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Abstract

This dissertation focuses on critical phenomena in statistical mechanics and Quantum Field Theory. This
involves the analysis of systems with infinitely many degrees of freedom across different length scales cou-
pled together via interactions which can be easy to describe locally but give rise to a rich class of emergent
phenomena. We adopt the framework of mathematical physics and probability where these systems are rep-
resented as measures on certain infinite dimensional spaces. The primary approach used in this dissertation
is the Renormalization Group, a powerful and elegant framework that reveals how the collective influence
of degrees of freedom manifest at different length scales within these systems. Pioneered by the physicist
Kenneth Wilson, the philosophy of the RG approach is to reduce the analysis of these complex systems to
the study of a “tractable” infinite dimensional dynamical system of effective potentials. The first project
develops a Renormalization Group for spatially inhomogenous systems that allows one to establish a rigorous
correspondence between orbits in Wilson’s dynamical system and the measures one expects them to represent
- this is done in the setting of a hierarchical approximation to Wilson’s 4 — € expansion. This culminates
in the construction of a translation invariant, rotation invariant, and partially scale invariant generalized
random field corresponding to the Wilson-Fisher fixed point. The second project leverages methods from
statistical mechanics to strengthen this result and show that this generalized random field is in fact fully

scale invariant.
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0.1 Introduction

This dissertation lies at the intersection of the disciplines of Constructive Field Theory, in particular the
rigorous analysis of what are known as “Functional Integrals”, and of probability, more specifically the study
of self-similar random processes. We begin by describing the probabilistic approach to Axiomatic Quantum
Field Theory.

0.1.1 Axiomatic Quantum Field Theory

We start by giving one approach to precisely mathematically defining what constitutes a “relativistic quantum
field theory”. More specifically we state the Garding-Wightman Axioms for the case of a single Hermitean
scalar field. For the axioms we give in the Minkowski space setting we take our presentation from [26]. First

we list some preliminary definitions.

In follows we will use the notation z = (zg, 21,...,24 1) =: (20, Z) € R%. We define the Minkowski inner
product on R¢
d-1
@M = Tolo — D, Tiyj-
j=1

We say two points x,y € R? are space-like separated if (x —y,z — y)pr < 0. We define the Lorentz group £
to be the group of d x d matrices A that preserve the Minkowski inner product, i.e. A € £ if and only if for
all 7,y e RY

We define the restricted Lorentz group EL to be the subgroup of £ formed by those A with det(A) = 1 and
with
<60, A60>M > 0



where eg := (1,0,...,0) € R, The restricted Poincare group ”Pl is the set of pairs (a, A) where a € R? and
Ae Cl with the group operation given by

(a’v Al)(bv AQ) = (CL+A1,A1A2).

The natural action of P on z € R? is given by (a, )z = Az + a.
We can now state the Garding-Wightman Axioms (GWO0) - (GW4).

(GWO0) States. The states of the system are the unit rays of a separable complex Hilbert space H with a
distinguished state €2 which we call the vacuum.

In what follows we denote the inner product of H by (-, -).

(GW1) Fields and temperedness. There exists a dense subspace D < H, such that for each test function f in
the Schwartz space S(R?, C) there exists a (possibly unbounded) operator ¢(f) with domain D, such
that:

(a) For all ¢q,1)2 € D, the map f +— (11, d(f)12) is a tempered distribution.

(b) For real valued f, the operator ¢(f) is Hermitian.

(¢c) QeD

(d) o(f) leaves D invariant.

)

(e) Finite linear combinations of vectors of the form

o(f1) - o(fn)S2
with n > 0 and f1,..., f, € S(R%,C) is dense in H.

(GW2) Relativistic covariance. There is a strongly continuous unitary representation U(a, A) of the restricted

Poincare group Pl such that for all (a,A) € 771

(a) Ula,A) leaves D invariant
(b) U(a,A)Q2 =0
(¢) Ula, M)é(f)U(a,A)" = 6(f(a,n)) where
flany(@) = fF(A7H(z = a)).
(GW3) Spectral Condition. The joint spectrum of the infinitesimal generators of the translation subgroup
Ul(a, 1) is contained in the forward light cone V, = {p := (p°,p) € R : p° > |pl|}.

(GW4) Locality. If f,g € S(R?, C) have spacelike-separated supports, then the operators ¢(f) and ¢(g) com-
mute, i.e. [¢(f)p(g) — ¢(g9)e(f)] ¥ = 0 for all ¢ € D.

Thus a Hermitian scalar quantum field theory consists of a quadruple (H,U, D, ¢) that satisfies the
above properties - here we see ¢ as an operator-valued distribution, i.e. a map from S(R?, C) into a family of

(possibly unbounded) operators on H.



Of key interest in the above setting are the vacuum expectations of products of field operators, for n > 1,
fiy--os fn € S(RY,C) we define

Walfr, -5 fn) = (Q,0(f1) - ¢(fn) ).

We have that for each n > 1, W, is an n-linear functional on S(R? C) and so by the Schwartz Kernel
Theorem one can identify W,, as an element of S’(R™?,C). For n = 0 we can define W = 1 - seen as a linear
functional on C which acts by multiplication.

Heuristically one can write

where z!,..., 2" € R?. However the above expression is formal - in general neither side makes sense point-
wise.

The Wightman Reconstruction Theorem gives sufficient conditions (called the Wightman Azioms) under
which a family of such distributions {W,,}°_, uniquely determines a corresponding quadruple (H,U, D, ¢)
that satisfies the the Garding-Wightman axioms and realizes the {W,, }>°_, as its vacuum expectation values.

We now state the Wightman Axioms (W0) - (W4). A proof for the Wightman Reconstruction Theorem
can be found in [66].

(WO0) Temperedness and Hermiticity. The {W,,}*_, are tempered distributions, i.e. W,, € S'(R" C), with

Wy = 1 and satisfying the hermitian condition

(W1) Poincare Invariance.

for all (a,A) € PL.

(W2) Positive Definiteness. For any almost finite sequence of test functions {f,,}%_, with f,, € S(R%, C) one
has
Z Wn-&-m(ﬁ@fm) = 0

where for g € S(R',C) and h € S(R*,C) we define g ® h € S(R'**, C) via

(9@ h)(z,y) = g(x)h(y).

(W3) Spectral Condition. For each W,,, n > 1, the Fourier transform of W,,, which we formally define via

o~

d
Wa(p',...,p") :L ddd$1-~~dd9€n exp [i2<pj,xj>M1 x Wy (a!, ... 2"
. =



is a tempered distribution supported in the set
{(p17...,p”)| ij =0 and <ij> eV, for k = L...,n—l}
j=1 j=1

(W4) Locality. If 27 and 277! are space-like separated then one has

Wzt . a3 ™) = W(at,. . 29Tl ™).

The Wightman Reconstruction theorem allows us to work with simpler “numeric” distributions instead
of operator-valued distributions.

In [66, Theorem 3-5] it is shown that the spectral condition implies that the tempered distributions W,
can be seen as the boundary values of analytic functions in a large complex domain. In particular they
can be analytically continued to imaginary time if evaluated at non-coinciding points. Given Wightman
distributions satisfying the Wightman axioms one can define Schwinger Functions, {S,}y_,, with S, an

analytic function on R™?, via
Su(a, .. a") = Wy ((izg, &), ..., (izg, "))

where R? denotes the subset of R"? given by those (z',...,2") with 2/ = 27 for i = j. Additionally the
locality properties of the W,, force the S,, to be symmetric in x1,...,x,. The process of going to imaginary
time is called Wick rotation - it takes us from a Minkowski space-time to Euclidean space. The functions
{Sn}L_, are also called Fuclidean Greens Functions.

The Osterwalder-Schrader Axioms [51],[52] give necessary and sufficent conditions under which a set
of candidate Schwinger functions uniquely determine a family of Wightman distributions which satisfy the
conditions given by the Wightman Reconstruction theorem (one can find a recent improvement on this result
in [77]).

We will not state the Osterwalder-Schrader axioms (henceforth called OS Axioms) in a form where they
are equivalent to the Wightman Axioms. We instead give a more probablistic formulation of the axioms which
give sufficient conditions for the Schwinger functions to uniquely determine a family Wightman distributions.
The key idea here is to think of the candidate Schwinger functions as distributions corresponding to the

moments of a probability measure on S’(R?) - that is for f1,..., f, € S(R?,C) we will set

Sulfiveeesfa) = [ au0) o()0h) 1)

Then the task of constructing the Wightman distributions comes down to constructing a measure p on
S'(R?) with the correct properties. The probablistic approach to Euclidean quantum field theory in fact
predates the Osterwalder-Schrader approach - being pioneered by Nelson [49], [50] and the even earlier work
of Symanzik [69], [70].

We note that not all Wightman distributions can be specified in this way - models that allow for this
probabilistic representation are called Nelson-Symanzik positive.

Before stating a version of the OS axioms we give some more definitions.



Let Sy (R?) be the subspace of S(R?) consisting of functions f with supp(f) < {(z0, %) € R?| 2o > 0}, i.e.
S, (RY) consists of test functions whose support is contained in the positive half-space defined with respect
to the first component.

We define 6 to be the linear transformation on R? given by reflection across the zo = 0 hyperplane - that

is for © = (9, %) we define §z = (—x¢, ). We define a corresponding transformation for f € S(R?) via

(©f)(z) = f ()

and a transformation on ¢ € S’(R?) via

(©9)(f) = ¢(Of).

We now state a probablistic formulation of the OS Axioms.
Let p be a probability measure on S'(R?) equipped with its cylinder set o-algebra. Suppose that p

satisfies the following axioms.

(OS1) Regularity. There exists a seminorm |- | on S(RY), C' > 0, such that for alln > 0 and f1,..., f, € S(RY)

one has

f du(o) [[ ()| < xnt x []If;1
S’(R) j=1 j=1

(0S2) Euclidean Invariance. The measure u should be invariant under translations and rotations of R?. In
particular it is sufficient that for every a € R%, M € O(d), and f € S(R?) one has that the random
variables ¢(f) and ¢(f(q,a)) are equal in distribution if ¢ is distributed according to p. Here

fapn(@) = f(M™ (2 — a)).

(OS3) Osterwalder-Schrader Positivity Let A € £2 (S'(R?), ;1) and furthermore let A be measurable with
respect to the o-algebra C, generated by the maps {¢ — &(f)| f € Sy (R?)}. Then

j du(9) A(OH)A(9) > 0
5/(R4)

0.1.2 ¢* models

On a very formal (non-rigorous) level a ¢* model is a probability measure on the space of fields ¢ : R — R

given by the expression

L[~ [ ate (st ") + 51vol?) | 1 aote) 2)

zeR4

where g > 0, Z is a normalization factor, and [ [, g« dp(x) is “Lebesgue measure” on the space of functions
from R? — R. Assuming that one could construct the correlation functions of such a measure and construct

the corresponding scalar quantum field ¢ on Minkowski space one would expect this scalar quantum field ¢



would satisfy the non-linear field equation
(—O+ m?)p + 490> = 0.

where [] is the d’Alembertian, the differential operator on Minkowski space given by
d—1
O=—-d+ ),
j=1

The first step in making @) a little more rigorous is absorbing the |V¢|? and m2¢? terms of (@) into a

Gaussian measure. Then one can write () as

~—

% exp [— J[Rd d% ng54(x)] dpc(9) 3

where duc(¢) is a Gaussian measure on real valued fields ¢ on R? with a covariance given by
(—A +m?)~ L
where A is the standard Laplacian on R?. This means that

f dpc(®) d@)o(y) = (—A+m?) "z —y).

The measure duc is called a massive Gaussian Free Field (GFF) if m? > 0 and a massless GFF if m? = 0.

One can check that the correlation functions of the measure duc(¢) satisfy the OS axioms and give
rise to a scalar quantum field ¢ that satisfies the standard Klein-Gordon equation (—[]+ m?)p = 0. The
measure duc(¢) then corresponds to a field theory of non-interacting particles which earns it the moniker
of “free field”. The motivation behind the measure [B]) is that it provides the simplest possible model of an
interacting field theory.

Even the slightly less formal expression (B)) is still plagued with major issues for d = 2. In the case
d =1 one is essentially in the setting one-dimensional stochastic processes (P(¢); proccesses) and quantum
mechanics (via the Feynman - Kac Formula) - here one has a much larger arsenal.

For small |z — y| the kernel (—=A + m?2)~!(x — y) goes like |2 — y|~9*+2 for d > 3 while for d = 2 the
divergence is logarithmic. The covariance (—A + m?)~! is divergent at coinciding points and so the law of
the field ¢ is not supported on a space of real valued functions R?, instead it is more natural to see this law
as living on the space of distributions S’. In particular, notions like the fields value at a point ¢(z), or even
worse a pointwise product ¢(z)" are completely ill-defined. This singular short range behaviour of the field
¢ is called an ultraviolet divergence - it is caused by the non-summability of fluctuations of the field at high

Fourier modes. More concretely the covariance

k2 +m?

is not integrable in k at infinity for d > 2.



Another major issue with the quantity (B]) is the fact that the integral in the exponent is over all of R,
even if the short-range behaviour of the field ¢ is mollifed it is certainly not clear that this integral converges,
we will call this the infinite volume problem, or infrared problem.

When one works with a massive GFF, that is m? > 0, one expects |(=A 4+ m?)~ (z —y)| < e"™*= ¥l for
large |z — y| - in other words distant regions of space should be approximately independent. In this setting
one can control the infrared problem by using a family of methods called cluster expansions [15].

Fundamentally both the ultraviolet and infrared problems come from the fact that the measures @) are
meant to capture the behaviour of infinitely many degrees of freedom. In order to have an expression that
is well defined one implements cut-offs.

A possible ultraviolet cut-off would be replacing the Gaussian measure duc with an alternative that is is
the same for low Fourier modes but sufficiently suppresses the fluctuations of high fourier modes so that the
corresponding law is supported on a space of functions defined pointwise. A simple infrared cut-off would
be replacing the integral over all of R? with one over a large box. The idea here is that one can use these
cut-offs to define an analog of (3)) that is a completely well defined measure. The central challenge is then
to show that the measures without cut-offs converge to a meaningful limiting measure whose correlations
satisfies the Osterwalder-Schrader axioms and so via analytic continuation give the Wightman distributions
of a Minkowski quantum field theory.

In the case d = 2 there were major successes in the area of Constructive Field Theory when it came
to the analysis of massive P(¢)2 models (here P(¢)2 means a polynomial that is bounded below and of
degree at least 4, so this includes (¢4)2-models) - see [35] and for a wider overview [62]. Since the ultraviolet
divergence of the GFF becomes worse in higher dimensions the construction and analysis of the axioms for
massive ¢* in d = 3 (denoted (¢*)3) was significantly more difficult - however this was successfully done
with the functional integral approach in [23] and [25]. For d > 5 (and in some cases with d = 4) it has been
proven that most attempts to define a measure corresponding to (B]) will lead to a free field when one tries
to remove the ultraviolet cut-off - see [B], [27], and also the discussion at the end of [26].

We will now specialize to the models that are of interest in this dissertation. For references on the
functional integral approach to constructive field theory we point to [34], [56], and [I1].

For the vast majority of the work above the infinite volume problem was approached via methods that are
restricted to the massive setting. In the massless setting, that is when m? = 0, the covariance (—A)~!(z —
y) ~ W for d = 3 (defining the massless GFF for d = 2 requires some technicality). Even if one
ignores the divergence near the diagonal the above covariance is not summable in y for fixed x - distant
regions of space remain fairly correlated. The process of taking the infinite volume limit in this setting is a
much deeper problem and there are far fewer results - for example see [29] and [24] where the infinite volume
limit of massless (¢*), is controlled.

However while they pose some technical difficulty these massless quantum field theories are of great
interest since they are are expected to coincide with scaling limits of certain models in statistical mechanics

at criticality.

0.1.3 Massless ¢* in three dimensions

Chapter Bl is essentially a slightly abridged version of the article [3] which was joint work with the author’s

advisor Abdelmalek Abdesselam, as well as Gianluca Guadagni. There we study an analog of a ¢* model



studied by Brydges, Mitter, and Scoppola in the article [I8]- formally the model they studied, which we call
the BMS model, corresponded to the measure on fields ¢ : R* — R given by

exp | [ 9 0%@) + @) o duc. (0 ()

where g > 0, u < 0 (we ignored this earlier but due to mass generation one expects to need p < 0 in order
to construct a massless theory). Here duc_, (¢) is again the measure of the free field, a Gaussian measure
with covariance

3+e

Cop = (—A)" "

()

where for the time being one should take € € [0,1]. The correlations for the free field at different points in

space are given by
Ce

Colo—y) = — S _ f dic., (6) B(x)6(y).

|z —y|™

where ¢, is some positive constant. Since this covariance is not summable at large distances it is natural to
think of pc_, as a massless generalized free field.

We remark that for the given range of e the free measure pc , satisfies all the Osterwalder-Schrader
axioms (including positivity), it is expected that the same should hold for the interacting field theory given by
(@) which means the corresponding Schwinger functions could be analytically continued to give the Wightman
distributions of a QFT on Minkowski space.

When € = 1 the measure duc_, is just the standard massless Gaussian Free Field on R® and the measure
(@) would correspond to massless (¢*)3. It is believed that massless (¢*)s governs the universality class which
contains the critical nearest-neighbor Ising model in three dimensions, in particular folklore says that the
generalized random field given by (@) is expected to be the scaling limit of the Ising models in this universality
class. However a detailed analysis of massless (¢*)3 and clear understanding of critical phenomena in this
universality class remain, for the most part, outside the reach of current methods in mathematical physics.

We take a quick aside to give a rudimentary explanation of what is meant by the term “universality” class
in the above paragraph. The term universal is applied in many ways in the context of probability theory, in
a general sense it refers to a family of random processes that satisfy identical scaling behaviour for a variety
of observables (such that pair correlations for example). In its stronger form the term university class refers
to a family of random processes that have an identical limiting process under some aggregate averaging and
scaling - the paradigmatic example being the university class of discrete sequences of i.i.d. random variables
which under appropriate averaging and scaling yield a Gaussian distribution - for our purposes one can take
this stronger notion of universality class.

One of the defining successes of Wilson’s Renormalization Group (RG) program was the article [75]
where the authors were able to apply an RG analysis in order to understand a critical ¢* model in d = 4 — ¢
dimensions - they used a method called dimensional regularization to work in non-integer dimensions. In
that article analysis of the RG flow when € is small yields a non-trivial fixed point which corresponds to the
critical ¢ - one is then able to calculate expansions in e for critical exponents and get an approximation for
critical exponents in d = 3 by taking the first few terms and plugging in € = 1.

While dimensional regularization does not yet have a mathematical rigorous non-perturbative imple-

mentation the behaviour of RG flow in non-integer dimensions can be mimicked by working with fractional

10



Laplacians - here the e appearing in (B) plays the same role as the € of the 4 — e expansion.

In [I§] the authors defined a formal infinite volume RG transformation and were able to find and construct
a fixed point in a space of effective potentials that is an analog of the Wilson-Fisher fixed point of [75]. We
mention that an earlier paper [I7] also simulated the 4 — e expansion via using covariance (—A)_% over
R* but this Gaussian measure is not Osterwalder-Schrader positive.

The work of [3] built on top of [I8] to go beyond analyzing effective potentials to the construction of a
concrete measure that realizes the 4 —e model. However to simplify our analysis we worked in the hierarchical
approzimation; we replaced the underlying space-time R? with an ultrametric space. Previous work on a
hierarchical 4 — e model can be found in [12], [I3] ,[21], [28]; see also hierarchical work on the € = 1 case in
[41]. However [3] has some novelties - there we developed a framework that allows one to start from an RG
trajectories in a space of effective potentials and construct sufficiently many observables to rigorously obtain
a measure corresponding to the given trajectory (it should for example, be able to construct the measure
corresponding to the crossover trajectory in [I] connecting the BMS fixed point to the Gaussian one). An
additional major new result in [3] is the construction of a measure corresponding to the composite ¢? field -
we will return to this later in the introduction.

The hierarchical approximation has a long and successful history of clarifying multiscale phenomena, first
appearing in work by Dyson on the one dimensional Ising model with long range interactions [22]. See [2]
for more context on the role of hierarchical models in clarifying RG analysis.

The benefit of the hierarchical approximation is that it allows one to study a new system that has much
of the same properties as the original system but with much stronger locality properties. Ultrametric spaces
are characterized by having metrics/norms that satisfy the strong triangle inequality: |z + y| < max(|z|, |y])-
Instead of working over R? we carried out our analysis over Qf’) where Q,, refers to the field of p-adic numbers
(note that our random fields are still real valued - ¢ : Qf’) — R). Our choice to use the p-adics allows us to
set up a framework that mirrors the Euclidean case, in particular Qg comes with a Fourier transform and
spaces of Schwartz functions and tempered distributions S and S’. In particular we have proven theorems
and used methods that are conducive to being applied to the original model over R3.

We now give part of the main theorem of [3], this theorem will be more precisely and completed stated
as Theorem Bl in Chapter 3

Theorem 0.1 ([3]). For any p prime, L = p' large enough, and ¢ small enough there exist sequences of

couplings {gr, tir }rez such that if one defines the measures

() = ex | [ oot en o s 6)

Then there there exists a limiting measure vgys such that one has the following convergence of measures
(at the level of moments) on S'(Q3):

lim v, =v
r——00
§—0

Here duc, is a UV reqularized version of a fractional Gaussian Free Field with covariance C = (fA)*gzkj,

we index the cutoff so lim,_,_ o, C,. = C_y, is the limit where the UV cutoff is removed. Ay is the closed unit

ball of radius L® which serves as an IR cutoff.

11



The measure v is translation invariant, rotation invariant, non-Gaussian, and has partial scale invariance:
d 3—
K €
one has L"¢(Le) = ¢(e) for any ne Z and k = >3°.

This construction is based on getting control over the measures v, s uniform in r and s via iteratively
integrating out degrees of freedom - we tile space with blocks of side length L and integrate out short range
degrees of freedom so we are left with an expression that involves only scaled averages of the field over each L -
block. The distribution of these averages is again described by a functional of the form e=V'(#) = ¢=9'¢"—#'¢?
where V' is a new effective potential.

This map V — V' (formally given by (g, ) — (¢’, ') is our dynamical system of effective potentials .
The measure constructed above corresponds to choosing the couplings so that the flow of effective potentials
stays at the BMS fixed point in this system. Our scale invariance result is a direct consequence of the fact
that vprs is described by the same effective potential at all scales. We also have a mild universality result,
there is an entire family of sequences of couplings which all yield the same measure vgy/g.

Prior rigorous work on the RG has been mostly focused on establishing control over flows of effective
potentials. For constructing a concrete limiting measure we must prove the convergence of the expectations
of a sufficiently rich class of observables as we take r — —oo, s — c0. This is done in [3] via a generalization
to a larger dynamical system that involves more complicated spatially varying effective potentials that have
been influenced by the presence of observables.

We were also able to successfully construct and study a measure on S’ corresponding to the ¢? field,
this requires additional renormalizations due to the singular behaviour of the ¢ field. Denote the suitably
renormalized field AV'[¢?]. We prove scale invariance with an anomalous exponent for this renormalized field,
that is

LN 6] (Le) £ NT%] (o)

where k as defined as before and 1 > 0 is the anomalous part of the exponent. This gives a rigorous proof of a
conjecture made by Wilson in [73]. The key point is that the anomalous scaling comes from a multiplicative
renormalization that is made necessary by an anomalous eigenvalue of the BMS fixed point. For more details

on this see the discussion right before section

0.1.4 Proving Full Scale Invariance

Chapter @l is part of [4] which is joint work with the author’s advisor Abdelmalek Abdesselam and Gianluca
Guadagni. We give a short overview below.

The RG transformations mentioned above yield discrete dynamical systems where the transformation
involves iteratively “zooming” out by a fixed “demagnification” ratio L. Our generalization of the RG
dynamical system allows us to prove that constant trajectories based at fixed points of this dynamical
system correspond to measures with some scale invariance, in particular they are invariant with respect to
the discrete scaling group generated by the ratio L. However this ratio is an artifical length parameter which
is not intrinsic to the model we are studying and one expects that these partially scale invariant measures are
actually fully scale invariant. In the Euclidean case the natural approach to constructing measures with full

scale invariance would be defining a continuous renormalization group and constructing measures defined in

INote that this is a simplification, the effective potentials are in fact parameterized by an infinite dimensional space and a
central challenge is to define RG transformation so that this dynamical system is primarily governed by a finite set of couplings.
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terms of fixed points of the corresponding continuous dynamical system. However it seems difficult to make
this approach rigorous for bosonic field theories - in this case it helps to take L large in order to win the
contraction of irrelevant operators in spite of various combinatorial factors.

Our results over Qi in [3] suffer from a similar defect. Here the full scaling group is generated by powers
of the underlying prime p and RG arguments allow us to prove scale invariance with respect to powers of
L = p' where [ > 1 must be a sufficiently large integer. However we overcome these difficulties in [4] and are
able to show full scale invariance for the measures constructed in [3]. The proof involves defining two RG
transformations defined via two length parameters L; and Lo which together generate the full scaling group.
These two transformations give two different dynamical systems and possible two different fixed points. If we
prove that there is an non-empty intersection between the stable manifolds of the two fixed points then this
implies that the measures corresponding to the two fixed points coincide and are then fully scale invariant.
However the stable manifolds constructed via the RG transformations are not given explicitly and are thus
hard to compare directly.

Our solution to this problem is to argue by contradiction - in particular we assume that fixed points from
the two RG constructions do not coincide. We then show, via correlation inequalities, that this assumption
forces there to be an open set of “critical” parameters in the (g, 1) plane. To generate the desired contra-
diction we combine a sharpness of transition results of Aizenman, Barsky, and Fernandez in [7] and combine
this with a Gibbs variational principle in the context of superstable Gibbs measures ([58],[59],[45]) in order
to show that such an open set of critical (g, ) points cannot exist. The consequence of all of this is that
the fields ¢ and N[¢?] constructed in [3] are seen to be fully scale invariant, and the anomalous exponent
of the N'[$?] can be written in a way where it is seen to not depend on L. The arguments we used should
have analogs in the Euclidean case where one will want to take a finite set of lengths L; that generate the
multiplicative group of the positive reals and show all these different RG transformations yield the same

measure Vgys.

0.1.5 Overview of the rest of the dissertation

Sections [0.1.3] and discuss the main results of this dissertation - a more comprehensive exposition of
these results is given in chapters Bl and @ In chapter [[l we give an introduction to the p-adics and the
construction of measures on distributional spaces (in what follows we call such measures generalized random
fields). In chapter @2l we give a result on the classification of generalized random fields with certain invariance

properties.
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Chapter 1

Preliminaries

1.1 Preliminaries on the p-adic rationals

1.1.1 Ultrametric Spaces

Our work over the p-adics fits into the larger framework of hierarchical approximations in probability and
mathematical physics. These approximations have been used to study random processes indexed by some
metric space where the law of the process exhibits a spatial structure. The key step of the hierarchical

approximation is to replace the underlying Euclidean space with an ultrametric space.

Definition. An ultrametric space (Y, d) is a non-empty set Y equipped with a distance functiond : Y xY —

R=o that satisfies the following properties for all z,y,z €Y
(1) d(z,y) = d(y, z)

(i) d(x,y) =0 if and only if v =y

(iii) d(z,z) < max{d(z,y),d(y,z)}

Condition (iii) is often called the strong triangle inequality in contrast with the orindary triangle inequality
for metric spaces, the weaker requirement that d(x,y) < d(z,y) + d(y,z). As a result ultrametric spaces

have certain topological properties that can be non-intuitive.

Proposition 1.1. Let (Y,d) be an ultrametric space. Then the following statements hold.

(i) Any two balls (open or closed) in'Y are either nested within each other or disjoint.

(i) For any r > 0 the set Y can be decomposed into a partition of disjoint open (resp. closed) balls of

radius r.

(iii) All open balls in (Y,d) are closed sets and all closed balls of positive radius in (Y, d) are open sets.

All three of the above statements are straightforward consequences of the the strong triangle inequality.

One way to understand the second statement is that for any r» > 0 the strong triangle inequality makes the
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relation © ~,. y <= d(z,y) < r an equivalence relation (the same is true if < r is replaced by < r ) and
statement (ii) is just the corresponding decomposition into equivalence classes. Additionally if v < r the
the equivalence classes of ~,. consist of disjoint unions of equivalence classes of ~,; this picture motivates
the term “hierarchical”.

We mention one more consequence: every point within an open ball can be considered the center of that
open ball, that is given an open ball B ={y €Y : |z —y| < r} one has that forall ze B, {yeY : |y — z| <
r} = B.

1.1.2 The p-adic rationals

We will define the p-adic rationals Q, as the completion of the rationals Q with respect to the metric induced

by a particular absolute value on Q.

Definition. An absolute value on a field F is a map |- |: F — [0,00) such that for all x,y € F one has
(i) |[t] =0 < =0

(ii) |wy| = |z[ - |yl

(iii) |z +y| < ||+ ]yl

For any prime p we now define the p-adic absolute value |- |, on Q. First note that for any non-zero z € Q
there is a unique integer k such that one can write x = pk% where a, b are integers and a,b and p coprime;
for such  we define |z|, = p~* and we set [0[, = 0. It is immediate that | - |, satisfies conditions (i) and (ii)
and not hard to see that |- |, satisfies a “strong triangle inequality”, that is one has |z +y|, < max(|z|p, |y|p)-
It follows that if d(x,y) = |x — y|, then (Q,d) is an ultrametric space.

We denote the standard absolute value on Q by | - |y, that is |z|, = sign(x) - 2 for non-zero x and
|0]co = 0. The field @ is not complete (as a metric space) under any of the metrics induced by the absolute
values | - |, for p prime or p = o. For p = oo the corresponding completion of Q is of course R. For p prime
we define Q, to be the completion of Q with respect to | - |,. It is not hard to check that the field structure
of Q and the absolute value | - |, naturally extends to Q, making it a field with an absolute value.

We remark that when looking at sequences in Q there is no simple implication between being Cauchy
with respect to |- |, or |- |, for p = p’. As a consequence one cannot hope to canonically identify any of the
elements in Q,\Q with elements of Q,\Q (this includes the p = o case, that is Qs = R).

The recipe of defining an absolute value on Q and then forming the completion gives an easy way to
construct field extensions K of Q which are equipped with an absolute value and are metrically complete.
An easy way to generate a new absolute values from an existing one | - | is to take | - |* for suitable positive
real numbers . However this new absolute value will generate the same topology and the same completion
of Q as | | does. In fact a theorem of Ostrowski completely characterizes absolute values on Q (and in doing

so essentially characterizes the normed completions of Q).

Theorem 1.1 (Ostrowski). Let | - | be an absolute value on Q, then there exists a positive real number o

such that |- | = (|- |,)" for some p prime or p = w0
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Proof: See Theorem 1.3.2 in Chapter 1 of [9].

For the rest of this section we specialize to p = c0.

Every element of z € Q, has a unique series expansion of the form

0
x = Z anp"™ where a,, € {0,1,...,p— 1} and 3 N € Z such that a,, =0 for n < N (1.1)

n=—auo

In other words Q, is in one-to-one correspondance with Laurent series with poles of finite order and
coefficients taken from {0,1,...,p — 1}. Given such a representation (II]) for an element 2z = 0 one can
calculate the p-adic absolute value of x, in particular |z|, = p~"»(*) where v,(z) = inf{n € Z : a,, = 0} (we
can extend this definition to x = 0 with the convention that v,(0) = o).

Note that large integer powers of p inside of Q, are seen as small by the absolute value | - |, that is

|pN|p =p V.
When reading the above equation one should remember that the p’¥ on the right hand side is an element of
Q, while the p~ on the left hand side is an element of R which is where | - |, takes its values. It is easily
seen that all elements j of Z @, have [j|, < 1. The closure of Z with respect to | - |, will be denoted by
Z,, and is precisely the closed unit ball centered at the origin in Q,. We also note that Z, forms a subring
of Qp.

We now make some remarks that will hopefully help the reader develop an accurate (but perhaps blurry)

mental picture of Q,. One can represent “—1” , that is the additive inverse of 1 in the form (LIJ):

8

—1= ) (p—1)p™

n=0

Arithmetic computations with p-adic numbers can be carried out in terms of these Laurent expansions
using the typical “carrying rules” one uses for computation with decimal expansions in R. We also note that
unlike R one cannot impose a total ordering on Q, that is consistent with its field structure (what we mean
here is a total ordering < such that s <y = z+2z<y+zand 0<z,y = 0<zy for any x,y,2€ Q, ).
To prove such a total ordering cannot exist one can assume the existence of such an ordering and generate
a contradiction by showing that one can find some z < 0 such that z is in fact a perfect square. We remark
that Q, is not algebraicaly closed. With regards to its topology every closed ball in Q, is homeomorphic to
the Cantor set.

While Q, may have properties that seem bizarre we believe that it is the ideal setting for hierarchical
models. We are able to state (and prove) theorems that are formulated nearly identically to the theorems
one would like to prove over R. In particular our main constructive results describe probability measures on

spaces of distributions over Q,. The description of this setting will be the goal of this section.

1.1.3 Norms and integration on Qﬁ

For d € N we define Qg to be the Q,-vector space consisting of tuples = = (x1,...,24) with z; € Q, for

1 < i < d. Vector addition is defined component-wise and scalar multiplication is defined in the typical way,
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that is for any A e Q,, z € Qg we define Az = (Azq,..., z4). We will also fix a norm on Qg.

Definition. Let V be a Q,-vector space. A map |-|:V — [0,00) is a norm on V if for all x,y € V and
A€ Qp one has

(i) x| =0 < 2=0
(i) [Az| = [Alp x ||
(i) & +yl < ||+ |y|

Definition. We say a norm |-| on a vector space V' satisfies the strong triangle inequality if for all z,y € V

one has |z + y| < max(|z|, |y|)

While there are multiple choices one could make for a norm on QZ the one we default to is |z| =
max (|1, - . ., |z4|p) - this norm is natural as up to a constant it is the unique norm preserved by GLg4(Z%)
which is the unique maximal compact subgroup (up to conjugation) of GL4(Q)). Our choice here is analogous
to the choice of the standard Euclidean norm on R? given by |z| = 4 /Z?zl 1:3 which is the unique norm (up
to a constant) which is preserved by the orthogonal group O(d) which is the unique maximal compact (up
to conjugation) subgroup of GL4(R).

Tt is notd hard to see that |-| satisfies the strong triangle inequality and it follows that Qg is an ultrametric
space when equipped with the metric induced by this norm. Before moving on we note a useful fact about

norms satisfying the strong triangle inequality.

Proposition 1.2. Let | - | be a norm on a vector space V that satifies the strong triangle inequality. Then

for x,y € V with |x| > |y| one has |z +y| = |z|.

The closed unit ball in Q¥ is precisely Z% = Z,, x - -+ x Z,,. It is easy to see that Q¥ splits into a disjoint
[

d times
union of Zg and its translates. In particular if a,b € Q, with |a — b < 1 it follows that a + Zg =b+ ZZ (see

Proposition [LT). On the other hand if [a — b| > 1 it follows that (a + Z%) n (b+ Z$) = &. We note that one
can similarly decompose Qg into translates of p’lzg, the closed ball of radius p containing the origin, and
these larger balls individually decompose into p? different translates of Zg, this gives us the “hierarchical”
structure in Qg.

The space Qg will be our continuum space-time but we will implement a UV cut-off which resembles the
lattice UV regularization in Euclidean Field Theory where one replaces the space-time R? with Z¢. When
working over Qg the role of the unit lattice L will be played by a family of equivlaence classes in Qg - the
closed unit ball Zg and its disjoint translates. More concretely we define L as the collection of subsets
{a+ Zp}aEQZ :

Since Zg is an additive sub-group of Qg one can also take L = Qg/Zg where the quotient operates in on
the level of metric spaces and of additive groups. One particular choice of coset-representives are the p-adic
vectors & whose components z; all have representations in the sense of ([LI]) with only negative powers of p.
With this in mind one can immediately see that L is countable and discrete.

Before continuing we make the remark that while the role of “space-time” is played by QZ the “fields”
that we construct will be real valued. One could work with models where one has p-adic valued observables

in addition to a p-adic space-time but we do work in that setting at all in this thesis.
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We turn Qg into a measurable space by equipping it with its Borel o-algebra. For a measurable set A — Qﬁ
we use 1 4(+) to denote the indicator function for the set A. Since Qg is a locally compact abelian topological
group we are guaranteed a non-trivial o-finite Haar measure on Qg which is unique up to normalization. We

denote this measure d%z where we have fixed a normalization such that

J dz =1
z

d
I4

By uniqueness of Haar measures we note that d?z coincides with the d-fold product of the Haar measure
dx on Q, normalized to give Z, measure 1. We say a Borel measurable function f : Qg — R is integrable if
SIf |dex < co. We say a Borel measurable function f : Qg — C is integrable if its real and imaginary parts
are both integrable.

Let GL4(Q,) be the set of invertible d x d matrices with entries in Qg. Given a d x d matrix M and x € Qg
we write Mx to denote M’s action on x corresponding to left multiplication by M where z is considered a

column vector. We have the following elementary change of variable theorem:

Proposition 1.3. Suppose that M € GL4(Z,). Then for any Borel measurable f : Q, — Rxo one has
J F(Mz)dz — \det(M)|;1f F@)dde

Proposition (I3)) can be proven by noting that pu(A) = { 14(Mx)d%z is a translation invariant measure
and computing p(Zg) = [det(M)], L the assertion then follows by appealing to the uniqueness of Haar
measure (up to normalization).

We remark that the above theorem says § f(pz)diz = p?{ f(z)dz (we would expect to see a p~? on

the right hand side if we were working with Lebesgue measure over RY).

1.2 Some Distribution Theory and Fourier Analysis on Qg

The material in this section can be found in the references [71] and [9]. The Schwartz-Bruhat space of
test functions over Qg, which we denote by S(Qg), is an analog of the more familiar Schwartz space of test

functions over R?. We start with defining what it means for a function on Qg to be locally constant.

Definition. A function f : Qg — C s said to be locally constant if for each = € Qg there exists a r(x) € Z
such that for all y with |y — x| < p"®) one has f(y) = f(z).

Local constancy will play the role of smoothness when dealing with functions on Qg. Note that it is the
ultrametricity of Qg that allows us to have non-trivial locally constant functions (a simple example being
1zq which is constant over closed balls of radius 1).

We say that a function f : Qg — C is compactly supported if there exists some s € Z such that f(z) =0
for all z with |z| > p*. We now define S(Qg) to be the space of all functions f : Qg — R which are locally
constant and compactly supported. Such functions will often be called test functions. In certain cases we
will want to allow for complex valued test functions in which case we will write S( g, C) which we view as

a complex vector space.
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So far S(Qg), resp. S( 27 C), is just a real, resp. complex, vector space. We will now give a topological

structure. We start with some definitions.

Definition. Given a vector space V over R or C a map N : V — [0,00) is a seminorm on V if for all

u,v € V and any scalar A one has:
(1) N(Av) = [\l N(v)
(ii) N(u+v) <N(u) +N(v)

Given a vector space V we define the finest locally convex topology on V to be the coarsest topology that

makes all seminorms on V' continuous. An equivalent definition is as follows:

Definition. A subset U of a vector space V is open in the finest locally convex topology on V if and only
if for every x € U there exists € > 0 and finitely many seminorms Ni,..., N such that r\?:l{y eV:
Nly—z)<e}cU.

We turn S (Qg) into a topological vector space by equipping it with its finest locally convex topology. We

give a quick proposition which says that in this setting linearity is enough for continuity.

Proposition 1.4. Let V' be a topological vector space equipped with its finest locally convex topology. Let W

be a locally convex topological vector space. Then any linear map L : V — W is continuous.

Proof: Since W is a locally convex topological vector space its topology is generated by some family of
seminorms {N,}. By linearity one immediately has N, (L(+)) is a seminorm on V. The result then follows
by the definition of the finest locally convex topology. O

We denote by S’(Qg) the corresponding topological dual, i.e. the space of continuous linear functionals
on 5(Q%). Note that any linear map ¢ : S(Q%) — R is automatically continuous (in particular |¢(-)| defines a
seminorm on S(QY). It follows that S'(Qf) coincides with the algebraic dual of S(QZ). The notations (¢, f)
and ¢(f) denote the duality pairing of ¢ € S’ (Qg) and f e S (Qg). Note that every locally integrable real

valued function G(z) on Q% can be seen as an element of S'(Q%) via

(G, f) = y G(z)f(z) %z for f e S(QY).

However not every element of S’ (Qg) is given by integration against a function. We will still sometimes write
(G(x), f(x)) for the duality pairing, motivated by the above integral expression even if G € S'(QY) is not
given by integration against a function.

We turn S’ (Qg) into a topological vector space by equipping it with its cylinder set topology - this is the
coarsest topology on S’(Qg) such that for any f1,..., f, € S(Qg) one has that the map ¢ — (¢(f1),...,0(fn))
is continuous map from S’ (Qg) to R™ where the latter space is given its standard topology.

We define the topological vector space S’( g, C) as the dual of S( g, C) in the same fashion. Note that
we can canonically identify any ¢ € S’ (Qg) with an element of S’( g, C) by having it act separately on the
real and imaginary parts of any complex valued test function.

An important observation is that if f is locally constant and compactly supported then a straightforward

compactness argument shows that f is “uniformly” locally constant, that is there exists r € N such that
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|z —y| <p” = f(z) = f(y). With this in mind we can think of S(Q?) as a union of finite dimensional

subspaces. For r, s € Z we define
Srs(Q) :={f: Qp = R[ |z[ > p* = f(z) =0 and |y — 2| <p" = f(z) = f(y)}

Thus in the above definition r parameterizes the degree of required constancy and s parameterizes the
size of the support. Clearly 1’ <r < s < s = 5,,(Q%) € Sy« (Q)) « S(QY). If s < 7 then S, (QF) contains
only the 0 function while if < s then Sr,s(Qg) is a p®*~") dimensional subspace of S((Qg)7 one basis being
the individual indicator functions for the p?*=") translates of p*”Zg contained in p*SZg. More concretely
we define Z, ; Qg as the set of vectors z whose components (z1, ..., zq) are each of the following form (in
the sense of [[T]):

S
Zi = Z anp_n
n=r+1
Then the basis in question is given explicitly by

Ea——e) (12)

z€l, s

It is also clear that

S(Qi) = U an,n(Qg)

Note that we define S, 4( g, C) in the natural way and analogous statements to those above hold for the

complex case.

1.2.1 The Fourier transform on Qg

Having a theory of Fourier transforms over QZ allows the correspondance between our model and the corre-
sponding Euclidean model to be seen much more clearly. Additionally harmonic analysis over Qg can be more
forgiving, for example we will see that functions can be compactly supported in both position and Fourier
space. We will also see that analogously to the real case the Fourier transform will be a linear isomorphism
on the space S(Qg).

We first define the polar part map {-}, : Q, — R. If u € Q, has a Laurent representation

a0
Z anpn

n=—0oo

then we set .
{u}p = Z anp”
n=-—00
where the right hand side of the above definition is taken as an element of R instead of Q,, - it is important
to remember that this sum will have only finitely many non-zero terms.
We remark that {u}, = 0 if and only if u € Z,. We also define a dot product on Qg in the standard way,

ie. for x,y € Qg we set -y = Z?zl T;y; € Qg. Observe that |z - y|, < max1 <@ < d|zy| < |z - |yl
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We now note that for any z € Qg the function &, : QZ — C given by
&(x) = exp[2mi{z - x}]

is a multiplicative map on the additive group Qg -ie E(z+y) = ()€ (y) ( similarly one also has
28z = Eoygzy for any 21,20 € QY). The key fact behind these properties is that {z - (z + y)}, and
{z- 2}, + {2z y}p differ by an integer. In particular Q¢ can be identified as its own Pontryagin dual, with the
correspondance being given by z — &, .

Speaking more concretely, the functions exp [27i{z - #}] will play the role that the functions exp[ik - ]
do in Fourier analysis over R?. For an integrable function f : Qg — C we define the Fourier transform of f,
Flf]: Qg — C as follows: for any k € Qg

FLUAK) = ff(x) exp[—2mi{k - x},] dz.

We will also use the standard notation f(k) to denote the Fourier transform of a function f(z). The next

proposition gives a useful Fourier transform to know:

Proposition 1.5.

Proof: Note that for any a,b € Q, the quantities {a + b}, and {a}, + {b}, differ by an integer so one has
exp[—2mi{a + b},] = exp[—27i{a},] x exp[—2mi{b},]. We can then write

J- 1z, (z;) exp[—2mi{k; - xi}p) dxi> )

D

d
JQd 1za(x) exp[—2mi{k - x}p] dlr = n (

i=1

This shows that it is sufficient to prove the proposition for d = 1 so we specialize to this case.

Suppose that k € Z,, then one has exp|—2mi{kx},|lz, (x) = 1z,(z) since kx € Z, for all x € Z,. It
follows that for k € Z,, one has F[1z,](k) = 1z, dx = 1.

Suppose instead that k ¢ Z,,, then |k[, = p’ with j > 1. We then fix £ = (pk)~! € Z,. It follows that

f[ﬂzp](k) :Jﬂzp(x — &+ &) exp [_QWi({k (- 5)}17 + {kf}p)] dx
—expl-2mip 1] [z, (o — ¢ + O expl-2mifk - (o~ €)},) da
= exp[—2mip '] Jﬂzp (x — &) exp[—2mi{k - (x — &)},] dx

= exp[—2mip~ "] f 1z, (y) exp[—2mi{ky},] dy = exp[—2mip~'|F[1z,](k).

In going to the third line note that since & € Zg and Zg is an additive subgroup of Qg it follows that
(=& +EeZl «— (x—&) ezl For going to the fourth line we applied a change of variable z — £ < y.
Since exp[—2mip~'] = 1 the above computation shows F[1z,](k) = 0 for k ¢ Z,. This finishes the proof
that F[1z,](k) = 1z, (k). O

We will now show that the Fourier transform leaves the space S( g, C) invariant. First, a simple lemma:
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Lemma 1.1. Let f : Qg — C be an integrable function. Suppose that A\ € Q, with A =0 and y € Qg. Then
i 9(2) = f\(& — ) one has

Flgl(k) = [\, * exp[—2mi{k -y}, f (A" 'k)

Where again we use the notation f(k) = F[f](k).

Proof: Apply a change of variable (see Proposition [[.3]) in the integral defining F. O
We now show that in addition to the position-space basis (IL2)) of S, s one also has a simple Fourier-mode
basis of S, ,(Q%,C).

Proposition 1.6. Let r < s. The family of functions

{pf% exp|[2mi{k - x}p]ﬂp’szg () }kel

is a basis for Sns(Qg, C). In particular they are an orthonormal basis for ST,S(QZ,C) seen as a subspace of

£2(Q¢,c).

Proof: The fact that the above functions are of £2 norm 1 is immediate.

We now check that the functions (I6]) are contained in S, 4( g, C). They are clearly supported on x with
|z| < p® so we check constancy over closed balls of radius p”. Note that the functions of (LGl are clearly
locally constant outside of Ag.

Fix y with |y| < p”. This implies that y € p~*Z¢% and it is then immediate that 1y-eza(z) = 1p-sza(z+y)
for all z € Qg (p_*"'Zg is an additive subgroup of Qg).

We claim that for ke I_; _,, x € p‘SZg, and y € p_TZg one has

exp[—2mi{k - z},] = exp[—2mi{k - x}p] exp[—2mi{k - y},| = exp[—2mi{k - (x +y)}p]

The key point is the first equality, to see this is true observe that |k -y|, <|k|-|y| <p "p" =1so {k-y}, is
an integer.

We now check orthogonality. Observe that for k, k' € I_, _, distinct one has:

de exp[—2mi{k - z},] exp[2mi{(k" - T}p]Ly—oza (z)d%x

P

_ de expl=2m{(k — k) - 2}yl z(@)da

= de exp[—2m{(k — k') - 2},]174 (px)diax
= p®lzg (7 (k= K))
-0

The third equality follows from Proposition and Lemma [Tl The last equality comes from the fact

that one has [k — k'| = p~**!. This shows that (IG) must be lincarly independent in S, 5(Q%) and since

|I_o_| = p¥*=") the family (L8) must span. O
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It immediately follows that

Proposition 1.7. For any r,s € Z the Fourier transform F is a linear isomorphism of complex vector spaces
taking Sy s( g, C) onto S_s _-(Q%,C).

p?

Proof: The proposition is trivial in the case that s < r so we assume s > r. We show that F takes the basis
(T2 for S, ( g, C) onto a basis for S_s _,( g, C). By Proposition [l and Lemma [[LT] one has

{}- []lerp""Zﬁ] (k) }zelr,s
~ {Fl -]},

_ {pdT exp[—2mi{z - k}p|1z4 (Pirk)}

zel, s
By Proposition [[G the family of functions on the last line are a basis for S_, _,(Q%,C). O

Corollary 1.1. The Fourier transform F is a continuous linear automorphism of S(Qp,C). In particular

for f € S(Qp,C) one has F o F[f](z) = f(—=x).

Proof: The first assertion follows immediately from the above propositions and Proposition[[.4l The second
assertion is just a quick computation using the bases we gave in the above propositions. ]
Proposition 1.7 can be thought of as a simple Paley-Wiener theorem for Qg where the roles of regularity
and spatial decay are played by the degree of local constancy and size of the support (respectively the r and
s of Sp).
We also note that we have a p-adic analog of Parseval’s theorem - this can be helpful for some of the

calculations that will come later.

Proposition 1.8. One has that F extends to a unitary map on L*( g, C). In particular for f,g € L2(QZ)

J

Proof: This can be proven from the above propositions via standard density arguments. A proof is also
given in [9] §4.8]. O

one has that

dz f(x)g(z) = f Ak f(k)g(—k)
Q;

d
P

We define a Fourier transform F : §'(Q%, C) — 5'(
we define F¢ by setting (Fo, ) = (¢, Ff).

¢, C) via duality, that is for ¢ € §'(Q%,C), f € S(QZ C)

1.3 S(Qg) and S’(Qg) as spaces of sequences

In the probablistic formulation of quantum field theory the construction of the field theory corresponds to
the construction of a probability measure on an appropriate distributional space which in our particular case
will be S’ (Qg). The problem of specifying measures on infinite dimensional topological vector spaces takes
some care. There is a great deal of literature on building measures on a class of topological vector spaces
called “nuclear spaces”. However in the case of the Schwartz-Bruhat spaces there is an easier method where

one realizes both S and S’ as spaces of sequences [61] which puts Kolmorogov’s Extension Theorem at one’s
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disposal - this approach applied to the case of reals is given in [63] and we reproduce it in section [[Z2l The
analogous construction over Qg will be much simpler. In this section we prepare for section [[L4] by realizing
both S (Qg) and S’ (Qg) as spaces of real sequences. Along the way we will also prove assorted facts about

the finest locally convex topology on S(Q%).

Lemma 1.2. There exists an orthonormal family of vectors {e,}_ in £2(Qd) such that the following holds:

For every N € N~ one has {en}n=g*1 span S_n N (seen as a subspace of Lz(Qg)).

Proof: Let Vj = 5070(Qg). We remark that Vj is a one dimensional subspace and we set eg = Ilzg. For

n = 1 we set

(S (n—1),(n— 1 m‘sfnn

where the orthogonal complement is taken in £2. Note that each V,, is just a p2?" — p2d(n—1)

dimensional
2d

subspace of £2. For n > 1 we choose {ej} pRd(n—1) to be an orthonormal basis of V;. This yields the basis

given in the assertion. ]

We denote by ¢ the vector space of almost finite real sequences:

o¢]
= @R ={{z;}2, :z €R are non-zero for only finitely many i}
i=0

We equip ¢ with its finest locally convex topology to turn it into a topological vector space. We now define
a linear map T : S(Qg) — ( as follows. For f e S(Qg) we set the sequence T'f € RN to be given by

Tf = {{es fiyc2(aa)}izo

We then have the following proposition
Proposition 1.9. The map T s a linear homeomorphism between the topological vector spaces S(Qg) and ¢

Proof: We first note that since S(Qg) = U:):o S_nm(Qg) every [ € S(Qg) has a unique representation
as a finite linear combination of the functions e;. It then follows that T is a linear isomorphism between
S (Qg). The fact that 7" is a homeomorphism is immediate since any linear map between two topological
vector spaces equipped with their respective finest locally convex topologies is automatically continuous (7'

is dominated by the seminorm |7T'|) O
Unlike the Schwartz space of functions over R? it turns out that the topological vector space S (Qg) cannot
be made into a Frechet space. In particular one can show that the topology on £ cannot be generated by a

countable set of seminorms:

1.3.1 The finest locally convex topology on ¢ (and S(Q%))

We begin with finding a concrete family of seminorms that generates the finest locally convex topology on

(. Given a non-negative weighting p = {;}72, (i.e. p; € Rx0Vi) we define a seminorm N, on ¢ via

{w }0 1 Z Mz‘xz
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Proposition 1.10. For every seminorm N on { there exists a non-negative weight p such that N'(x) < N, (x)
for all x € 4.

Proof: For j € N define 6¢) € £ to be the sequence which is zero for all indices except the j-th one where
it takes the value 1. Given a seminorm N on ¢ define a non-negative weighting u = {u;}52, by setting

pi = N(6@). Then for every z € £ one has
X .
N(@) < ) |2l x N(6D) = N ()
i=1
We immediately have the two following corollaries.
Corollary 1.2. The finest locally convex topology is the coarsest topology that makes the family of seminorms
{N,} continuous where p ranges across all non-negative weightings.
Corollary 1.3. Given a sequence of sequences {x(™}*_, £ the two following statements are equivalent:
(i) lim,, o, (™ = 0 € £ in the finest locally convex topology on (.
(i) lim,, 0 N, (™) = 0 for every non-negative weighting .

Given a sequence of real or complex numbers x = {z;}{2; we define supp(z) = {i e N : x; = 0}. The next
proposition says that sequential convergence of sequences in /¢ is equivalent to component-wise convergence

with the condition that all the sequences are uniformly compactly supported.

Proposition 1.11. Given a sequence of sequences {x(”)}le c £ one has that lim,_,., (™) = 0 if and only
if the following statements both hold:

(i) There exists M € N such that for all n one has supp(z™) < {0,1,..., M}
(i) For all i € N one has lim,,_, 332(»”) =0

(<) Suppose we are given {z(™}%_, satisfying statements (i), (ii). Sequential convergence easily follows
by the criterion of Corollary [C3.1] since for any p, the quantity N, (z(™) is just a sum of M terms each of
which is going to 0.

(=) We prove this direction by contrapositive. Suppose we are given {ac(") *_, for which statement
(i) does not hold. We will construct g such that N, (z(™) does not convergence to 0 as n — 0. By our
assumptions we can find sequences of indices n;, k;, both strictly increasing in j, such that for all j € N one
has

3:,(;;1 )~ 0.

Now define a non-negative weighting u as follows:

‘ch?j)i , if i = k; for some j € N
Hi = !
0 , otherwise
With this choice of g it is clear that for all j € N one has N, (z()) > 1. O

We can now prove the theorem mentioned earlier
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Theorem 1.2. The finest locally convex topology on £ cannot be generated by a countable family of semi-

norms.

Proof: We proceed by contradiction and assume that {\; };’-ozl is a family of seminorms that generates the
finest locally convex topology on /.

Then we claim that the following is a translation invariant metric d(-,-) on ¢

d(z,y) == Y, 277 max(1,Nj(z —y)).

=1

The symmetry of d(-,-) and the fact that is satisfies the triangle inequality both follow easily from the
definition above. The fact that d(x,y) = 0 = z = y comes from the observation that the finest locally
convex topology £ is clearly Hausdorff. This means that it must be the case that for every non-zero x € /¢
one can find j such that Nj(z) > 0.

By the assumptions made so far d must induce the finest locally convex topology on ¢. It is clear that
in this topology for every k € N one has that e5*) converges to 0 as e — 0 so it must be the case that
lim._,q d(O,eé(k)) = 0 for all k. It is then possible to choose constants €, ; > 0 such that for every k,j € N
one has d(0,¢;56F) < 277,

Now define a sequence of elements {y(j)}gc‘=1 c ¢ by setting y9) = ¢;;6U). One must then have
lim;_, o d(0, y)) = 0 which means that y) converges to 0 in the finest locally convex topology as j — 0.
However this is a contradiction; the sequence of sequences y?) is not uniformly compactly supported and so
by Proposition [LITy¥) does not converge to 0 in the finest locally convex topology. O

We have the following as an immediate corollary.

Corollary 1.4. The finest locally convex topology on S(Qg) cannot be generated by a countable family of

seminorms.

For X be a topological vector space we call a map

L:Xx---xX—>R
[N —

n times

an n-multilinear functional if it is linear in each of its components. We call the analogous map in the complex
setting an n-multilinear map as well. The definitions and proposition we give below show that the topics
such as the continuity of multi-linear functionals and the kernel theorem become trivial in this setting of the
finest locally convex topology. The content below is stated for the case of real functionals but can easily be

transferred to the complex case as well.

Definition. An n-linear functional L on a topological vector space X is said to be jointly continuous if for
every € > 0 there exists a n neighborhoods N1,..., N, < X each containing 0 such that for every choice
fie Ni,..., fn € Ny one has

IL(f1,---s fa)|l <e€

We remark that if the topology on X is generated by a family of seminorms SN = {N,},, then a sufficient

condition for an n multilinear functional L to be continuous is for there to exist seminorms Ny, ..., N, € SN
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such that for every fi,..., fn, € X one has
L1y )l < [TNG()- (1.3)
j=1

With this in mind one sees that multilinearity immediately implies joint continuity.

Proposition 1.12. Suppose that
L:S@Q) x-xS@Q4)—>R

n times
be an n-multilinear map. Then L is jointly continuous in its n arguments.
Proof: By virtue of the correspondance between S (Qg) and /¢ it is sufficient to prove the assertion for

n-multilinear functionals in the case where X = ¢, that is multilinear functionals

L:l{x---xl—>R
—_—
n times
Following our earlier remark it suffices to find seminorms for which we have a bound of the type (3). For
a = (ag,...,aq) € N we define m, € R via

ma = [ (600, 5t

Here for j € N denote by §¢) the sequence in £ that is given by zeroes everywhere except for the j-th location

where it takes the value 1. We define a non-negative weighting . as follows:

L 1= max (1, max ma>.

[leel|oo <K

where for a multi-index a we define ||a||,, = maxicj<n ;. The key property satisfied by the sequence

{1r}¥, is that for any o € N one has
d
Mo < HM%'
j=1

Let NV, be the corresponding seminorm. Now let W 2™ e ¢ with
) [e0]
200 = Z aj7k5(k)
k=0

for 1 < j < n and constants a; j (which are zero for all but finitely many k). One then has

n n n 0 n
T ol § (O] A of | § (O R § oY I § PR
o lj=1 o Lj=1 j=1 Lk=0 j=1
(1.4)
O

For f € S(Qy') and g € S(Qp) we define f®g € S(Q;"™) via (f ® ) (z,y) = f()g(y) for (z,y) € Q7' x Q7.
We can now state a kernel theorem for S(QZ).

27



Theorem 1.3. Given a jointly continuous n multilinear functional L on S(Qg) there is a unique continuous

linear functional L € S"(Qp?) such that one has

Proof: By the earlier proposition it is clear that we can drop the qualifier “jointly continuous” from the
above theorem. The key observation for the p-adic section is that every g € .S (Q;d) can be written as a linear

combination of functions of the form

H® - ®fn
with f1,...,fn € S(Qg). To see this we remark that for r < s one has that SnS(Q;”i) is spanned by indicator
functions of the sets a + p"Zp® for a € Qp* with |a| < p*. However if we write a = (a1,...,a,) with
A1y, 0y € Qg then
ﬂa_'_przz,d = ]1a1 +przz ® st ® :ﬂ_an_;'_przg.

In particular each element of S (Q;‘d) can uniquely be written as a finite linear combinations in the basis

{®?=16aj }QGIN"

where the {ey};>, are the basis for S (Qg) given by Proposition
It is then clear that every n-multilinear functional L uniquely determines an element L € S’ Q) by
enforcing that (L) hold for fi,..., f, chosen as basis elements in S (Qg) - L can then be uniquely extended

to all of S’ (di) via linearity. Uniqueness of such an L is immediate. O

We will now identify S"(Q%) with a sequence space. In particular we will identify it with the topological
(and algebraic) dual of ¢ which we denote by ¢'.

It is not hard to see that ¢ can be realized as the space of all real sequences, that is £/ = [ [, (R = RN,
For a sequence y = {y;}2, € ¢’ and = = {z;}° € ¢ the duality pairing (y,z) is given by the (necessarily
finite) sum Z;‘io z;7;. We view £ as a topological vector space by equipping it with the product topology
(which one can think of as the cylinder set topology when one keeps the duality pairing in mind).

We define the linear map T* : S'(Qg) — 0 via T*(¢) = {yi(¢)} with y;(¢) = ¢(e;) where the e; is given as
in Proposition (LZ). Since both S’ (Qg) and ¢’ are equipped with their respective cylinder set topologies it is
easy to see that T* is in fact a homeomorphism. In particular T* is the adjoint of T, i.e. (¢, Tx) = (T*¢,x)

for z € £ and ¢ € S'(QY).

1.4 Measures on S’

1.4.1 A Bochner-Minlos Theorem for S’(Qg)

We view S’ (Qg) as a measurable space by equipping it with its the Borel o-algebra - remember that S’ (Qg) is
equipped with the cylinder set topology. The corresponding Borel o-algebra will also be called the cylinder

set g-algebra. Before describing the main result of this section we state an important definition:

Definition. Let X be a topological vector space. We say a function ¥ : X — C is positive definite if for
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alln e N and any (1,...,(, € X the the n x n matriz formed by the entries (¥ (¢; — Cj))ij, 1<i4,7<n,:1s
a Hermitian positive semidefinite matrix. Stating this condition explicitly one must have that the following

two conditions hold:

(1) P(=C) = ¥(C) for all € X

(ii) For any z1,...,2z, € C one has

We now state one of the main theorems of this section.

Theorem 1.4 (Bochner - Minlos Theorem for S"(Q%)). There is a one-to-one correspondance between prob-
ability measures i on the measure space (S'(QY),C) and the set of functions 0 : S(QY) — C which satisfy (i)
0(0) =1, (ii) 0 is continuous on S(Qg), (i11) 0 is positive definite. The correspondance p < 8, is given by

i) = |, dn9) .

i.e. 0, is the characteristic function for the measure . Note that (¢, f) denotes the duality pairing between

S(Q9) and S'(Q).

Here C denotes the cylinder o-algebra. Given a topological vector space X and its topological dual X',
the cylinder o-algebra C on X’ is the coarsest o-algebra on X’ which makes evaluation at z a measurable
map from X’ to R’ for any = € X.

Now using the maps T*,T defined in the last section it follows that Theorem [[4] is equivalent to the
following theorem.

Theorem 1.5 (Bochner - Minlos Theorem for ¢'). There is a one-to-one correspondance between probability
measures ji on I = RN equipped with its cylinder o-algebra (or equivalently its product o-algebra) and the
set of functions 0 : £ — C which satisfy (i) 6(0) = 1, (i) 0 is continuous on £, (iii) 0 is positive definite. The

correspondance i <> 8, is given by
6(2) = | duy) ),
Note that (y,x) denotes the duality pairing between y € €' and x € £
Our method of proof will involve applying Bochner’s Theorem on R? which we give below.

Theorem 1.6 (Bochner’s Theorem for R?). There is a one-to-one correspondance between Borel probability
measures i on R? and the set of functions 6 : RY — C such that (i) (0) = 1, (i) 0 is continuous, (i) 0 is
positive definite.

The correspondance p < 0, is given by

0u() = | du(a) e

Proof: The hard direction is that conditions (i), (ii), and (iii) on @ are sufficient to guarantee the existence

of a Borel probability measure p on R? such that 6 = 6,,. For a proof of this see [55, Theorem IX.9].
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For necessity of conditions (i), (ii), (iii) we note that for any p and corresponding 6, condition (i) is
immediately, (ii) follows from Lebesgue dominated convergence, and condition (iii) comes from observing

that for any z1,...,2, € C, &,...,&, € R one has

2 n n

ij=1 ij=1

0 < J{R dp(x)

n
i=1

For uniqueness we suppose that for Borel probability measures y, v on R we have 0, = 0,,. Let f € CF (R%),
i.e. a smooth function of compact support. In particular one has f7f e L'(R? d%). Then by the Fourier

inversion theorem and Fubini one has

|, uta) <L a‘¢ e“fﬂf))

N d% £(9) ( Ld du(m)e”‘f)
| koo - | acioo© - [ @i,

| s

Then by a simple approximation argument it follows that u = v. ]

We will also need Kolmogorov’s Extension Theorem but first we introduce some notation. Let I be an
index set. We denote by B; the product Borel o-algebra on R!. For any finite set F let 7/ p : RI — R be
the canonical projection map. For any finite sets F, G with F' < G < I Let mg r be the canonical projection
from RY to R¥.

Theorem 1.7 (Kolmogorov’s Extension Theorem). Let I be an index set. We see R! as a measure space
by equipping it with its product Borel o-algebra. Suppose that we are given a family of consistent family of
finite dimensional distributions - that is we are given probability measures up on (RY,Br) for every finite
set F' < I that together satisfy the following: for any two finite sets F < G < I every A € Br one has that
el (TI'E;}F(A)) = ur(A), i.e. ur is the pushforward of pg under w$.

Then it follows that there exists a unique probability measure p on (R, Br) such that for every finite set
F c I and A € By one has u(ﬂj_%(A)) = ur(A). In other words there is a unique probability measure p

which has the measures pup as its finite dimensional marginals.

Proof: See almost any book that covers stochastic processes, for example [67, Theorem 1.1.10].

We can now prove Theorem
Proof of Theorem We need to show that for a given 0 satisfying (i), (ii), and (iii) there exists a
unique probability measure x on the infinite product space ¢/ = (RN, By) with 0 = 6,,.

First we focus on constructing such a measure p from 6. For any finite set ' < N and x € R¥ we write
zp to denote the element of ¢ with (zp); = a; for i € F and (zp); =0 for i ¢ F.

Now we define 0 : RF — C via 0p(z) = 0(zp). We claim that 0 satisfies Theorem [ - condition (i)
and condition (iii) both follow immediately from the analogous conditions on §. We remark that z — zp
is a continuous map between R equipped with its standard topology and ¢ with its finest locally convex
topology (the standard topology RY" coincides with its own finest locally convex topology, so one can apply

Proposition [[4]). Thus we are guaranteed a unique Borel probability measure pr on RY with 0p as its
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characteristic function. Proceeding this way for all finite subsets of N gives us a family of finite dimensional
distributions.

We now show that this family is consistent. Suppose we have finite sets F,G < N with F' < G. Let g
be the marginal of ug on RE (i.e. jip is the pushforward of juc under the projection g r). It is not hard to
see that the characteristic function of i is given by 6 and so from the uniqueness assertion in Theorem [[6]
it follows that pp = fip. Thus the desired measure p on RN can be constructed from the finite dimensional
measures pp via Kolmogorov’s Extension Theorem.

Now for any a € ¢, there exists a finite set ' = N and x € RY so that 2 = a. It then follows that

| auts) o = [ aur(s) 0 = 0p(a) = 0tar) = 000

so we have that § = 6, on ¢. We remark that if for ;1 and v on ¢’ one has 6, = 6, then we can again use
Bochner’s Theorem over R? to show that ; and v/ have the same finite dimensional distributions, thus by

Kolmorogorov’s Extension Theorem one must have yu = v O
We remark that we only needed the countable version of Kolmogorov’s Extension Theorem.

1.4.2 Bochner-Minlos Theorem for S'(R?)

Identification with Sequences

We start by defining Schwartz space on R? denoted by S(RY), and its correspond dual, the space of
tempered distributions which we denote by S'(R%). We make frequent use of multi-index notation. For
a=(ag,...,aq) € N and 2 € R? we define z* = HLI z;". We also define differential operators D acting

on functions over R? by defining D* := Hd 0.

=1 "1

Definition. Schwartz space over R%, denoted by S(R?), is defined to be the set of all smooth functions
f e CP(RY) such that for any multi-indices o, € N one has

fllas = sup [a°D"f(@)] < oc

zeR

We turn S(R?) into a topological vector space by equipping it with the topology induced by the countable family
of seminorms {|| - [|a,s},, gena- In particular S(RY) is Frechet space with the mentioned topology coinciding

with the one induced by the metric
[e¢]
d(f,g) = Y, 27 max (||f — gllx, 1)
k=0

where seminorms {[|f — gl|x};_o are an arbitrary enumeration of the seminorms {|| - ||la,s}, sena-

In keeping with earlier conventions we will use S(R?,C) to denote the corresponding space of complex

valued test functions, in particular S(R?, C) is just the complexification of RZ.

Definition. The space of tempered distributions over R?, denoted by S'(R?), is defined to be the topological
dual of the space S(R?), i.e. the space of all continuous linear functionals on S(QL). We turn S'(Q%) into a
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topological vector space by equipping it with its cylinder set topology.

We similarly define S’(R%,C) to be the topological dual of S(R?,C). The complex case is not of interest
here but will come up in Chapter 2

Again our first step is to identify the space S(R?) with a space of real sequences. As mentioned before
here we follow [61]. Since S(R?) = £2(R?) one can expand test functions in S(R?) in terms of the orthonormal
basis of Hermite polynomials, in other words harmonic oscillator wavefunctions.

For simplicity of notation we specialize to the case d = 1, the generalization to higher dimensions is
straightforward. We define the n-th Hermite polynomial ¢,, € S(R)

bulz) = 72~ (nl)~Hebe? [(i)e—] .

For f € S(R) we will identify f < {a,}>_, where the a,, are given by

an = J{Rdx f(x)pn ().

Clearly ||f||z2 = ||all;z < 0. However one can show stronger growth conditions on the Hermite expansion
coefficients f € S(R), in particular these coefficient sequences decay faster than any polynomial. To see this
we start by defining the operator ,

H = _ 4 + 2?

a2 +1

on S(R).

Proposition 1.13. Suppose that f € S(R). Then the corresponding sequence of Hermite coefficients {a,}or_,
satisfy

|lan|*(n +1)™ < oo for all m

18

0

We observe that H™¢,, = 2™(n + 1)™¢,, and that H™ f € S(R) = £2(R). One then has

n

[\
3
D18

an(n+ 1) = {(fH™f)r2 < 0.

n=0

We define the norm | - |,,, on sequences a = {a,}i_, via setting

@ 3
|a)m = lz |an|2(n+1)m] .
n=0

This gives us a a corresponding norm | - |, on S(R) via our linear map f — {an}i,.

We introduce some terminology - two families of seminorms are said to be equivalent if for each family,
each seminorm in that family can be bounded above by a finite linear combination of seminorms from the
other family. In particular equivalent families of seminorms generate the same topology. One can show that

the norms | - |,,, are equivalent to the seminorms we gave when we defined Schwartz space.
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Proposition 1.14. The two families of seminorms on S(R)

{ll - ||a,ﬁ}a,ﬁetr~ll and {] - |m}?701=0

on S(R) are equivalent

Proof: See [6I, Lemmas 6,7,8,9].

We now define the sequence space
s = {a={a,} eRY| VY meN,|al, <}

From Proposition (([LI4) it follows that f € £2(R) satisfies f € S(R) if and only if a = {a,}?_, € 5 - so we
have a linear bijection between S(R) and s. Additionally if we turn s into a topological vector space by
equipping it with the family of seminorms {| - |,,};5_, then S(R) and s are isomorphic as topological vector
spaces.

At this point we say a little about how this construction can be carried over to higher dimensions
expanding f € S(R?) as a sum of products of Hermite functions indexed by mult-indices, that is for o € N?

one sets

d
Pa(z) = n Pa; (7).

