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Automated Volumetric Skull Segmentation Utilizing Ultra Short Echo Time
Magnetic Resonance Imaging for MRgFUS

by SAMARTH SINGH

Transcranial Magnetic Resonance guided Focused Ultrasound (tcMRgFUS) is a
noninvasive treatment method which involves deposition of sonic energy us-
ing ultrasonic beams in the neurocranium region to achieve thermal effects (e.g.
tissue ablation, hyperthermia), mechanical effects(e.g. blood-brain barrier per-
meabilization,clot dissolution, tissue homogenization), and physiological effects
(e.g. neuromodulation). The skull, made out of predominantly cancellous and
cortical bones, presents itself as an acoustic barrier to this ultrasonic energy. The
skull absorbs ultrasound to an extent, heating up and also causing the sonic
beams to scatter from the intended target. It is extremely critical from a treat-
ment standpoint to ensure the focal point decided upon for thermal energy
deposition is the only region which is sonicated, since the treatment efficacy
and outcome depends on the same. Current skull extraction methods involve
a prior computed tomography(CT) of the patient undergoing treatment, which
provides a bone map for correcting the Focal Ultrasound transducers’ phases to
ensure accurate energy deposition. Previous work has shown Ultrashort Echo
Time(UTE) Magnetic Resonance(MR) imaging allows us to visualize the skull in
a patient, and sonication efficacy was improved for tcMRgFUS procedures with
accurate, albeit ad-hoc estimation of the skull. In this work, we propose a com-
pletely automated volumetric skull extraction algorithm that operates on UTE
MR scans of a patient, and extracts the skull utilizing stochastic image modeling
and segmentation techniques such as Gaussian mixture modeling, expectation
maximization, Markov random fields and least squares optimization.UTE MR
volumes were compared with co-registered CT ground truth for 7 subjects who
underwent essential tremor (ET) treatment. Dice coefficients varying from 0.721
to 0.817 were obtained.This work has the potential of integration in a clinical
workflow for tcMRgFUS treatment, saving costs both in money and time for the
patient, while involving zero harmful ionizing X-Ray radiation.
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Chapter 1

Introduction

1.1 Transcranial MRgFUS and Clinical Applications

Transcranial Magnetic Resonance guided Focused Ultrasound(MRgFUS) is a
minimally invasive treatment approach that involves deposition of sonic en-
ergy at a specific target located within the brain. A Magnetic Resonance(MR)
image allows a neurosurgeon to target specific tissue sites in the patient, while
monitoring in real time, the energy deposition from Focused Ultrasound (FUS),
thereby ensuring no harm is caused to neighboring tissues and the patient. By
integrating FUS and MRI in a single therapy method, MRgFUS offers a non in-
vasive and safe alternative to surgical resection or radiation therapy of benign
and malignant tumors [1].
Depending on the treatment approach, MRgFUS can induce thermal effects (e.g.
tissue ablation, hyperthermia), mechanical effects (e.g. blood-brain barrier per-
meabilization, clot dissolution, tissue homogenization), and physiological ef-
fects (e.g. neuromodulation)[2]–[4]
MRgFUS has the potential for treatment and management of a variety of neuro-
logical as well as psychiatric disorders[5][6], Fig 1.1 shows transcranial ablation
targets along with the specific psychiatric disorders that can be treated. As can
be observed, specific ablation targets have the potential of treating/managing
specific diseases/disorders.[7]–[9]
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FIGURE 1.1: Psychiatric Disease Ablation Targets : Courtesy FUS
Foundation

1.2 Working Principle of MR guided Focused Ultra-
sound

A typical MRgFUS setup is shown in Fig 1.2 . The sagittal MRI shows the pa-
tient’s head immersed in a water bath, and surrounded by a hemispherical FUS
phased array transducer. The MRI is used for specific targeting of tissue in the
brain (depicted by the red spot). During the non invasive procedure, the abla-
tion target is monitored constantly to ensure efficacy of the treatment. The water
bath depicted in Fig 1.2 has two roles – it provides a medium for the ultrasound
waves to propagate and is used for cooling of the skull during the procedure.
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FIGURE 1.2: MRgFUS Setup : A sagittal MR slice of a patient head
inserted in a FUS transducer suspended in water bath. The FUS
transducers focus ultrasonic beam at a specific target in the neuro-

cranium

The MRgFUS procedure can be used to target tissues for ablation as small as
1x1.5mm to 10x16 mm. [7]

