ιpEq ‘ Ept Ă Ebk ‘ Ept
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where Ebk is just the space of spatially homogenous elements of Eex. This property remains true for the

next iterates since the only difference with the bulk now only happens in ∆p0q.

Therefore no summation over ∆ is needed in the formula for ST,IR
r,s pf̃ , j̃q which thus reduces to

ST,IR
r,s pf̃ , j̃q “

ÿ

q`ďqăs

´
δb∆p0q

”
RGq´q`

´
~V pr,q`qpf̃ , j̃q

¯ı
´ δb∆p0q

”
RGq´q`

´
~V pr,q`qp0, 0q

¯ı¯
.

After these prepatory steps we can now address the estimates needed in order to take the r Ñ ´8 and

s Ñ 8 limits.

3.9.2 The ultraviolet regime

We now resume the analysis of the expression for ST,UVr,s pf̃ , j̃q derived in the last section.

Adding and subtracting terms linear in j̃ r∆ we write

K r∆ “ j̃ r∆

«
´Y0Zr0L3q´ `

ÿ

rďqăq´

L3pq´´q´1qDv

`
δb ˝RGq´r˘ “´αruY2eφ2

‰
ff

`
ÿ

rďqăq´

L3pq´´q´1qK r∆,q

where K r∆,q “ δb
“
RGq´r `v ´ αruY2j̃ r∆eφ2

˘‰
´ δb

“
RGq´rpvq

‰
`Dv

`
δb ˝RGq´r˘ “αruY2j̃ r∆eφ2

‰
.

Now K r∆,q “ K1
r∆,q ` K2

r∆,q where

K1
r∆,q “ δb

“
RGq´r `v ´ αruY2j̃ r∆eφ2

˘‰
´ δb

“
RGq´rpvq

‰
´DRGq´rpvqδb

“
RGq´r `v ´ αruY2j̃ r∆eφ2

˘
´RGq´rpvq

‰

and

K2
r∆,q “ DRGq´rpvqδb

“
RGq´r `v ´ αruY2j̃ r∆eφ2

˘
´RGq´rpvq `DvRG

q´r “αruY2j̃ r∆eφ2

‰‰
.

The quantities above are similar to some of the terms estimated in section 3.8.1. We remark that the

first and second differentials of δb can be bounded with an Op1q estimate in a straightforward way as long

as we stay within the domain of the RG. In particular the two terms immediately above are quadratic terms

which are fairly easily to estimate as long as one has control over the term

RGq´r `v ´ αruY2j̃ r∆eφ2

˘

for q ă q´.

An analysis similar to that used in section 3.8.1 will show that this term can be controlled uniformly in

r if

||αquY2j̃ r∆eφ2 || ď 1

240C1pǫq for all q ă q´.
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We guarantee this by enforcing that that

||αq´´1
u Y2j̃ r∆eφ2 || ď 1

240C1pǫq .

Proceeding in this way one can show ||K2
r∆,q|| ď α´2pq´´q´1q

u and ||K1
r∆,q|| ď 2α´2pq´´q´1q

u in which case

one has the the estimate ||K r∆,q|| ď 3α´2pq´´q´1q
u for simplicity.

Y2 is a strictly positive quantity that will be fixed later and we have that ||eφ2 || “ ||p0, 1, 0q|| “ ḡ´1. So

the previous construction and bounds work if

||j̃||L8 ď
“
240C1pǫqαq´´1

u Y2ḡ
´1

‰´1
. (3.68)

We will later also show L3α´2
u ă 1 which will imply that

ÿ

rďqăq´

L3pq´´q´1q||K r∆,q|| is summable with

uniform bounds with respect to the UV cut-off r.

We now analyze the more dangerous linear term in j̃∆̃, that is the quantity

Ωr “ ´Y0Zr0L3q´ `
ÿ

rďqăq´

L3pq´´q´1qDv

`
δb ˝RGq´r˘ “´αruY2eφ2

‰
.

We change the summation index to n “ q ´ r and rewrite the differential using the chain rule and get

Ωr “L3q´

˜
´Y0Zr0 ´ Y2

q´´r´1ÿ

n“0

L´3pn`r`1qαruDRGnpvqδb
“
DvRG

nreφ2s
‰
¸

“L3q´

˜
´Y0Zr0 ´ Y2

q´´r´1ÿ

n“0

L´3pn`r`1qαr`n
u DRGnpvqδb

“
Tnpvqreφ2s

‰
¸

“L3q´

˜
´Y0Zr0 ´ Y2L

´3pL´3αuqr
q´´r´1ÿ

n“0

pL´3αuqnΞn
¸

with Ξn “ DRGnpvqδb
“
Tnpvqreφ2s

‰
.

Remembering that L´3αu ă 1, and applying Lemma 3.23 one can show

ˇ̌
DRGnpvqδb

“
Tnpvqreφ2s

‰ˇ̌
ď||DRGnpvqδb|| ˆ ||Tnpvq|| ˆ ||eφ2 ||
ď10C1pǫqḡ´1 .

We then see that Ξn is bounded uniformly with respect to n. Hence
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Υ “
8ÿ

n“0

pL´3αuqn Ξn converges

and we can write

Ωr “ L3q´

˜
´Y0Zr0 ´ Y2L

´3pL´3αuqrΥ ` Y2L
´3pL´3αuqr

8ÿ

n“q´´r
pL´3αuqn Ξn

¸
.

Since L´3αu ă 1 and r Ñ ´8 we choose Y0, Y2, and Z0 so that the dangerous first two terms cancel.

Namely, we set:

Z0 “L´3αu ,

Y0 “ ´ L´3Y2Υ .

Then

Ωr “L3q´Y2L
´3pL´3αuqr

8ÿ

n“q´´r
pL´3αuqn Ξn

“Y2L´3αq´
u

8ÿ

k“0

pL´3αuqk Ξk`q´´r

after changing the summation index to k “ n´ q´ ` r.

Provided one shows that lim
nÑ8

Ξn “ Ξ8 exists, the discrete dominated convergence theorem will immedi-

ately imply

lim
rÑ´8

Ωr “ Y2L
´3α

q´
u Ξ8

1 ´ L´3αu

.

Now

ˇ̌
Ξn ´Dv˚δb

“
T8pvqreφ2s

‰ˇ̌
ď
ˇ̌
DRGnpvqδb

“
Tnpvqreφ2s

‰
´Dv˚δb

“
Tnpvqreφ2s

‰ˇ̌
`
ˇ̌
Dv˚δb

“
Tnpvqreφ2s ´ T8pvqreφ2s

‰ˇ̌

ď2||RGnpvq ´ v˚|| ˆ 10C1pǫq||eφ2 || ` ||Tnpvq ´ T8pvq|| ˆ ||eφ2 || .

Above we used Lemma 3.23. Finally, Proposition 3.5 and Lemma 3.23 ensure that the limit of the Ξn

exists and is given by Ξ8 “ Dv˚δb
“
T8pvqreφ2s

‰
.

As a consequence of the previous considerations and Theorem 3.3 we see that

lim
rÑ´8
sÑ8

ST,UV
r,s pf̃ , j̃q “ ST,UVpf̃ , j̃q with
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ST,UVpf̃ , j̃q “
ÿ

r∆PLq´

r∆ĂΛq`

"
j̃ r∆

Y2α
q´
u

L3 ´ αu

Dv˚δb
“
T8pvqreφ2s

‰

`
ÿ

qăq´

L3pq´´q´1q `δb
`
Ψpv,´αquY2j̃ r∆eφ2q

˘
´ δbpv˚q ` αquY2j̃ r∆Dv˚δbrT8pvqpeφ2qs

˘*
.

The latter is easily seen to be analytic in j̃ in the domain ||j̃||L8 ă
“
240C1pǫqαq´´1

u Y2ḡ
´1

‰´1
of Sq´,q` pQ3

p,Cq.

Note that there is no dependence on f̃ for this piece. In fact the finite cut-off quantity ST,UV
r,s pf̃ , j̃q does

not depend on f̃ nor s.

3.9.3 The middle regime

We introduce the notation V̄ for the approximate fixed point in Ebk. Namely we set V̄∆ “ pḡ, 0, . . . , 0q for

all ∆ P L. We note that RGex is well defined and analytic on BpV̄ , 1
2

q.
We will next establish some very coarse bounds on the expansion of deviations which will be enough for

the control of the middle regime.

The main idea is that the middle regime will only be a finite number scales, in particular q` ´ q´ scales.

We will establish a brutal expansion bound in this regime on the size of deviations from the bulk. After

the middle regime comes the infrared regime in which we expect that deviations, once small enough, should

contract away. The role of this brutal expansion bound in the middle regime is to tell us how small we must

choose our initial deviations (our observables j̃, f̃) so the deviations they induce are sufficiently small enough

at the end of the middle regime to guarantee that they will contract away in the infrared regime.

To establish our brutal expansion bound on the extended RG we establish a uniform bound on the output

of RGex on the ball BpV̄ , 1
2

q. The only bound that takes some care is the β4 evolution which we include

below.

Lemma 3.24. Suppose that ~V in BpV̄ , 1
2

q. Then one has the following bound for the β1
4 component of

~V 1 “ RGexr~V s: For all ∆1 P L

ˇ̌
β1
4,∆1 ´ ḡ

ˇ̌
ḡ´ 3

2 ď O3

where O3 “ 434 ` O26 with O26 defined in the statement of [3, Lemma 38].

Proof: Due to our assumption on ~V for any ∆ P L we can write β4,∆ “ ḡ ` δg∆ where |δg∆| ă 1
2
ḡ

3

2 . We

substitute this into the flow equation to get the following:

β1
4,∆1 “ L3´4rφsḡ ` L´4rφs

ÿ

∆PrL´1∆1s
δg∆ ´ δβ4,2,∆1 r~V s ` ξ4,∆1 r~V s

“ L3´4rφsḡ ´ 36L´4rφs

ḡ ` δg ḡ ` δg

´ Ăδβ4,2,∆1 r~V s ` ξ4,∆1 r~V s ` L´4rφs
ÿ

∆PrL´1∆1s
δg∆ .

(3.69)
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We have used the fact that δβ4,1,∆r~V s “ 0. In the formula above Ăδβ4,2,∆1 r~V s is defined to be δβ4,2,∆1 r~V s
with the graph that we have made explicit removed:

Ăδβ4,2,∆1

”
~V
ı
:“

ÿ

a1,a2,b1,b2,m

1

$
’&
’%

ai ` bi ď 4

ai ě 0 , bi ě 1

m “ 1

,
/.
/-

pa1 ` b1q! pa2 ` b2q!
a1! a2! m! pb1 ´mq! pb2 ´mq!

ˆ1

2
Cpa1, a2|4q ˆ L´pa1`a2qrφs ˆ C0p0q

a1`a2´4

2 ˆ
βa1`b1 βa2`b2

b1´m b2´mm

ff

f f

`
ÿ

b

1

#
4 ` b “ 5 or 6

b ě 0

+
pk ` bq!
k! b!

L´krφs

Wk`b

f f
b

“ δβ4,2,∆1 r~V s ´ 1

2
L´4rφs 4!4!

2!2!2!
ḡ ` δg ḡ ` δg

.

Indeed, first note that there is no graph with m “ 3. This is because this would imply a1, a2 ď 1 which

contradicts a1 ` a2 ě 4 imposed by the nonvanishing of the connection coefficient Cpa1, a2|4q. Also the

removed graph is the only one with m “ 2. This is because b1, b2 ě 2 implies a1, a2 ď 4 ´ 2 “ 2, but the

connection coefficient requires a1 ` a2 ě 4 so we are forced to have a1 “ a2 “ 2 which implies b1, b2 ď 2 and

therefore b1 “ b2 “ 2.

We note that we can decompose the graph above as follows:

ḡ ` δg ḡ ` δg

“
ḡ ḡ

` 2

ḡ δg

`
δg δg

We now use the fact that ḡ is an approximate fixed point:

ḡ “ Lǫḡ ´A1ḡ
2 “ L3´4rφsḡ ´ 36L´4rφs

ḡ ḡ

Using this we can write:

β1
4,∆1 “ḡ ` L´4rφs

ÿ

∆PrL´1∆1s
δg∆

´ 36L´4rφs

¨
˝2

ḡ δg

`
δg δg

˛
‚

´ Ăδβ4,2,∆1 r~V s ` ξ4,∆1 r~V s .

(3.70)

We now describe how to bound the second and third lines of (3.70). By the same arguments as used

in [3, Lemma 38] the contribution of the two graphs on the second line can each be bounded by 4L5ḡ2 as

follows from the very coarse bounds ḡ ď ḡ and |δg| ď ḡ. This gives us:
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ˇ̌
ˇ̌
ˇ̌36L´4rφs

¨
˝2

ḡ δg

`
δg δg

˛
‚
ˇ̌
ˇ̌
ˇ̌ ď36

»
–2

ˇ̌
ˇ̌
ˇ̌

ḡ δg

ˇ̌
ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ˇ̌

δg δg

ˇ̌
ˇ̌
ˇ̌

fi
fl

ď36 ˆ 3 ˆ 4L5ḡ2 “ 432L5ḡ2 .

Note that in the first line we dropped the factor of L´4rφs. The quantity Ăδβ4,2,∆1 r~V s on the third line

of (3.70) can be bounded by O26L
5ḡ2 as in [3, Lemma 38] where O26 is a purely numeric constant(we are

overestimating since we are summing over fewer graphs). We combine this with the estimate on ξ4,∆1 r~V s
from Theorem 3.2 to get

ˇ̌
β1
4,∆1 ´ ḡ

ˇ̌
ḡ´ 3

2 ď1

2
L3´4rφs ` p432 ` O26qL5ḡ2´ 3

2 `B4ḡ
21

8
´ 3

2

ď1

2
L3´4rφs ` p432 ` O26q ` 1

ď1 ` p432 ` O26q ` 1

In going to the third we used the bound L3´4rφs “ Lǫ ď 2 for ǫ small.

Lemma 3.25. RGex is well defined and analytic on BpV̄ , 1
2

q. Additionally one has the following uniform

bound for ~V P BpV̄ , 1
2

q:

||RGexr~V s ´ V̄ || ď O5L
5

2 (3.71)

for a purely numeric constant O5.

Proof: This is [3, Lemma 87]

Proposition 3.8. For any ~V 1, ~V 2 P B̄pV̄ , 1
6

q one has:

||RGexr~V 1s ´RGexr~V 2s|| ď O6L
5

2 ||~V 1 ´ ~V 2||,

where O6 “ 4O5.

Proof:

By Lemma 3.25 we know that RGex is an analytic map taking BpV̄ , 1
2

q into B̄pV̄ ,O5L
5

2 q. We get the

desired inequality by applying Lemma 3.2 with the choice ν “ 1
3
.

After the previous estimates we now return to the analysis of the r Ñ ´8 and s Ñ 8 limits of ST,MD
r,s pf̃ , j̃q

which in fact does not depend on s such that s ě q`. Since the summation range q´ ď q ă q` is fixed

and finite, all we need is to show that RGex remain in the domains of definition and analyticity, despite the

temporary expansion with rate controlled by Lemma 3.25 and Proposition 3.8.
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The quantity of interest, as delivered by §3.9.1, is

ST,MD
r,s pf̃ , j̃q “

ÿ

q´ďqăq`

ÿ

∆PL
∆ĂΛq`´q´1

´
δb∆r~V pr,qqpf̃ , j̃qs ´ δb∆r~V pr,qqp0, 0qs

¯

where
~V pr,qqpf̃ , j̃q “ RGq´q´

ex

´
~V pr,q´qpf̃ , j̃q

¯

with

~V pr,q´qpf̃ , j̃q “ Jq`´q´

ˆ
f̃Ñp´q´q,

`
RGq´´r `v ´ αruY2j̃L´q´∆eφ2

˘˘
∆PL

∆ĂΛq`´q´

, RGq´´rpvq
˙
.

It follows from our definitions for the norms and the reinjection map J that

||~V pr,q´qpf̃ , j̃q ´ ~V pr,q´qp0, 0q||

“ max

$
&
%||f̃Ñp´q´q||L8 , max

∆PL
∆ĂΛq`´q´

||RGq´´rpv ´ αruY2j̃L´q´∆eφ2q ´RGq´´rpvq||

,
.
- .

We also have

||f̃Ñp´q´q||L8 “ Lp3´rφsqq´ ||f̃ ||L8 .

We slightly strengthen the requirement in (3.68) by imposing

||j̃||L8 ď r240C1pǫqαq´
u Y2ḡ

´1s´1

which implies

|| ´ αq´
u Y2j̃L´q´∆eφ2 || ď 1

240C1pǫq
for all ∆ P L such that ∆ Ă Λq`´q´ . Proceeding as in section 3.8.1 one can prove the bound

||RGq´´rpv ´ αruY2j̃L´q´∆eφ2q ´RGq´´rpvq|| ď 11C1pǫq|| ´ αq´
u Y2j̃L´q´∆eφ2 ||

ď 11C1pǫqαq´
u Y2ḡ

´1 ˆ ||j̃||L8

and therefore

||~V pr,q´qpf̃ , j̃q ´ ~V pr,q´qp0, 0q|| ď max
!
Lp3´rφsqq´ ||f̃ ||L8 , 11C1pǫqαq´

u Y2ḡ
´1 ˆ ||j̃||L8

)
.

On the other hand, minding the ḡ shift for β4 components only, we easily see that

||~V pr,q´qp0, 0q ´ V̄ || “ ||ιpRGq´´rpvqq ´ V̄ || “ ||RGq´´rpvq||

where the latter quantity can be computed as in section §3.7.2, i.e., via the norm inherited by E from Eex

and expressed in pδg, µ,Rq coordinates.
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By construction of W s,loc, ||RGq´´rpvq|| ď ρ
3
with ρ P

`
0, 1

12

˘
as yet unspecified. We thus have

||~V pr,q´qp0, 0q ´ V̄ || ď 1

12
.

Provided we also have

´
O6L

5

2

¯q`´q´

ˆ max
!
Lp3´rφsqq´ ||f̃ ||L8 , 11C1pǫqαq´

u Y2ḡ
´1 ˆ ||j̃||L8

)
ď 1

12

then a trivial inductive application of Proposition 3.8 will guarantee that for all q, q´ ď q ď q`,

||~V pr,q´qpf̃ , j̃q ´ V̄ || ď 1

12

so one remains, throughout the iterations, in the domain of definition and analyticity of RGex as well as the

δb functions.

As a result of Theorem 3.3 we then immediately obtain, regardless of the order of limits,

lim
rÑ´8
sÑ8

ST,MD
r,s pf̃ , j̃q “ ST,MDpf̃ , j̃q

where

ST,MDpf̃ , j̃q “
ÿ

q´ďqăq`

ÿ

∆PL
∆ĂΛq`´q´1

´
δb∆r~V p´8,qqpf̃ , j̃qs ´ δb∆rιpv˚qs

¯

with
~V p´8,qqpf̃ , j̃q “ RGq´q´

ex

´
~V p´8,q´qpf̃ , j̃q

¯

for
~V p´8,q´qpf̃ , j̃q “ Jq`´q´

ˆ
f̃Ñp´q´q,

`
Ψv,´αq´

u Y2j̃L´q´∆eφ2

˘
∆PL

∆ĂΛq`´q´

, v˚

˙
. (3.72)

Analyticity of ST,MDpf̃ , j̃q is also immediate.

For the purposes of the next section we also note that ~V pr,q`qpf̃ , j̃q satisfies the bound

||~V pr,q`qpf̃ , j̃q ´ ~V pr,q`qp0, 0q|| ď
´
O6L

5

2

¯q`´q´

ˆ max
!
Lp3´rφsqq´ ||f̃ ||L8 , 11C1pǫqαq´

u Y2ḡ
´1 ˆ ||j̃||L8

)
.

(3.73)

3.9.4 The infrared regime

In this section we are concerned with showing that the differential of RGex at any suitable ~Vbk P Ebk in any

direction 9V P Ept is a contraction.

We will introduce new notation to facilitate the lemmas below. For ~Vbk P Ebk we write:

~Vbk “ tVbku∆PL “ tpβ4,bk, . . . , β1,bk,W5,bk,W6,bk, fbk, Rbkqu
∆PL

.

Note that we do need to burden the notation with ∆ subscripts since the quantities above are independent
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of the box ∆ by definition of being in Ebk.

Similarly for 9V P Ept we write:

9V “
!

9V∆

)
∆PL

“
!

p 9β4,∆, . . . , 9β1,∆, 9W5,∆, 9W6,∆, 9f∆, 9R∆q
)
∆PL

.

Note that 9V∆ “ 0 for ∆ ­“ ∆p0q. We also recall that RGexr~Vbk ` 9V s ´ RGexr~Vbks P Ept and so in our

estimates we are only concerned with the ∆p0q component of RGexr~Vbk ` 9V s ´RGexr~Vbks P Ept.

The key estimates proved in this section are Lemmas 3.28 and 3.9. We have to be more careful here than

in our treatment of the middle regime - in order to carefully track the flow of deviations from the bulk we

decompose the vertices at graphs appearing in the flow equations into bulk and deviation components. The

fact that the fluctuation covariance Γ vanishes at 0 momentum (or equivalently, has integral one) causes

many of the terms that appear in our analysis to vanish. Lemmas 3.26 and 3.27 give some examples of how

this works out, but we have not included the other details. We remark that the R deviations, which we don’t

explicitly address here, are already guaranteed to contract due to the estimates of Theorem 3.2 and an easy

non-bulk generalization of the Lipschitz estimate on the R remainder in Lemma 3.16.

Lemma 3.26. Let ~Vbk P BpV̄ , 1
4

q XEbk and 9V P Bp0, 1
4

q XEpt. Then one has the bound for k “ 1, 2, 3, 4 and

all ∆1 P L:

ˇ̌
ˇδβk,1,∆p0q

”
~Vbk ` 9V

ı
´ δβk,1,∆p0q

”
~Vbk

ıˇ̌
ˇ ḡ´ek ď 1t1 ď k ď 3uO7L

´ 9

4 || 9V ||2,

where O7 “
´
6 ` 21 ˆ 2

3

2

¯
.

Proof: We again note that the vanishing for k “ 4 follows by inspection of the definition of δβk,1,∆p0q. We

now observe that δβk,1,∆p0qr~Vbks vanishes. Indeed, by definition we have

δβk,1,∆p0qr~Vbks “ ´
ÿ

b

1

#
k ` b ď 4

b ě 1

+
pk ` bq!
k! b!

L´krφs

βk`b,bk

fbk fbkb

However one has that

βk`b,bk

fbk fbkb

“ 0 .

This is because we have at least one integration vertex of degree 1 which has been assigned a cou-

pling fbk which is constant over the integration region L´1∆p0q. Using ultrametricity and the fact that Γ

integrates to 0 allows one to show that after integrating any of the fbk vertices the entire integral vanishes. So

δβk,1,∆p0qr~Vbks “ 0 .

We now turn to δβk,1,∆p0qr~Vbk ` 9V s. From the definition we have:
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δβ1,k,∆p0qr~Vbk ` 9V s “ ´
ÿ

b

1

#
k ` b ď 4

b ě 1

+
pk ` bq!
k! b!

L´krφs

βk`b,bk ` 9βk`b

fbk ` 9f fbk ` 9fb

Under the assumption that b ě 1 we have:

βk`b,bk ` 9βk`b

fbk ` 9f fbk ` 9fb

“
bÿ

j“0

ˆ
b

j

˙

βk`b,bk

` 9βk`b

j b´ j

fbk

fbk

9f

9f

In the sum above only the j “ 0 term can be non-vanishing, all other diagrams will have at least one

integration vertex of degree 1 with a bulk variable assigned to it. We substitute this back into our formula

for δβk,1,∆p0q and perform more manipulations:

δβk,1,∆p0qr~Vbk ` 9V s “ ´
ÿ

b

1

#
k ` b ď 4

b ě 1

+
pk ` bq!
k! b!

L´krφs

βk`b,bk ` 9βk`b

9f 9fb

(3.74)

“ ´ pk ` 1qL´krφs
βk`1,bk ` 9βk`1

9f

´
ÿ

b

1

#
k ` b ď 4

b ě 2

+
pk ` bq!
k! b!

L´krφs

βk`b,bk ` 9βk`b

9f 9fb

(3.75)

where we have isolated the b “ 1 term. Note that for k “ 3 the sum on the last line is empty. We now

bound the diagrams appearing above:

ˇ̌
ˇ̌
ˇ βk`1,bk ` 9βk`1

9f ˇ̌
ˇ̌
ˇ ď

ˇ̌
ˇ̌
ˇ 9βk`1

9f ˇ̌
ˇ̌
ˇ `

ˇ̌
ˇ̌
ˇ βk`1,bk

9f ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ̌
ˇ 9βk`1

9f ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ 9fp0q ˆ Γp0q ˆ 9βk`1,∆p0q

ˇ̌
ˇ

ď2
´
L´p3´rφsq|| 9V ||

¯´
|| 9V ||ḡek`1

¯

ď2L´ 9

4 || 9V ||2ḡek`1 .

(3.76)

In going to the third to last line we used local constancy at unit scale and the fact that all the couplings

were supported at ∆p0q so we did not really do any integration. In going to the second to last line we used the

bound |Γp0q| ď 2 which comes from Lemma 5.4. In going to the last line we used the bound ´p3´rφsq ď ´ 9
4
.
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For k “ 3 we immediately have the bound:

ˇ̌
δβ3,1,∆p0q

ˇ̌
ḡ´1 ď4L´3rφs ˆ 2L´ 9

4 || 9V ||2ḡ 3

2 ḡ´1

ď8L´ 9

4 || 9V ||2.

Note that in going to the last line we dropped the factor of L´3rφs and used e4 ě e3. This proves the

lemma for the case k “ 3. We now bound the remaining diagrams to prove the lemma for the cases k “ 1

and k “ 2. Before note that in these two cases k ` b “ 3 or 4 because we also assume b ě 2.

If k ` b “ 4 then, because of the domain hypotheses for our lemma and noting the ḡ shift for the β4

component of the bulk, we must have

|βk`b,bk| ` | 9βb`k| ď ḡ ` 1

4
ḡe4 ` 1

4
ḡe4 ď 3

2
ḡ ď 3

2
ḡek .

This is because of our assumptions e1, e2 ď 1 ď e4.

If k ` b “ 3 then

|βk`b,bk| ` | 9βb`k| ď 1

4
ḡe3 ` 1

4
ḡe3 ď 3

2
ḡek

because of the assumption e1 ď e2 ď e3. So in all relevent cases we can use 3
2
ḡek as a bound, as we do next.

1

#
k ` b ď 4

b ě 2

+ ˇ̌
ˇ̌
ˇ̌
ˇ

βk`b,bk ` 9βk`b

9f 9fb
ˇ̌
ˇ̌
ˇ̌
ˇ

ď1

#
k ` b ď 4

b ě 2

+
ˆ
ˇ̌
ˇ 9fp0q

ˇ̌
ˇ
b

ˆ
´

|βb`k,bk| `
ˇ̌
ˇ 9βb`k

ˇ̌
ˇ
¯

ˆ
ż

Q3
p

d3x |Γpxq|b

ď
´
L´p3´rφsq|| 9V ||

¯2

ˆ 3

2
ḡek ˆ 25{2L3´2rφs

ď3 ˆ 23{2L´3|| 9V ||2ḡek .

(3.77)

For the bound on the first line we used the fact that all the 9f vertices are pinned to the origin and the only

integration occurs at the βb`k,bk` 9βb`k vertex which has been left with b copies of the fluctuation covariance.

In going to the second to last line we used the bound | 9fp0q|b ď | 9fp0q|2 since b ě 2 and | 9fp0q| ď 1. For

that same line we also used the following bound which is valid for 2 ď b ď 4:

ż

Q3
p

d3x |Γpxq|b ď||Γ||L1 ||Γ||b´1
L8

ď
ˆ

1?
2
L3´2rφs

˙
2b´1

ď25{2L3´2rφs .
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Note that we have used fluctuation covariance bounds of Corollary 5.1 and Lemma 5.4. Thus we can use

(3.76) to get the following bound for k “ 1 and k “ 2:

ˇ̌
ˇ̌
ˇ̌
ˇ

ÿ

b

1

#
k ` b ď 4

b ě 2

+
pk ` bq!
k! b!

L´krφs

βk`b,bk ` 9βk`b

9f 9fb
ˇ̌
ˇ̌
ˇ̌
ˇ

ď
ÿ

b

1

#
k ` b ď 4

b ě 2

+
pk ` bq!
k! b!

ˆ 3 ˆ 23{2L´3|| 9V ||2ḡek

ď21 ˆ 23{2L´3|| 9V ||2ḡek .

(3.78)

Note in going to the last line we dropped the factors of L´krφs and used that

max
k“1,2

ÿ

b

1

#
k ` b ď 4

b ě 2

+
pk ` bq!
k! b!

“ 7 .

Finally by inserting the bound (3.76) and (3.78) into (3.74) we get the following bound for k “ 1 and

k “ 2:

ˇ̌
ˇδβk,1,∆p0qr~Vbk ` 9V s

ˇ̌
ˇ ḡ´ek ďpk ` 1q ˆ 2L´ 9

4 || 9V ||2 ` 21 ˆ 23{2L´3|| 9V ||2

ď
´
6 ` 21 ˆ 2

3

2

¯
L´ 9

4 || 9V ||2 .

In going to the last line we simply bounded L´3 by L´ 9

4 . This proves the lemma for k “ 1 and k “ 2

which finishes the proof.

Given ~Vbk P BpV̄ , 1
4

q X Ebk and 9V P Bp0, 1
4

q X Ept we define:

RGdvr~Vbk, 9V s “ RGexr~Vbk ` 9V s ´RGexr~Vbks.

Note that, as a subspace of Eex, the space Ebk‘Ept is invariant by RGex. Since ~Vbk` 9V P Ebk‘Ept one has

a unique decomposition RGexr~Vbk ` 9V s “ ~V 1
bk ` 9V 1 with ~V 1

bk P Ebk and 9V 1 P Ept. Using the locality of RGex it

is not hard to see that ~V 1
bk “ RGexr~Vbks and 9V 1 “ RGdvr~Vbk, 9V s. In particular RGdvr‚, ‚s takes values in Ept.

Lemma 3.27. Suppose that ~Vbk P BpV̄ , 1
4

q X Ebk and 9V P Bp0, 1
4

q X Ept. Let 9V 1 “ RGdvr~Vbk, 9V s and for

k “ 5, 6 let 9W 1
k be the corresponding components of 9V 1.

We then have the following bound for k “ 5, 6

ˇ̌
ˇ 9W 1

k,∆p0q

ˇ̌
ˇ ḡ´2 ď 2´ 5

2 || 9V || ` O8|| 9V ||2,

where O8 “
´
18 ` 9?

2

¯
.

Proof: For k “ 5 we have:
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9W 1
5,∆p0q “L´5rφs

ÿ

∆PrL´1∆p0qs

9W5,∆

` 48L´5rφs
˜

β4,bk ` 9β4 β4,bk ` 9β4

fbk ` 9f

´
β4,bk β4,bk

fbk
¸

` 6L´5rφs
˜

W6,bk ` 9W6

fbk ` 9f

´
W6,bk

fbk
¸

` 12L´5rφs
˜

β4,bk ` 9β4

β3,bk ` 9β3
´

β4,bk

β3,bk
¸
.

(3.79)

As before using that 9W5,∆ is supported on ∆ “ ∆p0q gives us the bound:

ˇ̌
ˇ̌
ˇ̌L´5rφs

ÿ

∆PrL´1∆p0qs

9W5,∆

ˇ̌
ˇ̌
ˇ̌ ď L´5rφsḡ2|| 9V || .

We now bound the various graphs appearing in (3.79). We again note that when a graph has an integration

vertex of degree one that has been assigned a bulk variable the graph will vanish. This tells us that:

β4,bk β4,bk

fbk

“
β4,bk

β3,bk
“

W6,bk

fbk
“ 0.

We use this same observation to break up the non-vanishing graphs and show that their contribution is

second order in || 9V ||. For example:

β4,bk ` 9β4 β4,bk ` 9β4

fbk ` 9f

“
9β4 β4,bk ` 9β4

9f

`
β4,bk β4,bk ` 9β4

fbk

`
β4,bk β4,bk ` 9β4

9f

`
9β4 β4,bk ` 9β4

fbk

“
9β4 β4,bk ` 9β4

9f

after expanding the two outer vertices of valence one.

We then have
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ˇ̌
ˇ̌
ˇ

PSfrag

β4,bk ` 9β4 β4,bk ` 9β4

fbk ` 9fˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ 9β4 β4,bk ` 9β4

9f ˇ̌
ˇ̌
ˇ

ď
ˇ̌
ˇ 9fp0q

ˇ̌
ˇ ˆ

ˇ̌
ˇ 9β4,∆p0q

ˇ̌
ˇ ˆ

´
|β4,bk| `

ˇ̌
ˇ 9β4,∆p0q

ˇ̌
ˇ
¯

ˆ
ż

Q3
p

d3x |Γpxq|2

ďL´p3´rφsq|| 9V || ˆ || 9V ||ḡ 3

2 ˆ 3

2
ḡ ˆ

´
2

1

2L3´2rφs
¯

ď3 ˆ 2´ 1

2L´rφsḡ
5

2 || 9V ||2

ď3 ˆ 2´ 1

2 ḡ
5

2 || 9V ||2 .

(3.80)

Note that in going to the second to last line we again used the bound:

ż

Q3
p

d3x |Γpxq|n ď 2n´ 3

2L3´2rφs .

Proceeding similarly for the other graphs we have:

ˇ̌
ˇ̌
ˇ W6,bk ` 9W6

fbk ` 9f ˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ 9W6

9f ˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ 9fp0q

ˇ̌
ˇ ˆ

ˇ̌
ˇ 9W6,∆p0q

ˇ̌
ˇ ˆ |Γp0q|

ďL´p3´rφsqḡ2 |Γp0q| ˆ || 9V ||2

ď2ḡ2|| 9V ||2 .

(3.81)

In going to the last line we used the bound |Γp0q| ď 2 which is a consequence of Corollary 5.1. We also

dropped the factor of L´p3´rφsq ď L´ 9

4 ď 1. We continue to the last graph we need to bound for 9W 1
5:

ˇ̌
ˇ̌
ˇ β4,bk ` 9β4

β3,bk ` 9β3
ˇ̌
ˇ̌
ˇ ď

ˇ̌
ˇ̌
ˇ 9β4

9β3
ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ 9β4,∆p0q

ˇ̌
ˇ ˆ

ˇ̌
ˇ 9β3,∆p0q

ˇ̌
ˇ ˆ |Γp0q|

ď2|| 9V ||2ḡ 5

2 .

(3.82)

Using the bounds (3.80), (3.81), and (3.82) in (3.79) gives us the bound:

ˇ̌
ˇ 9W5,∆p0q

ˇ̌
ˇ ḡ´2 ďL´5rφs|| 9V || ` L´5rφs

”
48 ˆ 3 ˆ 2´ 1

2 ḡ
1

2 ` 6 ˆ 2 ` 12 ˆ 2ḡ
1

2

ı
|| 9V ||2

ď2´ 5

2 || 9V || ` 2´ 5

2

”
48 ˆ 3 ˆ 2´ 1

2 ` 6 ˆ 2 ` 12 ˆ 2
ı

|| 9V ||2

“2´ 5

2 || 9V || `
ˆ
18 ` 9?

2

˙
|| 9V ||2 .

In going to the second line we used the fact that ǫ ď 1 and L ě 2 to bound L´5rφs ď 2´ 5

2 . This proves

the lemma for k “ 5.
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For k “ 6 we have:

9W 1
6,∆p0q “L´6rφs

ÿ

∆PrL´1∆p0qs

9W6,∆

` 8L´6rφs
˜

β4,bk ` 9β4

β4,bk ` 9β4
´

β4,bk

β4,bk
¸
.

(3.83)

Proceeding as last time we see:

ˇ̌
ˇ̌
ˇ̌L´6rφs

ÿ

∆PrL´1∆p0qs

9W6,∆

ˇ̌
ˇ̌
ˇ̌ ď L´6rφs|| 9V ||ḡ2

and

β4,bk

β4,bk
“ 0,

β4,bk ` 9β4

β4,bk ` 9β4
“

9β4

9β4

which simplifies the right-hand side of (3.83). We now bound the contributing graph:

ˇ̌
ˇ̌
ˇ 9β4

9β4
ˇ̌
ˇ̌
ˇ “| 9β4,∆p0q|2 ˆ |Γp0q|

ď2|| 9V ||2ḡ3 .
(3.84)

Inserting (3.84) along with the our earlier bound into (3.83) gives us:

ˇ̌
ˇ 9W 1

6,∆p0q

ˇ̌
ˇ ḡ´2 ďL´6rφs|| 9V || ` 8L´6rφs ˆ 2|| 9V ||2ḡ

ď2´3|| 9V || ` 2|| 9V ||2 .

In going to the last line we used our assumption that ǫ ď 1 and L ě 2 to bound L´6rφs ď 2´3. This

proves the bound of our lemma for the case k “ 6 which finishes the proof.

Lemma 3.28. Suppose that ~Vbk P B̄pV̄ , 1
40

q X Ebk and 9V P B̄p0, 1
40

q X Ept. Let 9V 1 “ RGdvr~Vbk, 9V s. Then

one has the following bound:

|| 9V 1|| ď 27

32
|| 9V || ` O9|| 9V ||2

where O9 is a purely numeric constant.

Proof: See [3, Lemma 93]

Proposition 3.9. Suppose that ~Vbk P B̄pV̄ , 1
40

qXEbk and 9V P B̄p0,O10qXEpt where O10 “ minp 1
40
, 3
32
O´1

9 q.
Let 9V 1 “ RGdvr~Vbk, 9V s Then one has the following bound:
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|| 9V 1|| ď 15

16
|| 9V || .

Proof: This proposition is a direct consequence of Lemma 3.28.

We remark that it is important that the contractive bound for deviations holds for 9V that are Op1q small

- if 9V needed to be less than some power of g then our neighborhood of analyticity in f̃ might be too small

to easily prove non-triviality.

For the control of the infrared contributions to the log-moment generating function we will finally need

a very coarse Lipschitz estimate on the δb functions.

Lemma 3.29. For all ~V 1, ~V 2 in B̄
`
V̄ , 1

6

˘
we have

|δb∆p0qr~V 1s ´ δb∆p0qr~V 2s| ď 4||~V 1 ´ ~V 2|| .

Proof: See [3, Lemma 94].

Now recall from §3.9.1 that

ST,IR
r,s pf̃ , j̃q “

ÿ

q`ďqăs

´
δb∆p0q

”
~V pr,qqpf̃ , j̃q

ı
´ δb∆p0q

”
~V pr,qqp0, 0q

ı¯

where
~V pr,qqpf̃ , j̃q “ RGq´q`

ex

´
~V pr,q`qpf̃ , j̃q

¯
.

With a view to lighten the notation we write

~V pr,qqpf̃ , j̃q “ ~V
pr,qq
bk ` 9V pr,qq

where
~V

pr,qq
bk “ ~V pr,qqp0, 0q “ ιpRGq´rpvqq P Ebk

and
9V pr,qq “ ~V pr,qqpf̃ , j̃q ´ ~V pr,qqp0, 0q P Ept .

We will control the latter via Proposition 3.9.

First note that

||~V ppr,qqq
bk ´ V̄ || “ ||RGq´rpvq|| ď ρ

3
.

To make this at most 1
40

we add the new requirement on ρ:

ρ ď 3

40
.

If we can ensure that || 9V pr,q`q|| ď O10 then a trivial inductive use of Proposition 3.9 will imply that

|| 9V pr,qq|| ď O10 ˆ
ˆ
15

16

˙q´q`
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for all q, such that q` ď q ď s. We again include the value s although it does not belong to what we called

the infrared regime in order to pass the baton to the next section about controlling the boundary term. In

view of (3.73), we now impose the new domain condition

´
O6L

5

2

¯q`´q´

ˆ max
!
Lp3´rφsqq´ ||f̃ ||L8 , 11C1pǫqαq´

u Y2ḡ
´1 ˆ ||j̃||L8

)
ď O10 . (3.85)

Now Proposition 3.9 followed by Lemma 3.29 imply that for any q with q` ď q ă s we have

ˇ̌
ˇδb∆p0q

”
~V pr,qqpf̃ , j̃q

ı
´ δb∆p0q

”
~V pr,qqp0, 0q

ıˇ̌
ˇ ď 4O10 ˆ

ˆ
15

16

˙q´q`

.

Hence we get the uniform absolute convergence of the sum over q needed to say

lim
rÑ´8
sÑ8

ST,IRr,s pf̃ , j̃q “ ST,IRpf̃ , j̃q

with

ST,IRpf̃ , j̃q “
8ÿ

q“q`

´
δb∆p0qr~V p´8,qqpf̃ , j̃qs ´ δb∆p0qrιpv˚qs

¯

where
~V p´8,qqpf̃ , j̃q “ RGq´q´

ex

´
~V p´8,q´qpf̃ , j̃q

¯

and ~V p´8,q´qpf̃ , j̃q has been defined in (3.72). The limit ST,IRpf̃ , j̃q is analytic and the order of the r Ñ ´8,

s Ñ 8 limits is immaterial.

3.9.5 The boundary term

Let ~V P Eex and simply denote by

pβ4, β3, β2, β1,W5,W6, f, Rq P C7 ˆ C9
bdpR,Cq

its component at ∆ “ ∆p0q. We let

BZr~V s “
ż
dµC0

pφq efφ ˆ
 
exp

`
´β4 : φ4 :C0

´β3 : φ3 :C0
´β2 : φ2 :C0

´β1 : φ :C0

˘

ˆp1 `W5 : φ5 :C0
`W6 : φ6 :C0

q `Rpφq
(

which reduces to an integral over a single real variable still denoted by φ. Let BZ˚ “ BZrιpv˚qs which is the

value at the infrared fixed point. We have

BZ˚ “
ż
dµC0

pφq
 
exp

`
´g˚ : φ4 :C0

´µ˚ : φ2 :C0

˘
`R˚pφq

(
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with g˚ “ ḡ`δg˚. Recall that g˚, µ˚, R˚ are real. Note that by Jensen’s inequality and the basic properties

of Wick ordering one has the lower bound

ż
dµC0

pφq exp
`
´g˚ : φ4 :C0

´µ˚ : φ2 :C0

˘
ě exp

ˆ
´
ż
dµC0

pφq
`
g˚ : φ4 :C0

`µ˚ : φ2 :C0

˘˙
“ 1 .