Accordingly S(R?) can be identified with a space of “sequences” indexed by multi-indices, the corresponding
sequence space can be turned into a topological vector space by using the seminiorms similar to the seminorms

used in the definition of s. For example for fixed sequence a € RN* and m € N one could set

lalm = Z [H(ai + 1)"‘1 Ao

aeNd Li=1
In fact in [6I, Theorem 9] the above identifications are used to prove the following result:

Proposition 1.15. For any dimension d the spaces S(R?) and S(R) are isomorphic as topological vector

spaces.

We now continue our analysis on S(R), keeping in mind what we do can easily be generalized to S(R?).
We remark that the | - |,,, are a directed family of seminorms. A family of seminorms {\,},¢; is said to

be directed if for every finite collection 1, ...,7, € I there exists ¥ € I and C > 0 such that
n
SN () € CNS ().
j=1

We also mention that the seminorms indexed by multi-indices we defined for S(R?) are also directed.

We now prove the following theorem about continuous linear functionals on S(R)

Lemma 1.3. A linear map T : S(R) — C is continuous if and only if there exists some C = 0, m € N such
that for all f € S(R)
TH < Clflm
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Proof: Sufficiency of the given inequality is immediate, we now show necessity. Suppose that T is a
continuous linear functional, then there must be a non-empty open set U < S(R) containing 0 such that for
all f €U one has T(f) < 1.

We remark that by Proposition (LI4]) one has the norms {| - |;}72, generate the topology on U = S(R),
so there must be an € > 0 and N € N such that

N
N{feS®|Iflj<e c U
j=0

However since the seminorms are directed we can find m € N, and A > 0 such that
N
Dl <Al
§=0

The assertion is then proved by using this choice of M and letting C' = é. O
We mention that it is easy to use the basic idea of Lemma to show that tempered distributions
T e S'(R,C) are of “finite order” - i.e. T'(f) depends on only finitely many derivatives of f.
Now for T € §'(R) we identify T <> {b,}%_, € RN via setting

bn = T(¢n)

The next proposition shows that elements of S(R) correspond to sequences of at most polynomial growth.

Proposition 1.16. Suppose that T € S'(R) and let {b,}>_ be the corresponding sequence of Hermite

coefficients. Then there exists C' = 0, m € N such that for all n € N

Proof: We recall that |¢,|,, = (n + 1)%. Now let C,m be given as promised in Proposition [[3 Then one
has |b,| = [T(¢n)| < Clénlm =C(n+1)%. O

We now define the dual sequence space
s = {b={b,}%, € R"| Im e N such that sup|b,|(1+n)"™ < oo}

It then follows from Proposition [[3] that every T' € S(R) can be identified with a unique sequence b € '.
Additionally every b € s’ defines a unique T}, € S(R) via defining T},(f) = >, bya, where a, are the
Hermite expansion coefficients for f € S(R) - this is clearly a linear functional on S(R) - continuity follows
by showing the inequality stated in Lemma [[3]

Thus our identification between elements T € S’(R) and sequences b € s is a linear isomorphism of vector
spaces. It is not hard to see that s’ is the topological dual of the Frechet space s where the duality pairing
is given by

[ee}
b-a= Z bpan,
n=0

forbes’ and a € ¢’
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We turn s’ into a topological vector space by equipping it with its corresponding cylinder set topology.
With this topology this correspondance between S’(R) (which is equipped with its corresponding cylinder
topology) and s’ is an isomorphism of topological vector spaces.

The characterization of Schwartz space in terms of Hermite expansions also gives a proof of the kernel

theorem.

Lemma 1.4. Let L be an n-multilinear functional on S(R?). Then L is jointly continuous if and only if

there exist j1,...,Jn and C' > 0 such that
IL(frs - Pl < CT T 1l
k=1

Proof: This lemma is proved just like Lemma [[.3] O

Theorem 1.8. Given a jointly continuous n-multilinear functional L on S(R?) there is a unique distribution
L e S'(R™) such that

L(fi,ifn) = LIA® - ® fa)
for any fi,..., fn€ S(R?)

Proof: We sketch the proof which is quite simple in this setting, we also restrict ourselves to the case n = 2
- the general case follows by the same argument. The main idea is to construct L via a Hermite expansion
in Hermite polynomials over R"™?.

For multi-indices a, 3 € N% we define the multi-index (o, 3) € N?? via concatenation, then our Hermite

basis over R™ can be written

{(ba,ﬁ}a,ﬁehxld

where for z,y € R? we have

(b(a,ﬁ) (l‘, y) = ¢a(x)¢5(y)

and the ¢, for & € N correspond to the Hermite basis for R%.

The Hermite expansion coefficients for our desired L are then given by

L($(ap) = L(Pasdp).

Now in order for these coeffiicents to determine an element of S’(R??) we must find some m € Nsuch that

sup L(Gap) (0, /) +1)7" <
a,BeNd

where for a multi-index v € N*

k
(r+1) = [ +D"

However this is immediate from Lemma [[.4] since one has the existence of C' > 0 and r, s € N such that

max(r,s)

L(¢(a,p) = L(a,95) < Cxldalr x |¢sls = Cx (a+1)Fx (B+1)F <Cx((af)+1)
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Thus the given Hermite coefficients i(¢(a75)) determine a distribution L € S’ (R?). Uniqueness of such an L
follows by a density argument. ]
We now turn our focus back to proving the Bochner Minlos Theorem for S(R?). It will be more convenient

to use slightly different seminorms on S(R). For a = {a,}**_, € RN and m € Z we define the norm || - ||,,,

2

llal[m = lz (n* + 1)mlan|2]
n=0

Clearly the family of norms {|| - ||; }men and {| - |;m }men are equivalent families for s and generate the same
topology on s.

We now define, for m € Z the sequence spaces
sm = {a = {an};o € RY la]; < o0}

We can then write s = ()
(it is easy to see throwing in the negatively indexed norms doesn’t change the topology). Similarly we have
that s’ =

mez Sm and view s as a Frechet space with the topology generated by {|| - || }mez

meZ Sm-

The Bochner-Minlos Theorem for S’(R%)
We now follow [63]. The theorem we seek to prove is

Theorem 1.9 (Bochner - Minlos Theorem for S'(R%)). There is a one-to-one correspondance between prob-
ability measures j1 on the measure space (S'(R%),C) and the set of functions 0 : S(R?) — C which satisfy (i)

6(0) = 1, (ii) 6 is continuous on ¢, (iii) § positive definite. The correspondance ju < 8, is given by

Note that ¢(f) denotes the duality pairing between ¢ € S'(R?) and f € S(R?)

Owing to Proposition [[T0] and the identification of the topological vector spaces S(R) and S’(R) with s

and ¢’ it suffices to prove

Theorem 1.10 (Bochner - Minlos Theorem for s'). There is a one-to-one correspondance between probability
measures . on the measure space (§',¢) and the set of functions 0 : s — C which satisfy (i) 6(0) =1, (i) 0

is continuous on s, (1) 6 positive definite. The correspondance pn < 0, is given by

0u(@) = [ du(t) explis- ).
5
where (b-a) denotes the duality pairing between b € ' and a € s. Here ¢ denotes the cylinder set o-algebra
on s

Proof: As before the necessity of conditions (i), (ii), and (iii) are clear.
For any finite set F' < N the map z — zp defined in the proof of Theorem is a continuous linear

map R — 5. We can then proceed exactly as in the proof of Theorem [ to use the function 6 to define a
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family of consistent finite dimensional distributions which uniquely determine a measure p on RN where R™

is equipped with its product o-algebra. In particular x is the unique measure on R™ such that

0(a) = j du(b) expli(b-a)], (1.6)

for all almost finite sequences a, that is for a € ®,enR.
Note that the sets s,, and s’ are measurable subsets of RN and the cylinder o-algebra on s’ is just the

restriction of the product o-algebra on RN to s. Now we show that the constructed measure p on RY satisfies

pu(s’) = 1.
It suffices to show that for any € > 0 there exists m € Z such that

w(sm) =1—e.

Now for a > 0, and m, M € N we define the Gaussian measures o4, a7 0N RM+1 yig

doa.m —ex - ___|dy..
) 7M 1:[ /7271_& 1 + ) p l 20[(1 +]2)m] Yj

Using the familiar formula for the characteristic function of a Gaussian we see that for any © = (zg, ...,z ) €

RM+1 one has

M\Q

J[RMH A0 mar(y) expli(z-y)] = exp

M
Z 1+ 52)™a; Izl

Now by applying monotone convergence and Fubini’s Theorem we see

M
_ . . - m 2
p(sm) = lim  lim du(db) exp l 5 ; (1 + 52)™b;| ]

a—0t M—wo RN

a—0t M—wo

= lim lim du(b)f doa,mm(y) expli(b-y)]
[RN [R1M+1

— lim lim doa,m, v (y) J[Rw du(d) expli(b-y)] (1.7)

a—0t M—w Jpar+1

— lim lim doa,m,m(y) 0(y)

a—0t M—w Jrar+1

= QILD& Nlllinoo i doa,m,m(y) R[0(y)]
Note that above we abused notation, thinking of y € R+ as an almost finite sequence where only the
first M + 1 entries are allowed to be non-vanishing.
Now let € > 0 be given, then since 6 is continuous there exists some open set U < s containing 0 such
that for a € U one has |f(a) — 1| < e. Since the norms || - ||,, on s are directed it follows that there must be
some k € Z and § > 0 such that ||a||x < = a € U - without loss of generality we assume § < 1.

With m given as above we claim that for all a € s one has

R[O(a)] =1 —€—252|al|?. (1.8)
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We first observe that the above inequality holds if ||a||; < 62 since for such a one has |f(a) — 1| < e. For

|||, > 62 the above inequality follows from the fact that one has the uniform bound R [f] = —1. This

uniform bound comes the positive definiteness condition on ¢ which forces |0(a)| < 0(0) =1 for all a € s.
We fix m = —k — 1 and apply the bound (L8)) in (I to get

p(sm) = lim lim 1—e— 262 doa,m,a(y) [yl
a—0t M—w RM+1
M
= lim lim 1—e—252 d 1+ %) y;)?
ail{)l-%— Mlinao ¢ RM+1 Umm,M(y) (]20( ’ ) |yj‘

M
= lim lim 1—e—20"2 (Z a(l +j2)k+m>

a—0+t M—owo 4
7=0

1
=1—¢— lim 2062 (ZHQ> = 1—c¢
J

a—0*t 720

where in going to the second to last line above we used that for 0 < j < M one has

J doa,m,m(y) 9]2 = o(l+ j2)m~
|RJ\4+1
Now it follows that

0a) = | dult) exp[i(b- o).

for all almost finite sequences. However since both sides of the above equation are continuous as functions of
a € s and almost finite sequences are dense in s it follows that equality must hold on all of 5. We remark that

uniqueness is already taken care of (we proved it at the level of measures on R™) so the proof is finished. [

1.4.3 Moment Reconstruction Theorem for 5'(Qf)

Our goal for this subsection is to prove the following theorem.

Theorem 1.11. Let (Sy)n=0 be a sequence of distributions with S, € S'(Q)?) which satisfies
1. o =1,
2. for any n, Sy is invariant by the permutation group &,

3. for all almost finite sequence of test functions (hy)p=o with h, € S(di, C) one has

D1 Snim(hn ®hy) € [0,0) ,

n,m=0

4. For all finite dimensional complex subspace V' of S( g, C) there exists a semi-norm Ny on S(Qg,@)
such that for allmn =0 and all f1,..., fn in V one has

|Sn(.f1®®fn)| < n! XNV(fl) Xoee XNV(fn) 5
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then there exists a unique probability measure with finite moments v on the measurable space (S’(Qg), C)
such that for all fi,..., fn € S( g, C) we have

SA@ @)= [ w0 o)l

We will give the proof of Theorem [[LI1] at the end of this subsection. Above we are naturally iden-
tifying S, € §'(Q)?) with corresponding elements of S'(Q)?,C). We also use the notational convention
that S(Q),C) = C, and 5'(QY,C) = C, with the corresponding duality pairing given by multiplication.
Additionally for A € S(Q),C), f € S(Q}?,C) the notation A® f just denotes Af.

As we did for Bochner-Minlos we will prove Theorem [[L.TT] by proving a similar theorem in the space £'.

We will make frequent use of multi-indices in this section, in this setting some of these multi-indices will
live in the set N™ for some positive integer n and others will live in the set Z = @2 (N - in the latter case
these multindices will have infinitely many entries but only finitely many non-zero ones. For a multi-index «
we write || to denote the sum of the entries, i.e. Y, a;. For oo € Z we write supp(c) to denote the support
of the multi-index, that is supp(«) := {i € N| a; = 0}. For any subset F' < N we write Zp for the subset of
7 formed by multi-indices whose supports are contained in F.

The next theorem gives some conditions on a set of “candidate” moments {M, }qez that are sufficient

for them to specify a unique probability measure p on ¢’ that satisfies

M, = ., du(z)x® (1.9)

where for = € ¢/ we have z® = [ [}~ z¢".
Theorem 1.12. Suppose that the family of real numbers M, indexed by o € T satisfy the following properties
(i) My =1

(ii) Positive-definiteness: For any finite subset J < I and for any collection of complex numbers z, indezed

by a € J one has

> 2aZsMayp > 0.
a,ped

(11i) Exponential Summability: For any finite subset F < N there exists Cr > 0 such that for all o € Ip
one has
|M,| < C12al!.

Then there exists a measure p on V', equipped with its product o-algebra, such that (L3).

We first prove an analogous theorem that we can apply to specify measures on R™ from moments.

Theorem 1.13. Let n be some fized positive integer and suppose that the family of real numbers M, indexed

by a € N™ satisfy the following properties:

(i) My =1
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(ii) Positive-definiteness: For any collection of complex numbers z, indexed by o € N™ one has

> ZazsMasp = 0.
a,p

(iii) Ezponential Summability: There exists C' > 0 such that

Mo < C1]al!

Then there is a unique Borel probability measure v on R™ such that

M, = dv(z) ¢
R7

Finding conditions on a sequence of real numbers in order to be guaranteed a measure which has these
numbers as its moments is called the Moment Problem and has a long history as a problem of classical
analysis. One can find sufficient and necessary conditions on a sequence of candidate moments to uniquely
determine a measure on R” that realizes those moments in the article [53]. We only concern ourselves with
sufficiency here - in particular we want analytic conditions to impose on the sequence of candidate moments
that can easily be checked via the RG machinery we develop. The bounds on moments we assume correspond
to exponential integrability for the corresponding measures - this will greatly simplify our task.

The measure described in the assertion of Theorem will be constructed as a spectral measure for a
particular family of self-adjoint operators.

We now assume that for some n we are given a sequence of candidate moments {M,}qenn that satisfy
the assumptions of We remark that the positive-definiteness condition on the moments gives us the
“Cauchy-Schwartz” bound

M? < My,.

Let P = Clx1,....,x,]. We are going to define a positive semidefinite sesquilinear form on (-,-)p on P

which can be thought of as a pre-inner product. Let f,g € P be as follows:

f=29a2% g=7) gpa”
v 5

We then define

(f7g)77 = Z fagﬂMa+,3
a,f

The fact that the form is positive semidefinite comes from condition (ii). Now for 1 < j < n we define

linear operators A; one P via
Ajf = .’Ejf

It is clear that all the A; are symmetric with respect to our pre-inner product and commute on all of P.

Let @ ={heP : (h,h)p = 0}. We note that Q is an ideal of P. In particular our pre-inner product
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lifts to the complex vector space P/Q where it becomes a positive definite inner product which we denote
by (-,-). The A; lift to linear operators flj on P/Q by virtue of the fact that Q is invariant under each A;
(in particular Q is an ideal in P). To see this fact suppose h € Q. Then for any j one has

(Ajh, Ajh)p = (A2h, h)p < (A2, A2R) 1% (h,h) 2 = 0.

We will abuse notation and continue to write A; for /Ij.

Now define H as the completion of P/Q under the inner product (-,-). The A; are then densely defined
symmetric operators on H with D(A;) = P/Q < M. Our goal is to prove that the A; have commuting
self-adjoint closures Aj. The measure we wish to construct will be the joint spectral measure of this family

of operators.

A crucial tool in establishing the above claims is Nelson’s Analytic Vector Theorem.

Definition. Let B be a densely defined symmetric operator on a Hilbert space H. A wvector v € ﬂle D(B™)
is said to be analytic for B if:

0

B77L

Z I 'U”tm converges for some ¢ > 0 (1.10)
m!

n=0

Theorem 1.14 (Nelson’s Analytic Vector Theorem). Let B be a densely defined symmetric operator. If the

analytic vectors of B are dense in H then B is essentially self-adjoint.

Proof: See [54, Theorem X.39]. O

We now prove that the operators A; are essentially self-adjoint.
Lemma 1.5. For all 1 < j < n we have that A; maps P/Q to itself. Additionally Vv e P/Q one has

3 ”A;I'U”tq for te |0, -
ET < wIiIorte ,@

q=0

As a result each Aj is essentially self-adjoint.

Proof: The statement about the A; leaving P/Q is clear.
It suffices to prove the second assertion for monomials v = 2% in P/Q. Below we use the notation ¢; to

denote the multi-index in N™ which zero for all the entries except the i-th one where it takes the value 1.

0 q.,.o 0 +qdj
Aol G et

Z q! o q

q=0

: [F2|a|+2q(2|a| + 2q)!]E
q!

tq

y
8
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[e¢] 1
< 3lalalaly /laal! acraa for t —
3N/ |2¢ §3C < oo forte 0,30

q=0
In going from the third line to the fourth we used the bound:

(2|a| + 2q)' < 32\a\+2q
q'q!(2la))!

This proves the second assertion. The claim that the A; are essentially self-adjoint follow from the first two
assertions, Theorem [[T4] and the fact that P/Q is dense in H. O

We now show that the self-adjoint closures Aj all commute. This is equivalent to proving that the unitary
groups generated by the Aj commute. We would like to work at the level of power series expansions of the
unitary groups. To facilitate this we give the following lemma which uses part of the proof of Nelson’s

Analytic Vector Theorem.

Lemma 1.6. For any 1 < j <n andve P/Q one has, for any s € (—%7 %),

[00) .
A 15)4
iy = Z ( ') Alv.
g=0 ¢

Proof: We first remark that the quantity on the right hand side of the asserted equality is absolutely
convergent by Lemma

Now let 1, be the spectral measure for the vector v under flj. Then

b = [ dut e = | [i “Z,()]

R q=0 *

Assuming that we were allowed to switch the integral and sum we would have

A, S 2 . N (is)? 4 © (is)? -,
(v, M) = ]\}lm dpo(z) — (is)?| = A}lm U,Z — A | = ’U,Z —Ajv (1.11)
% =0 LR 7 - q=0 q=0

q: q

Now by polarization the above equality implies that for all u,v € P/Q one has

i (is)q/igv> . (1.12)

Since P/Q is dense the assertion would follow. We remark that it was important that we had a uniform
“radius of analyticity” for a dense set of analytic vectors - if the domain of s for which (CTI]) was valid was
v-dependent then we would not have ([LI2]) for all v € P/Q.

The switching of the order of integration and summation is justified by Fubini along with the bound
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where in the last line we used Lemma [[L5
O
More generally the proof of the above lemma shows that if one has a dense set of analytic vectors for
a symmetric operator B with a uniform radius of analyticity then for any analytic vector h the quantity
¢*Bh can be represented by a power series within h’s radius of analyticity. The next lemma proves that our

unitary groups commute.

Lemma 1.7. YVoe P/Q, 1 < j,k <n, and s € (—%, %) one has that

e [ DAY

If both s,t € (—%7 %) and v € P/Q then one has that

At id, S A, v (i)™ (is)?
eHArteidisy Z Am Misy = 3 AT Ay, (1.13)

m=0¢g=0

It follows that for such t,s and v e P/Q one has

iApt iA

oiArt i s, _ iAss idrt,, (1.14)

Finally one has that for any t,s one has that the operators e At and e4is commute on all of H.

Proof: The assertion that eidisy e Nr_, D(AZT) for v € P/Q follows from the fact that Ay is a closed

operator and Lemma [[LGl In particular we note that for all m € N

N. N()

3 (& ! q Am
fv = lim 2 AtAT
N—-x N—w 0 ! J
=

where the final limit exists by Lemma since AJ'v € P/Q.

We now turn to proving (LI3) - without loss of generality it suffices to prove (ILI3) for v = z®. From
the proof of Lemma and noting our remarks after that lemma we remark that in order to prove the first
equality of (LI3) it suffices to show that ¢iAisy is an analytic vector for Ay, with radius % To see this we
note that

o0

mo " 0 t
m _1A;s, .« o
2 et = 3

m=0




0] ee]
|7y
< Z 2 m|q' M2(o¢+m6k+q6j)

m=0qg=0
o0 0
t|s|?
< Yy W\/oz<\a\+q+m)(z|a| + 2 + 2m)!
m=0q=0
oe] [o0]
< (50)\a\ (2\a|)! 2 Z tm|s|q(5c)q+m < o0
m=0qg=0

In the second to last inequality we used the fact that

(2‘04 + 2(] + 2m)| < 52|a|+2q+2m
qlg!m!m!(2lal)! '

The last equality of (II3) also follows. Assertion (II4) follows for our regime of ¢, s since the operators
A; and Ay commute and our uniform bounds allow us to change the order of summation for the rightmost
quantity in (II3). Since the operators involved are bounded (II4) must hold for all v € H - and at that
point one can use the group operation of these one parameter unitary groups to extend the commutation
relation to hold for all t,s € R.

O

We now prove Theorems and

Proof of Theorem Let R = (a1,b1) X ... X (an,by) be a rectangle on R™. Define the projection
valued spectral measure of R as ]_[?:1 P; (a;b;) where P; ) is the projection valued measure corresponding to
A;. Then (1,11, P; (a;,6:)1) is a premeasure on rectangles which extends to a Borel probability measure on

R™, call this measure p. From results proven in the appendix about the joint spectral measure we have:

fﬂ e Vduly) = (17 n Uj(tj)1>

where Uj; is the unitary group generated by /Alj. Note that for sufficiently small ¢4, ...,¢,, the left hand side
is analytic in these arguments - the proof in Lemma [[.7] generalizes and one can expand the product of the

Uj’s if sup; [t;] < This allows us to take partial derivatives evaluated at 0. In this way one can

J;m y*duly) = (1,1_[121?”1) = M,.

i=1

1
(2n+1)C"
recover all the moments:

We have established existence for our solution to the Moment Problem. Uniqueness comes from the
fact that our moment estimates allow us to determine the characteristic function from our moments - see
Theorems and in the appendix. O

Proof of Theorem [I.12k The assumptions of Theorem [[L.T2] can be used to construct for each finite subset

F < N a Borel probability measure gz on RF with moments given by M, with a € Zp, additionally pp
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is the unique such measure on R with those given moments. This uniqueness allows us to prove that the
family of finite dimensional distributions {ur}, F' < N finite, are consistent. To see this suppose that that
F, G are finite subsets of N with ' < G. Then the R¥ marginal of the measure pg has the same moments
as pup and thus the two must coincide.

This means that by Kolomogorov’s Extension Theorem there exists a unique measure x4 on RN (where

RM is equipped with its product o-algebra). ]

We can now prove Theorem 111
Proof of Theorem .11k
Let the {e,};"_, be as given in Proposition We now define a family of candidate moments which
when used as an input to Theorem will specify a measure on £. We set M := Sy = 1. For a € Z with
a = 0 we set
Mo = Sja| (®jesupp(e) (®)L1€5)) -

We note that the argument of S|, above is an element of .S( ;‘f'“'). In particular for non-zero « € 7 it will

be useful to define
o = ®jesupp(a) (®gi16j) € S(leal)

while for a = 0 we define go = 1. With these definitions we have M, = S|o|(ga)-
We now check the positive definiteness condition of Theorem Let J be a finite subset of Z and z,

be some collection of complex numbers indexed by « € J. For n € N we set J,, := {a € J| |a| = n}. We

then define
hn = Z Zala
a€Jn

We remark that (h,),>0 is an almost finite sequence of test functions with h,, € S (di, C) so by assumption

(3) stated in the theorem we have

Z Sn+m(h7n®hm) € [0,00)

n,m=0

Rewriting the summands above gives us

Sner(H@hm) = On+m (l Z %ga‘| ® l Z Zﬁgﬂ‘|> = 2 %'zﬁsnwLm(ga@gﬁ)'
aETy BETn a€Jn
Now if one writes out the definitions of g,, gg, and f,4 g it is clear that the symmetry of the .S, 1 ,,, with respect

to permutations of the n 4+ m underlying variables implies that one must have Sy, 11 (90 ®98) = Sntm(gatp)
for all a € J,, B € J,n. It follows that

D Snim(in ®@bm) = . Y ZazsSuim(Gars) = D, D, ZazsMass = Y. ZazsMayp,

n,m=0 n,m=0 aeJp, n,m=0 aeJ, a,BeT
BETm BeETm

so positive definiteness is proved.

The final ingredient we need for applying Theorem [[.T2] are the factorial bounds on the moments {M,}.
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Let F < N be a finite subset. We define V' to be the subspace of S(QZ, C) formed by the span of {e;}jcr-
Let Ny be the seminorm on V that is given by assumption (4) of the theorem. We set

CF = SupNv(ej)
JjeF

Now choose some « € Zp. If we set n = |a| then g, is of the form g, = fi®---® f,, for f1,..., fn € {ej}jer C
V. It follows that

(Mol = [Sn(ga)|l < nl!x HNV(f])
j=1
<nlxCp = |afl x Cllfl.

Now by Theorem [[LT2] the family of candidate moments {M,} determine a measure p on ¢’ with

J/ du(y) y* = M.

We define the measure v on (S’ (Qg),C) to be the pushforward of the measure p under the isomorphism of

topological vector spaces (%)~ : £ — S'(Q%) ( see the end of [L3T). This map’s action is given by

y = {u}e — Dl uie; e S'(@QY).

Jj=0

We also make the trivial remark that y coincides with the pushforward of v under T* : S(Qf) — /.

We must now check that the measure v is the unique measure on S’ (Qg) that satisfies

Sufi@ @R = [ we) o) o) (1.15)

all f1,..., fneS( g,@) and for all n.
We fix n. By the multilinearity of both sides of (II5) in the f;’s it suffices to show that (II5) holds for
the case where f1,..., f, € {e;}jen. By symmetry of both sides of (L.IH) we can assume that for 1 <j<n

fi=ew
with k; € N non-decreasing in j. It follows there exists a unique a € Z with |a| = n and
9o = [1® @ fn.

Thus with this choice of f;’s and « fixed as above one has that the left hand side of (LIH) is given by M,.
On the other hand if T#*¢ = y € ¢’ then one has that

o(fr) - o(fn) =y

46



Then by a change of variable we have
| @ ot ot = | dut) v =M
5'(Qg) 4
and so (LIH) is proved for our specific choice of the f;’s and the general case follows. The fact that the

measure v is the unique measure that satisfies (ILIH]) for all n is a direct consequence of the uniqueness result
of Theorem [[LT2 O

47



Chapter 2

Classification of translation, rotation,
and scale invariant Gaussian

generalized random fields

2.1 Gaussian Generalized Random Fields

It is common to learn during a first class on measure theory that there is no analog of Lebesgue measure
in infinite dimensions - there are non non-zero, locally finite, translation invariant measures on infinite
dimensional topological vector spaces. However thanks to the Bochner-Minlos Theorem, one can easily
construct a wide variety of Gaussian measures on S’(Q%) and S'(R?). The main goal of this section is to
provide a classification of Gaussian measures on these spaces which satisfy certain invariance properties. In
what follows when we use the term Gaussian others might instead use the term centered Gaussian - that is
we focus entirely on Gaussians with mean 0.

For some of this section we will work over Qg and R? simultaneously. In particular we use the notation
S(K?) and S(K?,C) with the understanding that one might have K = Q, or K = R.

Definition. A measure v on S'(K%) is a Gaussian Generalized Random Field over K@ if for ¢ distributed
according to v one has that for every f € S(K%) the distribution of the random variable ¢(f) is given by a

Gaussian distribution over R.
Gaussian measures on S’ can be characterized through their covariance bilinear forms.

Definition. We say a (jointly) continuous symmetric bilinear form C(-,-) on S(K?) is positive definite if

C(f,f) =0 for all fe S(K?).
One then has the following theorem

Theorem 2.1. There is a one - to - one correspondance between Gaussian measures i on S'(K?) and

continuous symmetric bilinear forms C on S(K?)
pe Cy
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where the correspondance is given by
i(f) _ 1
dp(p)e*®) = exp | =5 C(f, f)
S'(U(d) 2

where f is an arbitrary test function in S(K?).

Proof: The fact that for a given Gaussian p, there exists a unique continuous symmetric bilinear form
C,, such that 6,,(-) = exp [-2C,(-,)] is rather straightforward and follows from the definition of Gaussian
measures on S’(K?) given above and the fact that any Gaussian measure on R is exponentially integrable.

To show that given a continuous symmetric bilinear form C on S’(K?) there exists a Gaussian measure
pon S’ (K?) with C,, = C we can use the corresponding Bochner-Minlos Theorems (Theorems and [C9).
One must show that the function 6 : S(K?) — C given by

o) = exp| 50000

satisfies the necessary and sufficient conditions given in the Bochner-Minlos Theorem to be the characteristic
function of a measure p on S(K%). §(0) = 1 and continuity of  are immediate. For positive definiteness one
needs to show that for any n and any fi, ..., f, € S(K?%) the n x n matrix

M; =0(fi—fj) for1<i,j<n

is self-adjoint and positive (semi)definite on C”. We now note that that the n x n matrix

o

Cl"j = C(fz,fj) for 1 < ,J<n

is a symmetric matrix with real entries and by our assumption on C(-,-) is positive (semi)definite on R™ - it

follows that there is an finite dimensional Gaussian measure p,, on R with C' as its covariance matrix, i.e.

J dpn (2)ziz; = C; 5

and the characteristic function for p,,, denoted by 8,,,, : R — C can easily be checked to satisfy 0, (z;—x;) =
M; ; and from the positive definiteness of 6,, we see the matrix M must be self-adjoint and positive
(semi)definite. O

2.2 Classification Results

We will start by defining precisely the transformations that correspond to the invariances of interest. The
most natural way to do this is to first give analogous transformations for observables, i.e. test functions in
S(Kk4,C)

For functions f : Qg — C (resp. f:R? — C) we define the following transformations:

(i) For y € Q% (resp. y € R?) we define the translation operators 7, via 7, (f)(z) = f(z — y).
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(ii) For M € GL4(Zp) (resp. M € O(d)) we define rotation operators Ry via Q¥ via Ry (f)(x) = f(M ™ z).
(iii) For A € pZ (resp. A € (0,00) ) we define scaling operators Sy via S\(f)(z) = f(A"1z)

Note that in the second definition when writing M ~'z we are using the standard action of d x d matrices
on K¢ via matrix multiplication where elements of K¢ are seen as column vectors.

We remark that the translation, rotation, and scaling operators of ([Z2)) take S(K?, C) to itself and are
in fact continuous linear maps on S(K¢, C) that send real functions to real functions.

With this in mind we can define the following transformations acting on ¢ € S’ that agree with the

transformations of (Z2)) for distributions given by functions. In what follows f is an arbitrary element of
S(K4,C).

(i) For y € Q% (resp. y € R?) we define the translation operators 7 via 7, (¢)(f) = ¢ (7 f)
(ii) For M € GL4(Z,) (resp. M € O(d)) we define rotation operators Ry via Rus(¢)(f) = ¢ (Ra—1(f))

(iii) For A € p? (resp. A € (0,90)) we define scaling operators Sy via Sx(¢)(f) = [A|Z x ¢ (Sx-1(f)) (resp.
S\(@)(f) = AT x ¢ (Sx-1[) ).

The transformations given in (ZZ) are measurable linear maps from S’(K9) to itself. Given a measurable
map L : S'(K?) — S'(K?) we denote its push-forward action on measures by L#.We can then define the

following notions of invariance for measures on S’(K%).

Definition. Let v be a cylinder set o-algebra measure on S'(Qf) or S'(R%). We say that v is translation
invariant if ?fy =v forallye Qg (resp. y € RY). We say that v is rotation invariant if éﬁu = v for all

A\
M e GLy(Z,) (resp. M € O(d)). For k € R we say v is k scale invariant if <|/\|;’”"S>\> v =v for all X € p?

A\
( resp. ()F"”"SA) v=v forall A€ (0,00)).

I~

Informally if v is k scale invariant this means that for ¢ distributed according to v one has A" ¢ (X)

()
(where the equality distribution holds in joint law).
Classifying Gaussians with the given invariances reduces to classifying continuous symmetric bilinear

forms with analogous invariances.
Proposition 2.1. Let C be a continuous symmetric bilinear form on S(K%). Suppose that

(a) C is invariant under simultaneous translations in both arguments, that is for any f,g,€ S(K?) one has

C(Tzfszg) = C(fag)
for any z € K<.

(b) C is invariant under rotation in both arguments, that is for any f,g,€ S(K?) one has

C(Ruf, Rug) = C(f,9)

for any M € O(d) in the case K =R or for any M € GL4(Z,) in the case K = Q,.
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(¢) For some k € R the bilinear form C satisfies
For the case K = Q, |A\§d x C (Sy-1f,S\-19) = |)‘|;2K x C(f,g) for all X e p”
For the case K = R X2 x C' (Sy-1f, Sx-1g9) = |A|72% x C(f, g) for all X € (0, x0).

It then follows that any Gaussian measure p on S(K?) with C, = C 1is translation invariant, rotation
invariant, and k scale invariant.
Conwversely if p is translation invariant, rotation invariant, and r scale invariant then C,, must satisfy

the conditions given above.

Proof: This follows by seeing what the consequences for the invariances are at the level of characteristic
functions. Note that if the three conditions are proven for the case where f = g then they extend to the

cases where f = g by polarization. ]

Note that if C' is a bilinear form that satisfies condition (¢) above for some k we will call C' k scale-
invariant.

We now give our classification theorem.

Theorem 2.2. Suppose that p is a Gaussian measure on S’(Qg) not concentrated on the 0 distribution.
Then p is translation invariant, GLq¢(Z,) invariant, and k-scale invariant if and only if k = 0 and there
exists a > 0 such that for all f,g € S(Qg) one has

a x f(0) x §(0) if x = 0 and

axf@dd3kjmforﬁ>0

f du(d) 6(F)dlg)
S'(Q4)

f du(@) 6(f)é(9)
S'(Q4)

The theorem is a direct consequence of and Propositions 2.1] and 2.4l In the above theorem the x = 0
case corresponds to ¢ being given by the constant distribution aX where X is a standard Gaussian on R of
mean 0 and variance 1. When d > 2 the case k = % corresponds to the massless Gaussian Free Field (up
to a constant) - we give more details.

There is no natural analog of differential operators that act on and then return functions f : Qg — C.
However we can use the corresponding Fourier multiplier as a stand-in. With this convention the p-adic
Laplacian can be identified with the Fourier multiplier —|k[?. It then follows that for the case where d > 2,

d—2

k= %=, a =1, one has

f dp(d) 6(f)dlg) = f d'h HUE = (L(-8))
S'(Q)

where on the far right hand side (-,-) is the standard £*(Q%) inner product. Generically the x > 0 case
corresponds to a fractional Gaussian Free Field, i.e. a Gaussian measure with covariance operator given by

the inverse of a fractional Laplacian



Similarly one has the following theorem in the real case.

Theorem 2.3. Suppose that ju is a Gaussian measure on S'(R?) not concentrated on the zero distribution.
Then  is translation invariant, O(d) invariant, and k-scale invariant if and only if k = 0 and there erists
a > 0 such that for all f,g € S(Qg) one has

ax f(0) x §(0) if x = 0 and

5, 1K) ()
adedk oji—2r for k >0

f du(@) 6(F)o9)
57(R4)

f du(@) 6(f)o9)
S'([Rd)

Proof: The theorem follows from Propositions 2] and

2.2.1 Lemmas for the classification - p-adic case

Lemma 2.1. For z € Q' define T acting on f € S(Q) x Q,C) via T.(f)(z,y) = f(x + 2,y) (here x € Q)
and y € Q).

Suppose that ¢ € S"(Qy' xQy, C) satisfies the property (1. f) = ¢(f) for all z € Q) and f € S(Q)'xQy,C).
Then there exists 1 € S'(Qy, C) such that for all such f one has:

¢(f) = <¢(Z/)v - d™z f(x,y) ) .

Proof: Note that by a density argument it suffices to prove the assertion for f(z,y) = g(x)h(y) where
g€ S(Qy,C), he S(Qy,C). For arbitrary h € S(Q,C) we define

w(h) = (6(@,y) 12y (@)h(y))

By our assumption of partial translation invariance it follows that for any j € Z one has

(6(@,9), Lz @A) =~ (6(@.), 12y @) ) = P~ ()

Of course the above equation still holds if we replace p’ Zy' by any of its translates. Now we fix j € Z
sufficiently large such that we can write g(z) = Zfil a;la,(r) where a; € C and the {A;}Y | are distinct,
disjoint translates of p/ Z,'. One then has

(6(x, ), = ail ai(2)h(y))

i=1

N
> aup

i=1

oo

.

<.
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Proposition 2.2. Let C be a bilinear form on S( 27 C) which satisfies C(1.f,1.g9) = C(f,g) for all z € Qﬁ

and f,g€ S( g,@). Then there exists C € S'( Z,C) such that for all such f,g one has

C(f,9) =C(f * g)

where (f * g)(z) = SQg d*z f(2)g(z —y)

Proof: By the Theorem [[3] there exists F' € S’(QZ X Qg) such that for all f,g e S(Qg) one has

C(f,9) = (F(z,y), f(x)g(y)) -

By invoking the translation invariance of C' it immediately follows that righthand side is also equal to
(F(z,y), f(z + 2)g(y + 2)) for any z € Q2. Since products f(z)g(y) span S(QY x QF) it then follows that for
any h e S'(Q% x Q4) one has (F(z,y), h(z + z,y + 2)) = (F(z,y), h(x,y)). We now use a change of variable
so that we are in the setting of Lemma [Z1] Define

(F(,9),hl@,y) == (F@,y), bz + y,2 ~ 1))

It is then easy to see that (F(x, y), h(z, y)) = (F(m, y), h(z + z, y)) for all z € Qg and test functions h and
so by Lemma 2Tl there exists G € 5'(Q%) such that

<G<y>, f@d a's h(m)) = (F@.). hx,y)).
Reversing the change of variable one has

(F(x,y),h(z,y)) = (F(x,y),h <x42ry, T ; y>>
= (G(y%fw 'z h (m;y x;y>>
- <G<y>7 i ateniens - y)> |

P

Setting C' = |2|gG and h(x,y) = f(x)g(y) one then has

C(f.g) = (é(y), d'z f(2)g(z — y)) =C(f *9)

Q3

O

Note that * is just a modified convolution where the second function has its argument multiplied by —1
(note that * is not commutative).

Given a translation invariant bilinear form C' on S(Qf) we use the notation C for the associated dis-

tribution in S’ (Qg) given by Lemma The goal of the remainder of this subsection is to classify such

distributions arising from the covariance forms of the measures p described in Theorem
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Definition. For a € C we say a distribution F € S'( g, C) is homogenous of degree « if for all A € p% one

has S\F = |\, “F. We say F' is rotation invariant if Ry F = F for all M € GLa(Z9).

Above for s € (0,00) and o € C we define s* = exp [Log[s]a] where Log is the principal branch of the
logarithm. We will now construct a family { H, }qec of rotationally invariant generalized functions where H,
is homogenous of degree a. Following [30] we use the approach of analytic continuation to construct this

family.

Definition. Given an open domain D < C, an analytic generalized function on D is a map a € D — F, €
S"(Q4,C) such that for every f € S( g, C) one has that the map from D to C given by « — F,(f) is analytic

p’
on D.
If one has two such maps Fy, : Uy — S'( g,@) and Go : Us — S'( g,@) with Uy < Uy and F, = G, for
a € Uy we then say that G is an analytic continuation of F).
For o satisfying R(a) > —d we define H, € S'( 4,C) via
Aolf) = | 'l ) )

P

For test functions f that do not vanish at the origin the assumption R®(«) > —d is clearly necessary for
the above integral to be well defined and it is not hard to see that H, is an analytic generalized function in
this region of the complex plane. Clearly H,, is homogenous of degree o for R(a) > —d. The integral (1))
is valid for R(«a) < —d if the test function f vanishes at 0 (which by local constancy implies vanishing in a

neighborhood of the origin). With this in mind we try to construct an analytic contination H,, by rewriting
&) as follows:

o) = [ ol (1) - 12y 0) + 50) x | s 1oty

p o
1 pd (2.2)
= | % ol (F@) ~ 124@) 1)) + £0) x 7Ly
Qg o
In going to the second line we used that for o with R(«) > —d
[5%)
J dig |z|* = 2 p~ 7 x vol (S,)
z3 ¥=0
0 —d
_ _ _ 1-p
_ P oy o p d'y_p d(y+1)y _ ]
> ( ) -

<
Il
o

Here for 7 € Z we use the notation S, = {z € Q% : |z| = p~7 } and vol denotes the volume given by Haar

measure to a measurable subset of Qg. In particular
vol(S,) = vol(p?ZL) — vol(p?+'Z) = p= — p=dr D),

The second line of ([2.2]) is clearly analytic for o € C with the exception of & = —d where it has a simple pole
- thus ([Z2) gives an analytic extension of H, to C\{—d}.
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We cancel the simple pole by dividing by a non-vanishing normalizing factor that has a simple pole in
the same location - we choose this normalization to be “(\x|a, 174 (x))”. More concretely we introduce the

notation ;
1—p~
Lale) = — ==

We then define the analytic generalized function H, = H,, which is analytic in the whole complex

1
La(e)
plane (upon dealing with the removable singularity at o = —d). In particular one sees that for any test
function f one has

lim Ho(f) = f(0)

a——d

ie. H_g =6 where § € S'( g, C) denotes the Dirac delta distribution at the origin. For a € R, H,, is given

L-p . | pla .
WXSQdeLﬂ f(@) if @« > —d

Ha(f) =14 1(0) for a = —d (2.3)
1 _p—a—d

W X SQ% dd.fE |J]|a (f(.T) — ]lzg (l‘)f(o)) + f(o) fOI" a < —d
Note that § = H_4 is homogenous of degree —d, we also have the more general statement

Lemma 2.2. For any o € C one has that H, € S’( 27 C) is homogenous of degree o and rotation invariant.

Proof: This can be checked by direct computation for all &« € C. One can also note that the quantity
S)\Ha(f) - ‘)‘|_aHa(f> (24)

is entire in « for any test function f. At the same time since H, is clearly homogenous of degree « for
a € (—d, ) so (Z4) vanishes on a non-isolated set of points which forces it to vanish for all & € C. The
argument for rotation invariance is similar. O

We now show that the bilinear forms that we are interested in correspond to rotation invariant homoge-

nous distributions.

Lemma 2.3. Suppose that C' is a bilinear form on S(Qg) which is translation invariant, rotation invariant,
and k-scale invariant. Then the associated distribution C € S/(Qg) is rotation invariant and homogenous of

degree —2k.

Proof: From the assumptions it follows that for any f,g € S(Qﬁ), M € GL4(Z,), and X € p”

C(f * g) = é (RM(f) * R]u(g)) and

Culf * g) = A2 X (ALY x Cpu (Sx-1(f) * Sx-1(9))

Quick computations using changes of variable show that

Ry (f) * Ru(g) = Ru(f * g) and Sy-1(f) * Sx-1(g) = |A, @ x Sx-1(f * g).

It then follows that the generalized function C satisfies the conditions needed for rotation invariance and
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homogeniety when applied to test functions of the form f * g. The lemma will be proved if one shows that
any h e S (Qg) can be written in this form but this is not hard to show. For a given h fix j € Z sufficiently

large such that h is locally constant over translates of pjzg. It is immediate that

M) = [t hE 5,240~ ) = (05 91,129 0)
Q;

O

While [23)) gives examples of rotationally invariant homogenous distributions our goal is to show that

these are the only possibilities (up to a constant of proportionality). The first step is to characterize the

behaviour of rotationally invariant homogenous distributions away from the origin.

Lemma 2.4. Let F € S'( g,@) be a rotation invariant distribution that is homogeneous of degree of .
Then there exists K € R such that for all f € S( g, C) that satisfy f(0) =0 one has

FUY=K | d 1)l

Proof:

For any f satisfying the assumptions of the lemma we define
o= [ asor
GL4(Zp)

Here dM denotes the Haar measure on GL4(Z,) normalized to have total mass 1.

For v € Z we define S, = {z € Q}| |z| = p”}. Since GL4(Z,) acts transitively on S for any fixed v one
has z,y € S, = f(z) = f(y). Note that since f is locally constant the condition f(0) = 0 means that f
vanishes in a neighborhood of the origin and since GL4(Z,) preserves the norm on Qg it follows that the same
holds for f . In particular one can find integers j, k such that the support of f is contained in p*ng\pﬂ' ZZ

and it follows that one can then write f in the form
3 k
f(z) = Z cy1s, ()
V=7

for some constants c, € C. Note that fe S( g, C), in particular 15, = 1prza = Lprrza.

We now show that F(f) = F(f). Since F(Ra(f)) is constant as M varies over GL4(Z,) one can write

ﬂﬁ:f dM (F(z), f(M ') = Fuy[ aM (M) ) = ().
GL4(Z,) G

Ld(ZP)

We now find an explicit representation of F'(f). We first claim that the constants c, are given by the formula

_ 1 d
o = vol(S5) sz e f(z)
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where vol(S,) = SS dir = (1 —p~%)p? . To prove this formula for ¢, we observe that by Fubini

w [ [ s
= LLd(Zp)de diz f(M™1z)

:J dMJ diz f(x) Jddxf
GLq(Zp)

When going from the second to the third line we used a change of variable M 'z — x which gives
Jacobian of norm 1 and leaves the region of integration fixed. Now using the fact that f (x) is constant on

S, the calculation above shows
cy X vol(Sy) = J diz f(x) = J diz f(z).
s, s,
We now choose K to be the following f-independent constant.

K= volgso)F(leo) = (1-p ")F(1s,)

By the homogenity condition on F' we have that:

F(1s,) = F (Sp--(1s,))
= [p7[; ¢ x S (F)(Ls,)
— p™ x Ip7],* x F(1s,) = p" @+ s ol (Sg) x K

The assertion of the lemma follows by observing

I
_Mw

F(f)=F(f) ¢y F(ls,)

2
J

X vol(So) X dr flx
vol(Sy) L dz f(z)

~

Kp(dJra)“/

I
-

=2
Il
<

k

—ZKJ iz f(x)[z]
=K | da¢ “,
ng © f(@)le]

O

Definition. If a distribution F € S'( ,C) satisfies F'(g) = 0 for all test functions g with g(0) = 0 then we
say F is supported at the origin.

Lemma 2.5. Let F € S'( g, C) be a distribution supported at the origin. Then there exists K € C such that
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for all test functions f one has

F(f) = K x4(f) = K x f(0)

Proof: Note that for any f € S(Q%,C) one has that f — f(O)IlZg vanishes in a neighborhood of the origin.
Thus by the support condition on F

F(f) = F(O)F(12g) = F (f = f(0)1zy) = 0.

The lemma is proved if we set K := F(]lzg). O
We give one more lemma and then prove a proposition that classifies homogenous (of real degree), rotation

invariant elements of 5’(Q{, C).

Lemma 2.6. Suppose that Fy, ..., F, € S’(Qg) are all non-zero and homogenous of distinct degrees oy, . . .,y €
R respectively. Then the F; are linearly independent - if there exist constants ci,...,c, € C such that
n
2 Cij =0
j=1
it follows that one must have ¢y = -++ = ¢, = 0.

Proof: Without loss of generality suppose that «, = maxi<j<n ;. It is clear that for any A € p? one has

n

Z CjSAFj = Z Cj|)\|;aij = O
Jj=1 Jj=1

Multiplying both sides by [A[¢" and taking A — 0 (i.e. choosing A = p* and taking k — o0) one sees
tim 3 G = e =0
=

The assertion of the lemma follows by repeating this argument. O

Proposition 2.3. Let F' € S’(Qg) be rotation invariant and homogenous of degree o« € R. Then F = AH,
for some A € C where H, is given by (23).

We first show that F takes the prescribed form when o = —d. . In this case H, behaves like c|x|® away
from the origin for some ¢ = 0. Thus by Lemma 24 we can fix A € C such F' — AH,, is supported at the
origin .

We can then apply Lemma 235 which means that F'— AH,, must be some multiple of the delta distribution
0 - that is there is some F — AH, — K§ = 0 for some K € C. However since F'— AH,, and § are homogenous
of different degrees it follows by Lemma 2.6] that one must have K = 0 which means F' = AH,,.

Now suppose F' is homogenous of degree v = —d. It is helpful to define I_; € S'( g, C) via

La(f) = | d% (f@) = FO)174(2)) lal .

Qp

58



Since I_4 behaves like |z| ¢ away from the origin it follows that there exists some A € C such that F — AI_4
is supported at the origin. As before this would force F' — AI_; = K¢ for some K € C. However I_,; is not

homogenous of degree —d, a simple calculation shows

SaI_a(f) = AT _a(Sx—1 f)

- L)+ 1) [ e (12g(0) = 1240010) bl =

The second term on the second line is clearly non-zero for any f not vanishing at the origin and A = 1. Thus
the only way for AI_; = F — K§ to hold is for A = 0 since F' — K¢ is homogenous of degree —d. O
We now introduce the positivity criteria that we will use.

Lemma 2.7. Let C(-,-) be a real valued, translation invariant, symmetric bilinear form on S/(Qg), let
Ce S’(Qg) satisfy C(f,g) = C(f % g) for all f, g€ S(QZ). Then the following conditions are equivalent:

(i) C is positive definite
(ii) F[C](h) € [0,0) for all non-negative h € 5(Qd)

Proof: C is positive definite if and only if C(f, f) = 0 for all (real) test functions f which is equivalent to
the condition

C(f % f)=0forall feS(QY) (2.6)

Viewing C' as an element of S'( ?,C) we claim that condition (28] is equivalent to:

C(g*g)=0forall geS( g,@) (2.7)

Clearly (1) = (28). For the other direction we write g = u + iv with u,v € S(Q?) and observe that

C ((u+w)
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In going to the last line we used the symmetry of C' with forces C'(v * u) = C(u % v). We now show condition
(ii) of the lemma is equivalent to (Z7). We have that

Clg # 9) = (FICIR), F[g * gl(k))
— (FIC10), Flg # g)(~F))
»Flal(=

lg](=F

Above we used that for a,b € S(QZ C) on has Fla * b](k) = Fla * R_1(0)] (k) = a(k)R_1b(k) =

a(k)b(—k) and that F[g](k) = g(—Fk).
It is clear that F[C(h) € [0, 0) for all non-negative h € S(Qf) is sufficient for condition (i) to hold.



We now show (i) = (ii), if we assume that the last line of ([ZJ) is non-negative for all g € S(QZ,C) it is
clear that (i) holds for all 2 € S(Q%) with h an indicator function - just set g = F[h] and the result for all
non-negative h then follows by linearity. O

Lemma 2.8. Let F € S'(K%,C) with K = Q, or R?
(i) If F is rotation invariant then so is F[F].
(i) If F is homogenous of degree v then F[F] is homogenous of degree —d — cv.

Proof: Both assertions, for either choice of K, follow immediately after computing a change of variable. In

the case of assertion (ii) in the p-adic case this takes the form:

(810 F) [F10) = N % FIFT(S31(/))
— A % F (FISy(£)])
= F(S\ (F/))
= Al x S5 (F) (L))
= A F(FIAD) = At < FIFI).

O
In particular the Fourier transform leaves the class of distributions discussed Lemma 4] invariant and

one has the following corollary:

Corollary 2.1. For any a € R
-F[Ha] =H 4.4

Proof: Since F[H,] is homogenous of degree —d — o and rotation invariant it follows that F[H,] is
proportional to H_4_, so one just needs to check the constant of proportionality is 1. We note that for
arbitrary o € C one has

Ha(]lzg) = 1.

At the same time one has
FlHu)(lzg) = Ho (Flzg) = Ha(1zg) =1

which shows the mentioned constant of proportionality is 1. ]

Proposition 2.4. The class of symmeltric, positive definite, bilinear forms C on S(Qg) which are symmetric,
translation invariant, rotation invariant, and Kk - scale invariant are precisely given by the following families
each parameterized by ¢ = 0 :

F ==
o forr =3

Clrg)=ex | d'e f@gte) (2.9

or equivalently C(f,g) = ¢ x f d’k f(k)g(k)
Q3
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e fork=0

C(f.g) = ¢ ( J, o f<x>) x ( J,. @ g<y>) (210)

or equivalently C(f,g) = ¢ x f(0) x ¢(0)

d
F z
° 0TH€<0,2>

Clrg)=c| dlaaly fag)ia -y (211)
QIxQ
2K EOINA(L)
or equivalently C(f,g) = ¢ x % X JQ;I A ngglz)
d
F = -
o Fork>g

clroy=ex|
X (2.12)

or equivalently C(f,g) = ¢ x ] TRz

1—pd F(k)g(k
A G
Q3
In particular there are no such (non-zero) bilinear forms that are k-scale invariant with k < 0. Above f,g

denote arbitrary elements of S(QY).

Proof: We first note that for x > 0 the bilinear forms with the desired invariance properties and s - scale
invariance must be of the forms (29), (ZI0), (ZTI1)), or ZI2). This claim is justified via the following steps:

e Each such bilinear form C' corresponds to a distribution C' € S’ (Q¥) - Proposition 22
e Each such distribution C' must be rotation invariant and homogenous of degree —2x - Lemma 23]
e Such distributions C' are classified up to a constant of proportionality - Proposition

Imposing positive definiteness will limit the allowed values of k£ (and force ¢ = 0). We now check that

@39), @I0), @II), and ZI2) satisfy positive definiteness using Lemma 7] as our criterion.

For k = % the listed class of bilinear forms are of the form C(f,g) = C(f % g) with C = ¢§ = ¢H_4. By
Lemma 2Tl one has F[C] = cHp = ¢. It immediately follows that F[C|(h) = ¢{h = 0 for all non-negative
hesS (Qg) which establishes positive definiteness.

Similarly for £ = 0 one has C(f, g) = C(f*g) = ¢{(f * g), so C = c. In this case F[C](h) = ¢d(h) = ch(0)
which is non-negative for all non-negative h.

For € (0,00)\ {4} we have C(f,g) = C(f % g) with C = ¢ x Tg(—2k)H_,,.. By Corollary EZT] one has
F[C] = ¢ x Tg(—2K)H_g49.(f). Then since —d + 2x > —d it follows that

(k) = o x _La(=2r)

FIC(k) = ¢ x Fold 1 20) |k|~dt2e (2.13)
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Since

Ly(—2k) 1—p 2
_ > 0 f 0 9.14
Ty(—d + 2k) 1 —pdt2e orm = (2.14)

it follows that F[C](h) = 0 for any non-negative h € S(Q%).

We now turn to the case x < 0 and show that any (non-zero) bilinear form C' with the desired invariances
cannot satisfy the positive definiteness condition. Now by classification arguments mentioned at the begin-
ning of this proposition’s proof one has that C(f,g) = C(f % g) with C(z) = aH_y, and F[C] = aH_q4 s

Since —d + 2k < —d one has F[C1] is of the form

p—2f€ —1 f
lfpid Q

It is not hard to see that by Lemma 2.7 Cis positive definite only if @ = 0. In particular positivity requires

FICI(f) =a

as (f(2) = FO)izg(w)) lal 2+ 5] .

d
P

while

which forces a = 0. O]

2.2.2 Lemmas for the classification - real case

Lemma 2.9. For z € R™ define T, acting on f € S(R™ x R™,C) via T.(f)(z,y) = f(x + z,y) (here x € R™
and y € R™).

Suppose that ¢ € S"(R™xR™, C) satisfies the property ¢(T. f) = ¢(f) for all z € R™ and f € S(R™xR™, C).
Then there exists 1 € S"(R™) such that for all such f one has:

o) = (vt [ ame st ).

Proof: This easily follows from the well known fact that if the derivative of a distribution is 0 then it is
given by a constant, the proof of this statement is included for completeness. We give the argument for
m = 1 which can be repeated to get the result for all m.

For any f(z1,...,7n11) € S(R*™1,C) one has

¢

(allf) =0

u—0 u

Thus ¢ vanishes on any test function g € S(R"*!, C) of the form g = 0., f for some f e S(R"*1,C).

We now state the well known fact that

{ge S(R™ . C): g = 0y, f for some f e S([R”H,(C)} = {ge S(R™ C) J dry g(x1,...,Tpe1) =0 }
R
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In particular for ¢ in the second set above it easy to check that g (k) e S(R**1 C) and that the required f is

then given by F~1 [ (k)]
Zkl

Now choose any h € S(R!,C) with {h = 1. Define ¢ € S'(R™,C) via

(W), iy) = ((z,y),h(2)i(y))

for any j € S(R™,C). The assertion then follows by observing that

o) = (v [0 1) ) = (oo fen) 0@ [ at ) = o

where the last equality follows since

[ o] e <o) [ e pien| -

O
The next proposition and corollary give the classification of reflection invariant homogenous distributions
in S’(R\{0}, C) which in turn characterizes the behaviour of reflection invariant homogenous distributions in
S'(R,C) away from the origin.
For U < R? which is open we define the space of test functions S(U, C) to be closed subspace consisting
of all f e S(R? C) with f supported in U. We view S(U,C) as a topological vector space with its inherited
topology and denote by S’ (U, C) the corresponding topological dual.

Proposition 2.5. Let U = R? be an open set which is also homogenous (that is \U < U for any X € [0, 0) ).
Suppose that F € S"(U,C). Then if F' is homogenous of degree « it must satisfy the equation

o x F(z Z i (2.15)

Proof: First assume that F is homogenous of degree o so for every A € (0,0) one has S\(F) = A™°F), i.e.
for every f e S(U,C) one has
M x F(Sy-1f) = AF(f)

Differentiating the above equation with respect to A and then evaluating at A = 1 gives
dx F(f Z x),2;0;f(x)) = —ax F(f)
Equation ([2I5) then follows upon observing that

d d
Y, Fl2), 20, f(2)) = D) — (9 (@;F(x), f(x))

j=1 j=1



O
We remark that the converse statement to Proposition 2lis also true - satisfying (2I5) implies homoge-
niety - but we will not need that here. We have the following corollary.

Corollary 2.2. Suppose that F € S’ ((0,0),C) is homogenous of degree « then F is given by the function
Alx|® for some A € C. The same holds if F' € S'(R\{0},C) is homogenous of degree o and is reflection
wmvariant.

For arbitrary F € S'"(R\{0}, C) which are homogenous of degree o one has that there exists Ay, Az € C

such that F' is given by the function Ajx$ + Asx® where z5,2% : R — R are given by

z§ =z|if x>0, 24 =0ifz <

0
¢ = |z|*ifx <0, x4 =0ifx > 0.

Proof: We first prove the assertion concerning F' € S’ ((0,0),C). Applying Proposition with d = 1 to
F gives us that F' must satisfy the following on (0, o0):

OF(z) = az ' F(x)

It then immediately follows that derivative of the following distribution

1:0(

(2.16)

vanishes. Then distribution ([2I6]) must be given by a constant which proves the assertion in question. (See
Lemma 2.9]).

Note that this argument does not work for homogenous F' € S’(R\{0},C) - in particular a distribution
on R\{0} with vanishing distributional derivative need not be given by a constant. The proof of Lemma
breaks down in this case since a test function f € S(R\{0},C) with { f = 0 it is not true in general that
f = 0g for a test function g supported on R\{0}.

However the classification for homogenous F € S'(R\{0},C) can be proven by applying the preceding
argument once for test functions supported (0,0) and separately for test functions supported on (—o0,0)
(clearly every f e S(R\0,C) is a sum of such test functions).

The statement about reflection invariant homogenous distributions is clear consequence of the other as-

sertions. ]

We now construct examples of homogenous distributions on R via analytic contination following [30]. We
use the same definitions of analytic generalized function and analytic continuation that were given in the
p-adic setting when working over R? instead .

For o € C with R(«) > —1 it is clear that the function |z| yields a well defined element of S(R,C) that
is homogenous of degree o and reflection invariant. In particular for any test function f € S(R\{0}) the

quantity
Q0
| do e s
—o0

is analytic in « for ®(a) > —1. We now try to rewrite the integral above so it is valid for « in a larger region
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of the complex plane. For any f € S(R,C) we define ¢y € S(R,C) via

f@) + f(=x)

Yr(z) = 5

Note that f — 1y is a continuous linear map from S(R, C) to itself.
For any o € C with ®(«) > —1 we set

Ha(f) = (j2]*, % ().

For such « clearly one has H,(f) = (|z|*, f(z)). We now rewrite H, in order to define an analytic
continuation.

For any n € N one can write

0 1 n 2]) n (25) 1 .
H,(f) = J_OC dr |z|*Yp(z) x L{|z| > 1} + f_ dx |x|® < g / ] ) + ;} [f(2])(?) J_l dx a:|o‘;v2]]
” o ' o S o [ £29(0)
= J_OC do |x|“f(z) x 1{]z| > 1} + J_l dx |z| ( ;} ) + ]EO[ @) o211
(2.17)

We remark that the Taylor expansion of 1y about 0 reads

if

j=0

2])

so that

0) $j < O(|$|2n+2)

22" O
j=0
in the vicinity of = 0. It follows that the integral appearing in the second term of the last line of 217 is

well defined for R(a)) > —2n — 3. One then sees that the last line of ([2I7) defines an analytic continuation
of H, to the domain

{aeC| R(a) >—-2n—3and a=—-1—2j for j =0, - ,n}.

Since n € N was arbitrary clearly H, admits an analytic continuation to {aeCla=-1-2jforje
N} which we also denote by H,Ll. At the excluded values of & one has that H, has simple poles - the
corresponding residues given by
5(23)( ).

lim (o +142))Har(f) = Fe(0) =

2
a—s-1-2; - (25)! (23)

Again it is convenient to divide H, by a suitably chosen normalization factor to cancel these poles and

arrive at a an entire analytic generalized function.
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For R(a) > —1 one has:

(Jz|*, exp[—2?]) 2[ dx z® exp[—z?]

0
« 1
= J dt t2(*~Dexp[—t] =T (a—2|— ) :
0

where the Gamma function I'(z) is given by

0
I'(z) = J dt t* et
0

for z € C with R(z) but admits an analytic continuation (using the relation I'(z + 1) = 2I'(z)) to the entire

complex plane except for simple poles at the non-positive integers. I'(z) is non-vanishing wherever it is
k

defined and its residue at z = —k for k e N is (=2

!
With this in mind we define )
Huon = ﬁﬁa,l
2r (57)
which yields an entire analytic generalized function - the singularities at « = —1—2j for j € N are removable.
In particular for a € R one has
1 o0
H,q1(f) = 7“] dz |z|* f(x) for @ > —1
i 2r (234) Joor

2 —

-t ’ r |z|*f(x) x 1|z 1 T |z|* T) — ; f(Qj)(O)x2j
- sy ([, s xatel > 1)+ [ o (wfu X ) -

[ 29 (0) 9
+jz‘f)[ @) “a+2ji+1 forae(=2n—1,-2n-3), neN

(f)fora=-2n—-1, neN

We now define a similar construction of rotationally invariant homogenous distributions over R for d > 2.
In this setting it will be convenient to spherically average test functions. For f € S(R? C) we define the

function ¢y : R — C via
1
wf(’f’) = m J:ST dw f((AJ) forr =0 (219)

where for r > 0 S, denotes the d-dimensional sphere of radius r (i.e. S, = {x e RY| Z?zl z? = 7“2}). dw is

the standard surface area measure on the S,.

is the surface area of the d-dimensional unit sphere S;. Clearly we can extend ;(r) to 7 = 0 continuously
by setting ¢;(0) = f(0).
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For d > 2 and a € C with R(a) > —d we define H, 4 € S"(R?% C) via

faalf) = | e o] (0)
Rd
o (2.20)
= Qdf dr rd+a_1¢f(r).
0
The analytic continuation of ]Nfa’d will be constructed using the same ideas that appeared for the d = 1

case. The next theorem gives the Taylor expansion of 1¢(r) about r = 0.

Theorem 2.4. (Pizetti’s Formula) For f € S(RY,C) for d > 2 and let ¢y be given as in ZI9). One then
has ¥y € S(R,C) and the derivatives of ¥ ¢(r) at r = 0 are given by

0 if n is odd
¥ (0) = (2k)IAF £(0) P (2.21)
2¢k! (TT)2 (4 +25))
where above A is the d-dimensional Laplacian, that is A = Zl L 0%
Proof: We refer the reader to [10]. O

We remark that we don’t actually need Pizetti’s formula in order to perform our computations, it just
makes our analytic continuation of }NIa’d more explicit. All one really needs to know is that ¢ ¢(r) is smooth
with a Taylor expansion that only includes even powers of r - however this last fact is a direct consequence
of 17 (r) being even.

Now for any n € N we can rewrite (2220)) as

Haalf) = Q4 f dr =1y ()

n AFF(0)
_0 dr ri+a=1 dr re )
dlj - Wi(r J rr Yy (r) — kZ:OQkk’! (H?;ll(d—i—zj))r

N " AFf(0) fl dr rd+2k+a—11
=025kt (T} (4 +2))

(2.22)

0 B 1 3 n Akf(o)
-0 d d+a—1 d d+a—1 _ 2k
d[J.l rr wf(r) +L rr ¢f<7’) ];02]%! (H;:ll(d—i—zj))r

= Ak £(0
-3 HOM ]

0 2KK!(d + o + 2K) (Hf;ll(d + 2j))

Now by Theorem [Z4] one has

n k
wf("") _ Z A f(O) : ,r,2k < O(|T|2n+2)



in a vicinity of » = 0. Thus the second integral on the last line of ([222]) is valid for ®(a) > —d — 2n — 2.
Similarly to the d = 1 case we can use this process to analytically continue Ha,d to the entire complex plane
except for the values a = —d — 2k for k € N where }Nla,d has simple poles with the residue at a« = —d — 2k
given by
QgAFS
k—1 .
2k k! (Hj:1 (d + zj))
where J denotes the d-dimensional delta function.
We define, for d > 2 and « € C,

Hyqg:=—"""7"—+ 2.23
T 0T (o) .
In particular for o € R one has
H ! JddH"‘f()fo - —d
ad = oI x x| f(z) for @ > —
Q< T (254) Jra
1
Hyg= ——-—— | d¢ @ 1 >1
= TR Jy, T ) x> )
1 f dra- N A*£(0)
+ dr r®r et [y (r) — 2k
F(?‘i)l 0 ,;02%! (H.k i(d+2j))
+Z f(O)kl ]foroze(—Qn—Q—d,—Zn—d),neIN
= 25K1(d + o + 2k) (Hj; (d + 2j))
1k AFK
H,q4= (=1)*A%(f) fora=—d—2k, keN

s

2 (TT21(d +2)))
(2.24)

Proposition 2.6. Let d > 2 and suppose that F € S'(R4\{0},C) is rotation invariant and homogenous of
degree a. Then F(x) = Al|xz|* for some A € C.

Proof: Define L : S((0,%0),C) — S(R™\{0},C) via
(L) (z) = ¥(|x]).

It is not hard to see that the L is a continuous linear map between the two mentioned test function spaces.
Now define G € S’((0, ), C) via

G(Y) = F(Ly).

Using the homogeniety of F' we now observe that for any A > 0 and any ¢ € S((0,0),C) one has
SAG(#) = A(G(r), $(Ar) = A(F(2), p(Aa])) = N4 (F(), w(la])) = A7 G(v).

So G is homogenous of degree o + d — 1 and by Corollary 22 it follows that G(r) € S’((0,0), C) is given by

Aretd—1 for some constant A € C.
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Now for g € S(R™\{0}, C) we define ¢, € S((0,0),C) via ZIJ) for r» > 0. Observe that

Filg) =Gl =4[ dr et | [ o o)

o rd—10),

Q0
= 4 dr J dw w|%g(w)
Qa Jo S,
A
= — | d%|z|°g(x).
o |t el

The proposition will then follow if we show that for arbitrary g € S(R?\{0},C) one has F(g) = F(Lt,). Fix

such a g and observe that for any x € R? with |x| = 7 > 0 one has

1
dM g(M ™'z :7J dw g(w
o B 00712) = i | gt

= Pg(r) = Lpy ()

(2.25)

where dM refers to Haar measure on O(d) normalized to have total mass 1. The first equality is just a
consequence of the fact that the pushforward of the measure dM via the map M — M 'z is a rotationally
invariant measure on S, of mass 1 which must then be given by the normalized surface area measure on ;..

The proof is finished upon observing that

F J dM RMg
O(d)

| prig) = [t o) = F).
o(d) o(d)

F(Lyg)

OWe now give a classification of rotationally invariant generalized functions that are supported at the

origin.

Proposition 2.7. Let F € S'(R% C) be a rotation invariant (reflection invariant for d = 1) and satisfy
F(f) =0 for all f € S(R?, C) that vanish in some neighborhood of the origin. Then there exists N € N and
constants ag, ai,...,a, € C such that

N

F = Z akAk(S

k=0

Proof: We first give the proof for d > 2.
By the Paley-Wiener-Schwartz Theorem (see [38, Theorem 7.3.1]) one has that ' := F[F] is given by

an entire function which satisfies the bound
[F)| < 1+ 1Y

where N denotes the order of the distribution F'. It follows by standard arguments that F (z) is a polynomial

in the components of z of at most order N. Since for any multi-index o € N one has

d
2

Fl°)(z) = (2m)

(i)l
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our assertion will follow if we prove that F (2) is in fact a polynomial in the quantity |z|* = Z?zl zj2 and
then apply the inverse Fourier transform.

We restrict F'(z) to R%, denoting the restriction by F(z) = E(z1,...,24). We remark that F must
be invariant under rotations of R?. In particular for any x = (z1,...,74) € R" with |x| = 7 one must
have F(z1,...,2,) = F(0,...,r). Since F(0,...,0,r) is a polynomial in r our assertion would follow if we
knew F' (0,...,0,r) only contains even powers of r - however this is immediate upon observing that one has
F(0,...,0,7) = F(0,...,0,—r) for any r € R.

The d = 1 case is proved by a similar (and shorter) argument. O

Proposition 2.8. Let F' € S'(R% C) be rotation invariant (reflection invariant for d = 1) and homogenous
of degree o € R. Then there exists A € C such that F' = AH, 4.

Proof: The proof proceeds along the same lines as Proposition 233l We first treat the case a = —d — 2k with
k € N. Clearly F and H, 4 can be viewed as elements of S’(R4\{0}, C) and since H, 4 is given by a non-zero
multiple of |z|* away from the origin it follows that one can find A € C such that F' — AH, 4 vanishes on all
elements of S(R?\{0},C). In particular by Proposition (Z7) one has

N
F—AxHyq= ) azA¥s
k=0

for some N € N and constants a;. However since A*§ is homogenous of degree —d — 2k = « it follows by
the easily proven real analog of Lemma 2.0 that all the constants aj which means F' = AH, 4.

Now suppose F' is instead homogenous of degree o = —d — 2k for some k € N. We treat the case d > 2,
the method for d = 1 is essentially the same. Define I_4_ o, € S’(R?, C) via

L) o= [ e la =0y (al)1 el > 1)

. - A £(0)
+ | da 2T () — .
! ;)ij! (I

j2* |1 {lz| < 1}
R 1= (d+ 21))

where 9y is defined via (ZI9). We remark that by Theorem [27] the second integral appearing above is
convergent and it is not hard to see that I_,_ o is rotational invariant. Additionally for f € S(R?\{0},C)

one has

Laalf) = [ ate a7 (0)

It follows by Propositions and 2.7 that for some K € C one has that F' — KI_;_ o vanishes on all test

functions f € S(R?\{0},C) and that for some N € N and constants co,...,cy € C one has
N .
F—KI 405 =) ;A (2.26)
=0

We will now try to show that one must have K = 0, if this is shown then the result will follow by the real
analog of Lemma since A’ is homogenous of degree —d — 2j. To see this we first observe that I_;_oy
is not homogenous of degree —d — 2k. A straightforward computation shows that for any f e S(R?, C) and
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A € (0,00) one has

AT () = Taeaf) + [ % a0 al) [14Jel 3 A =1 {Ja] > 1)

# [t ol 1 el < X) =2 o] < 1] wr(lal) - 3 O
R b b ! o (H Hd+20)
k J
=T g-2,(f) — Qu A7) J dp p= 2201
j=0 277! (H (d+21
k—1 j 2j—2k k
= Tg-ok(f) —Qa| ), 270 W 1) £/0 Log(})

- - +
=) 211 (ng;f (d+ 2z>) 2j =2k okp ( A+ 21))
Now for arbitrary A € (0,0) we apply ()\_d_%'g)\ — Id) to both sides of (226 and feed them both an
arbitrary f e S(R?, C) which yields

o A§(f) (A\Z—2k 1) AFS(f)

K xQgx - +
= 2951 (H (d+2l)) 2j — 2k 2’%!( f;f(dmz))

N
Lag(a) | = 3, ex (1) x0%5(7)

For fixed A the above equation gives equality between two linear combinations of homogenous distributions

and applying the real analog of Lemma [Z0] one has for all A € (0, 0)

1
K x Qg x Log(\) x =0

2k k! ( Fld + 21))

which forces K = 0. O]

Lemma 2.10. Let v € R.
Then one has
.F[Ha’d] = 2_(1_% X H,d,ayd.

Proof: We prove the assertion for d > 2, the one dimensional case follows by a similar argument.
By Lemma 2.8 and Proposition it follows that

FlHodl = KH_ g a4

for some K € C, which we now calculate.
Let n4(z) be the density function for a standard Gaussian on R?, that is 14 : R — R is given by
1 %‘z|2.

na(z) = We_

(MW

Clearly 14 € S(R?) and with our conventions for defining the Fourier transform on R? we have that
Flna] = na
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We now claim that for all o € C one has

dta_ 4

Hoéyd(’ﬂd) = 272 X (27‘(’)_ .

(NN

(2.27)

Since both sides of the above equation are analytic in « it suffices this equality for real a with a@ > —d, we
do this now. We note that

Foalng) = (2m) % x f dig |z[oem Hel
[Rd

ol

Q0
= (2m)72 x Qg x J dr rotd—le=sr’

0

iR

0
atd—2 atd—2 _
x Qg x2 2 XJ dss 2 xe*
0

—(2m)f xQyx 27 xT <a+ d) :

- (2m)"

2

Recalling the definition given in (Z23]) equation (227) now follows.

Since

[SIEN

H_gaa(na) =271 x (2m)~

and
FlHa,dl(na) = Ha,a (Fna) = Ha,d(na)

it follows that

O

We now need an analog of Bochner’s Theorem called the Bochner-Schwartz Theorem. Compared to
Bochner’s Theorem the Bochner-Schwartz Theorem has weaker conditions and a weaker conclusion. Instead
of applying to continuous functions it says that any generalized function which satisfies a certain positive
definiteness condition must be Fourier transform of a positive measure - however this measure may not be
of finite mass and instead only satisfies a temperedness condition.

We say a Borel measure v on R? is tempered if
J dv(z) (1 + |z|)? < oo for some j > 0.
R4

Note that temperedness is a sufficient condition for a Borel measure to define an element of S’(R%, C).

Theorem 2.5 (Bochner-Schwartz). Suppose that F' € S'(R% C). The the two following conditions are

equivalent.

1.V ge S(R%,C) one has F[g * g] =0
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2. There exists a positive Borel measure v which is tempered such that for any h e S(R?, C) one has
FIF|(h) = f dv(z) h(z)
R4

Proof: One can find a proof [3I, Chapter 2, Section 3]. See also [53, Problem 20, Section IX] for an outline

of a proof that resembles the one for Bochner’s Theorem.

Lemma 2.11. Let C be a continuous symmetric bilinear form on S(R?) that is invariant under simultaneous
translations in both arguments. Let C be the corresponding element of S'(R%) that satisfies C(f,g) = C(f *g)
for all f,g € S(RY). We view C as an element of S'(R%,C) in the natural way.

Then C' is positive definite if and only if f[C'] is given by a positive tempered measure (.

Proof: Clearly C is positive definite if and only if C[f %f] = 0 for all f € S(R?). This can be extended
to complex functions using the symmetry of C' - see Lemma 277 The assertion then follows by Theorem
O

Proposition 2.9. The class of continuous, symmetric, positive definite, bilinear forms C on S(R?) which
are translation tnvariant, rotation invariant, and k - scale invariant are precisely given by the following

families each parameterized by ¢ =0 :

e For k> 0 one has

Clfg) = o | a F(k) x 30 < =+ (225)

e For k=0 one has
ctrg) = ex ([ a%e 1)« ([ a' o) (229

In particular there are no such non-zero bilinear forms for k < 0. We remark that here f,g are arbitrary
test functions in S(R?).

Proof: The reasoning we use here is analogous to the reasoning we used for Proposition [2.4]
First suppose that we are given a continuous symmetric bilinear form C' that is rotation invariant,
translation invariant, and x-scale invariant with x > 0. Then from the real analog of Lemma and

Proposition it follows that
C(f,9) = KH 2,a(f * 9)

for some K € R. We remark that throughout the proof we restrict ourselves to f, g € S(R?), i.e. real valued
test functions.
Now from Lemma 2.10] it follows that

C(f,9) = C(f*g) = Kx H_g.a(f *g)
= K x (F[H_gna](k), F~'[f4g](k))
= K x 2% % x (H—gs2r,a)(k), F [ f*g](K))
= K x 22578 x (H7d+2/$,d](k)af(_k)

Q>
—
|
E
N
~——
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Specializing to the case k = 0 we have

C(f9) = K x27% x (Hoqa(k), f(=)3(=F)) = K x 27% x f(0)3(0)

= K x27% x ( L ddz f(a:)) x (Ld d%y g(y)>

where we dropped the conjugate over the g since g is real valued. In this case by inspection we see that
positive definiteness holds for such the given C' if and only if K > 0. Thus the given C' must be of the form
@29).

Now for the case k > 0 we have

C(fg) = K x 2% x (H_asaealk), f(—R)5(—F))

= K x 22°7% x m X g A%k f(=k)a(=k) x [k|~"+2".
Here we used that —d+ 2k > —d. Now by Lemma 2TT] (or by inspection) it follows that C' is positive definite
if and only if K > 0, in which case C is of the form (228]).

On the other hand by the calculations above and the lemmas of this section it is clear that bilinear forms
given by ([Z228)) and [229) are continuous, translation invariant, rotation invariant, and k-scale invariant for
the given values of k.

Now if C' is a continuous, symmetric, bilinear form on S(R?) which is translation invariant, rotationally

invariant, and k scale invariant, with £ < 0, then proceeding as before we must have
FIC) = K x 2275 x xH_g49,.

However it is trivial to check that unless K = 0 the generalized function H_ 5, is not given by a measure
so by Lemma [Z11] C' cannot be positive definite. In fact it is not hard to show that for any K = 0 one can
find f € S(R?) such that

C(f.f) = K x22% x (H_d+2,.i,d(k),|f(fk)|2> <0
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Chapter 3

Construction of a massless Quantum

Field Theory over Qg

3.1 Formal Description of the Model

For € € (0,1] we define c_,, to be the Gaussian measure on S’(Q}) with covariance bilinear form C_, given
by

Cnlfrg) = fQS @k F(R)3(—k) x [k ~(5)

1—p (%) - (3.1)
= — X 3¢ d® x x|z =y~ (55
=, Jngdi >y f(x)g(y) x | —yl

for f,g € S(QY). From Theorem 22 we know that pc_, is (up to a constant of proportionality) the unique

translation and rotation invariant Gaussian measure on S (Qf’,) that is scale invariant with scaling exponent
3—c¢ —€

k = ——. In keeping with conventions of the literature we write [¢] := —— to denote the scaling

parameter, @] is often called the “dimension of the field”. We remark that for our purposes [¢] is a constant

that only depends on e (not some function of ¢).

We denote by C_ () the kernel corresponding to C_ (-, ).

Xe 1 _p_(?’;re)
C_(z) = ——, where . := ———
a5 1-p (%)

and as an operator
3+e

Clop = (A5

In particular for € = 1 the measure pc_, is a p-adic analog of the three dimensional massless Gaussian Free
Field. One of the central results of [3] is the construction and analysis of a translation, rotation, and scale

invariant non-Gaussian measure v on S’(Q3) which is defined (in a formal sense) via perturbing puc_, by
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the following Radon-Nikodym derivative:

exp [—J Pz go*(x) + pd*(z) | . (3.2)
Q3

All the results we outline will apply to the small € regime and are in the spirit of the Wilson-Fisher 4 — ¢
expansion of [75]. The choice of the covariance Bl is, as we mentioned in the introduction, inspired by the
choice made by Brydges, Mitter, and Scopolla in [I8], there the authors used the covariance (—A)_% over
R? to mimic working in non-integer dimensions. Much of our analysis is based on the methods of [I8] and so
we will call our model the “p-adic BMS model”. We mention that an earlier paper [I7] also simulated the 4—e
expansion via using covariance (—A)_12i over R* but this Gaussian measure is not Osterwalder-Schrader
positive.

As mentioned before, the singular nature of the expression ([3.2)) is due to our Radon-Nikodym derivative
involving non-summable interactions between pec s infinitely many degrees of freedom. To deal with these
singularities in the form of our pertubation we implement cut-offs - phrased differently we will essentially
replace the underlying Gaussian pc_, with a finite dimensional marginal and study the consequences of the

perturbation there.

3.2 Slicing the covariance C'_,

We now remind the reader of the well-known fact that decompositions of a covariance form into a sum of
covariance forms yields a decomposition of a Gaussian process as a sum of independent Gaussian Processes.
Concretely if the Gaussian process X is given by a covariance C' and one C' = I'y + I'y for I'1,I's both
covariance forms then it follows that the process X can be realized as the sum of two independent Gaussian
process Y7 and Y, with Y; distributed according to I'; for i = 1, 2.

With this in mind we start to decompose the C'_o; in order to see it as a multitude of degrees of freedom

across different scales. We have

Con(k)= D) 1{p7 L < |k < p I} |k~ (F).

j=—w

Writing the same decomposition in terms of position variables gives

0

C_p(z) = Z p*2j[¢] []lzg(Pjﬂf)*p*Sleg(p"“x)]

—0o0

Jj=
X . ~ .
— Z p P T (px)

7=0

(3.3)

where we have defined
D(z) := 173 (x) —Zf?’]lzg (pz).

We remark I'(x — y) is also a covariance kernel - symmetry is immediate and positive definiteness is a

consequence of the fact that
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T(k) =1{p~" <[kl <1} k() >0

Let up be the corresponding Gaussian measure on S’ (Qg). We will later see that pg is in fact supported
on a space of locally constant functions f : Qf’) — R lying within S’ (Qz). This follows from T' being locally
constant - see Proposition [3.11

We also remark that T is an example of a finite-range covariance, i.e. it vanishes at some distance away
from the diagonal. It is easy to see that T'(z) is supported on p_lli. It follows that for ¢ distributed

according to ur one has
lz—yl > p = E[§(x)¢(y)] =0

this means for such z,y the Gaussian random variables £(x) and £(y) are independent.

Now if ¢ is a generalized random field distributed according to uc__, we can realize ¢ as a bi-infinite sum

o0

o(z) = > p9e (pia) (3.4)

j=—o

where the random fields {&;};ez are independently and identically distributed according to ps. Note that
while each summand on the right hand side makes sense point-wise in x, the sum as whole only makes sense
as a distribution. This presents the UV divergence as the non-summability of fluctuations at arbitrarily
small length scales.

The index j parameterizes our length scales logarithmically (base p) where j — —oo corresponds to
short distance (high fourier mode) behaviour involving rougher fields with short range correlations and
j — o corresponds to long-range (low fourier mode) behaviour involving smoother fields with long distance

correlations.

3.3 Implementation of Cut-offs

At this step we introduce an artificial scaling factor L = p' for [ some positive integer. L will determine our
step-size in the multiscale analysis that follows - i.e. how many degrees of freedom we integrate out in each
iteration. We will see that analytic control over the RG map will require taking [ quite large. A key remark
to make is that L is not an intrinsic length scaling factor for our system - that role is played by p. This is
one difference in our setting compared to some previous RG work on hierarchical models. A failure to make
this distinction can lead to critical exponents and universality classes that depend on L - see [47, Section
5.2].

We define .
I'(z) = Z p 1] [hg (p'z) — p_gllzg (ija?)] (3.5)
j=0
so that
X . .
Cop(x) = Y. L72PID(Lix). (3.6)

j=—on

In the rest of this chapter our scale indices will be given in terms of L instead of p as before. For any
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r € Z we define the covariance with UV cut-off at scale r to be given by

Cp(x) = iL‘QjWF(ij). (3.7)

Jj=r

Equivalently we could have defined C,. via Cy.(k) = 1 {|k| < L™"} C_, (k). We remark that C,.(x) is locally
constant over the translates of L*TZf’,.

As we alluded to before locally constant covariances will give rise to measures on locally constant field.
In preparation for that we introduce some notation. We set L, = Qg/(L_qu,), ie. L, is the lattice of
translates of L_qu, which we individually call blocks. The unit lattice [y will simply be denoted by L. We
will typically denote an element of the latter by A (not to be confused with the Laplacian). We will call such
an element a unit cube, a unit block or simply a box. We will call the elements of [.; L-blocks, and note that
every L-block is of the form LA for some A € .. We remark that every L-block can be partitioned into
L3 distinct unit blocks. For an L-block []€ L; we write [J] for the set of L3 unit boxes A contained in [J.

The following proposition shows that the Gaussian measure pc, on S’ (Qf,) is in fact supported on functions

that are constant over the blocks of L,.

Proposition 3.1. Let Q(x,y) : Qg X Qg — R be a covariance kernel and o be the corresponding measure

on S'(QY). Suppose that there exists some 1 € Z such that for any z1, 22 € QL with |21|, |22| < L™ one has
Q({E + 21,y + 22) = Q((E,y)
Then pq is supported on the set

{FeS (@) F(x)= Y. aala(z) where aa € R}
Ael,.

where for A € L, we write 1a(x) for the corresponding characteristic function.

Proof: In some sense this is a p-adic analog of the Kolmogorov Continuity Theorem which links regularity
of a covariance to regularity of sample paths/fields. However in the p-adic case there is almost nothing
to show. Due to the local constancy of €2 one can view it as a map I' : L, x L, — R which satisfies
the necessary symmetry and positive definiteness to determine (via the Kolmogorov Extension Theorem) a

Gaussian measure fi on the direct product

[] R={{aa}ac,}

Ael,.

where Ez[aaanr] = Q(A, A’). The assertion then follows from noting that the map

{aatra, — Z anla
Ael,.

is a measurable map from [[r¢; R to S’ (Qg) where both spaces are equipped with the cylinder o-algebras.
The measure pq can then be realized as the pushforward of fi under the above map whose codomain is

clearly the support set given in our assertion. ]
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We remark that our UV cut-off has left some of the invariances of ¢ intact - pc, is still translation
and rotation invariant but we have lost scale invariance.

The infrared behaviour of C_, is not severe enough to require regularizing the sum (B.4)) for large j (in
contrast with trying to define the Gaussian Free Field with covariance (—A)~! for d = 1 or 2). However the
integral over all of Q% in (32) must be regularized - otherwise an argument via Jensen’s inequality shows
that this aspiring Radon-Nikodym derivative is pc, almost surely 0.

For s € Z we set Ay := {x € Q)| |z| < L*}, i.e. Ay = L™°Z3. Now for any r,s € Z the functional

sxp [— [ @00 en ¢2<x>] (35)

is strictly positive, bounded, and basically well-defined on the support of ¢, (¢) within S’(Q}) - thus modulo
a (finite) normalization the functional ([B.8)) is the Radon-Nikodym derivative with respect to uc, for some
probability measure which for now we call v, ;. We remark that if one reduces to marginals corresponding
to our field’s values within A, the measures pc, and v, s are measures on the finite dimensional space RN
where N = L>=") (here we assume assume that s > 7).

The construction and analysis of v entails control over the removal of the cut-offs, i.e. we want to show
the measures v, s converge in some sense as we take r — —o0 and s — 0 to a non-Gaussian measure with
the desired invariance properties.

In order for this to be successful we will see in what follows that it will be necessary to replace the fixed
parameters g and p inside the integrand in (38 with some parameters g, fi, that are allowed to depend
on the ultraviolet cut-off r - these are called “bare couplings”. As a matter of convenience we will also
change the role of these parameters by rewriting the integrand as a linear combination of “Hermite” (Wick)

polynomials which we define now.

Definition. Let Q be some set and C be a function C : QxQ — R which is symmetric (i.e. C(x,y) = C(y,x)
forall z,y e Q).

Let P be the set of polynomials in commuting indeterminates {¢(x)}zeq with coefficients in R, i.e.
P = R[{¢(x)}seal] -
We define a map : o :¢: taking P — P as follows. For P € P we set
P(g) e = e2P(g)

where Ac : P — P is the differential operator defined via

1 1) 0
Ac =5 2 O X Gy

and e=2¢ : P — P is then defined via
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We will choose 2 to be index set for some Gaussian process on a product space and C is chosen to
be the corresponding covariance. In this setting the map P(¢) —: P(¢) :¢ replaces a linear combination
of monomials with the same linear combination of corresponding partially “orthogonalized ” monomials in
L3R, ue).

Lemma 3.1. Let {¢(z)}zeq be a Gaussian process indexed by Q with covariance C.

Then for any x1,...,Tm,Y1,---,Yn € Q (not necessarily distinct) one has

L n Im=m
Euc K H¢>(:z:i) 10) <i Hfﬁ(lﬁ) 3c>1 Y

2ies, (H;'l=1 B [¢($i)¢(yo(i))]) ifm=n

In the bottom sum we are summing over permutations on n-elements - the resulting expression is similar
to Wick’s rule for Gaussian expectations except that Wick contractions internal to a single Wick ordered
monomial are not allowed. For the case () a singleton and C' = 1 one has that : ¢" :¢ is just the n-th Hermite
polynomial in ¢. In the more general context the transformation : e :- is called Wick ordering.

For our Wick ordering we set Q = Q2 (or equivalently L,) and C(z,y) = Cr(x — y). Some of the key

Wick monomials for us will be
s (z) o= ¢t (z) — 6C,.(0)¢*(x) + 3C,.(0)? (3.9)

and

1% (x) :c= ¢ (x) — Cr(0). (3.10)

We can now give a precise formula for our cut-off measures. Given a sequence of bare couplings {gy, fi, }rez

(where g, > 0, i, € R) we define, for r, s € Z, the measures v, s on S’(Qg) via

dVT,s(Qb) = €xXp |:_ JA d*x {gr : ¢4($) :Cy +ilp ¢2(x) :CT}] d:ucr(d)>

ZTS

s

where the normalization factor Z, ; is chosen to make v, ; a probability measure, i.e.

s

Zr,s = J d,UCT (¢) €Xp [J &’z {gr : ¢4(I) ‘o, e o ¢2(I) :CT}] .
S1(Q3)

We will also choose g, ji, to be of the form

~ 3+e

g-=L""g  fi, = L_(T)ru for some g > 0, € R. (3.11)

The choice (BI1) corresponds to an attempt to construct a measure that looks the same at all scales (using
appropriate units at each scale).
It is not hard to see that Z, ; € (0,00). Introducing the short hand

Voald) = fA B (G, 6'(a) 0, +in : 6%(2) 0, )
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by Lemma 3.1l one has that

Since e~*

and recalling definitions I0) and @) it is immediate that V;. ;(¢) is bounded below which gives an upper

bound on Z, , for fixed 7, s.

is convex in ¢ it follows by Jensen’s inequality that Z,, > 1. On the other hand since g, > 0

3.4 Sketch of general strategy and main results

We start by introducing the main quantities we will achieve analytic control over in order to prove our main
results. The measure v on S’ (Qg) will be constructed via solving a moment problem, the candidates for the

moments will be the limits of corresponding moments of v, 5. Denoting () for “expectation with respect to

v and (-), s for expectation with respect to v, s for f1,...,f, €S (Qf)) we define candidate moments for v
via
I1 ¢(fj)> = lim (] ¢(fj)> : (3.12)
j=1 s— 0 Jj=1 s

With our methods the order of removing the UV-cutoffs and IR cut-offs does not need to be prescribed. The
key qualities needed for our candidate moments on the left hand side of ([BI2]) to be actual moments are
symmetry in the f;’s, a positive definiteness condition, and certain n! bounds (see Theorem [[12).

The first two of these immediately follow after one has established convergence of the right hand side of
(BI2). With regards to the n! bounds one needs to show that for each finite dimensional subspace U < S(Q3)

there exists K such that for any n € N, and some seminorm Ny on S (Qf’)) one has

‘ H¢(fj)>
j=1

for all choices of fi,..., f, € U. Clearly it is sufficient to establish the estimate (BI3) for all U of the form
Sq_.,q. for g_,q, € Z where

< Kj xnl x [ [Nu(f;) (3.13)

J=1

Sg_qs(Q)) :=={f€S(Q)): [ constant on translates of L™9-Z3 and supp(f) < L™ Z)}.

This conflicts with earlier notation of section but is consistent with scale indices being given in terms of
L, not p. Sq_ 4. ( ;’), C) will denote the corresponding space of complex valued test functions. We will see
that analyticity methods will be used to establish both the convergence of the moments and the estimates

BI3) for any subspace S;_4, . For f € S(Q},C) we define

(3+€)

2t = [ e @en|- [ #o (10 g0t e+ I 0 e o))
5/(Q3) ’

so that




is the moment generating function for the measure v, 5. It is not hard to see that for any ¢_,q; € Z one
has that S, () seen as a function on the finite dimensional complex vector space S;_ 4, (Q3,C) is entire. In

particular we can express n-th moments of v, ; as n-th order functional derivatives at f = 0:
n n a n
n¢(fj)> = (n at) Sr.s (2 tjfj> :
=1 7, 3=1"7 ) ==t =0 j=1
3

P
gence of moments and required estimate ([BI3]) would follow if one establishes the following result

We equip the finite dimensional complex vector space S;_ 4, (Q;,C) with the supremum norm. The conver-
For every q— < qy4 € Z there exist 0,_ 4, > 0 such that the functions S, s(-) converge uniformly to a
limiting function S(-) on the ball B(0,0,_4,) < Sq_ 4, (Q3,C)

The convergence of the moments is immediate and the bound (BI3) follows by a Cauchy estimate. Our
RG analysis will establish this uniform convergence as a consequence of establishing a particular expansion
across scales for S, ;(f) where each term corresponds to the contributions from the fluctuations assigned to
one of the r — s length scales.

However our methods can show the validity and uniform convergence of these expansions only for suffi-
ciently small f (where the degree of smallness) will depend on the length scales that f lives on - i.e. how
small and large ¢— and ¢4 must be so that f e S, 4 ( f,,([:)). This smallness requirement is the reason
that we use a moment argument to construct the measure v ( as opposed to constructing the characteristic
function).

Note that v automatically inherits both translation and rotation invariance - this is a consequence of the

fact that the measure v, 5 is rotation invariant and due to ultrametricity is invariant under translations 7, for

|z| < L*. The measure v will also be partially scale-invariant, in particular one will have ()\W] S ,\)# v=v
for all A € LZ. This follows from the forms we have chosen for the vr,s (in particular our choices of g, and
fir). It can also be seen as a shift in the expansion we establish for S(f).

The RG approach is also suited to the construction of a second measure on S'(Q}) which heuristically
corresponds to the law of “¢?” for ¢ distributed according to v - we will denote this measure by v42 and will
sometimes denote the original measure v by v4. Higher powers of the field ¢ are called “composite fields” or
“operator products” [72]. Since v, will not be be supported on actual functions making sense of pointwise
products like “¢2” is far from clear. In order to see how to overcome this problem it is instructive to look at
how one can make sense of of “¢2” for ¢ distributed according to vc__ .

The strategy we describe is to implement cut-offs and make substractions. Note that as r — —oo the
quantity E,.. [¢*(z)] = C,(0) diverges like L~2[¢I". Wick ordering can then be seen as a method of UV
regularization by subtracting divergent counter terms coming from self-contractions. If ¢ is distributed
according to pc, then : ¢?(+) :c,, seen as a random element of S’(Qg), converges in the sense of a moments
to a random generalized function which we denote : ¢? :c__ (see [62 §V.1] for details). Writing E for the
expectation with respect to the law of : ¢* :c_, then one has for any f,g € S(Q})

El: 9”0, (f) 0% 0, (9)] = st N Pz &Py f(2)Cco(z —y)’g(y),

in particular : ¢? :c__ is a non-degenerate process. : ¢* :c__ is called a “normal ordered field” and
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we see that in case of the free field normal ordering is essentially given by Wick ordering. In fact when
defining perturbations of the form ([3.2]) in dimension d = 2 with respect to the massive Gaussian Free Field
(the Gaussian measure on S’ with covariance (—A + m?)~! for some m? > 0) the problem of ultraviolet
singularities is reduced to Wick ordering - one can define any power of the field similarly to how we defined
: ¢ :¢_, and this makes a perturbation of the form ([B:2]) well defined (when in finite volume) with respect to
the Gaussian Free Fields without any UV regqularization when ¢* and ¢? are replaced by their Wick ordered
counterparts. However the ultraviolet divergence in higher dimensions tends to be more severe - from d = 3
up until 4 — € dimensions this can only be done for the ¢ and for d > 4 one does not expect to be able to
define any Wick ordered powers of the Gaussian Free Field as random elements of S”.

Our approach to defining the normal ordered ¢? with respect to the v measure involves both an additive

and multiplicative renormalization. For ¢ distributed according to pc, we define N,.[¢?](x) via
N [¢%)(z) = Z3Y2:¢"(2) :c, —YoZ

where Z5, Y3, Zy, and Y) are parameters which will be chosen based on the RG analysis. Constructing the
normal ordered ¢? with respect to our measure Vg now corresponds to showing convergence of the law of
N,[¢?] as r — —o0 to a limiting measure v42 on S’ (Qg) - the corresponding limiting process will be denoted
by N[¢?].

We will simultaneously construct the measures v and v42 by applying our yet to be defined RG map to

generate expansions, uniform bounds, and convergence for the joint moment generating functions:

Zree B (explo(f) + N3] (3.14)

.8

2uF D)= [ duc@ew|- [ @o{r g0 e 11 B0 o 0] - NEF@i0)]

(3.15)
and f,:j e S( 2,@) (the introduction of tildes is mostly vacuous and only preparation for an upcoming
changes of variable).

The main theorem of [3] is given below:

Theorem 3.1.
3p >0, 3Ly, VL > Lo, Jeg > 0, Ve € (0, €], one can find g > 0 and functions 11(g), Yo(9), Y2(g) of g in
the interval (gs — pES Gy + peg), where

__ pr-1
© 36L(1—p3)’

G (3.16)

such that if one sets u = p(g), Za = L7%’7¢2, Zy = ZoL729) Yy = Yo(g) and Yo = Ya(g) in the previous

definitions, then for all collections of test functions f1,..., fn,J1,---,Jm, the limits

(@) d(fn)N[$*)(G1) -+ N6 (Gm)),. = Jim {o(fr) -+~ (Fa)Ne[@*](1) -+~ Ne[6%)(Gim) ),
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exist and do not depend on the order in which the r — —o0 and s — o limits are taken. Moreover, the
candidate moments (which we call correlators) satisfy the following properties:
1) They are invariant by any translations or rotations of all the test functions fi,..., fom, J1s-- s Jm-

2) They satisfy the partial scale invariance property

(D (Safr) -+ & (Safn) N1 (Sxjr)--- N[6%] (Sxjm)) =

—[eDn+(3-2[¢]—3m42)m

BV (O(f1) - d(fn) N[62 (1) -+ N[6*](jm))

for all X e LZ.
3) They satisfy the nontriviality conditions

(p(1z3)") = 3(d(123)*) <0,

(NI9?)(1z)2 = 1.

4) The pure ¢ correlators are the moments of a unique probability measure vy on S’(Qg) with finite

moments. This measure is translation and rotation invariant. It is also partially scale invariant with scaling

parameter [¢] with respect to the scaling subgroup L% - i (|)\| A) vy = vy for all A e L?
5) The pure N[¢?] correlators are the moments of a unique probability measure vy on S'(Q3) with finite

moments. This measure is translation and rotation invariant. It is also partially scale invariant with scaling
#
2 ~
parameter 2[p] + %%2 with respect to the scaling subgroup LZ - i (|)\|p( e+ 2%2)5‘;\) Vg2 = Vg2 for all
\e LZ.

6) The measures vy and vge satisfy a mild form of universality: they do not depend on g in the above-

mentioned interval.

Our first remark is that a major weakness of the above result is the restriction of the scaling group to
L7 instead of the full scaling group pZ. Unfortunately it is expected that Lo > p so different techniques are
required to upgrade the scale invariance given by the Theorem above - this is the focus of Chapter [l

The parameter 74> is called the anomalous dimension of the composite field N [¢?], it represents the
discrepancy in scaling between N[¢?] and the corresponding power of the free field : ¢2 :¢__ . The law of
the elementary field v4 has the same scaling parameter as the free field pc_ , that is we have ng = 0. The
absence of an anomalous dimension for the elementary field ¢ and the presence of the anomalous dimension
for the composite field N[¢?] agree with predictions made for the real BMS model and for an analogous
model [73]. In fact the value of g = 2€ + o(€) agrees with the calculation Wilson made in [73].

However in certain computations in the 4 — e expansion one sees anomalous dimension for elementary field
¢ of order €2 [76, p. 133] while both the p-adic and real BMS models are not able to capture this behaviour.
This is a shortcoming of using fractional Laplacians to mimic non-integer space-times. One expects such an
anomalous dimension to develop due to wave-function renormalizations, i.e. the flow of a |[V¢|? term which
are comparable to the quantity (¢, —A¢) which is responsible for the Gaussian measure. This flow is dealt
with by multiplicative renormalizations of ¢ which cumulatively lead to a change in scaling behaviour.

The p-adic models, like other implementations of hierarchical RGs, are not expected to manifest wave

function renormalization. One does not expect appearance of derivatives in the flow, in fact derivatives
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are usually not natural to define on these spaces. Additionally the usual mechanism for the generation of
derivatives, that is writing the difference of nonlocal relevant terms with local subtractions, is not applicable
to the hierarchical case because there we keep locality.

However even the RG flow for the real BMS models does not generate wave function renormalizations

- here the Gaussian measure comes from a term (¢, (—A) = ¢) and no terms like this will be produced by

the RG flow. Additionally if one puts in a gradient squared term by hand one will see, by power counting
when ¢ € (0, 1), that such a term is an irrelevant operator (it will be washed out by the iteration of the RG

transformation).

3.4.1 Heuristic overview of the RG transformation and associated expansion

In this subsection we sketch how the RG allows us to expand the partition functions Z,. 4( f , 3) Applying this
separately to the numerator and denominator of (BId)) then yields the expansion of S, (f,7). We assume
that f,j € Sq_q.( f’,, C) for some fixed ¢_ and ¢4 and we assume that r < ¢_ and s > ¢;. Again we remark
that we want to control the r — —o0, s — o0 limit so one should think of r as being a negative integer of
large magnitude and s being a positive integer of large magnitude.

Our first step is to perform a change of variable so we replace our very rough field distributed according
to pe, with a smoother one distributed according to pc, .

An important fact is that our covariances with different UV cut offs are related via scale transformations
- for any r € Z one has C,.(x — y) = L2"[4)Cy(L"xz — L"y). As a direct consequence of this if ¢ is a random

field distributed according to C. and ¢ is a random field distributed according to Cy then q~5() 4 L=rolp(L)

By applying this change of variables in ¢ and also applying a change of variable L"x < x for the integral

over Qf’, we arrive at

3
P

Zrs(f,) = exp (YoszQW’“ fQ i(@) d%) x LW) dpcy (8) exp (=Ves(9) + () + Y225 : 6% 2, (7))

(3.17)
where
Fe) = LODT F(L"e) and j(a) = LO-29D7j (L")

and

Vis(9) = J dPafg: ¢ (@) ¢y +1: () ] -

One can imagine this rescaling as zooming in our field and so we trade dealing with a multitiude of short-range
degrees of freedom (the UV problem) in exchange for having a larger box (exacerbating the IR problem). We
also note that 3—[¢], 3—2[¢] > 0 so our observables have been scaled in such a way that makes their values
smaller in magnitude while their supports have grown larger. In particular since f and j were constant over
the blocks of L, and r < g_ the functions f and j will be constant over the blocks of L. We introduce some

notation related to the scaling of observables, we write
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fog(z) = L‘(3‘[¢])qf(qu) i1
jog(z) = L~ G=2leDag(pag) (3.18)
With the above notation one then has f = f_,_, and j = j__,.

In our change of variable the quantities with tildes can be imagined as living at their native (true) scale
while those without tildes are living at what we call unit scale. The RG will traverse small length scales to
large length scales but will always take as input and produce as output quantities at unit scale.

Before continuing our discussion we quickly describe a few more conventions. For an arbitrary function
or field 9 : QE’) — C which is constant over the blocks of L we often identify ¢ with a L-indexed complex
vector, i.e. we identify 1) <> {{)a}acr € Ct with () = YA for all z € Qg - here A(z) denotes the unique
A € L that contains x.

For the time being we ignore the field independent prefactor appearing in (8I7). Since a field ¢ distributed
according to Cj is almost surely constant on blocks of L we can realize the integrand as a product of functions

of a single real variable, each evaluated on our field’s value on a particular block A:

f @%@%M4%WH¢W+E%VﬁQUD:J dico(@) [] Foalon) (319)
5(Q3) 51(Q3)

Ael
AcA;_,
where for a given A € L the functions Fa : R — R are given by
Foa(pa) =exp|[—g: a0 — (0 —YaZ3jn) : §A :c +fadal. (3.20)

Note that the above definition of Fy a(¢a) makes sense for all A € L, even those not part of the product
above. Referring back to the definitions (3.0 and (B7) one has the covariance decomposition

Co=T+C4
which immediately means if ¢ is distributed according to Cy one can write

¢=¢1+¢

where the random fields ¢; and ( are independent with ¢; distributed according C; and ( distributed
according to I'. The field ( is called the fluctuation field while ¢, is called the background field.

The function I'(+) is constant over the blocks of L and is also of finite range, being supported on L*IZ;.
This means that the ¢ can be seen as a random field indexed by the lattice L whose values in different
L-blocks are independent, i.e. Er[¢(z){(y)] = 0 if | —y| > L. The function C;(-) is constant over A € L,
and so the field ¢, is almost-surely constant over L-blocks. In particular since C1(-) = L™I?1Cy(L ) it follows
that if ¢ is distributed according to Cj one has

L7G(L ) L1 (). (3.21)
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The RG expansion of (BI9) comes out of careful iterative partial integration which we now describe. First
we realize ¢ as the sum of independent fields ¢ + ¢; and integrates out the fluctuation field {. Afterwards we
performs a change of variable corresponding to ([B:2]]) to again arrive at an integrand that is being integrated
with respect to the measure duc,. We now write this process out, assuming r < s (note that we will

sometimes refrain from writing S’ (Qg) under our integrals to lighten notation):

fdMCo(@ [ Foaléa) J-dﬂcl((bl).[dur@) [T T] Foa(¢ra+¢a)

A€l Cely Ael
AcAg_, OcA._, AcO

fducl(fm) 1 fdur(C) [ Foaléro+ca)

CJely A€l
OcAs—r Ac

Jane@ 11

J dur(@) [T Foalbrioa+Ca)| (329

A'ell A€l
AcA,_,—1 L AcL A’

Jane@r 11

f dar@Q) [ Foal@ ®oa +¢a)
Alel Ael

ANcA,_,., L AcL™tA!
- [dua@) ] Fuatw)
Alell
A'cAs_, 1
where
Fra(ox) = [aue@) [] Foall os + o) (3.23)
ACALG’[LIA’

In the first line of ([B:22)) we decomposed our field and we broke up the product over unit blocks within A,_,
into two products - the first product being over the L-blocks contained in Ag_,. and then the second product
being over the L? unit boxes contained within each fixed L-block.

In going to the second line of ([B22) the interchange of integral and product is allowed since for any
two distinct L-blocks (1,2 one has that the collections of random variables {Ca}acr, and {{a}acry, are
independent. Here the fact that we are working over an ultrametric space is quite important - for Ay < [y
and Ag < [Jo one must have |A; —Ay| > L. We also use the notation ¢; [ since ¢ is constant over L-blocks
Ll

In the third line of [322]) we have just re-parameterized the product over L-blocks, noting that there is a
one-to-one correspondance between L-blocks contained in As_, and unit blocks A’ in Ag_,_; via LTIA’ <
A’. In going to the third line we have applied the change of variable corresponding to ([B2T]).

This transforms our integral expressed as a product of local functionals of the field into another integral
which is also given by a product of local functionals but this time the product involves a smaller volume. We
remark that this process is much cleaner than what happens in the Euclidean case where locality cannnot be
perfectly perserved, in particular in step 2 one would have to worry that unit blocks in distinct but adjacent

L-blocks can be close. However this can be dealt with in Brydges’ RG formalism which works with a similar
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approximate factorization involving functionals with weaker locality properties (polymer activities) - this
was first developed in [19], also see [16] for a pedagogical introduction to an updated version in the situation
where one uses finite range fluctuation covariances.

While the steps of ([B22]) have reduced the number of degrees of freedom in our original integral we
have only won some understanding of the quantity we’re trying to calculate if we have a sufficiently good

understanding of the functionals {ﬁ'lyA} AcA that appear in our new integral. Calculating the integral

smre1
by iterating this partial integration requires understanding the dynamical system generated by the iteration
of this transformation on functionals.

Note that while constant functions are easy to track under this transformation they are very unstable, if
for all A € L we set Fa = ¢ for some ¢ € R then one will have FA AN remedy to this is to extract a

carefully chosen constant at each step - our transformation on functionals will actually take the form

Fia(pa) = e okl JdMF(C) H Fia(L7par + Ca). (3.24)
ACALE’[LIA’

One can think of the constants 0b[F)]as, called vacuum renormalizations, as being chosen as functions of
{Fk}acr-1a/ in order to guarantee some approximate normalization condition, for example one could ask
that for all A and k one has Fj, A(0) = a &~ 1. We will see in later subsections that the collection of vacuum

renormalizations across all scales will in fact contain the computation of S.
We also remark that just as the initial data {Fy a}aer was defined in infinite volume (all of L) we can
also define our transformation {Fy a}aet — {Fr+1,a}aer in infinite volume - each iteration of the RG

transformation boils down to parallel (that is independent) transformations on each L-block.

3.4.2 Relevant and irrelevant operators

At this point it is instructive to turn our focus to how this process of iterative integration looks when being
applied to the partition function Z, 4(0,0). Since in ([320) one will have f = j = 0 our initial functions
are spatially homogenous, i.e Fj A is given by an expression independent of A when £ = 0. Due to the
translation invariance of our covariances and the lack of boundary effects this property will be preserved for
all values of k. Thus we only need to keep track of a transformation acting on some space of functions of
a single variable which we write Fy, — Fj1,. We refer to the spatially homogenous evolution as the “bulk”
flow.

While this is simpler then the spatially inhomogenous case we are still dealing with an infinite dimensional
dynamical system. The RG approach involves introducing a coordinate system to parameterize the state
space of this dynamical system which allows us to establish analytic control of the associated flow by studying
how the flow acts on just finitely many coordinates - these coordinates representing the “relevant operators”
of [74].

Working formally suppose that we used a coordinate system (Bkyn)f:

o <> Fr where the correspondance

is given by

Fi(¢a) := exp [~ Vi(9)] := exp l— D Brn A :CO] :

n=1

We note that this expression is formal but it includes the original form of our functional Fp, it can also be
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seen as the most general way to parameterize our functions as exponentials. We investigate the first order

(linear) part of the flow (Bk,n),?:o — (ﬂk+17n)f=0.

Jar@© T] ewl-Vetra+l = [dr@ew |~ ¥ Valora+ca)

Aell Aell
AcL™A! AcL™'A!

1%

fdup(g“) 1— > Vilgra+<a)

Aell
AcL™'A!

> [Z Bt (P1,4 +Ca)" :001

A€l n=1
AcL™'A!

S fao 3 (S (80 o))

A€ell n=1 m=0
AcL™ A/

=1— > D Bemidtaic

A€l n=1
AcL™ A’

0
1= > Y LPIBL gk g,

A€l n=1
AcL™A!

0
X €exp l Z LSin[(ﬁ]ﬂk,n : ¢Z’ :CU] = 67Vk+1(¢A,)

n=1

Il
—_

|

—

(oW

=

>
—
o

While many of the steps and expressions above were formal, in going to the fourth line we used a binomial

identity for Wick powers

018+ )" 0= ) (::L) SOTA oy X G
0

m=

and in going to the fifth line we used the fact that

f dur(Q) < ¢k so= 810,

In going to the sixth line we just rescaled from ¢; to ¢. We see that under this linear approximation
of the RG flow Br41,n = L3*”[¢]5k+1’n. Remembering that [¢] = % we see that for n > 5 one has that
L3~"9] < 1. Thus the coefficients of the terms : ¢R :c, appearing in ([B42) are all contracting for n > 5
- these terms are called irrelevant. However for 1 < n < 4 one has the L3~"[¢] > 1 and the corresponding
terms : ¢L :cy,...,: OA ¢, are called relevant. The picture one expects to hold is that the irrelevant
parameters should stay small because they are contracting at first order and the important qualitiative and
quantitative features of the dynamical system should be recoverable through studying the flow of just the
relevant parameters.

Clearly ' =1, or 8, = 0 for all n > 1 corresponds to a fixed point of our dynamical system which we
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call the Gaussian fixed point. The observations above suggest that the gaussian fixed point has an infinite
dimensional stable manifold and a finite dimensional unstable manifold. Obsterve the the coefficient of the
term : ¢4 :c, expands weakly, being scaled by L. When e = 0 (in which case our model should resemble
massless ¢? in four dimensions) the : ¢ :c, is marginal. The picture put forth by [75] is that if one takes
€ = 0 and slowly increases ¢ one will see a new fixed point emerge out of the Gaussian fixed point in the ¢*
direction - € then plays the role of a bifurcation parameter. When one takes € all the way to e = 1 one gets
a model of great interest - massless ¢* in 3 dimensions. However the at € = 1 the non-trivial fixed point
is no longer a small perturbation of the Gaussian fixed point which puts it outside the purview of our RG

machinery which depends on working close to the Gaussian fixed point.

3.4.3 The bulk flow in second order perturbation theory

In order to see the emergence of the non-trivial fixed point one must work at second order in g. In light of
the above discussion we will only use two coordinates to parameterize our functionals - setting F(¢pa) =
exp [fgk COA oy —1k A 500] (we won’t include wick monomials of order 3 or 1, one expects that under
the bulk RG flow the functions F}, will stay even). We will expand e="V ~ 1 -V + %2 and ignore terms that

are higher than order 2 in g and y or irrelevant.

fdup(c) n Fia(p1,a +Ca)

Ael
AcL™A!

- Jdﬂp(() exp| Y —Vi(éra+Ca)

A€l
AcL™'A!

1
~ fdur(o L= ) Vildra+Ca)+g ), Vildra +¢a)Vi(dra+(a)
Ael Aq,Aqzell
AcL™ta’ Ar,Asc LA
— 14 6br1 — g1t QA 1Co —Hk+1 : PAr o

~edbrtt exp [_gk+1 : ¢>4A, (0o — k41 - ¢2A, :CO]
where the evolution (g, tx) — (gr+1, Hk+1) 18 given by

gre1 = Lgr — A1g}
i g (3.25)

3+e
pki1 = L7 pg — Asgi — Asgrpik

with the constants above given by

A = 36L3749] J I(z)? &z
Q3

Ay = 48L3729] ( f I(z)? d%) + 14434191 ¢y (0) ( f
Q3 Q3

p

I'(z)? d3x>
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As = 120372901 [ 1(2)? d®x .
Q3

We then see that there is a fixed point for the flow of g given by

L1 pe—1

_ _ 0
P T T T 361 —p )

where we have used Lemma [5.5 which gives that

(1-p)(L - 1)

Ay = 36L° x
pe—1

We remark that for any fixed value of L = p' > 1 one has

G log p
—>

e 36(1 —p~3)
as € — 0 so when working in the small € regime we have that g, is of O(e).

In the what follows we will define an exact renormalization group transformation that does not disregard
higher order terms or irrelevant operators. The exact flow equations for g and p will be given by ([B.23]) with

additional O(e3) corrections. Our functions F}, will take the form

Fi(¢a) = exp [—gk : OA 10y —pur = % iy | + Ri(on)

where at each stage k the function Ry : R — R will live in an appropriately chosen infinite dimensional
Banach space and should be thought of as containing all the irrelevant operators. We will not have explicit
formulas for Ry’s but only show that they stay small and that the corrections they induce in (3:20]) are small.

The above discussion focused entirely on the bulk, in the presence of observables we will have spatially

inhomogenous collection of functions Fj, o which will have a more complicated preserved functional form:

4
Fa(pa) = ef2% x (eXp [_ > Bra ok 1001 X (1+Wsa: @A o, +Wen : 04 ) + RA(CM))
k=1

where S1 A, .., Ban, [, Ws,.a, Ws A are numeric parameters and Ra again is a function of one real variable

which we track in a Banach space.

3.5 Defining the Extended RG transformation

3.5.1 The state space of the Extended RG transformation

The functions Ra mentioned above will lie in the space Cp4(R,C), namely, the space of nine times con-
tinuously differentiable functions from R to C which, together with their derivatives up to order nine, are
bounded. We again remark this functional space is parameterizing an infinitude of irrelevant coordinates
when it comes to our RG - we won’t have an explicit understanding of the form of R at each step but we

want to show that it stays small in the RG flow and that it’s influence on the flow of the relevant parameters
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is negligible.
We will use seminorms || - ||ag,4,0 defined for K € C2(R, C) by

dIK

9 ej
150

1K (D)l|og,uw.0 = Z =

J!

Here 0¢ is merely a symbol which indicates the variable with respect to which the derivatives are taken.
This will be especially useful when the function may depend on several such variables. By contrast, ¢ is an
argument of the seminorm. The derivatives are evaluated at ¢ = 1 and therefore the result depends on .
Finally 6 € [0,00) is a parameter used to properly calibrate this seminorm. We will mainly use two values
for this parameter denoted by h and hy to be specified later. As an example of use of the previous notation,
we have |[¢?|[ap.0.0 = |¥]? + 20[¢| + 0%, In the important special case where ¢ = 0, we will abbreviate the

notation as
|K(¢)ap,0 = [[K(®)]log,0.0 -

We will often call the above seminorm a “kernel” seminorm. A nice property of all of these seminorms is

multiplicativity. Indeed for any two functions K, K> in Cpy(R, C) we have

[[K1(0) K2 (D)l|ogw.0 < 1K1 (P)[ogw.0 x |[K2(d)]|og..0

which is an easy consequence of the Leibniz rule and the choice of % weights.

To a parameter § > 0 called a calibrator we associate a norm ||| - |||7 on the complex Banach space
CP4(R,C) defined by

IKTllg = maX{IK(sﬁ)laah*vEQ ZUEIIK(cb)IaM,h} :
S

While the coefficient of ¢* in our problem will be a dynamical variable which generically does not stay fixed
we expect to work in a regime where it stays in the neighborhood of g,. We will set g = g4, thinking of g
as something of order € that we use to measure the size of certain quantities appearing in our RG analysis.
In particular it serves as an upper bound (with an O(1) constant) on the size of the relevant couplings
B, Bs, B2, P1.

We will choose h = ¢; g—i and hy = CQL% for some specifically chosen fixed constants ¢q,co > 0. We
will try to give some motivation for having two seminorms with two different values of 6.

Evaluating R(¢) at ¢ = 0 in some sense measures the cumulative size of all the “irrelevant couplings”
inside of R - the kernel seminorm will be our tool for keeping track of this. Later we will see that the
kernel seminorm also directly determines the magnitude of the correction generated by the (non-explicit)
irrelevant couplings to the approximate flow equations for the relevant couplings ([B:25]). However control of
a function R(¢) at ¢ = 0 does not immediately translate to good control of {dur(¢) R(¢ + ¢) at ¢ = 0.
We need to understand R across the distribution of (. The kernel seminorm of R tries to capture a helpful
amount information of R’s behaviour near 0 with an eye towards helping control the fluctuation integral -
the quantity hy in some sense is an order of magnitude estimate for || see Lemmas [33] and B4l for example.
However the kernel seminorm by itself is not enough to control the fluctuation integration, we will need some
control at the tails of the distribution of (.
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The norm ||R(¢)||ag,e,n is used to give more uniform control in ¢. At the price of consuming the decay
factors e~9%" with g > 0 one will be able to bound |¢| by a factor of g’% - this motivates our choice of h.

The ¢g? appearing within the definition of ||| - ||| fixes the discrepancy between the two norms we use
to measure the R. Since R involves terms formed by three vertices we expect the kernel seminorm of R to
be approximately order ¢® but in order to establish a contractive bound we’ll want an exponent drop and
impose that the kernel seminorm of R is of order glle. Now when using the h-norm to measure R we have to
pay a price to bound powers of the field ¢ - the worst vertices come with a power of ¢ and a single power of
g - thus we expect the h-norm of K to be approximately of order (g x g_%)?’ = g%. Thus we need an extra
g? so the h-norm is of the same magnitude as the kernel seminorm. This g2 discrepancy in turn effects the
number of derivatives appearing in our seminorms - see in particular Lemma 3111

The space of collections of functions { Fa } acp will be parameterized by the Banach space Eex. An element
of the space &, is an indexed family

V = (Va)aew

where
Va = (Baas Baa, Ba.ay Bra, Ws a, We A, fa, Ra) € C7 x Cpy(R, C).

We define the norm
__3 _— - __
Vall = max{|81.a1572, 1Bs.alg ™" 1B2.alg ™" 812157,

|W5,A|§_27 ‘W67A|§_]_27 |fA‘L(3_[¢])7 |||RA|||g g_%} '
We also define

V1| = sup [[Vall
A€l

and

Eox = {Ve [](C7xC(R.0) | V] < oc} .

A€l

Now the correspondence between vectors V and integrands is given by defining (for ¢ a non-negative integer):

V1) = [] ZalV1(#)

Aell
ACA;

where
IA[V](6) == ef2%2 x {exp [~ Baa : ¢h 0 —B3,a : OX 1o —Boa : A iy —Bia : da 10| X

(1 + W57A : ¢5A 1Cy +W6,A : ¢6A :Co) + RA(¢A)} .

The most general of the Renormalization Group transformations we define will be a map RGox[-] : Eox — Eox-
We call this map the extended RG map and the dynamical system generated by V — RGe [‘7] is called
the extended RG flow. Along with the extended RG transformation we will also define associated vacuum

renormalization maps dba[-] : Eex — C for each A € L. We remark that we will be able to establish analyticity
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and our core estimates for RGey only within a rather small open set U < Eq.

The algebraic definition of this map will be quite involved and we leave that to the next subsection. The
key identity that RG.x and vacuum renormalizations satisfy which will yield the expansion across scales
described in Section 3.4 is:

T [ROuIV]] = exp | 3T s+ 00tV [ @) ] ZlVl0) 20

3
/(Qp) ACL_lA/

where we write

(R = [ d% @y 1) T =) )

for any measurable subset X of Qg and by f we refer to the corresponding component of V. We remark that
in (328) we have broken up the vacuum renormalization, the first part corresponding to what one would get
from just the Gaussian measure. Linking back to our earlier discussion ([B.20)) is just a way of writing ([3.24)).

Applying [B27)) for an integrand over a box A; with ¢ > 1 yields:

L,(Qg)duco(@ L[V](¢) = exp %(f,rf)A,,+ PIINVAR RS J dpcy (6) Tr1 [RGeX[V]] (@).

Acl S1(Q3)
AcCA;i_q

(3.27)

It is useful to compactly write an element Ve Eer in the form
V = (B4, B3, B, b1, B1, W5, We. f, R)
where each entry on the righthand side itself corresponds to a collection of L - indexed quantities, for example:
Bs = (Ba,an)ne where B4 n €C

or equivalently we can imagine /34 as being a function S4(z) on Qf, constant on unit blocks. Now the vector
V() (f,7) is the initial data for the RG flow involved in the computation of (@I9):

‘7(7',7‘)(]27,3') = (B4a63752aﬁ17w57wﬁaf’R) (328)
where
B3 =0
p1 =0
Ws =0
We =0
(3.29)
—0

R
f =L f(L="2) for all
)

Ba(z
By (x) =p — Yo Z5 LE20D" 5(L772) for all x

=g for all x

94



SO

Z5(f,J) = exp <—YoZSL2[¢]T JQ j(x) d3x> X Jduco(fb) L VO (F.)(9).

3
p
We remark that ‘7(”)( f ,5) specifies the integrand for any value of s, it in fact represents a global configu-

ration of functionals for each A € L. The map RGey will generate a sequence
VO (F,J) = VO (F ) = VO (F ) - o

where for every scale ¢ = r one has V(™9 (f,j) := RGL" [V(T’T)(f,j)]. Now iterating the identity (327

gives

e | N [SUCOTON b S walVF ] || X j dpacy () Tl (7. 1)1(9)

r<qg<s Ael
ACA57q71

for every scale t with r <t < s. here f("9 denotes the f component of V(W)(f,j). We note that the last

integral on the right hand side is just a Gaussian integral on R. We will write
02,(F.3) = [ ducy(0) TV (7. 7)(0)

3.5.2 Algebraic Definition of the extended RG map

The full RG transformation V — V/ = RGey[V] will be defined by specifying
‘71 = (54/17 L 6,17 W5/, W6I7 f/y R/)

starting from the analogous unprimed quantities. We will also give formulas for the corresponding vacuum
renormalizations {3b[V]}acs.
We introduce the short hand

4
Va(¢a) = exp [ D Bra: oA ico] :

k=1

Note that there is a namespace collision with the VA mentioned in the definition & but the difference
should be clear from context (the Va(+) above is a function of one real variable determined by Va of the last

section.). We also define
Qpa) = (WS,A SO e +Ws.a - % :Co)

and
Ka(¢a) = Q(pa)e™"22) 4 Ra(¢a) (3.30)

so that
IA[V](ga) = ef292 x (e*VA(W +KA(¢A)> (3.31)
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where one should think of the two terms within the parentheses on the right hand side of ([B:31]) as respectively
the relevant part and irrelevant part of our functional form. In the definition (330) we see the irrelevant
part K is further decomposed into an explicit part Qe~" which should be thought of as containing irrelevant
terms coming from V2 terms and the R which contains terms that are of order 3 and higher in V. By V
here we mean vertices.

By our earlier discussion we have

Jane@ Ti7I0) = [ducy(@) T {22 x [V 4 Ka(os)]}

Ael
AcCAg
_ JdNCo(¢)JdﬂF(C) H {e.fA¢I,A+fACA % [e—VA(¢1,A+CA) + Ka(¢p1.a + CA)]} .
Acll
AcAy

For the above formula and what follows the ¢, should be thought of as function of the random field ¢, in
particular ¢ is constant over the blocks of L for all A € L we set ¢1 A = L pa where A’ € L is the
unique unit block with A = [L71A’]. We remark that with this convention ¢ being distributed according to
Cy means that ¢ is distributed according to C;.

We then organize the product according to the L-blocks containing A and use the independence of the

¢ random variables living in different L-blocks to obtain

e 2@ = [ane ] | [am©
Aell
A'cAy_q
fadi,a+fala —Val(¢1,a+Ca)
L
= [aucyo) ] (s xBa)
Aell
AcAi_q
where

= [0 [T o [0 ot )

A€[L-1A"]

and

fao =L ave  fa (3.32)
Ae[L71A"]

where “avg” means average. The formula ([B:32]) gives the evolution of the f component and we remark that

it evolves autonomously of all the other parameters.
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Now the linear flow of the relevant parameters is given by

Brar =Ll ave Bra (3.33)
Ae[L™1A"]

for 1 <k <4.

With a slight abuse of notation we define

4
Va(o1) = Z Bra : o i,
=1
and

4
Var(g) = Z Brar: o o, -
1

Note that ZAE[L*IA/] VA(gbl) = VA/(gb) where ¢ is in fact the component ¢+ of the field but we suppressed
this from the notation. Now define

pa = pa(P1,¢) = Val(o1 +¢) — VA(¢1)
namely
+b<4 a+b) .
0,b>1 }(m(ﬂ)ﬁa+b7A:¢1,A oy X :CZ T

The terms within pa are what we were refering to as “vertices” in our earlier discussion. Now let
Pa(¢1,¢) = e~ Vald1+Q) _ e*VA(cbl) )
We expand Bas by writing the factors as

e ValPratea) L KA (p1a +Ca) = e Valon) 4 Pa(¢1,¢) + Ka(d1,a +Ca) -

This results in
Bar = e2THia=Var(®) 4 |0, (¢) (3.34)

where

Kn(g) = )] JdMF(C) eli-1ar fC 11 [e‘VA(¢1)] x [T [Pa(@, 01 x [ [Ka(ér+ Q)]

Yp, Yk Ae[L*IA’] A€eYp A€eYx
A¢YpUYE
where the sum is over pairs of disjoint subsets Yp, Y of [L™'A’] such that at least one of them is nonempty.
One can interpret ([B:34) as the new functional we would get for the unit block A’ if we performed no
extraction, that is if we just let the relevant parameters flow according to linear flow. While K would
aspire to be the irrelevant part of our new functional it is not irrelevant or even approximately irrelevant.

The process of removing relevant operators from K by “moving” them to V will be called eztraction. We

97



now describe this process.

Assume that we are given collections of numbers §5; A for 0 < k < 4 and A’ € L. For 1 < k < 4 these
will represent the corrections to the linear flow given by ([B33]) arising from the extraction process. The
k = 0 quantity corresponds to the vacuum renormalization - we will write dbar = §5p /. We remark that
the vacuum renormalization will be implemented differently then the other extractions. We have the trivial

identity

[ane @ T7I0) = o | ST+ S | x
A'ell
A'cAi_q

fduco(¢) n {eflA/¢A/ « [e—VA/(¢A/)—65A/ +KA/(gbA/)e_ébA'_%(f’Ff)L_lA’]}'
A’ell

Define 4
SVar() = > 0Bkar: 0¥ i, -

k=0

Post-extraction our “new Vao” will be denoted by VA, and will be given by
4 ~
VA(®) = > (Brar = 0Brar) 1 ¢* i, -
k=1

In particular
VAl(#) = Var(¢) — 6Var(¢) + dbar .

Now one can check

[ane@ 2i710) = e | SUTa+ Y dar| 5

Aell
A A1
Janu) TT {erom e [0 s o]}
Ael
ANcAhi_q

where
Kh(¢) = e 0ar—3(F T p-1ar {KA,(@ — e Var@+5 () 1 (65VA/(¢) _ 1)} '

K\, will be the irrelevant part of the new functional we output - extraction will involve choosing the
constants 08 as so that particular relevant terms do not appear in Ky, .

We will remove from K the following types of relevant terms

(i) Relevant terms appearing from a contraction of a term in V' with the observable f - the corresponding

counter terms will be explicit and of order g.

(ii) Relevant terms coming from a V2 terms or from @ either of which could involve contractions with our

observables. These counterterms will be explicit and of order g2.
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(iii) Relevant terms coming from R that are first order in R. These will not be explicit, and will mostly be

specified by a linear functional of R. These counter terms are morally of order g>.

Note that we do not extract all relevant parts of K, only enough to maintain analytic control of the RG
flow. In particular we don’t immediately extract relevant terms that are second order or higher in @ or R
or of order 3 or higher in V' - these will be buried in the new R’ with enough powers of § to keep them quiet
for the time being.

The g° counterms appearing in our flow equations for relevant parameters will need to be explicit - this
is necessary to clearly see that the bulk flow of g and p has a non-trivial fixed point. It will be useful to
include a complex parameter A into many of our expressions that keeps track of how many V’s (and thus
how many g’s) are contained in the various parts of K’ - we call this process A-deformation. In particular the
form of our extractions and the functionals we output will be explicit up to order A2. The final A-dependent

expressions we produce will define our extended RG map when we fix A = 1. We define

o 1
ria =ria(pr, ) = e V20 [em —1+pa-— 2?1]

and let \2
Pa(A,¢1,) = e7¥a () [—ApA + QpZ} + Xr1a(é1,0)

so that
PA(A7¢15C)‘A=1 = PA(¢1)C) .

We also define

Ka(\é1,0) = MQa (1 +¢) e 127 Qa1 +¢) (7% = 1) 77 & Ra(n + 0)]

so that
KA\ 61,¢) =1 = Ka(o1 +¢).

We use the same expansion formula as before in order to define the A-deformation

Ex(\o)= > Jdur(g) L | [e—VA<¢1>] < [T [Pah o101 x [] [Kahe1.0)] -
Yp.,. Yk

Ae[L71A] AeYp A€Yk
A¢YpUYk
(3.35)

This is a polynomial expression in A\ with no constant term. We can write it as
Kar(\, 6) = AN+ B2 + CA3 + KX\, ¢)

where KZ()\, ¢) contains the terms of order 4 or more in \.
We now implement a A grading for our proposed counterterms - we assume that there are numbers § 5, ; A

for 0 < k<4,1<j<3andA’ el such that

0Bk,Ar = 0Br1,ar + 0Bk,2,a + 6 Bi,3,Ar
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and we define
5Brear(N) =X 6Bk 1ar + AN20Bran + N6Braar -

In particular this defines 6bas(A\) = 05p,a7(A). We also let

SVar(A Zaﬁw AR

Using the same formula as before for K,, we define the corresponding A-deformation:
K (A, ¢) = e 0bar W=D s {KA’()\>¢) e Var @+ 3T (emzu,m _ 1)} . (3.36)
We again expand this in A up to order 3:
KM\ g) = AXN+B N+ TN +0(0\) .

We will give an explicit formula for A’. Note that the quantity in the braces of ([B36]) contains terms of
order at least order 1 in A. The order 1 term of K A (A, @), which was denoted by A, is given by the terms
B38) with Yp a singleton and Yy empty (since Ka (¢, \) is of order 2 in \) where for the Yp singleton we
take only the first order part of Pa.

A = Z fdﬂr eSL 1ar fC 1_[ [e*VAl(%)] % (e*VA(dJl) pA)
IA’ Ale[L—lA/]
A=A
— e Var(9) fdMF(O ede-1ar fS & Z DA
Ae[L-1A7]
4
— o~ Var(®) —a[4] . 1a . a+tb<4 ( (a+d)!
o aZ:oL oA 21{ b>1 al (3.37)
X Z Jdur SL 1A/f<XB+bA>< CA T
A€e[L—TA’]
4
- +b<4 | (a+0d)!
— L al¢] S 6%, 1 a
aZ::o v COZZ,: { b>1 al b!

b
X f(LlA/)m Bz &Py - By Bass(x) X g [T(z —vi) f(yi)]-

We note that the final integral could also be written in the form

b
2 Ba+b,A X H [F(AvAl) fAl]
i=1

A7A1,‘..,AbE[L_1A']

where (A, A;) = {dur ¢ala,-

These terms represent all the contractions of a single vertex from V with external legs coming from f
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along with an overall factor of exp [%(ﬁ Ff)L—lA/:I.

We take a short detour to explain how one can compute the Gaussian integral with respect to ur above.
One way to do this is via the translation trick which we now explain. Suppose that H is a function on
RIZT"AT guch that

[ @ 1] <

Then one has

f dur(Q)el 1o CH(¢) = e T f dur(¢) H(C +Tf)

where (T'f)(z) = SQ% I'(x —y) f(y) - we remark that T'f is also constant over blocks of L.

This identity essentially boils down to “completing the square” or equivalently a change of variable
¢ <> ¢ —I'f in the left hand integral. One has to take some care to be precise however since I' is not positive
definite but this can be handled easily by using a change of variable taking one to the subspace of RILT' AT
where pur is supported. To apply this to compute ([B.37) we observe that for A € [L='A’] one has

Jd“F(C) Ar=1ar s By ax 1 (A r

= ex(T D1 Jd:uF(C) Ba+b,ax : (Ca + (Ff)A)b T

b
1 b U
= ez(ATHi1 Jdur(o Batba X ), (l) :Chir x (Tf)y
=0
b

= SUTDa (D) = D [ 1A, A) fal]

Ay, Aye[L-1A]i=1

which yields the last line of (Z31).
We now end the detour and write out A" which denoted the second order part of K/\,(¢, A) - one has

A —eVar@) o ) o= 3FTH 10 de(o Siafex | S pa
Ae[L-1A7]

4
— s (T Z 0Bk, ¢ o e
k=0

We note that the quantity A’, apart from an overall factor of e’VA’(¢), is just some polynomial in ¢/ or
equivalently a linear combination of the : ¢£, ‘¢, - hote that one will have 0 < j < 4 so all these terms are

relevant. We now specify a choice of the counterterms 60 1,4+ to make A’ vanish.
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Namely, for any k, 0 < k < 4, we let

b
kab<d | (kD) g f\/f
5Bra.ar = —;1{ be } L (3.38)
Br+b
where b
NG T s , b
= J d*z d%y1 - A%y Brgn(z) x | | [Tz — i) flyi)] -
(L=1A7)b+1 e}
Bre+b

We remark that these counterterms correspond to item (i) on the list of the types of relevant terms we
will extract.

We now describe the order 2 in \ part of the Ky, (¢, \) given in (330), i.e. B'. First we investigate the
order 2 portion of Ka/(¢,A), i.e. B. The quantity B involves terms where in ([Z35) where |Yp| = 2 and
Yk =&, |Yp| =1and Yk = &, and Yp = &J and |Yi| = 1. Writing this out one has

B — fdur(é) loiar IS 3 [T [e7@0] s (%100 pa ) x (200 py)

A, Age[LTIA] Ae[LTTA]
A1=As A=Aj0orAs

; ; |
Py [T [e%@]x (e—vA3(¢1> 2p2AS>
Aze[L=1A] Ae[L~1A]
A=A

+ D] I [6_%(‘7)1)] x Qa,(¢1)

Age[L71A] Ae[L71A"]
A=Ay

(3.39)

From the third term we see that the only way the old K can contribute to B is through its explicit @ part
- this is due to the imposed A-grading in our definition of the A-deformed Ka (¢, A). The first two terms in
the formula are precisely the content of second order pertubation theory, that is the V2 terms. Simplifying

the above expression gives

B _ o Var(®) o de(g) Si1ar FC o % S pa)| 4 Qau()e T
Ae[L-1A']

Along with an overall factor e~2(fT)-1ar the quantity B will contain the terms described in item (ii) of
our list of relevant terms that will be extracted. It also contains products of relevant terms from item (i)
on our list - however our previous counterterms 63 1,a- will precisely cancel these products. Finally B also

contains : ¢ ¢, and : ¢4 :¢, terms but we do not extract these - we will leave these terms to form the our
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new Q,. We make this more precise: the order 2 in A part of K'y,(), ¢) is given by

. [e¢]
B — e*%(f’rf)LflA/ x <_5BO,1,A’ X lA _ e*VA/(d’) Z 56k,1,A’ : QSICA/ :001>

k=0
(3.40)

2
+ |B-— 2 6ﬁk,2,A’ : (152/ 0o — (Z 5ﬂk,1,A’ : gbg; :Co>
k=0 k=0

The first vanishes immediately since that is precisely how the §5j 1 A we chosen. We remark that the
second line of the above expression is what we refering to in the earlier paragraph. We will choose the yet

to be defined order 2 counterterms 0/ 2 A+ so that
B = e V& @Q,(¢)

where Q's/(¢) is of the form
Qar(9) = Wi ar: A i0y Wi ar i 0X i

and W5 A, Wg A, are new coefficients.

In particular we choose the counterterms /5 2 A’ so that when writing out the quantity within brackets
on the second line of (340) in terms of the powers : gZ)kA, ‘¢, there are no such terms with k£ = 0,1,2, 3,4.
This fixes the choice

a; +b; <4
6ﬂk A= Z 1 a>=>0.0>1 (al + bl)' ((12 + b2)‘
,2, bb i = U, .z/ al!ag!m! (b1—m)' (b2_m)|
ay,az,by,ba,m 1<m< mln(bl,bg)
/ f
X%C(al,ag\k) « [~ (a1+a2)[8] o CO(O)% «  bim: ! bam
f /8a1+b1 ﬁa2+b2 f
b
k+b=50r6 | (k+b) NG o]
g TR (k0! ) \/ o
5 b>=0 k! b!
Wit

where

3 3 3 3 3 3
dxldedyl"'dyblfm le"'de2,m
(L—lA/)b1+b2—2m+2

bl—m bz—m
Baystr (1) Baytb (w2) T(wy —22)™ x [ M1 —wi) fw)] x [] M@z —z) f(z)]
i=1 i=1
b
AN
\/ = J &z dPyy - dPyp Wirs(2) x [ [[D(@ = 92) f(wi)]
Wity (L=tAn)bH? i=1
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and where C'(ay, as|k) are connection coefficients for Hermite polynomials. More precisely

a1+a2+kegz a1+ﬂ212—k)| (a1+k—a2)| (a2+l2€—a1)| .

|a1—a2\<k<a1+a2 } ar! as!
( >

C(ay,aslk) = 11{
These satisfy the property
ajtag—k

:¢aA1, 0y X :(baAZ, o ZC(al,a2|k) Co(0)™ = — :(;52, o
k

Now considering the §3) 2 A+ given as above we reading the coefficents of : 2, :c, and ¢4 :¢, terms that
are left in ([B40) to give us our formulas for W} o, and Ws as -

Wé,A/ = [3-6le] avg We.a + 8, 6l%] 5._-.3
4 4

Ae[L™A"]

and

/ f _/ f
W5/,A’ _ L375[¢] avg I/V&A + 6L75[¢] + 12L75[¢] —_ 48L,5[¢] ﬁ ﬁ
3 4

6 4
Ae[L™*A"] 4

The Feynman diagrams are given explicitly by

C———0

= ddx d3 [z —
Ba B4 f(LlA/)z z d%y Ba(x) T(z —y) Baly)

/f :J Pz APy We(x) T(z — 1) f(y)
We ( '

L_lA’)2

— — d3 d3 _
Ba Bs f(LlA’)Z @ d%y Ba(x) T(z —y) Bs(y)
and
._/ f
ﬁ4 64 - LL—1A,)3 dgm d3y d3z ﬂ4(x) F(LC — y) ﬁ4(y) ]_"(y _ Z) f(Z)

The order 3 counterterms 63 3.A will be defined as (,g, f)-dependent linear functions of R. This is a bit
lengthy so we need a few preparatory steps before we can give the explicit formulas for these counterterms.
We split the third order part of KAr(¢, A), which we denoted by the quantity C, as C = Cy + C;. Here Cy
contains the three vertex terms coming from products involving pa’s and Qa’s while C; contains the terms

containing RR.

| P
G = -5 2 e”tar ) f dpr () 1o TS pa, pa, pag

A1, Ag,Aze[LT1A]
distinct
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1 _A !
-5 ) e ((b)JdNF(C) elim1ar T pa, pa,

Al ,AQG[L_lA’]
distinct

_ Z e—VAI(¢) JdMF(C) eSL—lA’ f¢ DA, QA2 (¢1 + C)

Al,AQG[L_lA/]
distinct

b N e Q) s Qay (004 Q) (e - 1)

Are[L-1A7]

+ ) [T evae|x Jdﬂr(C) eleorarSCpy 5

Ae[L7TA] \ Ae[L™1A]

A#£A,
and
G- N | TT e | [aur() ehors € Ry +)
Are[L=TA] \ Ae[L™1A]
A#A,

Note that we will not need the detailed evaluation of Cy, but we simply need the remark that it is R-
independent. We remark that we will not extract any terms from Cy. Note that since each R comes with
a A% the quantity C, is linear in the Ra’s.
We now define ,
0Vjar() = ) 0B 0" i
k=0

for 1 < j < 3 so that

3
0Viar(9, ) = 3, 0Via(9)N.
j=1
Then the A* coefficient of K\, (), ¢) is given by C' = C} + C} where
1 5 1 - 5
Ch=e 2T Ni1ar ¢y — e V() (65v1,Af<¢)3 + Vi (0) 5VQ,A/<¢>>> — e V2 Qi (8) 6Bo a0

and
C) =e 2 Ne1ar ) — e Var) 515 A (9)

The order 3 counterterms §5x 3 A/ in 6V3 a/(¢) will be chosen to eliminate the zeroth through fourth order
terms in the Taylor expansion for C| around ¢ = 0 - this is what the removal of relevant terms looks like
at this order. Due to the spatial inhomogeniety of the terms Ra we arrive at our order 3 counterms by
defining counterterms corresponding to each of the unit blocks A € [L~'A]. More concrerely we will define
8Bra.arn, for 0 <k <4, A’el and Ay € [L7'A’] such that

OBraa = . Brsaa, -

Are[L—1A7]
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We then have

=) [T e "0 [ x Jaa,(9)
Ae[L=TA] \ Ae[L™A]
A#A

where
Taran(9) = e 20T irar f dpr(C) 1o ¢ Ry (61 +C)

4 ~
- (Z 5Bk3.an0, O :co> x e Va0 (3.42)

k=0
The quantities 00 3 a,A, are uniquely determined by imposing the following normalization conditions on

the derivatives up to order 4:
T8 A (0)=0

for all A’ e, Ay € [L7'A’] and v such that 0 < v < 4.
Write Jara, (@) = J4(¢) — J_(¢) where

Ji(¢) = e 2TDim1ar J dur(¢) ele—1ar7¢ Ra (41 +C)

and

4 ~
J_(¢) _ (Z 56k,3,A/,A1 :¢k :C()) x erA1(¢l) .
k=0

For any v, 0 < v < 4, we have

J(0) = L9 30T im1ar Jdur(é‘) s FC RY(C) .