Besides

ˇ̌
ˇ̌
ż
dµC0

pφq R˚pφq
ˇ̌
ˇ̌ ď sup

φPR

|R˚pφq| ď sup
φPR

||R˚pφq||Bφ,φ,h

ď ḡ´2|||R˚|||ḡ ď ḡ
5

8

ρ

13
.

Since ḡ ď 1 and ρ ă 3
40
, we clearly have BZ˚ ě 1

2
.

Now if ||~V ´ V̄ || ă 1
2
it is easy to see that |BZr~V s| ď C5pǫq with

C5pǫq “
ż
dµC0

pφq e 1

2
L3´rφs|φ|ˆ

"
exp

„
´1

2
ḡφ4 ` 3

4
ḡ
`
|φ|3 ` 13φ2 ` 7|φ| ` 14

˘

ˆ
ˆ
1 ` 1

2
ḡ2

`
|φ|5 ` 20|φ|3 ` 60|φ|

˘
` 1

2
ḡ2

`
φ6 ` 30φ4 ` 180φ2 ` 120

˘˙

`1

2
ḡ

21

8
´2

*
.

Indeed, by undoing the Wick ordering

´ℜ
“
β4 : φ4 :C0

`β3 : φ3 :C0
`β2 : φ2 :C0

`β1 : φ :C0

‰
“ ´ḡφ4 ´ Y pφq

with

Y pφq “ℜpβ4 ´ ḡqφ4

` pℜβ3qφ3

` pℜβ2 ´ 6C0p0qℜβ4qφ2

` pℜβ1 ´ 3C0p0qℜβ3qφ
` p´C0p0qℜβ2 ` 3C0p0q2ℜβ4q .

Using |ℜpβ4 ´ ḡq| ă 1
2
ḡ

3

2 ď 1
2
ḡ for the fourth degree monomial and |ℜβk| ď 3

2
ḡ1´η for k “ 1, 2, 3, 4 when

bounding the lower degree monomials, and finally using C0p0q ď 2 we obtain

|Y pφq| ď 1

2
ḡφ4 ` 3

4
ḡ
`
|φ|3 ` 13φ2 ` 7|φ| ` 14

˘
.

The bounds on Wk : φk :C0
, for k “ 5, 6 are similar.

Since BZr~V s is clearly analytic in the domain ||~V ´ V̄ || ă 1
2
, Lemma 3.2 with ν “ 1

3
tell us that for all
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~V 1, ~V 2 in B̄
`
V̄ , 1

6

˘
one has the Lipschitz estimate

|BZr~V 1s ´ BZr~V 2s| ď 4C5pǫq||~V 1 ´ ~V 2|| .

We now have, using the outcome of the discussion for the infrared regime

|BZr,spf̃ , j̃q ´ BZ˚| “ |BZr~V pr,sqpf̃ , j̃qs ´ BZrιpv˚qs|
ď 4C5pǫq ˆ

”
||~V pr,sqpf̃ , j̃q ´ ~V pr,sqp0, 0q|| ` ||~V pr,sqp0, 0q ´ ιpv˚q||

ı

ď 4C5pǫq ˆ
”
|| 9V pr,sq|| ` ||RGs´rpvq ´ v˚||

ı

ď 4C5pǫq ˆ
«
O10 ˆ

ˆ
15

16

˙s´q`

` c1pǫqs´r||v ´ v˚||
ff
.

One of course has a similar and simpler estimate for the quantity BZr,sp0, 0q appearing in the denominator of

the boundary ratio. Namely, the O10 term is absent. Bounding c1pǫqs´r by c1pǫqs´q` and using the previous

lower bound BZ˚ ě 1
2
we see that

BZr,spf̃ , j̃q
BZr,sp0, 0q ÝÑ 1

when s Ñ 8, uniformly in r ď q´. Therefore the boundary term ST,BD disappears when r Ñ ´8, s Ñ 8
regardless of the order of limits.

3.10 Construction of the limit measures and invariance properties

As a consequence of what we have shown in the previous section we see that

Sr,spf̃ , j̃q “ exp
´
ST
r,spf̃ , j̃q

¯

converges uniformly to the analytic function

Spf̃ , j̃q “ exp
´
STpf̃ , j̃q

¯

in a suitable neighborhood of f̃ “ j̃ “ 0 in Sq´,q` pQ3
p,Cq, when r Ñ ´8 and s Ñ 8. Using the multivariate

Cauchy formula it is immediate that the cut-off correlators

A
φ̃pf̃1q ¨ ¨ ¨ φ̃pf̃nq Nrrφ̃2spj̃1q ¨ ¨ ¨Nrrφ̃2spj̃mq

E
r,s

“

1

p2iπqn`m

¿
¨ ¨ ¨

¿ nź

j“1

dzj
z2j

mź

k“1

duk
u2k

Sr,spz1f̃1 ` ¨ ¨ ¨ ` znf̃n, u1j̃1 ` ¨ ¨ ¨ ` umj̃mq

converge to the similar integrals with S instead of Sr,s. The contours of integration are governed by the

domain condition (3.85). We define our mixed correlators by

A
φ̃pf̃1q ¨ ¨ ¨ φ̃pf̃nq N rφ̃2spj̃1q ¨ ¨ ¨N rφ̃2spj̃mq

E
“
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1

p2iπqn`m

¿
¨ ¨ ¨

¿ nź

j“1

dzj
z2j

mź

k“1

duk
u2k

Spz1f̃1 ` ¨ ¨ ¨ ` znf̃n, u1j̃1 ` ¨ ¨ ¨ ` umj̃mq

which are multilinear in the f̃ ’s and j̃’s. Because of the uniform bounds on ST
r,s, and therefore on ST, proved

in the last section and thanks to Cauchy’s formula, it is immediate that the pure φ̃ or N rφ̃2s correlators will
satisfy Condition 4) in Theorem 1.11. The other conditions are satisfied by the cut-off correlators x¨ ¨ ¨ yr,s
as joint moments of random variables obtained from the probability measures νr,s. As these properties are

preserved in the limit r Ñ ´8 and s Ñ 8 we can use Theorem 1.11 to affirm the existence and uniqueness of

the measures νφ and νφ2 mentioned in Theorem 3.1. By the uniqueness part of Theorem 1.11, the invariance

properties of the measures νφ and νφ2 follow from those of the moments. Hence it is enough to show Parts

1) and 2) of Theorem 3.1. These are easier to prove from the functional integral definitions of the cut-off

correlators.

Indeed, one can trivially check that for M P GL3pZpq one has

A
φ̃pRM f̃1q ¨ ¨ ¨ φ̃pRM f̃nq Nrrφ̃2spRM j̃1q ¨ ¨ ¨Nrrφ̃2spRM j̃mq

E
r,s

“

A
φ̃pf̃1q ¨ ¨ ¨ φ̃pf̃nq Nrrφ̃2spj̃1q ¨ ¨ ¨Nrrφ̃2spj̃mq

E
r,s

because dµCr
is invariant by rotation and the rotation M takes the volume Λs to Λs.

Also if y P Q3
p with |y| ď Ls then

A
φ̃pτy f̃1q ¨ ¨ ¨ φ̃pτy f̃nq Nrrφ̃2spτy j̃1q ¨ ¨ ¨Nrrφ̃2spτy j̃mq

E
r,s

“

A
φ̃pf̃1q ¨ ¨ ¨ φ̃pf̃nq Nrrφ̃2spj̃1q ¨ ¨ ¨Nrrφ̃2spj̃mq

E
r,s

because Λs is unchanged by this translation as results from ultrametricity.

Finally, by changing variables from φ̃ to φ̃ 1 :“ L´rφsφ̃pL¨q, one has

A
φ̃pSLf̃1q ¨ ¨ ¨ φ̃pSLf̃nq Nrrφ̃2spSLj̃1q ¨ ¨ ¨Nrrφ̃2spSLj̃mq

E
r,s

“

A
φ̃pf̃1q ¨ ¨ ¨ φ̃pf̃nq Nrrφ̃2spj̃1q ¨ ¨ ¨Nrrφ̃2spj̃mq

E
r`1,s`1

ˆ
”
L´p3´rφsq

ın
ˆ
”
L´p3´2rφsqZ´1

2

ım
.

Noting that |L| “ L´1 and Z2 “ L´ 1

2
ηφ2 by definition of ηφ2 , and from the existence of the r Ñ ´8, s Ñ 8

limits, we see that the property in Part 3) of Theorem 3.1 holds for λ “ L´1. Thus it holds for the subgroup

LZ it generates.

A trivial consequence of these invariance properties is that

xN rφ̃2spj̃qy “ 0

identically. Namely, the one-point function vanishes. Indeed, it is enough to show this for j̃ “ 1Z3
p
. In that

case, by translation invariance followed by scale invariance

xN rφ̃2sp1Z3
p
qy “ L3xN rφ̃2sp1pLZpq3qy
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“ L3 ˆ L´3`2rφs` 1

2
ηφ2 ˆ xN rφ̃2sp1Z3

p
qy

“ L3α´1
u ˆ xN rφ̃2sp1Z3

p
qy .

By Lemma 3.22 it is clear that L3α´1
u ą 1 for ǫ small and the vanishing follows.

3.11 Nontriviality and proof of existence of anomalous dimension

3.11.1 The two-point and four-point functions of the elementary field

We have constructed the generalized random field φ̃ via constructing and proving the analyticity of STpf̃ , 0q,
the cumulant generating function. We now show that the process φ̃ is not Gaussian. In particular we show

that in the small ǫ regime one has

d4

dz4

ˇ̌
ˇ
z“0

STpz1Z3
p
, 0q “ xφ̃p1Z3

p
q4y ´ 3xφ̃p1Z3

p
q2y ă 0 .

We establish the inequality above by expanding STpz1Z3
p
, 0q and isolating a part that explicitly contains

first order pertubation theory. We will calculate the derivative by hand for this explicit part and use Cauchy

bounds to estimate the contribution of the remainder. From now on we will drop the tildes from the notation

for the fields φ̃ and N rφ̃2s but we will still use tildes for test functions if needed.

Since z1Z3
p

P S0,0pQ3
p,Cq we can set q´ “ q` “ 0. From section §3.9 and in particular the domain

condition (3.85) we know that ST pz1Z3
p
, 0q is an analytic function for z such that |z| ă O10. This condition

is assumed throughout this section. We will repeatedly make use of the fact that for z in this domain |z| ď 1

which follows from O10 ď 1
40
. In particular for z in that domain we have

STpz1Z3
p
, 0q “ST,FRpz1Z3

p
, 0q ` ST,UVpz1Z3

p
, 0q ` ST,MDpz1Z3

p
, 0q ` ST,IRpz1Z3

p
, 0q .

For our choice of test function we have:

ST,FRpz1Z3
p
, 0q “ 1

2
z2

´
1Z3

p
, C´81Z3

p

¯

ST,UVpz1Z3
p
, 0q “ 0 since j̃ “ 0

ST,MDpz1Z3
p
, 0q “ 0 since q´ “ q` “ 0

ST,IRpz1Z3
p
, 0q “

8ÿ

q“0

´
δb∆p0q

”
~V p´8,qqpz1Z3

p
, 0q

ı
´ δb∆p0qr~V˚s

¯

where ~V˚ “ ιpv˚q “ ~V p´8,qqp0, 0q.

By previous considerations we know that up to scale q´ “ 0 the test function f̃ “ z1Zp
does not influence
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the evolution of the other parameters, thus for scales q ď q´ “ 0 all components of ~V p´8,qqpz1Z3
p
, 0q other

than the f component take their fixed point value. Additionally we know that for scales q ě q` “ 0 the

vector ~V p´8,qq deviates from ~V˚ only at ∆ “ ∆p0q.
We write

~V p´8,qqpz1Z3
p
, 0q “

´
pβpqq

4,∆, . . . , β
pqq
1,∆,W

pqq
5,∆,W

pqq
6,∆, f

pqq
∆ , R

pqq
∆ q

¯
∆PL

.

Keeping our previous observations in mind for k “ 1, 2, 3, 4 we decompose β
pqq
k,∆ as follows:

β
pqq
4,∆ “

$
&
%
g˚ ` β

pq,expq
4 ` β

pq,impq
4 if ∆ “ ∆p0q

g˚ if ∆ ­“ ∆p0q

β
pqq
3,∆ “

$
&
%
β

pq,expq
3 ` β

pq,impq
3 if ∆ “ ∆p0q

0 if ∆ ­“ ∆p0q

β
pqq
2,∆ “

$
&
%
µ˚ ` β

pq,expq
2 ` β

pq,impq
2 if ∆ “ ∆p0q

µ˚ if ∆ ­“ ∆p0q

β
pqq
1,∆ “

$
&
%
β

pq,expq
1 ` β

pq,impq
1 if ∆ “ ∆p0q

0 if ∆ ­“ ∆p0q

Here “exp” and “imp” are abbreviations for explicit and implicit. The quantities β
pq,expq
k and β

pq,impq
k

will be defined inductively starting from q “ 0. We start with the following intital condition:

for k “ 1, 2, 3, 4 we set β
p0,expq
k “ β

p0,impq
k “ 0.

Now we prepare to give the inductive part of the definition. Recall that for k “ 1, 2, 3, 4 the evolution of

our couplings is given by

β
pq`1q
k,∆p0q “L´krφs

¨
˝ ÿ

∆PrL´1∆p0qs
β

pqq
k,∆

˛
‚´ δβk,1,∆p0q

”
~V p´8,qqpz1Z3

p
, 0q

ı

´ δβk,2,∆p0q
”
~V p´8,qqpz1Z3

p
, 0q

ı
` ξk,∆p0q

”
~V p´8,qqpz1Z3

p
, 0q

ı
.

We introduce some more short hand. For k “ 1, 2, 3, 4 we define β˚
k to be the corresponding component of

~V˚ P Ebk. In particular β˚
4 “ g˚, β˚

3 “ 0, β˚
2 “ µ˚, and β˚

1 “ 0. These are also seen as constant vectors in CL.

We now use the fact that ~V˚ is a fixed point of RGex to arrive at the following formula:
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β
pq`1q
k,∆p0q “β˚

k ` L´krφs
´
β

pq,expq
k ` β

pq,impq
k

¯

´ δβk,1,∆p0q
”
~V p´8,qqpz1Z3

p
, 0q

ı

`
´
δβk,2,∆p0q

”
~V˚
ı

´ δβk,2,∆p0q
”
~V p´8,qqpz1Z3

p
, 0q

ı¯

´
´
ξk,∆p0q

”
~V˚
ı

´ ξk,∆p0q
”
~V p´8,qqpz1Z3

p
, 0q

ı¯
.

(3.86)

Above we have used the fact that δbk,1,∆

”
~V˚
ı

“ 0. We now decompose δβk,1,∆p0q
”
~V p´8,qqpz1Z3

p
, 0q

ı
.

For 0 ď k ă l ď 4 and β, f P CL define

Fk,l rβ, f s “
ˆ
l

k

˙ż

pL´1∆p0qql´k

d3a d3b1 ¨ ¨ ¨ d3bl´k βpaq ˆ
l´kź

i“1

rΓpa´ biqfpbiqs .

With this notation we have:

δβk,1,∆p0q
”
~V p´8,qqpz1Z3

p
, 0q

ı
“ ´

4ÿ

l“k`1

L´krφsFk,l
”
β

pqq
l , f pqq

ı
.

We define the evolution for β
pq,expq
k and β

pq,impq
k as follows:

β
pq`1q,exp
k “ L´krφsβpq,expq

k `
4ÿ

l“k`1

L´krφsFk,l
”
β˚
l ` β

pq,expq
l 1∆p0q, f

pqq
ı

(3.87)

β
pq`1q,imp

k “ L´krφsβpq,impq
k `

4ÿ

l“k`1

L´krφsFk,l
”
β

pq,impq
l 1∆p0q, f

pqq
ı

`
´
δβk,2,∆p0qr~V˚s ´ δβk,2,∆p0qr~V p´8,qqpz1Z3

p
, 0qs

¯
`
´
ξk,∆p0qr~V˚s ´ ξk,∆p0qr~V p´8,qqpz1Z3

p
, 0qs

¯
.

(3.88)

Here we have designated 1∆p0q : L Ñ C as the indicator function of t∆p0qu.

We also impose a splitting of the difference of vacuum renormalizations at ∆p0q. For q ě 0 we have:

δb∆p0q
”
~V p´8,qqpz1Z3

p
, 0q

ı
´ δb∆p0qr~V˚s “ δbpq,expq ` δbpq,impq .

We define

δbpq,expq “ ´
4ÿ

l“1

F0,l

”
β˚
l ` β

pq,expq
l 1∆p0q, f

pqq
ı
, (3.89)
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δbpq,impq “ ´
4ÿ

l“1

F0,l

”
β

pq,impq
l 1∆p0q, f

pqq
ı

`
´
δβ0,2,∆p0qr~V p´8,qqpz1Z3

p
, 0qs ´ δβ0,2,∆p0qr~V˚s

¯

`
´
ξ0,∆p0qr~V p´8,qqpz1Z3

p
, 0qs ´ ξ0,∆p0qr~V˚s

¯
.

(3.90)

We now derive explicit formulas for β
pq,expq
k and δbpq,expq.

Lemma 3.30. Given the previous inductive definitions for β
pq,expq
k for q ě 0 and k “ 1, 2, 3, 4 we have the

following explicit formulas:

β
pq,expq
4 “0

β
pq,expq
3 “0

β
pq,expq
2 “6qL´2qrφsz2g˚||Γ||2L2

β
pq,expq
1 “z3g˚L

´qrφs
«
4
1 ´ L´2qrφs

1 ´ L´2rφs

˜ż

Q3
p

d3x Γpxq3
¸

` 12

˜
q´1ÿ

n“0

nL´2nrφs
¸

||Γ||2L2 ˆ Γp0q
ff
.

For q ě 0 we also have

δbpq,expq “ ´ z4g˚

«
L´4qrφs

˜ż

Q3
p

d3x Γpxq4
¸

` 6L´4qrφsq||Γ||2L2Γp0q2 ` 12L´2qrφs
˜
q´1ÿ

n“0

nL´2nrφs
¸

||Γ||2L2Γp0q2

` 4L´2qrφs 1 ´ L´2qrφs

1 ´ L´2rφs Γp0q
˜ż

Q3
p

d3x Γpxq3
¸ff

´ z2µ˚L
´2rφsq||Γ||2L2 .

Proof: We first note that below one often sees expressions of the form

ż

L´1∆p0q
Γpxqn. In the statement of

the theorem we extended the integration to all of Q3
p, we can do this since Γ is supported on L´1∆p0q.

For β
pq,expq
4 the result is immediate after recalling that β

p0,expq
4 “ 0 and noticing the evolution for this

parameter reduces to multiplication by L´4rφs.

For β
pq,expq
3 we have
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β
pq,expq
3 “

q´1ÿ

n“0

L´3rφspq´nqF3,4rβ˚
4 ` β

pn,expq
4 1∆p0q, f

pnqs

“
q´1ÿ

n“0

L´3rφspq´nqF3,4rg˚, f
pnqs

“
q´1ÿ

n“0

0 .

The last line follows from ultrametricity and the fact that Γ integrates to 0. In particular Fj,j`1

“
β˚
j , f

p¨q‰

will always vanish.

For β
pq,expq
2 we have

β
pq,expq
2 “

q´1ÿ

n“0

L´2pq´nqrφs
´
F2,4

”
β˚
4 ` β

pn,expq
4 1∆p0q, f

pnq
ı

` F2,3

”
β˚
3 ` β

pn,expq
3 1∆p0q, f

pnq
ı¯

“
q´1ÿ

n“0

L´2pq´nqrφsF2,4

”
g˚, f

pnq
ı

“
q´1ÿ

n“0

L´2pq´nqrφs6

˜ż

pL´1∆p0qq3
d3a d3b1 d3b2 g˚

ź

i“1,2

”
Γpa´ biqL´nrφsz1Zp

pbiq
ı¸

“
q´1ÿ

n“0

L´2pq´nqrφs6z2g˚L
´2nrφs

˜ż

L´1∆p0q
d3a Γpaq2

¸

“
q´1ÿ

n“0

L´2qrφs6z2g˚||Γ||2L2

from which the formula for β
pq,expq
2 follows. Note that above we used the fact that f pnq “ L´nrφs1∆p0q as a

vector in CL or L´nrφs1Z3
p
as function on Q3

p.

For β
pq,expq
1 we have

β
pq,expq
1 “

q´1ÿ

n“0

L´pq´nqrφs
´
F1,4

”
β˚
4 ` β

pn,expq
4 1∆p0q, f

pnq
ı

` F1,3

”
β˚
3 ` β

pn,expq
3 1∆p0q, f

pnq
ı

` F1,2

”
β˚
2 ` β

pn,expq
2 1∆p0q, f

pnq
ı¯

“
q´1ÿ

n“0

L´pq´nqrφs
´
F1,4

”
g˚, f

pnq
ı

` F1,2

”
µ˚ ` β

pn,expq
2 1∆p0q, f

pnq
ı¯
.

Looking at the terms involved one sees
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F1,4

”
g˚, f

pnq
ı

“ 4g˚z
3L´3nrφs

˜ż

L´1∆p0q
d3x Γpxq3

¸

and

F1,2

”
µ˚ ` β

pn,expq
2 1∆p0q, f

pnq
ı

“F1,2

”
µ˚, f

pnq
ı

` F1,2

”
β

pn,expq
2 1∆p0q, f

pnq
ı

“F1,2

”
β

pn,expq
2 1∆p0q, f

pnq
ı

“2L´nrφszΓp0q ˆ
´
6nL´2nrφsz2g˚||Γ||2L2

¯
.

The formula for β
pq,expq
1 then follows.

We now move on to δbpq,expq. To keep things lighter we have left out terms with a vanishing contribution:

δbpq,expq “ ´F0,4

”
g˚, f

pqq
ı

´ F0,2

”
β

pq,expq
2 1∆p0q, f

pqq
ı

´ F0,2

”
µ˚, f

pqq
ı

´ F0,1

”
β

pq,expq
1 1∆p0q, f

pqq
ı
.

We calculate each of the terms appearing above:

F0,4

”
g˚, f

pqq
ı

“z4g˚L
´4qrφs

˜ż

L´1∆p0q
d3x Γpxq4

¸

F0,2

”
β

pq,expq
2 1∆p0q, f

pqq
ı

“z2L´2qrφsΓp0q2 ˆ
”
6qL´2qrφsz2g˚||Γ||2L2

ı

F0,2

”
µ˚, f

pqq
ı

“z2L´2qrφs||Γ||2L2µ˚

F0,1

”
β

pq,expq
1 1∆p0q, f

pqq
ı

“zL´qrφsΓp0q ˆ
#
z3g˚L

´qrφs
«
4
1 ´ L´2qrφs

1 ´ L´2rφs

˜ż

Q3
p

d3x Γpxq3
¸

`12

˜
q´1ÿ

n“0

nL´2rφsn
¸

||Γ||2L2 ˆ Γp0q
ff+

.

This proves the formula for δbpq,expq.

We now calculate running bounds for the β
pq,impq
k .

Lemma 3.31. In the small ǫ regime one has the following bounds for q ě 0
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|βpq,impq
4 | ďO11 ˆ q ˆ L8ḡ2

ˆ
15

16

˙q

|βpq,impq
3 | ď17 ˆ O11 ˆ q ˆ L8ḡ2

ˆ
15

16

˙q

|βpq,impq
2 | ď253 ˆ O11 ˆ q ˆ L8ḡ2

ˆ
15

16

˙q

|βpq,impq
1 | ď2497 ˆ O11 ˆ q ˆ L8ḡ2

ˆ
15

16

˙q

|δbpq,impq| ďO12 ˆ L8 ˆ ḡ2
ˆ
15

16

˙q

where O11 “ p4O26 ` 1q and O12 “ 319617 ˆ O11.

Proof: We note that for all q ě 0 one has ~V p´8,qqpz1Z3
p
, 0q, ~V˚ P B̄p0, 1

6
q. Thus by the proof of [3, Lemma

89] we have the following bounds for all q ě 0 and for k “ 0, 1, 2, 3, 4.

ˇ̌
ˇδβk,2,∆p0q

”
~V˚
ı

´ δβk,2,∆p0q
”
~V p´8,qqpz1Z3

p
, 0q

ıˇ̌
ˇ ď4O26L

5ḡ2||~V p´8,qqpz1Z3
p
, 0q ´ ~V˚||

ˇ̌
ˇξk,∆p0q

”
~V˚
ı

´ ξk,∆p0q
”
~V p´8,qqpz1Z3

p
, 0q

ıˇ̌
ˇ ď2Bkḡ

21

8 ||~V p´8,qqpz1Z3
p
, 0q ´ ~V˚|| .

We also note that by applying the bound of Proposition 3.9 q-times one has:

||~V p´8,qqpz1Z3
p
, 0q ´ ~V˚|| “||~V p´8,qqpz1Z3

p
, 0q ´ ~V p´8,qqp0, 0q||

ď
ˆ
15

16

˙q
||~V p´8,0qpz1Z3

p
, 0q ´ ~V p´8,0qp0, 0q||

ď
ˆ
15

16

˙q
.

Now in the ǫ small regime one has:

ˇ̌
ˇδβk,2,∆p0qr~V˚s ´ δβk,2,∆p0qr~V p´8,qqpz1Z3

p
, 0qs

ˇ̌
ˇ `

ˇ̌
ˇξk,∆p0qr~V˚s ´ ξk,∆p0qr~V p´8,qqpz1Z3

p
, 0qs

ˇ̌
ˇ

ď p4O26 ` 1qL5ḡ2||~V p´8,qqpz1Z3
p
, 0q ´ ~V˚||

“ O11L
5ḡ2||~V p´8,qqpz1Z3

p
, 0q ´ ~V˚||

ď O11L
5ḡ2

ˆ
15

16

˙q
.

We start with estimating β
pq,impq
4 :
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|βpq,impq
4 | ďL4rφs

q´1ÿ

n“0

L´4pq´nqrφs
´ˇ̌
ˇδβ4,2,∆p0qr~V˚s ´ δβ4,2,∆p0qr~V p´8,nqpz1Z3

p
, 0qs

ˇ̌
ˇ

`
ˇ̌
ˇξ4,∆p0qr~V˚s ´ ξ4,∆p0qr~V p´8,nqpz1Z3

p
, 0qs

ˇ̌
ˇ
¯

ďL4rφsO11 ˆ L5 ˆ ḡ2
q´1ÿ

n“0

L´4pq´nqrφs
ˆ
15

16

˙n

ďL4rφsO11 ˆ L5ḡ2
q´1ÿ

n“0

ˆ
15

16

˙pq´nq ˆ
15

16

˙n

ďO11 ˆ qL5`4rφsḡ2
ˆ
15

16

˙q
.

In going to the second to last line we used the fact that for L ě 2 and ǫ ď 1 we have the following

inequality : L´4rφs ď L´rφs ď 2´ 1

2 ă
ˆ
15

16

˙
. Then by bounding L5`4rφs ď L8 we get the desired bound for

β
pq,impq
4 .

For β
pq,impq
3 we have

|βpq,impq
3 | ďL3rφs

„ q´1ÿ

n“0

L´3pq´nqrφs
´ˇ̌
ˇδβ3,2,∆p0qr~V˚s ´ δβ3,2,∆p0qr~V p´8,nqpz1Z3

p
, 0qs

ˇ̌
ˇ

`
ˇ̌
ˇξ3,∆p0qr~V˚s ´ ξ3,∆p0qr~V p´8,nqpz1Z3

p
, 0qs

ˇ̌
ˇ
¯ 

`
«
q´1ÿ

n“0

L´3pq´nqrφs
ˇ̌
ˇF3,4

”
β

pn,impq
4 1∆p0q, f

pnq
ıˇ̌
ˇ
ff

ďL3rφsO11L
5ḡ2

«
q´1ÿ

n“0

L´3pq´nqrφs
ˆ
15

16

˙nff
`
«
q´1ÿ

n“0

L´3pq´nqrφs
ˇ̌
ˇF3,4

”
β

pn,impq
4 1∆p0q, f

pnq
ıˇ̌
ˇ
ff

ďO11qL
5`3rφsḡ2

ˆ
15

16

˙q
`
«
q´1ÿ

n“0

L´3pq´nqrφs
ˇ̌
ˇF3,4

”
β

pn,impq
4 1∆p0q, f

pnq
ıˇ̌
ˇ
ff
.

In the above expressions the first term was bounded just as it was for β
pq,impq
4 . We now try to estimate

the summands appearing inside of the second term. We will use |z| ď 1.

ˇ̌
ˇF3,4

”
β

pn,impq
4 1∆p0q, f

pnq
ıˇ̌
ˇ ď4L´nrφs|βpn,impq

4 | ˆ |Γp0q|

ď8L´nrφsO11nL
8ḡ2

ˆ
15

16

˙n

ď16O11L
8ḡ2

ˆ
15

16

˙n
.

In going to the second to last line we used the bound |Γp0q| ď ||Γ||L8 ď 2. In going to the last line
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note that for ǫ ď 1 and L ě 2 one has nL´nrφs ď n2´ n
2 ď 2

eˆ logp2q ď 2. Inserting this into our previous

inequality gives us

|βpq,impq
3 | ďO11qL

5`3rφsḡ2
ˆ
15

16

˙q
` 16O11L

8ḡ2
q´1ÿ

n“0

„
L´3pq´nqrφs

ˆ
15

16

˙n

ďO11qL
5`3rφsḡ2

ˆ
15

16

˙q
` 16O11qL

8ḡ2
ˆ
15

16

˙q

ď17O11qL
8ḡ2

ˆ
15

16

˙q
.

Not that in going to the second line we used the bound L´3pq´nqrφs ď
`
15
16

˘pq´nq
.

We start on β
pq,impq
2 by making the following estimates:

ˇ̌
ˇF2,4

”
β

pn,impq
4 1∆p0q, f

pnq
ıˇ̌
ˇ ď6 ˆ

ˇ̌
ˇβpn,impq

4

ˇ̌
ˇ ˆ Γp0q2 ˆ L´2nrφs

ď24 ˆ O11nL
8ḡ2

ˆ
15

16

˙n
L´2nrφs

ď48 ˆ O11L
8ḡ2

ˆ
15

16

˙n
.

Similarly one gets the bound

ˇ̌
ˇF2,3

”
β

pn,impq
3 1∆p0q, f

pnq
ıˇ̌
ˇ ď 204 ˆ O11L

6ḡ2
ˆ
15

16

˙n
.

The bound for β
pq,impq
2 then proceeds along familiar lines. One uses the same arguments to prove the

estimate for β
pq,impq
1 . In particular

ˇ̌
ˇF1,4

”
β

pn,impq
4 1∆p0q, f

pnq
ıˇ̌
ˇ ď64 ˆ O11L

8ḡ2
ˆ
15

16

˙n

ˇ̌
ˇF1,3

”
β

pn,impq
3 1∆p0q, f

pnq
ıˇ̌
ˇ ď408 ˆ O11L

8ḡ2
ˆ
15

16

˙n

ˇ̌
ˇF1,2

”
β

pn,impq
2 1∆p0q, f

pnq
ıˇ̌
ˇ ď2024 ˆ O11L

8ḡ2
ˆ
15

16

˙n
.

To bound δbpq,impq we first make the following estimate. For k “ 1, 2, 3, 4 one has:
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ˇ̌
ˇF0,k

”
β

pq,impq
k 1∆p0q, f

pqq
ıˇ̌
ˇ ďL´kqrφs ˆ Γp0qk ˆ |βpq,impq

k |

ďL´qrφs ˆ 24 ˆ 2497 ˆ O11 ˆ qL8ḡ2
ˆ
15

16

˙q

ď79904 ˆ O11L
8ḡ2

ˆ
15

16

˙q
.

We then have

|δbpq,impq| ď
ˇ̌
ˇδβ0,2,∆p0qrV˚s ´ δβ0,2,∆p0qr~V p´8,qqpz1Z3

p
, 0qs

ˇ̌
ˇ

`
ˇ̌
ˇξ0,∆p0qrV˚s ´ ξ0,∆p0qr~V p´8,qqpz1Z3

p
, 0qs

ˇ̌
ˇ

`
«

4ÿ

k“1

ˇ̌
ˇF0,k

”
β

pq,impq
k 1∆p0q, f

pqq
ıˇ̌
ˇ
ff

ďO11 ˆ L5ḡ2
ˆ
15

16

˙q
` 4 ˆ 79904 ˆ O11 ˆ L8ḡ2

ˆ
15

16

˙q

ď319617 ˆ O11 ˆ L8ḡ2
ˆ
15

16

˙q
.

This gives the desired bound.

Lemma 3.32. In the ǫ small regime and on the domain tz P C | |z| ă O10u one has the decomposition

STpz1Z3
p
, 0q “ ST,exppzq ` ST,imppzq .

All three of the above functions are analytic on the above domain. Additionally, over this domain one

has the following explicit formula

ST,exppzq “ ´
8ÿ

q“0

#
z4g˚

«
L´4qrφs

˜ż

Q3
p

d3x Γpxq4
¸

` 6L´4qrφsq||Γ||2L2 ˆ Γp0q2

` 12L´2qrφs
˜
q´1ÿ

n“0

nL´2nrφs
¸

||Γ||2L2 ˆ Γp0q2

` 4L´2qrφs 1 ´ L´2qrφs

1 ´ L´2rφs Γp0q
˜ż

Q3
p

d3x Γpxq3
¸ff

` z2µ˚L
´2qrφs||Γ||2L2

+

` z2

2

´
1Z3

p
, C´81Z3

p

¯

and the following uniform bound

|ST,imppzq| ď O13L
8ḡ2.
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where O13 “ 16 ˆ O12.

Proof: From earlier definitions we have that

STpz1Z3
p
, 0q “ z2

2

´
1Z3

p
, C´81Z3

p

¯
`

8ÿ

q“0

´
δbpq,expq ` δbpq,impq

¯
.

We define

ST,exppzq “ z2

2

´
1Z3

p
, C´81Z3

p

¯
`

8ÿ

q“0

δbpq,expq .

ST,imppzq “
8ÿ

q“0

δbpq,impq .

The explicit formula given for ST,exppzq comes from substitution of the explicit formula for the δbpq,expq

from Lemma 3.30. Since rφs ą 0 for ǫ P p0, 1s it is not hard to see that the infinite sum in the expression

for ST,exppzq is uniformly absolutely summable on our domain. Analyticity follows from the explicit formula.

On the other hand we have

|ST,imppzq| ď
8ÿ

q“0

|δbpq,impq|

ďO12 ˆ L6 ˆ ḡ2
8ÿ

q“0

ˆ
15

16

˙q

ď16 ˆ O12 ˆ L8 ˆ ḡ2 .

We have then proved the desired uniform bound and we have uniform absolute convergence yielding

analyticity as well.

Lemma 3.33. In the small ǫ regime one has

ˇ̌
ˇ̌ d

2

dz2

ˇ̌
ˇ
z“0

STpz1Z3
p
, 0q ´ U2

ˇ̌
ˇ̌ ď O14L

8ḡ2

where

U2 “
´
1Z3

p
, C´81Z3

p

¯
´ 2||Γ||2L2 ˆ 1

1 ´ L´2rφs ˆ µ˚

and

ˇ̌
ˇ̌ d

4

dz4

ˇ̌
ˇ
z“0

STpz1Z3
p
, 0q ´ U4

ˇ̌
ˇ̌ ď O15L

8ḡ2

where
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U4 “ ´ 24g˚

8ÿ

q“0

«
L´4qrφs

˜ż

Q3
p

d3x Γpxq4
¸

` 6L´4qrφsq||Γ||2L2Γp0q2 ` 12L´2qrφs
˜
q´1ÿ

n“0

nL´2nrφs
¸

||Γ||2L2Γp0q2

` 4L´2qrφs 1 ´ L´2qrφs

1 ´ L´2rφs Γp0q
˜ż

Q3
p

d3x Γpxq3
¸ff

.

Here we have used the following numerical constants: O14 “ 8 ˆ O´2
10 O13 and O15 “ 384 ˆ O´4

10 O13.

Proof: We note that for j “ 2, 4 we have that Uj “ dj

dzj

ˇ̌
ˇ
z“0

ST,exppzq.

By the previous lemma the bounds above will follow if we have the necessary bounds on

ˇ̌
ˇ̌ d

j

dzj

ˇ̌
ˇ
z“0

ST,imppzq
ˇ̌
ˇ̌.

By Cauchy’s formula we have

dj

dzj

ˇ̌
ˇ
z“0

ST,imppzq “ j!

2iπ

¿
dλ

λj`1
ST,imppλq

Here we are integrating around the contour |λ| “ 1

2
O10. Utilizing the uniform bound on ST,imppzq from

the previous lemma we get the estimate:

ˇ̌
ˇ̌ d

j

dzj

ˇ̌
ˇ
z“0

ST,imppzq
ˇ̌
ˇ̌ ď j! ˆ 2jO´j

10 ˆ O13 ˆ L8 ˆ ḡ2 .

This proves the lemma.

Proposition 3.10. In the small ǫ regime

d4

dz4

ˇ̌
ˇ
z“0

STpz1Z3
p
, 0q ď ´1

4
ḡ ă 0 .

Proof: We observe that since Γ̂pkq ě 0 one has

Γp0q “
ż

Q3
p

d3k Γ̂pkq ě 0

ż

Q3
p

d3x Γpxq3 “
´
Γ̂ ˚ Γ̂ ˚ Γ̂

¯
p0q ě 0 .

In the above expression ˚ denotes convolution. It then follows by only keeping the first q “ 0 term that
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U4 ď ´ 24g˚

ż

Q3
p

d3x Γpxq4

ď ´ 24g˚

ż

Z3
p

d3x Γpxq4

“ ´ 24g˚Γp0q4

“ ´ 24g˚ ˆ
„

1 ´ p´3

1 ´ p´2rφs

´
1 ´ L´2rφs

¯4
.

In going to the last line we used Lemma 5.1. Now we note that p, L ě 2 and ǫ ď 1 implies that ´2rφs ď ´1

U4 ď ´ 24g˚ ˆ
„
1 ´ 1

23

1
ˆ
ˆ
1 ´ 1

2

˙4

“ ´ 24

ˆ
7

16

˙4

g˚

ď ´ 12

ˆ
7

16

˙4

ḡ

ď ´ 1

3
ḡ .

Note that in going to the third line we used that g˚ ą 1
2
ḡ. Now using the previous lemma we have:

d4

dz4

ˇ̌
ˇ
z“0

STpz1Z3
p
, 0q ďU4 ` O15L

8ḡ2

ď ´ 1

3
ḡ ` O15L

8ḡ2 .

We can take ǫ sufficiently small to guarantee that O15L
8ḡ2 ď 1

12
ḡ. This proves the proposition.

3.11.2 The two-point function for the composite field

We now study the φ2 correlation when smeared with the characteristic function of Z3
p, i.e., the quantity

d2

dz2

ˇ̌
ˇ
z“0

ST p0, z1Z3
p
q “ xN rφ2sp1Z3

p
q2y ´ xN rφ2sp1Z3

p
qy2

“ xN rφ2sp1Z3
p
q2y

since the one-point function is identically zero. Our main goal is to show the quantity above is non-zero

so that N rφ2s is non-trivial. The key strategy used here is show that the UV contribution to the above

quantity, which we will have to calculate somewhat explicitly, diverges as ǫ Ñ 0. Combining this with more

uniform upper bounds on the size of the IR contribution of the above quantity will give our desired quantity.

Here q´ “ q` “ 0 so there is no contribution from the middle regime. Thus
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xN rφ2sp1Z3
p
q2y “ xN rφ2sp1Z3

p
q2yUV ` xN rφ2sp1Z3

p
q2yIR

where xN rφ2sp1Z3
p
q2yUV “ d2

dz2

ˇ̌
ˇ
z“0

ST,UVp0, z1Z3
p
q

and xN rφ2sp1Z3
p
q2yIR “ d2

dz2

ˇ̌
ˇ
z“0

ST,IRp0, z1Z3
p
q.

Clearly, since we can derive term-by-term in the sum over q and since the constant and linear parts

disappear

xN rφ2sp1Z3
p
q2yUV “ d2

dz2

ˇ̌
ˇ
z“0

ÿ

qă0

L´3pq`1qδb
“
Ψpv,´αquY2zeφ2q

‰

“ Y 2
2 ˆ

˜ÿ

qă0

L´3pq`1qα2q
u

¸
ˆ d2

dz2

ˇ̌
ˇ
z“0

δb
“
Ψpv, zeφ2q

‰

by the chain rule. This also uses L3α´2
u ă 1 which will be proved shortly.

We will use the more convenient notation Ψvpwq instead of Ψpv, wq.

Now for w small we have by Theorem 3.3

Ψvpwq “ Ψv˚ pT8pvqrwsq .

By the remark following Lemma 3.23

PsT8pvqreφ2s “ 0

i.e. T8pvqreφ2s is in Eu and therefore is proportional to eu.

We define κφ2 as the proportionality constant, i.e., by

T8pvqreφ2s “ κφ2eu.

Hence

Ψpv, zeφ2q “ Ψv˚ pzκφ2euq

and as a result

xN rφ2sp1Z3
p
q2yUV “ Y 2

2 κ
2
φ2xN rφ2sp1Z3

p
q2yUV

reduced

with
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xN rφ2sp1Z3
p
q2yUV

reduced “ 1

α2
u ´ L3

ˆD2
0pδb ˝ Ψv˚ qreu, eus.

We will show that 1
α2

u
´L3 diverges as ǫ Ñ 0 and that the other factor above is non-zero. For the infrared

contribution we have

xN rφ2sp1Z3
p
q2yIR “

ÿ

qě0

d2

dz2

ˇ̌
ˇ
z“0

δb∆p0q
”
RGqex

´
~V p´8,0qp0, z1Z3

p
q
¯ı

where

~V p´8,0qp0, z1Z3
p
q “ J0

`
0, pΨvp´Y2zeφ2qq, v˚

˘
.