Whereas
J-(6) = u(¢) '@
with
u(@) = uad* + uzd® + uag? + ur ¢ + ug
and

v(¢) = vad* + V3¢ + v20® + V1 + Vg

with coefficients explicitly given by

ug = 0S4

uz = 0033

uy = 0} —6C00,

up = 081 —3CBs

ug = 0By — CoPa +3C?60,

106



and

vy = L7,

vy = —L7%py

vy = —L7?9B, + 6cL™p,
v = L3 4+ 30L73¢g,
vo = CL™29lg, 30?415, .

Note that we used the abbreviated notation 5, = d8k.3.a7.A,, Bx = Br,a, and C = Cy(0). Using Maple we
found for the Taylor expansion of J_(¢) up to order 4:

1
J_(¢) = e x {uo—l— (ugvy +uy) P+ <u1v1 + ug vy + 2u0v12+uQ) &?

1 2 1 3 3
+ ulvg+2ulvl +u2v1+u0v3+uovlvg+6uov1 + us (b

1
-|-(U4+U1U3+U1U1’02+6U1U13+U0’U4+U0U11}3

1 1 1 1
+=ugve’ 4+ = ugva 12 + — ugv1t + ug vg + §u2012 +u3v1> ¢4} +O(¢5) .

2 2 24
Write a,, = e~ JSFV) (0). We therefore have to solve for wg, ..., us in the triangular polynomial system
ag = Up
a1 = U1 +ugvy
1
§a2 = uz+u1v1+uovg+§uov12
1 1 9 3
6@3 = U3+u1v2+§u1v1 +U2U1+UOU3+UOU102+EUOU1
1 1 3
ﬂcu = U4+u1v3+u1v1v2+6u101 + Ug V4 + U V1 V3

Up U Up V2 U Ug v Ug U Ug U us vy .
2 0 U2 2 0v2 Vvl 24 0 vl 202 2 2V1 3 V1

This is straightforward but leads to complicated intermediate formulas which we skip. We then replace

the v's by their expressions in terms of the 8’s. Finally we use the obtained formulas for the u’s in order to

get
0Bs = wa
03 = wug
082 = us+6Cuy
061 = wui +3Cus
680 = wuop+ Cus +3C%uy .

The final result, obtained with the help of Maple, can be found on [3, p. 23].
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Using the notation

1
a; = exp [CL2[¢]52 +302L g, — i(f’ Ff)LlA’]
—i[¢ a0 FC p(d)
K L9 J dur(¢) élera 1< RY (¢) (3.43)
The final formulas are of the form A
0fk = Z My a;
i=0

where the matrix elements My, ; are given by finite sums of the form

My = Z # i [t tin)[9] B, -+ B, (3.44)

with 7 > 0, n >0, and 1 < [,,, < 4 for every m, 1 < m < n. Here the symbol # stands for some purely

numerical constants. Furthermore, the terms which appear satisfy the homogeneity constraint

bW+ +ly,—2j=k—1. (3.45)
We also have a limitation on the range of allowed n’s:

n<(k—i)+2r_2kJ .
This completes the definition of the d3j 3 A’,A, and therefore of the order 3 counterterms

0Braa = . Brsaa, -

Ae[L-1A7]

We then define

L$H(R) =

with the previous choices for the §5i 3 A7 A,. This makes LB 3 (ﬁ, f)-dependent linear operator on the
space where R lives (in particular R and both the left and right sides of the equation above are seen as L

indexed vectors of elements in C) (R, C)). We have arrived at a complete definition of
KA, @) = A2e V@@l (¢) + AT+ 3T + O(\Y) .

Looking to the desired output of the RG map we remark that the new couplings ﬁ,’% A+ as well as the quantities

0bas are fully defined. We just need the new R. It is given by

v =LYV (R) + €par(V)
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where the formula for remainder term is

Era(V)©0) = 5§37 Ka(ro)|p, (3.46)
Yo
1 dA
Yo jg mKIA/(A,@ (3.47)
o1
+ (e_VA’(¢) _ e—VA/(@) QIA’(¢) (3.48)

where 7 is any positively oriented contour around A = 0, and ~p; is any positively oriented contour which
encloses both A = 0 and A = 1. With these choices our new K’ takes the form of our old K, that is

Ky o),y = Qur(@)e'> ) + Ry,

In [I8] the three terms for the remainder (3.40) are respectively denoted by Rmain, Rs3, and R4. It is
important to note that in the first term we set R = 0, which means that all 05 3 A+ are set equal to zero.
Also note that E(E’f)(R) corresponds to the Rjinear notation in [I§].

To finish setting up the notation we write for 1 < k < 4

Era(V) = —6Bkaar

whereas

bo.ar(V) = 8fo,3.a
In this way the RG evolution for the couplings is
Bioar = Brar = 6Bk1,80 — 0B 2,a0 + & (V)

for 1 < k < 4. and the vacuum renormalizations are given by

Sbar[V] = 0B0,1,a7 + 0Bo2,Ar + §O,A’(‘7)-

3.6 Estimates on the extended RG map

While we won’t directly use the following lemma to prove the main theorem of this section (Theorem B.2])
it will be crucial to leveraging the results of that theorem - in particular it allows us to use analyticity and
strong uniform bounds to get crucial Lipschitz estimates that will be used when analyzing the RG flow. For
a reference on the theory of analytic maps in the complex Banach space context see [20]. Below we use
the notation B(zg,r) for the open ball of radius r centered at xo. We likewise use B(zg,r) to denote the

corresponding closed ball.

Lemma 3.2. Let X and Y be two complex Banach spaces. Suppose r1 > 0 and ro = 0. Let xg € X and

Yo €Y, and let f be an analytic map
f+ Blwo,r1) —> Blyo.r2)
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Let v € (0,3), then for any x1,x2 € B(zo, vr1)

ro(l —v)
r1(1—2v)

IN

1f (1) = fa2)l|

l[x1 — 22| -

Proof: Suppose 1 # xo satisfy the hypothesis of the proposition. For z € C define

xr1 + To T — T2
o) =1 (P52 T )

2 2

We first find a bound on |z| which guarantees that the argument of f is in the ball B(zg, 7). Since v < 1,

we have
27“1(1 —l/) > 2ury = ||33‘1 —J)o” + H$2 —l‘oH = ||JJ1 —$2|| .
Therefore or (1
R = 2nll=v)
|1 — 22|

Now the open interval (1, Ryax) is nonempty, and for any R in this interval as well as for any 2z with 2| < R

we have
1+ o xr1 — To

Let v be the circle of radius R around the origin in the complex plane. For such an R € (1, R,.x) we have

R
—x0|| <vry + §H‘T1 _‘T2H <Tri.

by Cauchy’s Theorem

$a) = faz) = 90) — g(-1) = & § 2L s

Hence

1 1 2Rry
1) = Fll < - x 2nRr x mas o = g

We now minimize this bound with respect to R € (1, Ryax). Since R — Rilj is decreasing on (1, ),

1

. f 2R 2Rmax
1mn = .
Re(1,Rmax) R2—1 R2 —1

max

Inserting the formula for Ry,ay in the upper bound for || f(z1)— f(22)|| and simplifying the resulting expression

gives the desired Lipschitz estimate. ]

3.6.1 Exponential Bounds and Stability Estimates, and comments on the Func-

tional norms

The background field ¢ and fluctuation field ¢ that appear in expressions will be estimated by exponential
bounds. For the background field ¢ this exponential bound will taking advantage of factors e=P19" while for
the ¢ we will steal from the Gaussian measure pur and so we will use exponential estimates using er¢” for
some & sufficiently small (see Lemma [B]).

At this point we remark that for certain stability estimates it will be crucial that the possibly complex

¢* couplings B4 are “mostly positive real”, by the assumptions of Theorem B2 they will sit in an open ball
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of the form |84 — g| < % g With g > 0. By elementary trigonometry it easily follows that T%’i “‘ > Y3 We of

course also have 1 < §R64 <

2

2

Lemma 3.3. [Lemmas 8,9 of [3]]
VjeN, Vk >0, V¢ € R we have

J

. i\ 2
2 (L) b
while Yg > 0, ¥y > 0, ¥B4 € C such that |84 — g| < 33, V¢ € R we have

. N
6 < (Z) " (Y RBy)Her R o <2]> " (yg)~ B0
e (&

Above we use the convention j7 =1 if j = 0.

Proof: The first assertion follows from noting that the function u%e* for u > 0 is maximized When u = %

and then applying thus fact with w = (2. For the second asserition one notes that the function ute™ for

1 %54

u = 0 is maximized when u = %. Now simply apply this to u = y(RB4)¢* and use 5 < for the second

inequality. ]

Lemma 3.4. Let A’ be a block in L. Let the real parameter o satisfy 0 < a < %L G=2leD . If fis a
real-valued function on L=YA" which is constant on unit cubes and such that ||f||r= < %L7%(372[¢]), then
for any finite set X = [L~*A’] we have the bound

fdur eSL 1ar fC H eagA <2\X|€2(fFf)L 1ar
AeX

Proof:

First note that one can view the integral we would like to bound, I, as an expectation with respect to
the centered Gaussian vector (a)ae[z-1a/ in RE® with covariance E(Ca,Ca,) =Ta, A, = T'(x1 — x2) where
21 is any point in Ay and likewise for x5 in As. Let uy,...,urs be an orthonormal basis which diagonalizes
' (seen as an L3 x L3 matrix). Let \1,...,\rs be the corresponding eigenvalues and suppose we arranged
the numbering so that Ay = Ay > ---. Note that the matrix I' is singular and therefore only positive semi-
definite, because of the property that § -1 ¢ = 0 almost surely. We therefore introduce m = max{i|A; > 0}.
We now have that ( has the same law as 2111 a;u; where the a;’s are independent centered Gaussian random

variables with variance )\;. Thus

2
2 m
% D faauia+a ), (; ai“i,A)

Ae[L™1A"] AeX
1<i<m

I = 2TN;) "2 X day...da,, exp | —
I

i=1 Rm

WMS

N =

Since X < [L71A]

> <2ai“i,A>2 Y (Z azu,A>2 = iaf

AeX Ae[L—1A]
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because of the orthonormality of the u’s. Therefore a sufficient condition for the convergence of the integral
is that 2a\; < 1 for all 4, 1 < ¢ < m. Granting this condition for now, we define fi ZAE[L*A/] fau; A and
use the standard completlng the square’ trick by writing
lhal 1 1
BRI  PISVC

1 7

NgE

(a;i — Xifi)? EAF

7

and changing variables to a; — \; ﬂ Hence

SO0

3

i=1

N)\)—l

m 2
N2 (2 . +Aiﬁ->ui,A)

i=1

[N
D=

@
Il
—

I= H(QW)\Z-)_% xf day ...da, exp | —
i=1

m

|8

Note that

Z Ai ;2 = Z Z )\ifA1fA2U’i,A1ui,A2

i=1 i=1 Ay, Ase[L-1A7]
= >, faifala;a,
Al,AQG[LilA/]

(f7 Ff)L*IA’

by construction of the u’s. We also have

(a;i + Nifi)uin = Ca+ Z Z Nifagui A, wi A
i=1 Are[L-1A]
Ca+ Z Laafa,

Are[L-1A1]

= (+Tf)a

s

where we reverted to the use of the (s variables of integration which have the same law as the quantities
>, aiuin, and where (I'f)(z) denotes SQJ d3y T'(x — y) f(y). By the finite range property of I' we have, for
reAe[LTA], (Tf)(x) = (Tf)a ZAIE ~1aqT'a,a,fa,- As aresult of the previous calculations

I =exTDimrar x Jd,ur(() e Taex ((Chlatca)

We now expand the square in the last exponential and we also introduce the covariance matrix I'x for the

marginal random vector {|x = ((a)aex in order to write

[ = 3UTH 1 ataATDx o Jdurx (Cly) €l Clo+2aflx Clx

where the inner products are the ones of [?(X), namely (w,w') = ¥,y wawly for vectors in [*(X) which
are indexed by boxes in the finite set X.
Let (vi)1<i<|x| be an orthonormal basis diagonalizing the symmetric positive semi-definite matrix I'x,

with eigenvalues u; arranged so that pup = ps = -+ and let n = max{i|p; > 0}. As before, we have that the
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random vector ¢|x has the same law as ;" | b;v; where the b; are independent centered Gaussian random
variables with variance p;. Following this change of variables of integration ((|x,(|x) becomes "
whereas (I'f|x,(|x) becomes > | g;b; with g; = >\ (L'f)avia. Hence

fdb e 2# +ab +2agib;
271'/,LZ

zlz

Jd,upx ({lx) eClx ClxF2adl flx Clxy

<:f

-
Il
—

—1 .
\/m \/ 2a) o o3 (K 20) (209

_ . ,
1 e?a = 2:1;; gi]

RYZR

Il

-
Il
—

I

&
I
—_

provided 2apu; < 1 for all 4, 1 <i < n.
Now p; < ||[T'x|| where the latter quantity is the operator norm of I'x induced by the norm on [?(X)
coming from the inner product ¢,-). For v a real vector in {*(X), we have |[Lxv|]*> = Y o (Txv)i =

Yaex (Tw)i where w € [*([L~'A']) is the extension of v by zero outside X. Thus

ITxolP< >, (Txw)i = [[Tw|* < [|T|P[w][* = [|T[[*[o]*
Ae[L-1A7]

As a result ||[I'x|| < [|T'|| where the latter is the operator norm of the matrix I' coming from the inner
product norm of *([L~'A’]). However we have the bound ||| < [|T|[z1 = §g |T(2)|d*2. Indeed, given
w € I*([L~'A']) which we can identify with a function w(x) on Q) with support in L~'A’ and which is

constant on unit blocks, we have

el = [ [Cw)@F ¢

J.QSXB Iz —y)T(z — 2)w(y)w(z) &3z &>y d32

N

LMJNx—w|Hz—aumwuwwn&x@y&z

p

N

1 5 1 )
J-ng IT(z —y)| T(z - 2)| <2|w(y)| + §\w(z)| ) d3z a3y d3z

1
2 x 3 % Tl

Therefore from Corollary Bl we get ||T'|| < ||T'||p: < TLB 241, Since the \; are bounded by ||T'|| (the case

where X = [L='A’]), the hypothesis a < %L“O”LQ[‘#] implies that the previous convergence requirement
2a\; < 1 is satisfied and also that not only 2au; < 1 holds but so does the stronger inequality 2au,; < %

From the latter we have 1_’5(’;M < 2u; and thus

JdNFx(dX) el 20T flx Clx) - < H(\/iemzmg?)
i=1
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x| V2 L
< oo [ YR -G2e) N 2
2 eXp< . ;gz

where we used n < | X/, a < %L*(?’*QW]) and p; < %L?’*Q[‘ﬂ. Besides, gi = > acx (T'f)avia = (v, Tf)]x)

and therefore
IX]

2,98 < Do (THIx)* = (O h)lx, (THIx) = (Of.Tf)x -
i=1

i=1

But ([f,Tf)x = Xacx(Tf)A and clearly [(Tf)al < |[T|[z1|lf|lze so (Tf.Tf)x < [X| [IT][7.]1f]17.
Putting all the previous bounds together we see that the desired inequality holds provided

2
exp | L 1| < v

which is true since, by hypothesis, || f||L= < %L_%(3_2[¢]) and % x 2log2 ~0.980... > 1. O
Now we state the key stability bound that allows us to use e~V (®) to control growth in the field ¢ when

using our norm || - ||ag,¢.h-

Lemma 3.5. Let U(¢) = as¢* + azd® + axp? + a1¢ + ag where the possibly complex coefficients ag, ..., a4
satisfy |ag| > 0, Rayg = §|a4|, |las| < % log (1+27\/§> lag|3 for k =1,2,3, and |ag| <log?2. Then

1. the condition

2—1
0<6< \/>4 O I
implies
eV |0,6.0 < 275 Ran)e”
for all p e R;

2. the condition
(vV2—1)?

1
x |aq|™3
e

0<0<

implies
eV o0 <2

Proof: It follows from the definition of our seminorms that
9 gn
=U(¢) _ o~ RU($) n,—U(¢)
e llog,p,0 = € + §_1 p ‘D e ‘

where D denotes the differentiation operator ﬁ. An easy induction provides the following explicit formula

of Faa di Bruno type for the derivatives of functions of the form ef(#):

k
nef@ = Y L _ m; 1)
el = 3, ! 2, gl (ED f(¢)> el®) (3.49)

k=0 mi,....mp=1
Ym;=n

o

This will be used in order to bound the quantities |D"6_U(¢)|. First, let us introduce the notation a =
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and r = 1 3 log ( ) We have

4
~RU(¢ Z Ray)é

from the hypothesis Ray > afas|. Using the assumption |ay| < r|as|5 we then obtain

RU(9) < —3 (Rax)g* + i (as||o]) + aol

where Qy (z) = —$a*+r(23+2?+x). We note that with our numeric values of 7, a one has sup,-, Q1 (z) < 3r.

As a result
e~ RU(9) < = 3(Raa)¢"+3r+|ac|

We now use the formula ([3.49) and write, for 1 <n <9,

n k
D) — 70 Z lu 2 ! 2 el [[(=p™U
= g

1<mq,....mp<4 1=1
Ym;=n

Using the condition ¥m; = n for handling the 6 exponents we get the bound

P |pre-tt0)] < e Z Loy H[Q”“

n'
1<mi,...mp<4 =1
Xm;=n

by (b)']. (3.50)

We now assume 6 < 71|a4|*i for some suitable v; = 0 to be specified later. We insert this inequality in

E350) and pull out ;>™ = ;™ before throwing away the constraint Xm; = n which results in

k
on n — _ n = 1 ‘a4 — m
L ‘D mm’ < e RUG) X;lg <§ |D U(¢))

—_m
4

|aa|
m!

< " exp ID"U(¢)]

4
—RU(¢) + )]

The individual quantities in the last exponential are bounded in terms of z = |a4|1|¢| as follows:

aa| T |DU(9)| = aa|™F x |4asd® + 3azd? + 2a2¢ + a1
< 423 + 3ra® + 2rz + 1

|a4| ’Dz ‘ = |(L4|_% X |6a4¢2 + 3as¢p + CLQ‘

< 6x2+3rm+r,
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|a4| 1

DU ()] = aa| ™% x [4aag + ag]
< dx+r,
whereas .
= )| =1

Therefore ,

3 |“ L DPU(@)] < 42 + (31 + 6)2 + (5r + D) + (3r + 1)

m=1
and

a4~ 7 1 1
~RU($ Z Bl 1m0 (0)] < —5(Raa)o + Oa(lasl o) + fao

where

Qa(z) = —%az4 +(r+4)2® + (4r+6)2% + (6r +4)x + (3r+1) .
We remark that sup,.,Q2(x) < 918785. We denote the latter numerical constant by M. The previous
considerations now give

||€7U(¢)||6¢¢6 < 6*%(%@4)¢4+3r+\a0|

9
1
+ Z " exp [—2(%(14)4254 + M + |a0|]

n=1

< e 3Manst | laol o |:e37" LMy M ]
L—m

provided ;1 < 1. If one requires the stronger condition v, <
3r

then €3 + eM x % < 3+ 2eMyy.
= ”T‘@ If we now set v = 5 e~ M which clearly is less than % then
e’ 4+ 2eM~; = v/2. On the other hand, by assumption on ag we have el®| < /2. The statement in 1) is

therefore proved.

From our choice for » we have e

For the statement in 2) concerning the bound on |e=V(®) |54 o = [|e7V(?)||54 0.5, With derivatives taken at
zero, we follow the same steps. However, the situation simplifies considerably. Indeed,

9

~U@)|., , — R0 | N
le log.0 =€ Z p

Qb

Dner(qb)‘

can be bounded as we did before, under the new hypothesis 6 < 72\(14|_i for suitable v, € [0, 1), by the

estimate
4

F-\S

|€_U(¢)|a¢79 < e—Rao + 72

X exp
L=

DU ()

Now

m
4

|D™U(0)] = Z |ag| ™% |apm| < 3r+1.

4
3 el
m=1
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If one imposes the condition v, < %7 then
67V |ap0 < el x [1+ 2793 +1] .

Because of the chosen value of r, one will have 1 + 2’}/263T+1 = +/2 if one now sets Yo = (vV2-1)* ~ (0.0631...

e

which is less than %. The statement in 2) then follows easily. O

We will now specify the numeric parameters

PN

c = 2_%(\@ — 1)e 918785 and co =2

which are used to calibrate the parameters

1 3+¢
1 and hy = co L%

for the seminorms we use.

With these choices the norm

11B[lg = max § [R(®)|og,hs- §° 5up [[R(D)[[ 06,6,
PeR

is now unambiguously defined in terms of the calibrator g. We give one more lemma before stating the main

estimates theorem.

Lemma 3.6. For all unit cube A’ and for all subset Yo < [L'A’] we have

voeR, |[[] e vaen <2
AGY() 6¢,¢,h
as well as
H e—VA(¢1) <2.
AeYo ¢, hs

If Yy = %3 (which holds if |Yo| = L3 or L? — 1 because L = 2) then we have the improved bound

4

]

VoeR, < 2e 16

H e~ Va(e1)

A€Yy

o¢,b,h
Here ¢1 denotes the rescaled field L~1%1¢.

Proof: One needs to unwrap the definitions of the quantities above and apply Lemma B3 keeping in mind
that we have ¢, = L~[?]¢ but derivatives are with respect to ¢.

3.6.2 Main Estimates Theorem

Below we give a version of [3] Theorem 4] which gives the fundamental estimates on the single iteration of
the map RGex
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Theorem 3.2. 3Bp, >0, VL =p' > 1, 3By, ..., By, Bge = 0,
Jeg > 0, Ve € (0,¢0], and A’ € L, then on the domain

Baa =3l < 33
|Bk,A| < g for k=1,2,3
VA e [L71A], Weal < 7> for k=25,6
| fal < [~B-[¢D
IIRalll; < g%
the maps &g ary .., Ea,nr, Lar and Eg A+ are well-defined, analytic, send real data to real data and satisfy the
bounds
|€k.ar (V)| < By AeFLuPl(A/] INIIE for k=0,...,4,
B.f _ 3-5[¢] _
ES! (R)lllg < BreL*™ | max  [[Ralllg -
and

- 1
1€r,ar(V)[llg < Breg® -

—

We remark the above theorem is formulated completely locally - it gives estimates RG.:[V]as that are
depend on hypothesises that depend only on those components of V that lie in L™!A’, i.e. {Vataern-—1a1-

Some important facts about the content of the above theorem and how we use it are

(i) In the statement of the above theorem L is an arbitrary positive integer power of p - € will then need

to be taken sufficiently small depending on how large L is.

(ii) While this is not done right now we remark that L will be taken large sufficently large and then fixed
to beat the L independent combinatorial factor Br, to guarantee that the linear map Eg’,f (1) is a

contraction.

iii e higher order contributions in enoted by &g A /) are of order R g% - what’s important is by
The high d tribut Rd d b a(V f order Bpe
taking e small we can make this negligible relative to the linear flow since Br¢ depends only on L and
so the remainder comes with an extra factor of §§ - then by making e sufficiently small this term can

be made negligible compared to the linear term.

(iv) The non-explicit counterterms {Cx as [V]}izl that will appear in the exact flow equations of the coupling
constants {8k a/}i_, are of order g% and since % > 2 these exact flows will be primarily governed by

the approximate flows given by second order perturbation theory.

We abuse notation and will write g, for our approximate fixed point in Euy, using the notation (84, 3, 52, f1,
W5, We, f, R) for an element of £, then by g. € Ex we mean the element with 84(z) = g4 as specified in
(1) and all other entries set to 0. The estimates above then show that RGey is an analytic map on any
open ball of radius less than 1 around g, in Ee.

Analyticity methods are crucial to our approach. As we mentioned before complex analyticity in f and
4 of the moment generating functions is what allows us to recover moments with the necessary n! bounds.

Additionally complex analyticity of the various maps involved in our RG analysis will be crucial to prove
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Lipschitz estimates for certain maps that are given by contractive linear part and a higher-order non-explicit
terms that we only have uniform bounds on. This is why we work with complex Banach spaces for all of our
parameters even though in our final application we are mostly concerned with real data.

In [3] the proof of Theorem involves around 54 different lemmas. Our strategy for proving Theorem
(and the nature of the actual theorem) closely follows what is done in [I8]. Our work is more general
in the sense that we work in a setting where our RG data is not translation invariant, on the other hand
since we work in the easier hierarchical setting we don’t have to worry about polymer activities (non-local
functionals of the field).

We do not prove Theorem here, all the steps are giverg in explicit detail in [3]. For the exposition

here we will restrict ourselves to explaining how one proves Ei’,f (+) is contractive.
Proving £%/ is contractive

First we give a simple estimate helpful for working with one of our seminorms:

Lemma 3.7. For any 0 < k <9 and v € (0,1] one has
||¢k||aw,w,h 27 x rfﬁg*zev(%m A)ot

Proof: We note that

k
1" lown = (h+ )" = 3 ( ) (erg™ )l

n=0

We use Lemma B3] to write, for v € (0, 1],

o (2 par-tomo
€

which proves the assertion. ]
Throughout this whole section ¢ should be seen as a shorthand for L~[?l¢ - this corresponds to the
rescaling of the field.

Lemma 3.8. For any K € C)4(R,C)

K (@1)llog.01.0 = K ()0, 61,2161 < (1K (P)]oy 011

(K (P1)0g.hse = 1B (¥)log, L-to1n, < [K(¥)]oy s

For K € C)4(R,C) such that for some n one has %K(d)) =0for0<j<n

|K(61)|og.hy < L™K (4)]0y, 0,y

Proof: The equalities in the first two assertions follows from definition of the seminorms and the chain rule,
the inequalities in the first two assertions follow since L~[¢] < 1.

For the third assertion we assume that n < 9 since the inequality is trivial otherwise. Now one only needs
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to observe that

IK(61)|og0m = [KW)loy,r-to1n, = Y,

N
3
3
o
1o
=
*
e

J!

We remark that we similarly have the bound

K (D)]og,0,L061h, < L_n[¢]|K(¢)|6¢,0,h*

for K(¢) with KU)(0) = 0 for 0 < j < n. This is the form of the third assertion that will appear in our
lemmas.

The key point of the above lemma is that if our function has its first few derivatives at 0 vanish then
rescaling gives us a strict contraction in the kernel seminorm. The contractivity Di’,f will come from the
“normalization conditions” we implemented in its definition which require the vanishing of the first four
derivatives - this will give a factor of L=°l?] after rescaling which is enough to beat the volume factor L3
that will appear in the linear flow for R. However we are subjecting the kernel seminorm to both a rescaling
and a fluctuation integral - as we discussed earlier controlling the integration requires more than the kernel
seminorm. This is why we have the supremum norm inside of ||| - |||;. However this adds a new challenge,
as now one must prove a contractive estimate in terms of ||| - |||5.

The main tool for dealing with the above problems are the following two lemmas which relate our

seminorms.

Lemma 3.9. For all K € C4(R,C) and for all o € R we have

-2 2 _
K @llow.rny < Ore™ " x limwm,h* + b sup I () lov.s.
€

where

j 3
01 =1+511 x max <> .

0<5<9 \ 2e
Proof: Recall that by definition
9 pn
[LCDIETE n—’*!‘|K<”>(a)\ .

n=0

The term with n = 9 is bounded by writing

I 9 K _
9*T|K(9)(U)\ = hah™® x alK(g)(U)l < hph™ x zlégHK(Qb)Haw,w,h* -
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For terms with 0 < n < 8 we use a Taylor expansion around zero of order 8 —n so that the integral remainder

involves (9 —n)-th derivatives of K (") i.e., 9-th derivatives of the original function K. Indeed, one can write

K™ (5 2 H + )O)+(8—n)!fo(1s)8 "KW (s0) ds

and therefore

o)

—n

, ) K () g

m=0

1 9 9 fl .
tgaylol T x9hTT sup[|K A 1— )% ds .
I (wegll (¢)||6w,w,h> =)

We use Lemma B33 with £ = hy 2 in order to bound powers of |o| by

m

my\ 'z —2,2

lo|™ < (2—) x hmels"o
e

which inserted in the previous inequality gives

8—n 9-n
(n +m)! 9! h n
X [ Z W|K(¢)|aw,h* + mh h ?;ég ||K(¢)||0¢ﬂ/’vh .

Putting together the bounds for the different values of n we obtain

m=0
1K ()lop,0,ny < hah™° sup () |ow .h
€

. l 8 -n
h=2p2 (n 4 m)! 9! 9,9
A N} e —_n%h K :
+elx (02%9(26) > > K §= e | @) wihs gy fp‘éﬁi” ()l low.w.n

n=0

The result as well as the given value of Oy then follow since

:29—1:511.

]
1
3
§:§
||Moo
|
3__

Lemma 3.10. For all K € C}4(R,C), B4 € C such that |34 — g| < %g, ~v€(0,1] and ¢ € R we have

_9 4
1K (9)]]og,6,n < O2y 17RO l|K( Noy,n + L~ zup||K( )||aw,w,L[¢lh]

with

J

Oy =1+ (1+c")?—1) x max <j>4 .

0<j<9 \ 2¢e
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Proof: We proceed as in the proof of the previous lemma and write

1o B LI1p)9 _
a 1K) ()] = L9 %\K(g)(qb)l < 7991 « ZugHK(ZD)Haw,w,Lwh
. €

06.6,h- For the other terms with 0 < n < 8

in order to handle the n = 9 term in the sum defining || K (¢)

one has, as before,
(n) ) |¢|m | 7, —(n+m)
KOG < 3 s mt i R
1 9— _
P x 9Y(LITp) 0 K ,
+(9_n)!|¢>l x O(LI""h) Zl;gl\ (©)loy,p,Lten

We this time use Lemma [33] in order to bound powers of |¢| by

o1 < (2)F g et
2e
Note that v~ % < 'y_% since0 <vy<1,0<n<8and 0 < m < 9—n. Besides g% = (cflh)m and therefore

S

> % ’Y_% % 67(%54)054

h"™ j
R (n) < ~
n! K ()] < (02;‘2(9 <2e>

8—n —
hmer™ b _ 9! e —(9—m _
> — th=(+m)| )¢ — = p RO e O (L R) 0 sup || K
x l (n+m) IK(@)lown + Zrg— TR sup 1K (W)lloy, g e

| |
me0 m! n:

Altogether this gives the estimate
15 ()log,pn < L] SUp 1K (¥)llog. s, te1n
€

. Z 8—n
TN x4t x B! ntm\ .,
+ (0@??9 (26> > Xy txe x Z m ¢ [K () |ow,n

m=0

9\ ~(9-n)  —9[]
L K .
+ (n) ¢ 3}2; K ()|, L1610

The result with the given value for Oy follows from this last inequality since

58y n-+m 5 9 (9—n)
—-m _ —1\9 —1\9 1 _ —(9-n
ZZ( . )cl = [T+ 1] <@+e7h) -1 Z(n)cl .
n=0m=0 n=0
O
Now we recall that from our definition of the extended RG map one has
(3.51)

2 [T @) [xJaa (@)

Are[L71TA] | Ae[L~1A"]
A#NAq

LY (R) =
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where for Ay € [L71A’] we have
Jarna (0) = Ji(0) = J-(9) (3.52)

with
Ji(9) = e 2T imiar f dpr(C) eSe-1a < Ry (61 + €)

. . (3.53)
(Z 6ﬁk,3,A’,Al . st :C()) X @7VA1 (1) .
k=0

N
S
I

Note that the notation above suppresses a lot of dependences, in particular the numeric quantities
00k.3.a7 A, are defined as linear functions of Ra, - see (B:43) and BZ44]).

The next lemma gives a kernel seminorm bound on J,, using Lemma to control the fluctuation
integral inside of J.

A notational note: to realize the rescaling contraction we get bounds on quantities of interest with respect
to a “shifted” kernel seminorm |- |54 1415, , then the rescaling contraction will appear when we unshift Lh,
to hy.

Lemma 3.11. For all A’ € L and Ay € [L=1A’] the quantity J. (¢) satisfies the bound
| T4 (D)o, Lie1ny < O3l[|Ra,llg
where Oz = 401 X exp (2*%).

Proof: From the definition of J, (¢) we immediately have:

|J+(¢)

_1
00, LI hy <e sRUETS) -1 a0 Jdur(c) eSL—lA/(éRf)qRAI((bl + <)|9¢,L[¢]h* .
By the definitions of the seminorms and the chain rule one has
[RBay (91 + Olog,Lio1ny, = [[Ray (01 + Ollog,0,001n, = [[Bay (¥ + Olloy,0,ns = [[Ray (W)lloy,¢ hs -

From Lemma we then derive

—2 2
[Ray (61 + Qlag Lo, < O1€"* A1 | |Ra, (0)|oy g + W3 " iugllli’m(iﬁ)\law,w,h
€

—2 2
< 01" A |[Raylllg (1+h3n~"57%)

—2
< 205" || Ra, |||

9

In going to the last line we remark that hh 252 = )y %572

, now since g is O(e) we can make this term

arbitrary sufficiently small. As a result

[T (D)oo Lieln, < e~ 3R -1a0 5 20 % I1Ra,lll5 % Jdur(é) oSn-1ar(ROCPEIA,
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Now by our choice of ¢, we can use Lemma B4 with o = h? to the effect that

1

1
|J+(¢)|a¢,L[¢’]h* < 40 x |||RA1H‘§ X €exXp {—2%(107 Lf)p-1a + 5(%f» F%f)L—lA’}

holds. Note that
%(.f) Ff)LflA’ = (§Rf7 FéRf)LflA’ - (C‘}f7 F(\}f)L*IA’

and thus )
|J+(¢)|a¢,L[¢]h* < 40; x [[[Ra, [l % eXp{2(%f7F%f)L1A’} .
But
OFTSmal < |ty M) 1356 130)
< flerarllfe x L2 x [I0]| 1

L
V2 V2

because of our assumptions on || f|| in Theorem B2] the finite range property of I' and the bound in Corollary

BTl Inserting this last inequality in the previous estimate for J, gives the wanted bound. ]
In order to estimate J_(¢) we will need estimates on the third order counterterms which due to the
consequences of the enforced normalization condition boil down to using the estimate of ([BI2) along with

some knowledge of the general structure of the counter-terms.

Lemma 3.12. For all A" € I, Ay € [L7'A’] and integer k such that 0 < k < 4 the 63 quantities defined in
3.5 satisfy
—k
108k8.8080] < Ou x (LI ) " x [[|Ra Il

and

) | < Oy x L37FIE) R g
08k,3,47| 4 AIGIFL%%A,] 1[Ra,lllz

with

4 n
(3
Os =48 x 03 x > > |#rijmal 2 (2>

=0 j,n,l
where #; jn,1 denote the numerical coefficients in the explicit formulas produced by Maple from §3.5.2.
Proof: Recall that

4
0Braana, = Y, Mya;
i=0
where
1
a; = exp [—CO(O)L_2[¢]BQ,A1 +3Co(0)2L~4lB, A, — (1T f)L_lA,]

o [i6] o fdur(C) elrar IR (0)

o [_CO(O)L_2[¢]B2’A1 + 300(0)2L_4[¢]54,A1] x J$(0)
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and
My, = Z #ri i Co(0Y L= Hlolg (g A,

Jiml

Using [Ba2,a,| < G, [Ba,a,| < 23, Co(0) < 2, and L[] < 1 gives the bound
jaif < |72(0)] x 7 < 2170(0)] -
for e taken sufficiently small. By definition of the seminorms
7O < AL hy) 1T (0) o Lrn, -
Since i < 4 we then get from the last inequality
Jas| < 48(LI i) 7| T1(0) a6, Liorn, -

Now recall that the sum expressing the My, ; is quantified over j > 0, n = 0and [ = (I1,...,1l,) € {1,...,4}".
For the numerical coefficients #p, ; j .1 to be nonzero the constraint

Dot oty —2f =k —i

must be satisfied. The /3, a, are bounded by a worst case scenario of 3g. We can thus write

(g 3.\"
M il < D [#hoigina |27 L7000 5 <29) .

Jin,l

We now consider two different cases in order to continue estimating the |Mj, ;|.
1st case: Suppose i > k. Since the I’s are positive, we have L1+ +m)l9] < 1. We use the coarse bound

g < 1 and then simply write

| Mpi| < Z [#ki,5,m0

27 % (3) )
: 2
gyl

2nd case: Suppose ¢ < k. Since j = 0, the previous constraint implies

Wt Al =2+hk—i>k—i

and therefore L=+ +n)[¢] < [=(k=D[¢] One can also infer that n > 1 since Iy +---+1, =k —i > 0. The

bound on |Mj, ;| which results from these remarks can be reorganized as

. —(k—1) 3\" »
| Myi] < Z |#kig.n.0]20 X (h*LW]) X <2> ghy ™" .
j.m,l

Since 0 <i< k<4, hy >1and e <1 we have

3+e

. P 4
P < hl = (24LF) <Lt
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By taking e sufficiently small (dependent on L) we can assume 8gL* < 1 so

| M| < (h*Lw])i(kii) X Z |[#k,i,5m,0 ]2 (;)

gl
which is the wanted bound for |M}, ;| in this second case.

We now combine the previous consideration and get

4
16Br,3,808, | < X Myl lail + Y [ M| |asl

i=k o<i<k

4 n
. (3
< DA O oy 3 a2 (3)
i=k

gl

_ ) 3\"
+ >0 8L hy ) TR (0)og ising X D [#ksigna|2) X <2) :

0<i<k Gl

Since LI?l and hy are greater than 1 we have (LI?1h,)~" < (LI?Ih,)=% when i > k. We can then more

conveniently write
4 . 3 n
3810, < )L Ol i, * 2 3 Honigmal?’ < (3)
i=04,n,1

from which the desired follows thanks to Lemma[3.T1l Finally the second bound on |0k 3 /| follows simply
by summing over A; € [L~'A’] and discarding the factors hy* < 1. O

Lemma 3.13. For all A’ € L and A € [L7YA’] we have

|Tara, (D)]og, Lis1ny, < Os|l|Ra,lllg

where Os = O3 + 2500;.

Proof: By definition
Iara () = T () — J-(9)

where
Ti(@) = e 3T Damiar f dpur(Q)eSe—1a < Ra, (61 + C)

and A
J,(QS) _ (Z 55k,3,A/,A1 zd)k :C()) % e—VA1(¢1) .
k=0
By Lemma B.11] we have
[T (D)log,Lt61hy < Osll|Ra,lllg -

By Lemma B.12] we also have
168,380, < OsLMRF[ R |5 -

126



We have the bound

ERCARTEN log, L1o1hy < 25 onax, 0% |0, LieThy < 25 LI}
since (9]¢, Llo1n, = (L9 hy)e and LI?Ih, > 1. Finally, by the chain rule
\e%l(d’l)lw,mwh* = e 21 )|y, <2
by Lemma [3.6l As result we easily arrive at

| J—(®)log,Lis1h, < 25004][|Ra,|ll5 -

The latter as well as the previous inequality for J, imply the desired estimate. O

That finishes our kernel norm estimates, we then have

Lemma 3.14. For all A’ e L, A€ [L7*A’] and ¢ € R we have

[[Jar,a, (D)|og,6,Lte1n < 065 °|l|Ra, |l

where

O = exp (?) + 1550, .

Proof: Clearly, we have

[[Tar,a: (D)log,o.ntern < 1T+ (D)l|ag,6,Liern + IT-(D)ap,6, 1161k

and both terms will be bounded as follows. We first write
1T+ (D)log,6,Lle1n < —ERUTH 1ar JdMF(C) =12 RO Ra, (61 + Ollog.o.L14n
and then use the chain rule as well as the definition of the ||| - ||| norm in order to derive
1Ra, (@1 + Ollog,g,ton = [[Ba, (¥ + Olloy.gr.n = 1Ra, () lov.s+¢n < 72N Ra, lllg -
Besides, as shown before |(f,T'f)r-1a/] < % Hence
14Ol 00 < expl2H g2 Ry [ () el 00

< exp[2- 357 2(||Ra, ||lge2 TR L-1a

by Lemma B4l with X = & or simply exact computation. Again one easily gets that |[(Rf,TRf)r-1a/] < %

which results in

i,
17+(D)og,0, 121 < exp[272]57||| Ra, [l -
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From the definition of J_(¢) we immediately get

4 ~
1T (D)o, Lie1n < Z 16Brk,3,80,0, ] % || 6" 2 ||a¢,¢,L[¢Jh||€_VA1(¢1)H3¢,¢,L[¢M .
=0

By the chain rule and Lemma

e~ Va1(1 p= e 721 @ [oy g, < 267 FROL2DG

MN|o.6.L061

Again by undoing the Wick ordering we have

2 " o llog.pioin < 25 ax, 6% og,6,L161h -

But
6% o6, pton = (LR + |g))* < (LITh + |¢])*

since LI¢1h > 1. Now

k
k k—n
156 sy a2 o)t =25 Y, (1) (Wagt) " o

O (5 (Lot Y T (PN oy (st
<25Z (L c1g 4) (?) (P)/g) 1Y 4,44
ne0 n e

by Lemma B3] and for any v > 0. Here we choose v = %L*‘l[d’] which entails

ny\ % 1 4
| RRCARteS |og,6, L1210 < 25 X < max (—) 4) x 3 (RPra1)h

o<n<4

k - B
X;o Ci) (melf_’f%)k <;L4[¢]§> .

As a result of the previous considerations we arrive at

n

17— (0] 0.6, 1161n < 50 x ( max (1) )

0<n<4 \2e

4 k
A B\ oo
x Y 108k,3,a0a, ] x LHPIg™3 <Z <n)clf 24) .
k=0

n=0
Since n < 4 we simply bound 5: by 1. We also use Lemma [B.12 in order to write
_k
4

k
__k 1
||J—(¢)Ha¢,¢,u¢lh < 50 x O4l||Ra, [llg * Z g thy* (a1 + 24)k .
n=0

Now we bound hz! by 1, g—f by the worst case scenario g~' < g2 and finally ¢; + 21 by 2. Since
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1+24---+2*% = 31 we then obtain
1T (&)l]ag,0,Lie1n < 50 x 31 x Oag~?|||Ra, |5 -

The latter inequality, combined with the previous one for J., gives us the desired result. O
Finally we prove the contractive bound. We mention that Lemma (BI0) is essential for getting the

contractive estimate for both parts of the triple norm ||| - |||5:

Lemma 3.15. For all unit cube A’ € L we have

B.f -
e @llla < O x LT x| max  (I1Raulla

where

O7=21OX02X(O5+06).

Proof: Recall that

£(A,3/sf) (R) _ Z H e_VA(¢1) X JA',A1 (d)) .
Ae[L=1A] | Ae[L™1A]
A#Aq
Hence
L8 Blagne < X | T ) X 1aai(@)logn,
Are[L7TA] |Ag[L™1A]
A#Ay O, h

Now by Lemma B.6 with Yy = [L7*A’]\{A1} we have

1_[ e—VA(¢1) <2.

Ae[L™1A"]
A#A 0, hy

Now by the construction in §3.5.2 the derivatives J(Arf? A, (0) vanish when 0 < n < 4. As a result

9
B .
[ Tara, (D)losny = ﬁ|J(Tf,)A1(O)| < LN Jar L (0)]ag, Lio1ny

n=>5

and thus by Lemma [B.13] we have

LT (R)logny, < 2070 N O5]l|Ra g
Aje[L—1A]
< 205L°7°F0 max |[|Ra,|llg -
Ae[L—1A]
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Likewise, we have

H£(5 f)( )||(‘,’¢¢¢,h < Z H e~ Valo1) X ||JA/,A1(¢) 3
Ae[L=TA] [|Ac[L™1A"]
A#£A 0¢,¢,h

If we let Yy = [L7YA]\{A1}, then |Yp| = %3 and by Lemma B.6] we have

H e*VA(%) < 2671% 4
Ae[L7'A"]
A%l 3¢,0,h
By Lemma B.I0 with 54 = g and v = = one has

9 g 44 —
1778, (D)log.sn < O2165€76%" | [Tar a, (0)|og,n + L7 sup [Jara, ()] oy, ptorn
PeR

By the same argument utilizing the vanishing of the first few derivatives at the origin as before, with h
instead of hy, we get

|Tara, (D)loon < LN Tar 8, (0)log.Lien -

Now by Lemma BI3]
| Tar, a0 (9)log,Lio1n < Osll|Ra|llg

whereas, by Lemma [3.14] one has
sup | Jar,a; (V) |oy,p,0101n < O6g || Ray |l -
PeR
We then arrive at the estimate
1080 (@)l log.6n < Oz x 2 x eT59'|| Ry, [y x [ L7105+ 17015205 | .
Using L°l#15=2 as a common bound of L=15=2 and L=5[¢] we immediately get

G (R @llooon < D, 290205+ O6) L5 2||Ra g
Aje[L—1A]

and hence
) G0 (R 3-5[¢] .
LD ROloopn < 2°02(05 + 0L | e |[Ras |l

The latter inequality, combined with the previous one for the |- [s4 5, seminorm, give

3.f)
S @l < 22750 (| [l ) % max [205,2902(05 + 0]
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Since clearly Qs > 1, the last maximum reduces to the second term, i.e., the given value of O5. O

3.7 The bulk RG and analysis of the non-trivial fixed point

3.7.1 The bulk RG

As mentioned in section §3. 43 we call the RG flow associated with calculation of Z, 4(0,0) the bulk RG flow.
Refering back to the definition for the initial RGex data ‘7(“”( f ,J) corresponding to Zrs( f ,J) we see that
in the case where f = j = 0 the initial data is spatially homogenous and it is clear from the definition of
RGy that property will continue to hold for V(™9 (0,0) for all ¢ = r. In the discussion at the end of 343
we also claimed that the preserved functional form for the bulk flow is simpler, in what follows we set up a
simple Banach space in which the bulk flow will live.

We define £ = C? x ng,ev(ﬂ?,(ﬁ) where ng,ev(lR7C) denotes the closed subspace of even functions in
C4(R,C), i.e. elements K(¢) that satisfy K(¢) = K(—¢). We can write an element V € £ in the form
V = (g,p, R) where g, € C and R € C4(R,C). For now we equip £ with the norm

__3 _ __ 21
VI = 11(g. s R)| = max (Iglg ™2, Iulg ™ lIIRlllsg %)

However later we will shift coordinates (and with it the norm) for €. It is clear that £ can be identified with

a subspace of £, via an isometric map V — V with V € & of the form

V = (Ban, Bs.n, Bons Bra, Wo.n, Wen, fa, Ra)acl

with the above parameters given by

Ban = g
Bsan = 0
Booa = p
Bian = 0
Wsa = 0
Wean = 0

fa =0

Rn = R

for all unit cubes A.
Using this identification the next proposition claims that space £ is invariant under the extended RG
map RGey. Note that in what follows we drop A indices from many quantities due to spatial homogeneity.

We also write £(9#) instead of the notation L(B’f) we used earlier.
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Proposition 3.2. The space & is invariant by the map RGey. The restricted transformation

RG : £ s £
(9,1, R) — (¢ 1, R)

which we call the bulk RG is given by

g = L9— Aig® + &lg, 1, R)

W= L — Asg® — Asgu+ (9,1, R) (3.54)
R = LY (R) + €r(g, 1, R)

where

A = 36L3*4[¢1f [(z)? d*z
Q3

Ay = 481°219] (J I(z)® d3w> + 144137491 ¢ (0) O
Q3

121372¢] J [(z)? &z .
Q3

I'(x)? d%) (3.55)

3
P

Az

In addition, the vacuum counter-term db = db(g, p, R) is given by

6b = Asg® + Asp® + &o(g, 1, R)

where
Ay = 1217 (J I(z)! d%) + 48132191 ¢y (0) ( f I(z)? d%) + 720341210y (0)? (J I(z)? d%)
Q3 b Q3
As = L3J [(z)? d3z .
Q3

Partial Proof: This is Proposition 2 in [3] and there the assertion is carefully checked step-by-step by
studying the transformation V — V' defined in 3521 Instead of giving the details here we remark that
proving the simplified form the bulk flow boils down to parity considerations - if one starts with even terms
for all the inputs then then RGex produces even outputs.

However the continued vanishing of the Wy term has a different cause which we now describe. Clearly
since fa = 0, the new f},’s defined in (832)) are identically zero. Likewise, since the Wy are zero the equation

for the new one reduces to

W n = 8L ¢ f

s &’z &y fa(e) T(z —y) Paly) = 8L’6[¢]g2f &Pz &y T(z —vy) .
IL— ’

(L_lA’)2
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But for x € L7'A’, by a simple change of variables z = « — v,

J &y Do — y) f B2T() = [ P2 1ez) = Do) = 0

L-1A L=1A(0) Q3

because of the finite range property and the vanishing property at zero momentum. Therefore Wé7 A, vanishes
identically. ]

3.7.2 The infrared fixed point and local analysis of the bulk RG

In this section we will find a non-zero fixed point for the flow given by [54]); we will call this the non-trivial
infrared fixved point. As we mentioned in §3.4.3] the equations [B54]) are in close correspondance to the flow
equations ([B:2H)) given by second order perturbation theory with the addition of some remainder terms and
a flow equation for the irrelevant part R. We will now fix a choice of L, once and for all, so

Bre ¥l < (3.56)

[N

holds. We remark that Bgr, was a purely numeric constant independent of both L and e. Note that
3—5[¢] = —2 + 2¢. If we add the harmless condition € < £ which we now assume, then 3 —5[¢] < —1. Now
we pick L large enough so that B rel % < % and therefore ([B:56]) holds. Now that L is considered fixed the
only free parameter in our construction is e.

We now apply Theorem B2l with the choices just mentioned and in concert with Proposition 3.2 to obtain
that, provided € is small enough, the bulk RG transformation is well-defined and analytic on the domain

_ 1_ _ _21
lg—agl<35g, lul<g, llIRlllg<g*

[\

and therein satisfies

I1ér(g:m R)llls < Breg*
1
ﬁ(g,#) s < =
Iee9 ;< 4

where |||[£(9#)]||; is the operator norm of the linear operator £(9*) (with respect to the R variable) corre-
sponding to the norm ||| - |||3. Note that the statement on analyticity applies not only to the full map RG
but also to the constituent pieces such as &4, &2, g and £(9’“)(R).

In our search for a non-zero fixed point to (354 we will change our coordinate system so that we write
our data as a perturbation of the approximate fixed point (g,0,0) - when the flow ([B.54) is studied in
this coordinate system the perturbation in the g direction will be contracting. Concretely we change from
(9,1, R) to (0g, 1, R) where dg = g — g. In this new coordinate system, the bulk RG transformation, still
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denoted by RG for simplicity, becomes (dg, u, R) — RG(dg, u, R) = (6¢', 1/, R') with

69 = (2—L°)5g + &(3g, 1. R)
@ = L%+ & (89, 4, R)
R = LO9WB) 4 £p(6g, 1, R)

where
(69, 1, R) = —A16g* + €4(g + 09,11, R)
£2(89, 1, R) = —As(g+06g) — A3(g + dg)u + (g + dg, 11, R)
Er(6g, 11, R) = Er(g+ 09,1, R)
L(8g11) (R) = £(G+6g.11)(R)

(3.57)

as follows from an easy computation using the relation A;g = L — 1. We remark that 2 — L€ < 1. We will

commit a similar abuse of notation for the function ¢b. Namely, we will write 6b(dg, u, R) for what in fact is

0b(g + dg, 1, R). We will also translate the norms we use for v = (dg, u, R) € £, namely,

__3 _— __21
[oll = max {|aglg ™, lulg ™ 1 Rlllgg~% } -

The following Lipschitz estimates are crucial ingredients for our analysis near the nontrivial infrared fixed

point. In particular these estimates show that the expansion and contraction rates of our dg, u, and R flow

are not significantly influenced by the presence of each of the corresponding remainder terms.

Lemma 3.16. For e small enough we have for all v = (6g,p, R), v' = (0g', 1/, R’) in & such that ||v||,

Wl < g
|€4(5 + 69,11, R) — €4( + 69,1, R)| < 2B4g ™ [Jv —v'|| ,
162(G + 69, 1, R) — €4(G + 09, 1, R')| < 2Bag® |Jv — || ,
[1£@ 09 (R) — LEFIH)(R)|||; < %E%Ilv — |
and

11€7(g + 89, 12, R) = €r(g + 3¢’ 1, R)|||5 < 38Breg 7 [lo — /|| -

Proof: If ||v|| < 1, then since g < 1 for € small we have

0g] < 47 < ig
< 33 < i3

_1 _21
I[Rl|l; < 335 < 3igs

Hence, by Theorem

_ 1. .
€4(g + 89, 11, R)| < BulllRllly < 5Bag* -

Therefore the analytic map v — &(g + dg, i, R) satisfies the hypotheses of Lemma with 7
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ro = %B@%. We pick v = i which results in
ro(l—v) 3 1
= —Bygs .
n—2v) 24

With these choices, Lemma[3.2limplies the desired Lipschitz estimate where we replaced the numerical factor
% by 2 for a simpler looking formula. The proof of the Lipschitz estimate for & is exactly the same apart
from changing &4, B4 to &, Bs respectively.

We now do the same for the analytic map v — L£I+99:#)(R). For |[v]| < 1 = r1 we obtain, as before from

Theorem and from the choice we made when fixing L,

@5 Ry < SRl < 5llellg* <
with ro = % gé. Lemma B2 with v = % now immediately implies the wanted estimate.
Finally, for & we again note that |[v|| < 3 =7 implies
1€R (g + g, 1, R)llg < 72
with ro = ngg%. Again, Lemma B2 with v = % does the rest. ]

In what follows we will construct the nontrivial fixed point v, and patches of the corresponding local
stable and unstable manifolds. Before giving the details we give a pedagogical explanation.

From the flow equations and our estimates on the remainders it is not very difficult to show that if there
is a nontrivial infrared fixed point vy = (0gx, fx, Rs) with |Jvg|] < O(1) (i.e. close to our approximate
fixed point) then it must be a hyperbolic fixed point. In particular it would have two contracting directions
(corresponding to d¢g and R) and one expanding direction (corresponding to ). The linearization of the RG
at the vy should have no eigenvalues on the unit circle.

Now assume that one wants to find a v = (dg, 1, R) close to vy with lim,,_,., RG™[v]. Then the value of
v’s component in the expanding direction, i.e. p, must be tuned carefully in a way dependent on dg and R
in order for v to be driven to vy - this value ps(dg, R) is called the critical mass corresponding to (dg, R).
In what follows we will construct this function us for a particular (dg, R) domain.

The graph of the function g , i.e v of the form (dg, us(dg, R), R), will correspond to a piece of the stable
manifold of vy,. We remind the reader that the stable manifold of the fixed point v is the set of all v in the
domain of the RG such that lim, o RG™[v] — vy.

Our argument will proceed in an order that is reverse to the above explanation. In order to find the
nontrivial fixed point v, our first step will be to find a function pg defined for some non-empty open set of
(0g, R) such that any point (dg, us(dg, R), R) remains within our domain after arbitrarily many iterations of
the RG map. We will then show that the RG map restricted to a portion of the graph of ug is a contraction
mapping - this will yield a fixed point vs. It then follows that this portion of the graph of us is a patch of
the stable manifold of v, containing vy . A heuristic explanation of why this works is that if for some fixed
dg, R one chooses p either lower or higher than the critical mass then one expects that our system will be
driven to the high temperature or low temperature fixed point both of which are far outside of the domain
of where we defined the RG - (this picture would assume that there is no intermediate phase - that topic
will be taken up in Chapter [).
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Our next step will then be to construct a local patch of the unstable manifold. The unstable manifold
of a fixed point v, is the set of all v such that we can find a backward sequence of preimages of v under
the RG map which converge to vys. More concretely the unstable manifold is the set of all v such that one
can find {v,}_op<n<—1 such that RG/[v™7] = v and lim; o v/ = v,. Just as the stable manifold can be
parameterized via coordinates for the contracting directions we will construct the local patch of the unstable
manifold as the graph of a function g — (8¢, (1), Ru(1)), i.e. it will be parameterized by the expanding

direction.

3.7.3 The local stable manifold

We now proceed with the first step which is the construction of the stable manifold also using the Banach
Fixed Point Theorem in a space of one-sided sequences, in the spirit of Irwin’s method [39]. This method
is based on the same idea that is used for the the construction solutions to finite dimensional ODEs - we
reformulate the problem as a fixed point problem and applying the contraction mapping theorem.

The general idea is as follows: given a starting g and R we will define a map m that acts on the Banach
space of all bounded sequences {(dgy, fin, Rn)}r_, such that a fixed point of m in this space of sequences will
be a sequence that is consistent with the flow equations (B57) and satisfies particular boundary conditions
at n = 0 and n = o - these conditions being that dgy = dg, Rg = R, and that p, does not blow up as
n — o0.

We give the precise implementation of the above strategy now. Let B, be the Banach space of sequences

U= (:u07 (6917M1’R1)7 (6927M27R2>7 o ) eCx n [CQ X C}gd,ev(u?7@)]

n=1

which have finite norm given by
. __3 ) _ . it .
]| = sup {Iagslg~* for j = 1; |uylg~" for j = 0; || Ry llag~ ¥ for j =1} .

We will define a map m on this space of sequences which depends on parameters dgg, Ry serving as boundary

conditions. Given dgg and Ry, the image @' = m(«) is defined as follows. For n > 1, we let

n—1
Ogh = (2= L)"8g0 + D (2= L) 7 &u(dg;, 15, Ry)
j=0
and
R, = LOgn—1spn—1) 5. .. o E(égo’”")(Ro)
n—1
+ Z LOGn—1:tn—1) o ... o (65 +1:m541) (gR((ng,Mj,Rj)) )
=0

For n > 0, we let

[ee}
(- 3te) -
pop == LY D)6 (8955, Ry) -
j=n
As an aside we make a remark to motivate the last formula above. Here we are propagating the p boundary
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condition backwards. If one writes the u evolution of ([B57) in reverse one has

be = If% [/JkJrl —52(59k»/$k’Rk)]

Now if one sets a boundary condition p, for some scale ¢ > 0, then propagating this backwards to scale

< g would give an equation

3+te

fn, = L7

(=) ZL Gt D(59)E, (895, 15, Ry) -

This equation agrees with the earlier one given when we take ¢ — 00 assuming the p, are bounded.
The next Proposition shows that given a sufficiently small p > 0 this map m is well defined and analytic

on the open ball B(0, p) € By in the regime of small e (made small after fixing p).

Proposition 3.3. If0 < p < 16g0] < %5 g% and |||R0|H§ Bg% then the map m is well defined, analytic

12 ’
on B(O p) and takes its values in the closed ball B( 2), provided € is made sufficiently small after fiving p.

Moreover, m is jointly analytic in @ and the implicit variables dgg and Ry.

Proof: We do not reproduce the proof here, this is Proposition 3 of [3].
Using Lemma B2 with 7, = p, 75 = £ and v = £ so that

ra(l—v) 1

ri(l1—2v) 2

we immediately see that, under the hypotheses of Proposition B3} the closed ball B (6, %) is stable by m
and is a contraction. More precisely, for any %, and s in that ball, we have
. . 1.
[m(d@1) —m(@2)]] < 5lld — a2l -
By the Banach Fixed Point Theorem we then have the existence of a unique fixed point denoted by u, for
the map m in the ball B (6, §> Using the representation of this fixed point as

.= § [ o)

and by uniform absolute convergence, it is easy to see that . is analytic in the implicit data (dgg, Ro). In
particular we will define us(dgo, Ro) as the pg component of the sequence iy and remark that us(dgo, Ro) is
analytic on the domain given by |dgg| < TPQQ% and ||| Roll|7 < gg%l.

As we mentioned before the graph (dg, us(dg, R), R) will be a local patch of the stable manifold of the
sought after nontrivial infrared fixed point. We will denote this patch by W*1°¢, we give a concrete definitions
below (here the patch is determined in terms of a radius p which must be chosen satisfy the hypothesis of
Proposition B3)

3
2

. p_ [
welee = {(6g,m, B) < €] 89| < Lg% IRllly < £25% 1 = psl09, R)}
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We then have the following proposition which claims that TW*1°¢ is all of the local stable manifold.

Proposition 3.4. For fized p € (0, %) and for e small enough, an equivalent description of W*1°¢ is as the

set of triples (0g, p, R) € € that satisfy all of the following properties:

o (IRl

QI
—_
w
QI
o

3
2

e there exists a sequence (0gn, fin; Rn)n=0 in € such that g0 = dg, o = p, Ro = R, Yn > 1, [0gn| < £g
and ||| Rynl|l5 < %!7%17 Vn =0, |pn| < §§7 and ¥n = 0, (6gn+1; Hnt1, Rut1) = RG(0gn, fin, Rn).

Proof: We don’t give a full proof but the steps are straightforward - one can find details in [3] Proposition
4]. When showing that W 1o is contained in the set described in the assertion one just needs to check that
the fixed point u, = m(uy) satisfies the third condition - i.e. a sequence that satisfies the flow equations.
The other conditions are automatic.

Showing the reverse inclusion involves observing that a sequence @ that satisfies the conditions of the
assertion must be a fixed point of m in the ball B(0, %) - then one must have u = i, due to the uniquess
of the fixed point delivered by the contraction mapping theorem. In particular the py component of ¥ must

coincide with the pg component of @, which is given by us(dg, R).

A dichotomy lemma

We now state an important lemma which gives quantitative growth and decay estimates which will establish
separation between expanding and contracting directions. This will be important in the actual construction
of the non-trivial fixed point and for analysis of the unstable manifold and the composite field.

We first perform a crude splitting of £ into contracting and expanding directions, writing & = &1 @ &

where

& ={(69,0,R)[6g € C,R € Cpy o (R, C)}
and

& = {(O,ILL,O)HLE C} :

We denote by vy and vy the pieces of the unique decomposition v = vy + vo of an element v € £. Note that

we will commit a slight abuse of notation by writing v; = (dg, R) and vy = p if v = (dg, u, R). We then have

21

__3 __21 __
1| = max |[59l5~%, [1Rlllgg~% | and [foal| = ulg™" -

Finally if v is in the domain of definition for the map RG we write RG1(v) = [RG(v)]; and RG2(v) =
[RG(v)]2 for better readability. Our dichotomy lemma, in the spirit of [39] Lemma 2.2] is the following

result.

Lemma 3.17. There exists ¢g > 0 and functions c1(€), ca(€), cs(e), ca(e), on (0,e9) which satisfy 0 <
cr(e) <1, L3 > cy(e) > 1, 2L% = ¢3(e) = L2 and 0 < cy4(e) < 1 (in fact lime_q cs(e) = 0) on that interval
such that for all v,v' € B (0, %) c & the following statements hold:

1. unconditionally, ||RG1(v) — RG1(v")|] < e1(€)||v —v'||;
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2. if Li{Jug — vh| > ||or — o4 || then [|RG2(v) = RG2(v')]] > ex(e)lJv —v'[|;
3. unconditionally, ||RG2(v) — RG2(v")|]| < cs(€)||lv —v'||;

4. unconditionally,
3+e

IRGa(v) — RGa (') — L5 (v — oh)]| < ca(e)llo — ]| -

where the c(e) functions are given by the formulas

ci(e) = max [1_i(L€_1)+2B49281_g,i+3BR59T_3"_"R]
ca(e) = Li_ %A2,max§%_l+l B ZAS,maxg B 232g%‘1_1

) = LF+ %Ag’m‘”‘g%ilﬂ * %A&maxg +2Byg% !

) = GAamud 4 G g + 2B ¥

with

Al,min = 35(1 _pig)la Al,max = 37(1 _pig)l
1
Az max = 2 % [4+ 144] x 36 = Al max (3.58)

1
A3,max = 12L2 X % X Al,max-

Proof: For a full proof see [3| Proposition 5]. We remark that the constants (B358]) are just uniform bounds
on the constants (353]). A key ingredient for these estimates is Lemma (B10).

3.7.4 The infrared RG fixed point

We now show how one can use Lemma ([@I7) to show that the RG map restricted to WI°¢ is a strict
contraction.

The idea of the next lemma is as follows. If one has two points v, v’ € £ with full forward RG trajectories
that stay in our domain then at every RG step the magnitude of their difference between the images of the
two points in the contracting directions must dominate the difference in the expanding direction. If at any
stage the difference in the expanding directions dominates the difference in the contracting direction then
[|[RG™[v] — RG™[v']|| will blow up as n — o0.

Lemma 3.18. If v # v belong to W*°¢ then ||vy — v}|| > L7 ||vy — v}]].

Proof: Note that by the prevailing assumptions we have p < 1—12 < é and thus Lemma 317 is applicable
to all elements of W*!°¢ and their RG iterates by stability of that set. We proceed by contradiction and

suppose that ||v; — v}|| < LT||va — v4||. Then by Lemma [BI7 Part 1) and 2)

1RG1(v) = RGL (V)] < c1(e)llv = v'[| < ex(€)ea(e) 7| RG2(v) — RG2 (V)] -
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From the bounds we have on ¢1(€) and cz(€) we trivially get ¢;(e)cz(€) ™ < L3 and therefore
[1RG1 (v) = RG1 ()| < LE[|RGa(v) = RG],

i.e., the first iterates RG(v) and RG(v') satisfy the same hypothesis as v and v'. By an easy induction we
then have
¥n >0, ||RG}(v) — RGY(v)|| < L¥[|RG(v) — RGE ()

for the higher iterates where RG7(-) means (RG™(+));1 and likewise for the second components. By Lemma
BI7 Part 2) we obtain, for all n = 0,

1RG5 (v) = RG3 ()| = c2(€)|[RG™ (v) — RG™(v")]] = c2(e)||RGE (v) — RGE (V)] -
Again by a trivial induction we get, for all n > 0,
[|RGS (v) = RG5(0")]| = c2(e)"[[v2 — w3 -
But ca(e) > 1, so if [Jvg — v4]| > 0 we have

lim ||RGY(v) — RGY(v)]| = o

n—oo
which contradicts the stability and boundedness of the set W®!°¢. Therefore ||vs —vh|| = 0 which also entails
[lva — vi|| = 0 by the assumtion made at the beginning of this proof. This therefore leads to v = v’ which is
the desired contradiction. O

This then yields the contractive bound which is given in the next lemma.
Lemma 3.19. For all v,v" € W*'°¢ we have ||RG(v) — RG(')|| < c1(e)||v — v'||.

Proof: By the previous lemma and the stability of W!°¢ we have
|RGa(v) — RGa(v')]] < L™#[|RG1 (v) = RG1(v)]| < ||RG(v) — RG1 (V)|

and therefore
|RG(v) — RG(v")|| = ||RG1(v) — RG1(v)]] -

As a result, the desired conclusion follows from Lemma BI7 Part 1). O

By applying the contraction mapping theorem one immediately has

Proposition 3.5. The map RG is a contraction when restricted to W51°¢ and thus has a unique fized point
Vs = (8gs, s, Ry) in that set. In fact vy belongs to the interior of WS¢ which we denote WEi°.

Proof: Note that W*1°¢ is a closed subset of the Banach space €. Indeed, s is analytic and thus continuous
on an open domain containing that given by the condition ||(dg, R)|| < &. Since W%!°¢ is therefore a
complete metric space for the distance coming from the || - || norm, and since RG restricted to this set is
a contraction as follows form Lemma and ¢1(€) < 1, the Banach Fixed Point Theorem establishes the
present lemma. The fixed point is in I/Visrioc since vy is its own image by application of the stronger conclusion

of Proposition B.17 O
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3.7.5 The unstable manifold

We now construct the local unstable manifold following a procedure similar to that of §3.7.3] but give some
exposition before getting down to details. We remind the reader that the unstable manifold will turn out
to be the graph of a function p — (dgu (), Ru(pt)). The situation here is somewhat dual to the situation
in §373] - for fixed p we want to find dgy (1), Ru(r) such that one can find a backwards sequence of RG

pre-images of (0gy (1), pt, Ru(pe)) denoted {(6gn, fin, Rn)}*oo<n<0

i.e. RG_"[((Sgn,,un,Rn)] = (59u(U)’M7Ru(U))

with d¢g, and R, bounded as n — —oo. Essentially the roles of expanding and contracting directions are
reversed since we are working with backward trajectories. Later on we will see that such a trajectory will in
fact satisfy lim, oo (0, tin, Rn) = (8gx, fos, Ry )-

For a fixed p we will define a map n on this space of backwards sequences whose fixed point will correspond
to a backwards RG trajectory {(dgn, fin, Rn)}—o<n<o which satisfies the boundary condition py = p and
09, and R, bounded as n — —o0.

We now give the precise implementation. Let B_ be the Banach space of backwards sequences

U= ( ) (69—2; H—2, R—Q)a (69—17 H—1, R—l)a 6907 RO) € H [C2 X ng,ev(ﬂ?a C)] x C x C}gd,ev(Ra C)

n<—1

which have finite norm given by
) __3 . - . __21 .
1] = sup {1dg;lg~* for j < 0; ulg~" for j < —L:[[|R;llg~ ¥ for j <0} .

We define the map n on this space of sequences which depends on the parameter . Given g, the image

@ = n(u) is defined as follows. For n < 0, we let

59; = Z (2 — Le)nilijgél(agjvﬂijj)

j<n—1

and
Ry= 3 £lomovmmon) oo formnn) (En(sg;, g, Ry)) -

j<n-—1

Again in the two equations above we are propagating the dg and R boundary conditions backwards.

For n < —1, we let

—1
n(3te —(ien 3+e) ~
/’[”/n = L ( 2 )/'LO — Z L (J +1)( 2 )SM(69J7MJ7RJ) :

j=n
As before for p’ > 0 one can show that this map is well defined and analytic on the open ball B(0,p') € B_

in the regime of small € (made small after fixing p').