We define the affine isometric map ̟ : E Ñ Ept which sends v “ pδg, µ,Rq to ~V “ pV∆q∆PL “ ̟pvq such

that

V∆ “ pβ4,∆, β3,∆, β2,∆, β1,∆,W5,∆,W6,∆, f∆, R∆q

is zero for ∆ ­“ ∆p0q and equal to

pδg ´ δg˚, 0, µ ´ µ˚, 0, 0, 0, 0, R ´R˚q

for ∆ “ ∆p0q.

It easily follows from the definitions that

~V p´8,0qp0, z1Z3
p
q “ ιpv˚q `̟ ˝ Ψvp´Y2zeφ2q

“ ιpv˚q `̟ ˝ Ψv˚ p´Y2κφ2zeuq

for z small.

Hence by the chain rule

xN rφ2sp1Z3
p
q2yIR “ Y 2

2 κ
2
φ2xN rφ2sp1Z3

p
q2yIRreduced

where

xN rφ2sp1Z3
p
q2yIRreduced “

ÿ

qě0

d2

dz2

ˇ̌
ˇ
z“0

δb∆p0q
”
ιpv˚q `RG

q

dv,ιpv˚q ˝̟ ˝ Ψv˚ pzeuq
ı

where we introduced the more convenient notation RG
dv,~Vbk

r 9V s for RGdvr~Vbk, 9V s of section §3.9.4.

In what follows we will show that when ǫ Ñ 0, xN rφ2sp1Z3
p
q2yIRreduced remains bounded while xN rφ2sp1Z3

p
q2yUV
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blows up.

We first introduce the subspace Eex,ev of Eex.

It is the space of vectors

pβ4,∆, β3,∆, β2,∆, β1,∆,W5,∆,W6,∆, f∆, R∆q∆PL

such that for all ∆ P L,

β3,∆ “ β1,∆ “ W5,∆ “ W6,∆ “ f∆ “ 0

and R∆ P C9
bd,evpR,Cq.

Using the same line of reasoning as in the proof of Proposition 3.2 or in §3.9.1 it is easy to see that Eex,ev

is invariant by RGex.

Lemma 3.34. In the small ǫ regime and for ~V P BpV̄ , 1
2

q X Eex,dv

we have for all ∆1 P L

|δb∆1 r~V s| ď O16L
5ḡ4

where

O16 “ 1 ` 9
ÿ

a1,a2,m

1

#
ai `m “ 2 or 4

ai ě 0, m ě 1

+
ˆ Cpa1, a2|0q ˆ 2

a1`a2

2 .

Proof: Recall that

δb∆1 r~V s “ δβ0,1,∆1 ` δβ0,2,∆1 ` ξ0,∆1 p~V q.

Since there are no f ’s we have β0,1,∆1 “ 0. Similarly the δβ0,2,∆1 contirbution reduces to

δβ0,2,∆1 “
ÿ

a1,a2,m

1

#
ai `m “ 2 or 4

ai ě 0, m ě 1

+
pa1 `mq!pa2 `mq!

a1!a2!m!
ˆ 1

2
Cpa1, a2|0q

ˆL´pa1`a2qrφsC0p0q
a1`a2

2 ˆ
ż

pL´1∆1q2
d3x1d

3x2 βa1`mpx1qβa2`mpx2q Γpx1 ´ x2qm.

We use the bound

ˇ̌
ˇ̌
ˇ

ż

pL´1∆1q2
d3x1d

3x2 βa1`mpx1qβa2`mpx2q Γpx1 ´ x2qm
ˇ̌
ˇ̌
ˇ ďL3||Γ||m´1

L8 ˆ ||Γ||L1

ˆ sup
xPL´1∆1

|βa1`mpxq| ˆ sup
xPL´1∆1

|βa2`mpxq|.
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We bound the supremums by noting that βa1`m can only be β2 or β4. Since V̄ has no β2 component

|β2pxq| ď ||~V ´ V̄ ||ḡ2 ď 1

2
ḡ2.

On the other hand

|β4pxq| ď ḡ ` ||~V ´ V̄ ||ḡ 3

2 ď 3

2
ḡ

As a result the previous integral is bounded by

L3||Γ||m´1
L8 ˆ ||Γ||L1 ˆ 9

4
ḡ4 ď L3 ˆ 2m´1 ˆ 1?

2
L3´2rφs ˆ 9

4
ḡ4 ď 18L5ḡ4

where we used ǫ ď 1 so 3´2rφs ď 2, and m ď 4 while dropping
?
2. Finally |ξ0,∆1 p~V q| ď 1

2
B4ḡ

21

8 by Theorem

3.2. Noting that 1
2
B4ḡ

5

8 ď 1 for ǫ small the lemma follows.

Lemma 3.35. For ~V 1, ~V 2 P B̄pV̄ , 1
6

q X Eex,dv, we have the Lipschitz estimate

ˇ̌
ˇδb∆p0qr~V 1s ´ δb∆p0qr~V 2s

ˇ̌
ˇ ď 4O16L

5ḡ4||~V 1 ´ ~V 2|| .

Proof: This is an immediate consequence of the previous lemma and Lemma 3.2 with ν “ 1
2
.

Since we are computing second derivatives there is no harm in writing

xN rφ2sp1Z3
p
q2yIRreduced “

ÿ

qě0

d2

dz2

ˇ̌
ˇ
z“0

!
δb∆p0q

”
ιpv˚q `RG

q

dv,ιpv˚q ˝̟ ˝ Ψv˚ pzeuq
ı

´ δb∆p0q rιpv˚qs
)
.

If z is small enough so that

||Ψpzeuq ´ v˚|| ď O10

which is the same as saying that ||̟ ˝Ψv˚ pzeuq|| ď O10, then Proposition 3.9 along with the last lemma will

imply

ˇ̌
ˇδb∆p0q

”
ιpv˚q `RG

q

dv,ιpv˚q ˝̟ ˝ Ψv˚ pzeuq
ı

´ δb∆p0q rιpv˚qs
ˇ̌
ˇ ď 4O16L

5ḡ4
ˆ
15

16

˙q
ˆ O10.

Let zmax ą 0 be such that |z| ď zmax implies ||Ψv˚ pzeuq ´v˚|| ď O10. Then by extracting the derivatives

with Cauchy’s formula we easily arrive at the bound

ˇ̌
ˇxN rφ2sp1Z3

p
q2yIRreduced

ˇ̌
ˇ ď 4O10O16L

5ḡ4 ˆ 1

1 ´ 15
16

ˆ 2! ˆ z´2
max .

Now from Theorem 3.4 ||zeu|| ă 1
24

implies
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||Ψv˚ pzeuq ´ v˚|| ď||zeu||
ˆ
1 ` 17

18
ˆ 1

24

˙

ď2||zeu||

for simplicity. So zmax “ 1
2
O10||eu||´1 works because 1

2
O10 ď 1

80
ă 1

24
. Also we have that ||eu|| “ ḡ´2.

Hence in the small ǫ regime we have the bound

ˇ̌
ˇxN rφ2sp1Z3

p
q2yIRreduced

ˇ̌
ˇ ď 512O´1

10 ˆ O16 ˆ L5 .

Namely, the infrared contribution remains finite when ǫ Ñ 0.

We now examine the ultraviolet contribution more closely. From Theorem 3.4 the small z expansion of

Ψv˚ pzeuq is of the form

Ψv˚ pzeuq “ v˚ ` zeu ` z2Θ `Opz3q (3.91)

for some vector Θ to be determined shortly. Now we can decompose

D2
0pδb ˝ Ψv˚ qreu, eus “ d2

dz2

ˇ̌
ˇ
z“0

δbexplicit
`
Ψv˚ pzeuq

˘
` d2

dz2

ˇ̌
ˇ
z“0

δbimplicit
`
Ψv˚ pzeuq

˘
.

If |z| ď 1

30
ḡ2 then as before we get

||Ψv˚ pzeuq|| ď||v˚|| ` 2||zeu||

ď 1

40
` 1

15
ă 1

2
.

So by Theorem 3.2

ˇ̌
δbimplicit

`
Ψv˚ pzeuq

˘ˇ̌
ď 1

2
B0ḡ

21

8 .

Cauchy’s formula then immediately implies

ˇ̌
ˇ̌ d

2

dz2

ˇ̌
ˇ
z“0

δbimplicit
`
Ψv˚ pzeuq

˘ˇ̌ˇ̌ ď 2!

ˆ
1

30
ḡ2
˙´2

ˆ 1

2
B0ḡ

21

8 .

So we have

lim
ǫÑ0

d2

dz2

ˇ̌
ˇ
z“0

δbimplicit
`
Ψv˚ pzeuq

˘
“ 0.

Now recall that

δbexplicit “ A4ḡ
2 ` δb

explicit
I pδg, µ,Rq ` δb

explicit
II pδg, µ,Rq

where δbexplicitI pδg, µ,Rq “ 2A4ḡδg `A4δg
2
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and δbexplicitII pδg, µ,Rq “ A5µ
2 .

Note that the A4ḡ
2 term disappears in the computation of derivatives while δbexplicitI can be treated as

we treated δbimplicit. Indeed by Cauchy’s formula and Theorem 3.2

ˇ̌
ˇ̌ d

2

dz2

ˇ̌
ˇ
z“0

δb
explicit
I

`
Ψv˚ pzeuq

˘ˇ̌ˇ̌ ď 2!

ˆ
1

30
ḡ2
˙´2

ˆA4,max

«
2 ˆ ḡ ˆ 1

2
ḡ

3

2 `
ˆ
1

2
ḡ

3

2

˙2
ff
.

So we have

lim
ǫÑ0

d2

dz2

ˇ̌
ˇ
z“0

δb
explicit
I

`
Ψv˚ pzeuq

˘
“ 0.

As a result of the formula eu “ pδg1
upµ˚q, 1, R1

upµ˚qq and the expansion (3.91) we easily compute

d2

dz2

ˇ̌
ˇ
z“0

δb
explicit
II

`
Ψv˚ pzeuq

˘
“ 2A5 p1 ` 2µ˚Θµq

where Θµ is the µ component of Θ P E .

We determine the latter using the intertwining relation in Theorem 3.4 for small z.

We have by an easy calculation using (3.91)

RG
`
Ψv˚ pzeuq

˘
“ v˚ `Dv˚RGreus ` z2

ˆ
Dv˚RGrΘs ` 1

2
D2
v˚
RGreu, eus

˙
`Opz3q .

But this is the same as

Ψv˚ pαuzeuq “ v˚ ` zαueu ` z2α2
uΘ `Opz3q.

Thus

α2
uΘ “ Dv˚RGrΘs ` 1

2
D2
v˚
RGreu, eus. (3.92)

On the other hand Ψv˚ P W u,loc for z small and therefore

“
Ψv˚ pzeuq

‰
δg

“ δgu

´“
Ψv˚ pzeuq

‰
µ

¯

and

“
Ψv˚ pzeuq

‰
R

“ Ru

´“
Ψv˚ pzeuq

‰
µ

¯

where r¨ ¨ ¨ sδg, r¨ ¨ ¨ sµ, and r¨ ¨ ¨ sR refer to the δg, µ, and R components respectively.

Expanding these relations up to second order imply

Θ “ pΘδg,Θµ,ΘRq “ Θµeu ` 1

2
cu

where cu “ pδg2
upµ˚q, 0, R2

upµ˚qq.
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Taking the µ component of (3.92) we see that

α2
uΘµ “ Θµαu ` 1

2

“
Dv˚RGrcus

‰
µ

` 1

2

”
D2
v˚
RGreu, eus

ı
µ

where we have used reusµ “ 1 and Dv˚RGreus “ αueu.

Since αu we have

Θµ “ 1

2αupαu ´ 1q

"“
Dv˚RGrcus

‰
µ

`
”
D2
v˚
RGreu, eus

ı
µ

*
.

Now |µ ´ µ˚| ă ρ2ḡ2 implies |δgupµq| ď ρ1

3
ḡ

3

2 and |||Rupµq|||ḡ ď ρ1

3
ḡ

21

8 . Using |µ ´ µ˚| “ 1

2
ρ2ḡ2 as a

contour of integration, Cauchy’s formula implies the following estimates:

|δg1
upµ˚q| ď 2ρ1

3ρ2 ḡ
1

2

|δg2
upµ˚q| ď 8ρ1

3pρ2q2 ḡ
´ 1

2

|||R1
upµ˚q|||ḡ ď 2ρ1

3ρ2 ḡ
13

8

|||R2
upµ˚q|||ḡ ď 8ρ1

3pρ2q2 ḡ
5

8 .

As a result

||cu|| “ max
!

|δg2
upµ˚q|ḡ´ 3

2 , |||R2
upµ˚q|||ḡ ḡ´ 21

8

)
ď 8ρ1

3pρ2q2 ḡ
´4 .

Now one can write

“
DvRGrv1s

‰
µ

“ L
3`ǫ
2 µ1 ´ 2A2pḡ ` δgqδg1 ´A3pḡ ` δgqµ1 ´A3µ δg

1 `
“
DvRG

implicitrv1s
‰
µ
. (3.93)

For v “ v˚ and v1 “ cu this gives

“
Dv˚RGrv1s

‰
µ

“ ´2A2pḡ ` δg˚qδg2
upµ˚q ´A3µ˚δg

2
upµ˚q `

“
Dv˚RG

implicitrcus
‰
µ
.

The infinitesimal version of the ξ2 Lipschitz estimate in Lemma 3.16 immediately implies

||
“
Dv˚RG

implicit
‰
µ

|| ď 2B2ḡ
21

8

for the operator norm induced on linear maps from E to C by the norm || ¨ || on E and the modulus on C.

As a result we have

ˇ̌
ˇ
“
Dv˚RGrcus

‰
µ

ˇ̌
ˇ ď

ˆ
2A2,max ˆ 3

2
ḡ `A3,max ˆ 1

2
ḡ2
˙

ˆ 8ρ1

3pρ2q2 ḡ
´ 1

2 ` 2B2ḡ
21

8 ˆ 8ρ1

3pρ2q2 ḡ
´4 .

So we have
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lim
ǫÑ0

“
Dv˚RGrcus

‰
µ

“ 0 .

Uniform bounds on the second differential of the µ component of the RG give

”
D2
v˚
RGreu, eus

ı
µ

“ ´2A2δg
1
upµ˚q2 ´ 2A3δg

1
upµ˚q `

”
D2
v˚
RGimplicitreu, eus

ı
µ

where D2
v˚
RGimplicit corresponds to the second differential of the remainder term ξ2 and an easy estimate

gives

ˇ̌
ˇ̌
”
D2
v˚
RGreu, eus

ı
µ

ˇ̌
ˇ̌ ď 2A2,max

ˆ
2ρ1

3ρ2 ḡ
1

2

˙2

` 2A3,max

ˆ
2ρ1

3ρ2 ḡ
1

2

˙
`
ˇ̌
ˇ̌
”
D2
v˚
RGimplicitreu, eus

ı
µ

ˇ̌
ˇ̌ .

Now one can easily estimate µ component of RGimplicit

||D2
v˚
RGimplicit

µ || ď 32B2ḡ
13

8

for the norm of the second differential.

Since ||eu|| “ ḡ´2 we obtain

ˇ̌
ˇ̌
”
D2
v˚
RGimplicitreu, eus

ı
µ

ˇ̌
ˇ̌ ď 32B2ḡ

´ 3

8 .

So we have

lim
ǫÑ0

µ˚
”
D2
v˚
RGimplicitreu, eus

ı
µ

“ 0.

Since also lim
ǫÑ0

µ˚ “ 0 and lim
ǫÑ0

αu “ L
3

2 ą 1 we have enough to affirm

lim
ǫÑ0

µ˚Θµ “ 0.

Thus

lim
ǫÑ0

d2

dz2

ˇ̌
ˇ
z“0

D2
0pδb ˝ Ψv˚ qreu, eus “ 2 lim

ǫÑ0
A5 “ 2L3p1 ´ p´3q ˆ l ą 0 by Lemma 5.5.

We now study the ǫ Ñ 0 asymptotics of αu more closely. One way to get a precise hold on this eigenvalue

is to note that

αu “
“
Dv˚RGreus

‰
µ
.

Then by the formula in (3.93) we have

199



αu “ L
3`ǫ
2 ´ 2A2pḡ ` δg˚qδg1

upµ˚q ´A3pḡ ` δg˚q ´A3µ˚δg
1
upµ˚q `

“
Dv˚RG

implicitreus
‰
µ

since eu “ pδg1
upµ˚q, 1, R1

upµ˚qq.

As before

ˇ̌
ˇ
“
Dv˚RG

implicitreus
‰
µ

ˇ̌
ˇ ď||Dv˚RG

implicit|| ˆ ||eu||

ď2B2ḡ
21

8 ˆ ḡ´2.

But ḡ is of order ǫ so

“
Dv˚RG

implicitreus
‰
µ

“ opǫq.

We have

ˇ̌
´2A2pḡ ` δg˚qδg1

upµ˚q
ˇ̌

ď 2A2,max ˆ 3

2
ḡ ˆ 2ρ1

3ρ2 ḡ
1

2

so this is an opǫq term.

Likewise

|´A3δg˚| ď A3,max ˆ 1

2
ḡ

3

2

so this is opǫq.

Finally,

ˇ̌
´A3µ˚δg

1
upµ˚q

ˇ̌
ď A3,max ˆ 1

2
ḡ2 ˆ 2ρ1

3ρ2 ḡ
1

2

so this is an opǫq term too.

As a result we have

αu “L 3`ǫ
2 ´A3ḡ ` opǫq

“L 3`ǫ
2 ´ 12 ˆ L

3`ǫ
2 ˆ A1

36Lǫ
ḡ ` opǫq

“L 3`ǫ
2

ˆ
1 ´ 1

3

ˆ
Lǫ ´ 1

Lǫ

˙˙
` opǫq

from the relations between A3, A1, and ḡ.

It is now a simple calculus exercise to derive
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ηφ2 “ 2

3
ǫ` opǫq

where ηφ2 is defined by

L
1

2
ηφ2 “ Z´1

2 “ L
3`ǫ
2 α´1

u .

We also easily get

L3α´2
u “ 1 ´ logpLq

3
ǫ` opǫq

which proves the earlier statement that

L3α´2
u ă 1

in the small ǫ regime which was crucial for the convergence and analyticity in the ultraviolet regime.

Another byproduct is

1

α2
u ´ L3

„ 3L´3

logpLq ˆ 1

ǫ

and therefore

xxN rφ2sp1Z3
p
q2yUV

reduced „ 6p1 ´ p´3q
logppq ˆ 1

ǫ

when ǫ Ñ 0.

Since xN rφ2sp1Z3
p
q2yIRreduced remains bounded, the quantity

xN rφ2sp1Z3
p
q2yreduced “ xN rφ2sp1Z3

p
q2yUV

reduced ` xN rφ2sp1Z3
p
q2yIRreduced

is strictly positive for ǫ small enough.

Provided κφ2 ­“ 0 we can then impose by definition

Y2 “ |κφ2 |´1 ˆ
!

xN rφ2sp1Z3
p
q2yreduced

)´ 1

2

and thus force the normalization

xN rφ2sp1Z3
p
q2y “ 1.

We now address the issue of showing κφ2 ­“ 0. While most of the proof so far relied on quantitative

estimates, here we had to use a more qualitative approach. This is because of the slow convergence to the
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fixed point on the stable manifold and the fact that we do not have much freedom of choice for our starting

point v. The latter has to be on the R “ 0 bare surface and therefore we cannot choose it as close to v˚ as

we would like to.

Recall that W s,loc
int is parametrized as

v1 ÞÑ pv1, µspv1qq

for ||v1|| ă ρ

13
in E1. For v P W s,loc

int we consider the tangent space TvW
s defined as the kernel of the linear

form

pw1, w2q ÞÑ w2 ´Dv1µsrw1s

via the identification E2 » C.

This linear form is continuous and does not vanish identically, so TvW
s is a closed complex hyperplane

in E . If w P E satisfies w R TvW s then we have a direct sum decomposition E “ C ‘ TvW
s.

We have the following infinitesimal version of Parts 1) and Parts 2) of Lemma 3.17 and Lemma 3.18.

Lemma 3.36. For all v P W s,loc
int we have:

1) for all w P E,

||pDvRGrwsq1|| ď c1pǫq||w||

2) for all w P E, such that L
3

4 ||w2|| ě ||w1||,

||pDvRGrwsq2|| ě c2pǫq||w||

3) for all w P TvW s,

||w1|| ě L
3

4 ||w2|| .

Proof: Consider the complex curve γptq “ v ` tw for t small which ensures that Γptq P B̄
`
0, 1

8

˘
. Lemma

3.17 Part 1) implies

||RG1pγptqq ´RG1pγp0qq|| ď c1pǫq||tw||.

Dividing by |t| and taking t Ñ 0 we immediately get ||pDvpRGrwsq1|| ď c1pǫq||w||.
Now if L

3

4 ||w2|| ě ||w1|| then we have

L
3

4 ||γptq2 ´ γp0q2|| ě ||γptq1 ´ γp0q1||

and thus
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||RG2pγptqq ´RG2pγp0qq|| ě c2pǫq||tw||

by Lemma 3.17 Part 2). Taking the t Ñ 0 limit as before we obtain

||pDvRGrwsq2|| ě c2pǫq||w||.

For the third part we use Lemma 3.18 to write

||pv1 ` tw1q ´ v1|| ě L
3

4 ||µspv1 ` tw1q ´ µspv1q||

for t small. Dividing by |t| and taking t Ñ 0 gives

||w1|| ě L
3

4 ||Dv1µsrw1s|| “ L
3

4 ||w2||

since w P TvW s.

Lemma 3.37. For all v P W s,loc
int and w P E we have the implication

L
3

4 ||w2|| ą ||w1|| ñ DvRGrws R TRGpvqW
s .

Proof: We proceed by contradiction. Suppose

L
3

4 ||w2|| ą ||w1|| and DvRGrws P TRGpvqW
s.

Then by Lemma 3.36 Parts 1), 2), 3) we have

c1pǫq||w|| ě ||pDvRGrwsq1||,

||pDvRGrwsq2|| ě c2pǫq||w||

and

||pDvRGrwsq1|| ě L
3

4 ||pDvRGrwsq2||

respectively. As a result

c1pǫq||w|| ě L
3

4 c2pǫq||w||.

But c1pǫq ă 1 ă L
3

4 c2pǫq so ||w|| “ 0 which contradicts the strict inequality L
3

4 ||w2|| ą ||w1||.

Lemma 3.38. For all v P W s,loc
int and w P TvW s

T1pvqrws P TRGpvqW
s
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and

T8pvqrws P Tv˚W
s .

Proof: Consider the curve t ÞÑ pv1 ` tw1, µspv1 ` tw1qq in W s,loc
int for t small. Using the fact that RG maps

W s,loc into W s,loc and the parametrization of W s,loc
int we have

RG2pv1 ` tw1, µspv1 ` tw1qq “ µs pRG1pv1 ` tw2, µspv1 ` tw1qqq .

Differentiating this at t “ 0 gives

pDvRGrpw1, Dv1µsrw1sqsq2 “ DRG1pvqµs rpDvRGrpw1, Dv1µsrw1sqsq1s ,

i.e.,

pDvRGrwsq2 “ DRG1pvqµs rpDvRGrwsq1s .

Hence DvRGrws belongs to TRGpvqW
s and so does T1pvqrws “ α´1

u DvRGrws.
By iteration this immediately implies

Tnpvqrws P TRGnpvqW
s

for all integer n ě 0.

Namely, we have

pTnpvqrwsq2 “ DpRGnpvqq
1
µs rpTnpvqrwsq1s .

Using continuity, the remark following Lemma 3.23, and the fact that RGnpvq Ñ v˚, we can take the

n Ñ 8 limit in the previous equality and obtain

pT8pvqrwsq2 “ Dv˚,1
µs rpT8pvqrwsq1s .

This proves T8pvqrws P Tv˚W
s “ Es by definition of Es.

Lemma 3.39. For all v P W s,loc
int and w P TvW s

D0Ψvrws “ 0,

where the differential is with respect to the w variable at w “ 0 for the function Ψvp‚q “ Ψpv, ‚q.

Proof: By Theorem 3.3 Part 5)

Ψv “ Ψv˚ ˝ T8pvq

and thus by the chain rule
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D0Ψvrws “ D0Ψv˚ rT8pvqrwss .

However by the previous lemma T8pvqrws P Es so PuT8pvqrws “ 0. But we also have PsT8pvqrws “ 0 as

a follow up to Lemma 3.23.

As a result, T8pvqrws “ 0 and consequently D0Ψvrws “ 0.

Lemma 3.40. For all v P W s,loc
int , if D0Ψv “ 0 then D0ΨRGpvq “ 0.

Proof: By Theorem 3.3 Part 4)

Ψv “ ΨRGpvq ˝ T1pvq

near w “ 0. Differentiating at zero gives

D0Ψv “ D0ΨRGpvq ˝ T1pvq. (3.94)

Pick some vector u P E satisfying the hypothesis of lemma 3.37. For instance eφ2 works since L
3

4 ||eφ2,2|| “
L

3

4 ḡ´2 ą ||eφ2,1|| “ 0. By the same lemma T1pvqrus R TRGpvqW
s and therefore E “ CT1pvqrus ‘ TRGpvqW

s.

Let w P E . We decompose it as w “ λT1pvqrus ` w1 with w1 P TRGpvqW
s. Then by (3.94):

D0ΨRGpvqrws “λD0Ψvrus `D0ΨRGpvqrw1s
“0

by the hypothesis and the previous lemma for RGpvq instead of v. Hence the differential D0ΨRGpvq van-

ishes.

Iterating the last lemma we see that if D˚Ψv “ 0 then D0ΨRGnpvq “ 0 for all n ě 0. By the joint

analyticity in Theorem 3.3 we can take the n Ñ 8 limit which gives D0Ψv˚ “ 0 and therefore

d

dz

ˇ̌
ˇ
z“0

Ψv˚ pzeuq “ 0

which contradicts (3.91) and eu ‰ 0.

We have proved D0Ψv ­“ 0 for all v P W s,loc
int . Now since eφ2 satisfies L

3

4 ||eφ2,2|| ą ||eφ2,1|| we know that

eφ2 R TvW s by Lemma 3.36. Thus E “ Ceφ2 ‘ TvW
s.

Recall that D0Ψv “ D0Ψv˚ ˝ T8pvq so D0Ψvreφ2s “ κφ2D0Ψv˚ reus by definition of κφ2 . If the latter

vanishes then D0Ψv vanishes on Ceφ2 and therefore on all of E by Lemma 3.39. This contradicts D0Ψv ­“ 0.

We have now finally proved κφ2 ­“ 0.

The remaining item to be settled is the mini-universality result but this should be clear at this point: the

generating function ST pf̃ , j̃q does not depend on the starting point v “ pg ´ ḡ, µcpgq, 0q P W s,loc
int for the RG

iterations. Indeed using Ψv “ Ψv˚ ˝T8pvq we see that the effect of v is entirely in the multiplying factor κφ2
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which however always comes in the combination Y2κφ2 . By our choice of normalization, Y2κφ2 is defined in

terms of the reduced N rφ2s two-point function which only involves data at the fixed point v˚.

206



Chapter 4

Proving Full Scale Invariance

4.1 General Strategy for Proving Scale Invariance

The goal of this section is to prove a stronger version of Theorem 3.1 where we are promised full scale

invariance for our constructed measures νφ and νφ2 instead of scale invariance with respect to powers of L

- in particular we would want statement 2) of that theorem to hold for all λ P pZ instead of just for λ P LZ

(here we see pZ and LZ as subsets of Qp).

There are two main limitations of our RG approach in Chapter 3 that prevent it from establishing full

scale invariance: [i] The granularity of the scale invariance that the RG analysis gives us is directly determined

by the range of length scales we integrate in a single RG step (which is what L represents) , [ii] L governs

the contraction of irrelevant parameters and must be taken sufficiently large to defeat various combinatorial

factors, i.e. we can’t expect to be able to take L “ p in the previous RG construction.

To prove a stronger scale invariance property we proceed somewhat indirectly - we will show that the

measures νφ and νφ2 produced by the RG construction do not actually depend on one’s choice of L.

Throughout this section p will return to its rightful place as the fundamental length scale and accordingly

our scale indices will be given in terms of p. Given ǫ ą 0 we define C´8 as in Chapter 3,

Ĉ´8pkq “ 1

|k| 3`ǫ
2

.

and for r P Z we (re)-define the covariance Cr with UV cut-off at scale r by

Ĉrpkq “ 1 t|k| ď p´ru
|k| 3`ǫ

2

. We remark that µCr
is supported on a subspace of functions inside SpQ3

pq, in particular a subspace of

functions constant over the translates of p´rZ3
p.

We denote by Λs the set p´sZ3
p, i.e. all those x P Λs with |x| ď ps. For given parameters g ą 0 and
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µ,Z0, Y0, Z2, Y2, P R we define

Zr,spf̃ , j̃q “
ż

S1pQ3
pq

dµCr
pφ̃q exp

„
´
ż

Λs

d3x p´ǫrg : φ̃4pxq :Cr
`p´ p3`ǫq

2
rµ : φ̃2pxq :Cr

´φ̃pxqf̃pxq ´Nrrφ̃2spxqj̃pxq


where f̃ , j̃ P SpQ3
p,Cq and we have set

Nrrφ2spxq “ Zr2Y2 : φ2pxq :Cr
´Y0Zr0 .

We also define the moment generating functions

Sr,spf̃ , j̃q :“
Zr,spf̃ , j̃q
Zr,sp0, 0q .

In Chapter 3 we fixed L “ pl for l a positive integer and established control over the limit

lim
rÑ´8
sÑ8

Slr,lspf̃ , j̃q

for appropriately small f̃ , j̃.

By paying attention to the quantifiers used in the statement of Theorem 3.1 it is not hard to see that

given various distinct values of L (each sufficently large) - it is possible to find a small enough ǫ0 such that

for every fixed ǫ P p0, ǫ0s we can apply Theorem 3.1 for this value of ǫ simultaneously for two distinct values

l1 and l2 for l, we state this corollary of Theorem 3.1 below.

Corollary 4.1.

Dρ ą 0, Dl0 a positive integer, such that @ positive integers l1, l2 ě l0, Dǫ0 ą 0, @ǫ P p0, ǫ0s, such that for

i “ 1, 2 one can find ηφ2,i ą 0 and functions µipgq, Y0,ipgq, Y2,ipgq of g in the intervals pḡ˚,i´ρǫ
3

2 , ḡ˚,i`ρǫ
3

2 q,
where

ḡ˚,i “ pǫ ´ 1

36pliǫp1 ´ p´3q , (4.1)

such that if one sets µ “ µipgq, Z2 “ p´ 1

2
ηφ2,i , Y0 “ Y0,ipgq and Y2 “ Y2,ipgq in the previous definitions,

then for all collections of test functions f1, . . . , fn, j1, . . . , jm, the limits

@
φpf1q ¨ ¨ ¨φpfnqN rφ2spj1q ¨ ¨ ¨N rφ2spjmq

D
i

:“ lim
rÑ´8
sÑ8

@
φpf1q ¨ ¨ ¨φpfnqNrrφ2spj1q ¨ ¨ ¨Nrrφ2spjmq

D
r,s,i

exist and do not depend on the order in which the r Ñ ´8 and s Ñ 8 limits are taken. Here for an integer

n P Z we set n “ n ˆ l1 ˆ l2. The correlators x‚yr,s,i correspond to those given by functional derivatives of

the quantity Sr,s,ipf̃ , j̃q where this quantity is defined with the parameters with subscript i.

Moreover, the the limiting correlators satisfy the following properties:

1) They are left invariant by any translations or rotations of all the test functions f1, . . . , fm, j1, . . . , jm.
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2) They satisfy the partial scale invariance property

@
φ pSλf1q ¨ ¨ ¨φ pSλfnq N rφ2s pSλj1q ¨ ¨ ¨N rφ2s pSλjmq

D
i

“

|λ|p3´rφsqn`p3´2rφs´ 1

2
ηφ2 qm

p

@
φpf1q ¨ ¨ ¨φpfnq N rφ2spj1q ¨ ¨ ¨N rφ2spjmq

D
i

for all λ P pliZ.
3) They satisfy the nontriviality conditions

xφp1Z3
p
q4yi ´ 3xφp1Z3

p
q2yi ă 0 ,

xN rφ2sp1Z3
p
q2yi “ 1 .

4) The pure φ correlators with subscript i are the moments of a unique probability measure νφ,i on S
1pQ3

pq
with finite moments. This measure is translation and rotation invariant. It is also partially scale invariant

with scaling parameter rφs with respect to the scaling subgroup pliZ - i.e.
´

|λ|´rφs
p Ŝλ

¯#

νφ,i “ νφ,i for all

λ P pliZ
5) The pure N rφ2s correlators with subscript i are the moments of a unique probability measure νφ2,i on

S1pQ3
pq with finite moments. This measure is translation and rotation invariant. It is also partially scale in-

variant with scaling parameter 2rφs` 1
2
ηφ2 with respect to the scaling subgroup pliZ - i.e.

ˆ
|λ|´p2rφs` 1

2
ηφ2 q

p Ŝλ

˙#

νφ2,i “

νφ2,i for all λ P pliZ
6) For each i the measures νφ,i and νφ2,i satisfy a mild form of universality: they do not depend on the

choice of g in the above-mentioned interval.

Note that in the above corollary we introduced the notation ¨ for scale indices so we can work along a

subsequence of cut-offs for which we are guaranteed convergence for both RG constructions.

If we make a choice of the form l1 “ l ą l0 and l2 “ l ` 1 in Corollary 4.1 then proving that

νφ,1 “ νφ,2 and νφ2,1 “ νφ2,2 (4.2)

would show that the above measures are fully scale invariant - this follows since the subgroups plZ and ppl`1qZ

together generate the full scaling group pZ.

A crucial fact for our approach to proving this is that with the given choices of l1 and l2 one has

|ḡ˚,2 ´ ḡ˚,1| “ p´pl´1qǫ

36p1 ´ p´3q
`
1 ´ p´ǫ˘2

ďOpǫ2q

so for ǫ sufficently small one has non-empty interval of intersection of domains for g:

pḡ˚,1 ´ ρǫ
3

2 , ḡ˚,1 ` ρǫ
3

2 q X pḡ˚,2 ´ ρǫ
3

2 , ḡ˚,2 ` ρǫ
3

2 q “ Iǫ,l ­“ H.

Our method of proving (4.2) hinges on showing that the functions µ1pgq and µ2pgq must coincide on the

interval Iǫ,l - i.e. the bare slice of the two stable manifolds delivered by each RG constructions must agree

209



on their common domain of definition.

We show that µ1pgq “ µ2pgq immediately implies that νφ,1 “ νφ,2. If one chooses g P Iǫ,l then it is

immediate that for all test functions f̃ and r, s P Z

Sr,s,1pf̃ , 0q “ Sr,s,2pf̃ , 0q

and so

xφpf1q ¨ ¨ ¨φpfnqyr,s,1 “ xφpf1q ¨ ¨ ¨φpfnqyr,s,2 .

The assertion follows by taking the limit r Ñ ´8, s Ñ 8.

We now show how the equality µ1pgq “ µ2pgq implies the coinciding of measures νφ2,1 “ νφ2,2. The key

observation here is that the multiplicative renormalizations Z2,i must be chosen precisely in order to avoid

having a degenerate law for either composite field. To see this it is convenient to look at Nrrφ2s cumulants

for the cut-off measures. Observe that

xN rφ2sp1Z3
p
q, N rφ2sp1Z3

p
qyTr,s,1 “

ˆ
Y2,1pgq
Y2,2pgq

˙2

ˆ
ˆ
Z2,1

Z2,2

˙2rlpl`1q
xN rφ2sp1Z3

p
q2yr,s,2.

One must have Z2,1, Z2,2, Y2,1pgq, Y2,2pgq ­“ 0, otherwise this would lead to a degenerate law for a composite

field. In particular the RG construction fixes Z2,i “ L´ 3`ǫ
2 αu,i ­“ 0 and in section 3.11.2 it is shown we

choose the Y2,i in a way that guarantees they are non-vanishing. Now remembering that

lim
rÑ´8
sÑ8

xN rφ2sp1Z3
p
q, N rφ2sp1Z3

p
qyTr,s,1 “ lim

rÑ´8
sÑ8

xN rφ2sp1Z3
p
q, N rφ2sp1Z3

p
qyTr,s,2 “ 1

one sees that it must be the case that

lim
rÑ´8

ˆ
Y2,1pgq
Y2,2pgq

˙2

ˆ
ˆ
Z2,1

Z2,2

˙2rlpl`1q
“ 1

from which it follows that Y2,1pgq “ Y2,2pgq and Z2,1 “ Z2,2. With this in hand it is immediate that all

cumulants of order higher than 1 for the cut-off measures coincide (the point here being that the choice of

parameters Z0,i, Y0,ipgq only influences the order 1 cumulants, i.e. the first moment). Since Theorem 3.1

asserts that the first moment of our constructed composite fields must vanish it follows that all cumulants of

νφ2,1 and νφ2,2 coincide. We remark that this shows equality of the anomalous dimensions, i.e ηφ2,1 “ ηφ2,2.

4.2 Formulation as Statistical Mechanics

We accomplish proving that µ1pgq “ µ2pgq for g P Iǫ,l by recasting this as a problem of statistical mechanics.

In what follows we will sometimes make the dependence of the measures νr,s on g, µ explicit by writing

νr,srg, µs.
In Theorem 3.1 the measure νφ was realized as a limit in the sense of moments of measures νjr,jsrg, µpgqs

on SpQ3
pq for some L “ pj where we took r Ñ ´8, s Ñ 8, removing the UV cut-off and the IR cut-off

respectively. A key point is that our RG machinery, without any real changes, can show the convergence of

the measures limsÑ8 ν0,jsrg, µpgqs to a limiting measure ν0,8rg, µpgqs.
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When we keep r “ 0 fixed the measures ν0,s are supported on functions constant over the the blocks

of L. Equivalently we can see the measures ν0,s as living on RL equipped with its cylinder set σ-algebra.

Remembering that L can be thought of as the “integer lattice” corresponding to Q3
p one can interpret the

elements of RL as lattice field configurations tφxuxPL. Later on we will focus more on the finite volume

marginal of ν0,s on RΛs where we overload notation and define Λs :“ tx P L| |x| ď psu.
We will view the measures ν0,s as models of statistical mechanics, in particular Ising models with un-

bounded spins. The limit s Ñ 8 with r fixed to be 0 corresponds to taking what is sometimes called a

thermodynamic limit in statistical mechanics. Taking the limit r Ñ ´8 afterwards then correspond to a

scaling limit or continuum limit. This latter fact is a consequence of the observation that if φ is distributed

according to νr,s then p´rφsφpp¨q is distributed according to νr´1,s´1.

4.3 Ising Models and some fundamental correlation inequalities

We now introduce some definitions, followed by proving some fundamental correlation inequalities that will

be needed later.

We also introduce some new notation: for any set X we denote by Xp2q the set of all two element subsets

of X.

Definition. For any finite set Λ a classical Ising model on Λ is a measure on the space of spin configu-

rations σΛ “ tσxuxPΛ P t´1, 1uΛ of the following form:

x„y “ 1

Z

ÿ

σΛPt´1,1uΛ
„ exp

»
– ÿ

tx,yuPΛp2q

Jtx,yuσxσy `
ÿ

xPΛ
hxσx

fi
fl

We will call tJtx,yuutx,yuPΛp2q the interaction and thxuxPΛ the external field. If in the above definition

Jtx,yu ě 0 for all tx, yu P Λp2q and hx ě 0 for all x P Λ we call the system a classical Ising ferromagnet.

Definition. For any finite set Λ a generalized Ising model on Λ is a measure on the space of spin

configurations φΛ “ tφxuxPΛ P RΛ of the following form:

x„y “ 1

Z

ż

RΛ

„ exp

»
– ÿ

tx,yuPΛp2q

Jx,yφxφy `
ÿ

xPΛ
hxφx

fi
flź

xPΛ
dρpφxq

We require that the single site spin measure dρ be even, not have an atom at 0, and to also satisfy the

following integrability condition:

ż

R

eαs
2

dρpsq ă 8 for any α P R (4.3)

We will use the notation dρΛpφΛq to represent the product measure
ź

xPΛ
dρpφxq.

If in the above definition Jtx,yu ě 0 for all tx, yu P Λp2q and hx ě 0 for all x P Λ we call the system a

generalized Ising ferromagnet.
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Note that with the definitions above any classical ferromagnetic Ising model is also a generalized ferro-

magnetic Ising model.

In most versions of the above definitions one sees prefactor β P r0,8q for the interaction tJtx,yuutx,yuPΛp2q

which is called the inverse temperature but for now we absorb it into our definition of the interaction, however

we will re-introduce it as a parameter later.

We can also absorb “boundary condition” prescriptions into the above definition, absorbing them into the

external field. Note that a ferromagnetic system under the influence of sufficiently summable non-negative

boundary configuration is again ferromagnetic - the boundary spins give a non-negative contributions to the

external field th1
xuxPΛ “ třyRΛ Jx,ySyuxPΛ where SΛc represents the vector of external spins.

The first correlation inequalities we give are the first and second Griffiths’ Inequalities which apply to all

generalized ferromagnetic Ising models.

The following lemma is taken from [44] and is based on the approach of [33].

Lemma 4.1. Let dρ be an even measure on R with all moments finite. Suppose that fαpsq, α “ 1, ..., n are

odd monotone non-decreasing polynomially bounded functions of s P R. Let Qps, s1q be a bounded symmetric,

even, non-negative function of s, s1 P R (that is Qps, s1q “ Qps1, sq “ Qp´s,´s1q ě 0)

Then for any collection of non-negative integers kα, lα one has the following inequality:

M “
ż

R

dρpsq
ż

R

dρps1q
nź

α“1

“
fαpsq ´ fαps1q

‰kα “
fαpsq ` fαps1q

‰lα
Qps, s1q ě 0. (4.4)

Proof: Case 1: Suppose both
ř
α kα and

ř
α lα are even.

By the assumption of monotonicity if s ě s1 then for all α the quantity fαpsq ´ fαps1q ě 0, while if s ď s1

then the quantity fαpsq ´ fαps1q ď 0. In either case we have that

nź

α“1

“
fαpsq ´ fαps1q

‰kα ě 0.

This follows since the product above is either zero or has an even number of terms of the same sign. Using

the fact that the fα are odd we can use the same reasoning when looking at fαpsq`fαps1q “ fαpsq´fαp´s1q,
the terms are of the same sign when s ě ´s1 or s ď ´s. Hence the entire integrand is non-negative.

Case 2: Suppose
ř
α kα is odd. Then by changing variables s Ø s1 one sees that M “ p´1q

ř
α kαM so M

vanishes.

Case 3: Suppose
ř
α kα is even but

ř
α lα is odd. Then by changing variables s Ø ´s and s1 Ø ´s1 one has

M “ p´1q
ř

αpkα`lαqM so again M vanishes.

Theorem 4.1. For any generalized ferromagnetic Ising model on Λ one has the following inequalities:

For any multi-index A supported on Λ

@
φA

D
ě 0. (Griffiths I)
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For any multi-indices A and B supported on Λ one has:

@
φAφB

D
´
@
φA

D @
φB

D
ě 0. (Griffiths II)

Proof: We start with Griffiths I. Note that

ż

RΛ

dµΛpφΛqφA “ Z´1

ż

RΛ

¨
˝

8ÿ

n“0

1

n!

»
–
¨
˝ ÿ

tx,yuPΛp2q

Jx,yφxφy

˛
‚`

˜ÿ

xPΛ
hxφx

¸fi
fl
n˛
‚φAdρΛpφΛq.

One can expand the various products and sums and interchange the summation with the integration over

φΛ (this interchange is allowed due to the integrability condition on dρ). One will then have an expression

of the form:

ÿ

BPNΛ

cB

ż

RΛ

φBdρΛpφΛq.

The coefficients cB will all be non-negative (this follows because Jt¨,¨u, h¨ ě 0, Z ą 0). Since dρ is even

all the above moments will be positive or vanish. Thus sum must be non-negative - this proves Griffiths I.

To prove Griffiths II we introduce duplicate sets of variables φΛ and ψΛ each distributed according to

µΛ. Griffiths II will follow if we show:

ż

RΛ

dµΛpφΛq
ż

RΛ

dµΛpψΛq
`
φA ´ ψA

˘ `
φB ´ ψB

˘
ě 0.

We rewrite the left hand side:

Z´2

ż

RΛ

dρΛpφΛq
ż

RΛ

dρΛpψΛq
¨
˝

8ÿ

n“0

1

n!

»
–
¨
˝ ÿ

tx,yuPΛp2q

Jx,y pφxφy ` ψxψyq

˛
‚`

˜ÿ

xPΛ
hx pφx ` ψxq

¸fi
fl
n

ˆ
`
φA ´ ψB

˘
ˆ
`
φB ´ ψB

˘
˛
‚.

(4.5)

We now make use of the following identity:

paiaj ` bibjq “ 1

2
rpai ` biq paj ´ bjq ` pai ´ biq paj ` bjqs . (4.6)

Using this one can write:

Jx,y pφxφy ` ψxψyq “ 1

2
Jx,y rpφx ` ψxq pφy ´ ψyq ` pφx ´ ψxq pφy ` ψyqs .

We insert this expression into (4.5), then interchange the summation over n with the integration over

RL ˆ RL (valid by Fubini-Tonelli), and also expand out the n-fold product. We will be left with an infinite

sum of integrals. Every integral in the sum will have a non-negative coefficient since Jt¨,¨u, h¨ ě 0 and Z ą 0.
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The integrals in the sum will have an integrand built up out of products of the form pφx ´ ψxq and

pφy ` ψyq. Thus each of the integrals appearing in this sum can be factorized into a product of pairs of

double integrals - each pair corresponding to a particular lattice site - these factors will take the following

form:

ż

R

dρpφxq
ż

R

dρpψxq pφx ` ψxqk pφx ´ ψxql .

These double integrals are of the form (4.4) where Qp¨, ¨q “ 1 and fαpsq “ s. Thus each of the integral

factors is non-negative which means (4.5) is non-negative.

We note that Griffiths II tells us that for Ising ferromagnets the expectation of moments is non-decreasing

under an increase in the interaction or the external field. More concretely if µ is an Ising ferromagnet on Λ

then for any tx, yu P Λp2q one has:

B
BJtx,yu

xφAy
µp ~J,~hq “ xφAφxφyy

µp ~J,~hq ´ xφAy
µp ~J,~hqxφxφyy

µp ~J,~hq ě 0.

In particular Griffiths II proves that for a fixed interaction the expectations of moments are non-decreasing

as one takes a larger volume. For example let Λ1 Ă Λ2 and let tJtx,yuutx,yuPΛp2q
2

be a ferromagnetic interac-

tion. Suppose we have two models, x„yΛ2
defined over Λ2 with the given interaction and x„yΛ1

defined over

Λ1 with the restriction of the same interaction to bonds in Λ1. However x„yΛ1
can be seen a modified ver-

sion of tJtx,yuutx,yuPΛp2q
2

where the interaction has been set to zero for bonds that don’t have both endpoints

within Λ1. Thus by Griffiths II one has xφAyΛ1
ď xφAyΛ2

. This will allow us to use Griffiths II to help us

establish the existence of infinite volume limits of finite volume Ising models.

The next three results we give hold for classical Ising ferromagnets and a proper subset of generalized

Ising ferromagnets. We will state these results for classical Ising ferromagnets and refer to the literature for

their proofs. After explaining the Griffiths-Simons approximation we will show that these carry over to the

continuous spin models of interest.

Theorem 4.2. For any classical Ising ferromagnet on Λ and any i, j, k P Λ one has

xσi, σj , σkyT :“xσiσjσky ´ xσiyxσjσky ´ xσjyxσiσky ´ xσkyxσiσjy ` 2xσiyxσjyxσky
ď 0

(GHS)

Proof: This is known as the Griffiths-Hurst-Sherman Inequality, the original proof can be found in [36].

Theorem 4.3. Let Λ be a finite set and let tJtx,yuutx,yuPΛp2q be a ferromagnetic interaction, that is Jt¨,¨u ě 0.

Define the function ZΛphΛq as follows:

ZΛphq “
ÿ

σΛPt´1,1uΛ
exp

»
– ÿ

tx,yuPΛp2q

Jtx,yuσxσy `
ÿ

xPΛ
hxσx

fi
fl .
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Then if ZΛphΛq is viewed as a function of hΛ P CΛ one has that ZΛphΛq does not vanish if ℜphxq ­“ 0 for

any x P Λ.

Equivalently if x„y is the expectation for a classical Ising ferromagnet over a finite set Λ with zero external

field then the following expression

C
exp

˜ÿ

xPΛ
hxσx

¸G

does not vanish if ℜphxq ­“ 0 for any x P Λ.

Proof : This is the Lee-Yang Theorem which originated in the paper [46]. The second statement is equiva-

lent to the first since

C
exp

˜ÿ

xPΛ
hxσx

¸G
“ ZΛphΛq

ZΛp0q and ZΛp0q ą 0.

4.3.1 Griffiths-Simon Approximation

We now narrow our attention to the family of generalized Ising models that will be of main interest to us.

Definition: A φ4 model is on Λ is a generalized Ising model on Λ with a single site spin measure of the

following form:

dρpsq “ exp
“
´gs4 ´ bs2

‰
with g ą 0, s P R.

If the interaction and the field are non-negative then we call the model a ferromagnetic φ4 model.

The correlation inequalities of the previous subsection which were stated just for classical ferromagnetic

Ising models can be extended to ferromagnetic φ4 models via an approximation technique due to Griffiths

and Simon [65]. The method involves approximating the distribution dρ with the distribution of the mag-

netization (scaled) of a carefully chosen “mean-field” classical Ising model.

We give a few more details on structure of the approximation. Fix N to be a large positive integer. Each

point x P Λ will have a corresponding family of classical Ising spins tσpx,αquNα“1, we call this family a block.

Suppose that this family of spins are distributed according to the following measure:

1

Z

ÿ

tσpx,αquPt´1,1uN
¨ ¨ ¨ exp

«
dN

Nÿ

α,δ“1

σpx,αqσpx,δq

ff

where we defined dN “ p2Nq´1
”
1 ´ b p3gNq´ 1

2

ı
and b, g are given as above.

Define cN “
ˆ
N

6g

˙ 1

4

N´1. Then [65] shows the random variable φx “ cN
řN
α“1 σpx,αq will weakly con-

verge to a random variable distributed according to dρpsq “ exp
“
´gs4 ´ bs2

‰
(modulo normalization). In

fact the analysis of [65] proves a much stronger statement which we now describe. Below we use the notation
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rN s :“ t1, 2, . . . , N ´ 1, Nu.

For any function F in the components of φΛ “ tφxuxPΛ P RΛ we define θN pF q, a function of spin variables

tσpx,αqupx,αqPΛˆrNs as follows:

θN pF qpσΛˆrNsq “ F

˜#
Nÿ

α“1

cNσpx,αq

+

xPΛ

¸
.

For example if P is a polynomial in the components of φΛ P RΛ :

P pφΛq “
ÿ

APNΛ

PA
ź

xPΛ

”
φApxq
x

ı

then

θN pP qpσΛˆrNsq “
ÿ

APNΛ

PA
ź

xPΛ

»
–
˜
cN

Nÿ

α“1

σpx,αq

¸Apxqfi
fl .

With this notation in hand we state the Griffiths-Simon approximation theorem.

Theorem 4.4 ([65]). Suppose one is given a φ4 model µΛ on Λ defined in terms of an appropriate tJtx,yuutx,yuPΛp2q ,

thxuxPΛ, g, and b.

We define the measure µNΛ on RΛˆrNs as follows: For any function H on RΛˆrNs we have

xHyµN
Λ

“ 1

ZN

ÿ

σΛˆrNsPt´1,1uΛˆrNs

HpσΛˆrNsq exp
«ÿ

xPΛ

˜
dN

Nÿ

α,δ“1

σpx,αqσpx,δq

¸

`β
ÿ

tx,yuPΛp2q

Jtx,yu

˜
cN

Nÿ

α“1

σpx,αq

¸˜
cN

Nÿ

α“1

σpy,αq

¸
`

ÿ

xPΛ
hx

˜
cN

Nÿ

α“1

σpx,αq

¸fi
fl .

(4.7)

Suppose G is a measurable function on RΛ which can be dominated pointwise by a Gaussian, that is:

sup
φΛPRΛ

ˇ̌
ˇGpφΛqe´třxPΛ

φ2

x

ˇ̌
ˇ ă 8

for some t ě 0. Then one has

lim
NÑ8

xθN pGqyµN
Λ

“ xGyµΛ
. (4.8)

Proof: See Theorem 1 in [65]. .

Note that if x„yµΛ
is a φ4 ferromagnet then for sufficiently large N the model µNΛ is also ferromagnetic.

Whenever this approximation is applied in this paper we assume that N has been taken sufficiently large for

the above implication to hold.

Following [65] we immediately have the GHS inequality and Lee-Yang theorem for φ4 ferromagnets.
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Theorem 4.5. [GHS Inequality for φ4 ferromagnets] Let x¨yµΛ
be a ferromagnetic φ4 model over some set

Λ. Then for any x, y, z P Λ one has

xφx, φy, φzyTµΛ
ď 0

Proof:

The proof follows easily from the multi-linearity of the inequality, Theorem 4.4, and the knowledge that

this inequality holds for classical Ising ferromagnets (Theorem 4.2 ). We note that

xθN pφxq, θN pφyq, θN pφzqyT
µN
Λ

“ c3N

Nÿ

α,δ,γ“1

xσpx,αq, σpy,δq, σpz,γqyT
µN
Λ

ď 0.

The desired statement follows by taking the the N Ñ 8 limit. .

Theorem 4.6. [Lee-Yang Theorem for φ4 ferromagnets]

The function ZΛpg, b, β, hq does not vanish for h P C with ℜphq ­“ 0

Equivalently if x„yµΛ
is the expectation for a ferromagnetic φ4 model over a finite set Λ with zero external

field then the following expression

C
exp

«ÿ

xPΛ
hxφx

ffG

µΛ

(4.9)

does not vanish if ℜphxq ­“ 0 for any x P Λ.

In particular ZΛpg, b, β, hq does not vanish for h P C with ℜphq ­“ 0

Proof:

Note that if µΛ has then the same is true of its approximating classical Ising models µNΛ - this gives us

the equivalence mentioned above by using the same argument used in Theorem 4.3.

For any hΛ P CΛ

fN phΛq :“
A
θN

´
e
ř

xPΛ
hxφx

¯E
µN
Λ

We remark that the fN are analytic on CΛ.

By Theorem 4.4 we know that the fN converge to a limiting function f on CΛ as N Ñ 8 with f coinciding

with (4.9) for constant external fields hΛ “ h.

Now suppose that hΛ P CΛ with ℜphxq ą 0 for some x P Λ. Then by Theorem 4.3 one has:

fN phΛq “
A
θN

´
e
ř

xPΛ
hxφx

¯E
µN
Λ

“
C
exp

»
– ÿ

px,αqPΛˆrNs
cN ˆ hxσpx,αq

fi
fl
G

µN
Λ

ą 0.

Thus the functions fN are all non-vanishing on the open set U Ă CΛ consisting of all those hΛ P CΛ

which satisfy hx ą 0 for some x P Λ. We first check th
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We must now show f is non-vanishing on U . For this we will use Theorems 5.4 and 5.5 from the appendix.

For Theorem 5.4 all that remains to be shown is local uniform boundedness of the fN on U can be checked

fairly easily - for example using the bound

ˇ̌
ˇ̌
A
θN

´
e
ř

xPΛ
hxφx

¯E
µN
Λ

ˇ̌
ˇ̌ ď

A
θN

´
e
ř

xPΛ
|hx|ˆ|φx|

¯E
µN
Λ

and then observing that the righthand side converges to a finite value as N Ñ 8 by Theorem 4.4.

Theorem 5.5 then implies that the f is non-vanishing on U or f “ 0 on U . We now show f ­“ 0 on U ,

we show this now. Fix some arbitrary z P Λ and let h̃Λ P U be given by h̃z “ 1 and h̃x “ 0 for x ­“ z. Then

we have

fph̃Λq “
@
eφz

D
µΛ

“
8ÿ

n“0

1

n!
xφnz yµΛ

ě 1. (4.10)

The power series expansion is valid by Fubini-Tonelli and our integrability condition on the single site

measures dρ, the last inequality then follows by Griffiths First Inequality. .

4.4 Rewriting our measures as Ising models

4.4.1 Viewing the measures ν0,8 as critical Ising Models

A key difference between how one approaches classical spin systems in statistical mechanics versus models

in Euclidean Quantum Field Theory is that in the former the “reference measure” completely factorizes over

space and one proceeds to perturb this by some kind of interaction which couples different spins in regions

of space. In Euclidean Quantum Field Theory the reference measure is a Gaussian measure which couples

together fields in different regions of space and then one perturbs this by a product of local self-interactions.

Our first step in going from the latter setting to the former is writing our Gaussian as a two body

interaction. The covariance C0 : Q3
p ˆ Q3

p Ñ R is given by

C0px, yq “
ż

Q3
p

d3k
expr2πitk ¨ px´ yqups

|k|3´2rφs 1t|k| ď 1u

for x, y P Q3
p.

Since C0px, yq is locally constant over the blocks of L we can see it as function C0 : L ˆ L Ñ R and as

mentioned before C0 is also the covariance for a Gaussian measure µC0
on the product space RL.

By restriction C0 defines a p3s ˆ p3s matrix indexed by the elements of Λs which we call M , where the

matrix entries for x, y P Λs are given by

Mx,y “ C0px´ yq.

The matrix Mx,y is clearly symmetric, we now analyze it further.

We note that the complex vector space CΛs can be canonically identified with S0,spQ3
p,Cq of section 1.2

and one can check that M can be seen as a linear operator S0,spQ3
p,Cq Ñ S0,spQ3

p,Cq. The standard basis of

CΛs can be identified with indicator functions of translates of Z3
p in Proposition 1.6 we also give a Fourier
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basis of S0,spQ3
p,Cq. One can easily checkM is diagonal in that Fourier basis. In particular for fixed k P I´s,0

the function

p´ 3s
2 1p´sZ3

p
pxq exp r2πitk ¨ xups

is an eigenvector for M with eigenvalue

p3s ˆ
ż

k`psZ3
p

d3k1 |k1|´p3´2rφsq. (4.11)

For this computation all one needs to do is write Mpx ´ yq “ Cpx ´ yq ˆ 1p´sZ3
p
pxq ˆ 1p´sZ3

p
pyq and use

standard facts about convolutions and Fourier transforms. In particular for k P I´s,0 one has

ż

Q3
p

d3y Mpx´ yqp 3s
2 1p´sZ3

p
pyq exp r2πitk ¨ yups

“ p´ 3s
2 1p´sZ3

p
pxq ˆ

ż

Q3
p

d3y Cpx´ yq1p´sZ3
p
pyq exp r2πitk ¨ yups

“ p´ 3s
2 1p´sZ3

p
pxq ˆ

ż

Q3
p

d3k1 exp
“
2πitk1 ¨ xup

‰
ˆ |k1|´p3´2rφsq ˆ p3s1k`psZ3

p
pk1q

“ p
´3s
2 1p´sZ3

p
pxq ˆ exp r2πitk ¨ xups ˆ p3s

ż

Q3
p

d3k1 |k1|´p3´2rφsq1k`psZ3
p
pk1q

(4.12)

In going from the second to third line we rewrote the convolution of functions f, g as the inverse Fourier

transform (with the fourier variable being k1) of f̂ ˆ ĝ. In particular for k P I´s,0 and any k1 P Q3
p one has

ż

Q3
p

d3y exp r´2πitk ¨ yups ˆ 1p´sZ3
p
pyq exp r2πitk ¨ yups “ p3s1Zd

p

`
p´spk ´ k1q

˘
“ p3s1k`psZd

p
pk1q.

In going to the last line from the second to last line of (4.12) we remark that if x P p´sZ3
p, and |k1 ´k| ď p´s

then tpk ´ k1q ¨ xup is an integer which means

exp
“
2πitk1 ¨ xup

‰
“ exp r2πitk ¨ xups .

One way to think about the integral in (4.11) is that when working in a finite box p´sZdp the fourier modes

exp r2πitk ¨ xups get replaced with averaged (in k) modes - each average occuring over a translate of psZdp.

In some sense this means makes the infrared cut-off “dual” to the UV cut-off - in the UV cut-off we are

essentially replacing our field with one locally averaged in position space while for the infrared cut-off we are

in some sense locally averaging in momentum space. We now end this aside and pick up from where we left

off.

This computation of eigenvalues and eigenvectors makes it clear thatM is positive definite and invertible

- it also gives us a method of computing the inverse of M which we denote by A. After some computations

one sees the matrix entry Ax,y for x, y P Λs is given by

Apsq
x,y “ ´ pp3´2rφs ´ 1q2

p1 ´ p´3qpp6´2rφs ´ 1q ˆ p´sp6´2rφsq ` Gpx´ yq (4.13)
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where G is a function G : Q3
p Ñ R which is constant on translates over the blocks of ∆ given by

Gpxq “
ż

Q3
p

d3k expr2πitk ¨ xups ˆ 1t|k| ď 1u ˆ |k|
3´2rφs

2 .

In particular

Gp0q “ p3´2rφspp3 ´ 1q
p6´2rφs ´ 1

ą 0

Gpxq “ ´ p3´2rφs

1 ´ p´p6´2rφsq ˆ 1

|x|6´2rφs for x ­“ 0

(4.14)

Note that in (4.13) the local constancy of G makes the function Gpx, yq “ Gpx´ yq well defined for x, y P L.

G can be thought of as a formal matrix inverse for C0.

M is the covariance matrix for the marginal of µC0
on RΛs , this marginal is absolutely continuous with

respect to the Lebesgue measure on RΛs and one has

dµC0
pφΛs

q “ 1a
p2πq|Λs| detpMq

exp

«
´1

2

ÿ

x,yPΛs

Apsq
x,yφxφy

ff ź

xPΛs

dφx.

Here φΛs
denotes the vector of components tφxuxPΛs

and dφx denotes Lebesgue measure. Note that A
psq
x,y is

invariant under translation by elements in Λs and accordingly we will sometimes write Apsqpx ´ yq “ A
psq
x,y.

Now for given parameters g, µ one has that the RΛs marginal of ν0,srg, µs is given by

dν0,spφΛsq “ 1

Z

˜ ź

xPΛs

exp
“
´g : φ4x :C0

´µ : φ2x :C0

‰
¸
dµC0

pφΛs
q

“ 1

Z 1 exp

»
——–´1

2

ÿ

x,yPΛs

x ­“y

Apsqpx´ yqφxφy

fi
ffiffifl

˜ ź

xPΛs

exp
“
´gφ4x ´ bφ2x

‰
dφx

¸ (4.15)

where we have undone the Wick ordering and absorbed the diagonal part of the Gaussian into the single site

measure- and above we have set

b “ ´6C0p0qg ` µ` 1

2
Apsqp0q

and Z and Z 1 are just normalization factors. This realizes ν0,spφΛsqrg, µs as the law of a generalized Ising

ferromagnet in zero external field- for distinct x, y P Λs one has Jtx,yu “ ´Aspx ´ yq ě 0 and dρpφxq “
exp

“
´aφ4x ´ bφ2x

‰
dφx.

We refer back to Corollary 4.1 specializing to the scenario where l1 “ l and l2 “ l` 1 in a small ǫ regime

where Iǫ,l is non-empty. We then have, as a consequence of our RG analysis, the convergence of measures

(in the sense of moments)

lim
sÑ8

ν0,srg, µipgqs :“ ν0,8rg, µipgqs (4.16)

for g P Iǫ,l.
We remark that for i “ 1, 2 the measures ν0,8rg, µipgqs on RL are translation invariant, rotation in-
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variant, invariant under global spin flips tφxuxPL Ø t´φxuxPL, and have exponentially integrable finite

dimensional marginals - the last fact being another consequence of the RG analysis. We also remark that

since ν0,8rg, µipgqs can be realized as the infinite volume limit of ising ferromagnets the Griffith’s inequality

hold for these measures.

The key observation is that the infinite volume measures ν0,8rg, µipgqs both corresponding to Ising models

“at criticality” - that is they have pair correlations that decay to 0 but are not summable. These facts follow

from the fact that these Ising models have non-degenerate scaling limits. We give more details on the last

comment.

We can (re)identify the measures ν0,8rg, µipgqs on RL as measures on S1pQ3
pq by identifying tφxuxPL with

the element of S1pQ3
pq given by the function

φpyq “
ÿ

∆PL

φ∆1∆pyq (4.17)

where 1∆ : Q3
p Ñ R is the indicator function for the unit block ∆. With this convention if φ is a random

element of S1pQ3
pq distributed according to the measure ν0,8rg, µipgqs then one has that the law of

lim
rÑ´8

p´rφsrφppr ‚q

converges in the sense of moments to the law of νi,φ.

In particular the law of p´rφsrφppr ‚q with φ distributed according to ν0,8rg, µipgqs is the same as

νr,8rg, µipgqs :“ limsÑ8 νr,s where νr,s is defined with the parameters g and µipgq. With this in mind we

have the following lemma (note that below we write νi to denote νi,φ).

Lemma 4.2. The measures ν0,8rg, µipgqs, with i “ 1 or 2 both satisfy the following conditions

ÿ

xPL

xφ0φxyν0,8rg,µipgqs “ 8 (4.18)

and

inf
xPL

xφ0φxyν0,8rg,µipgqs “ 0. (4.19)

Proof:

We first prove (4.18). By Corollary 4.1 one has

ci :“
ż

S1pQ3
pq
dνipφq φp1Z3

p
q2 ą 0
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Now using that νi can be realized as scaling limits of the ν0,8rg, µipgqs one has

ci “ lim
nÑ8

ż

S1pQ3
pq
dν0,8rg, µipgqspφq

˜ż

Q3
p

d3y prφslpl`1qnφpp´npl`1qlyq 1Z3
p
pyq

¸2

“ lim
nÑ8

pp´6`2rφsqlpl`1qn
ż

S1pQ3
pq
dν0,8rg, µipgqspφq

˜ż

Q3
p

d3y φpyq 1p´npl`1qlZ3
p
pyq

¸2

“ lim
nÑ8

pp6´2rφsqlpl`1qn
C¨
˝ ÿ

xPΛnpl`1ql

φx

˛
‚
2G

ν0,8rg,µipgqs

.

(4.20)

Now using the fact that ν0,8rg, µipgqs is translation invariant and the fact that Λnlpl`1q Ă L is closed as

an additive group it follows that

C¨
˝ ÿ

xPΛnpl`1ql

φx

˛
‚
2G

ν0,8rg,µipgqs

“
C¨
˝ ÿ

zPΛnpl`1ql

φz

˛
‚ˆ

¨
˝ ÿ

xPΛnpl`1ql

φx

˛
‚
G

ν0,8rg,µipgqs

“ p3npl`1ql
C
φ0 ˆ

¨
˝ ÿ

xPΛnpl`1ql

φx

˛
‚
G

ν0,8rg,µipgqs

.

Inserting this into (4.20) gives

ci “ lim
nÑ8

pp´3`2rφsqlpl`1qn
ÿ

xPΛnpl`1ql

xφ0φxyν0,8rg,µipgqs . (4.21)

Now since ci ą 0 and ´3 ` 2rφs “ ´ 3`ǫ
2

ă 0 it follows that

lim
nÑ8

ÿ

xPΛnpl`1ql

xφ0φxyν0,8rg,µipgqs “
ÿ

xPL

xφ0φxyν0,8rg,µipgqs “ 8.

This proves statement (4.18).

We now prove (4.19) by contradiction. We remark that by Griffiths’ first inequality the infinum of (4.19)

must be non-negative so if we assume it is non-zero we must have

inf
xPL

xφ0φxyν0,8rg,µipgqs “ δ ą 0.

However this implies that ÿ

xPΛnlpl`1q

xφ0φxyν0,8rg,µipgqs ě δ ˆ p3nl. (4.22)

However by (4.21)

lim
nÑ8

1

pp´3`2rφsqlpl`1qn

ÿ

xPΛnpl`1ql

xφ0φxyν0,8rg,µipgqs “ ci ă 8 (4.23)
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where the fact ci ă 8 comes from the fact that all moments of νi are finite. Observing that 3´ 2rφs ă 3

we see that (4.22) conflicts with (4.23) so (4.19) is proved.

4.4.2 Switching Boundary Conditions

Proving full scale invariance will involve investigating the phase diagram of a particular class of Ising ferro-

magnets, as such we will need a way to take infinite volume limits which gives us much more freedom when

it comes to our choice of parameters, for example including a non-zero external field.

The cleanest method for establishing convergence of an infinite volume limit for an arbitrary Ising fer-

romagnet is by working in a scenario where we can appeal to Griffiths’ Second Inequality to show that the

moments xφAyµΛ
are increasing in Λ and then combine this with n! moment bounds uniform in the volume

- we will then have some infinite volume measure µL with limsÑ8 µΛs
“ µL in the sense of moments.

However this fails when we use an interaction J as given in the last line of (4.15) - this interaction is

becoming less ferromagnetic as s Ñ 8. The solution is to change boundary conditions on our Gaussian

measure so that the corresponding interaction is no longer dependent on the volume.

The boundary conditions for the measures ν0,s would be called Free Boundary Conditions in the field

theory literature - the self interaction was implemented as a finite volume perturbation of an infinite volume

Gaussian Field and the finite volume marginals are given by the same finite volume perturbation against a

finite volume marginal of the same Gaussian measure.

If the covariance C0 is thought of as a formal L ˆ L matrix then G (given by (4.14)) can be thought of

as its formal matrix inverse. The key issue is that matrix restriction doesn’t commute with taking matrix

inverses. In particular if for Λ Ă L we write ‚|Λ for the restriction of an L ˆ L matrix to a ΛˆΛ matrix then

pC|Λq´1 ­“ G|Λ .

What would be called free boundary conditions in statistical mechanics are more akin to Dirichlet bound-

ary conditions in field theory.

In particular instead of having the interaction depend on the volume we will have the entries of the

covariance depend on the volume - we define the Dirichlet covariance in the volume Λ as CD,Λ :“ pG|Λq´1
.

A computation similar in flavor to the one for (4.13) shows that

CD,Λs
“ C0|Λs

`Bpsq

where Bpsq is a rank 1 Λs ˆ Λs matrix. More explicitly for every x, y P Λs one has

Bpsq
x,y “ p´2rφss ˆ p1 ´ p´2rφsq2

p1 ´ p´3qp1 ´ p´6`2rφsq :“ σ2
s ą 0

In particular Bs is the covariance for a Gaussian field ψs on Λs which is constant on Λs, i.e. for all x P Λs

one has ψx “ ψ0 „ N p0, σ2
sq.

Instead of working with the measures ν0,s defined with respect to C0 we will instead work with the

“Half-Dirichlet” [37] boundary conditions - “Half-Dirichlet” refers to the fact that we will use CD,Λs
as our

background Gaussian measure but we will continue to Wick order with respect to the covariance C0 . The
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reason to do this is that if we also used CD,Λs
for our Wick ordering then for fixed g, µ our single site

measure dρ would have volume dependence. We will denote these measures by νHD0,s .

It is not technically difficult to use our RG machinery to tackle infinite volume limits taken with Half-

Dirichlet boundary. We assume that we are running the RG with fixed L “ pl. We give an informal

explanation of how the RG can control the limit s Ñ 8 of

ST,HD0,ls pf̃q :“ Log

«
ZHD

0,ls pf̃q
ZHD

0,ls p0q

ff
(4.24)

where

ZHD
0,ls pf̃q “

ż

S1pQ3
pq

dµCD
Λls

pφ̊q exp
„

´
ż

Λls

d3x g : φ̊4pxq :C0
` µ : φ̊2pxq :C0

´ φ̊pxqf̃pxq

.

The random field φ distributed according to C0 restricted to Λls can be decomposed as a sum of inde-

pendent random fields

φpxq “
s´1ÿ

j“0

ζjpxq ` φspxq

where the ζj are the first j fluctuation fields, that is the ζj are distributed according to the scaled fluctuation

covariance p´2rφsljΓpplj‚q
ˇ̌
Λls

. The field φs is distributed according to p´2rφslsC0ppls¨q
ˇ̌
Λls

. In particular φs

is constant on Λls. The RG map iteratively integrates out the ζj ’s for 0 ď j ď s ´ 1. The integration of φs

occurs at the final step when the volume Λls has been shrunk down to a single block (earlier we called the

contribution from this step the “boundary” term of our RG analysis).

We can similarly decompose the random field φ̊ on Λls distributed according to CD,Λls
as a sum of

independent random fields

φ̊pxq “
s´1ÿ

j“0

ζjpxq ` φspxq ` ψslpxq

Here both φs and ψsl are constant on Λls. We can apply the same RG map for this scenario which will

generate the same flow, the only difference being that in the final step we our final integrand will be a

function of both φs ` ψsl. In particular when we include rescaling the“boundary” is given by

Log

»
——–

ż

R

dµ̃pϕqI∆p0qr~V 0,lspf̃ , 0qspϕq
ż

R

dµ̃pϕqI∆p0qr~V 0,lsp0, 0qspϕq

fi
ffiffifl .

where µ̃ is a Gaussian measure on R, in particular it is the law of plsrφs pφlp0q ` ψlsp0qq (the prefactor coming

from rescaling) which is a centered Gaussian random variable with variance

C0p0q ` p2rφslsσ2
ls “ C0p0q ` p1 ´ p´2rφsq2

p1 ´ p´3qp1 ´ p´6`2rφsq .

Observe that this final one variable Gaussian integrals has a density independent of s and so this term can

be controlled just like the boundary term studied in the RG analysis.
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We define the measures νHD0,s rg, µs via the log moment generating function ST,HD0,s pf̃q.By proceeding

along the lines above one can prove the following theorem which states that for our infinite volume limits

constructed via RG we will get the same limits whether we use free boundary conditions or Half Dirichlet

boundary conditions. We state this result as the following theorem.

Theorem 4.7. For ǫ ą 0, L “ pl, g ą 0, and µpgq as in Theorem 3.1 one has that for f̃ P SpQ3
p,Cq

sufficiently small

lim
sÑ8

ST,HD0,ls pf̃q “ lim
sÑ8

ST0,lspf̃ , 0q

and consequently

lim
sÑ8

νHD0,ls rg, µpgqs “ lim
sÑ8

ν0,lsrg, µpgqs “ ν0,8rg, µpgqs.

For any non-negative integer s we have

dµCD,Λs
pφq “ 1a

p2πq|Λ|sdet pG|Λs
q
exp

«
´1

2

ÿ

x,yPΛs

Gpx´ yqφxφy
ff ź

xPΛs

dφx.

We write the Λs marginal of the measure νHD0,s rg, µs as an generalized Ising model.

νHD0,s pφΛsq “ 1

Z

˜ ź

xPΛs

exp
“
´g : φ4x :C0

´µ : φ2x :C0

‰
¸
dµCD

Λs
pφΛs

q

“ 1

Z 1 exp

»
——–´1

2

ÿ

x,yPΛs

x ­“y

Gpx´ yqφxφy

fi
ffiffifl

˜ ź

xPΛs

exp
“
´gφ4x ´ bφ2x

‰
dφx

¸ (4.25)

where we set

b “ ´6C0p0qg ` µ` 1

2
Gp0q

and G is given as in (4.14). For generic g ą 0, b P R we define µrΛs, g, bs to be the probability measure on RΛs

given by the measure denoted on the last line of (4.25). We will also write νrΛs, g, bs for the corresponding

measure RL given by µrΛs, g, bsbδLzΛs
where δLzΛs

is the measure concentrated on the zero element of RLzΛs .

On the domain of µipgq we define the function

bi,critpgq “ ´6C0p0qg ` µipgq ` 1

2
Gp0q.

In particular for g in the given domain the RΛs marginals of νΛs, g, bi,critpgqs and νHD0,s rg, µipgqs agree. It

follows from the Theorem 4.7 one has convergence in the sense of moments of the measures

lim
sÑ8

νrΛs, g, bi,critpgqs “: νrL, g, bi,critpgqs “ ν0,8rg, µpgqs (4.26)

Now by Griffiths Second Inequality one also has that for fixed g, b the moments xφAyνrΛs,g,bs are non-

decreasing in s. It follows that the convergence in (4.26) doesn’t need to be taken along the particular

subsequence of volumes Λs but could be taken along the Λs. This also allows us to construct infinite volume

measures for arbitrary g ą 0, b P R modulo finding sufficiently strong uniform upper bounds on the moments.
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4.5 Criticality and the Intermediate Phase

One expects that the generalized Ising ferromagnets νrL, g, bs should undergo a phase transition just as

classical nearest neighbor interaction ferromagnetic Ising models on Zd do for d ě 2 - the role of the

temperature now being played by the mass b.

In particular for fixed g ą 0 the measure νrL, g, bs should have dramatically different behaviour for

different regimes of b - for b sufficently large one expects the measures νrL, g, bs to have pair correlations that

decay quick enough for ÿ

xPL

xφ0φxyνrL,g,bs ă 8 (4.27)

where x¨yµ denotes expectation with respect to the measure µ. We call the quantity on the left hand side

above the susceptability (denoted by ξ). This regime of b is called the single phase regime or disordered

phase or the high temperature regime.

On the other hand one expects that there is a regime of sufficently small b where correlations do not

decay to zero, that is

inf
xPL

xφ0φxyTνrL,g,bs ą 0. (4.28)

The failure of correlations to vanish at long distances is called long range order and the parameter regime

where one finds this is called the two phase regime or the low temperature regime. The values of the mass b

at which one transitions from one regime of behaviour to another are called critical.

With this in mind we can define at least two notions of “criticality” for our mass parameter b:

bLROpgq “ sup

"
b P R| inf

xPL
xφ0φxyνrL,g,bs ą 0

*

and

bχpgq “ inf

#
b P R|

ÿ

xPL

xφ0φxyνrL,g,bs ă 8
+
.

Now by the Griffith’s inequalities we see that for fixed g ą 0 the quantity xφ0φxyνrL,g,bs (or more generally any

moment of spin variables) is non-negative and should be non-increasing in the parameter b. Both inequalities

are applied in finite volume and then carry over to the infinite volume limit - for the second assertion we

note that
B
Bbxφ0φxyµΛs rg,bs “ ´

ÿ

zPΛs
xφ0φx, φzyµΛs rg,bs ď 0

It then follows that one must have bLROpgq ď bχpgq, Additionally for fixed g ą 0 it follows if b ă bLROpgq
then b must lie in the two phase regime, similarly if b ą bχ then b must lie in the one phase regime, in

particular both these regimes are semi-infinite intervals in b (again this description holds for fixed g). The

behaviour of the susceptability and decay of pair correlations at criticality is a more subtle issue which we

don’t address here.

Now if bLROpgq ă bχpgq one would have a third regime bLROpgq ă b ă bξpgq where susceptability χ is

infinite but one does not have long range order. However Aizenman, Barsky, and Fernandez, in [7], proved

that this was impossible for ferromagnetic Ising models - any transition between the one phase and two

phase regimes must be sharp. More precisely a sharp transition in b means that bLROpgq “ bχpgq, i.e. no
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intermediate phase in b for fixed g. Before we continue we make the important remark that there are some

differences between how the result in [7] was stated and our current situation - much of our work for proving

full scale invariance is overcoming those differences.

The basic idea of our argument is to leverage the main result of [7] so that our main result follows via

a proof by contradiction. By Theorem 4.7 and Lemma 4.2 one has that bLROpgq ď bi,critpgq ď bχpgq. This

means that if µ1p̊gq ­“ µ2p̊gq (or equivalently b1,critp̊gq ­“ b2,critp̊gq) for some g̊ P Iǫ,l then this would imply the

existence of an intermediate phase in the mass parameter b when g “ g̊. We remark that for the purposes

of our proof we can assume that µ1,critp̊gq ă µ2,critp̊gq, the possibility of the other inequality can be handled

in an identical way.

With this assumption we can already construct an intermediate phase not just in the mass parameter b

but one in the pg, bq plane.

Proposition 4.1. Suppose that there exists g̊ P Iǫ,l for which µ1p̊gq ą µ2p̊gq. Then there exists a non-empty

open set U Ă p0,8q ˆ R such that for every pg, bq P U one has the following

The measures νrΛs, g, bs converge (in the sense of moments) in the infinite volume limit

lim
sÑ8

νrΛs, g, bs “ νrL, g, bs

and additionally one has

ÿ

xPL

xφ0φxyνrL,g,bs “ 8

inf
xPL

xφ0φxyνrL,g,bs “ 0.

(4.29)

Proof: We remark that via our RG analysis (i.e. analyticity of the stable manifold) the functions µ1p¨q and

µ2p¨q are continuous on Iǫ,l. It follows thats there exists δ ą 0 such that for all g P p̊g ´ δ, g̊ ` δq Ă Iǫ,l one

has µ1pgq ą µ2pgq and so one also has b1,critpgq ą b2,critpgq for such g.

We set

U “ tpg, bq P p0,8q ˆ R| g P p̊g ´ δ, g̊ ` δq, b P pb2,critpgq, b1,critpgqqu .

Since the bi,critpgq are continuous it is clear that the above set is open.

Additionally for any pg, bq, any non-negative integer s, and any moment φA we have by Griffiths’ Second

Inequality

xφAyνrΛs,g,b1,critpgqs ď xφAyνrΛs,g,bs ď xφAyνrΛs,g,b2,critpgqs (4.30)

Also by Griffiths’ second inequality the terms above are all increasing in s, and the last term converges

to xφAyνrL,g,b2,critpgqs as s Ñ 8. Since the measure νrL, g, b2,critpgqs is exponentially integrable for any of the

spin variables one has that the moments xφAyνrΛs,g,bs converge to the moments of a measure we denote by

νrL, g, bs. The assertions of (4.30) then follow by taking s Ñ 8 in (4.30) and observing that both assertions

of (4.29) hold for the measures νrL, g, b1,critpgqs and νrL, g, b2,critpgqs

The above discussion described the setting of our stat mech approach for proving full scale invariance.

We now precisely state the main theorem of this chapter, this theorem when combined with Proposition 4.1
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will establish that µ1pgq and µ2pgq agree on Iǫ,l. Below we denote by B the product σ-algebra on RL. We

also use the notation “Ť” to denote finite subset.

Theorem 4.8. Let Jp¨q be a fixed function Lzt0u Ñ p0,8q.

Define Ψ : t0, p, p2, . . . u Ñ r0,8q as follows:

Ψp0q “ 0

For j ě 1, Ψppjq “ sup
xPL

|x|“pj
Jpxq

We require that J satisfy the following integrability property: there must exist η ą 0 such that

ÿ

xPL

Ψp|x|q|x|η ă 8 (4.31)

For any g P p0,8q, β P r0,8q, b P R, h P r0,8q, and Λ Ť L we define a Borel probability measure

µΛrg, b, β, hs on RΛ as follows:

dµΛrg, b, β, hspφΛq “ 1

ZΛrβ, g, b, hs exp

»
——–
β

2

ÿ

x,yPΛ
x ­“y

Jpx´ yqφxφy

fi
ffiffifl exp

«
´

ÿ

xPΛ

`
gφ4x ` bφ2x

˘
ff
dφΛ

Above the quantity ZΛrg, b, β, hs is defined to make µΛ a probability measure. We define the probability

measure νrΛ, g, b, β, hs on the measure space pRL,Bq as the product measure µΛrβ, g, b, hs b δLzΛ. Here δLzΛ
denotes the Dirac delta measure concentrated on the zero element of RLzΛ.

With the above assumptions and definitions one has the following results.