Proposition 3.6. If0 <7p’ < %, o] < %’g then the map n is well defined, analytic on B(ﬁ, p') and takes its
values in the closed ball B(0, &), provided € is made sufficiently small after fixing p’. Moreover, n is jointly

analytic in © and the implicit variable .
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Proof: See [3, Proposition 7].
Again using Lemma B2 with 7, = p/, ro = & and v = % so that

’1“2(1 —V) 1

ri(l—2v) 2

we see that, under the hypotheses of Proposition 6] the closed ball B <6, %/) is stable by n and is a
contraction. More precisely, for any u; and s in that ball, we have
[In(d1) — n(d@:)]] <

||y — || -

By the Banach Fixed Point Theorem we have the existence of a unique fixed point which we again denote

by iy for the map n in the ball B (6, %) Using the representation of this fixed point as

'L_[:*:

18

[nn+1(6) . n"(6)]

n=0

and by uniform absolute convergence, we see that i, is analytic in the implicit data pg. In particular the
dgo, Ro components of the sequence @y which we will denote by dg,(10), Ru(io) respectively are analytic
on the domain given by |uo| < %9.
We now let ,
o
wiee = Gy ) € €1 ul < S0.60 = o). T = Ralp)

Analogously to the case of the stable manifold we have

Proposition 3.7. For fized p' € (0, é] and for € small enough, an equivalent description of W™°¢ is as the

set of triples (0g, pu, R) € € that satisfy all of the following properties:

o ul < %9,
/

e there exists a sequence (0gn, fin, Rn)n<o in € such that 6go = 6g, o = i, Ro = R, Yn <0, [6g,| < 57
a/nd |||Rn|||6 < %g%} vn < _17 |Un| < %g7 a'nd vn < _17 (6gn+17un+laRn+l) = RG((ngNmRn)

3
2

Proof: See [3, Proposition 8§].
It follows form the precise characterization of W™!°¢ given in the last lemma that the fixed point

(89, i+, Ry) must be an element of Wwloc,

Lemma 3.20. Provided p and p' are chosen so that p < %p’, we have vy € W™I°C as well as the equations

s = Ms(59*aR*) , 0g% = 5911(#*) , Ry = Ru(ﬂ*) .

Proof: This is [3, Lemma 61].

3.7.6 Study of the differential of the RG at the nontrivial infrared fixed point

We now give results about the differential D, RG of the map RG at the fixed point v, in relation to the

invariant linear subspaces £°% and £" corresponding to the tangent spaces to the stable and unstable manifolds
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at the fixed point respectively. We define £° as the kernel of the C-linear form

(593/1'7]?') i Dv*,1MS[5gaR]

where D, s is the differential of p1s at v« 1 = (0g%, R«). This linear form is clearly nonzero. It is also
continuous by analyticity of us. Therefore £° is a closed complex hyperplane in £.

We likewise define £" as the kernel of the C-linear map

8 —> 51
(6g>MaR) I (6g_DU*,2(sgu[M]’R_DU*,2RU[M])

in terms of the differentials at v, o = 4 of the analytic maps dg, and R,. Again, £" is a closed subspace of

E. In fact, it is easy to see that £" is equal to the complex line Ce, with
en = (Du, ,09u[1],1, Dy, , Ru[1]) .

In the following lemma D, RG denotes the differential of the bulk RG' map at vy = (6gs, fos, Rs)

Lemma 3.21. One has the direct sum decomposition € = £ @ E™. Additionally both the subspaces £ and
&Y are left invariant by D,, RG.

Proof: See [3, Lemmas 63, 64, and 65].

We will denote by Py and P, the projection operators from &£ to & and &, respectively.

We remark that since £" is a one dimensional space D,, RG’s action on £" must just be multiplication
by some scalar ay,. The next lemma gives more detail about the action of D,, RG on each of the tangent

spaces.

Lemma 3.22. The restriction D,, RG|5u is the multiplication by an eigenvalue an, which is real and greater

than 1. One also has the more precise estimate

|au B Ls;re

< ca(e€)

where c4(€) has been defined in Lemma [3.17

The restriction D, RG|.. is a contraction on the subspace £5. More precisely, for every v € £, we have

D,, RG[v] € £ and

Es
Doy RGI0]|] < ca(e)l|v]|
where ¢1(€) € (0,1) has been defined in Lemma [3-17}

Proof: See [3, Lemmas 66, 67].

We give a few remarks on the importance of o,. One should imagine e, as an O(e) perturbation of ey2 € £
where eg2 = (0,1,0) (using the (dg, p, R) notation for elements of £). The vector ey is an eigenvector of
the differential of the RG at the Gaussian fixed point corresponding to the RG’s most strongly expanding

direction there - the corresponding eigenvalue is given by L3~ 2[¢] = L%,
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Later we will see that oy, < L%, that is the eigenvalues of e, and ey» differ by a quantity of order e.
The fact that «,, not LS%, governs the expansion of mass perturbations off of the stable manifold of the
non-trivial fixed point is what makes the multiplicative renormalization Z5 necessary in order to end up with
a non-degenerate N|[¢?] field, this also leads to the anomalous dimension for N[¢?]. In particular we now
fix

3+e

Zy = anl %, (3.59)

3.7.7 Some context for the preceding results

We close this section by putting our analysis of the nontrivial infrared fixed point in context. After we
constructed the local stable manifold and the nontrivial infrared fixed point we finished all the work necessary
to control the evolution of the bulk potentials V(T*q)(O, 0). Denote by ‘7* the element of &t corresponding
to the nontrivial infrared fixed point vy = (89, fs, Ry )-

The function p(g) referenced in Theorem B will be set as p(g) := us(g — g,0) - i.e. we pick our initial
bulk data to lie on the stable manifold. It then follows by the analysis of this section that for any integer r
one will have limg_,q V(9)(0,0) = Vi (we remark that one will also have lim,_,_,, V("9 = V* for fixed ¢).

We will establish control over the flow of the potentials V" ( f,7) for non-zero f or j by treating their
flow as a perturbation of the flow of V (ra) (0,0). We will employ different strategies to do this, each strategy
being used in one of three different scale regimes - the ultraviolet regime where ¢ < ¢_, the middle regime
where ¢_ < ¢ < g4 and the infrared regime where ¢ > ¢ .

The core of the work to analyze the composite field is careful analysis of the influence of j in the ultraviolet
regime. When r << ¢_ one has that the quantity j—_, (see (BI8]) for the definition ) appearing in ‘N/T’S(f,j)
is spatially spread out and acts like a bulk perturbation in the p direction which lifts us off the stable
manifold. Our analysis of the local unstable manifold and the partial diagonalization of the linearized RG at
the non-trivial infrared fixed point are just the first steps in understanding the behaviour of these bulk mass
perturbations. The central ingredient for controlling this perturbations is the partial analytic linearization

theorem of the next section.

3.8 Partial Analytic Linearization

3.8.1 Some preliminaries and intermediate estimates

Before talking about the main results of this section we give a concrete example which should clarify the
issues of the ultraviolet regime for the composite field. We take j = 1z3, f = 0 - thus we can fix g = g4 = 0.
In this scenario one should imagine r << 0. The inital RG data relevant to Zm(j7 0) is then given by

VD (0,7) = (Ban, Bans Bons Br.a, Ws.n, Wen, fa, Ra)acL
with

ﬁ4,A = g
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Ban =
Bia =
Wsa =

Wean =
fa =

o o o o o o

for all unit cubes A, while

1s(9 = 9,0) if Ad A,
Po.a = .
ps(g —g,0) = Yo Zr L=G=21D it Ac A,
Since V() (0,7) is not spatially homogenous it cannot be directly identified with a single element of the
bulk RG space £. However it can be identified as an amalgamation of two bulk elements. The element
v = (g— 3, ps(g—3,0),0) € € specifies V7(0,7) for A ¢ A_,.. while the element v — YoZI L= G2¢Dre . e £
specifies VX’T(OJ) for Ac A_,.

Due to the strict locality of extended RG map one can view RGex as a direct product of maps each
acting on a single L-block. When we look at the transformation RGey acting on VX’Q(OJ) for r < ¢ < 0 the
individual local RG transformations occurring on each L-block are given by the bulk RG map acting on one
of the two mentioned bulk data points.

We make this more concrete. Let t(e) : & — Eo be the map that takes an element of £ to the corre-

sponding spatially homogenous element of . Then for r < g < 0 and A € L one has that

90, —r [ ~ L (RGT (v if AdA_
VAN 0,5) = (RGgXT[VW(o,])D _ _( N)a o | ,
A (L (RG‘J "(v—YaZ" L 3 2[<z>])re¢2)))A FACA,

where the RG without the subscript ex again refers to the bulk RG analyzed in the previous section. The
central problem of understanding the total ultraviolet regime contribution of an arbitrary j is controlling
where we end up at scale ¢ = ¢q_ as we take r — —o0. In the particular example we took above this involves
understanding

lim RG™"(v— Yozl L~B72eDre 1)

7—>—00

We note that we have chosen Zy in ([B53) precisely so Z7 L~ (37217 = o7 In general we will want to control
a limit of the form
lim RG™ (v + oy "w) (3.60)

n—o0
for v,w € & where v lies on v,’s stable manifold. We will denote the quantity (B3.60), when it exists, as
U(v,w). In our concrete example w = —Y5e42 and for the purpose of constructing the composite field we
will be interested in w’s that are some multiple of ey2, that is w pointing in an expanding direction.
Iterating the RG infinitely many times from a point that is off the stable manifold clearly is a recipe for

disaster, however in the above quantity the perturbation w is being deamplified by a; " which we hope will
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precisely balance the expansion that will occur from RG"™ in the n — oo limit.

Theorems 3.3l and [3.4], the central results of this section, will state that for v on the stable manifold ¢
and suitably small w the limit ($:80) exists, is analytic in w (this is essential, as it gives analyticity in j which
is needed for moment bounds), and is in some sense non-degenerate. What we mean by non-degeneracy is
that ¥(v,w) should not be constant in w (i.e. one shouldn’t have U (v,w) = v, for all w). If U(v,w) is
constant in w this means that the presence of j will be rubbed out completely in the ultraviolet regime - the
functional derivatives in j will all be 0 and the corresponding normal ordered field N[$?] will be the 0 field.

In particular the deamplification has to be chosen precisely or else the resulting normal ordered field
N[$?] will be degenerate. It follows from Theorem B3] that if one chooses a > a, and takes the limit

lim RG" (v + a™ "w)

n—0oo0

then one will just get vy for all w - the w will be washed out. This shows that one must have Z5 = ozuL_yzre

(and by a slightly longer argument this idea shows that the anomalous dimension 7,2 is independent of L).

The function ¥(v,w) can be considered to be a partial linearization for the RG map in the vicinity in
vg. A linearization for a dynamical system at a particular fixed point is a change of coordinate system for
an open set around that fixed point which makes the action of the dynamical system linear.

Koenig’s theorem of holomorphic dynamics (see [48] ) states that this can always be done for one dimen-
sional holomorphic dynamical systems. Concretely the theorem states that for a dynamical system given by
an analytic function f : C — C and a fixed point at 0 and f’(0) = A with |A| = 1 then there exists an an
analytic map ¢ defined in a neighborhood of U of 0, and satisfying ¢(0) = 0 and

(b~ o fop) () = As

for all ze U.
Rearranging this one sees ¢ satisfies an “intertwining” relation, i.e. (f o) (2) = ¢p(Az). If ¥(v,w) exists
then a similar intertwining relation holds just by appealing to the continuity of the RG map. Observe that

RG(W(v,w)) = RG ( lim RG™ (v + a;nw))

n—0oo0

= lim RG™"(v + a; " Ya,w)
n—0o0

= U(v, quw).

One can view the construction of ¥(v,w) as mimicing the construction of a curvilinear coordinate for
the unstable direction in which the RG takes a linear form.

The hope for controlling an object like (B.60) is that the large n limit action of RG™(v + «a;™e) should
be comparable to vy + o™ (D, RG)™e. However comparing these maps is not trivial for two reasons (i) in
general one will have v = v, and (i) the RG map does not coincide with its differential.

However ignoring these issues and observing that (by Lemma ([322])) one has

a,"(Dy , RG)" — P,

n—0o0

our intuition would be that lim, ., RG™ (v + a;"w) ~ vy + Pyw for tiny w. Our main theorem states that
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one will actually have ¥ (v, w) € Wwloc,

Both issues (i) and (i7) must be dealt with in order to prove Theorem For issue (i) we remark
that it is is straightforward to show an O(1) bound on the second order differential of the map RG in the
small e-regime (see [3, Lemma 69]). One then has quantities like RG(v + w) can be replaced by RG[v] +
D,RG[w] + O(1)]|w||?.

Issue (i) is much deeper, it requires performing a “parallel transport” along the RG orbit connecting v

to vs. For each v € W™!°¢ we define a linear operator T}, (v)[e] via
T, (v)[w] = ay "D, RG"[w].

We remark that D, RG? denotes the differential at v of the j-fold iteration of the RG map. One can imagine
as T,,(v) corresponding to a parallel transport from v to RG™(v) with regards to the unstable direction. The
following lemma gives the key facts about these parallel transports. When we write ||T),(v)|| the notation

| - || denotes the operator norm for bounded linear operators on £.

Lemma 3.23. e For all ve W™° gnd all n = 0 we have

I Tn(@)l] < 10 x Ci(e),

where Cy(€) = exp [%(15501(6))]

o Forve W gndn >0

1 T41(v) = Tu(v)]] < 10 x Cy(e)e(€) ®

where Cs(e) = Cy(e) [85 + (14 g tei(e)) [1 + (;1(;(5161—(2(6))”

e There exists bounded operators Ty, (v) such that

71113010 T,(v) = Ty (v)
in the operator norm. One has ||Tw (v)|| < Ci(€) and additionally PsTy,(v) = 0, in particular the linear

operator T, (v) is a multiple of P,.

Proof: See [3, Lemmas 70,71,72,73]

We remark that some of these estimates become singular when ¢ — 0. The main culprit here is the slow
convergence of RG™(v)to vy for v on the stable manifold. Our best estimate for this is || RG™(v) —v4]|| < ¢1(€)
with ¢1(€) < 1 for e > 0. However as e — 0 one has ¢;(e) — 1 as (morally ¢1(e) = 2— L€, the linear contraction
rate of dg, slowest of the contracting directions.) As a result the quantity C;(e) appearing in this section

1
blows up as e+ as € — 0.
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Sketch of the proof of Theorems and 3.4

We will now sketch some of the ideas of the proof of Theorems and 34l The idea is to control the limit
B50) by controlling the telescoping series

0
Z RG" ™ (v 4 a " 'w) — RG™ (v + o™ "w). (3.61)

In particular the strategy is to try to establish a geometric in n bound on
[|[RG" (v + o™ " tw) — RG™(v + o~ "w)]. (3.62)

For the proof of Theorem [B.3] we will further break up ([B.62]) before estimating it. For 0 < k < n we

write

[|IRG™ (v + o™ " tw) — RG™(v + o~ "w)||
< ||RG™ (v+ a7 'w) — RGY (RG™F(0) + Dy RG™ ! F a7 w]) |
+[|RGF (RG™'*(v) + D,RG™ ' F[a " 'w]) — RG* (RG” "(v) + D,RG™ *la™"w])||
+ [|[RG* (RG™ " (v) + D,RG™ *[a "w]) — RG™ (v + o "w)||

(3.63)

In the above estimate we simply added and subtracted the two terms appearing in the third line of ([B.G3]).
Another telescoping argument will be used for both the second and fourth lines while the third line will be
estimated via repeated Lipschitz estimates. After arriving at a bound for([3.63)) one then optimizes the choice
of k in order to for the bound on (B:63) to be summable in n. In particular & will be chosen dependently on
n - for the proof of Theorem B3] it turns out to be sufficient to take k = |on| with

o 1. —log (ci1(¢)) c (07 1> .
2 log(cs(€)) —log (c1(e)) 2
We now show the second telescoping argument that will be used for the quantities on the second and
fourth lines of B63]). One expands and bounds

[|[RG™ (v + o "w) — RG*(RG™ *(v) + D,RG™ '~ *[a "w])||

nol . ‘ ‘ , , 3.64
2 |RG7H (RG™ 77 (v) + D, RG™ 7~ ay"w]) — RG? (RG" 7 (v) + Dy RG" 7 [a;"w])|| (3.64)

Now for k < j <mn — 1 one can just apply the most brutal Lipschitz estimate we have on the bulk RG map
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given to us in Lemma 317 j-times to get

||RG7H! (RG™ 7~ (v) + DyRG™ 7~ ay "w]) — RG? (RG™" I (v) + D, RG"™ o, "w]) ||
<es(e)||RG (RG" 71 (v) + D,RG" 7 ay"w]) — RG" ™ (v) — D, RG™ 7 [a;"w]||
=c3(e)?||[RG (RG" 77 (v) + DyRG™ 7 ay"w]) — RG™ 7 (v) — Dpgn-i-1() RG [ Dy RG™ 7~ o "w]] ||

u

(3.65)

In going to the third line of ([B.63]) we just used the chain rule, that is D,(A o B) = Dp, o D, B. Now the
quantity on the third line of ([B.63]) can be estimated as a second order Taylor remainder which is how we
go the fourth line. In going to the last line we used Lemma 3.23

We remark on why this estimate requires w to be very small (which is why this requirement is propagated
to Theorem [33]). Our control of the RG transformation is limiting to a ball of O(1) radius in the || - || norm

in & - the crude Lipschitz estimates we used require that quantities like
RG* (RG®(v) + D,RG"[a;"w]) where a +b<n

stay within this ball. Estimating the size of the above quantities using inductive telescoping arguments very
similar to ([3.65)), and these produce factors like Cy (€)?||w||? which must be O(1) so ||w|| must be tiny in the
small € regime. The root of these singular estimates come from our singular bounds on the T}, [v]. However

in the case v = vy this estimate is trivial. Observe that
Tolvs] = g "Dy RG™ = (' Dy, RG)"

where we used the chain rule and the fact that RG(vy) = vs. Since [[ag'D,, || <1 one has ||T,[v]]| < 1.
In particular for w € &" one has T),(v4)[w] = w. This is the main reason for the difference between the
conditions on w in Theorem B3] and Theorem B4l the latter theorem specializes to ¥(vy, w) for w e E.

We remark that the estimate ([B.65) is summable in j since (a;?c3(€)) < 1 - morally both cz(e) and a,
are within O(e) of L% (see [3, pg 101]). In particular, since the sum starts at j = k then for sufficiently
tiny |w]], i.e. [|w]| < O(1)Ci(e)~!, one will have

[|RG" (v + o~ "w) — RG*(RG" % (v) + D,RG" 1~ F[a "w])|| < O(1) [c?,(e)a;?]’“ . (3.66)

This gives the estimate for the fourth line of ([BG3]), one can get the same estimate for the second line of
B53)). Note the bound above will have to be summable in n, here k is some function of n. To continue
our proof of Theorem we must now look at the third line of ([3.63) where we will directly encounter the
discrepancy between v and v, - this estimate is what necessitates a careful choice of k dependent on n. We
note that for v = v, and w € £ - i.e. the circumstances of Theorem [3.4]- the third line (363]) vanishes.

To estimate the third line ([B.63]) we again start by applying crude Lipschitz estimates to get
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HRGk (RG"“—k(v) + DURG"“—k[a;W“)w]) ~ RG* (RG™*(v) + DURG"_k[a;”w])H
<es(€)¥||RG™ 1 (v) + Dy RG™ ' F[a; V] — RG™F(v) — DyRG™ *[ag™w]||

<es(@) [IRG™ 75 (w) = RG" )| + 1Dy RG™ 1~ oy D] — D,RG™ (o w]] (3.67)

=c3(6)" [[|IRG" " (RG(v)) = RG" " ()] + g *| T2 (v) [w] = Topo(0) [w] ]
<es(6)* [er(€)"MIIRG(v) = vl + g x | Taps1(v) = Tni (v)]] ¢ [Jwl[]

<O()es(€)Fer ()™ + ea(e)Fay ™ x 10 x Cy(e)es(€) ™7 x [fuw]|-
In going to the fifth line from the fourth line we used Lemma - since both v and RG(v) are in W9!o¢
we now that their distance is contracting under the RG flow with rate ¢;(e). In going from the fifth line to
the last line we used ||RG(v) — v|| < ||RG(v)|| + ||v|] < O(1) when bounding the first term. For the second
term we used Lemma

The final steps to controling the limit (B.60) are applying the estimates ([B:65) and (B67) to [B.63]) and

1

choosing k = |on| for o € (0, 5) and summing in n. The main theorems are given by

1
Theorem 3.3. For ve W5'°° and ||w|| < 2400, () the quantity

U(v,w) = lim RG"(v+ ay"w) exists in €

n—0oo0

and defines a function of (v, w) with the following properties:

1. W is continuous in the domain v € W*°¢ and ||w|| < m. Over this set one has the uniform bound

1
L4 < -.
19w, 0)] < 5

p

2. W is jointly analytic in v1 and w in the domain ||v1|| < 3

[|w]] < where we have implied

1
24061 (6)
the use of the parameterization

vy = v = (v1,v2) = (v1, ps(v1)) of Wisr{ioc :

1

3. For allve W' w such that [|w|| < 240C; ()am

we have the intertwining relation

RG(¥(v,w)) = ¥(v, aqw).

4. For all ve W™°¢ w such that ||w|| < and all integers q = 0, we have

1
2400C; ()2
U (v, w) = W(RG(v), Ty (v)[w]).
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1
5. For all ve W31°¢ and w such that ||w|| < 2400C; (02 we have

U(v,w) = ¥(vy, Top (v)[w]).

Proof: See [3| Theorem 5]. Analyticity again is a simple consequence of the absolute uniform convergence
of the telescoping series defining ¥ (v, w). The intertwining relation of Part 3) is an immediate consequence

of the definition of ¥(v,w) as we mentioned earlier. The argument for Part 4) is as follows:

(v, w) = lim RG™ v + a "+ D)

n—o0

= lim RG" [RG*(v) + oy (0 "D, RG[w]) |

n—o0

=W (RG(v), T,(v)[w])

where the second equality is shown by taking the difference of the two quantities at finite n, writing it as a
telescoping series similar to ([B.64]), and showing it vanishes as n — co. Part 5) follows from Part 4). Note
that the above theorem does not show non-degeneracy of ¥(v,-) but Part 5) will let one pass the buck to

showing W (vy, To (v)-) is non-degenerate.

Theorem 3.4. On the domain ||w|| < 3; of the one-dimensional space E" the limit

lim RG" (v + oy "w)

n—o0
exists and defines an analytic function of w which will be denoted by ¥ (vy, w) since it coincides with previous
one giwen for W(-,-) on the common domain of definition. On the domain B (O7 i) NEY, this function satisfies
the bound

W (v, w)| <

| =

as well as 17
[V (0s, w) — 5 —w|| < §||w\|2 :

In particular, the differential with respect to w at w = 0 is the identity on E*. On the domain B (0, ﬁ) NnEY

we also have the intertwining relation
RG (U (v, o 'w)) = U (vg, w) .

For w small enough in " we have ¥(vy ) € Ty wloe

Proof: See [3, Theorem 6].

For the non-degeneracy, i.e. the second inequality of the above assertion, one can use the estimates of
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BER) with k = 0, which gives
n—1
n n n —n iy LT~ ’
IRG" (05 + a3 "w) = (RG" (v4) + Doy RGlag " w])|| < Y es(e) x o [ag V[T () ]
=0
but we can simply rewrite the righthand side
n—1 ) 17 . 2
IRG™ (v + a3 w) = v —wl| < Y eale x o [ag U ]l
=0

from which the wanted estimate follows by taking n — c0. The intertwining relation follows as in Part 3)
of Theorem By the intertwining relation one has that {U(vy, a'w)}_s<n<o i a backwards trajectory
emanating form the fixed point vy (clearly lim,_, 4 U (vy, alw) = ¥(vy,0) = vg.) Thanks to the criterion

in Proposition B.71 we see that W(v,,w) is then on the local unstable manifold !¢, O

3.9 Control of the deviation from the bulk

3.9.1 Algebraic considerations

We now pick up the thread from §35.2 where we consider for test functions f,7 € S,_, . (@2, C) the quantity

Z,.s(f,7)

é%ﬁ(fﬂb = ZZS(O(D

which is the moment generating function with UV and IR cutoffs r and s respectively.

Introduce

1

SE(f.5) = Y()Z(;Lj(x) drtl Y (f(?",q)’rf(nq)>

P r<g<s

Y (oA [V )| - ava [P0(0,0)))

ag;ﬁ(fh%
Loz <azr,s(o, 0))

where Log is the principal logarithm with argument in (—m,7].

Asrq

We will show that it is indeed a well defined quantity which boils down to making sure all the RG iterates

V(") are in the domain of definition and analyticity for RGex provided by Theorem One also needs to
az;&(f’j)

heck that
chec a 2Z,.4(0,0)

is well defined and nonzero.

Once this is verified then it immediately follows from the considerations in §3.5.2] that
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8,.s(F, ) = exv (SEF.9)) -

In particular S;I:s ( f , 3) generates truncated correlation functions.
The brunt of the remaining work is controlling the r — —o0 and s — oo limits of the log-moment gener-

ating function S, (f, 7).

Recall that for the denominator, i.e. when f ,j = 0, the initial condition for the RGy iterations is

Vr(0,0) = (9,0, e(g). 0,0,0,0,0)
with pe(g) = ps(g — g, 0) by definition.

If ¢ is the affine isometric injection & — Eex which sends (dg, u, R) to the vector

V = (Bu,a.Bs,a, B2,a. Bras Ws,a, Wo as fas Ra) acr

where for all A e L

Ban =g+ dg
Bsan=0
Bo.an =
Bian=0
Wsa=0
Wea =0

fa=0

RA =R

then 17”"(0, 0) = ¢(v) with v = (dg, us(dg,0),0) where dg = g — g.
By construction v € W*1°¢ and therefore all of its iterates are well defined and we have

Va(0,0) = (RG97"(v)) —> u(vs) where r — —o0 with ¢ fixed.

The purpose of this section is to derive estimates which control the deviations from this bulk trajec-
tory due to the test functions f and j. An important fact is that when comparing V(T’Q)( fh}) to the
corresponding bulk V("9 (0,0) any differences between V'A(T’Q)(f,j) and _'A(T’Q)(O, 0) must be constrainted to
those A © Awin0,q:—q)-
strict locality of the RG map. One immediate consequence is that dba [V "D (f,7)] = dba [V "9 (0,0)] for

A" & Ain(0,q5 —g—1) and so at a fixed scale ¢ we will get contributions from only finitely many blocks A.

The disturbances caused by observables can’t propagate any further due to the

We will break up the log-moment generating function into five pieces which will be analyzed separately.
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Namely, we write

SE(f.9) =SER(f.5) + SEUV(FL5) + SEMP(F,))
+STIR(FL ) + SEEP (. 7)

where

ST =1 Y (fo0rsen)

r<gq<s 54

STV(FLG) = YoZs j Bz YN (a0 )] - 6balVCD(0,0)])

r<g<q— Aell
CAs—g—1

STMP(F5) = Y)Y (0balVUO(F )] - obalFU 0 (0,0)))

q-<q<q+ _ Ael
CAs_q-1

STRGEG = 3 Y (86alPCD(F )] - ba[V0(0,0))

q+<g<s Ael
T ACA .

3>>
0)

The subscript “FR” stands for the free contribution. Indeed, an easy exercise shows that

and
o/,
0

T,BD(F %y _
ST)S (f’j) Log <azr s( )

Jim STENEG) = 5 (£, )

§—00
which corresponds to the free massless measure without cut-offs, i.e., the Gaussian measure with covariance

C .

The quantity SE JUV(f,]) collects the ultraviolet contributions while S}:;IR( f,7) contains the infrared
contributions. Most of the influence of the test functions is felt in the middle regime ¢ < g < ¢, hence
the abbreviation “MD”. Finally S;f BD( f ,5) corresponds to the a boundary term left after the RG iterations

have shrunk the confining volume A, down to a single unit cube.
The analysis will make use of the following observations which are of an algebraic or combinatorial na-
ture. Since the RG runs from UV scales to IR scales we will first have a closer look at the terms featuring

in STUV(F. )

From the definition of RGey in §3.5.2 one sees that this map is given by a collection of independent

operations performed locally.
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Indeed the output (85 ar, .-, 81 A W5 ar, Wi ary far, Rar) as well as the output dbas produced for a cube
A’ only involves the data (ﬁ47A, RN ﬂl,A, Ws A, We,A, fa, RA)AG[LflA/]'

We define £;5 to be the “one block space”, i.e Eex = [ [acp 18- With those notation RGey is made up

of independent copies of a map (&B)XL3 — &1B.

Let A € L, so that f and j are constant on A taking the values fﬁ and 5& respectively. If A ¢ Ay,
then JZA = 5& =0.

First let us see what happens for the first iteration, i.e., ¢ = r.
If a unit cube A is in A;_,\A4, _, then the A component of V(T"")(f, ) of yrm (f, 7) is exactly the same
as that of the bulk V("")(0,0) = (89, 1, 0) with p = us(dg,0).

If A e Ay, _, then there is a unique Ae Ly, Ac A4, such that A < L'A

In this case:

VED(F,) = (9,0, = Y2 ZE L2V j5,0,0,0, LE1D7 5, 0).

Now since we chose Z9 = auL_(?’_Q[‘ﬂ) and thus

V() = (9,0, — Yaaljix,0,0,0, LG2D7 £ 0).

If ¢ = r < g_ then all immediate neighbors A carry the same data. Here by neighbors we mean the
L3 — 1 other unit cubes contained in the same L-block L= 1A’ as A. The fact that our data is constant over
L-blocks make this situation reminiscent of the bulk RG.

We claim that the computation producing dba. [V(T”")(f,j)] as well as VA(?TH)(JEJ) is the same as the

RG acting on the space &, except for the presence of the f-component L3~[¢Dr f A Which evolves by averaging

without influencing or being influenced by the other variables.

This again results from the property that f I'(x —y)d3 = 0 for all z € L7'A’, as in the proof of
L—1A’
Proposition

Indeed for the explicit diagrams in the RG transformation the possible effect of f is through legs attached

to f-vertices of valence 1 which precisely contribute a factor of the type J I'(z — y)d®y = 0 because f

is constant over the L-block L™1A/.

For the other £ or £ terms, observe that one has ele-1a7 ¢ = 1 because f is constant on L™'A’ and

J ¢ = 0 almost surely by the property of the fluctuation covariance I'.
L—1A’

As a result
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VA(?T—FD(.};?;) = (glv 0, /~L/7 0, 07 07 L(37[¢])(T+l)f~ﬁv R/)

where

(g/ - gv/J/lvR/) = RG(Q - gv/i - al}éjﬁvo)

and also

Sba [V (F,5)] = 6b(g — g, 1t — ol Yajx, 0).

The same decoupling applies to subsequent iterates V(41 (f,7) = RGey [V ™9 (f, )] as long as ¢ < q_,

i.e. as long as f("% is constant over each individual L-block.

Hence, in the quantity

Y (ealVON(F )] - sV (0,0)])

r<q<q— Aell
CAs—g1

appearing in S} ;VV( £, 7), only boxes A ¢ A, _,_; will contribute and these can be organized according to
Ae Ly, A c A4, such that L9F1A contains A. All L34-=971 hoxes A which satisfy that condition for

given A produce the same contribution.

In other words, the previous expression can be rewritten as

DD LAY (b [RGTT (v — o Yajzeq) | — 0b[RGTT(v)])
Ael,  TSI<q-
ﬁch+

where v = (dg, 15(6g,0),0) with dg =g —g
and ey = (0,1,0) € €.

Here ey2 gives the direction of pure : ¢? : perturbations in the bulk.

We are thus reduced to L@+ ~9-) separate and independent bulk RG trajectories as considered in §3.7.1]

one for each A. Also note that the effect of f is completely absent form the UV regime contribution.

By also organizing the explicit extra linear term in j according to boxes A of size L9~ we can write

SEN(LD = ) Kx
AEILL

ACA(H_
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with

Kx = -YoZyL*jx + . L¥797D (6b[RGT™ (v — o Yajxeq2)]| — 0b[RGT(v)]) .

r<g<q—

That concludes our organization of UV contributions.

As soon as g = g_ and we enter the middle regime we are not guaranteed that our RG data is constant
over L-blocks - we may have to deal with inhomogenieties within L-blocks and so we must use the extended
RG map RG.. We will want to take the L9+~%- different bulk data point points we tracked in the UV
regime along with the f-component that has been flowing by averaging and amalagmate all of this into the
corresponding data point in Eey.

We now give the notation used to describe the above process which at scale ¢ = ¢_ will take us from
bulk data to data in Ex.

For m > 0 we introduce the reinjection map

T+ Som(@C)x [ [] €]— €

Ael
ACA,,

(F, (59A,uA,RA)AACeA[L 7(597%R)> > V= (Bhas o Bl Wi as WE Ay FAn Biar) ay
defined as follows.

We let

, g+dgan fAcCA,
B4,A:
g+dg if Ad Ay,
, A ifACAm
52,A:
I if Ad A,
R/AI RA ifACAm
R if Ad A,

/ / ! /
ﬂ3,A = BI,A = W5,A = W6,A =0

and finally f} is defined by

FA@) = Flz) for all z € Q.

Recall that since F' € So7m(Qf,, C) is assumed constant on unit cubes and with support contained in A,,.
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Now it is easy to see from the previous considerations that

V’(nq—)(fj) = T4 —q_ (f_,(_q_)a (RG=77 (v — aCYQELfQ—AeW))A Ael 7RGq__r(U)> :

CAhgy—a_

Note in particular that f(9-) = (f_,(_r)) = f_,(_qf).

—(g-=1)

We also have the special case

Va=)(0,0) =J,, -4 (0, (RG™7"(v))  Aer ,RGqT(U)>

Ay —q_

= (RGq*_T(v)) .

We now look at the middle regime and note that

S = X N (alVOOG D] - aalVE00.0]).

q-<q<q4 A€l
Ach+,q,1

Here we replaced the s that appeared earlier with ¢, when describing the summation over boxes A. Indeed,
if A @ A,_4_1 is outside the rescaling A,, _,—1 of the set A, containing the supports of the f and j, then
the effect of A is nil.

Finally we turn to the infrared regime. Here we have

SERE = Y 3 ((5(,A [qu—q+ (‘7(nq+)(f’j)>] — 5ba [RGq—q+ (V(hfu)(()’o))])

g4+ <g<s Aell
ENs—g—q

where V(T’q”(f,j) = RG¥+ - (V(r’qf)(f,j)) .

Since V"9-)(f. ) agrees with V(™9-)(0,0) on all unit cubes A d- Ay, —q_, it is easy to see that

RGI+~4- (17(7"‘1*)(]?75)) agrees with RG+ 79~ (V(T’q*)(O,O))

on all unit cubes A ¢ Ag = A(0) the unit cube containing the origin.

We denote by &,; those elements of & that are supported on A(0). Thus

Ve (f,j) = Ve)(0,0) € £y

or

VO (£.5) € u(E) @ Epy © Ee ® Ept
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where Epy is just the space of spatially homogenous elements of E.. This property remains true for the

next iterates since the only difference with the bulk now only happens in A(0).

Therefore no summation over A is needed in the formula for S;lj JIR( f,7) which thus reduces to

SgglR(f’]) _ Z (5bA(o) [R(;qﬂu (V’(r,qﬁ(ﬁj))] — 8ba(o) [RGqﬂu (17(“”)(0,0))]) )

g+ <q<s

After these prepatory steps we can now address the estimates needed in order to take the r — —oo0 and

§ — o0 limits.

3.9.2 The ultraviolet regime

We now resume the analysis of the expression for ng UV f , 5) derived in the last section.

Adding and subtracting terms linear in 55 we write

Kx =Jx |-YoZgL?* + >, L*99YD, (6boRG"") [—aiYaege| |+ Y, L9 VKx

r<g<q_— r<q<q-

where Ky = 0b[RGI™" (v — ayYajzeg) | = 6b[RGT"(v)] + Dy (6b 0 RGT") [ Yajxese] -

4t "
Now ICAﬂ = IC&q + IC&q where

K% , = 00[RGT (v —aYajzeqs) ]| — 0b[RGT™(v)] = Drga-r(n)0b [RGI" (v — o Yajxegz) — RGT"(v)]
and
K% o = Draa-r@)0b [RGT" (v — ajYajzess) — RGT"(v) + DyRGT" [aYajzes]] -

The quantities above are similar to some of the terms estimated in section B.8J] We remark that the
first and second differentials of §b can be bounded with an O(1) estimate in a straightforward way as long
as we stay within the domain of the RG. In particular the two terms immediately above are quadratic terms

which are fairly easily to estimate as long as one has control over the term
RGT™" (v — aGYﬁz%z)

for ¢ < q_.
An analysis similar to that used in section B8] will show that this term can be controlled uniformly in
rif

IER RIS for all ¢ < ¢_.

1
24001 (6)
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We guarantee this by enforcing that that

. 1
@1y el < —— .
[l Yajzee|| 240C, (€)

Proceeding in this way one can show ||K% < ag2@-=9=1 and (Lo s 207 29-=97Y in which case
one has the the estimate |[Kx [| < 3o 20-=97Y) for simplicity.
Y, is a strictly positive quantity that will be fixed later and we have that |[eg|| = [|(0,1,0)|| = g~*. So

the previous construction and bounds work if

—1

17| < [240C1(e)ad-""Yog '] (3.68)

We will later also show L3ay? < 1 which will imply that Z L3(q*_q_1)||ICA .|| is summable with

u
r<qg<q-—
uniform bounds with respect to the UV cut-off .

We now analyze the more dangerous linear term in j A, that is the quantity

QO = -YZyL? + Y L¥797ND, (5bo RGY) [—alYaeye ] .

r<g<q_—

We change the summation index to n = ¢ — r and rewrite the differential using the chain rule and get

q_—r—1
Q, =L3- (Yozg ~Yy Y. L30T D )b [DURG”[%Q]])

n=0

q——r—1
=L3% (YOZgYQ > L3("”“)a£+"DRGn(U)§b[Tn(v)[%z]])

n=0

qg_—r—1
=3 <Yozg — YL 3 (L 3 ay)" Z (LS%)"EH)
n=0

with 2, = Drgn(u)0b [Tn(v)[ep2]] -
Remembering that L™3ay, < 1, and applying Lemma [3.23] one can show

DRG"('U)(Sb [Tn(v)[e¢2]]| <||DRG”(U)6bH X ||Tn(1})” X ||€¢2H
<1061(€)§71 .

We then see that =, is bounded uniformly with respect to n. Hence
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o0
T = Z (L_3au)" =, converges

n=0

and we can write

e}
Q, = L3 (-YOZ{; —YoL 3 (L3ay)" Y + Yo L3 (L3 )" Z (L 3a,)" En) )

n=q_—r

Since L3, < 1 and 7 — —o0 we choose Yp, Ya, and Zj so that the dangerous first two terms cancel.

Namely, we set:

Zo =L 30y ,
Yy =— L73Y,T .
Then
[oe]
Q, =LY, L3 (L 3ay)" Z (L3a)"™ B,
n=q_—r
o0
:YQL_3043— Z (L_gau)k Ehtq_—r

k=0

after changing the summation index to k =n —q_ + r.

Provided one shows that lim =, = =, exists, the discrete dominated convergence theorem will immedi-
n—oo

ately imply

Now

’En — D, 0b [Tw(v)[e¢z]]} < ’DRGn(U)(sb [Tn(v)[ed,z]] — D, 0b [Tn(v)[%z]]‘ + }Dv*éb [Tn(v)[e¢z] — Too(v)[e¢2]]|
<2/|RG™ (v) — x| x 10C1(€)|legz || + |[Tn(v) — To (v)[] X [leg2]| -
Above we used Lemma Finally, Proposition and Lemma ensure that the limit of the =,

exists and is given by Eo = D,, b [Too(v)[e¢z]].

As a consequence of the previous considerations and Theorem [3.3] we see that

lim STUV(F,j) = STUV(F,) with
r—— ’
§—00
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S = Y (s Db [T e ]
&e[Lq_
ACAQ+

+ Y L3O (6 (W(v, —al Yajzegr)) — 6b(vs) + @8 Yajx Do, 6b[ T (v) (e42)]) } .

q<q-—

The latter is easily seen to be analytic in j in the domain |[j]| L= < [240C; (¢)ad"'Yog "] “of Sq_.q. (@3, C).
Note that there is no dependence on f for this piece. In fact the finite cut-off quantity S}? UV( f ,7) does

not depend on f nor s.

3.9.3 The middle regime

We introduce the notation V for the approximate fixed point in E. Namely we set Va = (9,0,...,0) for
all A € L. We note that RGex is well defined and analytic on B(V, 1).

We will next establish some very coarse bounds on the expansion of deviations which will be enough for
the control of the middle regime.

The main idea is that the middle regime will only be a finite number scales, in particular ¢, — ¢_ scales.
We will establish a brutal expansion bound in this regime on the size of deviations from the bulk. After
the middle regime comes the infrared regime in which we expect that deviations, once small enough, should
contract away. The role of this brutal expansion bound in the middle regime is to tell us how small we must
choose our initial deviations (our observables 7, f ) so the deviations they induce are sufficiently small enough
at the end of the middle regime to guarantee that they will contract away in the infrared regime.

To establish our brutal expansion bound on the extended RG we establish a uniform bound on the output
of RGey on the ball B(V, %) The only bound that takes some care is the 8, evolution which we include
below.

Lemma 3.24. Suppose that V in B(V, 1). Then one has the following bound for the B} component of
— RGex[V]: For all A e L
|81 —9lg72 <03

where O3 = 434 + Oag with O defined in the statement of [3, Lemma 38].

N|—=

Qi
[SI[)
z

Proof: Due to our assumption on V for any A € L we can write S4A = g + dga where |[dga| <

substitute this into the flow equation to get the following:

Biar = LG+ L7 N Gga = 6Bua.ar[V]+ Lo [V]
Ae[L—1A]

(3.69)
= [34¢lg — 36419 Q — BapalVl+&aaVI+ L7 7 dga .
g+07 g+ dg AclLTiA]
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We have used the fact that 6841.4[V] = 0. In the formula above 5\5/4,2,& [V] is defined to be 68424/ [V]

with the graph that we have made explicit removed:

a; +b; <4 ( b )‘ ( ) )|
7 > ay 1) (a2 2):
5 / V = ]]. >
Bunae 7] . ;b i =0 blz Y G wlml (o = m) (b —m)!
,a2,b1,b2, m =
f f
X%C(al,a2|4) x L~ (a1+a2)[é X Co( )%2_4 X bi—m : ba—m
f 6a1+b1 Baz-‘rbg f
44b=50r6 | (k+b)! f\/f
1 1, kl¢]
+Zb: { b=>0 } k! o!

Wi

L1 44
= B2Vl = 5L o Q '
g+og g+dg

Indeed, first note that there is no graph with m = 3. This is because this would imply a1,a2 < 1 which

contradicts a; + a2 = 4 imposed by the nonvanishing of the connection coefficient C(a1,as|4). Also the
removed graph is the only one with m = 2. This is because by,by > 2 implies ay,as < 4 — 2 = 2, but the
connection coefficient requires a; + as = 4 so we are forced to have a; = as = 2 which implies by, by < 2 and
therefore b; = by = 2.

We note that we can decompose the graph above as follows:

g+0og g+dg g g g dg o9 dg
We now use the fact that g is an approximate fixed point:

g=1Lg- Mg’ =L*"g - 360" Q

g g
Using this we can write:

Bi.ar :g+L*4[¢1 Z 5ga

IA/
_ 36L—419] O O (3.70)

— B0V ]+£4,A/[‘7'] :

We now describe how to bound the second and third lines of (BX0). By the same arguments as used
in [3, Lemma 38| the contribution of the two graphs on the second line can each be bounded by 4L°g?
follows from the very coarse bounds § < § and |[dg| < g. This gives us:
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il O Ol OO
7 dg dg dg 7

dg dg dg

<36 x 3 x 4L°g% = 432L°5° .

Note that in the first line we dropped the factor of L=%¢l. The quantity 3\6472, A[V] on the third line
of [BX0) can be bounded by Os6L°g? as in [3, Lemma 38] where Oq is a purely numeric constant(we are
overestimating since we are summing over fewer graphs). We combine this with the estimate on & as [17]
from Theorem to get

jw

1 s a
Bin —alg? <§L3*4[¢1 + (432 + On) L3G2 % + Byg

1
<§L3*4[¢1 + (432 + Og6) + 1

<1+ (432 4 Og) + 1
In going to the third we used the bound L3~4[?] = L€ < 2 for € small. O
Lemma 3.25. RG.y is well defined and analytic on B(V, %) Additionally one has the following uniform
bound for V € B(V, 3):

IRGex[V] = V|| < OsL? (3.71)
for a purely numeric constant Os.
Proof: This is [3, Lemma 87]

Proposition 3.8. For any VivV2e B(V, %) one has:

IRGex[V'] — RGex[V?]|| < OL3 ||V — V2],

where Og = 405.

Proof:
By Lemma 25 we know that RGex is an analytic map taking B(V, 3) into B(V, O;L2). We get the
desired inequality by applying Lemma [3.2] with the choice v = % O

After the previous estimates we now return to the analysis of the » — —oo0 and § — o0 limits of S;lj MD( 1, )
which in fact does not depend on s such that s > ¢gy. Since the summation range q_ < ¢ < ¢4 is fixed
and finite, all we need is to show that RG.y remain in the domains of definition and analyticity, despite the

temporary expansion with rate controlled by Lemma [3.25] and Proposition
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The quantity of interest, as delivered by §3.9.11 is

STMP(F R = Y Y (0balVUO(F )] - sbalV 0 (0,0)))

q—<q<q+ A€l
CAgy—q-1

where
V(] 5) = RGL (VO (7.0)

with

f/’(nq—)(ﬁj) = T4 —a- <f4’(q)7 (RGqfir (U - QEY23L*Q—A6¢2))A Ael aRGqT(U)> :

CAqy—q_

It follows from our definitions for the norms and the reinjection map J that

Ve (£.5) - 7 0,0)]

= max { | Colloe, max [[RGTT(0 - alYaj, o yess) — RGP (0)]
ACAg, —q_

We also have
1o —qollzee = LETED oo

We slightly strengthen the requirement in ([B.68) by imposing
11711 < [240C; ()ad-Yag 1]~

which implies
~ 1
—a®Y57. _ < —
=i Yoi o acoll < 3306079

for all A € L such that A < A, _,_ . Proceeding as in section B.8.1] one can prove the bound

IRG" (v — al¥aj, -+ peqr) — RG&—" ()]

N

11C1(6)]] — % Yaj, o peye]]
< 11C ()ad-Yag ™' x ||j]| 1=

and therefore
WVE0I(F,5) = V0,0l < mae { LOD | fl| o, 183 (ot Yog ™ [l |
On the other hand, minding the g shift for 34 components only, we easily see that
IV"9)(0,0) = V|| = [|e(RG™~"(v)) = V|| = [|RG* " (v)]]

where the latter quantity can be computed as in section §3.7.2 i.e., via the norm inherited by £ from &y

and expressed in (dg, i, R) coordinates.
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By construction of W=!°¢, ||RGI-""(v)|| < £ with p € (0, &) as yet unspecified. We thus have

. _ 1
(r,9-) _ <
[[704(0,0) = V]| < 75 -

Provided we also have

q+—q— - - 1
(0sL3)™ " x max {LEDe- | fll1n 11C1 (0t Yag " x |1fll1 | < =

then a trivial inductive application of Proposition B.8 will guarantee that for all ¢, ¢ < g < q4,

_ o _ 1
Ve (F V|| < —
| (f.0) =VII< 5
so one remains, throughout the iterations, in the domain of definition and analyticity of RG.x as well as the
0b functions.
As a result of Theorem we then immediately obtain, regardless of the order of limits,
lim S7MP(f.5) = STMP(F,])

r——00
5§—00

where
STMP(FH = XY (Al )] - dbalu(w)])
q-<q<q4 CAAeIL
94 —q—1
with
VR (f ) = RG (VR (1.5)
for

TE2a) (F.5) = oo <L(q), (D0, =0 Vaj-a-p€g2)  _ac 7v*>- (3.72)

Clhgy—q_

Analyticity of STMP(f,7) is also immediate.

For the purposes of the next section we also note that ‘7("q+)(f~75) satisfies the bound

— ~ ~ — qd+—q— ~ ~
[PC9)(F, ) = Ve 0,0)]] < (06LF) T x max {LO 09| fl| 10, 11€1 (ot Yag ™ x ([l }
(3.73)

3.9.4 The infrared regime

In this section we are concerned with showing that the differential of RGey at any suitable ka € &pk in any

direction V' € &, is a contraction.

We will introduce new notation to facilitate the lemmas below. For ka € &y we write:

Vi = {Vitacr = {(Bapis - - - s B1,vks W bie, We bk Jok, Bok) f acy -

Note that we do need to burden the notation with A subscripts since the quantities above are independent
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of the box A by definition of being in Epy.

Similarly for Ve Ept we write:

V= {Va} = {Busr B Woa Won, fa R}

Note that Va = 0 for A = A(0). We also recall that RGey[Vix + V] — RGex[Vix] € &y and so in our
estimates we are only concerned with the A(0) component of RGex[ka + V] — RGox [ka] € Ept.

The key estimates proved in this section are Lemmas [3.28 and B9 We have to be more careful here than
in our treatment of the middle regime - in order to carefully track the flow of deviations from the bulk we
decompose the vertices at graphs appearing in the flow equations into bulk and deviation components. The
fact that the fluctuation covariance I" vanishes at 0 momentum (or equivalently, has integral one) causes
many of the terms that appear in our analysis to vanish. Lemmas and give some examples of how
this works out, but we have not included the other details. We remark that the R deviations, which we don’t
explicitly address here, are already guaranteed to contract due to the estimates of Theorem and an easy

non-bulk generalization of the Lipschitz estimate on the R remainder in Lemma [B.10

Lemma 3.26. Let Vi € B(V, i) A Epi and V € B0, i) N Ept. Then one has the bound for k = 1,2,3,4 and
all A" e L:

‘5ﬁk,1,A(o) [ka + V] — 0Bk,1,A(0) [ka”ﬁ_ek < 1{1 <k <3}O,L71[|V|?,
where Q7 = (6 + 21 x 2%).

Proof: We again note that the vanishing for k = 4 follows by inspection of the definition of 63 1 (). We
now observe that 653 1, a(0) [ka] vanishes. Indeed, by definition we have

fbk . ?. fbk
- E+b<4 | (k+b)! _,
0Bk,1,a00)[Vok] = —Zﬂ{ } LHe)
- b>1 k! b!
Jok R
=0.

Bretb,bk

Br+b,bk
However one has that

This is because we have at least one integration vertex of degree 1 which has been assigned a cou-
pling fux which is constant over the integration region L='A(0). Using ultrametricity and the fact that I’

integrates to 0 allows one to show that after integrating any of the fi vertices the entire integral vanishes. So

8Bt a0 [Vik] = 0.

We now turn to d8.1,a(0) [ka + V] From the definition we have:

167



fbk+f b fbk+f
k+b<4 k+0b)!
5B1kAO)[ka+V Z:ﬂ_{ b1 }(k' b') L k[¢]

Br+b,bk + Br+o

Under the assumption that b > 1 we have:

fox+ f b fbk+f b
b .
‘Z@ !

7=0
Jox

+Pk+b
In the sum above only the j = 0 term can be non-vanishing, all other diggrams will have at least one

Br+b,bk + Brib Br+b,bk

integration vertex of degree 1 with a bulk variable assigned to it. We substitute this back into our formula

for 68%,1,a(0) and perform more manipulations:

E+b<4 | (k+0) / : b b f
OBrr.am[Vox + V] ==31 { b >I } kbl L) (3.74)

b

— (k + 1)L7kL¢] /

Br+1,bk + Bt

NG f
Eab<d | (kD) g
_;1{ b o } e (3.75)

Br+bvk + Brp

Br+b,bk + Brtb

where we have isolated the b = 1 term. Note that for £ = 3 the sum on the last line is empty. We now

bound the diagrams appearing above:

S - e

Br+1,bk + Brt1 Br+1

] ./f'\

Br+1,bk

Bk-ﬁ-l (376)

= |F(0) x T(0) x 1,800
<2 (L= tenyi)) (Ivig=)

<2L™H||V]Pgeee

In going to the third to last line we used local constancy at unit scale and the fact that all the couplings
were supported at A(0) so we did not really do any integration. In going to the second to last line we used the

bound |I'(0)| < 2 which comes from Lemma[54l In going to the last line we used the bound —(3—[¢]) < —%.
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For k = 3 we immediately have the bound:

[08s,1,a0)| 97" <AL x 204 ([V7| P92 g
<8L~H||V|]%.

Note that in going to the last line we dropped the factor of L73[¢] and used e, > es. This proves the
lemma for the case £ = 3. We now bound the remaining diagrams to prove the lemma for the cases k = 1
and k = 2. Before note that in these two cases k + b = 3 or 4 because we also assume b > 2.

If £ + b = 4 then, because of the domain hypotheses for our lemma and noting the g shift for the /4
component of the bulk, we must have

. 1 1 B
|Bro,ok| + |Bpar] <G+ - + - < g <

—€er

N
S

N W
N w

This is because of our assumptions eq,e5 < 1 < e4.
If K+ b = 3 then

. 1 1 3
< ZG% 4+ —g® < 2o
|Br+b,bk| + | Botk] 19 + 19 59

because of the assumption e; < es < e3. So in all relevent cases we can use %gek as a bound, as we do next.

f o d
1{k+b<4} \/ g]l{k+b<4}><‘f'(0)‘b
b>2 _ b>2
Br+b,bk + Br+v

X (|5b+k,bk\ ¥ ‘B“’“D x ng &z D)) (3.77)

< (L*<3*[¢1>||V||)2 y ggek « 95/2 3-2[0]

<3 x 282073V 2% .

For the bound on the first line we used the fact that all the f vertices are pinned to the origin and the only

integration occurs at the 41 bk + Bb+k vertex which has been left with b copies of the fluctuation covariance.
In going to the second to last line we used the bound |f(0)[" < |f(0)[? since b > 2 and |f(0)| < 1. For
that same line we also used the following bound which is valid for 2 < b < 4:
J, 4 @ <l e
P

1
< L3—2[¢]) gb—1
(7

<25/2L372[¢] .
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Note that we have used fluctuation covariance bounds of Corollary £l and Lemma [5.4l Thus we can use
B16) to get the following bound for k = 1 and k = 2:

FNCCY. T
k b<d | (k+b)! k+b<4 | (k+0)
21 b2 } AR . <;1 b= 2 K B!
Br-+b,bk + Brtb (3.78)

x 3 x 2%2L73||V||2 g
<21 x 232L73||V||2ge- .

Note in going to the last line we dropped the factors of L=*l?] and used that

k+b<4 !
i 1{ + }(k+b):

k=124 b>=2 k!'b!

Finally by inserting the bound B2@) and BIR) into B74) we get the following bound for £ = 1 and
k=2

5Bk1.00) Vo + V1|57 <(k + 1) x 2L 4 V][2 4 21 x 2213V

<(6+21x28) LRV

In going to the last line we simply bounded L3 by L~1. This proves the lemma for £k = 1 and k& = 2
which finishes the proof. ]

Given Vi € B(V i) A&y and V e B(0, ) N Epe we define:

RGav[Vik, V] = RGex[Vix + V] — RGex[Vix]-

Note that, as a subspace of &, the space Eyi®Ey is invariant by RGex. Since ka +Ve Epk @ Ept, one has
a unique decomposition RGey [ka + V] = ng +V’ with ng €& and V' e Ept. Using the locality of RGex it
is not hard to see that ‘7}3’]( = RGeX[ka] and V' = RGqy [ka, V] In particular RGay[e, o] takes values in &y.

Lemma 3.27. Suppose that Vi € B(V, ) A Epx and V € B(0, ) N Ept. Let V! = RGdV[ka, V] and for
k=5,6 let VV,C be the corresponding components of V.

We then have the following bound for k = 5,6
Wi a| 972 <272V + 08|V
_ 9
where Og = (18 + ﬁ)

Proof: For k = 5 we have:
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W Ay =L Z Wsa
(0]

A ( S for+ f B / ok >

Babk + Ba Babk + B4 Bapk  Babk

(3.79)

R ( /‘fbk +f B / Jok )

We.pk + Ws W bk

B3,bk + Bs B3,bk
+12L75¢] ( / / )

Bapk + Ba Ba,bk

As before using that W5,A is supported on A = A(0) gives us the bound:

1,509 Z W57A < L*5[¢]§2||V|| )
Ae[L-1A(0)]

We now bound the various graphs appearing in (379). We again note that when a graph has an integration

vertex of degree one that has been assigned a bulk variable the graph will vanish. This tells us that:

i
bk ) / B3,bk B / fok W

Bapk  Babk fa,bk We bk

We use this same observation to break up the non-vanishing graphs and show that their contribution is

second order in ||V||. For example:

, fox+ f B s f ) / fok

Babk + B4 Bavk + Ba Ba Bapk + Ba Bavk Bapk + Ba
,f / fok
ﬂ4bk Bapk + Ba Ba Bapk + ba
/!
Ba Babk + B4

after expanding the two outer vertices of valence one.
We then have
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/

’ / Jox +

f

Bavk + Ba Bawk + Ba ’ B Babk + Ba ‘

<[fO)] % [fraw| (B + [fraw]) * | @ TP
Q3

(3.80)
<L x|Vl x Sg x (22 1521)
<3 x 273 L7WIgE ||V |?
<3 x 272g3[|V|]”
Note that in going to the second to last line we again used the bound:
Bz |D(2)|" < 2751320900
Q3
Proceeding similarly for the other graphs we have:
fox+ f f
/ S O < [We a0  IT(0)
We bk + Ws W (381)
<L™GDg r(0)] x [[V|?
<2g°||V[* .

In going to the last line we used the bound |I'(0)| < 2 which is a consequence of Corollary Bl We also

9

dropped the factor of L=G~[¢D) < L7 < 1. We continue to the last graph we need to bound for W5’

Bs i + 3 B
/ 3,bk 3 g / 3
Ba,pk + B4 Ba
. . (3.82)
= ‘64,A(0) X ‘ﬂ&A(O)‘ x [L(0)]
<2||V|Jg5 .

Using the bounds (B.80), B.81)), and 3.82) in B79) gives us the bound:

1

‘W&A(O)‘g*z <L89|y|| 4 L=51¢) [48 x3x275gE 4 6x2+12x zg%] V|2

<273||V|| + 2% [48 X3 X273 46x2+12 x 2] V|12

5 - 9 .
=27z2||V|| + (18 + —= ) IV]]* .
4l ( \/5>|l |

In going to the second line we used the fact that e < 1 and L > 2 to bound L—5¢] < 275, This proves

the lemma for & = 5.
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For k = 6 we have:

bae =L Wea

Ae[L—1A(0)]

Bapk + Ba Ba,bk (3.83)
+ 8L 76091 ( / — / ) .

Bapk + Ba Ba,bk

Proceeding as last time we see:

7, 6[¢] Z W&A < L76[¢]HVH§2
A€[L-1A(0)]

and
Ba,bk Bavk + Ba Ba
/ =0, / =, /
Ba,bk Ba,pk + Ba Ba
which simplifies the right-hand side of (8:83]). We now bound the contributing graph:

b1
I'd

=1Ba.n@)]? % [T(0)]

(3.84)
<2[[V|Pg® .

Inserting ([384)) along with the our earlier bound into (B83)) gives us:

Wi | 972 <L709N[V]] + 8175190 x 2|72
<2V + 2V

In going to the last line we used our assumption that e < 1 and L > 2 to bound L 6l%] < 273, This

proves the bound of our lemma for the case kK = 6 which finishes the proof. O
Lemma 3.28. Suppose that Vi € B(V, 4%) A& and V € B(0, %) N Ept. Let V= Rde[ka,V], Then
one has the following bound:

. 27 . )

V|| < |V + 00|V

VI < g5 1IVIE+ OslIV]|

where Og is a purely numeric constant.
Proof: See [3, Lemma 93]

Proposition 3.9. Suppose that Vi € B(V, %) AEp and V € B(0,019) NEpt where Oy = min(%o, 3%

Let V' = RGqy [ka, V] Then one has the following bound:

0,").

173



. 15 .
VI < IV

Proof: This proposition is a direct consequence of Lemma [3.28]
O
We remark that it is important that the contractive bound for deviations holds for V that are O(1) small
- if V needed to be less than some power of g then our neighborhood of analyticity in f might be too small
to easily prove non-triviality.
For the control of the infrared contributions to the log-moment generating function we will finally need

a very coarse Lipschitz estimate on the db functions.

Lemma 3.29. For all \71, V2 in B (\_/, %) we have
|0ba() [V'] = 8baqoy[V2]] < 4V = V2| .

Proof: See [3, Lemma 94]. O
Now recall from §3.9.1] that

SHR(f.4) = Z (5bA(O) [V(T’q)(ﬁj)] — dba(o) [V(T’q) (070)]>

g+ <q<s

where

FO0,3) = ez (FO(75)
With a view to lighten the notation we write

—

Ve (f 5 = vio 4y

where

“/’b(l:,q) . vAG)) (0,0) = «(RGY"(v)) € Epk

and
Vo = o (f 5 - V0(0,0) e &,

We will control the latter via Proposition
First note that
IV = VIl = [IRG" ()]l < 5

To make this at most i we add the new requirement on p:

<3
T

If we can ensure that HV(T"”)H < Oy then a trivial inductive use of Proposition will imply that

. 15 q—q+
v (ra) <0 -
| I 10 X (16)
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for all g, such that g, < ¢ < s. We again include the value s although it does not belong to what we called
the infrared regime in order to pass the baton to the next section about controlling the boundary term. In

view of (B73), we now impose the new domain condition
) G-[6Da-||F -y o=l o |IF
(OGLz) x max{L 1f]| e, 11C1 (€)ad-Yag " x Mm} <Oy . (3.85)

Now Proposition followed by Lemma imply that for any ¢ with ¢, < ¢ < s we have

‘5bA(0) [f/’(r,q)(ﬁj)] NG [‘7(’”"1)(0,0)]‘ <409 x <£>q a+ .

Hence we get the uniform absolute convergence of the sum over ¢ needed to say

lim STIR(F ) = ST )

§—00

with
[ee}

ST = 3 (a0 V=D (F, )] = Bbao[(v:)])

where

VERa(f ) = RGE (VE2) (1))

and V(=2:4-)(f 7 has been defined in B22). The limit ST-'B(f, ) is analytic and the order of the r — —o0,

s — 00 limits is immaterial.

3.9.5 The boundary term

Let Ve Eex and simply denote by
(B1, B3, B2, B1, W5, We, f,R) € C7 x Cpq(R,C)

its component at A = A(0). We let

0Z[V] = Jdﬂco(@ ef? x {exp (—Ba: ¢" i, —B3: 8% 0, —B2: 9 ¢, P cy)
x(1+Ws:¢° icy +We : 0% i) + R(9) }

which reduces to an integral over a single real variable still denoted by ¢. Let 02, = 0Z[c(v,)] which is the

value at the infrared fixed point. We have

02, = Jduco(aﬁ) {exp (—gx 1 0" 1y s 1 07 1) + Ru(9)}
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with g« = g+ dg«. Recall that gy, s, Ry are real. Note that by Jensen’s inequality and the basic properties

of Wick ordering one has the lower bound

Jd“CO (#) exp (—gx 1 ¢" 1oy~ 1 67 i) > exp <_Jdﬂcu (@) (9% : 0" :cp +iw : 0° :Co)> =1.
Besides

\ [ aueto) R*<¢>1 < sup|Ru(®)] < sup | Be(®)llo00n
¢»eR »eR

5
8

__ s p
<7 7Rl <7 3

Since g <1 and p < 5, we clearly have 0Z, > 1.

Now if [|V — V|| < 1 it is easy to see that |0Z[V]| < C5(¢) with

Cs(e) =fduco<¢> e B
{exp [—;gq’)‘l + %g (16]* + 13¢* + 7|o| + 14)]
x (1 + %f (I8]” + 20[¢|* + 60[¢]) + %f (¢° + 309" + 1809 + 120))

1o,
—_ 8
23 } |

Indeed, by undoing the Wick ordering
—R [ﬁ4 : ¢4 “Co +ﬁ3 : ¢3 ‘Co +ﬂ2 : ¢2 “Co +ﬂl : ¢ :Co] = _g¢4 - Y((b)
with
Y (¢) =R(B1 — g)o*
+ (Rps) ¢
RB2 — 6Co(0)RBs) P>

+(
+ (RB1 = 3CH(0)RB3) P
+ (=Co(0)RB2 + 3Co(0)*RBy) .

Using |R(Bs — 7)| < %g% < 37 for the fourth degree monomial and |RfB,| < 3g'~" for k = 1,2,3,4 when
bounding the lower degree monomials, and finally using Cy(0) < 2 we obtain
_ 3_
Y(6)] < 596 + 59 (161 + 13¢% + TIg| + 14) .

The bounds on W, : ¢¥ :¢,, for k = 5,6 are similar.

Since 0Z[V] is clearly analytic in the domain ||V — V|| < 3, Lemma B2 with v = £ tell us that for all
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V1 V2%2in B (‘7 %) one has the Lipschitz estimate
0Z[V'] = 0Z[V2]] < 4C5(e)|[V! = V2| .
We now have, using the outcome of the discussion for the infrared regime

PZ[V)(F, )] - 0Z[u(wa)]|
4Cs(e) x IV, 3) = V2 (0,0) | + [7(0,0) = (v

102,.5(f,7) — 024

Nl

IN

4C3() x [|IVO)| + | RG* ™ (0) — v

15\
< 4Cs(e) x | Oqp % (16) +c1(e)’ 7 lv =gl | -

One of course has a similar and simpler estimate for the quantity 02, (0,0) appearing in the denominator of
the boundary ratio. Namely, the O1¢ term is absent. Bounding ¢;(€)*~" by ¢;(€)*~9+ and using the previous

lower bound 0Z, > % we see that

0Zs(f,0)

aZT 9(.]?7.5
0,0)

aer( )

when s — o, uniformly in » < ¢_. Therefore the boundary term ST-BP disappears when r — —o0, s — ©

regardless of the order of limits.

3.10 Construction of the limit measures and invariance properties

As a consequence of what we have shown in the previous section we see that
Sr,s(f7j> = exp (S;I,‘s(faj))

converges uniformly to the analytic function

in a suitable neighborhood of f = j = 0 in Sq_q. (Qf’,, C), when r — —o0 and s — 0. Using the multivariate

Cauchy formula it is immediate that the cut-off correlators

1 2 1o duy ~ ~ ~ ~
7§§;H7; 1_[7 Sr,s(zlfl+"'+annau1]1+"'+um]m)
J

converge to the similar integrals with S instead of S, ;. The contours of integration are governed by the

domain condition (385]). We define our mixed correlators by

(B(F2) -+ (Ja) NIFIG) -+ NG*)Gim) ) =
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1 n dz; L dU]g ~ = ~ ~
Wﬁgffnjzj HT% S(fi+ -+ znfo,urfy + -+ Umfim)
j=1 k=1

J

which are multilinear in the f’s and j’s. Because of the uniform bounds on ST, and therefore on ST, proved

T8
in the last section and thanks to Cauchy’s formula, it is immediate that the pure qg or N [gb~2] correlators will
satisfy Condition 4) in Theorem [[LTIl The other conditions are satisfied by the cut-off correlators {:-- ), g
as joint moments of random variables obtained from the probability measures v, ;. As these properties are
preserved in the limit 7 — —o0 and s — o0 we can use Theorem [[LTT] to affirm the existence and uniqueness of
the measures vy and v mentioned in Theorem Bl By the uniqueness part of Theorem [LTT] the invariance
properties of the measures v4 and vy2 follow from those of the moments. Hence it is enough to show Parts
1) and 2) of Theorem Bl These are easier to prove from the functional integral definitions of the cut-off
correlators.

Indeed, one can trivially check that for M € GL3(Z,) one has

(O(Rar f2) -+ SRt fa) NolG*N(Rar) -+ N (&2 (Rasjm) ) =

T8

(B(]2) -+ 3(Fa) Neld*1G1) -+ Neld?1im) )

s
because duc, is invariant by rotation and the rotation M takes the volume Ag to As.
Also if y € Q) with [y| < L* then

(3r, 1)+ 6y fo) Nol BN (i) -+ No P (i) ) =

T8

(B(f2) -+ D) No[841G) - Nel621Gim) )

because Ay is unchanged by this translation as results from ultrametricity.

Finally, by changing variables from (ﬁ to q§w1 = L_[‘i’]q;(L-), one has

(BSLF) - $(SLin) NoAFSLir) -+ Mol (SLm) ) =

S

(O(F1) ) No@P1G0) -+ Mol G) ) [L7@ D] [p-e2ieh 751"

r+1,5+1

Noting that |L| = L™ and Zy = L3742 by definition of 742, and from the existence of the r — —c0, s — o
limits, we see that the property in Part 3) of Theorem Bl holds for A = L~!. Thus it holds for the subgroup
L7 it generates.

A trivial consequence of these invariance properties is that

(N[°1(7)) =0

identically. Namely, the one-point function vanishes. Indeed, it is enough to show this for j = 1zs. In that

case, by translation invariance followed by scale invariance

(N[6*)(1z3)) = L3N[$°1(L(1z,)2))
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P x L7320 amt 5 (N[ (123)
Loz x (N[§*](1z3)) -

By Lemma B22it is clear that L3a, ! > 1 for € small and the vanishing follows.

3.11 Nontriviality and proof of existence of anomalous dimension

3.11.1 The two-point and four-point functions of the elementary field

We have constructed the generalized random field ¢ via constructing and proving the analyticity of ST( f ,0),
the cumulant generating function. We now show that the process ¢~) is not Gaussian. In particular we show

that in the small € regime one has

d* ~ ~
| ST (12,0 = Blazy) ) - 3o(129)) < 0.

We establish the inequality above by expanding ST(ZILZZ ,0) and isolating a part that explicitly contains
first order pertubation theory. We will calculate the derivative by hand for this explicit part and use Cauchy
bounds to estimate the contribution of the remainder. From now on we will drop the tildes from the notation

for the fields ¢ and N[¢?] but we will still use tildes for test functions if needed.

Since zlz3 € Soyo(Qf,,(E) we can set ¢_ = gy = 0. From section §3.9 and in particular the domain
condition (B.85) we know that ST(z]lZg, 0) is an analytic function for z such that |z| < O¢. This condition
is assumed throughout this section. We will repeatedly make use of the fact that for z in this domain |z| <1

which follows from O1g < 4%. In particular for z in that domain we have

ST(z]lZIs)70) :ST’FR(z]lZ?),O) + ST’UV(z]lZg, 0) + ST’MD(Z]IZ;;, 0) + ST’IR(z]lZg,O) .

For our choice of test function we have:

1
ST’FR(Zﬂ-Zgao) = 522 (ﬂ-ZgaC—OO]]-Zg>
ST’UV(ZILZg, 0) = 0 since j =0

ST’MD(leZg, 0) =0since g =g =0
[e0]

STIR( (2173, 0) Z (5bA © [ :Q)(Z]lzg,())] — 0ba(o) [‘2;:])

where V, = t(vg) = V(—0.q) (0,0).

By previous considerations we know that up to scale g_ = 0 the test function f = 21z, does not influence
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the evolution of the other parameters, thus for scales ¢ < g_ = 0 all components of ‘7(_007‘1)(2]12?)70) other
than the f component take their fixed point value. Additionally we know that for scales ¢ > g, = 0 the
vector V(%9 deviates from Vj only at A = A(0).