(i) For any non-negative integer j let Λj “ tx P L : ||x|| ď pju. There exists a translation invariant

probability measure measure νrL, β, g, b, hs on RL such that the measures νrΛj , β, g, b, hs converge in the

sense of moments to the measure νrL, β, g, b, hs.

(ii) For any Λ Ť L the measure νrL, g, b, β, hs has a marginal on RΛ which is absolutely continuous with re-

spect to Lebesgue measure on RΛ. We denote the corresponding Radon-Nikdoym derivative as
dνΛ

dφΛ
pφΛq.

For any fixed g ą 0 and b P R and any compact set of pβ, hq P r0,8q2 there exists δ P R such that one

has the bound

ˇ̌
ˇ̌dν

Λ

dφΛ
pφΛq

ˇ̌
ˇ̌ ď exp

«
´

ÿ

xPΛ

´
´g

4
φ4x ` δ

¯ff
.
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(iii) Define

Mpβ, g, b, hq “ xφ0yνrL,β,g,b,hs

Then the limit lim
hÑ0`

Mpβ, g, b, hq “:M`pβ, g, bq exists.

(iv) For any fixed choices of g, b there exists a countable set D such that if β P r0,8qzD then

inf
xPL

xφ0φxyνrL,β,g,b,0s ě
`
M`pβ, g, bq

˘2

(v) Suppose there exists ĝ, b̂, β̂ such that

ÿ

xPL

xφ0φxyνrL,ĝ,b̂,β̂,0s “ 8.

Then for any β ą β̂ one has:

inf
xPL

xφ0φxy
νrL,ĝ,b̂,β,0s ą 0

and so for any λ ą 1:

inf
xPL

xφ0φxyνrL,λ´2ĝ,λ´1b̂,β̂,0s ą 0.

In our case of interest one has Jp¨q “ Gp¨q. it is easy to check that this choice satisfies the requirements

on J made above. Statements (i), (ii), (iii), and (iv) above all follow from the work of Section 4.7. The

first part of statement (v) which contains the sharpness result is proved via combining results from sections

4.7 and 4.6, the second assertion follows by a simply scaling argument in the variables φ. Section 4.7 is

independent of section 4.6 but not vice-versa - however we still put section 4.6 first in our exposition since

that is the key element of our argument.

Once Theorem 4.8 is proved the combined with Proposition 4.29 we then have that µ1pgq “ µ2pgq for all

g P Iǫ,l - otherwise Proposition 4.29 would give us an open set U Ă p0,8q ˆ R such that for all pg, µq P U the

measures νrL, g, µ, 1, 0s have both infinite susceptiability and an absence of long range order. However this

contradicts statement (v). For pg, µq P U one can find λ ą 1 such that pλg, λµq P U and so the last assertion

of statement (v) states that νrL, λg, λµ, 1, 0s should exhibit long range order.

All that is left to prove full scale invariance then is to prove Theorem 4.8.

4.6 The Sharpness of Transition result of Aizenman, Barsky, and

Fernandez

We first remark that there is nothing new in this section, this material follows expositions from [5], [8], [6],

and [7] although we give more details on some of the steps.
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For now we take the results of section 4.7 for granted and assume that for any g P p0,8q, β P r0,8q,
b P R, h P r0,8q one has the convergence of the infinite volume limit in the sense of moments

lim
nÑ8

νrΛn, g, b, β, hs “ νrL, g, b, β, hs.

Once such a limit exists it is clear the limiting measure is automatically translation invariant. We remark

that the analysis of section 4.7 will also show that the limiting measure is exponentially integrable in the

spin variables.

The key phase diagram parameters used in [7] for their analysis of critical Ising models are the inverse

temperature β and the (uniform) external field h. Their main results concern properties of the magnetizations

Mpβ, g, b, hq “ xφ0yνrL,g,b,β,hspφq. (4.32)

and

M`pβ, g, bq “ lim
hÑ0`

Mpβ, g, b, hq. (4.33)

We quickly mention some important facts about the above quantities.

Theorem 4.9. Let g ą 0, b P R, and β, h P r0,8q. Then Mpg, b, β, hq and M`pg, b, βq as defined above are

well defined and finite. Additionally one has the following:

1. Mpβ, g, b, hq is a concave function of h for h ě 0

2. For h ą 0 the function Mpβ, g, b, hq is real analytic in h.

Proof: The first item is a direct consequence of GHS, the second comes from the Lee Yang Theorem. The

detailed proof of this theorem is in the appendix, section 5.3.

If one has M`pβ, g, bq ą 0 then the Ising models with parameters β, g, b are said to undergo spontaneous

magnetization, this represents another criteria which one can use to define the two phase regime - although

the equivalence of these two criteria is not obvious (and a central issue for us).

We define the two following notionts of critical inverse temperature:

βχpg, bq “ inf

#
β ě 0|

ÿ

xPL

xφ0φxyνrL,β,g,b,0s ă 8
+

and

βM pg, bq “ sup
 
β ě 0| M`pβ, g, bq ą 0

(
.

We remark that by Griffiths II one has that pair correlations and M`pβ, g, bq are increasing in β for fixed

g, b. Thus βχpg, bq and βM pg, bq are the endpoints of semi-infinite intervals in β.

An important fact is that the susceptability χ can be identified as the derivative of the magnetization at

h “ 0

Lemma 4.3. For any g P p0,8q, b P R, and β ě 0 one has
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lim
hÑ0`

Mpg, b, β, hq
h

“
ÿ

xPL

xφ0φxyνrL,g,b,β,0s

Proof: This is a simple example of what is called a fluctuation dissipation relation. See appendix 5.3.

It follows from this that one must have βχpg, bq ď βM pg, bq. Here the question of sharpness of transition

is whether βχpg, bq “ βM pg, bq.
The main result of [7] transcribed to the context of our models reads as following.

Theorem 4.10 ([7]). Fix g ě 0, and b P R. Suppose there exists a β0 ě 0 such that:

ÿ

xPL

xφ0φxyνrL,β0,g,b,0s ă 8 “ 8 (4.34)

Then for any β ą β0 one has M`pg, b, βq ą 0. In particular βχpg, bq “ βM pg, bq.

There are two difference between Theorem 4.10 and the result we want. The first is that the intermediate

phase ruled out by the above theorem is for β with fixed g, b while the intermediate regime we constructed

in section 4.5 was an open set in pg, bq for fixed β “ 1. However by scaling φ we can use our intermediate

regime to construct an intermediate phase in β for fixed g, b.

The second more serious issue is that the above theorem uses spontaneous magnetization instead of long

range order to characterize the two phase regime. In [68, V.4] it is shown that for generalized Ising models

satisfying the GHS inequality the presence of Long Range Order implies spontaneous magnetization. This

establishes βM pg, bq ď βLROpg, bq where βLROpg, bq represents the onset of long range order. However for

our purposes we need the opposite inequality for our generalized Ising model which is is the central goal of

section 4.7.

The analysis and results of [7] all apply for fixed g and b so we will often drop these parameters in our

notation. The approach utilized in [7] is to establish certain partial differential inequalities for the finite

volume magnetization in the presence of a uniform and positive external field. For n P N we define the

function Mn : r0,8q ˆ p0,8q Ñ p0,8q as follows:

Mnpβ, hq :“ xφ0yµrΛn,g,b,β,hs “ 1

|Λn|
ÿ

xPΛn

xφxyµrΛn,g,b,β,hs (4.35)

We’ve included the second equality above to make it clear that Mn is in fact the average magnetization.

A convenient simplification for our model is that for any n P N the measure νΛn
rg, b, β, hs is invariant by

translations by x P Λn. This will be enough translation invariance for the key correlation inequalities to be

identified as the desired partial differential inequality for Mn. Over the lattice Zd one would have to switch

to periodic boundary conditions or perform more work to establish the desired result for Dirichlet boundary

conditions. The main partial differential inequality proved in [7] is the following.

Theorem 4.11 ([7]). For any n P N

Mn ď h
BMn

Bh ` hM2
n ` β}J}L1M3

n ` βMn ph` β}J}L1Mnq BMn

Bβ . (4.36)
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In section 4.6.4 we will see how this establishes Theorem 4.10. The main techniques of [7] are the Random

Current Representation (RCR) along with an associated RandomWalk Representation (RWR) which provide

combinatorial representations of correlation functions. Both the RCR and RWR apply to any ferromagnetic

classical Ising model without referencing any geometric or algebraic structure on the underlying finite set Λ

or the interaction J - until we specialize further one should imagine Λ as an abstract set.

We start by giving some general results on the RCR. Afterwards we will describe how the Griffiths-Simon

approximation [65] allows one use the RCR and RWR to analyze ferromagnetic φ4 models.

4.6.1 Overview of Random Current techniques

We start by quickly reviewing the definition of the Random Current Representation for an arbitrary ferro-

magnetic classical Ising model over some finite set Λ. We restrict ourselves to the case where the external field

is uniform. In particular we can represent our measure as follows: Let A be subset of Λ and for σ P t´1, 1uΛ
define σA “ ś

xPA σx. Then one has:

xσAy “ 2´|Λ|

Z

ÿ

σPt´1,1uΛ
σA exp

»
–β

ÿ

tx,yuPΛp2q

Jtx,yuσxσy ` h
ÿ

xPΛ
σx

fi
fl

where

Z “ 2´|Λ|
ÿ

σPt´1,1uΛ
exp

»
–β

ÿ

tx,yuPΛp2q

Jtx,yuσxσy ` h
ÿ

xPΛ
σx

fi
fl .

Recall that Λp2q is the set of two element subsets of Λ. We add a new ghost site g to the finite set giving

us the “enhanced” vertex set Λ̄ “ Λ Y tgu. We will try to always use g to denote the ghost vertex, when

quantifying over vertices the variables x, y, u, etc. will represent an vertices in Λ unless we specifically allow

for them to represent the ghost site.

The set of possible bonds on Λ̄ is denoted by Λ̄p2q. Correlation functions will be represented by sums over

“current configurations” n, vectors with non-negative integer components indexed by bonds of the enhanced

vertex set: n “ tnbubPΛ̄p2q . The value of an individual component nb is referred to as the flux through bond b.

We now give a representation for the partition function. First we introduce the following notation:

J̄b “

$
&
%
βJtx,yu if b “ tx, yu with x, y P Λ

h if b “ tx, gu with x P Λ
.

Starting from the definition of Z and using the above notation one has the following:
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Z “ 2´|Λ|
ÿ

σPt´1,1uΛ

¨
˝ ź

tx,yuPΛp2q

exp
“
βJtx,yuσxσy

‰
˛
‚
˜ź

xPΛ
exp rhσxs

¸

“ 2´|Λ|
ÿ

σPt´1,1uΛ

ź

bPΛ̄p2q

« 8ÿ

nb“0

J̄nb

b

nb!

˜ ź

iPΛXb
σi

¸nb
ff

“
ÿ

n

»
–wpnq ˆ 2´|Λ|

¨
˝ ÿ

σPt´1,1uΛ

ź

xPΛ
σ

přbQx nbq
x

˛
‚
fi
fl

(4.37)

The sum
ř
bQx is a sum over bonds b P Λ̄p2q such that b contains the site x. We’ve also defined a weight

system wp‚q on current configurations given by:

wpnq “
ź

bPΛ̄p2q

J̄nb

b

nb!

The key observation is that the sum over σ on the final line of (4.37) vanishes if
ř
bQx nb is odd for

any site x P Λ while if
ř
bQx nb is even for every x P Λ then the sum is equal to 2|Λ|. This motivates the

following definition: the ”sources” Bn of a current configuration n is the set of vertices with an an odd flux

coordination number:

Bn “ tx P Λ̄ |
ÿ

bPΛ̄p2q

bQx

nb is odd u.

It is not hard to see that the set Bn must be of even cardinality. With this notation one can now write:

Z “
ÿ

Bn“H
wpnq.

Above we are summing over all current configurations n with Bn “ H. The presence of an observable σA

flips our parity requirement on the flux coordination of the sites of A, thus one has the following identities:

xσAy “

$
’’’&
’’’%

1

Z

ÿ

Bn“A
wpnq if |A| is even

1

Z

ÿ

Bn“AYtgu
wpnq if |A| is odd

(4.38)

In what follows we will often suppress the dependence on the volume Λ, all the identities hold for an

arbitrary but fixed finite volume.

We quickly cover some additional notation. A∆B denotes the symmetric difference between the sets A

and B, that is pAYBq z pAXBq.
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One defines the support of current configuration n as follows: supppnq “ tb : n1,b ą 0u. It is

also useful to define component-wise addition on the set of current configurations, that is n1 ` n2 “
tn1,b ` n2,bubPΛ̄p2q . In general one does not have wpn1 ` n2q “ wpn1q ˆ wpn2q, however this factoriza-

tion does hold if supppn1q X supppn2q “ H.

We say that the event x Ø y occurs under the flux configuration n if there exists a path of bonds linking

x and y with nb ­“ 0 for each bond along this path. We denote the negation of that event by x Ü y. We

adopt the convention that every site x is connected to itself, that is the event x Ø x occurs under all flux

configurations.

Expressions will often involve indicator functions (defined on current configurations) for particular events.

As an example the indicator function for the event x Ø y will be denoted Irn : x Ø ys. Additionally

Irn : x Ø xs “ 1 regardless of the choice of n.

An essential identity for proving the neccessary bounds is the switching lemma which we state below.

Lemma 4.4 (Switching Lemma). Let f be a function on current configurations. Then one has the

following identity:

ÿ

Bn1“A
Bn2“tx,yu

wpn1qwpn2qfpn1 ` n2q “
ÿ

Bn1“A∆tx,yu
n2“H

wpn1qwpn2qfpn1 ` n2q ˆ Irn1 ` n2 : x Ø ys

Proof: See Lemma 3.2 of [5].

The switching lemma can be used to produce useful representations of truncated correlation functions.

Two such identities that will be used are given below.

Corollary 4.2.

xσx, σyyT “ Z´2
ÿ

Bn1“txu∆tyu
Bn2“H

wpn1qwpn2q ˆ Irn1 ` n2 : x Ü ys (4.39)

xσx, σuσvyT “ Z´2
ÿ

Bn1“tx,gu∆tuu∆tvu
Bn2“H

wpn1qwpn2q ˆ Irn1 ` n2 : x Ü gs (4.40)

Proof: This is Corollary 3.5 of [8] but we quickly give the proof of 4.39 here. First observe that
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xφxyxφyy “ Z´2
ÿ

Bn1“ty,gu
Bn2“tx,gu

wpn1qwpn2q

“ Z´2
ÿ

Bn1“txu∆tyu
Bn2“H

wpn1qwpn2q ˆ Irn1 ` n2 : x Ø gs.

In going to the last line above we used the switching lemma and the fact that ty, gu∆tx, gu “ txu∆tyu.
Now by inserting a dummy sum over n2 and another factor of Z´1 we have

xφxφyy “ Z´2
ÿ

Bn1“txu∆tyu
Bn2“H

wpn1qwpn2q

Thus one has

xφx, φyyT “ xφxφyy ´ xφxyxφyy “ Z´2
ÿ

Bn1“txu∆tyu
Bn2“H

wpn1qwpn2q ˆ p1 ´ Irn1 ` n2 : x Ø gsq

.

This gives (4.39). One proves (4.40) similarly.

Another tool repeatedly used in [7] is conditioning on clusters. For a flux configuration n define the bond

cluster of the site x as follows:

Cnpxq “ ttu, vu P Λp2q| n : u Ø x or n : v Ø xu Y ttu, gu|n : u Ø xu

Note that Cnpxq may contain bonds b for which nb “ 0. In particular Cnpxq is never empty and at least

contains all bonds b with b Q x (since x Ø x). We also remark that for a given n the question of whether

Cnpxq “ C for some C is independent of n’s flux numbers for bonds outside of C. We say a bond is in the

boundary of C if one of its endpoints is also contained in a bond that is not within C.

We now introduce notation for taking expectations under modified interactions. Let C be a subset of

bonds, then set

xσAyC “

$
’’’’’&
’’’’’%

1

ZC

ÿ

Bn“A
supppnqĎC

wpnq if |A| is even

1

ZC

ÿ

Bn“AYtgu
supppnqĎC

wpnq if |A| is odd
(4.41)

where
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ZC “
ÿ

Bn“H
supppnqĎC

wpnq. (4.42)

It is not hard to see that x„y
C

an expectation taken with a modified version of our classical Ising ferro-

magnet where bonds outside of the set C have had their couplings J̄b set to 0. We note that by Griffiths II

one has xσAyC ď xσAy for any A Ď Λ, C Ď Λ̄p2q.

By conditioning on clusters within sums over current configurations one can prove the following identities:

Lemma 4.5.

xσx, σuσvyT “Z´2
ÿ

Bn1“txu∆tuu
Bn2“H

wpn1qwpn2q xσvypCn1`n2
pxqqc

` Z´2
ÿ

Bn1“txu∆tvu, Bn2“H
wpn1qwpn2q xσuypCn1`n2

pxqqc

(4.43)

xσx, σuσvyT “Z´2
ÿ

Bn1“tu,gu
Bn2“H

wpn1qwpn2q xσxσvypCn1`n2
pgqqc ˆ Irn1 ` n2 : x Ü gs

` Z´2
ÿ

Bn1“tv,gu
Bn2“H

wpn1qwpn2q xσxσuypCn1`n2
pgqqc ˆ Irn1 ` n2 : x Ü gs

(4.44)

xσx, σyyT “ Z´2
ÿ

Bn1“H
Bn2“H

wpn1qwpn2q xσxσyypCn1`n2
pgqqc ˆ Irn1 ` n2 : x Ü gs (4.45)

Proof. We start with proving (4.43). We observe that if u “ v then both sides of the equation vanish. The

fact that the left hand side vanishes in this case is immediate. For the first term on the right hand side note

that since x and u are sources for n1 then all the bonds with v “ u as an endpoint are contained in the bond

cluster Cn1`n2
pxq so xσvyrCn1`n2

pxqsc “ 0 (with those bonds suppressed σv is mean zero bernoulli random

variable). The second term on the right hand side vanishes by the same argument. Thus the equation holds

if u “ v.

We now work under the assumption that u and v are distinct. Note that by Corollary 4.2 we can write

xσx, σuσvyT “Z´2
ÿ

Bn1“tx,gu∆tuu∆tvu
Bn2“H

wpn1qwpn2q ˆ Irn1 ` n2 : x Ü gs ˆ pIrn1 ` n2 : v Ø gs ` Irn1 ` n2 : u Ø gsq

(4.46)

Since u, v are distinct the sum of the two indicator functions at the end of the RHS will be precisely 1

under the source constraints and the indicator function forcing x Ü g. Either u or v must be connected to
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the ghost site g since x cannot be. However if u is connected to g then v cannot be and vice-versa.

We now work on the last expression with just the first of the last two indicator functions above and

condition on the bond cluster of x:

ÿ

Bn1“tx,gu∆tuu∆tvu
Bn2“H

wpn1qwpn2q ˆ Irn1 ` n2 : x Ü gs ˆ Irn1 ` n2 : v Ø gs

“
ÿ

CĎΛ̄p2q

ÿ

Bn1“tx,gu∆tuu∆tvu
Bn2“H

”
wpn1qwpn2q ˆ Irn1 ` n2 : x Ü gs

ˆ Irn1 ` n2 : v Ø gs ˆ Irn1 ` n2 : Cn1`n2
pxq “ Cs

ı

“
ÿ

CĎΛ̄p2q

ÿ

Bn1
1

“txu∆tuu,Bn2
1

“tv,gu
Bn1

2
“H,Bn2

2
“H

wpn1
1qwpn2

1qwpn1
2qwpn2

2q ˆ Irn1
1 ` n1

2 : Cn1
1

`n1
2
pxq “ Cs

ˆ
ź

i“1,2

`
Irn1

i : supppn1
iq Ď Cs ˆ Irn2

i : supppn2
i q Ď Ccs

˘

To go to the bottom expression one splits ni “ n1
i

` n2
i
for i “ 1, 2 where n1

i
is supported on C and

n2
i
is supported on Cc. By virtue of their supports being disjoint we have the factorization of weights

wpn1
i

` n2
i
q “ wpn1

i
qwpn2

i
q. Since C “ Cn1`n2

pxq “ Cn1
1

`n1
2
pxq we know that n1

1 ` n1
2 vanishes on the

boundary of C. Thus the flux configuration n1
1 must have x and u as sources while n2

1 must have v and

g as sources (in other words n1
1 and n1

2 don’t need to work together to allow n1 to satisfy its source condition.

Carrying out the summation over n2
1 and n2

2 gives

ÿ

CĎΛ̄p2q

ÿ

Bn1
1

“txu∆tuu
Bn1

2
“H

Z2
Cc xσvy

Cc wpn1
1qwpn1

2q ˆ Irn1
1 ` n1

2 : Cn1
1

`n1
2
pxq “ Cs

ź

i“1,2

`
Irn1

i : supppn1
iq Ď Cs

˘

“
ÿ

CĎΛ̄p2q

ÿ

Bn1
1

“txu∆tuu
Bn1

2
“H

xσvy
Cc wpn1

1qwpn1
2qIrn1

1 ` n1
2 : Cn1

1
`n1

2
pxq “ Cs

“
ÿ

Bn1
1

“txu∆tuu
Bn1

2
“H

xσvypC
n

1
1

`n
1
2

pxqqc wpn1
1qwpn1

2q

(4.47)

The first equality above has yet to be justified, we will do so below. The last expression is the first term on

the RHS of (4.43). If we can just justify the first equality then we will get the second term on the RHS of

(4.43) by choosing the other indicator function at the bottom of (4.46).

We now justify the first equality of (4.47). Let D be a set of bonds and let f be a function on flux
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configurations that does not depend on the fluxes assigned to bonds in Dc. Then one has:

ZDc

ÿ

n1

wpn1qfpn1q ˆ Irn1 : supppn1q “ Ds

“
ÿ

n1,n2

wpn1qwpn2qfpn1q ˆ Irn1 : supppn1q “ Ds ˆ Irn1 : supppn1q “ Dcs

“
ÿ

n1,n2

wpn1 ` n2qfpn1 ` n2q ˆ Irn1 : supppn1q “ Ds ˆ Irn1 : supppn1q “ Dcs

“
ÿ

n

wpnqfpnq.

Since Irn1
1 : Bn1

1 “ tx, uus ˆ Irn1
1 `n1

2 : Cn1
1

`n1
2
pxq “ Cs does not depend on bonds outside of C this justifies

the first equality in (4.47). We have now finished the proof of (4.43).

The proof of (4.44) is nearly the same, we again starts with (4.46) but this time we condition on

Cn1`n2
pgq. To prove (4.45) one starts with (4.39) and then conditions on Cn1`n2

pgq.

Lemma 4.6. Let x, y, u, v P Λ with v ­“ y and v ­“ u. Then one has:

ÿ

Bn1“tv,gu
Bn2“ty,gu

wpn1qwpn2qxσxσuypCn1`n2
pgqqc ˆ Irn1 ` n2 : x Ü gs

ďxσyy
ÿ

Bn1“txu∆tuu
Bn2“H

wpn1qwpn2qxσvypCn1`n2
pxqqc ˆ Irn1 ` n2 : x Ü gs

(4.48)

Proof: If y “ x then the inequality is trivial since the first expression vanishes - the source constraints

of n2 conflicts with the indicator function disallowing x to be connected to g. For what follows we assume

that x ­“ y.

Now if u “ y then again then again the first expression vanishes. If u “ y then n2 must connect u and

g which means one has that pCn1`n2
pgqq contains all the bonds touching u, thus xσxσuypCn1`n2

pgqqc “ 0.

Thus in what follows we work under the assumptions that u ­“ v, x ­“ y. With these assumptions in place

we first prove the following claim:

Z´2
ÿ

Bn1“tv,gu
Bn2“tu,y,gu∆txu

wpn1qwpn2q ˆ Irn1 ` n2 : x Ü gs ˆ Irn1 ` n2 : u Ü gs

“Z´2
ÿ

Bn1“tv,gu
Bn2“ty,gu

wpn1qwpn2qxσxσuypCn1`n2
pgqqc ˆ Irn1 ` n2 : x Ü gs

(4.49)

We start with the expression on the top and condition on the cluster Cn1`n2
pgq to get the expression on
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the bottom. We have that

ÿ

CĎΛ̄p2q

ÿ

Bn1“tv,gu
Bn2“tu,y,gu∆txu

wpn1qwpn2q ˆ Irn1 ` n2 : x Ü gs ˆ Irn1 ` n2 : u Ü gs ˆ Irn1 ` n2 : Cn1`n2
pgq “ Cs

“
ÿ

CĎΛ̄p2q

ÿ

Bn1
1

“tv,gu,Bn2
1

“H
Bn1

2
“ty,gu,Bn2

2
“txu∆tuu

«
wpn1

1qwpn2
1qwpn1

2qwpn2
2q ˆ Irn1

1 ` n1
2 : x Ü gs ˆ Irn1

1 ` n1
2 : u Ü gs

ˆ Irn1
1 ` n1

2 : Cn1
1

`n1
2
pgq “ Cs ˆ

ź

i“1,2

`
Irn1

i : supppn1
iq Ď Cs ˆ Irn2

i : supppn2
i q Ď Ccs

˘
ff

As in Lemma 4.5 we have split each of the current configurations n1 and n2 into two pieces - one living on

the cluster we’re conditioning on and one living on that cluster’s complement. Since we force n1
1 and n1

2 to

have Cn1
1

`n1
2
pxq “ C we have that the n1

i are supported on a set of bonds smaller than C and cannot touch

any site that is also visited by a bond in Cc. Thus n1
1 will have tv, gu as sources . The restriction that both

x and g are not connected to g by n1 ` n2 means that n2
2 will have txu∆tuu as its sources instead of n1

2.

We now carry out the sum over the n2
i
and then proceed to undo the conditioning:

ÿ

CĎΛ̄p2q

ÿ

Bn1
1

“tv,gu
n

1
2

“ty,gu

«
wpn1

1qwpn1
2q ˆ Irn1

1 ` n1
2 : x Ü gs ˆ Irn1

1 ` n1
2 : u Ü gs ˆ Z2

Cc ˆ xσxσuyCc

ˆ Irn1
1 ` n1

2 : Cn1
1

`n1
2
pgq “ Cs ˆ Irn1

1 : supppn1
iq Ď Cs ˆ Irn1

2 : supppn1
iq Ď Cs

ff

“
ÿ

CĎΛ̄p2q

ÿ

Bn1
1

“tv,gu
n

1
2

“ty,gu

«
wpn1

1qwpn1
2q ˆ Irn1

1 ` n1
2 : x Ü gs

ˆ Irn1
1 ` n1

2 : u Ü gs ˆ xσxσuyCc ˆ Irn1
1 ` n1

2 : Cn1
1

`n1
2
pgq “ Cs

ff

“
ÿ

Bn1
1

“tv,gu
n

1
2

“ty,gu

«
wpn1

1qwpn1
2q ˆ Irn1

1 ` n1
2 : x Ü gs ˆ Irn1

1 ` n1
2 : u Ü gs ˆ xσxσuypC

n
1
1

`n
1
2

pgqqc

ff

“
ÿ

Bn1
1

“tv,gu
n

1
2

“ty,gu

wpn1
1qwpn1

2q ˆ Irn1
1 ` n1

2 : x Ü gs ˆ xσxσuypC
n

1
1

`n
1
2

pgqqc

For the first equality above we used the two factors of ZCc to remove the support condition on n1
1 and n2

1

- for more details look at the proof of Lemma 4.5 and note that the value of the product of functions:

Irn1
1 ` n1

2 : x Ü gs ˆ Irn1
1 ` n1

2 : u Ü gs ˆ xσxσuyCc ˆ Irn1
1 ` n1

2 : Cn1
1

`n1
2
pgq “ Cs

is in fact independent of flux numbers of bonds in Cc (the last indicator function prevents flux numbers in
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Cc from influencing the connectivity of x and u to g).

To see how we dropped the indicator function in the last equality note that the functions Irn1
1 ` n1

2 :

x Ü gs ˆ Irn1
1 ` n1

2 : u Ü gs are actually completely extraneous if x and u are distinct - in this case

xσxσuypC
n

1
1

`n
1
2

pgqqc vanishes if x or u are connected to g. The indicator function is not extraneous if x “ u

but in this case we only need one of them. Relabeling the variables n1
i
as ni proves (4.49).

By proceeding in almost exactly the same way as above but this time conditioning on Cn1`n2
pxq one

can prove the follow claim:

ÿ

Bn1“tv,gu
Bn2“tu,y,gu∆txu

wpn1qwpn2q ˆ Irn1 ` n2 : x Ü gs ˆ Irn1 ` n2 : u Ü gs

“
ÿ

Bn1“txu∆tuu
Bn2“H

wpn1qwpn2qxσyypCn1`n2
pxqqcxσvypCn1`n2

pxqqc ˆ Irn1 ` n2 : x Ü gs
(4.50)

Combining (4.49), (4.50), and the observation that xσyypCn1`n2
pxqqc ď xσyy by Griffiths II will finish the

proof of the lemma.

.

The random current representation in its basic form is particular to classical Ising ferromagnets. In

order to prove the desired partial differential inequalities for φ4 ferromagnets one must use Griffiths-Simon

approximation.

Recall that in the Griffiths-Simons approximation one replaces each φ4 spin φx on the lattice Λ with a

block of N microscopic classical Ising spins σpx,¨q - the spin φx is well approximated (in the N Ñ 8 limit)

by the scaled average θN pφxq “ cN
řN
α“1 σpx,αq. One then applies the random current representation to the

classical Ising ferromagnetic system tσpx,αqupx,αqPΛˆrNs to try to get the necessary inequalities for correlation

functions of the block spin variables θN pφ¨q which are uniform in N .

In doing this one implements connectivity conditions on current configurations that involve blocks in

addition to the previously mentioned conditions involving individual sites. The following versions of the

switching lemma are useful tools for working with such block connectivity conditions.

First we give some more notation: given a collection of lattice sites B and a single lattice site z one says

that the event B Ø z occurs under a current configuration n if there exists an x P B such that x Ø z occurs

with n.

Lemma 4.7. Let B be a collection lattice sites and let z be a site not contained in B. Let f be a function

on current configurations that is decreasing in each flux number. Then one has
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ÿ

Bn1“H
Bn2“H

wpn1qwpn2qfpn1 ` n2q ˆ Irn1 ` n2 : B Ø zs

ď
ÿ

xPB
yPBc

J̄tx,yu

»
——–

ÿ

Bn1“tx,zu
Bn2“tyu∆tzu

wpn1qwpn2qfpn1 ` n2q

fi
ffiffifl

Note that above we allow y or z to be the ghost site g.

Proof. This is Lemma 4.1 in [7].

4.6.2 Random Walk Expansion

The random walk expansion represents correlation functions and their truncated counterparts as sums over

sequences of walks on the enhanced lattice Λ̄.

A walk γ is a finite non-empty sequence of oriented bonds: γ “ ppu0, u1q, . . . , puk, uk`1qq where the

pu2j , u2j`1q are ordered pairs that represent oriented bonds (they are non-diagonal elements of Λ̄ ˆ Λ̄. We

will call these oriented bonds “steps”. It is required that consecutive steps have common endpoints: if

pu2j , u2j`1q, pu2j`2, u2j`3q are consecutive steps in a walk ω then one must have u2j`1 “ u2j`2.

A backbone ω is a sequence of walks ω “ pγ0, ¨ ¨ ¨ , γnq . The boundary of a backbone ω is denoted Bω
and is defined to be those sites that the backbone visits an odd number of times during its sequence of

walks. There is a concatenation operating defined on backbones, ω1 ˝ ω2 is a new sequence of walks formed

by concatenating the sequences ω1 and ω2.

The symbol ω will be used to represent both walks and backbones. A single walk can be viewed as a

backbone with a one element sequence.

The random walk expansion is given by a sum over backbones, each backbone corresponding to the col-

lective contribution of a group of current configurations n. Let B be a non-empty subset of Λ̄ with |B| even.
If n is a current configuration with Bn “ B then one must be able to find a collection of disjoint paths of

odd flux bonds which connect the the elements of B in pairs. In [8], [7] one is given a special consistent way

to pick out such a collection of paths for every current configuration n with Bn “ B and then order/orient

these paths to give rise to a backbone ω with Bω “ B.

This is done via defining a map ΩB : tn| Bn “ Bu Ñ tω|Bω “ Bu. We now give the definition for this

map given in [7]. First choose a total ordering on sites of Λ (instead of describing sites as smaller or larger

we’ll describe them as earlier or later). The method of assigning backbones is not unique because of this

initial choice of ordering. Extend this ordering to Λ̄ by making the ghost site g the earliest site. Now for
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a fixed current figuration Bn “ B carry out the following algorithm to generate a sequence of walks. This

algorithm will also generate a collection of non-oriented bonds (called “cancelled” bonds) ω̃pnq.

• The first step of this first walk ω1 starts with the earliest site of Bztgu which we denote u1. The first

step ends on the earliest site among those sites v with ntu1,vu odd. The bond tu1, u2u that is traversed

in this step is added to the set of cancelled bonds ω̃pnq, along with all bonds tu1, zu with z earlier than

u2. The walk stops if it reaches any site in B or the ghost site

• Every subsequent step pui, ui`1q of ω1 (if the walk hasn’t terminated) is chosen the same way: ui`1 is

the earliest among those sites v for which: (i) ntui,vu is odd, and (ii) tui, vu is not yet among the set

of bonds that have been canceled up to now. The bond tui, ui`1u chosen for the walk is added to the

collection of cancelled bonds, along with all bonds tui, zu with z earlier than ui`1 in the site ordering.

This process continues until ω1 reaches a site in B or the ghost site g.

• Once the walks ω1, . . . ωj have been generated one starts the walk ωj`1 from the earliest site in Bztgu
that has not been visited by any previous walk. Every subsequent step pui, ui`1q of ωj`1 is chosen as

above (proceeding to the earliest vertex connected via a bond with odd flux and avoiding any bond

cancelled by previous steps of this walk or earlier walks). One continues to update the set of cancelled

bonds as before. ωj`1 terminates when it reaches a site in B that has not been visited by any walk or

the ghost site g.

• This process is continued until the set B has been exhausted, one will be left with a sequence of walks

pω1, ω2, . . . , ωkq with Bω “ B.

We also adopt the following convention: if Bn “ H then ΩHpnq “ H, that is all sourceless current

configurations are assigned to the empty backbone.

The above algorithm defines the desired map ΩBp¨q for every set B Ă Λ with |B| even. This map is then

used to reorganize the sum over current configurations. For a backbone ω define

ρpωq “ Z´1
ÿ

n such that Bn“Bω
wpnq ˆ IrΩBωpnq “ ωs.

It then immediately follows that one has the following representation for correlation functions. For any

A Ď Λ:

xσAy “

$
’’&
’’%

ÿ

Bω“A
ρpωq if |A| is even

ÿ

Bω“AYtgu
ρpωq if |A| is odd .

(4.51)

We sometimes abuse notation and will sometimes use the notation ω to represent the set of non-oriented

bonds traversed by that backbone.

We now give more details (taken from [8]) on the properties of the weights of the random walk represen-

tation.
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We call a backbone ω consistent if there exists a current configuration n with ΩBnpnq “ ω. Note that if

ω is not consistent then ρpωq “ 0. In particular, ω is consistent if and only if the current configuration n

defined by nb “ 1rb P ωs satisfies ΩBnpnq “ ω.

We also remark that the set of cancelled bonds ω̃pnq for a given current configuration n is determined entirely

by n’s backbone, that is by ΩBnpnq. In other words for every consistent backbone ω there exists a unique ω̃

such that for all n with ΩBnpnq “ ω one has ω̃pnq “ ω̃.

We note that the definition of consistency used here, along with the definitions of Ω‚p‚q, ρp‚q, and ω̃ are all

dependent on the initial choice of ordering on Λ.

With this in mind we now give following lemma from [8].

Lemma 4.8. Let ω be a consistent backbone and let ω̃ be its associated set of cancelled bonds ω̃. Then for

any current configurations n one has ΩBnpBnq “ ω if and only if the following three conditions are all met.

(a) n is odd on all of the bonds traversed by ω.

(b) n is even on all of the bonds in ω̃zω (or else the backbone n would have traversed them in place of some

bond in ω).

(c) n restricted to the bonds in ωc is sourceless.

Proof: Clear from the definition of the backbone map and the definition of consistency.

As a corollary one has:

Corollary 4.3. One has the following representation for backbone weights:

ρpωq “Ir ω is consistent s
˜ź

bPω
tanhpJ̄bq

¸˜ź

bPω̃
coshpJ̄bq

¸ˆ
Zω̃c

Z

˙

“Ir ω is consistent s
˜ź

bPω
tanhpJ̄bq

¸
ˆ 1

Z

˜ ÿ

Bn“H
wpnq ˆ Irn : nb is even for all b P ω̃s

¸ (4.52)

Proof:

Suppose that ω is consistent. Then when summing over all n satisfying the conditions of Lemma 4.8 the

sum over tnbubPΛ̄p2q factors into sums over the odd flux numbers of each of the bonds in ω, sums over even

flux numbers for each of the bonds in ω̃zω, and a sum over sourceless current configurations living on Λ̄p2qzω̃.
This, along with the fact that

ř
ně0 even

tn

n!
“ coshptq and

ř
ně0 odd

tn

n!
“ sinhptq tells us that

ρpωq “ 1

Z
ˆ Ir ω is consistent s

˜ź

bPω
sinhpJ̄bq

¸¨
˝ ź

bPω̃zω
coshpJ̄bq

˛
‚
˜ ÿ

Bn“H
wpnq ˆ Irn : supppnq Ď ω̃cs

¸
.
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This establishes the first equality of the lemma, the second equality follows immediately.

If C is a set of bonds we use the notation ρCp¨q to denote the modified normalized weighting that comes

from setting J̄b “ 0 for b R C. In particular

ρCpωq “ 1

ZC

ÿ

n such that Bn“Bω
wpnq ˆ Irn : supppnq Ď Cs.

Observe that the formula (4.51) holds with expectations x„yC and weights given by ρCp¨q.

The following lemma gives some useful properties of these backbone weights:

Lemma 4.9. (a) Let ω1 and ω2 be two backbones such that ω1 ˝ ω2 is consistent. Then one has

ρpω1 ˝ ω2q “ ρpω1qρω̃c
1
pω2q. (4.53)

(b) Suppose ω is a backbone that does not traverse any bond within A. Then one has

ρpωq ď ρAcpωq. (4.54)

Proof:

A larger list of properties of the backbone weights are proved in Proposition 4.4 of [6].

We first give the proof of statement (a). Since the backbone ω1˝ω2 is consistent one has that (i) ω1 and ω2

are each consistent by themselves and (ii) no step of ω2 uses a step taken or canceled by ω1 - i.e. ω2Xω̃1 “ H.

Now note that n satifies ΩBnpnq if and only if n “ n1 ` n2 with supppn1q Ď ω̃1, supppn2q “ ω̃1
c and

ΩBni
pniq “ ωi for i “ 1, 2. With this observation we can now condition on ω̃1:

ρpω1 ˝ ω2q “ 1

Z

ÿ

n“Bpω1˝ω2q
wpnq ˆ Irn : ΩBnpnq “ ω1 ˝ ω2s

“ 1

Z

¨
˚̊
˝

ÿ

Bn1“Bω1

supppn1qĎω̃1

wpn1q ˆ Irn1 : ΩBω1
pn1q “ ω1s

˛
‹‹‚

¨
˚̊
˝

ÿ

Bn2“Bω2

supppn2qĎω̃c
1

wpn2q ˆ Irn2 : ΩBω2
pn2q “ ω2s

˛
‹‹‚

Now, on account of Lemma 4.8 we have
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1

Z

ÿ

Bn1“Bω1

supppn1qĎω̃1

wpn1q ˆ Irn1 : ΩBω1
pn1q “ ω1s

“ 1

Z
ˆ 1

Zω̃c
1

ÿ

Bn1“Bω1, Bn1
1

“H
supppn1qĎω̃1, supppn1

1
qĎω̃c

1

wpn1q ˆ Irn1 ` n1
1 : ΩBn1`n1

1
pn1 ` n1

1q “ ω1s

“ 1

Zω̃c
1

ρpω1q.

On the other hand

¨
˚̊
˝

ÿ

Bn2“Bω2

supppn2qĎω̃c
1

wpn2q ˆ Irn2 : ΩBω2
pn2q “ ω2s

˛
‹‹‚“ Zω̃c

1
ˆ ρω̃c

1
pω2q

This proves statement (a). We now give the proof of statement (b). Fix a set of bonds A and suppose

that ω is a backbone with ω X A “ H. By Corollary 4.3 one has:

ρpωq ď Ir ω is consistent s
˜ź

bPω
tanhpJ̄bq

¸
ˆ 1

Z

˜ ÿ

Bn“H
wpnq ˆ Irn : nb is even for all b P ω̃ X Acs

¸

“ Ir ω is consistent s
˜ź

bPω
tanhpJ̄bq

¸˜ ź

bPω̃XAc

coshpJ̄bq
¸

ˆ 1

Z

¨
˚̊
˝

ÿ

Bn“H
supppnqĎω̃cYA

wpnq

˛
‹‹‚

“ Ir ω is consistent s
˜ź

bPω
tanhpJ̄bq

¸˜ ź

bPω̃XAc

coshpJ̄bq
¸

ˆ Zω̃cYA

Z

The first inequality comes from the fact that Irn : nb is even for all b P ω̃s ď Irn : nb is even for all b P
ω̃ X Acs. Now by arguments identical to those used in Lemma 4.8 and Corollary 4.3 one has

ρAcpωq “ 1

ZAc

Ir ω is consistent s
˜ź

bPω
tanhpJ̄bq

¸˜ ź

bPω̃XAc

coshpJ̄bq
¸

ˆ
˜ ÿ

Bn“H
wpnq ˆ Irn : supppnq Ď ω̃cs ˆ Irn : supppnq Ď Acs

¸

“ Ir ω is consistent s
˜ź

bPω
tanhpJ̄bq

¸˜ ź

bPω̃XAc

coshpJ̄bq
¸

ˆ
ˆ
Zω̃cXAc

ZAc

˙

Therefore one has
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ρpωq ď ZAc

Zω̃cXAc

ˆ Zω̃cYA

Z
ρAcpωq

ď ZAYpAcXω̃cq
ZpAcXω̃cq

ˆ ZAc

Z
ρAcpωq

Statement (b) will follows if the prefactor in the bottom line above is less than 1, this fact follows from

applying Lemma 4.10 below with the choice B “ Ac X ω̃c.

Lemma 4.10. Let A and B be disjoint sets of bonds. Then

ZAYB

ZB

ď Z

ZAc

Proof:

This fact follows from the observation that

ZAYB

ZB

“
C
exp

»
– ÿ

tx,yuPA
J̄tx,yuσxσy

fi
fl
G

B

ď
C
exp

»
– ÿ

tx,yuPA
J̄tx,yuσxσy

fi
fl
G

Ac

“ Z

ZAc

For the middle inequality note that by Griffiths II one has the following for any D Ă Λ:

xσDyB ď xσDyA.

The middle inequality then follows by expanding both exponentials.

The notation
ÿ

ω:xÑy

will represent a sum over all backbones consisting of a single walk starting at x and

terminating at y. For example, if x precedes y in the ordering we have imposed on the lattice then one has:

xσxσyy “
ÿ

ω:xÑy

ρpωq `
ÿ

ω1:xÑg
ω2:yÑg

ρpω1 ˝ ω2q

We note that if one is taking a modified expectation where all h-bonds have been suppressed then the

second sum above can be dropped.

4.6.3 Derivation of the Partial Differential Inequality

We now specialize to our model of interest. Let g ą 0 and b P R be fixed for the remainder of this section

and the section 4.6.4. For n P N let Mnpβ, hq be defined as in (4.35). We will establish (4.11) for Mn by

approximating the (Λn marginal of the) φ4 measure dνΛn
rg, b, β, hs with the Griffiths-Simons approximation

- that is via measures dµNΛn
as given in Theorem 4.4.
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The measures dµNΛn
correspond to classical Ising ferromagnets on a lattice Λn ˆ rN s. We will apply the

Random Current Representation to this system keeping both n and N fixed and prove analagous correlation

inequalities for block spins θN pφ¨q (defined as in 4.4 with out fixed values of g, b, and N). These inequali-

ties will be uniform in n andN . In what follows below we set Λ “ ΛnˆrN s for fixed n andN , and Λ̄ “ ΛYtgu.

The bond parameters for bonds in Λ̄p2q are as follows:

J̄tpx,αq,py,δq “

$
&
%
βc2NJtx,yu if x ­“ y

dN if x “ y

J̄tpx,αq,gu “ cNh

For x P Λn we denote the corresponding block within Λ as Bx, that is Bx “ tpx, αquNα“1. With these

definitions in hand we now mention a corollary of Lemma 4.4:

Corollary 4.4. If f is a function on current configurations which is decreasing in each flux number, then

ÿ

Bn1“H
Bn2“H

wpn1qwpn2q ˆ fpn1 ` n2q ˆ I rn1 ` n2 : Bv Ø gs

ď
Nÿ

α“1

«
cNh

ÿ

Bn1“tpv,αq,gu
Bn2“H

wpn1qwpn2q ˆ fpn1 ` n2q

` c2N ˆ β
ÿ

yPΛnztvu

Nÿ

δ“1

Jtv,yu

¨
˚̊
˝

ÿ

Bn1“tpv,αq,gu
Bn2“tpy,δq,gu

wpn1qwpn2q ˆ fpn1 ` n2q

˛
‹‹‚

ff

Proof: The result follows from applying Lemma 4.7 with B “ Bv and z “ g. The sum has been split into

two pieces corresponding to the site outside of Bv being the ghost site or a normal lattice site. .

For many quantities given below we will suppress the dependence of various quantities on n and N . In

particular the expectations x‚y represents expectations over the approximating system tσpx,αqupx,αqPΛnˆrNs
with measure dµNΛn

. We will also use the function θN defined in Theorem 4.4 using the desired values of g,

b, and N .

We will establish a partial differential inequality for the quantity

Mn,N “ xθN pφ0qy

First note that one has:
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Mn,N “cN
Nÿ

α“1

@
σp0,αq

D

“cN
Nÿ

α“1

Z´1

»
– ÿ

Bn1“tp0,αq,gu
wpn1q

fi
fl

“cN
Nÿ

α“1

Z´3

¨
˚̊
˚̊
˝

ÿ

Bn1“tp0,αq,gu
Bn2“H
Bn3“H

wpn1qwpn2qwpn3q

˛
‹‹‹‹‚

(4.55)

In the last line two duplicate current configurations were inserted. For each p0, αq the sum over current

configurations n1, n2, n3 will be split into three different pieces. This decomposition will depend on the

RWR mentioned earlier. Note that the Random Walk Representation depends on an initial choice of an

order on the sites of Λn ˆ rN s. For each α P r1, . . . , N s we will use a different ordering on lattice sites before

applying the RWR, in particular we will enforce that p0, αq be the earliest site. This will not cause any

problems since the RWR is always manipulated for just one value of α of the time. For now we will write

Ωα‚ p‚q to denote the corresponding backbone maps and ραp‚q for the corresponding backbone weights.

The decomposition for the sum in the last line of (4.55) is determined by three different cases for the

answer to the following question:

What is the first block Bv visited by Ωαtp0,αq,gupn1q that is also connected to g via the current configuration

n2 ` n3 (i.e. Bv Ø g under n2 ` n3)?

1. There is no block Bv such that Ωαtp0,αq,gupn1q visits Bv and Bv Ø g under n2 ` n3.

2. The first block visited by Ωαtp0,αq,gupn1q that is connected to g via the current configuration n2 `n3 is

B0.

3. The first block visited by Ωαtp0,αq,gupn1q that is connected to g via the current configuration n2 `n3 is

some Bv with Bv ­“ B0.

Corresponding to these different cases we have the following decomposition:

Mn,N “ T `R0 `
Nÿ

α“1

ÿ

vPΛn

v ­“0

ÿ

uPΛn

u­“v

Nÿ

δ,γ“1

Rtα,pu,δq,pv,γqu (4.56)

The contribution from the first case is given by:

T “ cN

Nÿ

α“1

Z´3

¨
˚̊
˝

ÿ

Bn1“tp0,αq,gu
Bn2“Bn3“H

wpn1qwpn2qwpn3q ˆ I

«
Ωαtp0,αq,gupn1q doesn’t visit any Bv

with Bv Ø g via n2 ` n3

ff
˛
‹‹‚
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The contribution from the second case is:

R0 “ cN

Nÿ

α“1

Z´3

¨
˚̊
˚̊
˝

ÿ

Bn1“tp0,αq,gu
Bn2“H
Bn3“H

wpn1qwpn2qwpn3q ˆ Irn2 ` n3 : B0 Ø gs

˛
‹‹‹‹‚

The third case is broken down further by summing over the first step ppu, δq, pv, γqq of Ωαtp0,αq,gupn1q which
has endpoint in Bv. For any α P rN s, and tpu, δq, pv, γqu P Λ̄ with v ­“ 0 and u ­“ v we define

Rα,pu,δq,pv,γq “cNZ´3

˜ ÿ

Bn1“tp0,αq,gu
Bn2, Bn3“H

wpn1qwpn2qwpn3q

ˆ I

«
Bv is the first block connected to g via n2 ` n3

that is visited by Ωαtp0,αq,gupn1q

ff

ˆ I

«
n1 :

ppu, δq, pv, γqq is the first bond in

Ωαtp0,αq,gupn1q with an endpoint in Bv

ff

ˆ I rn2 ` n3 : B0 Ü gs
¸

We now bound each of these contributions.

Lemma 4.11. For any n,N P N one has the bound:

T ď h
ÿ

xPΛn

xθN pφ0q, θN pφxqyT

Proof:

One starts by classifying the current configurations n1 summed over in T by the last site px, δq P Λ that

Ωαtp0,αq,gu visited before reaching the ghost site g.

One can then write T “
ÿ

px,δqPΛ
Tpx,δq where

Tpx,δq “ cN

Nÿ

α“1

Z´3

˜ ÿ

Bn1“tp0,αq,gu
Bn2“Bn3“H

wpn1qwpn2qwpn3q ˆ I

«
Ωαtp0,αq,gupn1q doesn’t visit any Bv

with Bv Ø g via n2 ` n3

ff

ˆI

«
n1 :

px, δq is the last site visited by Ωtp0,αq,gupn1q
before reaching g

ff¸

Note that that for any current configuration n1 satisfying the above indicator functions and source con-

straints one has that n1,tpx,δq,gu is odd. In particular this is the only constraint on n1,tpx,δq,gu. That is

to say that if one modified n1 by changing n1,tpx,δq,gu to another odd number then the resulting current

249



configuration would again satisfy the same indicator functions and source constraints so this flux number

can be summed over all odd non-negative integers independently of the other flux numbers.

We now do a change of variable in the sum to flip this constraint, that is we change n1 Ñ n1
1 where

n1
1,b “ n1,b for b ­“ tpx, δq, gqu and n1

1,b “ n1,b ´ 1 for b “ tpx, δq, gqu. Now we have the constraint that

n1
1,b be even, however just as before this is the only constraint and the sum over this flux number will be

independent of the others.

This change of variable will have three consequences for our expression for Tpx,δq. First, the sources

constraint for the current configurations n1
1 will now be changed to tp0, αqu∆tpx, δqu. Second, the backbone

Ωαtp0,αqu∆tpx,δqupn1
1 will be determined by truncated the step ppx, δq, gq from the backbone of the corresponding

n1 - Ωαtp0,αq,gupn1 (here we use the fact that p0, αq is the earliest site of Λ - this guarantees that if the

backbone is non-empty p0, αq remains the starting point of the backbone). Thus we can keep the desired

non-intersection constraint for the new backbone. Third we will get an overall factor of

tanh
`
J̄b
˘

“

ÿ

n1,b odd

pJ̄bqn1,b

n1,b!

ÿ

n1
1,b

even

pJ̄bqn
1
1,b

n1
1,b!

with b “ tpx, δq, gu accompanying the weights wpn1
1q. With these observations, and dropping the prime

from n1
1 we get the following expression for Tpx,δq:

Tpx,δq “ tanh
`
J̄tpx,δq,gu

˘
ˆ cN

Nÿ

α“1

Z´3

˜ ÿ

Bn1“tp0,αqu∆tpx,δqu
Bn2“Bn3“H

wpn1qwpn2qwpn3q

ˆ Irn1 : n1,tpx,δq,gu is even s

ˆ I

«
Ωαtp0,αqu∆tpx,δqupn1q doesn’t visit any Bv

with Bv Ø g via n2 ` n3

ff

ˆ I rn2 ` n3 : B0 Ü gs
¸

The last indicator function comes from dealing with the case that px, δq “ p0, αq - in this case the back-

bone Ωαtp0,αqu∆tpx,δqupn1q is empty so the first indicator function is vacuous but we still inherit a connectivity

restriction from the expression with the earlier flux constraint.

We now loosen the constraints of the two indicator functions to get:
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Tpx,δq ď tanh
`
J̄tpx,δq,gu

˘
ˆ cN

Nÿ

α“1

Z´3

˜ ÿ

Bn1“tp0,αqu∆tpx,δqu
Bn2“Bn3“H

wpn1qwpn2qwpn3q

ˆI

«
Ωαtp0,αqu∆tpx,δqupn1q doesn’t visit any site pv, γq

with pv, γq Ø g via n1 ` n2

ff

ˆ I rn2 ` n3 : p0, αq Ü gs
¸

“ tanh
`
J̄tpx,δq,gu

˘
ˆ cN

Nÿ

α“1

Z´3

˜ ÿ

Bn1“tp0,αq,gu
Bn2“Bn3“H

wpn1qwpn2qwpn3q

ˆI
”
Ωαtp0,αqu∆tpx,δqupn1q X Cn2`n3

pgq “ H
ı

ˆ I rn2 ` n3 : p0, αq Ü gs
¸

“ tanh
`
J̄tpx,δq,gu

˘
ˆ cN

Nÿ

α“1

Z´2

˜ ÿ

Bn2“Bn3“H
wpn2qwpn3q ˆ I rn2 ` n3 : p0, αq Ü gs

ˆ

»
– ÿ

ω:p0,αqÑpx,δq
ραpωqI rω X Cn2`n3

pgq “ Hs

fi
fl
¸
.

In going to second inequality it is important to remember that the bond cluster Cn1`n2
pgq contains

dangling bonds.

For any fixed n2 ` n3 one can use the inequality (4.54) to get that

ÿ

ω:p0,αqÑpx,δq
ραpωqI rω X Cn2`n3

pgq “ Hs ď
ÿ

ω:p0,αqÑpx,δq
ραpCn2`n3

pgqqcpωqI rω X Cn2`n3
pgq “ Hs

ď
ÿ

ω:p0,αqÑpx,δq
ραpCn2`n3

pgqqcpωq

“xσp0,αqσpx,δqypCn2`n3
pgqqc .

Note that in the last equality we didn’t have to sum over walks traveling to the ghost since we have

suppressed all bonds to the ghost site g. Inserting this into the earlier bound for Tpx,δq one gets
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Tpx,δq ď tanh
`
J̄tpx,δq,gu

˘

ˆ cN

Nÿ

α“1

Z´2

˜ ÿ

Bn2“Bn3“H
wpn2qwpn3q

ˆ I rn2 ` n3 : p0, αq Ü gs ˆ xσp0,αqσpx,δqypCn2`n3
pgqqc

¸

ď cNhˆ cN

Nÿ

α“1

xσp0,αq, σpx,δqyT .

Above we used that tanhpJ̄tpx,δq,guq “ tanhpcNhq ď cNh. Inserting this into the expression for T gives

T ď
ÿ

px,δqPΛ
Tpx,δq

ď hˆ c2N

Nÿ

α“1

ÿ

px,δqPΛ
xσp0,αq, σpx,δqyT

“ h
ÿ

xPΛn

xθN pφ0q, θN pφxqyT .

.

Lemma 4.12.

R0 ď hM2
n,N ` β||J ||L1M3

n,N .

Proof: First observe that the summation over α and n1 is independent of the summation over n2 and n3.

Thus one has

R0 “ Mn,NZ
´2

¨
˚̊
˝

ÿ

Bn2“H
Bn3“H

wpn2qwpn3q ˆ Irn2 ` n3 : B0 Ø gs

˛
‹‹‚.

Note that by applying Lemma 4.4 with respect to the sum over n2 and n3 one gets

R0 ďMn,NZ
´2

Nÿ

α“1

¨
˚̊
˝cN ˆ h

ÿ

Bn2“tp0,αq,gu
n3“H

wpn2qwpn3q `
ÿ

yPΛn,y ­“0

c2NβJt0,yu

Nÿ

δ“1

ÿ

Bn2“tp0,αq,gu
n3“tpy,δq,gu

wpn2qwpn3q

˛
‹‹‚

“Mn,N

«
hˆMn,N ` β ˆMn,N

˜ ÿ

yPΛn,y ­“0

Jt0,yuxθN pφyqy
¸ff

The result now follows by using translation invariance: the original interaction J¨ on Λn was trans-

lation invariant which means the approximating classical ising measure on Λ “ Λn ˆ rN s is invariant
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under translation induced transformations on the set of blocks. In particular for all y P Λn one has

xθN pφyqy “ xθN pφ0qy “ Mn,N . .

Lemma 4.13.

Nÿ

α“1

ÿ

vPΛn

v ­“0

ÿ

uPΛn

u­“v

Nÿ

δ,γ“1

Rtα,pu,δq,pv,γqu

ď βMn,N ph`Mn,N }J}L1βq
ÿ

tu,vuPΛp2q
n

Jtu,vuxθN pφ0q, θN pφuqθN pφvqyT
(4.57)

Proof: This proof is quite involved and combines methods used for bounding the previous two terms. We

refer the reader to [7]. .

Putting the three bounds together gives us the following theorem:

Proposition 4.2. For any n,N P N one has

Mn,N ďh
ÿ

xPΛn

xθN pφ0q, θN pφxqyT ` hM2
n,N ` β||J ||L1M3

n,N

` βMn,N ph` βMn,N }J}L1q
ÿ

tu,vuPΛp2q
n

Jtu,vuxθN pφ0q, θN pφuqθN pφvqyT

Proof : The statement follows immediately from (4.56), Lemma 4.11, Lemma 4.12, and Lemma 4.13. .

We close this subsection with finishing the proof of Theorem 4.11.

Proof of Theorem 4.11 We note that by Theorem 4.4 one has the following in the N Ñ 8 limit:

Mn,N ÝÑ Mn

ÿ

xPΛn

xθN pφ0q, θN pφxqyT ÝÑ
ÿ

xPΛn

xφ0, φxyTµrΛn,g,b,β,hs “ BMn

Bh
ÿ

tu,vuPΛp2q
n

Jtu,vuxθN pφ0q, θN pφuqθN pφvqyT ÝÑ
ÿ

tu,vuPΛp2q
n

Jtu,vuxφ0, φuφvyTµrΛn,g,b,β,hs “ BMn

Bβ

Combining the above with Proposition 4.2 immediately gives 4.11.

4.6.4 Consequences of the Partial Differential Inequality

In this subsection we explain how one goes from Theorem 4.11 to Theorem 4.10. The first lemma alows one

to trade factors of h for factors of Mn

Lemma 4.14. Define
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S “
dş

R
dt t2e´gt4`bt2

ş
R
dt e´gt4`bt2

βMF “ p}J}L1S2q

Let ǫ ą 0. Then for any h P
”
0,
ǫ

S

ı
, any n P N one has

h ď
„

ǫˆ βMF

tanhpǫq ˆ }J}L1


Mn

Proof: This is Lemma 5.2 in [7].

Proposition 4.3. For all Aβ ą 0, Ah ą 0 there exist constants B1 and B2 such that for all β P r0, Aβs and
for all h P r0, Ahs one has

Mn ď h
BMn

Bh `B1M
3
n `B2M

2
n

BMn

Bβ
Proof: This is a consequence of Theorem 4.11 and an application of Lemma 4.14 with ǫ “ AhS. One can

then choose

B1 “
„

AhS ˆ βMF

tanhpAhSq ˆ }J}L1


`Aβ}J}L1 ,

B2 “ Aβ ˆ
„

AhS ˆ βMF

tanhpAhSq ˆ }J}L1


`A2

β}J}L1 .

This proves the proposition.

Lemma 4.15. For any n P N one has

BMn

Bβ ď Mn}J}L1

BMn

Bh
Proof:

By the GHS inequality we have that xφ0, φuφvyTΛn
ď 0 for any u, v P Λn. This is equivalent to

xφ0φuφvyΛn
´ xφ0yΛn

xφuφvyΛn
ď xφuyΛn

rxφ0φvyΛn
´ xφ0yΛn

xφvyΛn
s

` xφvyΛn
rxφ0φuyΛn

´ xφ0yΛn
xφuyΛn

s
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We then have

BMn

Bβ “1

2

ÿ

u,vPΛn

u­“v

Jtu,vuxφ0, φuφvyTΛn

ď1

2
Mn

ÿ

u,vPΛn

u­“v

Jtu,vu

˜
rxφ0φvyΛn

´ xφ0yΛn
xφvyΛn

s ` rxφ0φuyΛn
´ xφ0yΛn

xφuyΛn
s
¸

ďMn}J}L1

BMn

Bh .

Lemma 4.16 ([6]). Let tM̄npβ, hqunPN be a sequence of non-negative functions defined for pβ, hq P r0,8q ˆ
p0,8q, increasing and differentiable in both β and h.

Suppose that:

1. M̄npβ, hq converge pointwise as n Ñ 8 for pβ, hq P r0,8q ˆ p0,8q to a function M̄pβ, hq.

2. M̄pβ, hq can be continuously extended to r0,8q ˆ r0,8q. We use M̄ to denote this extension.

3. M̄pβ, hq is differentiable in h for pβ, hq P r0,8q ˆ p0,8q and on this set one has
BM̄n

Bh Ñ BM̄
Bh .

4. There exists θ P p0,8q such that for any Aβ ą 0 one can find a1, a2 ě 0 and a non-negative continuous

function of a single variable f satisfying the following conditions

(a)

lim
xÑ0`

fpxq “ 0

(b) ż 1

0

dx
fpxq
x

ă 8

such that for any pβ, hq P r0, Aβq ˆ p0, 1q the functions tM̄npβ, hqu all satisfy the following partial

differential inequalities:

M̄n ď h
BM̄n

Bh ` M̄nfpM̄nq ` a1M̄
θ
nBM̄nBβ (4.58)

BM̄n

Bβ ď a2M̄n

BM̄n

Bh . (4.59)

Under all the above conditions one has the following:

If there exists some β0 ě 0 such that
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lim
hÑ0`

M̄pβ0, hq
h

“ 8

then

lim inf
hÑ0`

M̄pβ0, hq
h

1

1`θ

ą 0

and for any β ą β0

M̄pβ, 0q :“ lim
hÑ0`

M̄pβ, hq ą 0

Proof: See Lemmas 5.1 and 4.1 of [6]. .

The essential results needed for proving Theorem 4.10 have all been stated so we now finish the proof of

that theorem to finish the section.

Proof of Theorem 4.10: We now apply Lemma 4.16 by setting M̄npβ, hq “ Mnpβ, hq and setting

M̄pβ, hq “ Mpβ, hq for pβ, hq P r0,8q ˆ p0,8q. What remains is checking that these choices satisfy the

conditions of Lemma 4.16. Conditions (1) and (2) are immediate. From Theorem 4.9 we have the necessary

differentiability of Mpβ, hq. Convergence of the associated derivatives is a consequence of general properties

of concave functions.

We note that by Proposition 4.3 and Lemma 4.15 we have that condition (4) holds with θ “ 2 and

fpxq “ B2x
2. We then have that the consequences of Lemma 4.16 hold for Mpβ, hq.

The proof of 4.10 is complete if we show condition (4.34) implies that lim
hÑ0`

Mpβ0, hq
h

“ 8. This follows

from Lemma 4.3 in the appendix. .

4.7 Superstable Gibbs Measures

4.7.1 Overview of Section

In this section we will (i) establish full control over the infinite volume limits of the measures described in

Theorem 4.8 and to (ii) show that the presence of spontaneous magnetization implies the presence of long

range order.

The key for establishing infinite volume limits is Lemma 4.64 - this lemma establishes strong estimates on

the finite volume marginals of the measures νrΛj , β, g, b, hs that are uniform in j. This gives us compactness

(tightness) that allows us to prove the existence of subsequential limits. However in the case where we don’t

have 0 boundary conditions we can apply Griffiths Second inequality and use monotonicity of moments with

respect to the volume to drop the need to take subsequences.

With regards to item (ii) the intuition between the equivalence of long range order and spontaneous

magnetization is that they both signal the existence of multiple “phases” for our Ising models - more precisely
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the existence of multiple (translation invariant) Gibbs measures. A clear reference for the discussion that

follows is [32].

Suppose that we fix some choice g, b, β for which M`pg, b, βq ą 0, that is is β ą βM pg, bq. Then there

are at least two translation invariant Gibbs measures, one given by

x‚y` :“ lim
hÑ0`

x‚yνrL,g,b,β,hs

and the other by

x‚y0 :“ x‚yνrL,g,b,β,0s

The first measure has a positive first moment and the second, by symmetry, having a zero first moment.

Moreover if one defines x‚y´ via the pushforward under a global spin flip of the measure x‚y´ it is

expected that

x‚y0 “ 1

2
rx‚y´ ` x‚y` s . (4.60)

Since even moments are unchanged when flipping spins all the measures appearing in (4.60) have the

same even moments, in particular for all x P L

xφ0φxy0 “ xφ0φxy`. (4.61)

On the other hand applying Griffiths’ second inequality one has

xφ0, φxyT` “ xφ0φxy` ´ xφ0y2` ą 0,

where we’ve used translation invariance.

Now the assumption of spontaneous magnetization means that xφ0y2` ą 0 so

inf
xPL

xφ0φxy0 “ inf
xPL

xφ0φxy` ą 0.

Looking back we see that establishing (4.61) is sufficient to show that spontaneous magnetization implies

long range order.

The statement (4.60) is of course stronger than (4.61). In particular one expects that above the critical

value of β all translation invariant Gibbs measures are given by convex combinations of the measures x‚y`

and x‚y´. This says that while there are infinitely many Gibbs measures there are only two pure ones.

The first (partial) proof of this statement was given by Lebowitz in [43] for classical Ising ferromagnets.

The key idea there is to use a variational principle to show the equality of spin-spin correlations across all

Gibbs measures - if ppβq denotes the free energy per unit volume (the pressure) then one expects

Bp
Bβ “

ÿ

xPL
x ­“0

Jpxqxφ0φxy

which should hold for all Gibbs measures for the given values of g, b, β, h. See [32] for more discussion on

the variational principle - we remark that it is not completely trivial to show that derivatives of the pressure

correspond to expectation values for Gibbs measures but for the classical Ising model this a well established
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result.

Combining the above variational argument with a clever correlation inequality [43] inductively shows that

n-th order moments of all Gibbs measures must all agree if all the lower order moments agree. However this

approach does not work for all β ą βM - the variational principle depends on the differentiability of ppβq
with respect to β. This is differentiability is expected to hold but a direct proof of this is out of the reach

of current methods. However ppβq is convex in β so this differentiabilty can fail at most countably many

values of β. We remark that for the classical nearest neighbor Ising ferromagnet a full characterization of

translation invariant Gibbs measures for β ą βM was proved more recently in [14].

We need an analog of Lebowitz’s result for our φ4 ferromagnets. Analogs of the results of [43] (in

particular the necessary correlational inequalities) were transferred to this setting in [44]. A variational

principle in this setting (which needs a corresponding notion of Gibbs measures) is much harder than the

case of the classical Ising model. However one can formulate these ideas within the setting of superstable

Gibbs measures for spin systems, introduced in [45]. A variational principle in this setting was in fact proved

in [42]. One then has that for almost every β ą βc there are only two pure Gibbs states corresponding to

the ` and ´ measures. In particular for almost every β one has (4.61) and so for such β the presence of

long range order implies spontaneous magetization. By a simple argument using Griffiths Second inequality

this implication between long range order and spontaneous magnetization holds for all β except for perhaps

β “ βM . However this is certainly sufficient for our purposes.

Below we go through the proof of the above mentioned result which is certainly not new - however we

are able to dramatically simplify many of the steps in the ultrametric setting and at the same time be more

explicit in our calculation. In particular we believe there is a mistake in the proof of the main superstablity

estimate in [45] - however this mistake disappears in the ultrametric setting. We also give a full presentation

here because the earlier exposition of the superstability estimates is spread across multiple papers in slightly

different settings ([45], [58], [59]). Additionally instead of trying to apply the more general variational

principle [42] we proceed along a more direct route to get exactly the one variational principle we need.

4.7.2 Preliminaries for Superstable Gibbs Measures

We now start studying the measures mentioned in Theorem 4.8 in the context of Gibbs measures on pRL,Bq.
Before presenting the main material we give some notation for various σ-algebras and define certain

modes of convergence for measures.

For a subset A Ď L we define BpAq to be the smallest sigma-algebra of sets that makes the collection of

projections tφ ÞÑ φx |x P Au measurable. We define B̄pAq to be those sets that depend on only finitely many

sites in A, that is they must be members of BpΛq for some Λ Ť A.

Definition. Let µn be a sequence of Borel probability measures on RL. We say µn converges locally weakly

to a Borel probability measure µ if for every Γ Ť L the corresponding finite-dimensional marginals µn,Γ

converge in the topology of weak converge to µΓ.

Definition. Let µn be a sequence of Borel probability measures on RL. We say µn converges locally set-wise

to a Borel probability measure µ if for every set B P B̄pLq one has limnÑ8 µnpBq “ µpBq.
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We remark that if µn converges locally set-wise to µ then µn also converge locally weakly to µ (although

the converse may not hold).

When working with unbounded spin systems it is often necessary to impose a temperedness condition

on our space of field configurations so that the Gibbs interaction terms are well defined. For our model we

study Gibbs random fields supported on configurations of at most logarithmic growth. In what follows we

use a regularized logarithm function: log`prq :“ maxplogprq, 1q.

We note that all of the analysis of this section takes place for arbitrary but fixed g ą 0 and b P R.

Definition. Let s ą 0. We define the following sets of field configurations:

Xs :“
 
S P RL | |Sx|2 ď s log`p}x}q@x P L

(
,

X̄s :“
 
S P RL | There exists a finite set ΛpSq such that for any x R ΛpSq one has |Sx|2 ď s2 log`p}x}q

(
,

X8 “
8ď

n“1

Xn.

Note that one has X̄s Ă X8. If a probability measure on pRL,Bq is supported on X8 then we call it a

tempered measure.

For any finite Λ we define the following energy function on configurations φΛ on RΛ:

UpφΛq “
ÿ

xPΛ

`
gφ4x ` bφ2x ´ hφx

˘
´ 1

2
β

ÿ

x,yPΛ
x ­“y

Jpx´ yqφxφy

We define an associated interaction energy function as follows. Let A Ť L and B Ă L, then we define:

W pφA|ψBq “ ´β
ÿ

xPA, yPB
Jpx´ yqφxψy

In cases where B is infinite we note that if ψB can be written as restrictions of field configurations in

X8 then W pφA|ψBq is finite. This interaction energy satisfies the following relationship with the previously

mentioned energy functions - if Λ1 and Λ2 are two disjoint finite sets then one has the following equality for

any φΛ1YΛ2
P RΛ1YΛ2

U pφΛ1YΛ2
q “ U pφΛ1

q ` U pφΛ2
q `W pφΛ1

|φΛ2
q

A simple but essential estimate for this section is the following:

Lemma 4.17. For any compact K Ă p0,8q ˆ r0,8q there exists a constant O1 such that for all pβ, hq P K,

and all Λ Ť L one has:
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UpφΛq ě
ÿ

xPΛ

´g
2
φ4x ´ O1

¯
(4.62)

Proof: Immediate from inspection of the definition of UpφΛq.

We define φA ^ ψB to be the element of RAYB defined via

pφA ^ ψBqx “

$
&
%
φx, if x P A
ψx, if y P B

We are now ready to define our Gibbsian specification, a family of measure kernels πΛ,β,hp¨|¨q : B ˆ RL Ñ
r0, 1s. For A P B and ψ P RL we set:

πΛ,β,hpA|ψq “

$
’&
’%
ZpΛ|ψq´1

ż

RΛ

dφΛ 1A pφΛ ^ ψΛcq exp r´UpφΛq ´W pφΛ|ψΛcqs , if ψ P X8

0, if ψ R X8

In the definition above we have defined ZpΛ|ψq to be a normalizing factor when ψ P X8, that is:

ZpΛ|ψq “
ż

RΛ

dφΛ exp r´UpφΛq ´W pφΛ|ψΛcqs for ψ P X8

It is not hard to check (see [32] for more details) that the family of measure kernels tπΛ,β,huΛŤL is

consistent for fixed β and h, that is if Λ1 Ă Λ2 then πΛ2,β,h

´
πΛ1,β,hpA|¨q

ˇ̌
ˇψ
¯

“ πΛ2,β,hpA|ψq for all A P B. If

one restricts these measure kernels to X8 then they become actual probability kernels.

If f is a B-measurable function on RL we will write

πΛpf |ψq :“
ż

RL

dπΛp¨|ψqfp¨q

We now give the core definition of this section:

Definition. A probability measure µ on pRL,Bq is said to be a tempered Gibbs measure with respect to the

interaction Upβ, hq if for all A P B we have:

ż

RL

dµpφqπΛ,β,hpA|φq “ µpAq for all Λ Ť L (4.63)

Note that a measure µ is supported on X8 automatically if it satisfies the consistency condition above.

Also note that because of ultrametricity the Gibbs consistency condition implies translation invariance. We

define Gpβ, hq to be the set of all Gibbs interactions with respect to the interaction Upβ, hq.

4.7.3 Superstability Estimates and existence of Gibbs Measures

For Γ Ă Λ Ť L we denote the Radon-Nikodym derivative (with respect to Lebesgue measure) of the marginal

of πΛp¨|Sq onto RΓ by ρΓΛpφΓ|Sq. For S P X8 one has:
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ρΓΛpφΓ|Sq :“ 1

ZpΛ|Sq

ż

RΛzΓ

dφΛzΓ exp r´UpφΛq ´W pφΛ|SΛcqs

The next lemma gives the core superstability estimate for our model following the ideas of [58] and [59]..

Lemma 4.18. @g P r0,8q, @b P R

@Aβ ą 0, @Ah ą 0

Dδ ą 0 such that

@β P r0, Aβs, @h P r0, Ahs
@Γ Ť L, @k P N with Λk Ě Γ, one has the following bound:

ˇ̌
ρΓΛk

pφΓ|Sq
ˇ̌

ď exp

«ÿ

xPΓ
´g

4
φ4x ` δ

ff
(4.64)

Proof. In appendix.

Exponential bounds of the form above will be crucial for establishing that sequences of finite volume

measures have cluster points and for showing that these cluster points have the appropriate properties.

Definition. A probability measure λ on pRL,Bq will be called regular if and only if for every Λ its marginal

restricted to Λ has a Radon-Nikodym derivative with respect to Lebesgue measure on RΛ (which we denote

gpφΛ|λq) that satisfies the following bound:

|gpφΛ|λq| ď exp

«ÿ

xPΛ
´g

4
φ4x ` δ

ff
(4.65)

We now show that being a regular measure is a stronger statement than being a tempered measure.

Lemma 4.19. Suppose λ is a regular measure, then:

1. If s ą 0 then λ
`
X̄s

˘
“ 1 .

2. λ is a tempered measure.

3. There exists O2 such that for all s ą 0 one has λ pXc
nq ď O2 exp

“
´a

8
s2
‰
.

Proof:

All three statements come from proving appropriate bounds on:

ÿ

xPL

λ
` 
φ2x ą s log`p}x}q

(˘
(4.66)

Statements (1) and (2) will follow from Borel-Cantelli if we show that the above sum is finite.
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λ
` 
φ2x ą s log`p}x}q

(˘
ď 2eδ

ż 8

?
s log`p}x}q

dt e´gt4{4

ď Ks,g

ż 8

?
s log`p}x}q

dt exp

„
´d` 2

s
t2


ď Ks,ge
´pd`1q log`p}x}q

ż 8

´8
dt e´t2 ď Ks,g ˆ

?
π ˆ e´pd`1q log`p}x}q

In the inequality on the first line we used (4.64). In going to the second line we defined Ks,g “
2 exp

”
δ ` 4

g
ˆ
`
d`2
s

˘2ı
and used the fact that ´c1t4 ď ´c2t2 ` c22

c1
. Note that the last line is summable

over x P L so the first two statements are proven.

To prove statement (3) we first assume that s ą 1. Then we have:

λ
` 
φ2x ą s log`p}x}q

(˘
ď 2eδ

ż 8

?
s log`p}x}q

dt e´gt4{4

ď 2eδe´gs2{8
ż 8

?
s log`p}x}q

dt e´gt4{8

ď 2eδe´gs2{8
ż 8

?
log`p}x}q

dt e´gt4{8

ď Kge
´gs2{8

ż 8

?
log`p}x}q

dt e´pd`2qt2

ď Kge
´gs2{8e´pd`1q log`p||x||q

ż 8

?
log`p}x}q

dt e´t2 ď Kge
´gs2{8e´pd`1q log`p||x||q ˆ

?
π

Here we have defined Kg “ 2 exp
”
δ ` 8

g
pd` 1q2

ı
. We then have for s ą 1:

λpXc
sq ď

ÿ

xPL

λ
` 
φ2x ą s log`p}x}q

(˘
ď
«ÿ

xPL

e´pd`1q log`p||x||q
ff

ˆKg ˆ
?
π ˆ e´gs2{8 ă 8

Statement (iii) then holds for all s ą 0 by choosing O2 “ max
`“ř

xPL e
´pd`1q log`p||x||q‰ ˆKg ˆ ?

π, e
g
4

˘
.

Next we will prove some regularity results for the conditional probabilities πΛ. For any S P RL and A Ť L

we define SpAq :“ SA ^ 0Ac .

Lemma 4.20. (i) Let Λ be a cube centered at the origin, that is Λ “ ΛN for some N . Then for any

S P X8 one has:

lim
jÑ8

πΛ,β,h pA|S pΛjqq “ πΛ,β,h pA|Sq

The above convergence is uniform over A P BpΛq and S P Xn for fixed n.
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(ii) For any ǫ ą 0 there exists m P N such that for all S P X1 one has:

sup
j

πΛj ,β,hpXc
m|Sq ă ǫ

Proof:

Fix n ě 1 and suppose that S P Xn. From the definition one has:

πΛ,β,h pA|S pΛjqq “

ż

A

dφΛ exp
“
´UpφΛq ´W

`
φΛ|S pΛjqΛc

˘‰

ż

RΛ

dφΛ exp
“
´UpφΛq ´W

`
φΛ|S pΛjqΛc

˘‰

Note that above we have abused notation and are using the symbol A to denote the projection of the

original set A P RL onto RΛ. By arguments identical to those used in Sub-Lemma 5.2 one can show that

inf
SPXn

ż

RΛ

dφΛ exp
“
´UpφΛq ´W

`
φΛ|S pΛjqΛc

˘‰
ą 0

Thus it suffices to prove that for arbitrary B Ă RΛ

lim
jÑ8

ż

B

dφΛ exp
“
´UpφΛq ´W

`
φΛ|S pΛjqΛc

˘‰
“
ż

B

dφΛ exp r´UpφΛq ´W pφΛ|SΛcqs

where the convergence above is uniform as we quantify over B P RΛ and S P Xn. We establish a pointwise

in φΛ bound on the integrand on the left hand side.

ˇ̌
exp

“
´UpφΛq ´W

`
φΛ|S pΛjqΛc

˘‰
´ exp r´UpφΛq ´W pφΛ|SΛcqs

ˇ̌

“e´UpφΛq ˇ̌exp
“
´W

`
φΛ|S pΛjqΛc

˘‰
´ exp r´W pφΛ|SΛcqs

ˇ̌

ďe´UpφΛq exp

«ÿ

xPΛ

ÿ

yPΛc

J̄p|x´ y|q
`
φ2x ` S2

y

˘
ff

|W pφΛ|SpΛjzΛqΛcq|

ďe´UpφΛq exp

«ÿ

xPΛ

`
||J̄ ||L1φ2x ` n||J̄ log` ||L1

˘
ff ÿ

xPΛ

´
||J̄1Λc

j
||L1φ2x ` n||J̄1Λc

j
log` ||L1

¯

ď||J̄1Λc
j
log` ||L1e´UpφΛq exp

«ÿ

xPΛ

`
||J̄ ||L1φ2x ` n||J̄ log` ||L1

˘
ff ÿ

xPΛ

`
φ2x ` n

˘

We then have:

ż

B

dφΛ
ˇ̌
exp

“
´UpφΛq ´W

`
φΛ|S pΛjqΛc

˘‰
´ exp r´UpφΛq ´W pφΛ|SΛcqs

ˇ̌

ď||J̄1Λc
j
log` ||L1

ż

RΛ

dφΛe
´UpφΛq exp

«ÿ

xPΛ

`
||J̄ ||L1φ2x ` n||J̄ log` ||L1

˘
ff ÿ

xPΛ

`
φ2x ` n

˘

ď||J̄1Λc
j
log` ||L1

˜ż

RΛ

dφΛ exp

«ÿ

xPΛ
´g

2
φ4x ` O1 ` ||J̄ ||L1φ2x ` n||J̄ log` ||L1

ff ÿ

xPΛ

`
φ2x ` n

˘
¸
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The integral above can obviously be bounded uniformly in B, j and S P Xn, part (i) now follows since

we have lim
jÑ8

||J̄1Λc
j
log` ||L1 “ 0.

Part (ii) follows easily via applying the superstability estimate of Lemma 4.18 for πΛj ,β,hp¨|Sq with Γ “ Λj .

We note that for m ą 1 we have:

πΛj ,β,hpXc
m|Sq ď

ÿ

xPΛj

πΛj ,β,h

`
1tφ2x ą m log`p}x}qu|S

˘

ď
ÿ

xPΛ

˜
2eδ

ż 8

?
m log`p}x}q

dt e´gt4{4
¸

ď O2e
´ gm2

8 .

The last line of the estimate above is proven in the same way we proved statement (iii) of Lemma 4.19.

Statement (ii) of the current lemma now follows by making m sufficiently large.

We now give a definition followed by a quick lemma which will help us establish that we have cluster

points as we take infinite volume limits.

Definition. A family of Borel measures tµiuiPI on Rn are said to be uniformly absolutely continuous with

respect to a Borel measure ν on Rn if for every ǫ ą 0 there exists a δ ą 0 such that for any Borel set one has

νpAq ă δ ñ µipAq ă ǫ for all i P I.

Lemma 4.21. Let µn be a sequence of Borel probability measures on RL converging locally weakly to a

measure µ. Suppose furthermore that for every Λ Ť L there exists an N such that the sequence of RΛ

marginals tµn,ΛuněN are uniformaly absolutely continuous with respect to Lebesgue measure on RΛ. Then

the measures µn converge locally set-wise to the measure µ.

Proof: In appendix.

Theorem 4.12. Let S P X1, and let tnju8
j“1 be an increasing sequence of natural numbers with lim

jÑ8
nj “ 8.

Then the sequence of measures tπΛnj
,β,hp¨|Squ8

j“1 has a convergent subsequence (in the topology of local set-

wise convergence).

The limit points of these subequences are tempered, translation invariance, and satisfy all the statements

of Lemma 4.19.

Proof: The superstability bound of Lemma 4.18 establishes that for any N P pZ` the marginals of the

tπΛnj
,β,hp¨|Squnj

on RΛN are tight (relatively compact in the topology of weak convergence). Thus by a diag-

onalization argument in j and N we can find a subsequence tn1
ku8
k“1 such that for any Λ Ť L the marginals

of πΛn1
k
,β,hp¨|Sq on RΛ converge in the topology of weak convergence to a limiting measure νΛ. It is not hard

to see that tνΛuΛŤL is a family of consistent finite dimensional marginals. By the Kolmogorov extension

theorem they uniquely define a measure ν on RL. By construction one has that lim
kÑ8

πΛn1
k
,β,hp¨|Sq “ ν in the
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topology of weak local convergence.