We write

PR et 0) = (B 0 TR WL 0 DY)

Keeping our previous observations in mind for k = 1,2, 3,4 we decompose ﬂlgq)A as follows:

s _ [ BB s = )
R P if A = A(0)
B(QAEXP) + B(%imp) if A = A(O)
ﬁ(q)A _ 3 3
3
' 0 if A =A(0)
o [ A s s
25 L if A = A(0)
6(q,6XP) + 6(q,imp) if A = A(O)
/B(q)A _ 1 1
1,

0 if A = A(0)

Here “exp” and “imp” are abbreviations for explicit and implicit. The quantities ﬁ](gq’eXp) and ﬂ,(gq’imp)

will be defined inductively starting from ¢ = 0. We start with the following intital condition:

for k =1,2,3,4 we set 5£O,exp) = ﬂ,go’imp) =0.

Now we prepare to give the inductive part of the definition. Recall that for k = 1,2, 3,4 the evolution of

our couplings is given by

1 — > (—
By =LY BN |- 0Beraw [P0 (512,0)|
A€[L-1A(0)]

— 0Bk,2,A(0) [V(_w’q)(ﬂzgﬁ)] + &k,A(0) [‘7(_00’”(212;,0)] :

We introduce some more short hand. For k = 1,2, 3,4 we define 8} to be the corresponding component of

Vi € Epk. In particular 8F = gs, 85 =0, B3 = px, and B§ = 0. These are also seen as constant vectors in Ct.

We now use the fact that ‘7* is a fixed point of RGex to arrive at the following formula:
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Btk =Bt + L7 () + pir)
— 6Bk,1,A(0) [V(_m’q)(231227 0)]
+ <5Bk,2,A(0) [‘7*] — 0Bk,2,A(0) [‘7(700’(1) (Z]lzgyo)])

- (fk,A(o) [‘7*] — &k,A(0) [V(_w’q)(zﬂzg,O)D .

(3.86)

Above we have used the fact that dby 1 A [‘7*] = 0. We now decompose 0531, (o) [‘7(’00"1)(212270)].
For 0 <k <l<4and g, feCl define

-k

— (! 3a. d3by---d? a) x a—b; ;
Falo A= () [ e e s < a0 se),

i=1
With this notation we have:
B 4
0B%,1,A(0) [V(foo’q)(zjlzg’o)] = - Z LFeI R, [ l(q)yf(q)]
I=k+1
We define the evolution for B,(Cq’e)(p) and ﬁ,(cq’imp) as follows:

4
B[(;I+1),exp _ L—k’[¢>]ﬁ](€q,eXp) + Z L—k[qﬁ]Fk’l [ﬁl* + BZ(Q,exP)]lA(O)’f(q)] (3.87)
l=k+1

4
l(€q+1),1mp _ L—k[(b]ﬁ](cq.,lmp) n Z LR, [ﬂl(q,lmp)]lA(O)’f(q)]
I=k+1

+ (882,80 Vel = 080,00 [V (2125,0)1) + (€0 [Val = &r [V (2125,0)]) -
(3.88)

Here we have designated 1) : L — C as the indicator function of {A(0)}.
We also impose a splitting of the difference of vacuum renormalizations at A(0). For ¢ = 0 we have:

Sbagoy [V (2125,0)| — 8bao) [Va] = 8b@) 4 gplainmn)

We define

4
5b(q,exp) _ Z FO,l [ﬁl* + Bl(q,cxp)]lA(O)vf(Q)] , (389)
=1
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4
Shleimp) — Z Fo, I:ﬁl(q’lmp)ﬂA(O%f(q):I
=1

- - 3.90
+ (550,2,A(o) [V () (2173,0)] — 0B0,2,a(0) [V*]) (3:90)

+ (ﬁo,A(O) [V(foo’q)(zjlzg, 0)] — &0,a(0) [‘7*]) :

We now derive explicit formulas for Blgq’cxw and 0b(2:exP)

Lemma 3.30. Given the previous inductive definitions for ,BI(Cq’eXp) forq =0 and k = 1,2,3,4 we have the

following explicit formulas:

ﬁiq,eXP) -0

Bé‘];exP) =0

ﬁéq,exp) ZGqL*QQ[¢]z2g*||F||%2

n=0

(g:exp) _ 3 —a[¢] L 3 3 = —2n[e] 2

For ¢ = 0 we also have

q—1

Sb(@exP) — _ 4g, lL“qW ( f Az F(:v)4> + 6L~ 4lg||D||2,T(0)% + 120729 (Z nLQ"W]) ||IT||7-T(0)?
Q;

n=0

B 1 — [,—2ale] . _
+ 4L QQW]mF(O) JQS A3z F(x)3 722/1,*11 2[¢]‘1HFH%2 .

Proof: We first note that below one often sees expressions of the form f I'(x)". In the statement of
L-1A(0)

the theorem we extended the integration to all of Q}, we can do this since I is supported on L™'A(0).

For B9°P) the result is immediate after recalling that 8{"®® = 0 and noticing the evolution for this

parameter reduces to multiplication by L~4[¢].

For {7 we have
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ByT® = Z L3N By 6% + B 15 o), £

S L3 By (g, F]

1
n=0

[l
i MH

The last line follows from ultrametricity and the fact that I' integrates to 0. In particular F} ;4 [6;7 f (')]
will always vanish.

For ng’exl}) we have

qg—1
B = 31 1720 (B [+ B 100y, S| + Fos [ 85 + B a0, 1))

n=0
qg—1

=) LAl g, , [9*, f(n)]
n=0
qg—1

N 2a-mlslg < f d®a d®b; B3y gy 1_[ [F(a — b)) L1, (bi)D
= (L=1A(0))3 i=1,2
qg—1

=N L 2amlelg,2g 1 -2nl¢] (J d3a I‘(a)2>
n—0 L—-1A(0)
q—1

= L7262, (0|2,

n

Il
o

from which the formula for ﬁéq’exP) follows. Note that above we used the fact that f(") = L—"[¢lg A(0) AS a

vector in C or L_"[‘b]]lzzs) as function on Q;;.

For B9P) we have

glaesw) _ Z L (a=m)l9] (F14 [g* + B g, £ ]+F1,3 [ﬂ;‘ +5§"’QXP)1A(0>,f(")]
n=
+ I [52 + 5§n’exp)]lA(0)’f(n ])

2 ~(a=n)l¢] (F1,4 [9*,f(n)] + Fip [M* + Bé”’exp)IlA(oyf(”)D .

Looking at the terms involved one sees
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~1A(0)

Fia [9*7 f(n)] = 4g, 22 L7319 (L d*x F(x)3>

and

Fip [M* + ﬁén’exp)ﬂA(o)v f(n)] =F12 [M*, f(n)] + P12 [ﬁén’exp)ﬂA(o)a f(")]
:F1’2 [ én,exp)]lA(O)’ f(n)]

=211 (0) x (6221022, |12 )
The formula for B%q’CXp) then follows.

We now move on to 6b(2°*P) . To keep things lighter we have left out terms with a vanishing contribution:

shl@exp) _ —Fo4 [g*’f(q)] — Fy [Béq’CXp)ﬂA(opf(q)] — Fos [M*7f(q)] — Foq [5§q’CXP)ﬂA(o)»f(q)] )

We calculate each of the terms appearing above:

o [9*»f(q =ztg, L1919 (I 4’z I‘(x)4>
] L-1A(0)

Foa | B a0 £ 9| =22L72I0(0)? x | 6gL 2919122, D) .

~

=

Fous [, 9| =221 0|2

. . 1 — [,—2al4]
Fou [ﬂgq,e p):ﬂ-A(O)af(q)_ =zL’Q[¢]F(O) % {ZBQ*LqW] l41—L—2W <JQ3 Bz F(x)?’)

q—1
+12 < nL2[¢]”> IIT3. x F(O)]} :
n=0

This proves the formula for §b(2:¢xP),

We now calculate running bounds for the Blgq’imp).

Lemma 3.31. In the small € regime one has the following bounds for ¢ = 0
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B <Om x g x L'g? (12)

im _ 15 a
‘@gq’ p)| <17 x O1q x ¢ x L%g® (16)

‘B(q7lmp)| <253 x 011 X q x LS =2 (12)

1im ].
BY™P) | <2497 x Oy x ¢ x L8352 <1Z)

q
‘6b(q7imp)| <Oy x L8 x §2 (12)

where 011 = (4026 + ].) and O19 = 319617 x Oq;.

Proof: We note that for all ¢ > 0 one has V(=% q)(zllzs 0), Vi € B(0, ). Thus by the proof of [3, Lemma
89] we have the following bounds for all ¢ > 0 and for k£ = 0,1, 2, 3, 4.

\6/3@ 2,A(0) [‘7*] — 0Bk,2,A(0) [17(—0041)(2]12270)]‘ <405 L°g?| |V =) (21z3,0) — Vll

‘gm [ ] €40 [V(*w’Q)(zﬂzg,O)”<2Bkg%|\17(*oo’q>(z]lzg,0)7‘7*||.

We also note that by applying the bound of Proposition g-times one has:

[P0 (2123, 0) — Val| =[[FC9 (2225,0) — =90, 0|

1 _
<(2) W0 eaz,0 - V=0 0,0))

15
< R
(%)

Now in the € small regime one has:

0Bk,2,A(0) [Vi] - 0Br,2,A(0) [V (Z]lzg,o)]) + [Ek,A(0) [Vl — Ek,A(0) [V (21z3,0)]

< (4056 + 1) L2 [V 29 (2113, 0) — V|

= 011L5g2||V 0,9) (2123 0) ‘7*”

15
<0, L°7% | =
11479 (16)

We start with estimating ﬁ4q imp)
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. q_l — —
B | <461 3 4] (’554?27“0) [Va] = 6B12,800) [V ™ (2125, 0)]
n=0
+ 6@ Vel — €oa@ V" (2123, 0)] )
qg—1

<10, x 15 x g2 3 [-4amlo] (15>
) 16

n
qg—1

(@) 715\ "
15 15
<L'oy, x P2 Y (= =
ey T;O 16 16

5ol 2 (15"
<011 X qL g — .
16
In going to the second to last line we used the fact that for L > 2 and ¢ < 1 we have the following
1
inequality : L0l < 18l < 973 < (12> Then by bounding L54[¢] < L8 we get the desired bound for
@(lqylmp).

For Béq’lmp) we have

. - q_l — s
B <L3[¢][ S el (‘55372}“0) [Vl = 852,400 [V (2173, 0)]
n=0

620721 - a7 123,01 |

Jr

q—1
S p-daniel ‘F?)A [5}1”’““13)]1&0)’ f(n)]”

n=0
_ —n 15 " i _ —n n,im n
1-3(-m)[4] <16> ]+ [Z L300 |y [ 15 g, ¢ >M
n=0

15 4 ) n,im
<011QL5+3[¢192< ) N [Z L-0el |y [l p’]lm),f(")](] ,
n=0

q—1

<*?l0,, 177 l
n=0

16

¢,imp)

In the above expressions the first term was bounded just as it was for ﬁi . We now try to estimate

the summands appearing inside of the second term. We will use |z] < 1.

P [ 1000, 1 || <AL E(O)

16

15\"
<160, L%3% | =) .
6011L°%g (16)

15\"
<8L~ 1?10y nL8g? ()

In going to the second to last line we used the bound |T'(0)] < ||T'||r= < 2. In going to the last line
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2

note that for e < 1 and L > 2 one has nL "¢ <n2-2 < — =
e x log(2)

< 2. Inserting this into our previous

inequality gives us

(g,imp) <O, L3¢ 52 1517 o Lsfzqil 1,-3(a=n)[9] 15\"
|53 | <O11q 9\ 6 +16011L%g Z 6

n=0

1 15\
<0y,gL> 31152 (12) +16041¢L%* (12)

15
< 8~ 2

Not that in going to the second line we used the bound L—3@—mI[¢] < (%)(q_n).

We start on ﬂéq’imp) by making the following estimates:

‘F2,4 [ﬁin’imp):ﬂ-A(O)’f(n)]) <6 x lBin7imp)‘ % F 0 2 o L72n[¢]

<24 x OllnL8§2< > L2l

15\"
<48 x 01, L%3? :
X U11 <16>

Similarly one gets the bound

15
B | B0 1), £ | < 204 x 011 L0g? (16>

The bound for Béq’imp) then proceeds along familiar lines. One uses the same arguments to prove the

(g,imp)

estimate for ; . In particular

I im n) ] 15
Fra| 8™ La(), f™ || <64 x 011 L35 <16)

[ o (n,im n_ _ 15
Fi3 ﬁé ’ p)ﬂA(o)’f( )7 <408 x 01, L%g" (16)

[ im n 1 15
Fip | B 16, f™ || <2024 x 011 L85 (16>

To bound §b(?™P) we first make the following estimate. For k = 1,2, 3,4 one has:
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’Fo,k [@iq’imp)ﬂA(O)vf(q)]‘ <L ~kaldl F(O)k % wl(cq,imp)‘
- [¢] 4 8_2 15 1
KLU % 2% x 2497 x Oq1 x q¢L°g T

15\
<79904 x O, L85> <16> .

We then have

06440 < |88 5,0 [Va] = 880 2,0 [V (2123, 0)]

+ ’50,A(0) [Vil = 0,400 [V’(‘”m(zﬂzg,o)]’
4

Z ‘Fo,k [6I(€q71mp)]]_A(0)’ f(q)]”

k=1

15\ 15\
<0;; x L°g? <12) +4 % 79904 x O11 x L8> (12>

+

15\ 1
<319617 x Oy, x L%g? (16> )

This gives the desired bound. ]

Lemma 3.32. In the € small regime and on the domain {z € C | |z| < O19} one has the decomposition
ST(z]lZg,O) = §TeP(2) 4 STmP(2) |

All three of the above functions are analytic on the above domain. Additionally, over this domain one

has the following explicit formula

[e¢]
SToP(z) == 3 {z“g* lqu ( f d*x F(x)‘*) + 6L lg|1||7. x T(0)?
q=0 Q3
qg—1
+ 1217 24l9] <Z nL_Q"[¢]> |I]|2. x T'(0)2
n=0

1 — [,—24l¢]
+ap2te L2 ) ( f & F(sv)?’)} - z2u*L—2q[¢]lF|liz}
2

z
+ ? (]].Z%, C—OO]]-Z?))

and the following uniform bound

|ST’imp (2)| < 013L8§2.
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where O13 = 16 x O1s.
Proof: From earlier definitions we have that

2

o]
SWZM%O):Ef@Z?CﬁMQQ—+Z]@N%“m+6ﬂmmm).
2 =
We define
252 L
5T (z) = = (123, Colz ) + ;}ab@vexw .

o8]
ST,imp(Z) - Z Splaimp)
q=0

The explicit formula given for ST-**P(z) comes from substitution of the explicit formula for the §b(4-*<P)
from Lemma B30 Since [¢] > 0 for € € (0,1] it is not hard to see that the infinite sum in the expression

for ST***P(2) is uniformly absolutely summable on our domain. Analyticity follows from the explicit formula.

On the other hand we have

[ee]
|8T,imp(z)| < 2 |5b(q’imp)|

q=0
0 q
15
<O L% x g? =
12 X X g Z (16)
q=0
<16 x O x LB x g% .

We have then proved the desired uniform bound and we have uniform absolute convergence yielding

analyticity as well. O

Lemma 3.33. In the small € regime one has

'j; ZZOST(z]lzg,O) —Us| < 014L%3?
where
Uz = (123, Clzg) = 20T X T3y % bo
,, ' 1— L-204]
and
- ' 8-2
p z:OS (2123,0) — Us| < O15L%
where
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o0

qg—1
Uy = — 24g: ) lL—‘*‘IW ( o d*z F(x)4> + 6Ll ||T|[2,T(0)? + 12L2l¢] (Z nL‘Q”[¢]> |IT||7T(0)*
P n=0

q=0
1 — [,~2ale]
—2q[¢] - Z 3 3
+ 4L =20 I'(0) <JQ3 d’z T'(x) >1 .

Here we have used the following numerical constants: O14 = 8 X 01_02013 and O15 = 384 x 01_04013,

d’
Proof: We note that for j = 2,4 we have that U; = e STeP ().
27 1z2=0
By the previous lemma the bounds above will follow if we have the necessary bounds on T Shime ().
27 1z2=0

By Cauchy’s formula we have

& gl dA

el T,imp _ T,imp
dzJ z=0$ (2) 2 J At S ()

1 .
Here we are integrating around the contour |\| = 5010. Utilizing the uniform bound on ST™P(z) from

the previous lemma we get the estimate:

dj im
)

<G 2077 x 013 x L x 2.
z=0

This proves the lemma. ]

Proposition 3.10. In the small € regime

d4
dzt

1
ST(z]lZg,O) S —70< 0.

2=0

Proof: We observe that since I'(k) > 0 one has

r0) = JQs Pk T(k) =0

J@; &3z D(z)? = (f*r*f) 0)>0.

In the above expression # denotes convolution. It then follows by only keeping the first ¢ = 0 term that
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Uy < — 24g*f d3z T(x)?
3

< - 24g*J d®z T'(2)*
73

P
= — 24g,T(0)*

L )|

In going to the last line we used Lemmal[5Tl Now we note that p, L > 2 and € < 1 implies that —2[¢] < —1

1— 3 1
U4<—24g*><[ 123 X (1—2>]

4

Note that in going to the third line we used that g, > % g. Now using the previous lemma we have:

d4

— | ST(212:,0) <Uy + O15L35>
a2t .o (2173,0) <Us + O15L%g

1_ _
< -39+ 015L%" .
We can take e sufficiently small to guarantee that O15L85? < %g. This proves the proposition. ]

3.11.2 The two-point function for the composite field
We now study the ¢? correlation when smeared with the characteristic function of Zf), i.e., the quantity
& T 2 2 2 2
2,5 (0,21z2) = (N[¢7](1z3)") — (N[¢7](1z3))
= (N[¢*](123)%)

since the one-point function is identically zero. Our main goal is to show the quantity above is non-zero
so that N[¢?] is non-trivial. The key strategy used here is show that the UV contribution to the above
quantity, which we will have to calculate somewhat explicitly, diverges as ¢ — 0. Combining this with more
uniform upper bounds on the size of the IR contribution of the above quantity will give our desired quantity.

Here g_ = g+ = 0 so there is no contribution from the middle regime. Thus
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(N[¢*](123)%) = (N[¢*](122)*)"Y + (N[¢°](123)*)™

2
where <N[¢2](]lzg)2>UV = % OST’UV(O,zJIZg)
d2
2 2\IR T, IR
and (N[¢%)(Lz9) ) = =]~ STIR(0,21z).

Clearly, since we can derive term-by-term in the sum over ¢ and since the constant and linear parts

disappear

d? _
<N[¢2](leg)2>UV =5l Z L3 6 [W (v, —alYazey)]
q<0
=Y?x Z L3t g2a ) & 6b [ (v, zeg2)|
2 q<0 v dz?lz=0 e

by the chain rule. This also uses L3, ? < 1 which will be proved shortly.
We will use the more convenient notation ¥, (w) instead of ¥ (v, w).

Now for w small we have by Theorem B3]

\Ilu(w) = \I’U* (TOO(U)[w]) .

By the remark following Lemma [3.23]

P,T(v)[eg2] =0

i.e. Too(v)[eg2] is in €™ and therefore is proportional to ey.
We define s42 as the proportionality constant, i.e., by

Too (U) [€¢2] = Xp2€q.

Hence

U(v, ze42) = U, (23242€y)

and as a result

(N[¢*](23)H"Y = Y5252 N[6°] (123)reducea

with

192



1
<N[¢2](1Z§;)2 redtuced = 2 _13 " D (0bo Wy, )[eu; eul.

We will show that ﬁ diverges as ¢ — 0 and that the other factor above is non-zero. For the infrared

contribution we have

2
(N[6*](125))™ = 3 j— b | RGE (VE20(0,219) ) |
q=0 -

where

Y (=0,0) (0, z]lzg) =D (O, (U, (—Yazeys)), v*) .

We define the affine isometric map w@ : € — Epy which sends v = (8g, 11, R) to V = (Va)aer = @(v) such
that

Va = (Ba,a, Ba,a, B2,n, Bias Ws A, We A, fa, Ra)

is zero for A = A(0) and equal to

(6.9 - 69*707/-1“ - M*a0a0a0707R - R*)

for A = A(0).

It easily follows from the definitions that

V(=20 (g, 2lz3) = 1(vx) + @ 0 Uy (~Yozeg)

t(vg) + @ o W, (—Yasp2zey)

for z small.

Hence by the chain rule

<N[¢2] (]]-Z?))Q>IR = Y22%332 <N[¢2](ﬂzg)2 ig:luced

where

d2
2 2\IR
<N[¢ ](]]'Zf;) reduced — Z @ (vg) oOw o \Ijv* (Zeu)]

q=0

L:O(SbA(O) [L(U*) + RGZV’L

where we introduced the more convenient notation RG 4, ¢ [V] for RGay [V, V] of section §3.041

reduced

In what follows we will show that when € — 0, (N[¢?] (1zz )2HIR remains bounded while (N [¢?] (1zs )2HUV
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blows up.
We first introduce the subspace Eox ov Of Eox.
It is the space of vectors

(Ba,n, B3,a, B2,n, Bras W a, Wea, fa, Ra)acL

such that for all A e L,

Baan=P1a=Wsa=Wsa=far=0
and Ra € CPy (R, C).

Using the same line of reasoning as in the proof of Proposition B2 or in §3.9.11it is easy to see that ey cv
is invariant by RGex.

Lemma 3.34. In the small € regime and for Ve B(V, %) N Eex,dv
we have for all A’ € L

|6ba/[V]]| < O16L°F*
where

ajltag

} xC’(al,a2|0) X272

Op=1+9 > 1

ai,az,m

a;+m=2or4
a; =20, m=>=1

Proof: Recall that

bar[V] = 6Bo1,ar + 002,40 + o,a0 (V).

Since there are no f’s we have 3y 1, A = 0. Similarly the 63y 2 A’ contirbution reduces to

a;+m=2or4 ar +m)l(azs +m)! 1
SBoza = ), ]1{ }(1 Jaz )><§C(a1,a2\0)

i lao!m)
ay,az,m a; =20, m=>1 ai:asim!

aq+tag

x [~ (atalPlog0) == x J Pr1d3zs Bay4m (21)Bagtm(2) T(w1 — 22)™.
(L—lA/)2

We use the bound

<LIP||ZEt > ([P

oy 172 B @) T = 22)”
L—1A/

x sup |Ba,+m(z)| X sup  [Baysm(z)].
zeL—1A/ xeL—1A/
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We bound the supremums by noting that £,, 1., can only be By or 8. Since V has no 3, component

|Ba(2)| < IV = V|g* < 55°.

N | =

On the other hand

g

wjw

1Ba(z)| < g+ ||V - V|[g2 <

| W

As a result the previous integral is bounded by

1
L3t > |0 x —g* < LB x 2™t x —2L3_2[¢] X gg‘* < 18L°g*

V2 1

where we used € < 150 3—2[¢] < 2, and m < 4 while dropping /2. Finally |§0,A'(‘7)| < %BQ% by Theorem
Noting that %B@% < 1 for € small the lemma follows. O

| ©

Lemma 3.35. For ‘71, V2e B(V, %) N Eex.dv, we have the Lipschitz estimate

3ba(oy[V'] = 8ba()[V?]| < 4016 L°g* ||V — V2| .

Proof: This is an immediate consequence of the previous lemma and Lemma with v = % O
Since we are computing second derivatives there is no harm in writing
2 2\IR a?
(N[81(L2) D MEncen = X, 55| {3ba) [10) + REY, () 0 @ 0 Woy (ze0) | = bao) 0]} -
q=0

If z is small enough so that

[|¥(zew) — vs|| < O1o

which is the same as saying that [[woW,, (ze,)|| < O1g, then Proposition 3.9 along with the last lemma will
imply
15

q
)6bA(o) [L(U*) + Rva,L(v*) owoW,, (zeu)] — 0ba(o) [L(v4)]] < 40.6L°g* (16) x Oqp.

Let Zmax > 0 be such that |z| < zmax implies ||V, (zey) —v«|| < O10. Then by extracting the derivatives

with Cauchy’s formula we easily arrive at the bound

‘<N[¢2](]lzg)2 reituced| < 4010016 L5 x

—2
1_&><2!><Zmax.

=
[=2]

Now from Theorem B4l ||ze,|| < 57 implies
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17 1
1T, (2e0) — vel| <lzeull (1 LT 24)

<2||zeu|

for simplicity. So zmax = $O10||eu|| ™! works because 1019 < & < ;. Also we have that |[e,|| = 2.

Hence in the small € regime we have the bound

(N[¢*](1z3)*res <5120 x Oy x L° .

reduced

Namely, the infrared contribution remains finite when e — 0.
We now examine the ultraviolet contribution more closely. From Theorem [3.4] the small z expansion of

VU, (zey) is of the form

Uy, (z64) = vy + zey + 270 + O(2°) (3.91)
for some vector © to be determined shortly. Now we can decompose

d2 explici d2
@ (5b plicit (\I/U*(zeu)) +

. @ 6bimplicit (\I/v* (zeu)) )

D§(8bo W, )[ew, eu] = Y

1
If |z| < %f then as before we get

W0y (zen) || <llvsl] + 2||zeu]|

111
40 0 15 27
So by Theorem
implicit L, 2
‘(51) P (\IIU* (zeu))| < 5309 s
Cauchy’s formula then immediately implies
& implicit 1, N
o2 Z=05b p (\I!v* (zeu)) < 2! <30g X iBog s
So we have e
: implicit
lgr(l) 2 z=06b PR (@, (zey)) = 0.

Now recall that

SR — A5 4 56PN (3g, i, R) + 0b5 P (89, 1, R)

where 66PN (§g, 11, R) = 2A4g0g + Asdg?
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and ST (g, 11, R) = Asp? .

explicit
bI

Note that the A4g? term disappears in the computation of derivatives while & can be treated as

we treated 0b™Plcit Indeed by Cauchy’s formula and Theorem [3:2]

d? explicit 1 —2 - 1 s 1 2
’dz2 0 (P (Ze“))‘ =7 <3092) X A mas [2 Xgx g%+ <292> 1
So we have
lim d72 5beSXpliCit (\IIU (Zeu)) - 0.
*

e—0 dz2lz=0
As a result of the formula ey, = (dg/,(tx), 1, Rl (11+)) and the expansion [B0I]) we easily compute
d2
dz?

where ©,, is the ;1 component of © € £.

SO (W, (zey)) = 245 (1 + 20140,,)

z2=0

We determine the latter using the intertwining relation in Theorem B4 for small z.

We have by an easy calculation using (3.91])

1
RG (¥, (z€4)) = vs + Dy, RGley] + 2° (DU* RG[O] + 2D3*RG[eu,eu]) +0(2%) .

But this is the same as

U, (nzey) = vy + zayey + 22020 + 0(2%).

Thus

1
20 = D,,RG[O] + §D§*RG[eu, eul- (3.92)

On the other hand ¥, € Wwloe for 2 small and therefore

[\I/v* (zeu)]6g = 0gu ([‘I’v* (Z@u)]’u>

and

(W, (zeu)]R =Ry ([\I’v* (zeu)]u)

where [ ]sg, [+ ]u, and [- - - | g refer to the dg, i, and R components respectively.

Expanding these relations up to second order imply

1
0= (@5577 @/u @R) = @/Lell + Ecu

where ¢, = (090 (px), 0, Rit(114))-
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Taking the p component of ([3:92) we see that

0‘2@u =0, 0y + 1 [DU*RG[cu]]M + 1 [Dg*RG[eu, eu]]

" 2 2 w

where we have used [ey], = 1 and D,, RG[e,]| = ayey.

Since «ay, we have
1

O = 20 (o — 1)

{[DU*RG[Cu]]” + [Dg*RG[eu,eu]L} )
2 . . p’,; p’ _21

Now |u — pa| < p"g” implies [dgu(p)| < S¢% and [[|[Ru(wllly < 597
S

contour of integration, Cauchy’s formula implies the following estimates:

1
. Using [~ ual = 505" a5

20 _
3p//g

13
8

R ()l g <

RS ()] <

As a result

__3 2 8
leall = maxc {86 ea)lg ™ I 1RG Gl } < 5070507

Now one can write

[DURG[U’]L = L% W —2A5(g +69)0g" — As(g + dg)p’ — Azp 69’ + [DURGimp“Cit[v’]]u ) (3.93)
For v = vy and v’ = ¢, this gives

[Dv* RG[U/]]M = —2A5(g + 094 )09y (b)) — Aspadgy (px) + [Dv* RGPt [Cu]]u

The infinitesimal version of the & Lipschitz estimate in Lemma [3.T6] immediately implies

implici P
(| [Doy RG™PE] || < 2829
for the operator norm induced on linear maps from £ to C by the norm || - || on £ and the modulus on C.
As a result we have
3_ 1, 8" 1 _21 ST —
‘[DU*RG[CU]]H‘ < <2A27max X 59 + A3 max X §g > X 3(,0”)2g 2 +2B5gs X 3(p//)2g

So we have
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lim [ Dy, RGleu]], = 0.
Uniform bounds on the second differential of the p component of the RG give

[Dz* RGey, eu]]u = 24560 (1s)? — 24369 (1s) + [Dg* RGmlicitfp eu]]#

where Dg* RGMPlicit corresponds to the second differential of the remainder term &, and an easy estimate

gives

20/ 2 / . ..
“:Dg*RG[eu:eu]:I < 2A2,max <3pp,,gé> + 2A3,max (ggé> + HD?J* RGlmphClt [€u7 eu]]

3 W

Now one can easily estimate 1 component of RGM™PHcit
1D, RG] < 32B25°%
for the norm of the second differential.

2

Since ||ey|| = g~° we obtain

HDQ R(yimplicit [eu, 6u]]

Vg

So we have

lim fiy [Dg RGMPlicitq eu]] =0.
e—0 * n

Since also liH(l) s = 0 and lir% oy = L? > 1 we have enough to affirm
€e— €e—

1irr(1J ps©y = 0.

Thus

lim —| Dg(dbo ¥, )[en, en] =2 hIl’(l)A5 =2L%(1 —p %) x I > 0 by Lemma 5.5
22 12=0 e—

We now study the ¢ — 0 asymptotics of a,, more closely. One way to get a precise hold on this eigenvalue

is to note that

ay = Dy, RGleu]],

Then by the formula in ([393]) we have
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3+e
ay, =Lz

— 245(7 + 694)890 (1) — A3(g + 89x) — Asis69,, (1) + [Doy RGP ey]]

since e, = (59{1@*), LR(I(M*))-

As before

[P0, RG™ [e,]] | <[|Dy RGP ey |

<2B»G % x g 2.

But g is of order € so

[DU* RGmplicit [eu]] = o(e).

o
We have
_ 3_ 2 1
[240(7 + 894)004 )| < 20 x 57 % 3550°
so this is an o(e) term.
Likewise
1_s
|—A300:] < A3 max X 592
so this is o(e).
Finally,
1 _9 2p/ 1
|_A3M*6g1{1(/1'*)| < A&max X 59 X 3p,,g2
so this is an o(e) term too.
As a result we have
o —L5 Asg + ofe)
sc ste Ay
=L 2 —12x L2 x +
sgr<7 o)

s (1 -3 (LCL: 1)) +o(e)

from the relations between As, A1, and g.

It is now a simple calculus exercise to derive
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2
Ngr = g€ + o(e)
where 742 is defined by

3+e 1

1 — _
L277¢2:Z21:L2 oy

We also easily get

LPag?=1- Lg?)(L)e + o(e)

which proves the earlier statement that

LPa? <1

u

in the small € regime which was crucial for the convergence and analyticity in the ultraviolet regime.

Another byproduct is

1 3L73 " 1
a2 —I13 log(L) €
and therefore
6(1—p3) 1
NT621(15)20V - L
<< [(b ]( Zg) reduced 10g(p) X c

when ¢ — 0.

Since (N[¢?](123)*)1e1ucea remains bounded, the quantity

reduce

<N[¢2](ﬂ-zg)2>reduced = <N[¢2](ﬂzg)2 Ee}i/uced + <N[¢2] (]]-Z?))Q g{duced

is strictly positive for € small enough.

Provided 42 = 0 we can then impose by definition

N

Yo = ] x {(N[6%)(L23)reancea

and thus force the normalization

(NI6?)(129)) = 1.

We now address the issue of showing s> = 0. While most of the proof so far relied on quantitative

estimates, here we had to use a more qualitative approach. This is because of the slow convergence to the
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fixed point on the stable manifold and the fact that we do not have much freedom of choice for our starting
point v. The latter has to be on the R = 0 bare surface and therefore we cannot choose it as close to vy as

we would like to.

Recall that VaniOC is parametrized as

vy = (v1, ps(v1))

for [|vy]| < % in &. Forve W;’loc we consider the tangent space T,W* defined as the kernel of the linear
form

(wla w2) — W2 — DU1NS[U}1]

via the identification £y ~ C.

This linear form is continuous and does not vanish identically, so T,,W* is a closed complex hyperplane
in £. If w € & satisfies w ¢ T,,W* then we have a direct sum decomposition &€ = CH T, W?s.

We have the following infinitesimal version of Parts 1) and Parts 2) of Lemma B.I7 and Lemma

Lemma 3.36. For allve I/Visr;ioc we have:

1) for allw € &,

1Dy RG[w|] < er(e)]|w]]

2) for all w € &, such that L ||ws|| = ||w1]],

(Do RG[w])2]| = c2(e)[w]]

3) for all we T,WS,

|wi]] = L7 [[ws]| -

Proof: Consider the complex curve y(t) = v + tw for t small which ensures that I'(t) € B (0, ). Lemma
BI7 Part 1) implies

IRG1(7(t)) — RG1(7(0)[| < ex(e)|[tw]].

Dividing by |¢| and taking ¢ — 0 we immediately get ||(D,(RG[w])1]] < c1(€)||w]].

Now if Li||ws|| = |Jw:|| then we have

LA |Jy(t)2 = 7(0)2]] = [[7()1 — 7(O) ]|

and thus
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IRG2(7(t)) = RG2(7(0))]| = ca(e)|[tw]]

by Lemma B.T7 Part 2). Taking the ¢ — 0 limit as before we obtain

[(DyRGw])a|| = ca(e)||wl].

For the third part we use Lemma BI8] to write

(01 + twn) — o1 || = LT |ps(vr + twr) — s (v1)]]

for t small. Dividing by |¢| and taking ¢ — 0 gives

3 3
lwil] = LA[| Dy, ps[wr]|| = L7 [|wal|

since w € T,,W?3. ]

Lemma 3.37. For allv e Wisn’ioc and w € € we have the implication

L |[ws|| > |lw1]] = DyRG[w] ¢ Traw)W* -

Proof: We proceed by contradiction. Suppose

Li[ws|| > |[w:|| and D, RG[w] € TrewW*.

Then by Lemma B30 Parts 1), 2), 3) we have
cr(@)l|wl] = [[(Dy RG[w]all,
1Dy RGw])2|| = ca(€)][wl]
and

(D, RG[w])1]| = LF]|(Dy RG[w])s|

respectively. As a result
3
cr(e)]|wl] = LT ca(e)|w]].

But ¢1(e) < 1 < Licy(e) so ||w]|| = 0 which contradicts the strict inequality L3||ws|| > [Jw:]]. O

Lemma 3.38. For all ve W5°° and w e T,Ws

int

T (v)[w] € Trew)W?®
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and

To(v)[w] € T, ,W* .

Ve

Proof: Consider the curve t — (vy + twy, us(v1 + twy)) in Vanioc for ¢ small. Using the fact that RG maps

. o 1
Weloc into W1°¢ and the parametrization of W.,° we have

RGo(v1 + twy, ps(v1 + twy)) = ps (RG1(v1 + twa, ps(vy + twy))) .

Differentiating this at ¢t = 0 gives

(DyRG[(w1, Dy, ps[wr])])y = Dra, ) tis [(Do RG[ (w1, Dy, prs[wi])]), ]

ie.,

(DvRG[w])Q = DRGl(u)Ms [(DURG[’U)])I] .
Hence D, RG[w] belongs to Tra(,)W* and so does Ti (v)[w] = ag' Dy RG[w].
By iteration this immediately implies
Tn(v)[w] € Tren (o) W?

for all integer n > 0.

Namely, we have

(Tn(v)[w])y = D(ram(v)), s [(Tn () [w]),]

Using continuity, the remark following Lemma 323 and the fact that RG™(v) — vy, we can take the

n — o0 limit in the previous equality and obtain

(Too (0)[w])g = Doy, s [(Teo (0)[w])4 ]+

This proves T, (v)[w] € T, W* = £ by definition of £%. O

Lemma 3.39. For all ve WS¢ and w e T,W*

int
DO\I/v[w] = 0,
where the differential is with respect to the w variable at w = 0 for the function ¥, (e) = ¥(v,e).

Proof: By Theorem B3] Part 5)

U, =W, oTy(v)

CES

and thus by the chain rule
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DoW,[w] = Doy, [Ton (v)[w] .

However by the previous lemma Ty, (v)[w] € E% so PyTo(v)[w] = 0. But we also have P,Ty,(v)[w] = 0 as
a follow up to Lemma
As a result, T (v)[w] = 0 and consequently DoV, [w] = 0. O

Lemma 3.40. For all ve W°°, if DU, = 0 then DoV pew) = 0.

int

Proof: By Theorem B3] Part 4)

v, = \IIRG(U) oy (U)

near w = 0. Differentiating at zero gives

Do‘ljv = DO\IIRG(’U) o Tl (’U) (394)

Pick some vector u € & satisfying the hypothesis of lemma[B.37 For instance e4> works since Li llep2 || =
Lig=2> lleg2,1]] = 0. By the same lemma T’ (v)[u] ¢ Trgw)W*® and therefore & = CT1 (v)[u] @ Tra)W*.
Let w € £. We decompose it as w = AT (v)[u] + w" with w’ € Trg(,)W*. Then by ([B.94):

DoV (o) [w] =ADoW,[u] + DoV e [w']
=0

by the hypothesis and the previous lemma for RG(v) instead of v. Hence the differential DoV g,y van-
ishes. O

Iterating the last lemma we see that if DyW, = 0 then DoWgrgn(,) = 0 for all n > 0. By the joint
analyticity in Theorem we can take the n — oo limit which gives DoV, = 0 and therefore
d
o z:O\IIU*(zeu) =0
which contradicts (B.91]) and e, # 0.

We have proved Do¥, = 0 for all v e Wi°°. Now since ege satisfies L |legz o|| > ||eg2 1|| we know that
eg2 ¢ T,W* by Lemma B30 Thus £ = Ceye @ T, W*.

Recall that DoW, = DoW,, o Ty (v) so DoW,[eg2] = 242DoW,, [ey] by definition of s2. If the latter
vanishes then Do W, vanishes on Cey2 and therefore on all of £ by Lemma B39 This contradicts DoV, = 0.

We have now finally proved s = 0.

The remaining item to be settled is the mini-universality result but this should be clear at this point: the
generating function ST (f, j) does not depend on the starting point v = (g — g, se(g), 0) € W1°° for the RG

iterations. Indeed using ¥, = W, 0T, (v) we see that the effect of v is entirely in the multiplying factor sy2
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which however always comes in the combination Y3s¢42. By our choice of normalization, Y5242 is defined in

terms of the reduced N[¢?] two-point function which only involves data at the fixed point vy.
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Chapter 4

Proving Full Scale Invariance

4.1 General Strategy for Proving Scale Invariance

The goal of this section is to prove a stronger version of Theorem B.I] where we are promised full scale
invariance for our constructed measures vy and v, instead of scale invariance with respect to powers of L
- in particular we would want statement 2) of that theorem to hold for all A € pZ instead of just for A € L%
(here we see pZ and L% as subsets of Q).

There are two main limitations of our RG approach in Chapter [ that prevent it from establishing full
scale invariance: [i] The granularity of the scale invariance that the RG analysis gives us is directly determined
by the range of length scales we integrate in a single RG step (which is what L represents) , [ii] L governs
the contraction of irrelevant parameters and must be taken sufficiently large to defeat various combinatorial
factors, i.e. we can’t expect to be able to take L = p in the previous RG construction.

To prove a stronger scale invariance property we proceed somewhat indirectly - we will show that the
measures Vg and Vg2 produced by the RG construction do not actually depend on one’s choice of L.

Throughout this section p will return to its rightful place as the fundamental length scale and accordingly

our scale indices will be given in terms of p. Given € > 0 we define C_,, as in Chapter [3]

and for r € Z we (re)-define the covariance C, with UV cut-off at scale r by

- 1{lk<p™"}
Cr(k) T
k|~
. We remark that pc,. is supported on a subspace of functions inside S (Qf’,), in particular a subspace of
functions constant over the translates of p*’”Zg.

We denote by A, the set p‘slg, i.e. all those x € Ay with |z| < p®. For given parameters g > 0 and
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, Zo, Yo, Z2, Yo, € R we define

Z,.(f.5) = f dpc, (¢) exp [J B p g ¢4 @) e, 07 2 i bt (@) 1o, —d(@) f(z) — No[67](2)](x)
5/(Q3) ’

where f,j € S( 2, C) and we have set
No[¢*)(x) = Z5Ya: ¢*(x) :c, —YoZg.

We also define the moment generating functions

ra er ~7 j
Sr,s(f7j) = ZVEO)

O
S~—

In Chapter Bl we fixed L = p' for [ a positive integer and established control over the limit

lim Slr,ls(fvj)
r——00
5§—00
for appropriately small f .
By paying attention to the quantifiers used in the statement of Theorem Bl it is not hard to see that
given various distinct values of L (each sufficently large) - it is possible to find a small enough ey such that
for every fixed € € (0, ¢g] we can apply Theorem B for this value of € simultaneously for two distinct values

l1 and I for I, we state this corollary of Theorem B.1] below.

Corollary 4.1.
dp > 0, Iy a positive integer, such that ¥V positive integers l1,la = lo, Jeg > 0, Ve € (0,¢€0], such that for
i =1,2 one can find 142 ; > 0 and functions 1;(g), Yo,i(9), Y2,i(g) of g in the intervals (gs.; —peg,g,m- +pes),

where
_ pe—1

. _ 41
i = Bephe(1—p9) (4.1)

such that if one sets p = p;(g), Zo = p_%”‘ﬁ?,i, Yo = Y0.i(9) and Yo = Y5,(g) in the previous definitions,

then for all collections of test functions fi,..., fnyJ1,---,Jm, the limits

(B(f1) -+ (f)N[*1(1) - N[6*1(im)),
= TEIPOO <¢(f1) - (fa) N [91(1) -+ NT[¢2](jm)>L§’i

§—0
exist and do not depend on the order in which the r — —o0 and s — oo limits are taken. Here for an integer
neZ we set n =n x 1l xly. The correlators (o), s ; correspond to those given by functional derivatives of
the quantity 87.73,1»(]‘7,5) where this quantity is defined with the parameters with subscript i.
Moreover, the the limiting correlators satisfy the following properties:

1) They are left invariant by any translations or rotations of all the test functions fi,..., fmsJ1y -+ Jm-
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2) They salisfy the partial scale invariance property
(B (Safr) -+ & (Sxfn) N[P*](Sxj1)--- N[¢”] (Sxjm)), =

A DO g1y () N8P1G) - NT6%) (),

for all X € p“Z.
3) They satisfy the nontriviality conditions

(¢ (]123) Vi —3<¢(123) i <0,
(N[¢°](1z3)*)i =1 .

4) The pure ¢ correlators with subscript i are the moments of a unique probability measure vy ; on S’(Qg)
with finite moments. This measure is translation and rotation invariant. It is also partially scale invariant
with scaling parameter [¢] with respect to the scaling subgroup p'Z - i.e. <|/\|;[¢]S>\)# Vi = Vg, for all
e phi?

5) The pure N[¢?] correlators with subscript i are the moments of a unique probability measure Vg2 ; ON

S’(Qg) with finite moments. This measure is translation and rotation invariant. It is also partially scale in-

#
variant with scaling parameter 2[¢]+ 277¢,2 with respect to the scaling subgroup p'? ()\|p 2%2)5,\> Vg2 i =

Vg2 ; for all X € pli?
6) For each i the measures vy ; and vy ; satisfy a mild form of universality: they do not depend on the

choice of g in the above-mentioned interval.

Note that in the above corollary we introduced the notation - for scale indices so we can work along a
subsequence of cut-offs for which we are guaranteed convergence for both RG constructions.

If we make a choice of the form I3 =1 > Iy and lo = + 1 in Corollary 1] then proving that
Vg1 = Vgoand Vg2 1 = Vg2 o (4.2)

would show that the above measures are fully scale invariant - this follows since the subgroups p'Z and p+1%
together generate the full scaling group pZ.

A crucial fact for our approach to proving this is that with the given choices of 1 and l5 one has

—(l—1)e
_ P —an2

- (1—p
G2 — G| (1 )( p°)

<O(€?)
so for e sufficently small one has non-empty interval of intersection of domains for g:

3
2

_ 3 _ _ 3 _ 3
(Gx,1 — PE?, Gt + pE2) O (Ga2 — PE2 , Gso + pe? ) = I, = .

Our method of proving ([@2) hinges on showing that the functions u1(g) and p2(g) must coincide on the

interval I.; - i.e. the bare slice of the two stable manifolds delivered by each RG constructions must agree
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on their common domain of definition.
We show that p1(g) = po(g) immediately implies that v41 = vg 2. If one chooses g € I.; then it is
immediate that for all test functions f and r,se”Z

8£7§,1(f7 0) = L§,2(f70)

and so

@) d(fnDrsa = E(f1) - O(fn))y s

The assertion follows by taking the limit » — —o0, s — 0.

We now show how the equality j1(g) = p2(g) implies the coinciding of measures vy 1 = v42 5. The key
observation here is that the multiplicative renormalizations Z, ; must be chosen precisely in order to avoid
having a degenerate law for either composite field. To see this it is convenient to look at N,.[¢?] cumulants

for the cut-off measures. Observe that

2 2rl(I1+1)
Nz, M - ($25) % (32) 10z

One must have Za 1, Za2, Y21(g), Y2.2(g9) = 0, otherwise this would lead to a degenerate law for a composite
3+e

field. In particular the RG construction fixes Zo; = L™ 2 ay,; = 0 and in section B.11.2] it is shown we

choose the Y3 ; in a way that guarantees they are non-vanishing. Now remembering that

TEIPOO<N[¢2](123)7 N[¢*(1z3))r g1 = TEIPOO<N[¢2](]1Z§D), N[¢*](1z3))rs0 =1

§—00 §—00

one sees that it must be the case that

lim <Y271(g)>2 y <Z2,1>27’l(l+1) _ 1
r——n\ Y32(g) Z2,2
from which it follows that Y2 1(g) = Y22(g) and Zs1 = Zzo. With this in hand it is immediate that all

cumulants of order higher than 1 for the cut-off measures coincide (the point here being that the choice of

parameters Zy ;, Yy ;(g) only influences the order 1 cumulants, i.e. the first moment). Since Theorem Bl
asserts that the first moment of our constructed composite fields must vanish it follows that all cumulants of

Vg2 1 and vy2 o coincide. We remark that this shows equality of the anomalous dimensions, i.e g2 1 = 742 2.

4.2 Formulation as Statistical Mechanics

We accomplish proving that u(g) = pe(g) for g € I.; by recasting this as a problem of statistical mechanics.
In what follows we will sometimes make the dependence of the measures v, s on g, explicit by writing
Vrs[g; 1.

In Theorem Bl the measure vy was realized as a limit in the sense of moments of measures v;, ;s[g, 1£(g)]
on S(Qf,) for some L = p’ where we took r — —o0,5 — 00, removing the UV cut-off and the IR cut-off
respectively. A key point is that our RG machinery, without any real changes, can show the convergence of

the measures lims_, 19 j5[g, £(9)] to a limiting measure vy (g, 11(g)]-
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When we keep r = 0 fixed the measures v ; are supported on functions constant over the the blocks
of L. Equivalently we can see the measures v ¢ as living on RL equipped with its cylinder set o-algebra.
Remembering that L can be thought of as the “integer lattice” corresponding to Qg one can interpret the
elements of R" as lattice field configurations {¢z}zer. Later on we will focus more on the finite volume
marginal of 1 s on R*s where we overload notation and define A, := {z € L| |z| < p*}.

We will view the measures 1 ¢ as models of statistical mechanics, in particular Ising models with un-
bounded spins. The limit s — o with 7 fixed to be 0 corresponds to taking what is sometimes called a
thermodynamic limit in statistical mechanics. Taking the limit » — —oo afterwards then correspond to a
scaling limit or continuum limit. This latter fact is a consequence of the observation that if ¢ is distributed

according to v, s then p*[d’]gﬁ(po) is distributed according to vy_1 s—1.

4.3 Ising Models and some fundamental correlation inequalities

We now introduce some definitions, followed by proving some fundamental correlation inequalities that will
be needed later.

We also introduce some new notation: for any set X we denote by X () the set of all two element subsets
of X.

Definition. For any finite set A a classical Ising model on A is a measure on the space of spin configu-

rations op = {0z }een € {—1,1}* of the following form:

(~) = 213 Z ~ exp Z Sy} 0e0y + Z heoy

oa€{—1,1}A {z,y}eA® e

We will call {J{x,y}}{x,y}e/\@) the interaction and {h;}zen the external field. If in the above definition
Jizy =0 for all {z,y} € A® and hy =0 for all z € A we call the system a classical Ising ferromagnet.

Definition. For any finite set A a generalized Ising model on A is a measure on the space of spin
configurations ¢n = {¢z},cp € RY of the following form:

<~> = %J[RA ~ exp Z Jx,y¢x¢y + Z hads H dp((bx)

{z,y}eA(2) zeA xEA

We require that the single site spin measure dp be even, not have an atom at 0, and to also satisfy the

following integrability condition:
J eo‘szdp(s) < oo for any a € R (4.3)
R

We will use the notation dpa(pa) to represent the product measure H dp(dz).
zeN

If in the above definition Ji, ,y = 0 for all {x,y} € AP and h, = 0 for all x € A we call the system a
generalized Ising ferromagnet.
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Note that with the definitions above any classical ferromagnetic Ising model is also a generalized ferro-
magnetic Ising model.

In most versions of the above definitions one sees prefactor 3 € [0, o0) for the interaction {Ji, )}z yrea®
which is called the inverse temperature but for now we absorb it into our definition of the interaction, however
we will re-introduce it as a parameter later.

We can also absorb “boundary condition” prescriptions into the above definition, absorbing them into the
external field. Note that a ferromagnetic system under the influence of sufficiently summable non-negative
boundary configuration is again ferromagnetic - the boundary spins give a non-negative contributions to the
external field {h)},en = {Zy$[\ Jz,ySy}zen where Sye represents the vector of external spins.

The first correlation inequalities we give are the first and second Griffiths’ Inequalities which apply to all
generalized ferromagnetic Ising models.

The following lemma is taken from [44] and is based on the approach of [33].

Lemma 4.1. Let dp be an even measure on R with all moments finite. Suppose that f.(s), a« =1,...,n are
odd monotone non-decreasing polynomially bounded functions of s € R. Let Q(s,s’) be a bounded symmetric,
even, non-negative function of s,s' € R (that is Q(s,s') = Q(s',s) = Q(—s,—5") = 0)

Then for any collection of non-negative integers kq,lo one has the following inequality:

M= | dots) [ dpts) [T 10(0) = £l [1a(6) 4 1als]" Q1) 20 (1.4)

Proof: Case 1: Suppose both ] k., and }; [, are even.

By the assumption of monotonicity if s = s’ then for all « the quantity fo(s) — fo(s) = 0, while if s <
then the quantity fo(s) — fa(s’) < 0. In either case we have that

k

[T [fa(s) = fal(sH]™ = 0.

This follows since the product above is either zero or has an even number of terms of the same sign. Using
the fact that the f, are odd we can use the same reasoning when looking at fu(s) + fo(s') = fa(s) — fa(—5'),

the terms are of the same sign when s > —s’ or s < —s. Hence the entire integrand is non-negative.

Case 2: Suppose Y, ko is odd. Then by changing variables s <> s’ one sees that M = (—1)Xa*=M so M

vanishes.

Case 3: Suppose Y, ko is even but >} [, is odd. Then by changing variables s <> —s and s’ < —s’ one has
M = (—1)ZaFatlea) M 50 again M vanishes. O

Theorem 4.1. For any generalized ferromagnetic Ising model on A one has the following inequalities:
For any multi-index A supported on A
o™y =0. (Griffiths I)
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For any multi-indices A and B supported on A one has:

(p40P) = (™) {pP) = 0. (Griffiths 1I)

Proof: We start with Griffiths I. Note that

n
L1

JRA dpa(¢p)e™ = Z—lfw 2 D Teytety |+ (2 hmw) ¢ dpa(dn).

n=0 {z,y}eA(® xeEA

One can expand the various products and sums and interchange the summation with the integration over
¢ (this interchange is allowed due to the integrability condition on dp). One will then have an expression

of the form:

> es LA ¢"dpa(¢a)-

BelNA

The coefficients cp will all be non-negative (this follows because Jy. y,h. = 0, Z > 0). Since dp is even
all the above moments will be positive or vanish. Thus sum must be non-negative - this proves Griffiths I.

To prove Griffiths IT we introduce duplicate sets of variables ¢ and 1, each distributed according to
ua. Griffiths IT will follow if we show:

f duA<¢>A>f da(pn) (¢ —97) (67 —97) = 0.
RA RA

We rewrite the left hand side:

z? LA dpa (o) LA dpa(¥a)

n

G 1
Z ! Z Jay (¢m¢u + wﬂpy) + (Z he (¢ + %)) X (¢A - wB) X (¢B - ¢B)
n=0 """ {z,y}eA(® TEA
(4.5)
We now make use of the following identity:
1
(aiaj + blb]) = 5 [(CLZ + bz) (aj — bj) + (ai — bl) (aj + bj)] . (46)

Using this one can write:

1
Jﬂmy (¢w¢y + wxwy) = §Jz’y [((b:r + 77[11) (¢y - wy) + (¢m - wz) (¢y + wy)] .

We insert this expression into ([£H]), then interchange the summation over n with the integration over
RL x RL (valid by Fubini-Tonelli), and also expand out the n-fold product. We will be left with an infinite

sum of integrals. Every integral in the sum will have a non-negative coefficient since J;. .;,h. = 0 and Z > 0.
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The integrals in the sum will have an integrand built up out of products of the form (¢, — v,) and
(¢y + 1¥y). Thus each of the integrals appearing in this sum can be factorized into a product of pairs of
double integrals - each pair corresponding to a particular lattice site - these factors will take the following

form:

Jdp(¢m) Jdp(¢z) (¢m+wz)k (Qbr*wz)l
R R

These double integrals are of the form (4] where Q(-,-) = 1 and f,(s) = s. Thus each of the integral

factors is non-negative which means (1)) is non-negative. O

We note that Griffiths II tells us that for Ising ferromagnets the expectation of moments is non-decreasing
under an increase in the interaction or the external field. More concretely if x4 is an Ising ferromagnet on A

then for any {z,y} € A® one has:

0

0wy}

iy = D" P riy — D71 Babw) iy = 0.

In particular Griffiths IT proves that for a fixed interaction the expectations of moments are non-decreasing
as one takes a larger volume. For example let A; < Ay and let {J{Ly}}{z,y}eAf) be a ferromagnetic interac-
tion. Suppose we have two models, (~)4, defined over Ay with the given interaction and (~),, defined over
Ay with the restriction of the same interaction to bonds in A;. However (~)5, can be seen a modified ver-
sion of {J{x»y}}{z,y}eA(Zz) where the interaction has been set to zero for bonds that don’t have both endpoints
within A;. Thus by Griffiths 1T one has (¢*)s, < (¢*)a,. This will allow us to use Griffiths II to help us

establish the existence of infinite volume limits of finite volume Ising models.

The next three results we give hold for classical Ising ferromagnets and a proper subset of generalized
Ising ferromagnets. We will state these results for classical Ising ferromagnets and refer to the literature for
their proofs. After explaining the Griffiths-Simons approximation we will show that these carry over to the

continuous spin models of interest.

Theorem 4.2. For any classical Ising ferromagnet on A and any i,j,k € A one has

(o1,05,00)" :=(0i00k) — (0:){0j0k) — {0 X0iok) — (o X0i0;) + 2{0i )0 ok

<0

(GHS)
Proof: This is known as the Griffiths-Hurst-Sherman Inequality, the original proof can be found in [36]. [

Theorem 4.3. Let A be a finite set and let {J(; yy } 12 1en be a ferromagnetic interaction, that is Jg. .y = 0.
Define the function Zx(ha) as follows:

Zah) = Y exp| D) Jwyouoy + Y. huos

ope{—1,1}7 {z,y}eA@ zeA
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Then if Zx(hy) is viewed as a function of hy € C* one has that Z5(ha) does not vanish if R(hy) = 0 for

any x € A.

Equivalently if {(~) is the expectation for a classical Ising ferromagnet over a finite set A with zero external

<exp ( o hm>>

does not vanish if R(h;) = 0 for any x € A.

field then the following expression

Proof : This is the Lee-Yang Theorem which originated in the paper [46]. The second statement is equiva-

lent to the first since {( exp Z hyos = Za(ha) and Z,(0) > 0. O
TEA ZA(O)

4.3.1 Griffiths-Simon Approximation

We now narrow our attention to the family of generalized Ising models that will be of main interest to us.

Definition: A ¢* model is on A is a generalized Ising model on A with a single site spin measure of the

following form:

dp(s) = exp [7954 — 652] with ¢ > 0, seR.

If the interaction and the field are non-negative then we call the model a ferromagnetic ¢* model.

The correlation inequalities of the previous subsection which were stated just for classical ferromagnetic
Ising models can be extended to ferromagnetic ¢* models via an approximation technique due to Griffiths
and Simon [65]. The method involves approximating the distribution dp with the distribution of the mag-

netization (scaled) of a carefully chosen “mean-field” classical Ising model.

We give a few more details on structure of the approximation. Fix IV to be a large positive integer. Each
point z € A will have a corresponding family of classical Ising spins {J(x,a)}aNﬂ, we call this family a block.

Suppose that this family of spins are distributed according to the following measure:

) N
? Z - exp ldN Z U(z’a)g(z,5)]

{”(z,a)}e{_lvl}N a,0=1

1

where we defined dy = (2N)~! [1 —b(3gN) 2] and b, g are given as above.

N\ 1
Define cy = (6) N~1. Then [65] shows the random variable ¢, = cx ZaNzl O(z,0) Will weakly con-
g

verge to a random variable distributed according to dp(s) = exp [—gs4 — bsQ] (modulo normalization). In

fact the analysis of [65] proves a much stronger statement which we now describe. Below we use the notation
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[N]:={1,2,...,N —1,N}.

For any function F in the components of ¢pp = {¢s }een € R® we define O (F), a function of spin variables

{0(2,0)} (@,0)eax ] as follows:

N
ON(F)(oaxny) = F ({ 2 CNJ(;c,a)} > .
a=1 xEA

For example if P is a polynomial in the components of ¢, € R? :

P(ga)= > Pa]] [%Mx)]

AeNA zeA
then

N A(z)
On(P)(oaxiny) = >, Pa]] <CN > G(x,a))

AeNA zEA

With this notation in hand we state the Griffiths-Simon approximation theorem.

Theorem 4.4 ([65]). Suppose one is given a ¢* model s on A defined in terms of an appropriate (@) Hayrea®
{he}een, g, and b.

We define the measure ut on RAXINT gs follows: For any function H on RMIN1 we have

1 N
(H),x “Zo > H(opx[N]) €xp lZ (dzv >, Uu,a)ff(z,é))

oaxnjE{—1,1}A%IN] TEA a,0=1 (4.7)
N N N
+B 2 J{a:,y} <CN Z U(z,a)) (CN 2 J(y,a)> + Z hx <CN 2 0(1;,&))
{z,y}eA (@) a=1 a=1 zeA a=1
Suppose G is a measurable function on R™ which can be dominated pointwise by a Gaussian, that is:
sup |G(¢pa)e t Eeea 9% < oo
PAERA
for some t = 0. Then one has
i On (@), = (G, (48)
Proof: See Theorem 1 in [65]. O

Note that if (~),, is a ¢* ferromagnet then for sufficiently large N the model ;) is also ferromagnetic.
Whenever this approximation is applied in this paper we assume that N has been taken sufficiently large for

the above implication to hold.

Following [65] we immediately have the GHS inequality and Lee-Yang theorem for ¢* ferromagnets.
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Theorem 4.5. [GHS Inequality for ¢* ferromagnets] Let (-),, be a ferromagnetic ¢* model over some set
A. Then for any x,y,z € A one has

(Bar by, D)y <O

Proof:
The proof follows easily from the multi-linearity of the inequality, Theorem 4] and the knowledge that
this inequality holds for classical Ising ferromagnets (Theorem ). We note that

N
<9N(¢w)a9N(¢y>79N(¢z)>Z[J\V = Ci]))v Z <0(x,a),0(y75),0(z77)>5% < 0.

a,0,v=1

The desired statement follows by taking the the N — oo limit. O.

Theorem 4.6. [Lee-Yang Theorem for ¢* ferromagnets]
The function Z5(g,b, 8,h) does not vanish for h € C with R(h) = 0

Equivalently if {~),, is the expectation for a ferromagnetic ¢* model over a finite set A with zero external

<exp lZ h¢]> (4.9)
xeEA LA

does not vanish if R(h,) = 0 for any x € A.
In particular Z5(g,b, 8,h) does not vanish for h € C with ®(h) =0

field then the following expression

Proof:
Note that if s has then the same is true of its approximating classical Ising models p} - this gives us

the equivalence mentioned above by using the same argument used in Theorem

For any hp € CA

fn(ha) = <9N (eZIEAhw¢w)> N

KA

We remark that the fy are analytic on C*.

By Theorem B4 we know that the fy converge to a limiting function f on C* as N — oo with f coinciding
with (L9) for constant external fields hy = h.

Now suppose that hy € C* with R®(h,) > 0 for some x € A. Then by Theorem F3] one has:

fn(ha) = <9N <€Z“Ahz¢m)>w

<exp Z eN X Nz0(g.q) > > 0.
(z,a)eAX[N] N

KA

Thus the functions fy are all non-vanishing on the open set U < C* consisting of all those hy € C*
which satisty h, > 0 for some x € A. We first check th
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We must now show f is non-vanishing on U. For this we will use Theorems 5.4 and [5.5 from the appendix.
For Theorem [5.4] all that remains to be shown is local uniform boundedness of the fy on U can be checked

fairly easily - for example using the bound

‘@N (cBeente:)y V< oy (cBeen ot}
K JON

and then observing that the righthand side converges to a finite value as N — oo by Theorem [£4]
Theorem then implies that the f is non-vanishing on U or f = 0 on U. We now show f = 0 on U,
we show this now. Fix some arbitrary z € A and let hy € U be given by h. = 1 and h, = 0 for # = z. Then

we have

Fha) = (e, = D) o, =1 (4.10)
n=0 :

The power series expansion is valid by Fubini-Tonelli and our integrability condition on the single site

measures dp, the last inequality then follows by Griffiths First Inequality. .

4.4 Rewriting our measures as Ising models

4.4.1 Viewing the measures 1, as critical Ising Models

A key difference between how one approaches classical spin systems in statistical mechanics versus models
in Euclidean Quantum Field Theory is that in the former the “reference measure” completely factorizes over
space and one proceeds to perturb this by some kind of interaction which couples different spins in regions
of space. In Euclidean Quantum Field Theory the reference measure is a Gaussian measure which couples
together fields in different regions of space and then one perturbs this by a product of local self-interactions.

Our first step in going from the latter setting to the former is writing our Gaussian as a two body

interaction. The covariance Cj : Qf’, X Q;’; — R is given by

for x,y € QE’,.

Since Cp(z,y) is locally constant over the blocks of L we can see it as function Cp : L x L — R and as
mentioned before Cy is also the covariance for a Gaussian measure yc, on the product space RL.

By restriction Cy defines a p>* x p3* matrix indexed by the elements of A, which we call M, where the

matrix entries for x,y € Ag are given by
M., = Co(z—y).

The matrix M, , is clearly symmetric, we now analyze it further.

We note that the complex vector space C*¢ can be canonically identified with So,s( f’,, C) of section
and one can check that M can be seen as a linear operator So s(Q3,C) — So s(Q3,C). The standard basis of
C?s can be identified with indicator functions of translates of Zg in Proposition we also give a Fourier
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basis of SO,S((Q]?;7 C). One can easily check M is diagonal in that Fourier basis. In particular for fixed k € 7_5

the function

P ¥ 1,z (@) exp [2mith -},

is an eigenvector for M with eigenvalue

P> x L y a3k |k |7B2eD, (4.11)
+pZy

For this computation all one needs to do is write M(z — y) = C(x — y) % 1y-s73 (x) x 1y-:73 (y) and use

standard facts about convolutions and Fourier transforms. In particular for k € Z_; oy one has
3s .
J . Ay M(z —y)p= Lp-ozs (y) exp [2mi{k - y},]

—r ¥ 1,0 x| @Ol p)1, @ e ritk-yl,)
| % (4.12)
—p T, azs(z) X f 3K exp [2mi{k’ - x},] x [K/[TG72ED x p3oa, g (K)
p Q?} P
— Pz (@) x exp[2mifk-a},] x p* j@s R K201, (1)
In going from the second to third line we rewrote the convolution of functions f, g as the inverse Fourier

transform (with the fourier variable being k') of f x §. In particular for k € Z_s0and any K € Qg one has

JQ3 d®y exp [—2mi{k - y},] x 1,573 (y) exp [2mi{k - y},] = p?’s]lzg (p~(k—k)) = p?’s]lkersZg (k).
In going to the last line from the second to last line of [EI2) we remark that if 2 € p~*Z3, and |k’ — k| < p~*

then {(k — k') - x}, is an integer which means
exp [2mi{k - z},| = exp[2mi{k - x},].

One way to think about the integral in ([T is that when working in a finite box p_SZg the fourier modes
exp [2mi{k - 2},] get replaced with averaged (in k) modes - each average occuring over a translate of p*Z¢.
In some sense this means makes the infrared cut-off “dual” to the UV cut-off - in the UV cut-off we are
essentially replacing our field with one locally averaged in position space while for the infrared cut-off we are
in some sense locally averaging in momentum space. We now end this aside and pick up from where we left
off.

This computation of eigenvalues and eigenvectors makes it clear that M is positive definite and invertible
- it also gives us a method of computing the inverse of M which we denote by A. After some computations
one sees the matrix entry A, , for z,y € A, is given by

(p>~2e] — 1)2

(s) — _ —s(6—2[4]) —
A A= p 52 1) X P + Gz —vy) (4.13)
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where G is a function G : Q;’) — R which is constant on translates over the blocks of A given by

G(z) = J d®k exp[2mi{k - x},] x 1{|k| < 1} x \k|3_§[¢],
@

In particular

PPt — 1)

5200 . (4.14)
G@) = = 7= =eamn ¥ oz 12 =0

Note that in (ZI3]) the local constancy of G makes the function G(x,y) = G(x — y) well defined for z,y € L.
G can be thought of as a formal matrix inverse for Cj.
M is the covariance matrix for the marginal of yc, on R*¢, this marginal is absolutely continuous with

respect to the Lebesgue measure on R and one has

1 1
d = -z AL) ¢, dps.
ey (P, T aei ) exp l 5 MZEAS NG %] ml;\[ ¢

Here ¢, denotes the vector of components {¢,}zea. and d¢, denotes Lebesgue measure. Note that A§f{, is

invariant under translation by elements in A, and accordingly we will sometimes write A®)(z —y) = AS;

Now for given parameters g, j one has that the R*s marginal of vo.s[g, 1] is given by

dVO,s(¢As) = % <H €xXp [_g : (b;l Cp —H: ¢i :Co]> dMCO (¢As)
xEA
(4.15)
1 1
= 7 exp ) ) %A‘ AL (‘r - y)¢z¢y (wle_[\[ exp [_g(ﬁi - bgbi] d¢m>
=y

where we have undone the Wick ordering and absorbed the diagonal part of the Gaussian into the single site
measure- and above we have set )
b = —6Co(0)g + pu+ iA(S) (0)

and Z and Z’ are just normalization factors. This realizes vy s(¢as)[g, ] as the law of a generalized Ising
ferromagnet in zero external field- for distinct @,y € A one has Ji, ,p = —A®*(z —y) = 0 and dp(¢,) =
exp [—agt — b2] do.

We refer back to Corollary [£1] specializing to the scenario where I3 = [ and ls = [ + 1 in a small € regime
where I.; is non-empty. We then have, as a consequence of our RG analysis, the convergence of measures

(in the sense of moments)

Jim vo,5[g, 1 (9)] := 10,00[9, i (9)] (4.16)

for g € I ;.
We remark that for i = 1,2 the measures vo (g, ti(g9)] on Rt are translation invariant, rotation in-
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variant, invariant under global spin flips {¢z}sel < {—¢z}zer, and have exponentially integrable finite
dimensional marginals - the last fact being another consequence of the RG analysis. We also remark that
since 1,0[g, pti(g)] can be realized as the infinite volume limit of ising ferromagnets the Griffith’s inequality
hold for these measures.

The key observation is that the infinite volume measures vy (g, 1;(g)] both corresponding to Ising models
“at criticality” - that is they have pair correlations that decay to 0 but are not summable. These facts follow
from the fact that these Ising models have non-degenerate scaling limits. We give more details on the last
comment.

We can (re)identify the measures o »0[g, 11i(g)] on R as measures on S'(Q3) by identifying {¢, }recr with
the element of S'(Q3) given by the function

é(y) = Y, dalaly) (4.17)

where 1A : Qf, — R is the indicator function for the unit block A. With this convention if ¢ is a random
element of S'(Q}) distributed according to the measure g 4 [g, 11i(g)] then one has that the law of

lim p~ g (pt o)

r——00

converges in the sense of moments to the law of v; 4.
In particular the law of p~l?IZ¢(pT o) with ¢ distributed according to v »o[g, 1i(g)] is the same as
Vr.oolg, i (g)] := limgs_, o vy s where v, ¢ is defined with the parameters g and p;(g). With this in mind we

have the following lemma (note that below we write v; to denote v; 4).

Lemma 4.2. The measures vy.o|g, ni(g)], with i =1 or 2 both satisfy the following conditions

Z<¢o¢z>uo,w[g,m(g)] = 0 (4.18)
zell
and
irel{<¢0¢w>u0m[g,m(g)] = 0. (419)
Proof:

We first prove (£I8). By Corollary ] one has

C; 1= J dl/l(gb) d)(]]_zs)2 >0
51(Q3) !
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Now using that v; can be realized as scaling limits of the vy (g, :(g)] one has

2
¢ lim dVO,oo[g7 1 (g)](¢> (J d3y p[¢]l(l+1)n¢(p—n(l+1)ly) ]]-Z?J (y))
= Jsa a

lim p(f6+2[¢])l(l+1)nj

2
y d*y o(y) ]lp—n<l+1)lzg(ll)> (4.20)
n— 5/(Q3)

dvo,wlg, 1i(9)1(9) <

@

2
. (6—2[¢])I(I+1)n
Jim p < D % >

2€hn (4 Vo0 lg:11:(9)]

Now using the fact that vy o [g, 1ti(g)] is translation invariant and the fact that Ay;q4q) < L is closed as

an additive group it follows that

2
<Z¢z> —<Z¢zXZ¢z>
iEEAn(Hl)z ZEAn(L+1)l wEAn(Hl)l

vo,00[9,1i(9)]

=p3”(l+1)l<¢o>< PIRH

TEAp (14 1)1

v0,00[9,1i(9)]

v0,00[9,1:(9)]

Inserting this into (£20) gives

¢; = lim p(—3+2[DU+Dn Z (B0bsVrp + [gais(a)] (4.21)

n—ao0
weAn(li»l)l

Now since ¢; > 0 and —3 + 2[¢] = —3%¢ < 0 it follows that

JEEO Z <¢O¢z>V0,oo[g»Hi(g)] - Z <¢O¢I>V0,m[gn“«i(g)] =%

IEA”(lJrl)l zell

This proves statement (IS]).