Since the measures πΛn1
k
,β,hp¨|Sq satisfy the conditions of Lemma 4.21. Thus the πΛn1

k
,β,hp¨|Sq converges

to ν locally set-wise. Additionally since the measure πΛj ,β,hp¨|Sq is invariant under translations of norm less

then pj we have that any infinite volume limit point is in fact completely translation invariant.

Now suppose that ν is the limit in the topology of local weak convergence of a sequence of finite volume

Gibbs measures πΛmk
,β,hp¨|Sq. Then by Lemma 4.18 the measures πΛmk

,β,hp¨|Sq satisfy the requirements of

Lemma 4.21 so these measures converge to ν locally setwise. In particular for every x P L one has

ν
` 
φ2x ą s log`p}x}q

(˘
“ lim
kÑ8

πΛmk
,β,h

` 
φ2x ą s log`p}x}q

(
|S
˘

On the other hand as soon as mk is large enough for Λmk
Q x then we have the superstability estimate

for the one point marginal of πΛmk
,β,hp¨|Sq at x , this means that:

ν
` 
φ2x ą s log`p}x}q

(˘
ď 2eδ

ż 8

?
s log`p}x}q

dt e´gt4{4.

We then have the necessary estimate to show that statements (i), (ii), and (iii) of Lemma 4.19 hold for ν.

Theorem 4.13. Suppose that for some nk one has lim
kÑ8

πΛnk ,β,hp¨|Sq “ ν (where S P X1). Then ν is a

tempered Gibbs measure with respect to the interaction Upβ, hq.

Proof:

We use the notation νk “ πΛnk
,β,hp¨|Sq.

Our goal is to show that for any any Γ Ť L and for any A P B and one has:

ż

RL

dνpSq πΓ,β,hpA|Sq “: ν pπΓ,β,hpA|¨qq “ νpAq

We first prove the above equality for A of the form A1 X A2 where A1 P BpΓq, A2 P B̄pΓcq. This estab-

lishes the above equality for all of B since sets of this form generate the sigma-algebra B.

Since the specifications tπΛ,β,huΛŤL are consistent among themselves it suffices to prove the equality

above for lattice sets Γ of the form Γ “ Λk for some k.

Let ǫ ą 0 be arbitrary, we will show that

|ν pπΓ,β,hpA|¨qq ´ ν pAq| ă 6ǫ

.

By Lemma 4.20 Part (ii) we can find an m P N such that:

sup
k

νkpXc
mq ă ǫ

We next note that for any k with Λk Ą Γ and for any j P N one has:
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|ν pπΓ,β,hpA|¨qq ´ ν pAq| ď |ν pπΓ,β,hpA|¨qq ´ νk pπΓ,β,hpA|¨qq| ` |νk pAq ´ νpAq|
“ |ν p1A2

p¨qπΓ,β,hpA1|¨qq ´ νk p1A2
p¨qπΓ,β,hpA1|¨qq| ` |νk pAq ´ νpAq|

ď
ˇ̌
ˇ̌
ż

RL

dνpSq1A2
pSq rπΓ,β,h pA|Sq ´ πΓ,β,h pA|SpΛjqqs

ˇ̌
ˇ̌

`
ˇ̌
ˇ̌
ż

RL

dνpSq1A2
pSqπΓ,β,h pA|SpΛjqq ´

ż

RL

dνkpSq1A2
pSqπΓ,β,h pA|SpΛjqq

ˇ̌
ˇ̌

`
ˇ̌
ˇ̌
ż

RL

dνkpSq1A2
pSq rπΓ,β,h pA|SpΛjqq ´ πΓ,β,h pA|Sqs

ˇ̌
ˇ̌

` |νk pAq ´ νpAq|

In the first line we use the consistency of our specification, that is νk pπΓ,β,hpA|¨qq “ νk pAq. In the

next line we have used that πΓ,β,hpA1 X A2|Sq “ 1A2
pSqπΓ,β,hpA1|Sq (this comes from the fact that our

specification is proper). We now bound the quantities on the third, fourth, fifth, and sixth lines.

For bounding the quantity on the third line we use Lemma 4.20 part (i) and the bounded convergence

theorem so that for j sufficiently large one has:

ˇ̌
ˇ̌
ż

RL

dνpSq rπΓ,β,h pA|Sq ´ πΓ,β,h pA|SpΛjqqs
ˇ̌
ˇ̌ ă ǫ

We bound the fifth line for j sufficiently large, uniformly in k :

ż

RL

dνkpSq
ˇ̌
ˇπΓ,β,h pA|SpΛjqq ´ πΓ,β,h pA|Sq

ˇ̌
ˇ ď

ż

Xm

dνkpSq1Xm
pSq

ˇ̌
ˇπΓ,β,h pA|SpΛjqq ´ πΓ,β,h pA|Sq

ˇ̌
ˇ ` ǫ

ď 2ǫ

In the two lines immediately above we used the fact that we have uniform convergence of the probability

kernels in j on the set Xm, along with control over measure Xc
m uniform in k.

After fixing j we can bound the fourth line of our main bound by ǫ if we take k sufficiently large since

we have local set-wise convergence of the vk and 1A2
pSqπΓ,β,h pA|SpΛjqq is a function of finitely many spin

variables, the same is true for bounding the sixth line.

Theorem 4.14. Let µ be a tempered Gibbs measure with respect to the interaction Upβ, hq for appropriate

β and h. Then µ is also regular

Proof: What we must show is that for arbitrary Γ Ť L the marginal of µ corresponding to RΓ (as before,

denoted µΓ) is absolutely continuous with respect to Lesbesgue measure on RΛ. Additionally we must show

that the corresponding Radon Nikodym derivative, which we will denote gΓpφΓ|µq, satisfies the bound (4.65).

There are multiple ways one can show the mentioned absolutely continuity, however we will try to directly

construct the Radon-Nikodym derivative and use our explicit formulas to establish our the estimate (4.65).

In particular we will use the same bounds used in the proof of Lemma 4.18 to establish the necessary bounds
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on gpφΓ|µq.
Below we use notation defined in the section of the appendix that proves Lemma 4.18. Fix some z P Γ.

We note that it is not hard to see that tR̂zqu8
q“´1 is a partition of X8. Let A P BpΓq. Since µ is tempered

we have that

ż

RL

dµpSq1ApSq “
8ÿ

q“1

ż

RL

dµpSq1ApSq1R̂z
q
pSq.

For any q P N Y t´1u and Λj Ą Γ by Gibbs consistency we have that:

ż

RL

dµpSq1ApSq1R̂q
pSq “

ż

RL

dµpSqρΛj

´
1ApφΓq1R̂z

q

´
φΓ ^ φΛjzΓ ^ SΛc

j

¯
|S
¯

“
ż

RΓ

dφΓ 1ApφΓq
ż

RL

dµpSq 1

ZpΛj |Sq

ż

RqpφΓ,Λk,Sq
dφΛjzΓ exp

“
´UpφΛj

q ´W pφΛj
|Sq

‰

Define kpnq : N Y t´1u Ñ N so that Λkpnq Ą Γ Y
`
z ` Λmaxpq,0q

˘
. We now define

gΓpφΓ|µq :“
8ÿ

q“´1

˜ż

RL

dµpSq
«
ZpΛkpqq|Sq´1

ż

RqpφΓ,Λkpqq,Sq
dφΛkpqqzΓ exp

“
´UpφΛkpqq

q ´W pφΛkpqq
|Sq

‰
ff¸

(4.67)

Since the each of the summands on the RHS of (4.67) is non-negative function on RΓ it is clear that one

has point-wise convergence to a measurable function on RΓ. In particular by monotone convergence theorem

and Fubini-Tonelli one has

ż

RΓ

dφΓ 1ApφΓqgΓpφΓ|µq “ µpAq

Thus absolute continuity is established. Now we claim that for any S P X8:

1

ZpΛkp´1q|Sq

ż

R´1pφΓ,Λkp´1q,Sq
dφΛkp´1qzΓ exp

“
´UpφΛkp´1q

q ´W pφΛkp´1q
|Sq

‰

ď exp
”
´g

2
φ4z `Aβ}J}L1φ2z ` O3

ı
ˆ ρ

Γztzu
Λk

pφΓztzu|Sq.
(4.68)

And for q ě 0:

1

ZpΛkpqq|Sq

ż

RqpφΓ,Λkpqq,Sq
dφΛkpqqzΓ exp

“
´UpφΛkpqq

q ´W pφΛkpq
|Sq

‰

ď exp rpO5 ´ ψqq |Λq|s ˆ exp

»
– ÿ

xPpz`ΛqqXΓ

´
´g

2
φ4x ` pAβ}J}L1 ` 1qφ2x ` O3

¯
fi
fl

ˆ ρ
Γzpz`Λqq
Λk

pφΓzpz`Λqq|Sq

(4.69)
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First we prove (4.69). Note that kpqq ě q. Now if SpΛc
kpqqq P R̂zq then the estimate follows by sublemma

(5.4) in the appendix (note we have the assumption of condition (b) in this case).

We now turn to the other case: suppose that SpΛc
kpqqq R R̂zq . Then there is some non-negative integer r

such that r ą q and

ÿ

xPpz`Λrq
SpΛkpqqq2x ě ψr|Λr|.

Now let φΓ P RΓ and φΛkpqq
P RΛkpqq be arbitrary and define φ̂ “ φΓ ^φΛkpqq

^SΛc
kpqq

. Then we have that

ÿ

xPpz`Λrq
φ̂2x ě

ÿ

xPpz`Λrq
SpΛkpqqq2x ě ψr|Λr|

In particular we have that φ̂ R R̂zq . From this observation we see that for all φΓ P RΓ the setRqpφΓ,Λkpqq, Sq
is the empty set and the integral on the top line of (4.69) vanishes. One can prove (4.68) in an analagous

way, this time using sub-lemma (5.3) of the appendix.

We then have

gpφΓ|µq ď exp
”
´g

2
φ4z `Aβ}J}L1φ2z ` O3

ı ż

L

dµpSqρΓztzu
Λk

pφΓztzu|Sq

`
8ÿ

q“0

˜
exp rpO5 ´ ψqq |Λq|s ˆ exp

»
– ÿ

xPpz`ΛqqXΓ

´
´g

2
φ4x ` pAβ}J}L1 ` 1qφ2x ` O3

¯
fi
fl

ˆ
ż

L

dµpSqρΓzpz`Λqq
Λk

pφΓzpz`Λqq|Sq
¸

“ exp
”
´g

2
φ4z `Aβ}J}L1φ2z ` O3

ı
gpφΓztzu|µq

`
8ÿ

q“0

¨
˝exp rpO5 ´ ψqq |Λq|s exp

»
– ÿ

xPpz`ΛqqXΓ

´
´g

2
φ4x ` pAβ}J}L1 ` 1qφ2x ` O3

¯
fi
fl gpφΓzpz`Λqq|µq

˛
‚

Note in the final equality we used Gibbs consistency. We also use the convention that gpφH|µq “ 1. The

regularity bound for gpφΓ|µq now follows by arguments identical to those used in the final steps of proving

Lemma 4.18. .

4.7.4 Properties of various Gibbs measures

Theorem 4.15. For any β, h ě 0 the measures πΛn,β,hp¨|0q converge to a tempered measure νrβ, hs locally

setwise. This measure is a Gibbs measure with respect to the interaction Upβ, hq.

Proof :
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All that needs to be proved is that the sequence πΛn,β,hp¨|0q converges locally weakly.

By Theorem 4.12 we have that there exists a convergent subsequence πΛnk
,β,hp¨|0q. We denote this mea-

sure by νrβ, hs. Note that for any Γ Ť Λ the Γ-marginals of πΛn,β,hp¨|0q and νrβ, h, 0s are all uniformly

exponentially integrable - they have entire moment generating functions. Thus we can prove convergence by

just showing convergence of all moments. We also have that the moments of πΛnk
,β,hp¨|0q converge to the

moments of νrβ, h, 0s.

Now for any multi-index A P NL with |A| ď 8 we claim that the sequence πΛn,β,hpφA|0q is monotone

increasing - this is a consequence of Griffiths II. Since this sequence has a convergence subsequence the entire

sequence must converge to the same limit.

Lemma 4.22. The limit lim
hÑ0`

νrβ, hs :“ νrβ, 0`s exists in the topology of weak local convergence. The

measure νrβ, 0`s is a Gibbs measure with respect to the interaction Upβ, 0q

Proof:

First we show convergence, again it suffices to show convergence of moments. Let h2 ě h1 ě 0. Now by

Griffiths I and II we have the following inequality for any moment φA and any n:

πΛn,β,h2
pφA|0q ě πΛn,β,h1

pφA|0q ě 0

Taking the n Ñ 8 limit we see that xφAyνrβ,h2
ě xφAyνrβ,h1s so the quantity xφAyνrβ,hs is monotone

decreasing in h for h ě 0 and bounded below by 0, this establishes convergence.

We note that by applying Lemma 4.18 with the choices Ah “ 1 and Aβ “ β we get a bound (4.18) which

lets us prove statement (iii) of Lemma 4.19 for νrβ, 0`s via the same arguments used in Lemma 4.19.

We now turn to proving Gibbs consistency with respect to Upβ, 0q. Let thnu Ă r0, 1s be a sequence

converging to 0 from above. To lighten notation for the proof we denote νrβ, hns :“ νn, and νrβ, 0s :“ ν.

We pick some Γ “ Λk for some k and pick A P B̄pLq which is of the form A “ A1 XA2 where A1 P BpΓq and

A2 P B̄pΓcq. We want to show

ν pπΓ,β,0pA|¨qq “ νpAq.

We will prove that

lim
nÑ8

νn pπΓ,β,hn
pA|¨qq “ ν pπΓ,β,0pA|¨qq . (4.70)

Since νn is a Gibbs interaction with respect to the interaction Upβ, hnq we can apply Gibbs consistency:

lim
nÑ8

νn pπΓ,β,hn
pA|¨qq “ lim

nÑ8
νnpAq “ νpAq, thus proving (4.70) suffices.
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For any n, j P N we have:

|νn pπΓ,β,hn
pA|¨qq ´ ν pπΓ,β,0pA|¨qq|

“
ˇ̌
ˇ̌
ż

RL

dνnpSq1A2
pSqπΓ,β,hn

pA1|Sq ´
ż

RL

dνpSq1A2
pSqπΓ,β,0pA1|Sq

ˇ̌
ˇ̌

ď
ˇ̌
ˇ̌
ż

RL

dνnpSq1A2
pSq rπΓ,β,hn

pA1|Sq ´ πΓ,β,hn
pA1|SpΛjqqs

ˇ̌
ˇ̌

`
ˇ̌
ˇ̌
ż

RL

dνnpSq1A2
pSqπΓ,β,hn

pA1|SpΛjqq ´
ż

RL

dνpSq1A2
pSqπΓ,β,0pA1|SpΛjqq

ˇ̌
ˇ̌

`
ˇ̌
ˇ̌
ż

RL

dνpSq1A2
pSq rπΓ,β,0pA1|SpΛjqq ´ πΓ,β,0pA1|Sqs

ˇ̌
ˇ̌ .

Let ǫ ą 0. Since our superstability estimates are uniform in h one can find m P N such that

sup
n
νnpXc

mq ă ǫ, νpXc
mq ă ǫ.

Therefore one can use the same argument as used in Theorem 4.13 to bound the second and fourth lines

uniformly in n for sufficently large j.

For fixed j the third line can be made small for large enough n, this follows from the fact that we have

the pointwise (in S) convergence of the following (uniformly) local functions:

lim
nÑ8

1A2
pSqπΓ,β,hn

pA1|SpΛjqq “ 1A2
pSqπΓ,β,0pA1|SpΛjqq

The pointwise convergence above follows via a dominated convergence argument applied to integrals over

RΓ.

Since the νn converge locally setwise to ν we can use the generalized dominated convergence theorem

given below to make the third line arbitrarily small for large enough n.

Theorem 4.16. Let pΩ,Bq be a measurable space and suppose that the measures λn converge setwise to the

measure λ. Suppose furthermore that one has a sequence of measurable functions fn on Ω such that func-

tions fn converge pointwise to a function f . Furthermore suppose that there exist a sequence of measurable

functions gn converging pointwise to a function g with |fn| ď gn for all n.

Then if

lim
nÑ8

ż

Ω

dλn gn “
ż

Ω

dλ g ă 8

One has

lim
nÑ8

ż

Ω

dλn fn “
ż

Ω

dλ f

Proof:
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See [57][ Chapter 11, Section 4].

Lemma 4.23. For any moment φA one has that

xφAyνrβ,0`s ě xφAyνrβ,0s

This follows by the arguments made in the first part of Lemma 4.22.

Definition:

The pressure in a finite volume Λ with deterministic boundary condition S P X̄1 is defined as:

ppΛ, β, h, Sq “ 1

|Λ| log rZpΛ|Sqs

The next theorem states that the infinite volume limit of the pressure is independent of boundary con-

dition:

Theorem 4.17. There is a convex function ppβ, hq such that for any S P X̄1 one has:

lim
kÑ8

ppΛk, β, h, Sq “ ppβ, hq.

Proof: See [45, Lemma 2.6, Theorem 3.1]

The next lemmas set up a variational principle argument which will show equality of certain expectations

across different Gibbs measures. The general approach of combining bounds uniform in volume and the

choice of the boundary condition bounds with Lebesgue’s dominated convergence theorem was something

that we saw in [40].

Lemma 4.24. For β P r0, Aβs, h P r0, Ahs we have the following bounds:

ż

RΛk

dπΛk,β,h pφΛk
|Sq

ˇ̌
ˇ

ÿ

x,yPΛk

x ­“y

Jpx´ yqφxφy
ˇ̌
ˇ ď }J}L1 ˆ rO3Aβ ` 2npSqO1 ` O4s |Λk|. (4.71)

ż

RΛk

dπΛk,β,h pφΛk
|Sq

ˇ̌
ˇ
ÿ

xPΛk

yPΛc
k

Jpx´ yqφxSy
ˇ̌
ˇ ď }J}L1 ˆ rO3Aβ ` 3npSqO1 ` O4s |Λk|. (4.72)

Here we have set

O3 “
ż

R

ds e´ g
4
s4`δs2.

O4 “
ż

R

ds e´ g
4
s4`δe

´
1` Aβ

2
}J}L1

¯
s2

.
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Proof: First note that

ÿ

x,yPΛk

x ­“y

|Jpx´ yqφxφy| ď ||J ||
ÿ

xPΛk

φ2x.

Now by Jensen’s inequality

ż

RΛk

dπΓ,β,h pφΛk
|Sq

ÿ

xPΛk

φ2x ď log

˜ż

RΛk

dπΛk,β,h pφΛk
|Sq exp

« ÿ

xPΛk

φ2x

ff¸

“ log

˜ż

RΛk

dπΛk,β,h pφΛk
|0q exp

« ÿ

xPΛk

φ2x ´W
`
φΛk

|SΛc
k

˘
ff¸

´ log

ˆż

RΛk

dπΛk,β,h pφΛk
|0q exp

“
´W

`
φΛk

|SΛc
k

˘‰˙
.

Using Jensen’s inequality again to bound the last line of the estimate gives

´ log

ˆż

RΛk

dπΛk,β,h pφΛk
|0q exp

“
´W

`
φΛk

|SΛc
k

˘‰˙
ď
ż

RΛk

dπΛk,β,h pφΛk
|0qW

`
φΛk

|SΛc
k

˘

ď
ż

RΛk

dπΛk,β,h pφΛk
|0q

ÿ

xPΛk

yRΛk

1

2
J̄px´ yq

`
φ2x ` S2

y

˘

ď
`
O3}J̄}L1 ` npSqO1

˘
|Λk|.

Here we used the estimate

ÿ

xPΛk

yRΛk

J̄px´ yqS2
y ď npSq

ÿ

xPΛk

yRΛk

J p}y}q log`p}y}q ď npSqO1.

The quantity O1 is defined in Sublemma 5.1. The other contribution satisfies the bound

log

˜ż

RΛk

dπΛk,β,h pφΛk
|0q exp

« ÿ

xPΛk

φ2x ´W
`
φΛk

|SΛc
k

˘
ff¸

ď log

˜ż

RΛk

dπΛk,β,h pφΛk
|0q exp

«ˆ
1 ` }J̄}L1

2

˙ ÿ

xPΛk

φ2x ` npSqO1|Λk|
ff¸

ď npSqO1|Λk| ` log

˜ ż

RΛk

dπΛk,β,h pφΛk
|0q exp

«ˆ
1 ` }J̄}L1

2

˙ ÿ

xPΛk

φ2x

ff¸

ď npSqO1|Λk| ` log
´
O

|Λk|
4

¯

This proves statement (i) of the lemma.
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For statement (ii) note that

ˇ̌
ˇ
ÿ

xPΛk

yPΛc
k

Jpx´ yqφxSy
ˇ̌
ˇ ď 1

2
}J}L1

˜ ÿ

xPΛk

φ2x

¸
` 1

2
npSqO1|Λk|

We throw away the factors of 1
2
and bound the integral of the first term just as we did for statement (i)

- this proves statement (ii).

Lemma 4.25. Suppose that at some β0 P p0,8q one has that ppβ, 0q is differentiable in β at β “ β0. Then

for any distinct x, y P Lzt0u such that Jpx´ yq ą 0 one has:

xφxφyyνrβ0,0s “ xφxφyyνrβ0,0`s

Proof:

We start by choosing Aβ large enough so that β0 P r0, Aβq and by choosing Ah “ 1.

Let S P X8. We have that the sequence of convex functions ppΛk, β, 0, Sq (for any S P X8) and their

pointwise limit lim
kÑ8

ppΛk, β, 0, Sq “ ppβ, hq are all differentiable in β at β “ β0. Then by standard facts

about convex functions (see §I.3 in [64]) we immediately have the convergence of corresponding derivatives:

lim
kÑ8

Bp
Bβ pΛk, β0, 0, Sq “ Bp

Bβ pβ0, 0q.

Note that the right hand side of the equation above does not depend on S.

We also have the bound

ˇ̌
ˇ̌ Bp
Bβ pΛk, β0, 0, Sq

ˇ̌
ˇ̌ ď 1

|Λk|

ż

RΛk

dπΛk,β,h pφΛk
|Sq

ˇ̌
ˇ

ÿ

x,yPΛk

x ­“y

Jpx´ yqφxφy `
ÿ

xPΛk

yPΛc
k

Jpx´ yqφxSy
ˇ̌
ˇ

ď 2 ˆ }J}L1 ˆ rO3Aβ ` 3npSqO1 ` O4s .

Above we have used statements (i) and (ii) of Lemma 4.24.

Define

θpSq “ 2 ˆ }J}L1 rO3Aβ ` 3npSqO1 ` O4s

We note that θpSq is integrable under any regular measure µ. In particular arguments similar to those

used in the proof of statement (ii) of Lemma 4.19 show that
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ż

RL

dµpSqnpSq ď 1 `
8ÿ

k“1

µptXc
kuq

ď 1 ` O2

8ÿ

k“1

e´ g
8
k2 ă 8.

Thus by Lebesgue Dominated Convergence theorem for any regular measure µ

lim
kÑ8

ż

RL

dµpSq Bp
Bβ pΛk, β0, 0, Sq “

ż

RL

dµpSq lim
kÑ8

Bp
Bβ pΛk, β0, 0, Sq

“
ż

RL

dµpSq Bp
Bβ pβ0, 0q “ Bp

Bβ pβ0, 0q.

It follows that for any two regular measures µ, µ1

lim
kÑ8

ż

RL

dµpSq Bp
Bβ pΛk, β0, 0, Sq “ lim

kÑ8

ż

RL

dµ1pSq Bp
Bβ pΛk, β0, 0, Sq (4.73)

We now apply the above equality with the regular measures νrβ0, 0s and νrβ0, 0`s.
Since νrβ0, 0`s is a Gibbs measure with respect to the interaction Upβ0, 0q one has

lim
kÑ8

ż

RL

dνrβ0, 0`spSq Bp
Bβ pΛk, β0, 0, Sq

“ lim
kÑ8

1

|Λk|

ż

RL

dνrβ0, 0`spSq

»
——–
ż

RΛk

dπΛk,β,h pφΛk
|Sq

¨
˚̊
˝

ÿ

x,yPΛk

x ­“y

Jpx´ yqφxφy `
ÿ

xPΛk

yRΛk

Jpx´ yqφxSy

˛
‹‹‚

fi
ffiffifl

“ 1

|Λk|
ÿ

xPΛk

ÿ

yPLztxu
Jpx´ yqxφxφyyνrβ0,0`s

“
ÿ

yPLzt0u
Jpyqxφ0φyyνrβ0,0`s.

In going to the third line we used Gibbs consistency and in going to the fourth line we used translation

invariance. Note that the interchange of summation and integration is allowed since xφxφ0yνrβ0,0`s is uni-

formly bounded in x by Lemma 4.14 and because |J | is summable.

By identical arguments one has:

lim
kÑ8

ż

RL

dνrβ0, 0spSq Bp
Bβ pΛk, β0, 0, Sq “

ÿ

yPLzt0u
Jpyqxφ0φyyνrβ0,0s

Applying (4.73) then gives
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ÿ

yPLzt0u
Jpx´ yqxφxφyyνrβ0,0s “

ÿ

yPLzt0u
Jpyqxφ0φyyνrβ0,0`s (4.74)

Note that by Lemma 4.23 one has that for all y P L the inequality xφ0φyyνrβ0,0`s ě xφ0φyyνrβ0,0s. However

for y ­“ 0 and Jpyq ­“ 0 then it is impossible for that inequality to be strict, otherwise (4.74) could not hold.

Thus if Jpyq ­“ 0 then it follows that xφ0φyyνrβ0,0`s “ xφ0φyyνrβ0,0s. The lemma then follows by translation

invariance of both measures and the interaction.
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Chapter 5

Appendix

5.1 Lemmas for Section 1.4

Theorem 5.1. Let µ be a joint spectral measure of a vector ψ P H on Rn, that is µ is determined by the

distribution function F pλ1, ..., λnq “ p1,śn
j“1 Pj,p´8,λis1q where the Pj are the commuting projection valued

measures corresponding to self-adjoint operators Âj.

Then we have

ż

Rn

dµpxqei~t¨~x “ pψ,
8ź

j“1

eiÂjtjψq

Proof: Let fpxq be a bounded continuous function on R. We first prove that:

lim
mÑ8

ÿ

iPZ

f

ˆ
i

m

˙
Pj,r i

m
, i`1

m
q “ fpAjq

were the convergence is in the strong operator topology on H. This fact is part of the spectral theorem but

we prove it again here. For any h P H write νj,h for the spectral measure of h under Aj . We have that

lim
mÑ8

˜ÿ

iPZ

f

ˆ
i

m

˙
Pj,r i

m
, i`1

m
qh,

ÿ

iPZ

f

ˆ
i

m

˙
Pj,r i

m
, i`1

m
qh

¸
“ lim

mÑ8

˜
h,

ÿ

iPZ

f̄p i
m

qf
ˆ
i

m

˙
Pj,r i

m
, i`1

n
qh

¸

“
ż

R

f̄pxqfpxqdνj,vpxq by Bounded Convergence Theorem

“
`
h, f̄pAjqfpAjqh

˘

“ pfpAjqh, fpAjqhq .

Now we study the µ integral:
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ż

Rn

nź

j“1

fjpxjqdµp~xq “ lim
mÑ8

ż

Rn

ÿ

i1,...,inPZ

nź

j“1

fj

ˆ
ij

m

˙
dµp~xq

“ lim
mÑ8

˜
ψ,

ÿ

i1,...,inPZ

nź

j“1

fj

ˆ
ij

m

˙
P
j,r ij

m
,
ij`1

m
qψ

¸

Exploiting the commutativity of the projection operators we get that (with everything in terms of strong

operator topology limits):

lim
mÑ8

nź

j“1

ÿ

i1,...,inPZ

fj

ˆ
ij

m

˙
P
j,r ij

m
,
ij`1

m
q “ lim

mÑ8

nź

j“1

»
–ÿ

ijZ

fj

ˆ
ij

m

˙
P
j,r ij

m
,
ij`1

m
q

fi
fl

“
8ź

j“1

fjpAjq

In the last line we used the fact that the multiplication of operators is jointly continous in the strong

operator topology. Thus we have that

lim
mÑ8

˜
ψ,

ÿ

i1,...,inPZ

nź

j“1

fj

ˆ
ij

m

˙
P
j,r ij

m
,
ij`1

m
qψ

¸
“ pψ,

8ź

j“1

fjpAjqψq

Theorem 5.2. Let µ be a measure on Rn with moments given by tMαuαPNd Also suppose that there exists

C ą 0 such that for every α P Nd

|Mα| ď C |α||α|!

Then there exists δ ą 0 such that for all t P Rd with |t| ď δ one has

ż

Rd

dµpxq et¨x ă 8

Proof: Let t P Rn with max1ďjďd |tj | ď σ. Then one has
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ż

Rd

dµpxq et¨x “
ż

Rd

dµpxq

»
——–

8ÿ

n“0

1

n!

¨
˚̊
˝

ÿ

αPNd

|α|“n

ˆ
n

α

˙
tαxα

˛
‹‹‚

fi
ffiffifl

ď
ż

Rd

dµpxq

»
——–

8ÿ

n“0

1

n!

¨
˚̊
˝

ÿ

αPNd

|α|“n

ˆ
n

α

˙
|tα| ˆ |xα|

˛
‹‹‚

fi
ffiffifl

ď
8ÿ

n“0

1

n!
ˆ σn

¨
˚̊
˝

ÿ

αPNd

|α|“n

ˆ
n

α

˙ż

Rd

dµpxq |xα|

˛
‹‹‚

ď
8ÿ

n“0

1

n!
σn

¨
˚̊
˝

ÿ

αPNd

|α|“n

ˆ
n

α

˙
M

1

2

2α

˛
‹‹‚

ď
8ÿ

n“0

1

n!
σn ˆ Cn

a
p2nq!

ÿ

αPNd

|α|“n

ˆ
n

α

˙

ď
8ÿ

n“0

1

n!
σn ˆ Cn ˆ

a
p2nq! ˆ dn ď

8ÿ

n“0

pσ ˆ C ˆ 2 ˆ dqn

Clearly the last line is finite for sufficiently small σ. Note that above we used
`
n
α

˘
to refer to a multinomial

coefficient, in particular ˆ
n

α

˙
“ n!

śd
j“1pαj !q

.

Theorem 5.3. Let µ and ν be measures on Rd with the same family of moments tMαuαPNd . Furthermore

suppose the two measures have moment generating functions that exist in a neighborhood of 0, that is there

Dδ ą 0 such that for all t P Rd with |t| ď δ one has that

ż

Rd

dµpxq et¨x ă 8
ż

Rd

dνpxq et¨x ă 8

Then µ, ν have the same characteristic functions and hence coincide

Proof: For a d-dimensional random vector X a one dimensional marginal of X is a random variable of form

l ¨X for l P Rd. We remark that the the law of a random vector is characterized by the collection of laws of

its one dimensional marginals - this follows from the the fact that the law of a random vector is characterized

by its characteristic function. Thus it suffices to prove that the one dimensional marginals of µ and ν agree,
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in particular we only need to prove the assertion of the theorem for the d “ 1 so we specialize to this case.

We first prove that the characteristic functions θµptq, θνptq are actually analytic in a strip about the real

axis. Let t P C with |ℑptq| ă δ. It follows that

ż

R

dµpxq
ˇ̌
eitx

ˇ̌
“

ż

R

dµpxq
ˇ̌
ˇeiℜptqx

ˇ̌
ˇ ˆ

ˇ̌
ˇeℑptqx

ˇ̌
ˇ

ď
ż

R

dµpxq
“
e´δx ` eδx

‰
ă 8

Since we have a uniform bound on this integral for all t in our strip we can apply a Fubini/Morrera argument

to establish analyticity. Now that both θµptq and θνptq are analytic in the strip we use the fact that the

family of moments tMαuαPN1 are precisely all the derivatives of both characteristic functions evaluated at

t “ 0. Since all derivatives at zero match the two functions must coincide on the entire strip.

5.2 Estimates on Covariances

This appendix gives needed estimates for Chapter 3. Here we prove some properties satisfied by the covari-

ances C0 and Γ for some fixed L “ pl where l is an integer l ą 0.

Lemma 5.1. The covariance Γ can be expressed pointwise as follows.

1. If |x| ď 1 then

Γpxq “ 1 ´ p´3

1 ´ p´2rφs p1 ´ L´2rφsq .

2. If |x| “ pi with 1 ď i ď l, then

Γpxq “ ´p´3`2rφsp´2lrφs ` 1 ´ p´3`2rφs

1 ´ p´2rφs pp´2irφs ´ p´2lrφsq .

3. If |x| ą L then Γpxq “ 0.

Proof: Recall that

Γpxq “
l´1ÿ

j“0

p´2jrφs
´
1Z3

p
ppjxq ´ p´31Z3

p
ppj`1xq

¯
.

By Abel summation, or discrete integration by parts, this can be rewritten as

Γpxq “ 1Z3
p
pxq ´ p´3´2pl´1qrφs1Z3

p
pplxq `

l´1ÿ

j“1

p´2jrφsp1 ´ p´3`2rφsq1Z3
p
ppjxq . (5.1)

Now we also have

1Z3
p
ppjxq “ 1t|pjx| ď 1u “ 1t|x| ď pju “

ÿ

iďj
1t|x| “ piu .
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We insert the last expression into the sum in (5.1) and get after commuting the sums over i and j that

Γpxq “ 1Z3
p
pxq ´ p´3´2pl´1qrφs1Z3

p
pplxq `

ÿ

iPZ

Ui1t|x| “ piu

where

Ui “
ÿ

jPZ

1

#
1 ď j ď l ´ 1

i ď j

+
p´2jrφs .

Now note that if i ě l then Ui “ 0. Also, if i ď 0 then

Ui “ p´2rφs ´ p´2lrφs

1 ´ p´2rφs .

Finally, if 1 ď i ď l ´ 1 then

Ui “ p´2irφs ´ p´2lrφs

1 ´ p´2rφs .

As a result we have

Γpxq “ 1t|x| ď 1u ´ p´3`2rφsp´2lrφs1t|x| ď plu ` 1 ´ p´3`2rφs

1 ´ p´2rφs

ÿ

iďl´1

1t|x| “ piu
´
p´2rφs maxpi,1q ´ p´2lrφs

¯

from which the result follows by specialization to the different cases mentioned.

As a result of the previous lemma we have a precise control over the sign of the function Γ.

Lemma 5.2.

1. If |x| ă pl then Γpxq ą 0.

2. If |x| “ pl then Γpxq ă 0.

3. If |x| ą pl then Γpxq “ 0.

Proof: Recall that ǫ P p0, 1s and therefore rφs “ 3´ǫ
4

P
“
1
2
, 3
4

˘
. We also have l ě 1 and of course the prime

number p is at least 2. From Lemma 5.1 ), we then readily get that Γpxq ą 0 if |x| ď 1. The case |x| ą pl has

already been considered. For |x| “ pl the formula in Lemma 5.1) reduces to Γpxq “ ´p´3`2rφsp´2lrφs ă 0.

Finally when |x| “ pi, 2 ď i ď l ´ 1 then the formula in Lemma 5.1) shows that Γpxq decreases with i in

that range. We only need to look at the case i “ l ´ 1 where one has

Γpxq “ p´2pl´1qrφs
”
1 ´ p´3 ´ p´3`2rφs

ı
.

Simply using p´3 ď 1
8
and 3 ´ 2rφs ą 3

2
, which implies p´3`2rφs ă 2´ 3

2 , we get 1 ´ p´3 ´ p´3`2rφs ą 0 and

thus Γpxq ą 0.

Corollary 5.1. The fluctuation covariance satisfies the L1 bound

||Γ||L1 ă 1?
2
L3´2rφs .
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Proof: Indeed, by Γ “ C0 ´ C1 and the definitions of the Cr covariances we have that
ş
Q3

p
d3x Γpxq “

pΓp0q “ 0. In other words the positive part exactly cancels the negative part which is easy to compute since

it only involves x’s with |x| “ pl. Therefore

||Γ||L1 “ ´2

ż

Q3
p

d3x Γpxq 1t|x| “ plu

“ 2p1 ´ p´3qp´3`2rφsL3´2rφs .

We use 1 ´ p´3 ă 1 and again p´3`2rφs ă 2´ 3

2 to conclude.

As for the unit cut-off covariance C0, the following easy property will be useful in the sequel.

Lemma 5.3. When ǫ P p0, 1s, we have 1 ă C0p0q ă 2.

Proof: Recall that

C0p0q “ 1 ´ p´3

1 ´ p´2rφs “ 1 ´ p´3

1 ´ p´p 3´ǫ
2 q .

Only using p ě 1 and the given range for ǫ we get

p´ 3

2 ď p´p 3´ǫ
2 q ď p´1 ď 1

2
.

Hence

1 ă 1 ´ p´3

1 ´ p´1
ď C0p0q ď 1 ´ p´3

1 ´ p´ 3

2

“ 1 ` p´ 3

2 ă 2 .

We will also need some information on the L8 and L2 norms of Γ which are provided by the following

two easy lemmas.

Lemma 5.4. We have the simple estimate

||Γ||L8 ď 2 .

Proof: If |x| ď 1, it follows from Lemmas 5.1 and 5.3 that 0 ă Γpxq ă 2. If |x| ą L, then Γpxq “ 0. If

|x| “ L, then

|Γpxq| “ | ´ p´p3´2rφsqL´2rφs| ď 1 .

Finally if |x| “ pi with 1 ď i ď l ´ 1, then by Lemma 5.2

|Γpxq| “ Γpxq “ ´p´3`2rφsp´2lrφs ` 1 ´ p´3`2rφs

1 ´ p´2rφs pp´2irφs ´ p´2lrφsq

ď 1 ´ p´3`2rφs

1 ´ p´2rφs pp´2irφs ´ p´2lrφsq ď 1 ´ p´3`2rφs

1 ´ p´2rφs ď 1 ´ p´3

1 ´ p´2rφs “ C0p0q ă 2 .

This shows |Γpxq| ď 2 in all cases.
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Lemma 5.5. We have

ż

Q3
p

|Γpxq|2 d3x “ p1 ´ p´3qpLǫ ´ 1q
pǫ ´ 1

ÝÑ p1 ´ p´3q ˆ l

when ǫ Ñ 0, with l defined by L “ pl and the limit taken with L fixed.

Proof: By the Plancherel formula over the p-adics

ż

Q3
p

|Γpxq|2 d3x “
ż

Q3
p

|pΓpkq|2 d3k .

But
pΓpkq “ pC0pkq ´ pC1pkq “ 1tL´1 ă |k| ď 1u

|k|3´2rφs

and therefore

ż

Q3
p

|Γpxq|2 d3x “
ż

Q3
p

1tL´1 ă |k| ď 1u
|k|6´4rφs d3k

“
l´1ÿ

j“0

ż

Q3
p

1t|k| “ p´ju
pp´jq6´4rφs d3k

“
l´1ÿ

j“0

p1 ´ p´3qp´3jpjp6´4rφsq .

The result follows since 3 ´ 4rφs “ ǫ and of course the ǫ Ñ 0 limit is trivial.

5.3 Properties of the Magnetization

5.3.1 Proof of Theorem 4.9

We first state two standard results of complex analysis:

Theorem 5.4 (Vitali - Porter Convergence Theorem). Let fnpzq be a sequence of analytic functions on a

domain Ω Ď C. Suppose that this sequence is locally uniformly bounded ( that is for any compact K Ă Ω one

has sup
zPK

sup
n

|fnpzq| ă 8 ). Also suppose that this sequence converges pointwise on some set E Ă Ω where E

has an accumulation point in Ω. Then there exists an analytic function f on Ω such that the sequences fn

converges to f uniformly on any compact subset of Ω.

Proof: See §2.4 of [60].

Theorem 5.5. Let fnpzq be a sequence of analytic functions on a domain G Ď C such that the following

hold: (i) for each n the function fnpzq is non-zero on G, (ii) the functions fnpzq converge uniformly on

compact sets to a function fpzq. Then the function fpzq is either non-zero on G or it completely vanishes.

Proof: See §3.8 of [60].
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Proof of Theorem 4.9

The fact that Mpg, b, β, hq is well-defined and finite comes from the the exponential integrability of the

measure µrL, g, b, β, hs which follows from (4.14), the fact that M`pg, b, βq is well defined and finite comes

from Lemma 4.22.

We now fix g, b, and β. We will often suppress them from the notation. To prove statement (i) we first

introduce some new notation, set

Mkphq :“ Mkpg, b, β, hq “ xφ0yµrΛk,g,b,β,hs.

Note that Mkpg, b, β, hq is concave as a consequence of (4.5) - in particular observe that

B2

Bh2Mkphq “ xφ0, φ0, φ0yTµrΛk,g,b,β,hs ď 0.

Statement (i) is now proved since the point-wise limit of concave functions is itself concave and

lim
kÑ8

Mkpg, b, β, hq “ Mpg, b, β, hq.

We now move on to statement (ii). Define Ω “ tz P C| ℜpzq ą 0u. For h P Ω define:

ZΛk
phq :“ ZΛk

pg, b, β, hq :“
ż

RΛk

exp

»
——–
β

2

ÿ

x,yPΛk

x ­“y

Jpx´ yqφxφy

fi
ffiffifl exp

«
´

ÿ

xPΛk

`
gφ4x ` bφ2x ´ hφx

˘
ff
dφΛk

.

Note that by Theorem 4.6 one has that ZΛk
phq ­“ 0 for h P Ω. We use the notation Z 1

Λk
phq to denote

the derivative in h of ZΛk
phq. We now define the pressure corresponding to a volume Λk and external field

h P Ω:

pΛk
phq :“ 1

|Λk|

«
LogZΛk

p1q `
ż h

1

Z 1
Λk

phq
ZΛk

phqdz
ff
.