We now prove ([£I9) by contradiction. We remark that by Griffiths’ first inequality the infinum of (T3]

must be non-negative so if we assume it is non-zero we must have

aicg£<¢0¢””>V0,oo[gvm(g)] =0>0.

However this implies that

Z (PP, . [g,ui ()] = O X o (4.22)
€A (141)
However by ([21])
i 1
o P 2D 2 P08 fgpiten = G < (4.23)
zeAn(lJrl)l
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where the fact ¢; < 00 comes from the fact that all moments of v; are finite. Observing that 3 —2[¢] < 3

we see that [A22]) conflicts with ([@23) so (@I9) is proved. O

4.4.2 Switching Boundary Conditions

Proving full scale invariance will involve investigating the phase diagram of a particular class of Ising ferro-
magnets, as such we will need a way to take infinite volume limits which gives us much more freedom when
it comes to our choice of parameters, for example including a non-zero external field.

The cleanest method for establishing convergence of an infinite volume limit for an arbitrary Ising fer-
romagnet is by working in a scenario where we can appeal to Griffiths’ Second Inequality to show that the
moments (¢),, are increasing in A and then combine this with n! moment bounds uniform in the volume
- we will then have some infinite volume measure . with lims_,o o, = gz, in the sense of moments.

However this fails when we use an interaction J as given in the last line of ([@IH) - this interaction is
becoming less ferromagnetic as s — oo. The solution is to change boundary conditions on our Gaussian
measure so that the corresponding interaction is no longer dependent on the volume.

The boundary conditions for the measures vy s would be called Free Boundary Conditions in the field
theory literature - the self interaction was implemented as a finite volume perturbation of an infinite volume
Gaussian Field and the finite volume marginals are given by the same finite volume perturbation against a
finite volume marginal of the same Gaussian measure.

If the covariance Cy is thought of as a formal L x L matrix then G (given by ([£I4))) can be thought of
as its formal matrix inverse. The key issue is that matrix restriction doesn’t commute with taking matrix

inverses. In particular if for A — L we write o[ for the restriction of an L x L matrix to a A x A matrix then
-1
(Cly) " =Gly-

What would be called free boundary conditions in statistical mechanics are more akin to Dirichlet bound-
ary conditions in field theory.

In particular instead of having the interaction depend on the volume we will have the entries of the
covariance depend on the volume - we define the Dirichlet covariance in the volume A as Cp A := (G| A)_1.

A computation similar in flavor to the one for (I3 shows that
CD,AS = CQ|AS + B(S)

where B(®) is a rank 1 A, x A, matrix. More explicitly for every z,y € A, one has

(1 —p 2ol 2

(I—p3)(1—porawl) — 7~ !

S

In particular B® is the covariance for a Gaussian field ¥ on Ag which is constant on Ay, i.e. for all z € A,
one has 1, = 19 ~ N(0,02).

Instead of working with the measures vy, defined with respect to Cy we will instead work with the
“Half-Dirichlet” [37] boundary conditions - “Half-Dirichlet” refers to the fact that we will use Cp A, as our

background Gaussian measure but we will continue to Wick order with respect to the covariance Cyy . The
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reason to do this is that if we also used Cp A, for our Wick ordering then for fixed g, 1 our single site
measure dp would have volume dependence. We will denote these measures by VH D,

It is not technically difficult to use our RG machinery to tackle infinite volume limits taken with Half-
Dirichlet boundary. We assume that we are running the RG with fixed L = p!. We give an informal

explanation of how the RG can control the limit s — oo of

()Tsz(f) = Log

(4.24)

252
245 (0)

2= [ duey @ew|-
S1(Q3)

fxméﬂm@0+u:$uw%-—&mﬂm}

Als

The random field ¢ distributed according to Cjy restricted to A;s can be decomposed as a sum of inde-

pendent random fields
Z G(x) + ¢s(z

where the (; are the first j fluctuation fields, that is the (; are distributed according to the scaled fluctuation
covariance p_2[¢]ljf(plj0)|ms. The field ¢ is distributed according to p_2[¢]lsCO(pls~)|Al5. In particular ¢,
is constant on Aj;. The RG map iteratively integrates out the (;’s for 0 < j < s — 1. The integration of ¢,
occurs at the final step when the volume Ajs has been shrunk down to a single block (earlier we called the
contribution from this step the “boundary” term of our RG analysis).

We can similarly decompose the random field d) on A, distributed according to Cp a,, as a sum of

independent random fields

ch ) + ¢s(x) + Vai(x)

Here both ¢, and v are constant on Aj;. We can apply the same RG map for this scenario which will
generate the same flow, the only difference being that in the final step we our final integrand will be a

function of both ¢4 + ¥ . In particular when we include rescaling the “boundary” is given by

‘L@@nNMWWGmmw
J{R dfi(e)Za) [V (0,0)](¢)

Log

where fi is a Gaussian measure on R, in particular it is the law of p**[%] (¢;(0) + 4;5(0)) (the prefactor coming

from rescaling) which is a centered Gaussian random variable with variance

_ p20el)2
2Aells 2 _ 1-p )
Co0) + P70t = Col0) + T =y = provamany”

Observe that this final one variable Gaussian integrals has a density independent of s and so this term can

be controlled just like the boundary term studied in the RG analysis.
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We define the measures V(fSD [g, 1] via the log moment generating function ng ’SHD( f).By proceeding
along the lines above one can prove the following theorem which states that for our infinite volume limits
constructed via RG we will get the same limits whether we use free boundary conditions or Half Dirichlet

boundary conditions. We state this result as the following theorem.

Theorem 4.7. For ¢ > 0, L = p', g > 0, and p(g) as in Theorem [Z1 one has that for f € S( ;‘3,@)
sufficiently small
. T,HD § . :
lim §5377(f) = lim S7,,(f,0)

and consequently

lim ! g. u(9)] = lim vo.5[g, 1(9)] = vo,00lg, u(g)]-

For any non-negative integer s we have

1 1
dﬂCD,AS ((b) = \/(ZW)‘AIadet (G|AS) exp l_2 myyZeAs G(CE - y)¢m¢y] m];‘\[ls d(b:r

We write the A, marginal of the measure v§'P[g, u] as an generalized Ising model.

1
P (das) = 7 (H exp[—g: ¢y iy —p: Ol 3co]> ducp (0a.)
TEA
(4.25)
1 1
= A exp ) 2 G(LE - y)¢x¢y ( H eXp [_g(bi - b(bi] d(bw)
T,yeN xeN
z=y
where we set )
b = —6Cy(0)g + pn+ §G(O)

and G is given as in ([EI4). For generic g > 0, b € R we define pu[Ay, g, b] to be the probability measure on R+
given by the measure denoted on the last line of (£25]). We will also write v[Ag, g,b] for the corresponding
measure R- given by u[As, g, b]®dy\a, Where 0y, is the measure concentrated on the zero element of RL\A:

On the domain of y;(g) we define the function

bicrie(9) = ~6C0(0)g + 1) + L GI0).

In particular for g in the given domain the R*: marginals of vAs, g, bi cric(g)] and v§Plg, nig)] agree. It

follows from the Theorem .7 one has convergence in the sense of moments of the measures

lim V[A§7g;bi,crit(g)] =: V[Ingabi,crit(g)] = VO,OO[97M<9)] (426)

§—00

Now by Griffiths Second Inequality one also has that for fixed g,b the moments <¢A>V[A5,g,b] are non-
decreasing in s. It follows that the convergence in ([{20) doesn’t need to be taken along the particular
subsequence of volumes Ay but could be taken along the A,. This also allows us to construct infinite volume

measures for arbitrary g > 0, b € R modulo finding sufficiently strong uniform upper bounds on the moments.
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4.5 Criticality and the Intermediate Phase

One expects that the generalized Ising ferromagnets v[L, g,b] should undergo a phase transition just as
classical nearest neighbor interaction ferromagnetic Ising models on Z¢ do for d > 2 - the role of the
temperature now being played by the mass b.

In particular for fixed g > 0 the measure v[L,g,b] should have dramatically different behaviour for
different regimes of b - for b sufficently large one expects the measures v[L, g, b] to have pair correlations that

decay quick enough for

Z<¢O¢w>u[&,g,b] < (427)

zel

where (-),, denotes expectation with respect to the measure p. We call the quantity on the left hand side
above the susceptability (denoted by £). This regime of b is called the single phase regime or disordered
phase or the high temperature regime.

On the other hand one expects that there is a regime of sufficently small b where correlations do not

decay to zero, that is
: T
nf(bods)yr g4 > 0- (4.28)

The failure of correlations to vanish at long distances is called long range order and the parameter regime
where one finds this is called the two phase regime or the low temperature regime. The values of the mass b
at which one transitions from one regime of behaviour to another are called critical.

With this in mind we can define at least two notions of “criticality” for our mass parameter b:

bLro(g) = sup {b eR| i2£<¢0¢z>u[&,g,b] > 0}
and

by(g) = inf {b e Rl Y {poba)uiLgp] < OO} :
zell

Now by the Griffith’s inequalities we see that for fixed g > 0 the quantity (¢o¢.),[1 4,5 (Or more generally any

moment of spin variables) is non-negative and should be non-increasing in the parameter b. Both inequalities

are applied in finite volume and then carry over to the infinite volume limit - for the second assertion we

note that
0
%<¢O¢x>uAs[g,b] = - Z<¢O¢za¢z>uAs[g,b] <0

z€As

It then follows that one must have br,ro(g) < by (g), Additionally for fixed g > 0 it follows if b < brro(9)
then b must lie in the two phase regime, similarly if & > b, then b must lie in the one phase regime, in
particular both these regimes are semi-infinite intervals in b (again this description holds for fixed g). The
behaviour of the susceptability and decay of pair correlations at criticality is a more subtle issue which we
don’t address here.

Now if brro(g) < by(g) one would have a third regime brro(g) < b < be(g) where susceptability x is
infinite but one does not have long range order. However Aizenman, Barsky, and Fernandez, in [7], proved
that this was impossible for ferromagnetic Ising models - any transition between the one phase and two

phase regimes must be sharp. More precisely a sharp transition in b means that brro(g) = by(g), i.e. no
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intermediate phase in b for fixed g. Before we continue we make the important remark that there are some
differences between how the result in [7] was stated and our current situation - much of our work for proving
full scale invariance is overcoming those differences.

The basic idea of our argument is to leverage the main result of [7] so that our main result follows via
a proof by contradiction. By Theorem 7] and Lemma [£2] one has that brro(g) < b erit(g) < by(g). This
means that if 111 (g) = p2(g) (or equivalently b1 crit(§) = b2,crit(§)) for some g € I ; then this would imply the
existence of an intermediate phase in the mass parameter b when g = g. We remark that for the purposes
of our proof we can assume that (1 it (§) < f2,erit(§), the possibility of the other inequality can be handled
in an identical way.

With this assumption we can already construct an intermediate phase not just in the mass parameter b

but one in the (g,b) plane.

Proposition 4.1. Suppose that there exists § € I.; for which pu1(g) > pe(g). Then there exists a non-empty
open set U < (0,00) x R such that for every (g,b) € U one has the following

The measures v[As, g,b] converge (in the sense of moments) in the infinite volume limit
lim v[Ag,g,b] = V[L,g,b]
§—00
and additionally one has

Z<¢>o¢z>u[m,g,b] =%
) (4.29)
;1(61{ (P09 )u[L,g.0] = O.

Proof: We remark that via our RG analysis (i.e. analyticity of the stable manifold) the functions p1(-) and
p2(+) are continuous on I ;. It follows thats there exists 6 > 0 such that for all g € (§ — J,g9 + ) < I.; one
has p11(g) > p2(g) and so one also has by cit(g) > b2 erit(¢9) for such g.

We set

U = {(gvb) € (0,00) X [R‘ g € (.& - 67.& + 5)7 b € (b2,crit(g)7b1,crit(g))} .

Since the b; it (g) are continuous it is clear that the above set is open.
Additionally for any (g, b), any non-negative integer s, and any moment ¢* we have by Griffiths’ Second
Inequality

<¢A>V[Asaggbl,crit(g)] < <¢A>V[As,g,b] < <¢A>V[As,ggb2,crit(g)] (430)

Also by Griffiths’ second inequality the terms above are all increasing in s, and the last term converges
to <¢A>u[u_,g,b2,c,.it(g)] as s — o0. Since the measure v[L, g, b2 it (g)] is exponentially integrable for any of the
spin variables one has that the moments <¢A>,,[A3,g,b] converge to the moments of a measure we denote by
v[L, g,b]. The assertions of (£30) then follow by taking s — oo in ([@30) and observing that both assertions
of ([@29) hold for the measures v[L, g, b1 crit(9)] and v[L, g, b2 crit ()] O

The above discussion described the setting of our stat mech approach for proving full scale invariance.

We now precisely state the main theorem of this chapter, this theorem when combined with Proposition 1]
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will establish that u1(g) and pa(g) agree on I.;. Below we denote by B the product o-algebra on R-. We

also use the notation “©” to denote finite subset.

Theorem 4.8. Let J(-) be a fized function L\{0} — (0, 0).
Define W : {0,p,p?,...} — [0,00) as follows:

U(0) =0

For j =1, ¥U(p’) = sup J(x)
zell
||=p

We require that J satisfy the following integrability property: there must exist n > 0 such that

D (jz]) 2] < oo (4.31)

zel

For any g € (0,0), 8 € [0,0), b € R, h € [0,0), and A € L we define a Borel probability measure
palg, b, B, h] on R as follows:

ialon 3100 = e | 5 5 S 9160y | e [—Z(g¢i+b¢i>1dm

z,yeN zeA
=y

Above the quantity Zx[g,b, 5, h] is defined to make up a probability measure. We define the probability
measure v[A, g,b, B, h] on the measure space (RY,B) as the product measure ux[B3,g,b, h] ® dp\a- Here 0p\a

denotes the Dirac delta measure concentrated on the zero element of RE\A.

With the above assumptions and definitions one has the following results.

(i) For any mon-negative integer j let A; = {x € L : ||z]| < p’}. There exists a translation invariant
probability measure measure v[L, 3, g, b, h] on RY such that the measures v[A;, B, g,b, k] converge in the

sense of moments to the measure v[L, 8, g,b, h].

(ii) For any A € L the measure v[L, g,b, 3, h] has a marginal on R® which is absolutely continuous with re-
A

d
spect to Lebesgue measure on RN, We denote the corresponding Radon-Nikdoym derivative as ﬁ(@ﬁ,\).
A
For any fized g > 0 and b € R and any compact set of (3,h) € [0,00)? there exists § € R such that one

has the bound

< exp l— 3 (—%qﬁi +5)] .
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(iii) Define

M(Ba g, ba h) = <¢()>V[IL,B,g,b,h]

Then the limit hlim+ M(B,g,b,h) =: MT(B,g,b) exists.
—0
(iv) For any fized choices of g,b there exists a countable set D such that if 5 € [0,00)\D then

. 2
irel{ {podu)uii p.gb0 = (MT(B,9,0))

(v) Suppose there ewists g, B, B such that

2 (Bob)u g.6.5,00 = ©

zel

Then for any B > B one has:

inf (D0P2)y 56,80 >0

and so for any X > 1:

9162{ <¢0¢w>y[[|_’)\*2g,)\’16’3v0] > 0.

In our case of interest one has J(-) = G(-). it is easy to check that this choice satisfies the requirements
on J made above. Statements (i), (ii), (iii), and (iv) above all follow from the work of Section 71 The
first part of statement (v) which contains the sharpness result is proved via combining results from sections
7 and [£6] the second assertion follows by a simply scaling argument in the variables ¢. Section E7] is
independent of section but not vice-versa - however we still put section first in our exposition since
that is the key element of our argument.

Once Theorem .8 is proved the combined with Proposition [.229 we then have that 1 (g) = pe(g) for all
g € I.; - otherwise Proposition .29] would give us an open set U < (0, 00) x R such that for all (g, ) € U the
measures v[L, g, i, 1,0] have both infinite susceptiability and an absence of long range order. However this
contradicts statement (v). For (g, ) € U one can find A > 1 such that (Ag, An) € U and so the last assertion
of statement (v) states that v[L, A\g, Au, 1, 0] should exhibit long range order.

All that is left to prove full scale invariance then is to prove Theorem 8]

4.6 The Sharpness of Transition result of Aizenman, Barsky, and

Fernandez

We first remark that there is nothing new in this section, this material follows expositions from [5], [8], [6],

and [7] although we give more details on some of the steps.
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For now we take the results of section [ for granted and assume that for any g € (0,0), 8 € [0, 0),

be R, he[0,00) one has the convergence of the infinite volume limit in the sense of moments

hm V[An7gvb7ﬂ7h] = V[I]—agvbaﬂa h]
n—00
Once such a limit exists it is clear the limiting measure is automatically translation invariant. We remark
that the analysis of section [£7] will also show that the limiting measure is exponentially integrable in the
spin variables.
The key phase diagram parameters used in [7] for their analysis of critical Ising models are the inverse

temperature 8 and the (uniform) external field h. Their main results concern properties of the magnetizations

M(ﬁagvbvh) = <¢0>V[[L,g,b,ﬁ,h](¢)- (432)
and
M*(8,9.5) = lim M(8,9,b,h). (4:33)

We quickly mention some important facts about the above quantities.

Theorem 4.9. Let g >0, be R, and B,h € [0,00). Then M(g,b,,h) and M™*(g,b,3) as defined above are
well defined and finite. Additionally one has the following:

1. M(B,9,b,h) is a concave function of h for h =0

2. For h > 0 the function M (B, g,b, h) is real analytic in h.

Proof: The first item is a direct consequence of GHS, the second comes from the Lee Yang Theorem. The

detailed proof of this theorem is in the appendix, section

If one has M (3, g,b) > 0 then the Ising models with parameters 3, g, b are said to undergo spontaneous
magnetization, this represents another criteria which one can use to define the two phase regime - although
the equivalence of these two criteria is not obvious (and a central issue for us).

We define the two following notionts of critical inverse temperature:

zell

By(g,b) = inf {5 = 0 Z<¢o¢z>u[mﬁ,g,b,o] < 00}

and
Ba(g,b) = sup {B >0 M*(B,g,b) > 0}.

We remark that by Griffiths IT one has that pair correlations and M * (3, g,b) are increasing in (3 for fixed
g,b. Thus 5, (g,b) and Bas(g,b) are the endpoints of semi-infinite intervals in 3.

An important fact is that the susceptability x can be identified as the derivative of the magnetization at
h=0

Lemma 4.3. For any g € (0,00), be R, and 8 = 0 one has
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M(g,b,5,h
Mo o801 _ S hodados g0

zell

lim
h—0t h

Proof: This is a simple example of what is called a fluctuation dissipation relation. See appendix .3l

It follows from this that one must have 3, (g,b) < Bar(g,b). Here the question of sharpness of transition

is whether 58, (g,0) = Bn (g, b).
The main result of [7] transcribed to the context of our models reads as following.

Theorem 4.10 ([7]). Fiz g =0, and be R. Suppose there exists a By = 0 such that:

D P0Ba vl pogb,0] < © = 0 (4.34)

xell

Then for any B > By one has M*(g,b,3) > 0. In particular By(g,b) = Br(g,Db).

There are two difference between Theorem .10 and the result we want. The first is that the intermediate
phase ruled out by the above theorem is for g with fixed g, b while the intermediate regime we constructed
in section was an open set in (g, b) for fixed 5 = 1. However by scaling ¢ we can use our intermediate
regime to construct an intermediate phase in g for fixed g, b.

The second more serious issue is that the above theorem uses spontaneous magnetization instead of long
range order to characterize the two phase regime. In [68, V.4] it is shown that for generalized Ising models
satisfying the GHS inequality the presence of Long Range Order implies spontaneous magnetization. This
establishes 8y/(g,b) < Brro(g,b) where Brro(g,b) represents the onset of long range order. However for
our purposes we need the opposite inequality for our generalized Ising model which is is the central goal of
section .11

The analysis and results of [7] all apply for fixed g and b so we will often drop these parameters in our
notation. The approach utilized in [7] is to establish certain partial differential inequalities for the finite
volume magnetization in the presence of a uniform and positive external field. For n € N we define the
function M, : [0,0) x (0,0) — (0,00) as follows:

1
My (Byh) :={P0)p[An.g.b.8.0] = ] Z {Pa)u[An.g.b,8,h] (4.35)

e,

We've included the second equality above to make it clear that M,, is in fact the average magnetization.
A convenient simplification for our model is that for any n € N the measure vy [g,b, 5, h] is invariant by
translations by x € A,,. This will be enough translation invariance for the key correlation inequalities to be
identified as the desired partial differential inequality for M,,. Over the lattice Z¢ one would have to switch
to periodic boundary conditions or perform more work to establish the desired result for Dirichlet boundary

conditions. The main partial differential inequality proved in [7] is the following.
Theorem 4.11 ([7]). For any n e N

oM,
oh

oM,
B

M, <h + WM + B2 My + BMy (h+ BT 2 My) (4.36)
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In section L6 4 we will see how this establishes Theorem .T0l The main techniques of [7] are the Random
Current Representation (RCR) along with an associated Random Walk Representation (RWR) which provide
combinatorial representations of correlation functions. Both the RCR and RWR apply to any ferromagnetic
classical Ising model without referencing any geometric or algebraic structure on the underlying finite set A
or the interaction J - until we specialize further one should imagine A as an abstract set.

We start by giving some general results on the RCR. Afterwards we will describe how the Griffiths-Simon
approximation [65] allows one use the RCR and RWR to analyze ferromagnetic ¢* models.

4.6.1 Overview of Random Current techniques

We start by quickly reviewing the definition of the Random Current Representation for an arbitrary ferro-
magnetic classical Ising model over some finite set A. We restrict ourselves to the case where the external field
is uniform. In particular we can represent our measure as follows: Let A be subset of A and for o € {—1,1}*

define 04 = [[,.4 0. Then one has:

—|A]
(o?) = 2 ZA Z cexp | B Z Jiay}0c0y +h Z o

oe{—1,1}7 {z,y}eA2) zeA

where

Z =2"IM Z exp | B Z Ji2,y) 020y + I Z Oy

oe{—1,1}A {z,y}eA(2) zeA

Recall that A is the set of two element subsets of A. We add a new ghost site g to the finite set giving
us the “enhanced” vertex set A = A U {g}. We will try to always use g to denote the ghost vertex, when
quantifying over vertices the variables z, y, u, etc. will represent an vertices in A unless we specifically allow

for them to represent the ghost site.

The set of possible bonds on A is denoted by A(?). Correlation functions will be represented by sums over
“current configurations” n, vectors with non-negative integer components indexed by bonds of the enhanced

vertex set: n = {ny},ca. The value of an individual component n;, is referred to as the flux through bond b.

We now give a representation for the partition function. First we introduce the following notation:

7 Bz if b= {z,y} with z,y e A
b= .
h if b= {x,g} withxzeA

Starting from the definition of Z and using the above notation one has the following:
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Z =27l Z H exp [5J{$,y}amay] <H exp [hoz]>

oe{—1,1}» \{z,y}eA(@ zEA

=27 3T [i ‘Zi: < I ai>nb1 (4.37)

oe{—1,1}A beA(2) [ np=0 i€ANb

- S fum o 3 Lo

n oe{—1,1}A zeA

The sum Y,_ is a sum over bonds b € A such that b contains the site . We've also defined a weight

system w(e) on current configurations given by:

Jp
w(n) - H nb!
beA ()
The key observation is that the sum over o on the final line of ([@3T) vanishes if >,  n; is odd for

IAl. This motivates the

any site z € A while if >}, _ ny is even for every x € A then the sum is equal to 2
following definition: the ”sources” on of a current configuration n is the set of vertices with an an odd flux

coordination number:

on={reAl| Z ny is odd }.

beA(?
bax

It is not hard to see that the set dn must be of even cardinality. With this notation one can now write:

Z = Z w(n).

on=g
Above we are summing over all current configurations n with dn = ¢J. The presence of an observable o

flips our parity requirement on the flux coordination of the sites of A, thus one has the following identities:

1
Z w(n) if |A| is even
—A

Z A
(oay=471" (4.38)
Z

w(n) if |[A] is odd

In what follows we will often suppress the dependence on the volume A, all the identities hold for an

arbitrary but fixed finite volume.

We quickly cover some additional notation. AAB denotes the symmetric difference between the sets A
and B, that is (A U B)\ (A n B).
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One defines the support of current configuration n as follows: supp(n) = {b : nip > 0}. It is
also useful to define component-wise addition on the set of current configurations, that is n; + ny =
{n1p+n2p}ycae- In general one does not have w(ny + nz) = w(ny) x w(nz), however this factoriza-

tion does hold if supp(ny) N supp(ng) = .

We say that the event & < y occurs under the flux configuration n if there exists a path of bonds linking
x and y with n, = 0 for each bond along this path. We denote the negation of that event by =z <» y. We
adopt the convention that every site x is connected to itself, that is the event x < = occurs under all flux

configurations.

Expressions will often involve indicator functions (defined on current configurations) for particular events.
As an example the indicator function for the event x <> y will be denoted I[n : z < y|. Additionally

I[n: 2z < x] = 1 regardless of the choice of n.

An essential identity for proving the neccessary bounds is the switching lemma which we state below.

Lemma 4.4 (Switching Lemma). Let f be a function on current configurations. Then one has the

following identity:

Z w(ni)w(ng)f(n1 + nz) = 2 w(ng)w(ng)f(ng +nz) x I[ng + nz : 2 < y]
on1=A on;=AA{z,y}
onz={w,y} ny=_
Proof: See Lemma 3.2 of [5]. O

The switching lemma can be used to produce useful representations of truncated correlation functions.

Two such identities that will be used are given below.

Corollary 4.2.

(om0)" =272 > wn)wng) xIng +ng: 2 <y (4.39)
ony ={z}A{y}
onz={
(0, 040,) = Z72 Z w(ng)w(ng) x I[[ng +ng : x «+ g (4.40)
ony={z,g} A{u}A{v}
onz=

Proof: This is Corollary 3.5 of [§] but we quickly give the proof of here. First observe that
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(GuXoyy =272 3, wn)w(ng)
ol

=z Z w(nl)w(HZ) X I[nl +ng 1 X < g]
om={z}A{y}
ona=g
In going to the last line above we used the switching lemma and the fact that {y, g}A{z, g} = {z}A{y}.

Now by inserting a dummy sum over n, and another factor of Z—! we have

Gty =27 Y w(ng)w(ng)
om—{r} )

Thus one has

(a,0,)" = Doty = (DuXdyy = 2% Y wm)wng) x (1 -I[ng +nz:x < g])

on1={z}A{y}
nz=

This gives [@39). One proves [@A0) similarly.
O

Another tool repeatedly used in [7] is conditioning on clusters. For a flux configuration n define the bond

cluster of the site x as follows:

Cu(z) = {{u,0} e AP n:uozorn:veoztu{{ugln:uo s

Note that Cy(x) may contain bonds b for which n, = 0. In particular Cy, () is never empty and at least
contains all bonds b with b 3 = (since x < x). We also remark that for a given n the question of whether
Cna(z) = C for some C is independent of n’s flux numbers for bonds outside of C. We say a bond is in the

boundary of C if one of its endpoints is also contained in a bond that is not within C.

We now introduce notation for taking expectations under modified interactions. Let C be a subset of

bonds, then set

1
Zo Z w(n) if |A] is even
on=A
(e =4 1 supp(n)cC (4.41)
— >, w(n) if|A]isodd

Zc on=Au{g}
supp(n)cC

where
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Zc= > wn). (4.42)
on=0f
supp(n)cC

It is not hard to see that (~)s an expectation taken with a modified version of our classical Ising ferro-
magnet where bonds outside of the set C have had their couplings .J, set to 0. We note that by Griffiths 11
one has (c4)c < (o) for any A< A, C < A®).

By conditioning on clusters within sums over current configurations one can prove the following identities:

Lemma 4.5.

T _
<0-170-u0-v> =Z 2 Z w(nl)w(n2)<OU>(Cn1+n2(x))c
anlf{m}A{u}
01’12=® (4.43)
+27? > w(ng)w(ng) (0uw) o, (@)
oni={z}A{v}, dnz2=Q

0w’ =272 Y wlnn)wng) .00, . (g ¥ 1 + 0 i x o g]

oni={u,g}
onz=

(4.44)
+Z77 ) w(ng)w(ny) (O020u)(Coyany (o) ¥ 1M1 + 12 1 x o g]
ony={v,g9}
ona=f
T -

(04,00 =272 Z w(ny)w(ng) <away>(cn1+n2 (e X 101 +n2 2 g] (4.45)

oni1=g

ona=

Proof. We start with proving ([@Z3]). We observe that if « = v then both sides of the equation vanish. The
fact that the left hand side vanishes in this case is immediate. For the first term on the right hand side note
that since z and u are sources for ny then all the bonds with v = u as an endpoint are contained in the bond

cluster Cn, 1n, (%) 50 (00 = 0 (with those bonds suppressed o, is mean zero bernoulli random

nj+ng (z)]°
variable). The second term on the right hand side vanishes by the same argument. Thus the equation holds

if u=w. O]

We now work under the assumption that v and v are distinct. Note that by Corollary we can write

<UIaUuUU>T =772 2 w(ni)w(nz) x I[ng +nz 1z <> gl x (I[n1 +nz2 :v < gl +1[ng + nz 1 u < gJ)
oni={z,g}A{u}A{v}
onz=
(4.46)

Since u, v are distinct the sum of the two indicator functions at the end of the RHS will be precisely 1

under the source constraints and the indicator function forcing x <> g. Either v or v must be connected to
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the ghost site g since x cannot be. However if u is connected to g then v cannot be and vice-versa.

We now work on the last expression with just the first of the last two indicator functions above and
condition on the bond cluster of x:

w(ng)w(ng) x I[ng +ng : z «» g] x I[ng + n2 : v < g
on1—{z,9}A{u}Afo}
0 %]

ng =

- ) 3 |w(n1)w(ng) x 1ng +nz : 2« g]
CcA®?) ony={z,g}A{u}A{v}
onz=

xI[ng +ng:ve gl xIng +ng:Cy,in,(x) = C]]

= ) >, w(n})w(ng)w(ng)w(ng) x I[ng +n : Cyyiny () = C]
CcA® on) ={z}A{u},0n]={v,g}
[7‘n'2=@,6ng=®

X H (I[nf : supp(nj) = C] x I[n{ : supp(n{) = C°])

i=1,2

)

To go to the bottom expression one splits n; = n} + n! for i = 1,2 where n} is supported on C and
n{ is supported on C°. By virtue of their supports being disjoint we have the factorization of weights
w(n; + ny) = w(nj)w(ny). Since C = Cy, 1n,(7) = Cpyyny(z) we know that nj + n, vanishes on the
boundary of C. Thus the flux configuration nj must have z and u as sources while nf must have v and

g as sources (in other words n’j and n, don’t need to work together to allow n; to satisfy its source condition.
1 2

Carrying out the summation over nf and n% gives

> Y ZE (o) wnh)w(ng) x I[nf +nj : Cyyiny(x) = C] [ | (Inf : supp(nf) < CJ)
CcA® on) ={z}A{u} i=1,2
ony,=

= > Y, (Owewny)wny)l[ng +nh : Coy iy (z) = C]
CcA® on) ={z}A{u}
on,=g

= Z <UU>(C ’ ’
on', ={z}A{u} 1
ony, =

(z))° w(ny)w(ny)

(4.47)

The first equality above has yet to be justified, we will do so below. The last expression is the first term on
the RHS of ([@Z3). If we can just justify the first equality then we will get the second term on the RHS of
([#4Z3) by choosing the other indicator function at the bottom of ([48).

We now justify the first equality of (£47)). Let D be a set of bonds and let f be a function on flux
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configurations that does not depend on the fluxes assigned to bonds in D¢. Then one has:

ZDe Zw(nl)f(nl) x I[ny : supp(ny) = D]

= Z w(ni)w(nz)f(n1) x I[ny : supp(ny) = D] x I[n; : supp(n;) = D]
= Z w(ny +ng) f(n1 +nz) x I[ng : supp(ny) = D] x I[n; : supp(ny) = D]

> wm)f(n).

Since I[n} : dny = {z,u}]| xI[n] +nj : Cpy 4y (z) = CJ does not depend on bonds outside of C this justifies
the first equality in (£41). We have now finished the proof of ([E43]).

The proof of [Z4) is nearly the same, we again starts with (46 but this time we condition on
Ch,+ns(9). To prove [@A5) one starts with (Z39) and then conditions on Cy, +n,(9). O

Lemma 4.6. Let xz,y,u,v € A with v =1y and v = uw. Then one has:

Z w(nl)w(n2)<axau>(c

ony={v,g}
on2={y,g}

<oy Z w(nl)w(n2)<0v>(cn1+n2(m))c x I[ng +nz : x «» g]
ony={z}A{u}
onz=

nying(@)° I[n; +ny : x < g

(4.48)

Proof: If y = x then the inequality is trivial since the first expression vanishes - the source constraints
of ny conflicts with the indicator function disallowing x to be connected to g. For what follows we assume

that =z = y.

Now if u = y then again then again the first expression vanishes. If u = y then ny must connect v and

e = 0.
nq+ng (g))
Thus in what follows we work under the assumptions that v = v, x = y. With these assumptions in place

¢ which means one has that (Cy, +n,(g)) contains all the bonds touching u, thus <amau>(c

we first prove the following claim:

7Z7? Z w(ng)w(ng) x I[ng + ng : x «» g] x [[n; + ny : u« g

ony={v,g}
onz={u,y,g} A{z}

=72 Z w(nl)w(n2)<azau>(c
ony={v,g}
an2={yvg}

(4.49)
(@)° % I[n; +ny : x < g

nj +ng

We start with the expression on the top and condition on the cluster Cy, 4n,(g) to get the expression on
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the bottom. We have that

Z w(ny)w(nz) x I[ng + nz :x «» g] x I[ng + nz2 :u < g] x I[ng + 02 : Cn, 10, () = CJ

CcA®) ony={v,g}
onz={u,y,g}A{z}

= Z Z w(n])w(ny)w(ny)wng) x I[n] +nh : x «» g] x [[n] + nj : u < g
CcA®  on)={v,g},0n]=g
ony={y,g},ony={z}A{u}

—

x I[n} +nj : Cyy 4ny(9) = CJ X (I[n{ : supp(nj) < C] x I[n{ : supp(n{) = C°])

i=1,2
As in Lemma we have split each of the current configurations n; and ns into two pieces - one living on
the cluster we’re conditioning on and one living on that cluster’s complement. Since we force n) and n/, to
have Cp; yny (z) = C we have that the n; are supported on a set of bonds smaller than C and cannot touch
any site that is also visited by a bond in C¢. Thus n} will have {v, g} as sources . The restriction that both
x and g are not connected to g by n; + ny means that n% will have {z}A{u} as its sources instead of nj.

We now carry out the sum over the n{ and then proceed to undo the conditioning:

Z Z lw(n’l)w(n’z) x 1[0} +nh : x «» g] x I[n) + b : 1 g] x Zge x (0,00)ce
CcA(2) E/’n/lz{v,g}
ny={y.g}

% [0} + 1 : Cry my (8) = C] x 1[0} : supp(n}) € C] x I[nf : supp(nf) < C]

= Z Z lw(n’l)w(n’z) x I[n} + 1% :x «» g]
CcA® on ={v,g}
l’l'2={y,g}

< T} + m < u o g] x (0x0w)cr 10 + 1 < Crg yny (8) = CJ

= Z lw(nl)w(n;) x I[n] +n):x «» g] x I[[n] +nb:u gl x <JXUU>(Cn/1+n/2 (g))cl
ony ={v,g}
n,={y,9}

— Z w(n})w(ny) x I[n] +nj : x «» g| x <Jxau>(cn,1+n,2(g))c
ony={v,g}
n,={y,g}
For the first equality above we used the two factors of Zce to remove the support condition on nj and na’
- for more details look at the proof of Lemma [£.5] and note that the value of the product of functions:

I[n} +n3 : x g x I[n] +nj 1 u e g] x (oxowyce x 1[0} + 103 : Cyy iy (8) = C]

is in fact independent of flux numbers of bonds in C¢ (the last indicator function prevents flux numbers in
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C¢ from influencing the connectivity of = and u to g).

To see how we dropped the indicator function in the last equality note that the functions I[nj + nj :

x «» g| x I[n] + n : u «+ g| are actually completely extraneous if z and w are distinct - in this case

(o20u)(C,, o (9))E vanishes if x or u are connected to g. The indicator function is not extraneous if z = u
nf +nfy

but in this case we only need one of them. Relabeling the variables n} as n; proves (£4J).

By proceeding in almost exactly the same way as above but this time conditioning on Cy, 1n, () one

can prove the follow claim:

Z w(ng)w(ng) x I[n; + ng : x «» g] x I[[ng + ny : u <« g

ony={v,g}
onz={u,y,g} A{z}

= wm)wme)oy) (0, 0y 0) (T (Cay ) ¥ 01+ 02 x < ]
ony={z}A{u}
onz=

(4.50)

Combining (£49), (@50), and the observation that <Uy>(c < {oy) by Griffiths IT will finish the

proof of the lemma.

ny+ng (a:))L

O

The random current representation in its basic form is particular to classical Ising ferromagnets. In
order to prove the desired partial differential inequalities for ¢* ferromagnets one must use Griffiths-Simon

approximation.

Recall that in the Griffiths-Simons approximation one replaces each ¢* spin ¢, on the lattice A with a
block of N microscopic classical Ising spins o(,,.) - the spin ¢, is well approximated (in the N' — co limit)
by the scaled average Oy () = cn 22;1 O(z,0)- One then applies the random current representation to the
classical Ising ferromagnetic system {0, o)} (z,a)en x[n] tO try to get the necessary inequalities for correlation

functions of the block spin variables 6 (¢.) which are uniform in N.

In doing this one implements connectivity conditions on current configurations that involve blocks in
addition to the previously mentioned conditions involving individual sites. The following versions of the

switching lemma are useful tools for working with such block connectivity conditions.
First we give some more notation: given a collection of lattice sites B and a single lattice site z one says

that the event B <> z occurs under a current configuration n if there exists an € B such that z < z occurs

with n.

Lemma 4.7. Let B be a collection lattice sites and let z be a site not contained in B. Let f be a function

on current configurations that is decreasing in each flux number. Then one has
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Z w(ng)w(ng)f(ng + nz) x Ilng +nz: B < 2]

ony =
onzx=

< Z Ty Z w(ny)w(ngz) f(ny + na)

z€B ony={z,z}
c
yeB onz={y}A{z}

Note that above we allow y or z to be the ghost site g.

Proof. This is Lemma 4.1 in [7]. O

4.6.2 Random Walk Expansion

The random walk expansion represents correlation functions and their truncated counterparts as sums over

sequences of walks on the enhanced lattice A.

A walk v is a finite non-empty sequence of oriented bonds: v = ((ug,u1),..., (ug,ug+1)) where the
(u2j,u2j41) are ordered pairs that represent oriented bonds (they are non-diagonal elements of Ax A We
will call these oriented bonds “steps”. It is required that consecutive steps have common endpoints: if

(u2j,u2j41), (u2j+2,uzj4+3) are consecutive steps in a walk w then one must have ugj+1 = ugjyo.

A backbone w is a sequence of walks w = (79, -+ ,7,) . The boundary of a backbone w is denoted dw
and is defined to be those sites that the backbone visits an odd number of times during its sequence of
walks. There is a concatenation operating defined on backbones, w; o ws is a new sequence of walks formed

by concatenating the sequences w; and ws.

The symbol w will be used to represent both walks and backbones. A single walk can be viewed as a

backbone with a one element sequence.

The random walk expansion is given by a sum over backbones, each backbone corresponding to the col-
lective contribution of a group of current configurations n. Let B be a non-empty subset of A with |B| even.
If n is a current configuration with ¢n = B then one must be able to find a collection of disjoint paths of
odd flux bonds which connect the the elements of B in pairs. In [8], [7] one is given a special consistent way
to pick out such a collection of paths for every current configuration n with dn = B and then order/orient

these paths to give rise to a backbone w with dw = B.

This is done via defining a map Qp : {n| dn = B} — {w|ow = B}. We now give the definition for this
map given in [7]. First choose a total ordering on sites of A (instead of describing sites as smaller or larger
we’ll describe them as earlier or later). The method of assigning backbones is not unique because of this

initial choice of ordering. Extend this ordering to A by making the ghost site ¢ the earliest site. Now for
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a fixed current figuration dn = B carry out the following algorithm to generate a sequence of walks. This

algorithm will also generate a collection of non-oriented bonds (called “cancelled” bonds) w(n).

e The first step of this first walk w; starts with the earliest site of B\{g} which we denote u;. The first
step ends on the earliest site among those sites v with ng,, ,; odd. The bond {u;,us} that is traversed
in this step is added to the set of cancelled bonds w(n), along with all bonds {u;, 2z} with z earlier than

ug. The walk stops if it reaches any site in B or the ghost site

e Every subsequent step (u;, u;11) of wy (if the walk hasn’t terminated) is chosen the same way: w;41 is
the earliest among those sites v for which: (i) ng,, ) is odd, and (ii) {u;,v} is not yet among the set
of bonds that have been canceled up to now. The bond {u;,u;11} chosen for the walk is added to the
collection of cancelled bonds, along with all bonds {u;, z} with z earlier than u;;1 in the site ordering.

This process continues until w; reaches a site in B or the ghost site g.

e Once the walks wr,...w; have been generated one starts the walk w;;1 from the earliest site in B\{g}
that has not been visited by any previous walk. Every subsequent step (u;, u;41) of w;11 is chosen as
above (proceeding to the earliest vertex connected via a bond with odd flux and avoiding any bond
cancelled by previous steps of this walk or earlier walks). One continues to update the set of cancelled
bonds as before. w;,; terminates when it reaches a site in B that has not been visited by any walk or

the ghost site g.

e This process is continued until the set B has been exhausted, one will be left with a sequence of walks

(w1, wa,...,wg) with dw = B.

We also adopt the following convention: if én = ¢J then Qg(n) = ¢F, that is all sourceless current

configurations are assigned to the empty backbone.

The above algorithm defines the desired map Qp(-) for every set B < A with |B| even. This map is then

used to reorganize the sum over current configurations. For a backbone w define

plw) =21 Z w(n) x I[Qs,(n) = w].

n such that on=0w

It then immediately follows that one has the following representation for correlation functions. For any
Ac A

2 p(w) if |A] is even
A ow=A
ot = 4.51
@ > plw) if|A] isodd . (451)
ow=Au{g}

We sometimes abuse notation and will sometimes use the notation w to represent the set of non-oriented

bonds traversed by that backbone.

We now give more details (taken from [§]) on the properties of the weights of the random walk represen-

tation.

242



We call a backbone w consistent if there exists a current configuration n with Qs (n) = w. Note that if
w is not consistent then p(w) = 0. In particular, w is consistent if and only if the current configuration n
defined by n;, = 1[b € w] satisfies Qppn(n) = w.
We also remark that the set of cancelled bonds @w(n) for a given current configuration n is determined entirely
by n’s backbone, that is by Qon(n). In other words for every consistent backbone w there exists a unique @
such that for all n with Qs,(n) = w one has w(n) = @.
We note that the definition of consistency used here, along with the definitions of §2,(e), p(e), and @ are all

dependent on the initial choice of ordering on A.

With this in mind we now give following lemma from [§].

Lemma 4.8. Let w be a consistent backbone and let w be its associated set of cancelled bonds @. Then for

any current configurations n one has Qan(dn) = w if and only if the following three conditions are all met.
(a) n is odd on all of the bonds traversed by w.

(b) n is even on all of the bonds in &\w (or else the backbone n would have traversed them in place of some

bond in w).

(¢) n restricted to the bonds in w® is sourceless.

Proof: Clear from the definition of the backbone map and the definition of consistency. O

As a corollary one has:

Corollary 4.3. One has the following representation for backbone weights:

p(w) =I] w is consistent | (H tanh(Jb)> <H COSh(Jb)) <Z§>

bew bew

(4.52)
- 1
=I[ w is consistent ] (H tanh(Jb)> X = ( Z w(n) x I[n : ny is even for all b e d}])
bew on=J
Proof:

Suppose that w is consistent. Then when summing over all n satisfying the conditions of Lemma EL8] the
sum over {ng},ei factors into sums over the odd flux numbers of each of the bonds in w, sums over even
flux numbers for each of the bonds in &\w, and a sum over sourceless current configurations living on /1(2)\cb.
This, along with the fact that ) L = cosh(t) and 3}, oqq o7 = sinh(t) tells us that

n=>0 even n!

p(w) = % x I[ w is consistent | (n sinh(jb)> H cosh(Jp) < Z w(n) x I[n : supp(n) < d}‘]) )

bew be@\w on=J

243



This establishes the first equality of the lemma, the second equality follows immediately. ]

If C is a set of bonds we use the notation pc(-) to denote the modified normalized weighting that comes

from setting .J, = 0 for b ¢ C. In particular

pc(w) = Zo Z w(n) x I[n : supp(n) € C]J.

n such that dn=0w

Observe that the formula (LX) holds with expectations (~)c and weights given by pc(-).

The following lemma gives some useful properties of these backbone weights:

Lemma 4.9. (a) Let wy and wy be two backbones such that wy o we is consistent. Then one has

p(wi owz) = p(wi)pas(w2). (4.53)

(b) Suppose w is a backbone that does not traverse any bond within A. Then one has

p(w) < pac(w). (4.54)

Proof:
A larger list of properties of the backbone weights are proved in Proposition 4.4 of [6].

We first give the proof of statement (a). Since the backbone wy ows is consistent one has that (i) wy and wsy
are each consistent by themselves and (ii) no step of wy uses a step taken or canceled by w; -i.e. wonNwW; = .
Now note that n satifies Qan(n) if and only if n = ny + ny with supp(n;) € Wi, supp(nz) = w;° and

Qon, (n;) = w; for ¢ = 1,2. With this observation we can now condition on @;:

plwy ows) = % Z w(n) x I[n: Qap(n) = wy ows

n=0(w1ows)

1
= D1 wm) x Ing : Qa, (n1) = wi] D1 w(ng) x I[ng : Quu, (n2) = ws]
ong=0w1 ong=0ws
supp(ni)<Sor supp(nz)Sof

Now, on account of Lemma .8 we have
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! w(ng) x I[ng : Qa,, (n1) = wi]

onq=0w1
supp(ni)S@1

1 1
=7 X ) w(ng) x I[ng + 0} 1 Qopy 4 (01 + 1)) = wi]
o5

ony=dw, on) =
supp(n1)Sd1, supp(n})Sof

L o).

=P
Z@f

On the other hand

U)(Ilg) X I[l’l2 : Q@wz (Il2) = w2] = Zg_,{ X p@; (LUQ)

5112 =6w2
supp(nz) Sy

This proves statement (a). We now give the proof of statement (b). Fix a set of bonds A and suppose

that w is a backbone with w n A = ¢#. By Corollary one has:

on=g

bew

: . . 1 . - .
p(w) < I[ w is consistent | <H tanh(Jb)> X > ( Z w(n) x I[n : ny is even for all be & N A]>

= I[ w is consistent | <H tanh(Jb)> ( H cosh(Jb)> X % Z w(n)
on=

bew bewnAc
supp(n)S@ VA
= I[ w is consistent | Htanh(jb) H cosh(Jp) | x Zaroa
bew bewnAc Z

The first inequality comes from the fact that I[n : n; is even for all b € @] < I[n : ny is even for all b €
@ N A°]. Now by arguments identical to those used in Lemma L8 and Corollary [£3] one has

I[ w is consistent | (H tanh(Jb)> ( H cosh(Jb)>

bew bewnAc

1
PAc (UJ) - ZAC

X ( Z w(n) x I[n : supp(n) € @°] x I[n : supp(n) < AC]>

on=_f
I[ w is consistent | <Htanh(]b)> ( H COSh(Jb)> X (ZQZLZCAL)

bew bewnAc

Therefore one has
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ZAce ZseoA
plw) < — X = pac(w)

wenAc

Z c~e Z c
< AU(Acni©) % A

Z(Acnie)

Statement (b) will follows if the prefactor in the bottom line above is less than 1, this fact follows from
applying Lemma [£.J0] below with the choice B = A¢ n ©°.

O
Lemma 4.10. Let A and B be disjoint sets of bonds. Then
ZAUB < Z
ZB ZAC
Proof:
This fact follows from the observation that
ZAauB - - Z
A <exp Z J(2,y} 020y > < <exp Z (2,9} 020y > =5
B {z.y}eA B {z.y}eA A B
For the middle inequality note that by Griffiths II one has the following for any D < A:
(ePyp < (o)A,
The middle inequality then follows by expanding both exponentials. O

The notation 2 will represent a sum over all backbones consisting of a single walk starting at x and
wr—yY
terminating at y. For example, if x precedes y in the ordering we have imposed on the lattice then one has:

@)= T o)+ N plwn o)
=

We note that if one is taking a modified expectation where all h-bonds have been suppressed then the

second sum above can be dropped.

4.6.3 Derivation of the Partial Differential Inequality

We now specialize to our model of interest. Let ¢ > 0 and b € R be fixed for the remainder of this section
and the section .64l For n € N let M, (3, h) be defined as in ([£35). We will establish (I1]) for M, by
approximating the (A,, marginal of the) ¢* measure dvy, [g,b, 3, h] with the Griffiths-Simons approximation

- that is via measures d,u%" as given in Theorem (41
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The measures d,u%n correspond to classical Ising ferromagnets on a lattice A,, x [N]. We will apply the
Random Current Representation to this system keeping both n and N fixed and prove analagous correlation
inequalities for block spins Oy (¢.) (defined as in 4 with out fixed values of g, b, and N). These inequali-
ties will be uniform in n and N. In what follows below we set A = A,, x [N] for fixed n and N, and A = Au{g}.

The bond parameters for bonds in A(?) are as follows:

_ BC%\,J{QW} ifex=y
Ji(@,0),(y,0) = p fomy
N _

T{(a,a),g) = N

For = € A, we denote the corresponding block within A as B,, that is B, = {(z,«)})_,. With these

definitions in hand we now mention a corollary of Lemma [£.4}

Corollary 4.4. If f is a function on current configurations which is decreasing in each flux number, then

Z w(ng)w(ng) x f(ng +ng) x I[ng +nz : By « g]

ony =
onz=
N
< Z enh Z w(ny)w(ng) x f(ng + ny)
a=1 on1={(v,a),g}

Gngz

N
+ A xB Y D Ty >, w(m)w(ng) x f(ng +np)

yeA, \{v} o=1 ony={(v,a),g}
on2={(y,9),9}

Proof: The result follows from applying Lemma [£7] with B = B,, and z = g. The sum has been split into

two pieces corresponding to the site outside of B, being the ghost site or a normal lattice site. .

For many quantities given below we will suppress the dependence of various quantities on n and N. In
particular the expectations (e) represents expectations over the approximating system {J(x,a)}(%a)e An x[N]
with measure dp%n. We will also use the function 6y defined in Theorem [£4] using the desired values of g,
b, and N.

We will establish a partial differential inequality for the quantity

M, n = {On(d0))

First note that one has:
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N
M, N =cn Z (0(0,0))
a=1

N
=CN Z Z_1 Z U}(Il]_)
a=1 _é’nl:{(O,a),g} (455)
N
ey Y20 Y wim)ums)u(ng)
a=1 on1={(0,a),g}
onz=
ong=

In the last line two duplicate current configurations were inserted. For each (0, «) the sum over current
configurations ny, ny, ng will be split into three different pieces. This decomposition will depend on the
RWR mentioned earlier. Note that the Random Walk Representation depends on an initial choice of an
order on the sites of A,, x [N]. For each a € [1,..., N] we will use a different ordering on lattice sites before
applying the RWR, in particular we will enforce that (0,a) be the earliest site. This will not cause any
problems since the RWR is always manipulated for just one value of a of the time. For now we will write

0% (e) to denote the corresponding backbone maps and p®(e) for the corresponding backbone weights.

The decomposition for the sum in the last line of (L350 is determined by three different cases for the

answer to the following question:

What is the first block B, visited by Q‘{X(O ) g}(nl) that is also connected to g via the current configuration

ns + ng (i.e. B, © g under ny + ng)?
1. There is no block B, such that Q({X(o ) g}(nl) visits B, and B, < g under ns + ns.

2. The first block visited by Q?(o )9} (n1) that is connected to g via the current configuration ny + ng is
By.

3. The first block visited by Q?(o ) g}(ﬂ1) that is connected to g via the current configuration ns + ng is
some B, with B, = By.

Corresponding to these different cases we have the following decomposition:

N N
Mn,N =T+ Ry + Z Z Z Z R{a,(u7§)7(vﬁ)} (4.56)

a=1veA, uel, §,y=1
v=0 u=v

The contribution from the first case is given by:

N
) Qs
T =cn Z3 w(ny)w(ng)w(ng) x I {(0"’. )
;1 8n1=%,a),g} with B, < g via na + ng

ong=0dng=

) q}(nl) doesn’t visit any B,
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The contribution from the second case is:

N
Ry =cn Z zZ3 Z w(ny)w(ng)w(ng) x I[ng + ng : By < ¢]
a=1 on1={(0,0),9}
onz=
ong=

The third case is broken down further by summing over the first step ((u, d), (v,7)) of Q0.0),¢) (n1) Which
has endpoint in B,. For any a € [N], and {(u,6), (v,7)} € A with v = 0 and u = v we define

R, (u.8),(v,7) —CNZB< > w(ng)w(ng)w(ns)

on1={(0,a),g}
onz, dng=

I B, is the first block connected to g via na + ng
X
that is visited by Qf, ) g}(nl)

[e3

I ((u,d), (v,7)) is the first bond in
X ni :
! {(0,0) 41 (m1) with an endpoint in B,

><I[n2+n3:Bo«+g])

We now bound each of these contributions.

Lemma 4.11. For any n, N € N one has the bound:

T<h Y, On(d0) On(6:)"

€A,

Proof:
One starts by classifying the current configurations ny summed over in 7' by the last site (z,0) € A that

Q‘{"(O )9} visited before reaching the ghost site g.

One can then write T' = Z T(z,5) where
(z,0)eA

N . .
- Qe n;) doesn’t visit any B,
Tas =on 2, 2 3( Y, wnn)wnz)w(ng) x 1 l {(O’a’.’t"}}l(Bl)H -
a=1 ony={(0,a),9} W1 v g Vvianz + 1ng

onz=0ng=g

l (w,0) is the last site visited by Q¢(g,q),}(n1) ] >
xI|ny: e

before reaching g

Note that that for any current configuration n; satisfying the above indicator functions and source con-
straints one has that ny (;s),4 is odd. In particular this is the only constraint on ny (¢, s)4- That is

to say that if one modified n; by changing n ((,s),4 to another odd number then the resulting current
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configuration would again satisfy the same indicator functions and source constraints so this flux number

can be summed over all odd non-negative integers independently of the other flux numbers.

We now do a change of variable in the sum to flip this constraint, that is we change n; — n;’ where
ny, = nip for b = {(z,6),9)} and n}, = nyp — 1 for b = {(,6),9)}. Now we have the constraint that
n’l)b be even, however just as before this is the only constraint and the sum over this flux number will be

independent of the others.

This change of variable will have three consequences for our expression for T\, 5. First, the sources
constraint for the current configurations nj will now be changed to {(0, @)}A{(z,d)}. Second, the backbone
Q0.0)10{(,6)} (n} will be determined by truncated the step ((z, d), g) from the backbone of the corresponding
n; - Q({X(o o) g}(nl (here we use the fact that (0,«) is the earliest site of A - this guarantees that if the
backbone is non-empty (0, ) remains the starting point of the backbone). Thus we can keep the desired

non-intersection constraint for the new backbone. Third we will get an overall factor of

(jb)m,b

nl,b!

n1,b odd

j ”'1,1;
> S

ny 4
’ 1,b
nj , even )

tanh (jb) =

with b = {(z,9), g} accompanying the weights w(n}). With these observations, and dropping the prime

from nj we get the following expression for T{, 4):

N
Ta) = tanh (Jye,0).01) X N D, ZS(
a=1 9n1:{(0,a)}A{(W:5)}

Onz=70dng=

w(ny)w(nz)w(ng)
x I[ny : 0y ((x,5),¢) 15 even ]

o Qf{"(o’a)m{(wﬁ)}(nl) doesn’t visit any B,
with B, <> g via na + ng

x I[ng + n3 : By wg])
The last indicator function comes from dealing with the case that (z,d) = (0, «) - in this case the back-
bone Q?((J, }A{(2,0)} (n1) is empty so the first indicator function is vacuous but we still inherit a connectivity

restriction from the expression with the earlier flux constraint.

We now loosen the constraints of the two indicator functions to get:
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N
Tios) < tanh (Ji(a.5).0)) X N ) Z_3<
a=1 6n1f{(0,a)}A{(fCa5)}

ong=0nz=

w(ng)w(ng)w(ng)

I Q0,0012((= 6)}(n1) doesn’t visit any site (v,7)
% : :
with (v,7) <> g via ny + ng

x I[ng + ng : (0,a)«->g]>

N
= tanh (J{(2.5).9)) X N D, ZS< > w(n)w(ng)w(ng)

a=1 on1={(0,0),g}
ona=0ng=g

x1 [Q?(O,a)}A{(m,é)}(nl) N Cngzin,a(g) = @] x I[nz +n3: (0,a) « g])

N
= tanh (j{(m,é),g}) X CN Z Z_2< Z w(ng)w(ng) x I[ng + nz : (0,a) « g]

a=1 Onga=0ng=
x Y. P@Iw N Cnying(9) = 2] )
w:(0,a)—(z,8)

In going to second inequality it is important to remember that the bond cluster Cp, n,(g) contains
dangling bonds.

For any fixed na 4+ ng one can use the inequality (L54) to get that

Z pa(w)l [w N Cn2+n3 (g) = @] < Z p?cn2+n3(g))c(w)1 [w N an-‘rna (g) = @]

w:(0,a)—(z,8) w:(0,a)—(z,8)

DI o)

w:(0,a)—(z,8)

:<O‘(07a)0—(w75)>(cn2+n3 (g))c ’

Note that in the last equality we didn’t have to sum over walks traveling to the ghost since we have

suppressed all bonds to the ghost site g. Inserting this into the earlier bound for T, 5y one gets
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T(a,5) <tanh (i 5),63)

X cN Z Z_2< Z w(nz)w(ns)
a=1

onz=0ng=yg

x I[nz +n3: (0,a) « g] x {0(0,a) x,5)>(cn2+n3(g))°>

N
< cenvh x ey Z <U(O,a)a U(m,6)>T'

a=1

Above we used that tanh(Jy(, s ¢) = tanh(cyh) < exh. Inserting this into the expression for T' gives

> Twe)

(z,6)eA
N
Z > <0(o,a>70(x,a>>T
a=1(z,8)e

=h Z On( ¢0 0N (da )T

€A,

Lemma 4.12.
Ry < thL,N + B||J||L1MS,N

Proof: First observe that the summation over o and ny is independent of the summation over ny and ng

Thus one has

WNZ 2 Z w(ngz)w(ng) x Ing +ns : By < g]

onz=g
ong=

Note that by applying Lemma [ with respect to the sum over ny and ng one gets

Ry =M

N
Z w(ngz)w(ng) + Z C?\rﬁj{o,y}z Z w(ng)w(ng)

N
RO gZ\i’n,]\/vZ_2 Z N X h
5=10onz2={(0,a),9}

a=1 ona={(0,a),g} yeAn,y=0
nzy=g nz={(y,9),9}
= h x Mn,N + ﬁ X Mn,N < Z J{O,y}<9N(¢y)>)1
yeN,,,y=0

The result now follows by using translation invariance: the original interaction J. on A, was trans-

lation invariant which means the approximating classical ising measure on A = A, x [N] is invariant
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under translation induced transformations on the set of blocks. In particular for all y € A, one h

On(y)) = <On(¢0)) = Mn N

Lemma 4.13.

N N
DI Y Rlawd). )
a=1v n 6,y=1 (4

> Tyl (60), On (6u)0n (60))"

< BMyn (h+ My x| |21 5)
{u,v}eAg)

Proof: This proof is quite involved and combines methods used for bounding the previous two terms.

refer the reader to [7].
Putting the three bounds together gives us the following theorem:

Proposition 4.2. For any n, N € N one has

My <h Y On(60),0n(62))" + hMZ v + BI|J|| L2 My
xEA,
+ BMy N (h+ BMy N ||| L) Z Ty ON (00), O (60)ON (00))"
{u,v}EAg)
Proof : The statement follows immediately from ([£56]), Lemma TTl Lemma T2 and Lemma ET3]

We close this subsection with finishing the proof of Theorem LTIl

Proof of Theorem [4.17] We note that by Theorem 4] one has the following in the N — oo limit:

Mn,N — M,
oM,
Z On (Do), On(62))" —> Z <¢07¢x>Z[Amg,b7ﬁ7h] =
TEA, zeN,
Z J{u,v}<0N(¢0)a9N(¢u)9N(¢v)> - Z J{u,v}<¢0a¢u¢v>#[1\mg,b’ﬁ,h] = ﬁ
{u,v}eAg‘))

{u,v}eAg)

Combining the above with Proposition immediately gives 171

4.6.4 Consequences of the Partial Differential Inequality

as
0.

57)

We
0.

In this subsection we explain how one goes from Theorem [£.11] to Theorem .10l The first lemma alows one

to trade factors of h for factors of M,,

Lemma 4.14. Define
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S[R dt t2e—9t*+bt?

N dt e

Buer = (|J]:5?)

Let € > 0. Then for any h € [O, %], any n € N one has

W< € X Bur
= tanh(e) x || J]| g1

Proof: This is Lemma 5.2 in [7]. O

|

Proposition 4.3. For all Ag > 0, A}, > 0 there exist constants By and B such that for all 5 € [0, Ag] and
for all h € [0, A] one has

M,
+ By M3 + By M? aaﬁ

Proof: This is a consequence of Theorem [ 11] and an application of Lemma ET4] with ¢ = A, S. One can

oM,
M, <h
oh

then choose

ApS x Bur
— AglJ]l ;1
! [tanh(AhS) x ||J|L1] + Apl s,
ApS x Bur 2
By =A AT -
=4 gy 27| A8
This proves the proposition. ]
Lemma 4.15. For any n € N one has
oM, oM,
< Mn
S < Ml

Proof:
By the GHS inequality we have that {¢q, ¢u¢v>£n < 0 for any u,v € A,,. This is equivalent to

<¢O¢u¢v>An - <¢O>An<¢u¢v>An < <¢)u>1\71 [<¢O¢v>An - <¢O>An<¢v>An]
+{Pu)a, [(bodua, —<P0)r,{Pu)a,]
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We then have

oM, 1
B 2 u,%\n iuwy{Po, dudu)A,,
<%Mn Z J{u,v} < [<¢0¢'U>An - <¢O>A"<¢U>A”] + [<¢O¢H>An ; <¢0>An<¢“>/\"])
w,vEN,,
oM,
SMn| 2 ==

Lemma 4.16 ([6]). Let {M,(B3,h)}nen be a sequence of non-negative functions defined for (3,h) € [0,00) x
(0,00), increasing and differentiable in both B and h.

Suppose that:
1. M, (B,h) converge pointwise as n — oo for (B,h) € [0,00) x (0,0) to a function M(B,h).
2. M(B,h) can be continuously extended to [0,00) x [0,00). We use M to denote this extension.

oM, oM
oh oh

3. M(B,h) is differentiable in h for (8,h) € [0,0) x (0,00) and on this set one has

4. There exists § € (0,00) such that for any Ag > 0 one can find a1,as = 0 and a non-negative continuous

function of a single variable f satisfying the following conditions

(a)
lim f(z)=0

z—0+t

v b @)
J dr —= < w

0 xr

such that for any (B8,h) € [0,Ag) x (0,1) the functions {M,(B,h)} all satisfy the following partial

differential inequalities:

= oM,

M, < h— + M, f(M,) + a1 M8 oM, 083 (4.58)
oM, _0M,

Under all the above conditions one has the following:

If there exists some By = 0 such that
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then

and for any B > By

M(6,0) := lim M(B,h) >0

Proof: See Lemmas 5.1 and 4.1 of [6]. .

The essential results needed for proving Theorem [£.10] have all been stated so we now finish the proof of

that theorem to finish the section.

Proof of Theorem We now apply Lemma by setting M, (3,h) = M,(B,h) and setting
M(B,h) = M(B,h) for (8,h) € [0,00) x (0,00). What remains is checking that these choices satisfy the
conditions of Lemma [LT6l Conditions (1) and (2) are immediate. From Theorem [.9 we have the necessary
differentiability of M (3, h). Convergence of the associated derivatives is a consequence of general properties

of concave functions.

We note that by Proposition and Lemma we have that condition (4) holds with § = 2 and
f(x) = Bax?. We then have that the consequences of Lemma [ZI6] hold for M (83, h).

M(Bo, h
The proof of 10 is complete if we show condition (34 implies that hm+ # = o0. This follows
h—0
from Lemma in the appendix. .

4.7 Superstable Gibbs Measures

4.7.1 Overview of Section

In this section we will (i) establish full control over the infinite volume limits of the measures described in
Theorem and to (ii) show that the presence of spontaneous magnetization implies the presence of long
range order.

The key for establishing infinite volume limits is Lemma [.64]- this lemma establishes strong estimates on
the finite volume marginals of the measures v[A;, 3, g, b, h] that are uniform in j. This gives us compactness
(tightness) that allows us to prove the existence of subsequential limits. However in the case where we don’t
have 0 boundary conditions we can apply Griffiths Second inequality and use monotonicity of moments with
respect to the volume to drop the need to take subsequences.

With regards to item (ii) the intuition between the equivalence of long range order and spontaneous

magnetization is that they both signal the existence of multiple “phases” for our Ising models - more precisely
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the existence of multiple (translation invariant) Gibbs measures. A clear reference for the discussion that
follows is [32].
Suppose that we fix some choice g,b, 8 for which Mt (g,b, 8) > 0, that is is 3 > By(g,b). Then there

are at least two translation invariant Gibbs measures, one given by

(o)y = hlff)l+<°>”““g’b’5’h]

and the other by
()0 = {(®)u[r.g.0,5.0]

The first measure has a positive first moment and the second, by symmetry, having a zero first moment.
Moreover if one defines (e)_ via the pushforward under a global spin flip of the measure {(e)_ it is

expected that .
(o = K- +<o+ 1. (4.60)

Since even moments are unchanged when flipping spins all the measures appearing in ([A60) have the

same even moments, in particular for all z € L

(Podz)0 = {(Podu)+- (4.61)

On the other hand applying Griffiths’ second inequality one has

<¢05¢3¢>£ = <¢0¢$>+7<¢0>i > 07

where we’ve used translation invariance.

Now the assumption of spontaneous magnetization means that <<z50>2+ > 0 so
inf <¢0¢z>0 = inf <¢O¢z>+ > 0.
zell zell

Looking back we see that establishing ({.GI]) is sufficient to show that spontaneous magnetization implies
long range order.

The statement ([60) is of course stronger than (LGI]). In particular one expects that above the critical
value of /3 all translation invariant Gibbs measures are given by convex combinations of the measures (o)
and {e)_. This says that while there are infinitely many Gibbs measures there are only two pure ones.

The first (partial) proof of this statement was given by Lebowitz in [43] for classical Ising ferromagnets.
The key idea there is to use a variational principle to show the equality of spin-spin correlations across all

Gibbs measures - if p(f) denotes the free energy per unit volume (the pressure) then one expects

dp
B > T (@) bod)
zell
x=0
which should hold for all Gibbs measures for the given values of ¢,b, 8, h. See [32] for more discussion on

the variational principle - we remark that it is not completely trivial to show that derivatives of the pressure

correspond to expectation values for Gibbs measures but for the classical Ising model this a well established
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result.

Combining the above variational argument with a clever correlation inequality [43] inductively shows that
n-th order moments of all Gibbs measures must all agree if all the lower order moments agree. However this
approach does not work for all 3 > (s - the variational principle depends on the differentiability of p(83)
with respect to 5. This is differentiability is expected to hold but a direct proof of this is out of the reach
of current methods. However p(f) is convex in [ so this differentiabilty can fail at most countably many
values of 8. We remark that for the classical nearest neighbor Ising ferromagnet a full characterization of
translation invariant Gibbs measures for 5 > £y was proved more recently in [I4].

We need an analog of Lebowitz’s result for our ¢* ferromagnets. Analogs of the results of [43] (in
particular the necessary correlational inequalities) were transferred to this setting in [44]. A variational
principle in this setting (which needs a corresponding notion of Gibbs measures) is much harder than the
case of the classical Ising model. However one can formulate these ideas within the setting of superstable
Gibbs measures for spin systems, introduced in [45]. A variational principle in this setting was in fact proved
in [42]. One then has that for almost every 5 > [, there are only two pure Gibbs states corresponding to
the + and — measures. In particular for almost every § one has ([@GI]) and so for such § the presence of
long range order implies spontaneous magetization. By a simple argument using Griffiths Second inequality
this implication between long range order and spontaneous magnetization holds for all 8 except for perhaps
B = Ba. However this is certainly sufficient for our purposes.

Below we go through the proof of the above mentioned result which is certainly not new - however we
are able to dramatically simplify many of the steps in the ultrametric setting and at the same time be more
explicit in our calculation. In particular we believe there is a mistake in the proof of the main superstablity
estimate in [45] - however this mistake disappears in the ultrametric setting. We also give a full presentation
here because the earlier exposition of the superstability estimates is spread across multiple papers in slightly
different settings ([45], [58], [59]). Additionally instead of trying to apply the more general variational

principle [42] we proceed along a more direct route to get exactly the one variational principle we need.

4.7.2 Preliminaries for Superstable Gibbs Measures

We now start studying the measures mentioned in Theorem FL§ in the context of Gibbs measures on (Rt B).
Before presenting the main material we give some notation for various o-algebras and define certain

modes of convergence for measures.

For a subset A € L we define B(A) to be the smallest sigma-algebra of sets that makes the collection of
projections {¢ > ¢, |x € A} measurable. We define B(A) to be those sets that depend on only finitely many
sites in A, that is they must be members of B(A) for some A € A.

Definition. Let j,, be a sequence of Borel probability measures on RY. We say p,, converges locally weakly
to a Borel probability measure 11 if for every I' € L the corresponding finite-dimensional marginals fip, v

converge in the topology of weak converge to ur.

Definition. Let pu,, be a sequence of Borel probability measures on RY. We say ., converges locally set-wise

to a Borel probability measure i if for every set B € B(LL) one has lim,, .o i, (B) = u(B).
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We remark that if p,, converges locally set-wise to p then p, also converge locally weakly to p (although
the converse may not hold).

When working with unbounded spin systems it is often necessary to impose a temperedness condition
on our space of field configurations so that the Gibbs interaction terms are well defined. For our model we
study Gibbs random fields supported on configurations of at most logarithmic growth. In what follows we

use a regularized logarithm function: log, (r) := max(log(r), 1).

We note that all of the analysis of this section takes place for arbitrary but fixed g > 0 and b e R.

Definition. Let s > 0. We define the following sets of field configurations:

X, :={SeR"||S,|* <slog (|z|)Vzel },

X, :={SeR" | There exists a finite set A(S) such that for any = ¢ A(S) one has |S,|*> < s%log, (|z])} .

Note that one has Xy = X. If a probability measure on (RY, B) is supported on X, then we call it a

tempered measure.