Above the integral is taken over any path in Ω connecting 1 and h and Log is the principal branch of

the complex logarithm. Since Ω is simply connected and the integrand above is analytic on Ω the choice of

path doesn’t matter. Additionally pΛk
phq is analytic on Ω.

This definition satisfies exp r|Λk|pΛk
pzqs “ ZΛk

phq. It is also agrees with the standard definition pΛk
phq “

1
|Λk| log pZΛk

phqq for h P Ω X R.

We define functions on fk : Ω ÞÑ C via

fkphq :“ exp rpΛk
phqs .

By Theorem 4.17 we have the pointwise convergence lim
kÑ8

pΛk
phq “ pphq for h P ΩXR and so the functions
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fkphq converge pointwise to a function fphq “ epphq for h P Ω X R.

We now show that the functions fkphq are locally uniformly bounded. First observe that

|fkphq| “ exp rℜ ppΛk
phqqs ď exp rpΛk

p|h|qs .

To see why the last inequality is valid we first note that |ZΛk
phq| ď ZΛk

p|h|q which means

ℜppΛk
phqq “ 1

|Λk| log p|ZΛk
phq|q ď 1

|Λk| log pZΛk
p|h|qq “ pΛk

p|h|q.

Thus to show that the fnphq are locally uniformly bounded it suffices to show that for any K Ă Ω compact

one has sup
k

sup
hPK

pΛk
p|h|q ă 8.

Set hK “ suphPK |h|. Then one has suphPK pΛk
p|h|q “ pΛk

phKq. This follows from the fact that pΛk
phq

restricted to the non-negative real line is increasing in h (this last fact itself follows from noticing that for

such h one has
B

BhpΛk
phq “ Mkphq ě 0 where the last inequality is a consequence of Griffiths I). Since

lim
kÑ8

pΛk
phKq “ pphKq we have that sup

k

sup
hPK

pΛk
p|h|q “ sup

k

pΛk
phkq ă 8. Thus the fkphq are locally uni-

formly bounded on Ω.

It then follows by the Vitali-Porter convergence theorem that the fkphq converge uniformly on compact

sets of Ω to an analytic extension of fphq. Since all the fkphq are non-vanishing we can use Theorem 5.5 to

infer that fphq is non-vanishing as well (note that we already knew fphq is non-zero on Ω X R by Theorem

4.17). In particular we can define an analytic extension of pphq to all of Ω by setting

pphq “ log pfp1qq `
ż h

1

f 1pzq
fpzq dz

Above f 1phq “ B
Bhfphq and the integral is along any path within Ω connecting 1 and h. Now state-

ment (ii) will be proved if we show that for h P Ω X R one has Mphq “ B
Bhpphq. Note that for such h

one has that pphq is convex, so by general facts about convex functions we have the point-wise convergence
B

BhpΛk
phq Ñ B

Bhpphq. However we have that B
BhpΛk

phq “ Mkphq (we remark that we are using translation

invariance here). Statement (ii) is then proved.

5.3.2 Proof of Lemma 4.3

We again sometimes suppress dependence on g and b.
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lim
nÑ8

lim
hÑ0`

Mnpβ, hq
h

“ lim
nÑ8

B
BhMnpβ, hq

ˇ̌
ˇ̌
h“0

“ lim
nÑ8

ÿ

xPΛn

xφ0φxyµrΛn,g,b,β,0s

“
ÿ

xPL

xφ0φxyνrL,g,b,β,0s

On the second to last line the individual integrals are non-negative and increasing in n so the convergence

to the last line is monotone.

Now by previous arguments (see Theorem 4.9) we have that Mnpβ, hq is concave for h ě 0. This means

that Mnpβ,hq
h

is increasing as we take h down to 0. On the other hand we have that Mnpβ, hq is increasing

in n for h ě 0. We can then interchange limits to see that:

lim
hÑ0`

Mpβ, hq
h

“ lim
hÑ0`

lim
nÑ8

Mnpβ, hq
h

“ lim
nÑ8

lim
hÑ0`

Mnpβ, hq
h

“
ÿ

xPL

xφ0φxyνrL,g,b,β,0s

5.4 Additional Proofs for Section 4.7

5.4.1 Proof of Lemma 4.18

This proof is technical. We will define constants so that the estimates can be used for proving both Lemmas

4.18 and 4.14. We are following [58], [59], and [45] with some differences and simplifications coming from

working in the ultrametric setting. After proving some sublemmas we will give a description of what the

approach for the main bound will be.

We begin by introducing some notation.

Recall that for any non-negative integer j we set Λj :“ tx P L | |x| ď pju.

We define a decreasing function J : t0, p, p2, p3, ...u Ñ p0,8q as follows: for k P N we set J “ AβΨ,

recall that Ψ is defined in Theorem 4.8.

We also define: Jq,k :“ sup
xPΛq`1

yRΛq`k`1

J p}x´ y}q “ J ppq`k`2q.

Let ψptq “ 2 ˆ log`ptq :“ 2 ˆ maxplogptq, 1q ( we could set ψptq “ b log`ptq for any b ą 1). We use the

notation ψj :“ ψppjq. We list some properties of ψptq:

ψ ě 1, lim
tÑ8

ψptq “ 8,

ÿ

xPL

J p}x}qψp}x}q ă 8. (5.2)
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The sub-lemmas involved in the proof of Lemma 4.18 will involve a certain decomposition of field con-

figurations which we now describe. For each φ P X̄1 one has that

D N P N such that @ r ą N,
ÿ

xPΛr

φ2x ă ψr|Λr|.

For any z P L, one can take r sufficiently large so that one has z ` Λr “ Λr. Therefore the following

condition also holds for φ P X̄1:

@z P L, D N P N such that @ r ą N,
ÿ

xPpz`Λrq
φ2x ă ψr|Λr|.

For any φ P X̄1 and z P L we define qzφ P N as follows:

qzφ is the largest non-negative integer q for which
ÿ

xPpz`Λqq
φ2x ě ψq|Λq|. (5.3)

If
ÿ

xPpz`Λqq
φ2x ă ψq|Λq| for all non-negative integers q then we set qzφ “ ´1.

For any q P N Y t´1u we define R̂zq to be the set of those φ P X̄1 for which qzφ “ q. We note that for any

fixed z the family of sets tR̂zqu8
q“´1 form a partition of X̄1.

Sub-Lemma 5.1. For any q and for any φ̂ P R̂zq one has:

ÿ

xRpz`Λmq
J p||z ´ x||qφ̂2x ď O1 for any non-negative integerm ě q (5.4)

For any A Ď pz ` Λqq and B Ď pz ` Λqqc

ˇ̌
ˇW pφ̂A|φ̂Bq

ˇ̌
ˇ ď 1

2

ÿ

xPA

´
}J̄}L1 φ̂2x ` O1

¯
(5.5)

Where we have set O1 :“ 1

1 ´ p´d

ÿ

xPL

J p}x}qψp}x}q.

Proof:

We start by proving (5.4). Note that
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ÿ

xRpz`Λqq
J p}z ´ x}qφ̂2x “

8ÿ

j“q`1

J p}z ´ x}q

»
– ÿ

xPpz`Λjqzpz`Λj´1q
J p}z ´ x}qφ̂2x

fi
fl

“
8ÿ

j“q`1

J ppjq

»
– ÿ

xPpz`Λjqzpz`Λj´1q
φ̂2x

fi
fl

ď
8ÿ

j“q`1

J ppjq

»
– ÿ

xPpz`Λjq
φ̂2x

fi
fl

ă
8ÿ

j“q`1

J ppjqψj |Λj |

“ 1

1 ´ p´d

8ÿ

j“q`1

J ppjqψj |ΛjzΛj´1|

ď 1

1 ´ p´d

ÿ

xPL

J p}x}qψp}x}q

In the strict inequality above we used condition (5.3). This proves (5.4).

For (5.5) we note that

ˇ̌
ˇW pφ̂A|φ̂Bq

ˇ̌
ˇ ď

ÿ

xPA

ÿ

yRpz`Λqq
J̄px´ yq|φ̂xφ̂y|

ď1

2

ÿ

xPA

ÿ

yRpz`Λqq
J̄px´ yqφ̂2x ` 1

2

ÿ

xPA

ÿ

yRpz`Λqq
J p}x´ y}qφ̂2y.

Now for the first sum note that

ÿ

xPA

ÿ

yPΛc
k

J̄px´ yqφ2x ď ||J̄ ||L1

ÿ

xPA
φ2x.

For the second sum we have

ÿ

xPA

ÿ

yRpz`Λqq
J p}x´ y}qφ̂2y “

ÿ

xPA

ÿ

yRpz`Λqq
J p}z ´ y}qφ̂2y

ď|A|
ÿ

yRpz`Λqq
J p}z ´ y}qφ̂2y

ď|A|O1

In the manipulations above the first equality used ultrametricity: since x, z P pz ` Λkq and y R pz ` Λqq
one has }x´ y} “ }z ´ y}. In going to the last line we used (5.4). We have now proved (5.5). .

We now describe the general approach for establishing a pointwise bound for:
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ρΓΛk
pφΓ|Sq :“ 1

ZpΛk|Sq

ż

RΛkzΓ

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

We are establishing a pointwise bound in φΓ for fixed S - it is important to keep in mind that many of

our sets of partial spin configurations we define below depend on φΓ P RΓ so it is helpful to think of φΓ as

being fixed as well.

First fix z P Γ. We then define a partition of RΛkzΓ which we denote tRzqu8
q“0. This partition is dependent

on both φΓ and SΛc
k
but we will sometimes suppress this from the notation.

For any φΛkzΓ P RΛkzΓ we define the corresponding corresponding full lattice field configuration

φ̂ “ φΓ ^ φΛkzΓ ^ SΛc
k

.

Note that φ̂ P X̄1

We now define the sets of our partition: for q P NYt´1u; we set RzqpφΓ,Λk, Sq :“ tφΛkzΓ P RΛkzΓ | φ̂ P R̂zqu.

To prove our estimate we first decompose

ρΓΛk
pφΓ|Sq “ 1

ZpΛk|Sq
8ÿ

q“´1

»
—–

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W pφΛk
|SΛc

k
q
‰
fi
ffifl

We give one more sublemma before beginning to tackle the main bound.

Sub-Lemma 5.2. For any non-negative integer k let A Ď Λk and suppose that S satisfies one of two

conditions: (a) S P X1 or (b) for some z P A one has SpΛckq P R̂zn for some n ď k.

(i)
ˇ̌
W pφA|SΛc

k
q
ˇ̌

ď 1

2
||J̄ ||

ÿ

xPA

`
φ2x ` O1

˘

(ii) There exists λ P p0, 1s and a a bounded Borel set Σ Ď R such that one has:

ż

Σ|A|

dφA exp
“
´UpφAq ´W pφA|SΛc

k
q
‰

ě λ|A|

Proof:

To prove statement (i) we first note that both conditions (a) and (b) imply that

ÿ

xPΛj

SpΛckq2x ă ψj |Λj | for all j ą k (5.6)
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For condition (b) this follows from ultrametricity: z ` Λj “ Λj for j ą k since z P Λk. For condition

(a) we note that ψj “ ψppjq “ 2 ˆ log`ppjq. Thus if S satifies the bound S2
x ď log`p}x}q then S certainly

satisfies (5.6). Therefore we can just assume (5.6). We now start bounding the expression of interest:

|W pφA|SΛc
k
q| ď1

2

ÿ

xPA
yRΛk

J̄px´ yqpφ2x ` S2
yq

ď1

2
}J̄}L1

ÿ

xPA
φ2x ` 1

2

ÿ

xPA

ÿ

yRΛk

J p}x´ y}qS2
y

Now for the second term we have

ÿ

xPA

ÿ

yRΛk

J p}x´ y}qS2
y “

ÿ

xPA

ÿ

yRΛk

J p}y}qS2
y

“|A|
ÿ

yRΛk

J p}y}qS2
y

“|A|
ÿ

yRΛk

J p}y}qSpΛckq2y

ď|A|
8ÿ

j“k`1

J ppk`1q

»
– ÿ

yPΛk`1

SpΛckq2y

fi
fl

ă|A|
8ÿ

j“k`1

J ppk`1qψk`1|Λk`1| ď |A|O1

The final bound is by the same argument as used in the proof of (5.4). This proves statement (i).

We now prove statement (ii). Using statement (i) and the definition of U we have the bound:

Upφkq `W pφk|SΛc
n

q ď
ÿ

xPA

„
gφ4x ` |b|φ2x ` 1

2
||J̄ ||φ2x ` O1


` 1

2

ÿ

x,yPA
x ­“y

J̄px´ yq|φxφy|

ď
ÿ

xPA

“
gφ4x ` |b|φ2x `Aβ}J}L1φ2x ` O1

‰

ď
ÿ

xPA
fpφxq, where we have defined: fpsq “ gs4 ` p|b| `Aβ}J}L1q s2 ` O1

In going to the second line we used the bound :

1

2

ÿ

x,yPA
x ­“y

J̄px´ yq|φxφy| ď 1

4

ÿ

x,yPA
x ­“y

J̄px´ yq
`
φ2x ` φ2y

˘
ď Aβ

2
}J}L1

˜ÿ

xPA
φ2x

¸
.

The claim now follows from noticing that one can pick appropriate λ and bounded Borel Σ such that:

289



ż

Σ

ds e´fpsq ě λ

Along with the fact that:

ż

Σ|A|

dφA exp
“
´Upφkq ´W pφk|SΛc

k
q
‰

ě
ż

Σ|A|

dφA exp

«
´

ÿ

xPA
fpφxq

ff
“

¨
˝
ż

Σ

ds e´fpsq

˛
‚

|A|

.

In the bounds of the next three sub-lemmas we take ρH
Λk

pφH|Sq :“ 1.

Sub-Lemma 5.3. Let k be a non-negative integer. Suppose that z P Γ Ď Λk and S satisfies at least one of

two conditions: (a) S P X1 or (b) One has SpΛckq P R̂zn for some n ď k.

1

ZpΛk|Sq

ż

Rz
´1

pφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

ď exp
”
´g

2
φ4z `Aβ}J}L1φ2z ` O3

ı
ˆ ρ

Γztzu
Λk

pφΓztzu|Sq

where we set

O2 :“ sup
sPΣ

ˆ
exp

„
Aβ

2
||J ||L1s2

˙
.

O3 :“ ´ logpλq ` logpO2q ` 3

2
O1 ` O1.

Proof:

We manipulate the integrand appearing above and insert a dummy variable φ̃z.

ż

Rz
´1

pφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W pφΛk
|SΛc

k
q
‰

“
ż

Rz
´1

pφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛkztzuq ´ Upφzq ´W pφΛkztzu|SΛc

k
q ´W pφz|SΛc

k
q
‰

“
ż

Rz
´1

pφΓ,Λk,Sq

dφΛkzΓ exp
”
´UpφΛkztzuq ´W pφ̃z|φΛk

q ´W pφΛkztzu|SΛc
k
q
ı

ˆ exp
”
´Upφzq ´W pφz|SΛc

k
q `W pφ̃z|φΛk

q
ı

(5.7)

Now by Lemma 4.17 we have

exp r´Upφzqs ď exp
”
´g

2
φ4z ` O1

ı
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Now observe that as a consequence of φΛkzΓ P Rz´1pφΓ,Λk, Sq we have

ˇ̌
ˇW pφ̃z|φΛkztzuq

ˇ̌
ˇ ď1

2

ÿ

yPΛkztzu
J̄py ´ zq

´
φ̃2z ` φ̂2y

¯

ď1

2
||J̄ ||L1 φ̃2z ` 1

2

ÿ

yPΛkztzu
J p}y ´ z}qφ̂2y

ď1

2

´
||J̄ ||L1 φ̃2z ` O1

¯

To bound the second sum on the second line we can proceed just as we did in the proof of (5.3) - one has

that
ř
z`Λj

φ̂2y ă ψj |Λj | for all j ě 0 since φ̂ P R̂z´1

An identical argument gives

ˇ̌
W pφz|φΛztzuq

ˇ̌
ď 1

2

`
||J̄ ||L1φ2z ` O1

˘

Sub-lemma 5.2 gives us that

|W pφz|ScΛq| ď 1

2

`
}J̄}L1φ2z ` O1

˘

Inserting this into our previous expression we have the following inequality valid for all φ̃z P R:

ż

Rz
´1

pφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W pφΛk
|SΛc

k
q
‰

ď exp

„
´g

2
φ4z ` }J̄}L1φ2z ` O1 ` 3

2
O1



ˆ
ż

Rz
´1

pφΓ,Λk,Sq

exp

„
´UpφΛkztzuq ´W pφ̃z|φΛzzq ´W

`
φΛztzu|SΛc

˘
` 1

2
}J̄}L1 φ̃2z


(5.8)

Now we integrate both sides of the bound with respect to φ̃z weighted by the probability measure

ş
Σ

dφ̃z ¨ ¨ ¨ exp
”
´Upφ̃zq ´W pφ̃z|SΛc

k
q
ı

ş
Σ

dφ̃z exp
”
´Upφ̃zq ´W pφ̃z|SΛc

k
q
ı

Below we introduce some new notation: φ˚
Λ to denote φΛkztzu ^ φz
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exp

„
´g

2
φ4z ` }J̄}L1φ2z ` O1 ` 3

2
O1

¨
˝
ż

Σ

dφ̃z exp
”
´Upφ̃zq ´W pφ̃z|SΛc

k
q
ı
˛
‚

´1

ˆ
ż

Σ

dφ̃z

ż

Rz
´1

pφΓ,Λk,Sq

dφΛkzΓ exp
”
´Upφ̃zq ´W pφ̃z|SΛc

k
q
ı

ˆ exp

„
´UpφΛkztzuq ´W pφ̃z|φΛkztzuq ´W

`
φΛkztzu|SΛc

k

˘
` 1

2
}J̄}L1 φ̃2z



“ exp

„
´g

2
φ4z ` }J̄}L1φ2z ` O1 ` 3

2
O1

¨
˝
ż

Σ

dφ̃z exp
”
´Upφ̃zq ´W pφ̃z|SΛc

k
q
ı
˛
‚

´1

ˆ
ż

Σ

dφ̃z

ż

Rz
´1

pφΓ,Λk,Sq

dφΛkzΓ exp
“
´Upφ˚

Λk
q ´W

`
φ˚
Λk

|SΛc
k

˘‰
exp

„
1

2
}J̄}L1 φ̃2z



ďλ´1 ˆ sup
sPΣ

ˆ
exp

„
1

2
||J̄ ||L1s2

˙
ˆ exp

„
´g

2
φ4z ` }J̄}L1φ2z ` O1 ` 3

2
O1



ˆ
ż

Σ

dφ̃z

ż

Rz
´1

pφΓ,Λk,Sq

dφΛkzΓ exp
“
´Upφ˚

Λk
q ´W pφ˚

Λk
|ScΛk

q
‰

Note that in the last inequality above we use statement (ii) of Sub-lemma 5.2. We then have the bound:

1

ZpΛk|Sq

ż

Rz
´1

pφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

ď λ´1 ˆ O2 ˆ exp

„
´g

2
φ4z ` }J̄}L1φ2z ` O1 ` 3

2
O1



ˆ 1

ZpΛk|Sq

ż

Σ

dφ̃z

ż

Rz
´1

pφΓ,Λk,Sq

dφΛkzΓ exp
“
´Upφ˚

Λk
q ´W pφ˚

Λk
|ScΛk

q
‰

ď λ´1 ˆ O2 ˆ exp

„
´g

2
φ4z ` }J̄}L1φ2z ` O1 ` 3

2
O1



ˆ 1

ZpΛk|Sq

ż

R

dφ̃z

ż

RΛkzΓ

dφΛkzΓ exp
“
´Upφ˚

Λk
q ´W pφ˚

Λk
|ScΛk

q
‰

ď λ´1 ˆ O2 ˆ exp

„
´g

2
φ4z ` }J̄}L1φ2z ` O1 ` 3

2
O1


ˆ ρ

Γztzu
Λk

pφΓztzu|Sq

This proves the sublemma.

Sub-Lemma 5.4. Suppose that q ě 0. Let k be a non-negative integer. Suppose that Γ Ď Λk and S satisfies

at least one of two conditions: (a) S P X1 or (b) SpΛckq P R̂zn for some n ď k. Also suppose that z`Λq Ď Λk.

Then one has the following bound:
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1

ZpΛk|Sq

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

ď exp rpO5 ´ ψqq |Λq|s exp

»
– ÿ

xPpz`ΛqqXΓ

´
´g

2
φ4x ` pAβ}J}L1 ` 1qφ2x ` O3

¯
fi
fl ρΓzpz`Λqq

Λk
pφΓzpz`Λqq|Sq

where we have set

O4 :“ max

¨
˝
ż

R

ds exp

„
´g

2
s4 ` pAβ}J}L1 ` 1q s2 ` 3

2
O1 ` O1


, 1

˛
‚

O5 :“ ´ logpλq ` logpO4q ` logpO2q

Proof:

We start by introducing a vector of dummy variables φ̃Λkzpz`Λqq into the expression we’re trying to bound.

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

“
ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp

«
´ UpφΛkzpz`Λqqq ´ Upφpz`Λqq

q ´W pφpz`Λqq|φΛkzpz`Λqqq

´W pφΛkzpz`Λqq|SΛc
k
q ´W pφpz`Λqq|SΛc

k
q
ff

“
ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
”
´UpφΛkzpz`Λqqq ´W pφ̃pz`Λqq|φΛkzpz`Λqqq ´W pφΛkzpz`Λqq|SΛc

k
q
ı

ˆ exp
“
´Upφpz`Λqqq

‰
exp

”
´W pφpz`Λqq|φΛkzpz`Λqqq ´W pφpz`Λqq|SΛc

k
q `W pφ̃pz`Λqq|φΛkzpz`Λqqq

ı

Once again by 4.17 we have that

exp
“
´Upφpz`Λqqq

‰
ď exp

»
– ÿ

xPpz`Λqq

´
´g

2
φ4x ` O1

¯
fi
fl

Since we enforce that φΛkzΓ P RzqpφΓ,Λk, Sq we have that the corresponding φ̂ lies in R̂q. We then get the

following bound via (5.5):

ˇ̌
W pφpz`Λqq|φΛkzpz`Λqqq

ˇ̌
“
ˇ̌
ˇW pφ̂pz`Λqq|φ̂Λkzpz`Λqqq

ˇ̌
ˇ

ď 1

2

ÿ

xPpz`Λkq

`
}J̄}L1φ2x ` O1

˘
.
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By Sub-lemma 5.2 we have:

ˇ̌
W pφpz`Λqq|SΛc

k
q
ˇ̌

ď 1

2

ÿ

xPpz`Λqq

`
}J̄}L1φ2x ` O1

˘
.

We also have

ˇ̌
ˇW pφ̃pz`Λqq|φΛkzpz`Λqqq

ˇ̌
ˇ ď1

2

ÿ

xPpz`Λqq

ÿ

yRpz`Λqq
J̄px´ yq

´
φ̃2x ` φ̂2y

¯

ď1

2

ÿ

xPpz`Λqq
}J̄}L1 φ̃2x ` 1

2

ÿ

xPpz`Λqq

ÿ

yRpz`Λqq
J p}x´ y}q

“1

2

ÿ

xPpz`Λqq
}J̄}L1 φ̃2x ` 1

2

ÿ

xPpz`Λqq

ÿ

yRpz`Λqq
J p}z ´ y}q

ď1

2

ÿ

xPpz`Λqq

`
}J̄}L1 ` O1

˘

In going to the second line we used ultrametricity to note that }x ´ y} “ }z ´ y}. In going to the last line

we used (5.3) and the fact that φ̂ P R̂zq`1.

With these bounds in mind we have the following inequality which is valid for any φ̃pz`Λqq P Rpz`Λkq.

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

ď
ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
”
´UpφΛkzpz`Λqqq ´W pφ̃pz`Λqq|φΛkzpz`Λqqq ´W pφΛkzpz`Λqq|SΛc

k
q
ı

ˆ exp

»
– ÿ

xPpz`Λqq

ˆ
´g

2
φ4x ` }J̄}L1φ2x ` 1

2
}J̄}L1 φ̃2x ` 3

2
O1 ` O1

˙fi
fl

ď exp r´ψq|Λq|s
ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
”
´UpφΛkzpz`Λqqq ´W pφ̃pz`Λqq|φΛkzpz`Λqqq ´W pφΛkzpz`Λqq|SΛc

k
q
ı

ˆ exp

»
– ÿ

xPpz`Λqq

ˆ
´g

2
φ4x `

`
}J̄}L1 ` 1

˘
φ2x ` 1

2
}J̄}L1 φ̃2x ` 3

2
O1 ` O1

˙fi
fl

(5.9)

In going to the last line we used that within our above integral the requirement that φΛ P RzqpφΓ,Λk, Sq
means that

exp

»
– ÿ

xPpz`Λqq
φ2x

fi
fl exp r´ψq|Λq|s ě 1
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We now enlarge the domain of integration on the last line of (5.9) and continue to make more estimates:

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

ď exp r´ψq|Λq|s
ż

RΛkzΓ

dφΛkzΓ exp
”
´UpφΛkzpz`Λqqq ´W pφ̃pz`Λqq|φΛkzpz`Λqqq ´W pφΛkzpz`Λqq|SΛc

k
q
ı

ˆ exp

»
– ÿ

xPpz`Λqq

ˆ
´g

2
φ4x `

`
}J̄}L1 ` 1

˘
φ2x ` 1

2
}J̄}L1 φ̃2x ` 3

2
O1 ` O1

˙fi
fl

“ exp r´ψq|Λq|s exp

»
– ÿ

xPpz`ΛqqXΓ

ˆ
´g

2
φ4x `

`
}J̄}L1 ` 1

˘
φ2x ` 3

2
O1 ` O1

˙fi
fl

ˆ

¨
˚̋

ż

Rpz`ΛqqzΓ

dφpz`ΛqqzΓ exp

»
– ÿ

xPpz`ΛqqzΓ

ˆ
´g

2
φ4x `

`
}J̄}L1 ` 1

˘
φ2x ` 3

2
O1 ` O1

˙fi
fl

˛
‹‚

ˆ exp

»
– ÿ

xPpz`Λqq

1

2
}J̄}L1 φ̃2x

fi
fl

ż

RΛkzppz`ΛqqYΓq

dφΛkzppz`ΛqqYΓq exp

«
´ UpφΛkzpz`Λqqq ´W pφ̃pz`Λqq|φΛkzpz`Λqqq

´W pφΛkzpz`Λqq|SΛc
k
q
ff

ď exp r´ψq|Λq|s ˆ O
|pz`ΛqqzΓ|
4 ˆ exp

»
– ÿ

xPpz`ΛqqXΓ

ˆ
´g

2
φ4x `

`
}J̄}L1 ` 1

˘
φ2x ` 3

2
O1 ` O1

˙fi
fl

ˆ exp

»
– ÿ

xPpz`Λqq

1

2
}J̄}L1 φ̃2x

fi
fl

ż

RΛkzppz`ΛqqYΓq

dφΛkzppz`ΛqqYΓq exp

«
´ UpφΛkzpz`Λqqq ´W pφ̃pz`Λqq|φΛkzpz`Λqqq

´W pφΛkzpz`Λqq|SΛc
k
q
ff

(5.10)

We will integrate the bound of (5.10) with respect to φ̃pz`Λkq weighted by the probability measure

ş
Σpz`Λqq

dφ̃pz`Λqq ¨ ¨ ¨ exp
”
´Upφ̃pz`Λqqq ´W pφ̃pz`Λqq|SΛc

k
q
ı

ş
Σpz`Λqq

dφ̃pz`Λqq exp
”
´Upφ̃pz`Λqqq ´W pφ̃pz`Λqq|SΛc

k
q
ı
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To keep expressions shorter we just work with the very last line of (5.10).

¨
˚̋

ż

Σpz`Λqq

dφ̃pz`Λqq exp
”
´Upφ̃pz`Λqqq ´W pφ̃pz`Λqq|SΛc

k
q
ı
˛
‹‚

´1

ˆ
ż

Σpz`Λqq

dφ̃pz`Λqq

ż

RΛkzppz`ΛqqYΓq

dφΛkzppz`ΛqqYΓq exp
”
´Upφ̃pz`Λqqq ´W pφ̃pz`Λqq|SΛc

k
q
ı

ˆ exp

»
– ÿ

xPpz`Λqq

1

2
}J̄}L1 φ̃2x

fi
fl exp

”
´UpφΛkzpz`Λqqq ´W pφ̃pz`Λqq|φΛkzpz`Λqqq ´W pφΛkzpz`Λqq|SΛc

k
q
ı

ďλ´|Λq| ˆ
ˆ
sup
sPΣ

"
exp

„
1

2
||J̄ ||L1s2

*˙|Λq|

ˆ
ż

Σpz`Λqq

dφ̃pz`Λqq

ż

RΛkzppz`ΛqqYΓq

dφΛkzppz`ΛqqYΓq exp
”
´Upφ̃pz`Λqqq ´W pφ̃pz`Λqq|SΛc

k
q
ı

ˆ exp
”
´UpφΛkzpz`Λqqq ´W pφ̃pz`Λqq|φΛkzpz`Λqqq ´W pφΛkzpz`Λqq|SΛc

k
q
ı

ď λ´|Λq| ˆ O
|Λq|
2 ˆ

ż

Σpz`Λqq

dφ̃pz`Λqq

ż

RΛkzppz`ΛqqYΓq

dφΛkzppz`ΛqqYΓq exp
“
´Upφ˚

Λk
q ´W pφ˚

Λk
|SΛc

k
q
‰

(5.11)

Above we use the notation φ˚
Λk

“ φΛkzpz`Λqq ^ φ̃pz`Λqq. We end up with the following bound:

1

ZpΛk|Sq

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

ď exp r´ψq|Λq|s ˆ O
|pz`ΛqqzΓ|
4 ˆ λ´|Λq| ˆ O

|Λq|
2 ˆ exp

»
– ÿ

xPpz`ΛqqXΓ

ˆ
´g

2
φ4x `

`
}J̄}L1 ` 1

˘
φ2x ` 3

2
O1 ` O1

˙fi
fl

ˆ 1

ZpΛk|Sq

ż

Σpz`Λqq

dφ̃pz`Λqq

ż

RΛkzppz`ΛqqYΓq

dφΛkzppz`ΛqqYΓq exp
“
´Upφ˚

Λk
q ´W pφ˚

Λk
|SΛc

k
q
‰

ď exp r´ψq|Λq|s ˆ O
|Λq|
4 ˆ λ´|Λq| ˆ O

|Λq|
2 ˆ exp

»
– ÿ

xPpz`ΛqqXΓ

ˆ
´g

2
φ4x `

`
}J̄}L1 ` 1

˘
φ2x ` 3

2
O1 ` O1

˙fi
fl

ˆ ρ
Γzpz`Λqq
Λk

pφΓzpz`Λqq|Sq.

This finishes the proof of the lemma.

The next lemma handles the case where pz ` Λqq Ę Λk - we will then have to require S P X1

Sub-Lemma 5.5. Suppose that q ě 0. Let k be a non-negative integer. Suppose that Γ Ď Λk and that

S P X1. Also suppose that pz ` Λqq Ę Λk. Then one has:
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1

ZpΛk|Sq

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

ď exp

„ˆ
O5 ´ 1

2
ψq

˙
|Λq|


exp

»
– ÿ

xPpz`ΛqqXΓ

´
´g

2
φ4x ` pAβ}J}L1 ` 1qφ2x ` O3

¯
fi
fl ρΓzpz`Λqq

Λk
pφΓzpz`Λqq|Sq

Proof:

We start by introducing dummy variables φ̃ΛkXpz`Λqq. We then have

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

“
ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
”
´UpφΛkzpz`Λqqq ´W pφ̃ΛkXpz`Λqq|φΛkzpz`Λqqq ´W pφΛkzpz`Λqq|SΛc

k
q
ı

ˆ exp
“
´UpφΛkXpz`Λqqq

‰

ˆ exp
”
´W pφΛkXpz`Λqq|φΛkzpz`Λqqq ´W pφΛkXpz`Λqq|SΛc

k
q `W pφ̃ΛkXpz`Λqq|φΛkzpz`Λqqq

ı

By arguments analagous to those used in Sub-lemma 5.4 to get to the first bound of (5.9) we have that

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

ď
ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
”
´UpφΛkzpz`Λqqq ´W pφ̃ΛkXpz`Λqq|φΛkzpz`Λqqq ´W pφΛkzpz`Λqq|SΛc

k
q
ı

ˆ exp

»
– ÿ

xPΛkXpz`Λqq

ˆ
´g

2
φ4x ` }J̄}L1φ2x ` 1

2
}J̄}L1 φ̃2x ` 3

2
O1 ` O1

˙fi
fl

(5.12)

Now note that over our domain of integration φ̂ :“ φΓ X φΛkzΓ ^ SΛc
k

P R̂zq with q ě 0. In this case we

have that

ÿ

xPΛkXpz`Λqq
φ2x `

ÿ

xPpz`ΛqqzΛk

S2
x “

ÿ

xPpz`Λqq
φ̂2x ě ψq|Λq| (5.13)

On the other hand since S P X1 one has
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ÿ

xPpz`ΛqqzΛk

S2
x ď

ÿ

xPpz`Λqq
log`p}x}q

ď
ÿ

xPpz`Λqq
log`ppqq

“ 1

2
ψq|Λq|

(5.14)

In the above bound we used the claim }x} ď pq for all x P pz ` Λqq which we quickly justify now. Note

that by the ultrametric property any two closed balls in L are either disjoint or one is completely contained

in the other. In particular since pz ` Λqq X Λk Ě tzu we must have that Λk is a proper subset of pz ` Λqq
(remember that this lemma assumes pz ` Λqq Ę Λk).

This means there exists a y1 “ z ` y with y P Λq and }y1} ą pk. However }y1} ď maxp}y}, }z}q ď
maxppk, pqq. Thus it must be the case that pq ą pk which means z P Λq. Since Λq is closed under addition

we have that z ` Λq “ Λq. This proves the claim.

We can then combine (5.13) and (5.14) to see that

exp

»
–
¨
˝ ÿ

xPΛkXpz`Λqq
φ2x

˛
‚´ 1

2
ψq|Λq|

fi
fl ě 1

Inserting this into (5.12) gives us

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

ď exp

„
´1

2
ψq|Λq|

 ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
”
´UpφΛkzpz`Λqqq ´W pφ̃ΛkXpz`Λqq|φΛkzpz`Λqqq ´W pφΛkzpz`Λqq|SΛc

k
q
ı

ˆ exp

»
– ÿ

xPΛkXpz`Λqq

ˆ
´g

2
φ4x `

`
}J̄}L1 ` 1

˘
φ2x ` 1

2
}J̄}L1 φ̃2x ` 3

2
O1 ` O1

˙fi
fl

(5.15)

We now integrate the bound of (5.15) with respect to φ̃ΛkXpz`Λkq weighted by the probability measure:

ş
ΣΛkXpz`Λqq

dφ̃ΛkXpz`Λqq ¨ ¨ ¨ exp
”
´Upφ̃ΛkXpz`Λqqq ´W pφ̃ΛkXpz`Λqq|SΛc

k
q
ı

ş
ΣΛkXpz`Λqq

dφ̃ΛkXpz`Λqq exp
”
´Upφ̃ΛkXpz`Λqqq ´W pφ̃ΛkXpz`Λqq|SΛc

k
q
ı .

We can then perform the same estimates we performed in (5.11) which will give us the bound:
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1

ZpΛk|Sq

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W
`
φΛk

|SΛc
k

˘‰

ď exp

„
´1

2
ψq|Λq|


ˆ O

|pΛkXpz`ΛqqqzΓ|
4 ˆ λ´|ΛkXpz`Λqq| ˆ O

|ΛkXpz`Λqq|
2

ˆ exp

»
– ÿ

xPpz`ΛqqXΓ

ˆ
´g

2
φ4x `

`
}J̄}L1 ` 1

˘
φ2x ` 3

2
O1 ` O1

˙fi
fl

ˆ 1

ZpΛk|Sq

ż

ΣΛkXpz`Λqq

dφ̃ΛkXpz`Λqq

ż

RΛkzppz`ΛqqYΓq

dφΛkzppz`ΛqqYΓq exp
“
´Upφ˚

Λk
q ´W pφ˚

Λk
|SΛc

k
q
‰
.

Note that here we use the notation φ˚
Λk

:“ φ̃ΛkXpz`Λqq ^ φΛkzpz`Λqq. The lemma now follows. .

We can now prove Lemma 4.18.

Proof of Lemma 4.18:

Define

O6 :“ sup
sPR

´
´g

4
s4 ` pAβ}J}L1 ` 1qs2 ` O3

¯

δ :“O6 ` log

˜
1 `

8ÿ

q“0

exp

„ˆ
O5 ´ 1

2
ψq

˙
p3q

¸

Note that limqÑ8
`
O5 ´ 1

2
ψq

˘
“ ´8 so the sum in the definition of δ is finite. We also note that O6,

δ ą 0.

We prove the statement of the lemma by inducation on the cardinality of Γ. For the base case first

assume that Γ “ tzu. Then by sub-lemmas 5.3 -5.5 we have that

ρ
tzu
Λk

pφz|Sq “ 1

ZpΛk|Sq
8ÿ

q“´1

»
—–

ż

Rz
qpφz,Λk,Sq

dφΛkztzu exp
“
´UpφΛk

q ´W pφΛk
|SΛc

k
q
‰
fi
ffifl

ď exp
”
´g

4
φ2z ` O6

ı
`

8ÿ

q“0

ˆ
exp

„ˆ
O5 ´ 1

2
ψq

˙
p3q


exp

”
´g

4
φ2z ` O6

ı˙

“ exp
”
´g

4
φ4z ` δ

ı
.

Thus the statement of the lemma holds for Γ with |Γ| “ 1. Suppose that the statement of the lemma

holds for all Γ1 with |Γ1| “ n. Let Γ have cardinality n ` 1. Fix some z P Γ. Then by sub-lemmas 5.3 -5.5

we have that
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ρΓΛk
pφz|Sq “ 1

ZpΛk|Sq
8ÿ

q“´1

»
—–

ż

Rz
qpφΓ,Λk,Sq

dφΛkzΓ exp
“
´UpφΛk

q ´W pφΛk
|SΛc

k
q
‰
fi
ffifl

ď exp
”
´g

4
φ2z ` O6

ı
ρ
Γztzu
Λk

pφΓztzu|Sq

`
8ÿ

q“0

¨
˝exp

„ˆ
O5 ´ 1

2
ψq

˙
p3q


exp

»
– ÿ

xPΓXpz`Λqq

´
´g

4
φ2x ` O6

¯
fi
fl ρΓzpz`Λqq

Λk
pφΓzpz`Λqq|Sq

˛
‚

ď exp
”
´g

4
φ2z ` O6

ı
exp

»
– ÿ

xPΓztzu

´
´g

4
φ2x ` δ

¯
fi
fl

`
8ÿ

q“0

¨
˝exp

„ˆ
O5 ´ 1

2
ψq

˙
p3q


exp

»
– ÿ

xPΓXpz`Λqq

´
´g

4
φ2x ` O6

¯
fi
fl exp

»
– ÿ

xPΓzpz`Λqq

´
´g

4
φ2x ` δ

¯
fi
fl
˛
‚

ď exp

«ÿ

xPΓ

´
´g

4
φ2x ` δ

¯ff

This finishes the proof of Lemma 4.18.

5.4.2 Proof of Lemma 4.21

:

Fix Λ Ť L and let N be such that the marginals tµn,ΛuněN are uniformly absolutely continuous with

respect to Lebesgue measure on RΛ. We will prove that for any Borel set B Ă RΛ one has

lim
nÑ8

µn,ΛpBq “ µΛpBq.

We start by proving the claim for compact sets C Ă RΛ. We first fix such a C and note that it is possible

to find a family of continuous real valued functions tfju on RΛ such that:

1. For all n one has 0 ď fj ď 1.

2. The functions fj decrease (in j) to 1C pointwise where 1C is the indicator function of the set C.

3. There is a compact set K Ą C such that for all j one has that the supports of the fj lie within K.

For example, one can define gn : r0,8q Ñ R as gnpsq “ minp1 ´ s
n
, 0q and then set fnpxq “ gnpdpx,Cqq

where dpx,Cq “ infyPC |x´ y|.

Now let ǫ ą 0. Note that by assumptions (b) and (c) above and by the assumption of uniform absolute

continuity we can find M such that for all m ą M one has supněN µn,Λptx P RΛ : fmpxq ­“ 1Cpxquq ă ǫ.

Then for any n ě N and sufficiently large m we have
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|µn,ΛpCq ´ µΛpCq| ď
ż

RΛ

dµn,Λ|1C ´ fm| `

ˇ̌
ˇ̌
ˇ̌
ż

RΛ

dµn,Λ fm ´
ż

RΛ

dµΛ fm

ˇ̌
ˇ̌
ˇ̌ `

ż

RΛ

dµΛ|fm ´ 1C |

By our assumptions the first term above is uniformly bounded by ǫ, the last term can be made small by

bounded convergence theorem by taking m larger, and the second term can be made arbitrarily small by

taking n sufficiently large by local weak convergence.

We have proved (5.4.2) for compact sets. Now let B be an arbitrary Borel subset of RΛ and let ǫ ą 0.

Then since µΛ is a regular Borel measure there exists compact C1 Ă B such that µΛpBzC1q ă ǫ. By the

regularity of Lebesgue measure on RΛ and the uniform absolute continuity of the measures tµn,ΛuněN one

can find compact C2 Ă B such that for all for all n ą N one has µn,ΛpBzC2q ă ǫ. Then one has

|µn,ΛpBq ´ µΛpBq| ď |µn,Λ pBzpC1 Y C2qq| ` |µΛ pBzpC1 Y C2qq| ` |µn,ΛpC1 Y C2q ´ µΛpC1 Y C2q|

The first two terms above can each be bounded by ǫ and the third term vanishes as n Ñ 8 since we

proved (5.4.2) for compact sets.
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