For any finite A we define the following energy function on configurations ¢, on R*:

Uor) = 3 (964 + 062 — hos) — 28 D) Jw— y)eud

TEN z,yeN
=y

We define an associated interaction energy function as follows. Let A € L and B < L, then we define:

W(palvs) = =B >, J(@—y)out,

€A, yeB

In cases where B is infinite we note that if ¢5 can be written as restrictions of field configurations in
X then W (¢ a|tp) is finite. This interaction energy satisfies the following relationship with the previously
mentioned energy functions - if Ay and A, are two disjoint finite sets then one has the following equality for

AL UA
any g, ua, € RHVA2

U(¢A1UA2) =U (¢A1) + U(¢A2) + W (¢A1| ¢A2)

A simple but essential estimate for this section is the following:

Lemma 4.17. For any compact K < (0,00) x [0,0) there exists a constant Oy such that for all (8,h) € K,
and all A € L one has:
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U(gn) = Y (%sbi — 01) (4.62)

zeA

Proof: Immediate from inspection of the definition of U(¢y). O

We define ¢4 A ¥p to be the element of RAYE defined via

Oz, fzeA

(pa n¥YB), = ,
Yy, ifyeB

We are now ready to define our Gibbsian specification, a family of measure kernels 7 g, (") : B x Rt —
[0,1]. For A€ B and ¢ € Rt we set:

Z(Alp)~t LA don Lo (P A ac)exp [=U(da) — W(dalthae)], if e Xy
0, if o ¢ Xoo

A B.h(Al) =
In the definition above we have defined Z(A|¢) to be a normalizing factor when ¢ € X, that is:

Z(A) = | dox exp[-U(0n) = W(oalon)] for e X,

It is not hard to check (see [32] for more details) that the family of measure kernels {ma g n}aer is
consistent for fixed § and h, that is if Ay < Ay then ma, g.n (7TA1”(3,}L(A|')‘¢) = Ta,8.n(AlY) for all Ae B. If
one restricts these measure kernels to X, then they become actual probability kernels.

If f is a B-measurable function on Rt we will write

(1) = | dma G f0)

We now give the core definition of this section:

Definition. A probability measure pu on (RY, B) is said to be a tempered Gibbs measure with respect to the
interaction U (B, h) if for all A € B we have:

J dp(p)ma,pn(Alp) = p(A) for all A € L (4.63)
RL

Note that a measure p is supported on X, automatically if it satisfies the consistency condition above.
Also note that because of ultrametricity the Gibbs consistency condition implies translation invariance. We
define G(8, h) to be the set of all Gibbs interactions with respect to the interaction U(S3, h).

4.7.3 Superstability Estimates and existence of Gibbs Measures

For I' ¢ A € L we denote the Radon-Nikodym derivative (with respect to Lebesgue measure) of the marginal
of mA(:|9) onto RY by pk (¢r|S). For S € Xy one has:
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1

PR(6r1S) = iy [ Ao esp [-U(00) = W (64]50)

The next lemma gives the core superstability estimate for our model following the ideas of [58] and [59]..

Lemma 4.18. Vg€ [0,0), Vb e R

VA[} > 0, VA, >0

36 > 0 such that

VB e [0,Az], Vh e [0, Ap]

VI' € L, Yk € N with A, 2 T, one has the following bound:

oA, (¢r|S)] < exp lZ —%qﬁé’; + 5] (4.64)

zel’

Proof. In appendix.
Exponential bounds of the form above will be crucial for establishing that sequences of finite volume

measures have cluster points and for showing that these cluster points have the appropriate properties.

Definition. A probability measure X on (RY, B) will be called regular if and only if for every A its marginal
restricted to A has a Radon-Nikodym derivative with respect to Lebesgue measure on R (which we denote
g(pa|N)) that satisfies the following bound:

zeEA

l9(éalA)| < exp lz —%obi + 61 (4.65)

We now show that being a regular measure is a stronger statement than being a tempered measure.

Lemma 4.19. Suppose X is a reqular measure, then:

1. If s> 0 then)\(XS) =1.
2. X is a tempered measure.
3. There exists Oy such that for all s > 0 one has A\ (X5) < Ogexp [—%SQ].

Proof:

All three statements come from proving appropriate bounds on:

S A ({62 > slog (Jz)}) (4.66)

xell

Statements (1) and (2) will follow from Borel-Cantelli if we show that the above sum is finite.
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0
A({¢2 > slog, (|z])}) < 266f dt e 9"/4

slog (|=])

a0
< Ks7gf dt exp [—MtQ]
slogy (=) §

a0
< K, ge*(d+1)log+(”mH)J dt et < Koy x A/ X e~ (d+ 1) log  (lz])

—o0

In the inequality on the first line we used ([@64). In going to the second line we defined K, =

2
c .

2 exp [(5 + % X (%)2] and used the fact that —cit* < —cot® + —2. Note that the last line is summable

over x € L so the first two statements are proven.

To prove statement (3) we first assume that s > 1. Then we have:

0
A({62 > slog. (Jal)}) < 267 | Pp——

slog, (=)

) 0
< 26667952/8\[ dt e 9t'/8
slog ([=])

o0
< 26567952/8J dt e=9t"/8
log ([=[)

o0
< ng‘gsz/gj dt e~ (@27
Tog, (T}

0
< ng—gs2/86—<d+1>1og+<|m|>f dt eV < K95 /8¢ @rDon, (lell) o /x
Tog, (=)

Here we have defined K, = 2exp [5 + %(d + 1)2]. We then have for s > 1:

MXE) < A ({62 > slog, (Jz])}) < e loe (lzll) | o F x /7 x e95/8 < oo
+ g

xell zel

Statement (iii) then holds for all s > 0 by choosing O = max ([3,¢, e~ (1 (l=ID] x K, x /7, et).
]

Next we will prove some regularity results for the conditional probabilities 7. For any S € Rt and A € L
we define S(A) := S4 A 04e.

Lemma 4.20. (i) Let A be a cube centered at the origin, that is A = Ay for some N. Then for any
S e Xy one has:

Jim 7o 50 (AlS (A7) = 7a6.n (A]S)

The above convergence is uniform over A € B(A) and S € X,, for fixed n.
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(ii) For any € > 0 there exists m € N such that for all S € X1 one has:

sup ;5,0 (X5, [S9) <€
J

Proof:
Fix n > 1 and suppose that S € X,,. From the definition one has:

L donexp [~U(pr) = W (oalS (A)) 1) ]
LA donexp [=U(pr) = W (6a]S (A)),.)]

A0 (AlS (Af)) =

Note that above we have abused notation and are using the symbol A to denote the projection of the

original set A € Rt onto R®. By arguments identical to those used in Sub-Lemma [5.2] one can show that

inf donexp [~U(da) — W (oalS (A)) )] >0

SeX,, RA

Thus it suffices to prove that for arbitrary B < R*

tim | doyexp [<U(6x) =W (618 (4, jdmexp U(6a) — W (6]54)]

j—o©

where the convergence above is uniform as we quantify over B € R* and S € X,,. We establish a pointwise

in ¢p bound on the integrand on the left hand side.

lexp [~U(¢a) = W (64]S (Aj)x.)] — exp [~U(da) — W (6aSac)]|
—e VO Jexp [~ (6a]S (A)) e )] — exp [ W (6]Sae)]|

<e U068 exp Z Z J(|lz —yl) (63 + 55)1 W (@alS(A;\A)ae)|

zeA yeAc

<V exp [2 (17112162 + | Thog, m)] 3 (117851162 + T log 111 )
zeA TEA

<[[JLas log, || re™" N exp lZ (1711 £2 % + nll T log,, ||L1)] >, (@3 +n)

zeEN TEN

We then have:

J dén Jexp [~U(6n) = W (6415 (A;)5.)] = exp [~U(6n) — W (6a]Sae)]|

<ess i s [ done@esp | 3 (171t T )| 3 62 4

zeEA zEA

<1715 log., |1 (j oy exp [Z ~ 564+ + 111262 + nl|Tlog, ||L1] 3, (4 + n))

zEA zEA
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The integral above can obviously be bounded uniformly in B, j and S € X,,, part (i) now follows since

we have lim ||J1xelog, ||r: = 0.
o T

Part (ii) follows easily via applying the superstability estimate of LemmaBTI8 for s 5.4 (-|S) with T = A;.

We note that for m > 1 we have:

T, 8 (X51S) < ) s (1{02 > mlog, (|2])}]S)

:EEAJ‘
* 4
< Z 2e‘sj dt e~ 9t /4
zEA mlog ([=])
gm?
< Oqe™ 8

The last line of the estimate above is proven in the same way we proved statement (iii) of Lemma 19

Statement (ii) of the current lemma now follows by making m sufficiently large. O

We now give a definition followed by a quick lemma which will help us establish that we have cluster

points as we take infinite volume limits.

Definition. A family of Borel measures {i;}icr on R™ are said to be uniformly absolutely continuous with

respect to a Borel measure v on R™ if for every e > 0 there exists a § > 0 such that for any Borel set one has
v(A) < = p;(A) <eforalliel.

Lemma 4.21. Let ju, be a sequence of Borel probability measures on RY converging locally weakly to a
measure [1. Suppose furthermore that for every A € L there exists an N such that the sequence of R™
marginals {fn Atn>n are uniformaly absolutely continuous with respect to Lebesgue measure on RA. Then

the measures p, converge locally set-wise to the measure .
Proof: In appendix.

Theorem 4.12. Let S € Xy, and let {n;}7_, be an increasing sequence of natural numbers with lim n; = oo.
Jj—00

Then the sequence of measures {WAnj B.n(19)}7L, has a convergent subsequence (in the topology of local set-

wise convergence).

The limit points of these subequences are tempered, translation invariance, and satisfy all the statements
of Lemma[{-19

Proof: The superstability bound of Lemma establishes that for any N € pZ+ the marginals of the
{WAnj B.h(:[S)}n, on RAN are tight (relatively compact in the topology of weak convergence). Thus by a diag-
onalization argument in j and N we can find a subsequence {n},}7; such that for any A € L the marginals
of ma , p.n(-|S) on RA converge in the topology of weak convergence to a limiting measure v,. It is not hard
to seekthat {vataeL is a family of consistent finite dimensional marginals. By the Kolmogorov extension

theorem they uniquely define a measure v on Rt. By construction one has that klim A, 8,1(:|S) = v in the
—00 "k
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topology of weak local convergence.

Since the measures 7rAn2757h(~|S) satisfy the conditions of Lemma 22Tl Thus the T 8.n(:|S) converges
to v locally set-wise. Additionally since the measure 74, g, (:|S) is invariant under translations of norm less
then p? we have that any infinite volume limit point is in fact completely translation invariant.

Now suppose that v is the limit in the topology of local weak convergence of a sequence of finite volume
Gibbs measures 7, 5,n(-[S). Then by Lemma [LT§ the measures ma,, g4(-|S) satisfy the requirements of

Lemma 2] so these measures converge to v locally setwise. In particular for every = € L. one has

v ({67 > slogi (l)}) = lim 7a,, g0 ({67 > slog, (lz])}19)

On the other hand as soon as my is large enough for A,,, 3 x then we have the superstability estimate

for the one point marginal of 7, 5n(-[S) at @ , this means that:

0
v ({62 > slog, (al)}) < 267 | dt 9t

slog ([l=])

We then have the necessary estimate to show that statements (i), (ii), and (iii) of Lemma[@ 9 hold for v. [

Theorem 4.13. Suppose that for some ny one has klim mane g n(:|S) = v (where S € X1). Then v is a
—o0

tempered Gibbs measure with respect to the interaction U(S,h).

Proof:

We use the notation vy, = ma, 5,n(:S).
Our goal is to show that for any any I' € L and for any A € B and one has:

| () 7 (418) =t v e (A1) = w(4)

We first prove the above equality for A of the form A; n Ay where A; € B(I'), Ay € B(I'®). This estab-
lishes the above equality for all of B since sets of this form generate the sigma-algebra B.

Since the specifications {7 g n}acL are consistent among themselves it suffices to prove the equality

above for lattice sets I" of the form I' = A, for some k.

Let € > 0 be arbitrary, we will show that

v (7,0 (Al) — v (A)] < 6e

By Lemma [£.20] Part (ii) we can find an m € N such that:

sup v (X5) <€
k

We next note that for any & with Ay > I' and for any j € N one has:
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v (mr.p.1(Al-) = v (A) < v (mr.g.n(Al) — v (7r,8,1(A]))] + i (A) — v(A)]
= v (T4, ()mr .0 (Ar]) — vk (La, (e g0 (Ad])] + [vx (A) — v(A)]

< | dv(S)14y(5) [mr 50 (AIS) — 70,5 <AS<A]»>>]\

RL

| S (S)mr s (AISAD) = | (S (S)e n (AIS(A,))

+

—+

[, (110005 T CAIS(AS) = 0 (A1)
+ o (4) = ()

In the first line we use the consistency of our specification, that is vy (7 gn(A|-)) = vg (A). In the
next line we have used that 7 g5 (A1 N A2|S) = 14,(S)7r g4 (A1]S) (this comes from the fact that our
specification is proper). We now bound the quantities on the third, fourth, fifth, and sixth lines.

For bounding the quantity on the third line we use Lemma part (i) and the bounded convergence

theorem so that for j sufficiently large one has:

Ll dv(S) [mr.g,n (AlS) — 76,8 (A|S(Aj))]‘ <e

We bound the fifth line for j sufficiently large, uniformly in & :

(S s (AIS(A,) ~ 7 (A1S)| < [ d(S) L, (S)]rrsn (A1) = 70 (A1) | +
R Xm
2e

In the two lines immediately above we used the fact that we have uniform convergence of the probability

kernels in j on the set X,,, along with control over measure X, uniform in &.

After fixing 7 we can bound the fourth line of our main bound by € if we take k sufficiently large since
we have local set-wise convergence of the vy, and 14, (S)7r g1 (A|S(A;)) is a function of finitely many spin

variables, the same is true for bounding the sixth line. O

Theorem 4.14. Let p be a tempered Gibbs measure with respect to the interaction U(3,h) for appropriate
B and h. Then p is also reqular

Proof: What we must show is that for arbitrary I' € L the marginal of x corresponding to R'' (as before,
denoted pr) is absolutely continuous with respect to Lesbesgue measure on R*. Additionally we must show
that the corresponding Radon Nikodym derivative, which we will denote gr(¢ér|u), satisfies the bound (4.63)).

There are multiple ways one can show the mentioned absolutely continuity, however we will try to directly
construct the Radon-Nikodym derivative and use our explicit formulas to establish our the estimate ([ZGH]).

In particular we will use the same bounds used in the proof of Lemma[L.1§ to establish the necessary bounds
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on g(¢r|p).
Below we use notation defined in the section of the appendix that proves Lemma I8 Fix some z € T

We note that it is not hard to see that {RZ o=—1 is a partition of Xo. Let A € B(T'). Since p is tempered

we have that

| au(s1248) = 3 | duS)1a()24,(5),

For any g € N U {—1} and A; © T by Gibbs consistency we have that:

[ n($)11,(8) = [ dn(S)on, (1ator)z, (o 5 a0 7 517) 1)
1
= JRF dor 1La(¢r) J[Rl dﬂ(s)m qu(qbnAk,S) dd)AJ\F exp [_U(¢Aj) - W(¢Aj |S)]

Define k(n) : N U {—1} — N so that Ay, D T U (2 + Apax(q,0)). We now define

o0

gr(ér|p) = Z (LL du(9) lZ(Ak(q)|S)1 qu(w’Ak(q)’S) don, )\ exp [—U(da,) — W(¢Ak(q)|5)]]>

g=-1

(4.67)

Since the each of the summands on the RHS of (L67) is non-negative function on R' it is clear that one
has point-wise convergence to a measurable function on R'. In particular by monotone convergence theorem

and Fubini-Tonelli one has

. a0 1aeryarorl) =

Thus absolute continuity is established. Now we claim that for any S € X:

)
Z(Ak(*l) 5) R-1(¢r,Ak(-1),5)

< exp |56+ A1 02 + O3] x o (61 119).

d¢Ak(,1)\F exp [_U(¢Ak(—1)> - W((bAk(—l) ‘S>]
(4.68)

And for ¢ = 0:

1

—_— do exp [—U(¢p —Wi(o S
Z(Ak(q)\s) qu(%’/\k(q)’s) A \T' [ ( Ak<q>) ( Ak<q| )]

4.
< epl(Os v gl xexp | Y (=Zat+ (sl + 1) 02+ 05) | 49
z€(z+Aq)nD

z+A
X Pi\k( ’ q)(¢F\(z+Aq)|S)
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First we prove (L.63). Note that k(q) > ¢. Now if S(A} ) € RZ then the estimate follows by sublemma

(BE4) in the appendix (note we have the assumption of condition (b) in this case).

We now turn to the other case: suppose that S (AZ(q)) ¢ ﬁg Then there is some non-negative integer r

such that » > ¢ and
D S(Akg): = ¢l
ze(z+Ar)

Now let ¢ € R' and Phyey € RA%() be arbitrary and define (]3 = Q1 A QA N SAe

. Then we have that
k(aq)

Z Qgi = Z S(Ak(q))g = wr|Ar‘
z€(z+A,) ze(z+A,)

In particular we have that ¢ ¢ RZ. From this observation we see that for all ¢ € R the set R, (¢r, Ak(g); S)
is the empty set and the integral on the top line of ([f63]) vanishes. One can prove (LG8 in an analagous
way, this time using sub-lemma (B3] of the appendix.

We then have

g z
g(orln) <exp | =56t + Aal T|11 62 + Os f dpu(S)py,*H (ér(2)19)

Y <exp (05 v Al xesp | (=26t + (sl +1) 62 + 05)

q=0 z€(z+Aq)nD

x f du<s>p£1<Z+Aq><¢p\(z+Aq>|s>>

—exp |~ 26t + Agl 11162 + Os | 9(dr ey 1)

o0

g

+ 37 | exp[(O5 — ) [Aql] exp > (—iqﬁ + (Ag|J| +1) 83 + 03) 9(@r\(z4a,) 1)
q=0 ze(z+Ag)nT

Note in the final equality we used Gibbs consistency. We also use the convention that g(¢g|p) = 1. The
regularity bound for g(¢r|u) now follows by arguments identical to those used in the final steps of proving
Lemma 0.

4.7.4 Properties of various Gibbs measures

Theorem 4.15. For any B,h = 0 the measures wa, 5.5 (-|0) converge to a tempered measure v[3,h] locally

setwise. This measure is a Gibbs measure with respect to the interaction U(B, h).

Proof :
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All that needs to be proved is that the sequence 7a, g5 (:|0) converges locally weakly.

By Theorem we have that there exists a convergent subsequence ma, 51(:|0). We denote this mea-
sure by v[8,h]. Note that for any I' € A the I'-marginals of ma, 5 (-|0) and v[3,h,0] are all uniformly
exponentially integrable - they have entire moment generating functions. Thus we can prove convergence by
just showing convergence of all moments. We also have that the moments of WAnk,ﬁ,h(’m) converge to the
moments of v[, h,0].

Now for any multi-index A € Nt with |A] < o0 we claim that the sequence ma, 5.1(6*|0) is monotone
increasing - this is a consequence of Griffiths II. Since this sequence has a convergence subsequence the entire

sequence must converge to the same limit. O

Lemma 4.22. The limit lim+ v[B,h] := v[B,07] exists in the topology of weak local convergence. The
h—0

measure v[3,07] is a Gibbs measure with respect to the interaction U(f,0)

Proof:

First we show convergence, again it suffices to show convergence of moments. Let ho = hy; = 0. Now by

Griffiths I and I we have the following inequality for any moment ¢* and any n:

ﬂ-AanahQ (¢A|O) 2 ﬂ-Anaﬁvhl (¢A|O) 2 O

Taking the n — oo limit we see that <¢A>y[57h2 > <¢A>u[,ﬁ,h1] so the quantity <¢A>y[57h] is monotone

decreasing in h for h = 0 and bounded below by 0, this establishes convergence.

We note that by applying Lemma I8 with the choices A;, = 1 and Ag = 3 we get a bound ([@I8) which
lets us prove statement (iii) of Lemma [LI9 for v[3,0%] via the same arguments used in Lemma T3

We now turn to proving Gibbs consistency with respect to U(3,0). Let {h,} < [0, 1] be a sequence
converging to 0 from above. To lighten notation for the proof we denote v[f3, h,] := v,, and v[3,0] := v.
We pick some I' = Ay, for some k and pick A € B(L) which is of the form A = A; n Ay where A; € B(I') and
Ag € B(T'¢). We want to show

v(mr,s,0(A]) = v(A).

We will prove that

T v, (71 5.1, (A1) = v (71 5.0(A]) (4.70)

Since v, is a Gibbs interaction with respect to the interaction U(/3, h,,) we can apply Gibbs consistency:
lim v, (mrgp, (A]-)) = lim v,(A) = v(A), thus proving [10) suffices.
n—0 n—x0
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For any n,j € N we have:

[vn (706,10, (A]-)) = v (7r,5,0(A]))]

[ a0 ()m o, () - |
RE

RE

dv<5>ﬂA2<S>wF,ﬁ,o<A1|S>]

<

[L 008 50, (018) = 71,5, (S

—+

iy dvn (S)La, (S)7r,,n, (A1|S(A;)) — . dv(S)1La, (S)WF,B,O(AHS(AJ‘))’

#|[LL 5110,(5) [ a1 = 0]

Let € > 0. Since our superstability estimates are uniform in h one can find m € N such that

sup v, (X;) <€, v(X)) <e
n

Therefore one can use the same argument as used in Theorem to bound the second and fourth lines
uniformly in n for sufficently large j.
For fixed j the third line can be made small for large enough n, this follows from the fact that we have

the pointwise (in S) convergence of the following (uniformly) local functions:

lim 14, (S)7r 6,5, (A1]S(A))) = La, (S)mr 5,0(A1]S(A;))

n—0oo0

The pointwise convergence above follows via a dominated convergence argument applied to integrals over
R,

Since the v, converge locally setwise to v we can use the generalized dominated convergence theorem

given below to make the third line arbitrarily small for large enough n. O

Theorem 4.16. Let (2, B) be a measurable space and suppose that the measures A, converge setwise to the
measure \. Suppose furthermore that one has a sequence of measurable functions f, on £ such that func-
tions f, converge pointwise to a function f. Furthermore suppose that there exist a sequence of measurable

functions g, converging pointwise to a function g with |f,| < gn for all n.

Then if
lim d)\ngn:Jd)\g<oo
One has
lim dMn fn =J dX f
n—o0 9] O
Proof:
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See [57][ Chapter 11, Section 4]. O

Lemma 4.23. For any moment ¢** one has that

WMus001 = D urs 0

This follows by the arguments made in the first part of Lemma [£22] O

Definition:

The pressure in a finite volume A with deterministic boundary condition S € X, is defined as:

p(A, B,h,S) = = log [Z(A[S)]

IAI

The next theorem states that the infinite volume limit of the pressure is independent of boundary con-

dition:
Theorem 4.17. There is a convex function p(3,h) such that for any S € X; one has:

lim p(Av, 8,k S) = p(B, h).

Proof: See [45, Lemma 2.6, Theorem 3.1]

The next lemmas set up a variational principle argument which will show equality of certain expectations
across different Gibbs measures. The general approach of combining bounds uniform in volume and the
choice of the boundary condition bounds with Lebesgue’s dominated convergence theorem was something
that we saw in [40].

Lemma 4.24. For (€ [0, Ag], h € [0, A},] we have the following bounds:

LA dma,,ph (D2, ]S) ’ D1 J@=y)dedy| < [T x [0345 +2n(S)O1 + O] |Ag|. (4.71)
z,yENL
iy

f A, 50 (00,19) | 2 T = )68,| < |71  [0345 +30(S)01 + O] Al (472)

zEA
yEAr

Here we have set

_944
05 = J ds e~ 15 g2,
R
A
O, = J ds e_%s4+5e(1+7ﬂ“‘]”“)82
R
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Proof: First note that

D@ = y)euetyl < 11 Y. 62

z,yENk TENL
=y

Now by Jensen’s inequality

LA drpgn (6a,]9) D) 0% < log <J[RA dma,,8.n (P4, ]S) exp [ >, D

zEAk mEAk

= log <LA dma,.8.n (04, ]0) exp l Z P2 — (¢Ak|SA2)]>

TEA

— log (J[RA dma, g.n (0a,]0) exp [-W (¢, |5Az)]) :

Using Jensen’s inequality again to bound the last line of the estimate gives

“log (LA dma, .h (64, ]0) exp [-W (¢Ak|5A;)]> < LA‘ dra, g.n (02,]0) W (¢, |Sa:)

1
< J drn, pn (60,10) D) 3@ —y) (&2 +5y)
IRA JZGAk
yEAL

< (OSHJHLl + n(S)(’)l) ‘Ak|

Here we used the estimate

Y, J@—y)sy <n(S) Y Tyl log, (lyl) < n(S)O1.
venr vens

The quantity O is defined in Sublemma 51l The other contribution satisfies the bound

log (LA dma,.p.n (6, ]0) exp l PR (¢Ak|5A;)D

JZGAk

J
< log (J-A dﬁ/\kﬁ,h (¢Ak|0) exXp l( ” |L1> Z ¢ +n 01|Ak|
RMk

:EEAk

)

< n(S)OﬂAk‘ + log < J[RAk dWAk,,B,h (¢Ak|0) exXp l( |J”L1) Z ¢21>

xEAL

n(S)01|Ax] +log (OF*)

This proves statement (i) of the lemma.
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For statement (ii) note that

] D (@ = y).S, ] 7\|JHL1 (Z o > + 57(5) 01| Al

TEN IEA;C
yeAS,

We throw away the factors of and bound the integral of the first term just as we did for statement (i)
- this proves statement (ii).
O

Lemma 4.25. Suppose that at some By € (0,00) one has that p(8,0) is differentiable in 5 at 5 = By. Then
for any distinct x,y € L\{0} such that J(z —y) > 0 one has:

(Baby)v(80,0] = P Py)v[Bo,0+]
Proof:

We start by choosing Ag large enough so that 3y € [0, Ag) and by choosing Aj; = 1.
Let S € X,. We have that the sequence of convex functions p(Ag, 5,0,5) (for any S € X ) and their
pointwise limit klim p(Ag, 3,0,5) = p(B,h) are all differentiable in 8 at 8 = 5y. Then by standard facts
—0

about convex functions (see §1.3 in [64]) we immediately have the convergence of corresponding derivatives:

hm (Ak,ﬁo,o S)

k—o0 55 (50’ )

B
Note that the right hand side of the equation above does not depend on S.

We also have the bound

0
’ag(Akvﬁan S)‘ |A | f dﬂ-l\kﬁh ¢Ak|S ’ Z J ¢w¢y Z J(.]:—y)¢$5y
k z,yeNy me//tk
T=y yeAy

<2 HJHLI X [O3AB + 3n(S)(’)1 + 04] .

Above we have used statements (i) and (ii) of Lemma [£27]

Define

0(S) =2 x ||| [O3As + 3n(S)O1 + Oy4]

We note that 6(S) is integrable under any regular measure p. In particular arguments similar to those
used in the proof of statement (ii) of Lemma LTI show that
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au(S) 2 (X))
g —4K®

Thus by Lebesgue Dominated Convergence theorem for any regular measure p

RL

lim du(S)

0
P Ak, £0,0,S) = f dp(S) lim P Ay, Bo,0,5)
k—0o0 JRL (}ﬂ RL

w 0
=f ay(9) ﬂ(ﬁo, 0) = 5(/307 0).

It follows that for any two regular measures pu, p’

. op S OD
kh_r)rgc [R[Ld,u(S) aﬂ(Ak,Bo,O ,S) = hm o du'(S) aﬂ(Ak,Bo,O ,S) (4.73)

We now apply the above equality with the regular measures v[8g, 0] and v[8y, 07].
Since v[fy,07] is a Gibbs measure with respect to the interaction U(fy,0) one has

lim dv[Bo,0%](S) @(Akaﬁmovs)

k—o0 JRL 86

— tim [ dufBo,0%1(9) f Cdran (OnS) | D T@—p)oey + Y T - 168,

k—0o0 |Ak| RL R4k z,yEN) rely
T=y yEAL

= DT T = y)bady o0t

| k‘ xEAk yElL\{;E}

D TN Podyuis,.001

yel \{0}

In going to the third line we used Gibbs consistency and in going to the fourth line we used translation
invariance. Note that the interchange of summation and integration is allowed since (¢, $0),(s,,0+] is uni-

formly bounded in = by Lemma 14l and because |.J| is summable.

By identical arguments one has:

P (A B0,0.8) = ) T()oby)uiseo

yel \{0}

lim dV [ﬂ(), 0] ( )

k—o0 JRL 85

Applying (E73) then gives
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D J@ =) bbb uison = D JW{P0Syuis0.0+) (4.74)

yel\{0} yel \{0}
Note that by Lemmal.23 one has that for all y € L the inequality (¢ody)v(s,,0+] = (P0Py)v[8,,0]- However
for y = 0 and J(y) = 0 then it is impossible for that inequality to be strict, otherwise ([{74]) could not hold.

Thus if J(y) = 0 then it follows that (Pody)v[3,,0t] = (PoPy)u[0,0- The lemma then follows by translation
invariance of both measures and the interaction. O
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Chapter 5

Appendix

5.1 Lemmas for Section [1.4]

Theorem 5.1. Let pu be a joint spectral measure of a vector v € H on R™, that is u is determined by the
distribution function F(A\1,...,\n) = (1, ]_[?:1 Pj (—co,x,11) where the P; are the commuting projection valued
measures corresponding to self-adjoint operators flj.

Then we have

du()e’™ = (1, H ehitiy))

R™

Proof: Let f(x) be a bounded continuous function on R. We first prove that:

. 1
Tilinoo%f <m) Pt sy = 1(4))
€

were the convergence is in the strong operator topology on H. This fact is part of the spectral theorem but

we prove it again here. For any h € H write v;; for the spectral measure of h under A;. We have that

"lbi_r)noc<zzlf( ) [ h%f( ) ,171+1)h> = lim (hZZ:f ( ) J[“H)h)

J f(z)f(z)dv; ,(x) by Bounded Convergence Theorem

h, F(A;)f(A;)h)
(f( ihs f(AG)R).

Now we study the p integral:
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J[R ﬁfj(zj)d“(f) %@@LZ > ﬁfj <:jl> du(7)

"j=1 i1,eyin€Z j=1

égrlw(w, 2 Hfj<;i)Pj7[if;7”ﬂfl>w>

i14eenin€Z j=1

Exploiting the commutativity of the projection operators we get that (with everything in terms of strong

operator topology limits):

m

j=1i1,...,ineZ j=1 14z

dm [T X0 (;i)Pj,[i-,i,”*U = Jm 1125 (Z)PM” )

In the last line we used the fact that the multiplication of operators is jointly continous in the strong

operator topology. Thus we have that

i (w > 16 (:i) Px[%%ﬁﬁ”) - (w’j[[lfj(Aj)w)

i1, in€Z j=1

Theorem 5.2. Let u be a measure on R™ with moments given by {My}aena Also suppose that there exists
C > 0 such that for every o€ N¢
| M| < Clalt

Then there exists § > 0 such that for all t € R with |t| < § one has
du(z) " < o
R4

Proof: Let t € R” with maxi<j<q |tj] < 0. Then one has
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o
=
S
-8
=R

x LU
J{Rd du(x) €' ' Z (a>t x
n=0 aeN?
lal=n

0]
1 ny\ a o
< [Late) | X 2| 2 (D) xler]
Rd n:On. aeD\ld (07
lal=n

A
s
S|
X
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S
S
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o,
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VAN
RgE
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Q
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g
N
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N———

N
18
S|~
Q

3
X
Q

3
=
=
g
RS
Qo 3
N———

n=0 ‘(xc—‘D\ld
0 1 0
gzag”xcnxx/@n)!xdné2(0><C><2><d)”
n=0 n=0

Clearly the last line is finite for sufficiently small o. Note that above we used (Z) to refer to a multinomial

o) -

Jj=1

coeflicient, in particular

Theorem 5.3. Let j and v be measures on R with the same family of moments {My}aena. Furthermore
suppose the two measures have moment generating functions that exist in a neighborhood of 0, that is there
36 > 0 such that for all t € R? with |t| < & one has that

f du(x) e"* < o
R4

J dv(z) €' < oo
R4

Then p,v have the same characteristic functions and hence coincide

Proof: For a d-dimensional random vector X a one dimensional marginal of X is a random variable of form
- X for [ € R*. We remark that the the law of a random vector is characterized by the collection of laws of
its one dimensional marginals - this follows from the the fact that the law of a random vector is characterized

by its characteristic function. Thus it suffices to prove that the one dimensional marginals of ;1 and v agree,
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in particular we only need to prove the assertion of the theorem for the d = 1 so we specialize to this case.
We first prove that the characteristic functions 8,,(t), 6, (t) are actually analytic in a strip about the real
axis. Let ¢ € C with |3(t)| < 0. It follows that

Since we have a uniform bound on this integral for all ¢ in our strip we can apply a Fubini/Morrera argument
to establish analyticity. Now that both 6,,(¢) and 6,(t) are analytic in the strip we use the fact that the
family of moments {M,}.en1 are precisely all the derivatives of both characteristic functions evaluated at

t = 0. Since all derivatives at zero match the two functions must coincide on the entire strip. ]

5.2 Estimates on Covariances

This appendix gives needed estimates for Chapter Bl Here we prove some properties satisfied by the covari-

ances Cy and T' for some fixed L = p! where [ is an integer [ > 0.

Lemma 5.1. The covariance I' can be expressed pointwise as follows.

1. If |z| < 1 then

_1=p (4]
2. If |z| = p* with 1 <i <1, then
o —3+2[¢
T(z) = —p~3+21¢l,2100 | L e p2ile] _ p-2ilel)
1— p*z[‘ﬁ]
3. If |x| > L then I'(x) = 0.
Proof: Recall that o
T(x) =) p (leg (Px) —p 1z (pj“x)) :
7=0

By Abel summation, or discrete integration by parts, this can be rewritten as

-1
T(z) = 1z3(2) —p~* 20000z, (plz) + ) p~ (1 — p=3+2 0155 (p/2r) . (5.1)

P
Jj=1

Now we also have
1z3(p'x) = W|p'a| <1} = 1{ja| <p'} = Y 1|z = p} .

<]
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We insert the last expression into the sum in (&) and get after commuting the sums over ¢ and j that
—3—2(I— 1 j
T(z) = 1z3(x) —p > 207002, (pla) + Y Uit {jz] = p'}
i€z

where
1<j<i—-1 .
vy 1S
JjezZ Z<]

Now note that if 4 > [ then U; = 0. Also, if i < 0 then

—2[¢] _ p—2I[¢]
y, = P —pel

1— p_2[¢]
Finally, if 1 <i <! —1 then ‘
U_ _ p721[¢] _p72l[¢]

v 1— p_2[¢]

As a result we have
_ o 342[4], —21[4] 1 1—p 32l i (—2[¢] max(i,1) . —21[¢]
I'(z) = 1|zl <1} —p p e < p'}+ ——5— ) x| =p'} (p p
1—p=2l9l i<l—1

from which the result follows by specialization to the different cases mentioned. ]

As a result of the previous lemma we have a precise control over the sign of the function T'.

Lemma 5.2.
1. If |z| < p' then T'(z) > 0.
2. If |z| = p' then T'(z) < 0.

3. If |x| > p! then T'(x) = 0.

Proof: Recall that € € (0,1] and therefore [¢] = 3¢ € [3,3). We also have [ > 1 and of course the prime
number p is at least 2. From Lemmal[51]), we then readily get that I'(z) > 0if |z| < 1. The case |z| > p' has
already been considered. For |z| = p' the formula in Lemma B1]) reduces to I'(x) = —p~3+2[¢lp=2ld] < 0.
Finally when |z| = p’, 2 < i <[ — 1 then the formula in Lemma [Tl shows that I'(x) decreases with i in

that range. We only need to look at the case ¢ = [ — 1 where one has
I(z) = p~20-DI¢l [1 _p 3o p—3+2[¢]] .

+ and 3 —2[¢] > 2, which implies p~3+2[¢] < 275 we get 1 — p=3 — p=32[9] > 0 and
thus I'(x) > 0. O

Simply using p~? <

Corollary 5.1. The fluctuation covariance satisfies the L' bound

1
Dl < —=L3729]
T2 7

280



Proof: Indeed, by I' = Cy — C7 and the definitions of the C). covariances we have that SQS d3z T(x) =
P

f(O) = 0. In other words the positive part exactly cancels the negative part which is easy to compute since

it only involves x’s with |x| = p!. Therefore

Pl = =2 &) 1{jel =)
Q3
_ 2(1 _ p—3)p—3+2[¢]L3—2[¢] .
We use 1 —p~3 < 1 and again p—3+2[¢] < 273 to conclude. ]

As for the unit cut-off covariance Cjy, the following easy property will be useful in the sequel.
Lemma 5.3. When € € (0,1], we have 1 < Cy(0) < 2.

Proof: Recall that
1-— p_3 1-— p_3

B 1 — p—209] - 1_p*(3%5) -

Only using p > 1 and the given range for € we get

Co(0)

pig gpi(%) gpil < % .
Hence
1—p3 1—p3
1<—P << —L —14p i<,
1—p~ 1—p 2

O
We will also need some information on the L* and L? norms of I' which are provided by the following

two easy lemmas.

Lemma 5.4. We have the simple estimate
T[> < 2.

Proof: If |z| < 1, it follows from Lemmas Bl and B3 that 0 < T'(z) < 2. If || > L, then I'(z) = 0. If
|z| = L, then
ID(z)| = | —p C2DL29] <1 .

Finally if |z| = p’ with 1 <i <[ — 1, then by Lemma 5.2

B _ 1_p—3+2[¢] i B
ID(z)| = D(z) = —p3+2M@1p=210e] | m(p 2i[0] _ ,—2100])
_ p—3+2[¢)] . _ p—3+2[¢] N
e ey < Sl TP Gy(0) <2

S o P 1= p 20l S 1= p 2]

This shows |['(z)| < 2 in all cases. O
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Lemma 5.5. We have

(1—p7®)(Lc—1)
pe—1

—>(]_—p_3)><l

| @ ae -
Q

3
when € — 0, with | defined by L = p' and the limit taken with L fized.
Proof: By the Plancherel formula over the p-adics

J IT(z)]? &z = J IT(k)]? d°F .
i Q3
But

~ ~ Ao ML <R <1}
- k32041

and therefore

2 33 WL < k[ <1} 5
Ja ID(z)|]* &’z = f o111 d’k

_ N[ Mk =pT s,
@ (p7)6-4l9)

_ (1= p=3)p3ipi =48]
The result follows since 3 — 4[¢] = € and of course the ¢ — 0 limit is trivial. O

5.3 Properties of the Magnetization

5.3.1 Proof of Theorem

We first state two standard results of complex analysis:

Theorem 5.4 (Vitali - Porter Convergence Theorem). Let f,(z) be a sequence of analytic functions on a
domain Q2 = C. Suppose that this sequence is locally uniformly bounded ( that is for any compact K < Q one

has supsup |fn(2)| < 0 ). Also suppose that this sequence converges pointwise on some set E < Q where E
zeK n

has an accumulation point in Q. Then there exists an analytic function f on Q such that the sequences f,

converges to f uniformly on any compact subset of €.

Proof: See §2.4 of [60]. O

Theorem 5.5. Let f,(z) be a sequence of analytic functions on a domain G < C such that the following
hold: (i) for each n the function f,(z) is non-zero on G, (ii) the functions f,(z) converge uniformly on

compact sets to a function f(z). Then the function f(z) is either non-zero on G or it completely vanishes.

Proof: See §3.8 of [60]. O
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Proof of Theorem

The fact that M(g,b, 8, h) is well-defined and finite comes from the the exponential integrability of the
measure u[L, g,b, 3, h] which follows from (I4), the fact that M *(g,b, 3) is well defined and finite comes
from Lemma

We now fix g, b, and 8. We will often suppress them from the notation. To prove statement (i) we first

introduce some new notation, set

My.(h) := My (g,b, B,h) = {P0) u[Ar,g.6.8,h]-

Note that My(g,b, 8, h) is concave as a consequence of ([LH]) - in particular observe that

82
WMk(h) = {¢o, ¢0, ¢O>Z[Ak,g,bﬁ7h] <0.

Statement (i) is now proved since the point-wise limit of concave functions is itself concave and
Jim Mk (9,6, 5,h) = M(g,b, B, h).
—00

We now move on to statement (ii). Define Q = {z € C| R(z) > 0}. For h € Q define:

Zne(h) = Zn, (9,0, 5, 1) := j

RAK

exp § D) J(@—y)dudy | exp l_ Y, (995 + 062 — hey) | doa,-

z,yeNL TEAL

r=y
Note that by Theorem one has that Z,, (h) = 0 for h € . We use the notation Z} (h) to denote
the derivative in h of Z,, (h). We now define the pressure corresponding to a volume Ay and external field
h e

1
h):= —
pan(h) = ] | Za (D)

h 24 (h
LogZa, (1) + Al )dz].

Above the integral is taken over any path in  connecting 1 and h and Log is the principal branch of
the complex logarithm. Since €2 is simply connected and the integrand above is analytic on €2 the choice of

path doesn’t matter. Additionally py, (h) is analytic on €.

This definition satisfies exp [|Ag|pa, (2)] = Za, (h). Tt is also agrees with the standard definition py, (h) =

\T1k| log (2, (h)) for he Q A R.

We define functions on fj, : Q2 — C via

fu(h) := exp [pa, (R)].

By Theorem [T we have the pointwise convergence klirn pa, (h) = p(h) for h € QR and so the functions
—00
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fx(R) converge pointwise to a function f(h) = e?™ for he Q n R.

We now show that the functions fi(h) are locally uniformly bounded. First observe that

[fe(h)| = exp [R (pa, (h))] < exp [pa, ([h])].

To see why the last inequality is valid we first note that |2, (k)| < 24, (Jh|) which means

1 1

R(pa, (b)) = mlog(\ZAk(h)D < mlog (Za, (10])) = pa, (I1])-

Thus to show that the f,,(h) are locally uniformly bounded it suffices to show that for any K <  compact

one has sup sup pa, (|h]) < .
k heK

Set hx = sup,ci |h]. Then one has sup,ecx pa, (|7]) = pa, (hi). This follows from the fact that pa, (h)
restricted to the non-negative real line is increasing in h (this last fact itself follows from noticing that for
such h one has ipA,w,(h) = My(h) = 0 where the last inequality is a consequence of Griffiths I). Since
kh_r)%opAk(hK) = p(hx) we have that st}ip iggp,\k(|h|) = s%pp/\k (hi) < o0. Thus the fi(h) are locally uni-
formly bounded on ).

Tt then follows by the Vitali-Porter convergence theorem that the fj(h) converge uniformly on compact
sets of Q to an analytic extension of f(h). Since all the fj(h) are non-vanishing we can use Theorem to
infer that f(h) is non-vanishing as well (note that we already knew f(h) is non-zero on 2 n R by Theorem

[TI7). In particular we can define an analytic extension of p(h) to all of Q by setting

/
e,
f(2)
Above f'(h) = %f(h) and the integral is along any path within Q connecting 1 and h. Now state-
ment (i) will be proved if we show that for h € Q n R one has M(h) = aihp(h). Note that for such h

one has that p(h) is convex, so by general facts about convex functions we have the point-wise convergence

h
p(h) = log (£(1)) +f1

Lpa,(h) — Lp(h). However we have that Z-pa, (h) = My (h) (we remark that we are using translation

invariance here). Statement (ii) is then proved. O

5.3.2 Proof of Lemma

We again sometimes suppress dependence on g and b.
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lim lim Mn(B,h) = lim ;Mn(ﬁ,h)

n—m b0+ h n—w Oh h—0

= lim Z (D0 A 0.6,5,0]

n—00
xEA,

= Z (P0Pa)u1 9.6,5,0]

zell

On the second to last line the individual integrals are non-negative and increasing in n so the convergence

to the last line is monotone.

Now by previous arguments (see Theorem L) we have that M, (3, h) is concave for h > 0. This means

that w is increasing as we take h down to 0. On the other hand we have that M, (8, h) is increasing

in n for h = 0. We can then interchange limits to see that:
M(B,h)

M, h
lim ———~% = lim lim M = lim lim
h—0+ h h—0+ n—w n—00 h—0+

M, (B, h
% - Z (P0Pa)uit g.6,5,0]

xell

5.4 Additional Proofs for Section 4.7

5.4.1 Proof of Lemma 4.18

This proof is technical. We will define constants so that the estimates can be used for proving both Lemmas
and [£14l We are following [58], [59], and [45] with some differences and simplifications coming from
working in the ultrametric setting. After proving some sublemmas we will give a description of what the
approach for the main bound will be.

We begin by introducing some notation.

Recall that for any non-negative integer j we set A; := {z e L | |z| < p’}.

We define a decreasing function J : {0,p,p? p?,...} — (0,00) as follows: for k € N we set J = AgV¥,
recall that U is defined in Theorem [£.8

We also define: J, 1, := sup J(|lz—vyl) = j(pq+k+2)_
€N i1
YEN G k1

Let ¢(t) = 2 x log, (t) := 2 x max(log(t),1) ( we could set ¢(t) = blog, (t) for any b > 1). We use the
notation t; := 1 (p?). We list some properties of ¥(t):

=1, lim (t) = o,

> Tlele(z]) < . (5.2)

zell
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The sub-lemmas involved in the proof of Lemma I8 will involve a certain decomposition of field con-

figurations which we now describe. For each ¢ € X; one has that

3 N e Nsuch that Vr > N, > 62 <t [A,].

A,

For any z € L, one can take r sufficiently large so that one has z + A, = A,.. Therefore the following

condition also holds for ¢ € X;:

Vzel,3 NeNsuchthat Vr >N, > ¢2 <A,
ze(z+Ar)

For any ¢ € X; and z € L we define q; € N as follows:

q; is the largest non-negative integer q for which Z P2 = by Ayl (5.3)
ze(z+Aq)

It Z P2 < Y4|Aq| for all non-negative integers ¢ then we set ¢j = —1.
ze(z+Aq)
For any ¢ € N U {—1} we define ]A%Z to be the set of those ¢ € X; for which q; = q- We note that for any

fixed z the family of sets {R; -1 form a partition of X;.

Sub-Lemma 5.1. For any q and for any gZ; € I%g one has:

Z J(l|z — z||)¢2 < Oy for any non-negative integerm > ¢ (5.4)
¢ (z4+Am)

For any A< (2 + Ay) and B < (z + A,)°

> (112 + 01) (5.5)

zeA

N |

W (Baldn)| <

1
Where we have set Oy := 1_72)—(1 Z J ([l (|x])-

zell
Proof:
We start by proving (54]). Note that
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Y, Jl=—zl)é: = 2 Iz ==l)

2,

z¢(z+Aq) J=q+1 ze(z+AN\(z4+A 1)

0 ‘ i X

= Y J0) > &2

Jj=q+1 ze(z+A;)\(z+A 1)
0 ) i ~

< DI D, ¢

Jj=q+1 ze(z+A; )
w .

< D1 TNl

Jj=q+1
1

-1 _,=d pd Z wJ‘A \Aj-1

Jj=q+1

< 7d Z j ”IL‘”

zell

([}

In the strict inequality above we used condition (53). This proves (B.4]).

For (55) we note that

Woalon)| <Y D T —y)ledy)
z€A y¢(2+Aq)

< Je-p@z+=Y Y

) 9
z€A y¢(2+Aq) z€A y¢(2+Aq)

Now for the first sum note that

2D I =)l < [Tl )] 62
€A yeA], zeA

For the second sum we have

Y D Tz —yhd; =

zEA y¢(z4+Aq)

<|4|

y¢(z+Aq)

<|A|0;

T (= —xl)é2

Tl = yl)é;

> D Jlz-uhé;

zeA y¢(Z+Aq)

> J=—yhé;

In the manipulations above the first equality used ultrametricity: since x,z € (z + Ay) and y ¢ (2 + Ag)

one has |z — y| = ||z — y|. In going to the last line we used (54]). We have now proved (G3]). 0.

We now describe the general approach for establishing a pointwise bound for:
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1

P, (6r]S) == Z(A09) J Ao, rexp [=U(oa,) — W (da,]9a¢) ]

RAR\L

We are establishing a pointwise bound in ¢r for fixed S - it is important to keep in mind that many of
our sets of partial spin configurations we define below depend on ¢r € R so it is helpful to think of ¢r as
being fixed as well.

First fix z € I'. We then define a partition of R*\I' which we denote {Ré o—o- This partition is dependent

on both ¢r and Sxe but we will sometimes suppress this from the notation.

For any ¢,,\r € RA\T we define the corresponding corresponding full lattice field configuration

b= or A dar A Shg

Note that ngS e X,
We now define the sets of our partition: for ¢ € Nu{—1}; we set R (ér, Ar, S) := {¢a,\r € RM | de J:ZZ}

To prove our estimate we first decompose

o0

r _ 1 J _ _ .
Pa, (¢rlS) Z5) q;1 e dparexp [~U(ga,) — W(ga,lSag)]

We give one more sublemma before beginning to tackle the main bound.

Sub-Lemma 5.2. For any non-negative integer k let A © Ay and suppose that S satisfies one of two
conditions: (a) S € X1 or (b) for some z € A one has S(AS) € RZ for some n < k.

(i) 1
<SS (82 +0y)

€A

|W (palSas)

(ii) There exists A € (0,1] and a a bounded Borel set . = R such that one has:

f dpa exp[—U(da) — W(palSas)] = A4

»IA|

Proof:
To prove statement (i) we first note that both conditions (a) and (b) imply that

D7 S(A])Z < byl Ay for all j > k (5.6)

CDEA]‘
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For condition (b) this follows from ultrametricity: z + A; = A; for j > k since z € A;. For condition
(a) we note that ¢; = ¥(p’) = 2 x log, (p/). Thus if S satifies the bound S2 < log, (|z|) then S certainly
satisfies (B.6]). Therefore we can just assume (B.G). We now start bounding the expression of interest:

W (¢alSas) |< D J@—y) (2 +Sy)
ffxﬁ

,HJ”U Dot Z > Iz —yl)S

zeA IEA yEN,

Now for the second term we have

S I -uhsi=Y Y TS

€A y¢ Ay, zeA y¢gAy

=14l X T(lyhsy

yEA L
=|A] Y T(lySg);
yEA L

o0

<Al Y T | ) S(Ap;

j=k+1 YeNL 11

0]
<JA] D TE e[k | < |A|O

j=k+1

The final bound is by the same argument as used in the proof of (&4]). This proves statement (i).
We now prove statement (ii). Using statement (i) and the definition of U we have the bound:

Ue) + W(oelSns) < 3 [g¢ +1bla2 + 11162 +01]+ S T - 0)lbsd)
€A z,yeA
z=y

< D [99% + blo3 + Al 1103 + O1]

zeA

< ) f(¢x), where we have defined: f(s) = gs* + (|b] + Ap[J]11) s* + Oy
zeA

In going to the second line we used the bound :

5 2 J(@ = y)|dady| < Z Tz —y) (7 +¢y) < ABHJML (Z&)

z,yeA z,yeA zeA
=Y r=y

The claim now follows from noticing that one can pick appropriate A and bounded Borel ¥ such that:
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st e T =\
Y

Along with the fact that:

1A
f dga exp [~U(or) — W(gx|Sag)] = f dpa exp l > f(sz)} = (fds ef<s>)

siAl slal zeA bl

In the bounds of the next three sub-lemmas we take p%k (pz]S) := 1.

Sub-Lemma 5.3. Let k be a non-negative integer. Suppose that z € I' € Ay and S satisfies at least one of
two conditions: (a) S € Xy or (b) One has S(A§) € R for some n < k.

1
g ) e[ U6 - W enlsi)]

RZ | (¢r,Ax,S)

< exp |26t + Apll 11202 + O3 | x i1 (61 (4)19)

where we set

A
Og :=sup <exp [26||J||L152]> .
seX

3
O3 := —log(\) + log(O3) + 5(91 + 0O;.

Proof:

We manipulate the integrand appearing above and insert a dummy variable (;32.

dga,rexp [~U(da,) — W(oa,|Sa;)]
RZ, (¢r,Ak,S)

dparexp [—U(dangzy) — U(dz) — W(daaqz31Sas) — W(0:[Sas)]
Rz, (¢r,Ax,S) (5.7)

ddp,\r exp [_U(¢Ak\{z}) — W (d:|on,) — W(¢Ak\{z}|SA;)]
R? | (¢r,Ak,S)

X exp [—U(d)z) — W(¢:|Sae) + W(<52|¢Ak)]

Now by Lemma [£17 we have

exp [~U(¢.)] < exp |2 + O,
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Now observe that as a consequence of ¢,,\r € R?;(¢r, Ay, S) we have

W(B-lonco)| % PIK —2) (2 +3)
Ar\{z
<§\|J\|Lléi+§ > Iy

yeAg\{z}

<5 (171282 + 0,)

To bound the second sum on the second line we can proceed just as we did in the proof of (B.3) - one has

that Zz+Aj (;AS?QJ < ;]| for all j = 0 since $eR7,

An identical argument gives
1
(W (¢:|¢a\(zy)| < 3 (1171192 + O1)
Sub-lemma [5.2] gives us that
c 1 T
(W (9:|S3)] < 3 ([T 162 + Or)

Inserting this into our previous expression we have the following inequality valid for all (52 eR:

dp,rexp [—U(on,) — W(¢a,|Sac)]

R? | (¢r,Ag,S)
9 4 7 2 3
< exp | =5¢: + [Jpdz + O+ 5O
~ 1 - .
| U)Wl - W (nlSn) + 5112

Rz | (¢r,Ar,S)

(5.8)

Now we integrate both sides of the bound with respect to QEZ weighted by the probability measure

{dg. o RUCARUCAEN]
Jddoxp [ ~U(6:) ~ W (el

Below we introduce some new notation: ¢} to denote ¢x,\(z} A ¢-

291



1
_ 3 . . ~
exp [—gd)ﬁ + |92 +O1 + 201] (Jdcﬁz exp [—U(¢z) - W(¢Z|SA;)])
o

<o [ donaren[-U0) - wlsy)]
D) RZ | (¢r,Ak,S)

- 1 - .
X exp [—U(%k\{z}) — W(zldangzy) = W (dag231Sas) + 2|J||L1¢§]
-1
= oxp [—gdﬁ T2 + 01+ 301] ( | db.exp |-G - W(&zlsm])
>

_ 1 .
«fab. [ donarew[-UeR) - W (@8,15h)]exp | 51710082
= R? | (¢r,AL,S)

1 - - 3
<A x sup <exp [|J|L182]) X exp [—g(ﬁﬁ + HJHL1¢§ +0; + (91]
SEX 2 2 2

x j dd. j déar exp [-U(64,) — W6k, 155,)]
= RZ | (¢r,Ax,S)

Note that in the last inequality above we use statement (ii) of Sub-lemma 52l We then have the bound:

1
Z(A]S) J doparexp [-U(pa,) — W (o4, |SA;‘)]

RZ | (¢r,A,S)
- 3
< A 1 x 0y xexp [—gqbﬁ + HJ||L1¢§ + 01 + 2(’)1]

1

X Z(TM Jdaﬁz J dop,\r exp [—U(qﬁ}’;k) — W(¢j§k |516\k)]

> Rz (¢r,Ak,S)

- 3
<A1 x Oy xexp [—g¢ﬁ + HJ||L1¢5§ +0; + 201]

! 5 * * c
X m !d¢z J‘ d¢A1€\F exXp [_U(¢Ak) - W(¢Ak |SAk)]

RAE\T

_ _ 3 ;
<A x Oy x oxp |~ S0t 17162 + 01 + 501 SRV 0r 0 19)

This proves the sublemma.

Sub-Lemma 5.4. Suppose that ¢ = 0. Let k be a non-negative integer. Suppose that I' € Ay and S satisfies
at least one of two conditions: (a) S € Xy or (b) S(AS) € RZ for somen < k. Also suppose that z+ A, € Ag.
Then one has the following bound:
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1
Z(M4]9) J dp,rexp [—U(¢a,) —W((bAk\SA;)]
Rz (ér,Ak,S)

g Z q
< exp[(05 = 1) |Aq] exp[ Y (—Eet+ Asldle + )6 +<93)] pa T (614 19)
z€(z+Ag)NT

where we have set

3
Oy := max fds exp [—354 + (Ag|J|pr +1) 8% + 5(91 + 01] ,1
R

Os 1= —log(A) + log(Oy) + log(Os)

Proof:

We start by introducing a vector of dummy variables qNS Ax\(z+4,) into the expression we're trying to bound.

dparexp [~U(da,) — W (6a,|Sxs)]
Rz (¢r,Ar,S)

dop,\r exp
Rz (ér,Ak,S)

—U(@nn\(z+0,) = U(@z4n,) = W(Dtag) [Pai\(z4A,))

= W(pan(z4a0)902) = W(D(z4a,) |SA2)1

= J ddp,\r exp [_U(¢Ak\(z+Aq)) — W(asap)|Pap(s+a,)) — W(¢Ak\(z+Aq)|5A;)]
Rz (ér,Ak,S)

x exp [~U(d(z4a,))] exp [—W(¢(z+Aq)\¢Ak\(z+Aq)) — W(dz4a,)5:) + W((g(z-ﬁ-/\q)‘d)/\k\(z-#/\q)):l
Once again by .17 we have that
exp [~U(¢(z4n,))] < exp [ Z (*gﬁ + 01)]
ze(z+Aq)

Since we enforce that ¢*+\I' e RZ(¢r, Ak, S) we have that the corresponding ¢ lies in Rq. We then get the
following bound via (G.3]):

(W (Dzrap|Oanz4a0)| = ‘W(qg(z-i—Aq)‘quk\(z-i—Aq))’
2 (] L1 ¢? + O1) .

x€(z+Ay)

<

N |
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By Sub-lemma we have:

1 _
(W (dza,)Sns)| < 3 DT (1 er¢2 +01).
ze(z+Aq)
We also have
~ 1 _ A
W(¢(z+Aq)|¢Ak\(z+Aq))‘ <5 Z J(z —y) (¢i + ¢72,)
z€(z4+Aq) y(z+Aq)
1 -~ 1
<3 > ||JHL1¢3;+§ > PR EE))
z€(z+Aq) ze(2+Aq) y¢(2+4Aq)
1 -~ 1
LY WeEer Y Y I
ze(z+Aq) z€(z+Aq) y#(2+A7q)
1 _
<5 > (1l +01)
ze(z+Aq)
In going to the second line we used ultrametricity to note that |z — y| = |z — y|. In going to the last line

we used (53) and the fact that ¢ € RZH'

With these bounds in mind we have the following inequality which is valid for any é(ﬁ Ay € R(z+A%),

dpp,rexp [~U(da,) — W (éa,]54s) ]
RZ(¢r,Ak,S)

< J déa,\r exp [_U(¢Ak\(z+Aq)) = W(snyldanzra,) — W(¢Ak\(z+Aq)|5A;)]
Rz (ér,Ak,S)

_ 1.- -~ 3
X exp I Gh | T2+ < T2+ S0s + Oy
z€(z+Ay) 2 2 2

< exp [—4[Aq] J dop,\r exp [_U(¢Ak\(z+Aq)) — W (d(arap|dap+a,) — W(¢Ak\(z+Aq)|5A;)]
Rz (¢r,Ak,S)

- 1, - 3
xexp| ) (—3&; + (11 +1) 67 + 5110 d7 + 501 + 01)
ze(z+Aq)

(5.9)

In going to the last line we used that within our above integral the requirement that ¢, € R;(¢p, A, S)

means that

exp Z ch exp [—1g[Aq[] =1

ze(z+Aq)
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We now enlarge the domain of integration on the last line of (9] and continue to make more estimates:
dp,rexp [=U(oa,) =W (da,]Sa¢) |
Rz (¢r,Ak,S)

< exp [—tg[Aqgl] J dop,\r exp [—U(¢Ak\(z+1\q)) = W(snyldanz+a,)) — W(¢Ak\(z+AQ)\SA;)]

RAR\D

_ 1 - . 3
X exp Z <*g¢i + (HJ”Ll +1) P2+ §HJ”L1¢§ + 501 + 01)
ze(z+Aq)

= 3
- ewlvadew | N (<get+ (Ulw + 1) e+ 501+ 0)

z€(z+Ag)NT

= 3
X J d¢(z+Aq)\F exp Z <_g¢i + (HJHLI + 1) (bi + 501 + 01>

R(=+Ag\D ze(z4+Ag)\I'
1 - -
xexp | §\UHL1¢§ J AP\ ((24+A,)0T) €XD l = U(dan(10y) = WDz |dan+a,))
ze(z+4) RARN(z+Ag)0T)

- W(¢Ak\(Z+Aq) SA;)‘|

z = 3
< exp [— g Ag[] x OIFFTANT S exp > (—g¢i + (|2 +1) 2 + SO0+ 01)
z€(z+Aq)NT

L _
xexp | Y, 5 1wél f AP A\ ((+Aq)0T) EXD l ~ Unac+ag) = Wdrnnfan+an)
z€(z+Aq) RAK\(z+Ag)0T)

— W(dn,\(24A,) SA;)}

(5.10)

We will integrate the bound of (LI0) with respect to ¢(.44,) weighted by the probability measure

§  dbria,) - exp I:_U((Jg(erAq)) - W(&(z+Aq)|SAE)]

(2 +Aq)

§  doiqa,) exp [*U(QE(HA(I)) - W(qg(z+Aq)|SAi):|

(2 +Aq)
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To keep expressions shorter we just work with the very last line of (EI0).

-1

d(z4n,) €XP [*U(é(zmq)) — W (d(sra,) \SA;;)]

»(=+Aq)
X J dd(s1a,) J dPp\((z4Ay)0T) €XP [*U(sf;(erAq)) - W(Q;(z+Aq)|SA§)]
$(z4+Aq) RAR\((z+Ag)wT)

1,- ~ N
xexp | . §|\J\|L1¢i exp [—U(%k\(zmq)) — W( s dan(z+4,) — W(¢Ak\(z+Aq)|5A;)]
ze(z+Aq)

1 . [Aql
<Al (sup {exp [|J|L152] })
seX 2

x J dp(+a,) f dPa,\((2+A,)0T) €XD [—U(Qg(zmq))—W(QB(ZMQ)\SA;)]

$(z+Ag) RAKM(z+Ag)0T)

X exp [—U(¢Ak\(z+,\q)) — W (e sap|Pap(z+a,) — W(¢Ak\(z+Aq)|SA§,)]

_ Aq b
< Al ol J dd(=1n,) f dpn\((=+qor) exP [U(R,) = W(SR, [Sag)]
s(z+Aq) RAE\((z+Ag)0T)
(5.11)

Above we use the notation d)j“\k = QAp\(24Ay) A P(z14,)- We end up with the following bound:

1

Z(A4)S) f da,\r exp [_U(¢Ak)_W(¢Ak|SAg)]

Rz (ér,Ak,S)

: - . 3
< exp [y |Ag[] x OF N XTIl Ol s exp 2 <_g¢i + (1l +1) 6% + 501 + 01)
ze(z+Aq)nT
1 ~ . .

$(z+A¢q) RAE\(z+Ag)uUT)

_ - 3
g exp[—d)q|Aq|] % OLAQ' X )\ |Aq‘ XO|2A‘1‘ Xexp Z <g¢i+ (HJHLI +1) ¢i+201+01>
ze(z+Ag)nT
T\(z+A4
X PAi( " )(¢F\(2+Aq)|S)'

This finishes the proof of the lemma. ]

The next lemma handles the case where (z + A,) € Ag - we will then have to require S € X3

Sub-Lemma 5.5. Suppose that ¢ = 0. Let k be a non-negative integer. Suppose that I' < Ay and that
S e Xy. Also suppose that (z + Aq) € Ax. Then one has:
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1
Z(A4]S) J dpp,rexp [—U(¢a,) —W(¢Ak\SA;)]
Rz (ér,Ak,S)

1 z
<ow|(Os- i) l|ew | X (“Get+ (aldlu + 162+ 02) [T orany 19
z€(z+Ag)nT

Proof:

We start by introducing dummy variables QEAW(H A,)- We then have

dpa,rexp [=U(¢a,) = W (4, |9¢)]
R (¢r,Ar,S)

= J dp,\r exp [_U(¢Ak\(z+Aq)) - W(Q;Akm(z+Aq)|¢Ak\(z+Aq)) - W(¢Ak\(z+Aq)‘SAi)]
Rz (¢r,Ak,S)

x exp [=U(dp,n(z4a,))]

X exp [*W(%m(zmq)|¢Ak\(z+Aq)) — W(ba,n(z+a,)191e) + W(Q;Akm(z+Aq)|¢Ak\(z+Aq)):|

By arguments analagous to those used in Sub-lemma 54 to get to the first bound of (50) we have that

f db,p exp [T (6a,) — W (6,158 )]

Rz (ér,Ak,S)

< f dop,\r exp [_U(¢Ak\(z+Aq)) - W(&Akm(z+Aq)|¢Ak\(z+Aq)) - W(¢Ak\(z+Aq)|SA;)]

(5.12)
Rz (ér,Ak,S)

g = | 3
X €Xp Z <_2¢i+J|L1¢92c+2|JL1¢§;+201+01>
€A N (z+Aq)

Now note that over our domain of integration gzg = ¢r N Pa,T A Shc € R; with ¢ = 0. In this case we
have that

DI+ D Si= D R =glA (5.13)

zeALN(z4+Aq) z€(z+Aq)\ Ak z€(z+Aq)

On the other hand since S € X; one has
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R
N

Y, log.(=|)

z€(2+Ag)\Ax z€(z+Aq)

> log, (p%) (5.14)

z€(z4+Aq)

1
= 5¥alAq]

N

In the above bound we used the claim ||z < p? for all z € (z + A,) which we quickly justify now. Note
that by the ultrametric property any two closed balls in L are either disjoint or one is completely contained
in the other. In particular since (z + Ay) N Ay 2 {z} we must have that Ay is a proper subset of (z + A,)

(remember that this lemma assumes (z + A,) & Ag).

This means there exists a y' = z + y with y € A, and ||| > p*. However |y/| < max(|y|,[z]) <
max(p¥, p?). Thus it must be the case that p? > p¥ which means z € A,. Since A, is closed under addition
we have that z + A, = A,. This proves the claim.

We can then combine (EI3) and (BI4) to see that

1
exp DI TR
€A N (z+Aq)

Inserting this into (BI2]) gives us

da,rexp [~U(da,) — W (64,154¢)]
RZ(¢r,Ak,S)

1 By
< exp [21/)q|1\q|] J dp,\r exp [*U(chk\(erAq)) = W(Papnz+a) [ PaN(z40,)) — W(¢Ak\(z+Aq)|5Ag)]
Rz (ér,Ak,S)

i Lo - 3
xexp | ), (gebi + (1 ler + 1) 6% + 511 + 501 + 01>
zeALN(z+Aq)

(5.15)

We now integrate the bound of (BEI5]) with respect to QBAm(er A) Weighted by the probability measure:

§ d(;Akﬂ(z-&-Aq) “o-exp [_U(Q;Akm(z+Aq)) - W(QEAkm(z+Aq) |SA;)]

AL (z+Aq)

§ ddaga(ara,) XD [_U(éAkr\(z-&-Aq)) - W(éAkr\(z+Aq)|SA§)]

AR (z+Aq)

We can then perform the same estimates we performed in (EIT]) which will give us the bound:
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1

Z(A4]S) J doprexp [~U(ona,) — W (¢a,]Sa¢) ]

Rz (ér,Ak,S)

1 z _ n(z
< exp [_Q%Mq] « OIAENGEANT] 3 —hin(e+A0)] 5 RN (A

- 3
<o | N (<get+ (Ml + 1) e+ 01+ 0)

z€(z4+Ag)nT
1 -
X Z0S) f dPA, (2 4A,) f dpa\(=+A)0m) exp [~U(0F,) = W (83, 157)] -
$AE A (z+Aq) RAEN(2+Ag)UT)
Note that here we use the notation qu’{k = gZN)Am(HAq) A PA\(2+4,)- The lemma now follows. .

We can now prove Lemma I8

Proof of Lemma
Define

Og :=sup (—%s4 + (Ag|J| g + 1)s% + (’)3)
seR

5 :=0 + log (1 + Z exp [(05 - ;%) quD
q=0

Note that limg_,q ((95 - %wq) = —o0 so the sum in the definition of ¢§ is finite. We also note that Og,
6> 0.

We prove the statement of the lemma by inducation on the cardinality of I". For the base case first
assume that I' = {z}. Then by sub-lemmas (.3l we have that

{z} 1 S _ _ .
Pi: (8:19) =Z 375 q;1 RZ(JA . a2y exp [<U(da,) — W(da,|Sas)]
<exp [f%d)ﬁ + (96] + Z <exp [((95 — ;¢q> p3q] exp [f%gbg + (96]>
q=0

= exp [—%qﬁﬁ + 6] .

Thus the statement of the lemma holds for T' with |T'| = 1. Suppose that the statement of the lemma
holds for all T with |TV| = n. Let T have cardinality n + 1. Fix some z € I". Then by sub-lemmas

we have that
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A Z(AKlS) :Z f dpa,rexp [~U(da,) — W(da, |Sa;)]

pAk (¢Z|S
RZ(¢r,Ak,S)

<exp [—%Qﬁ + (96] PA}} }(¢r\{z}|5)

+ Z exp [(05 — ;l/fq) psq] exp Z
q=0

~292+ 05 ) | P (61 14 19)

zel'n(z+Aq)

<exp| 402+ Os|exp | Y (902 +9)

zel'\{z}
o0
+ Z exp [((95 — ;¢q> pS‘I] exp Z (f%d)i + (96) exp (*%Qﬁ + 5)
q=0 zel'n(z+Aq) zel'\(z+Aq)
<exp lz (—%qﬁi + 6)]
zel
O

This finishes the proof of Lemma 18]

5.4.2 Proof of Lemma 4.21]

Fix A € L and let N be such that the marginals {{, A }n>n are uniformly absolutely continuous with

respect to Lebesgue measure on R*. We will prove that for any Borel set B < R® one has

im i, A(B) = pua(B).

n—0o0

We start by proving the claim for compact sets C' = R*. We first fix such a C' and note that it is possible

to find a family of continuous real valued functions {f;} on R* such that

1. For all n one has 0 < f; <1

2. The functions f; decrease (in j) to 1¢ pointwise where 1¢ is the indicator function of the set C'

3. There is a compact set K > C' such that for all j one has that the supports of the f; lie within K

For example, one can define g, : [0,0) — R as g,(s) = min(1l — £,0) and then set f,(z) = gn(d(z,C))

where d(z,C) = inf e |z — yl.
Now let € > 0. Note that by assumptions (b) and (c¢) above and by the assumption of uniform absolute
continuity we can find M such that for all m > M one has sup,= y fina({z € R* 1 fir(2) = 1o(z)}) < e

Then for any n > N and sufficiently large m we have
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s (©) = 1r(©)] < [ ditnaltc = ful + | [ dina fon = [ din fon] + [ dialfn 1l
RA RA RA RA
By our assumptions the first term above is uniformly bounded by €, the last term can be made small by
bounded convergence theorem by taking m larger, and the second term can be made arbitrarily small by

taking n sufficiently large by local weak convergence.

We have proved (.42 for compact sets. Now let B be an arbitrary Borel subset of R* and let € > 0.
Then since pp is a regular Borel measure there exists compact C; < B such that us(B\C1) < e. By the
regularity of Lebesgue measure on R* and the uniform absolute continuity of the measures {{tn.A}n=n one

can find compact Cy B such that for all for all n > N one has p, A (B\C2) < e. Then one has

|t A (B) — pa(B)| < |pn,a (B\(C1 U C2))| + |a (B\(C1 U C2))| + |pn,a(C1 U C2) — pa(Cr U Cs)

The first two terms above can each be bounded by e and the third term vanishes as n — o0 since we
proved (5:4.2) for compact sets. O
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