1.3 Transcranial MRgFUS and the Skull – a Challenge

The skull provides an acoustic barrier for the FUS beams to propagate success-
fully to the tissue target in the brain[8]. The FUS beams are generated using a
helmet-shaped hemispherical transducer (Fig 1.3a,1.3b), using between 750 and
1000 individual elements to distribute the ultrasound energy over a large skull
surface area. However, the presence of the skull compromises the efficiency of
transcranial FUS therapy. The heterogeneous nature and acoustic characteristics
of the skull induce significant phase aberrations and energy attenuation, espe-
cially at the higher acoustic frequencies employed in transcranial FUS(tcFUS).
These aberrations have the potential to distort and shift the acoustic focus of
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(A) FUS Transducer : Front View

(B) FUS Transducer : Side View

FIGURE 1.3: FUS Transducer

the FUS beams, as well as induce heating at the patient’s scalp and outer cor-
tical bone[9] .The individual transducer elements have their phase corrected to
account for the heterogeneity of the skull through which the sonic beams tra-
verse[10].
The term ‘calvaria’ is used to describe the upper part of the neurocranium (brain
cavity). Transcranial FUS beams must be focused through the calvaria at the
thermal energy deposition target. The correction in phase of the individual
FUS transducer elements depends on accurate knowledge of the geometrical
arrangement of bone in the beam path. Currently, CT scans taken prior to MRg-
FUS treatment are used to construct the required bone maps. Another important
metric is the skull density ration (SDR), which is the global average of the ratio
between the radiodensity in CT Hounsfield units of cancellous to cortical bone
within the calvaria[11].

1.4 Using MRI for imaging the Skull

In current MRgFUS procedures, a bone map for the patient is obtained using
CT. Based on this bone map, the FUS transducers’ phase is adjusted to ensure
accurate deposition of energy at the desired focal point. The use of CT exposes
the patient to ionizing radiation, besides adding time and cost to the treatment.
Magnetic Resonance Imaging has been traditionally used to observe soft tissues
within the human body. Recent advancements in pulse sequence development
have allowed researchers to observe harder tissues (bone, tendon,ligaments) ef-
ficiently, utilizing a clinically compatible pulse sequence called Ultra Short TE
sequence[12]. Fig 1.4 represents a series of images with varying contrasts ac-
quired using a UTE Dual Echo pulse sequence from the Miller Lab.
The UTE pulse sequence yields two inherently co-registered 3D image sets : one
at ultrashort echo time having non-zero bone signal (short TE) Fig 1.4 a), and
the other at a longer echo time having near-zero bone signal Fig 1.4 b). The
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FIGURE 1.4: UTE MR Sagittal images utilized for algorithm. Short
TE image is I1, Long TE image is I2. Arithmetic combinations are
further shown, with the skull becoming visible as a bright white

rind in asymmetry image
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difference between these images shows bright bone signal but also highlights
subcutaneous fat in the scalp Fig 1.4 c) . Dividing the difference by the sum
(Diff/Sum), the asymmetry image volume suppressed the fat signal, enhancing
bone conspicuity Fig 1.4 d).
A single clinical workflow could be incorporated if the MR system used for
guidance in FUS procedures is also used for generating a bone map for the pa-
tient using UTE imaging - thereby ensuring the patient does not get exposed
to ionizing radiation, and also saves on time and money on the MRgFUS pro-
cedure.Furthermore, with a bone map available, aberration correction for FUS
procedures would be performed more efficiently. This would eventually lead to
a much more efficient and streamlined clinical outcome for the patient and the
healthcare provider.

1.5 An Automated Skull Extraction Algorithm

By integrating a UTE MRI pre-scan in the MRgFUS clinical workflow, we hy-
pothesize that accurate representations of the skull can be obtained (as shown
in Fig 1.4 a) – d)). An automated volumetric skull extraction algorithm can be
integrated on the MRgFUS system itself, providing a skull map, which could be
used for accurately correcting the phase of each individual element in the FUS
transducer. This would enhance patient comfort by ensuring harmful ionizing
radiation dose is reduced to zero, and also provide a single clinical workflow for
the patient and the caregiver.
In this thesis, we present a volumetric skull extraction algorithm developed
utilizing MATLAB (The Mathworks, Natick, MA) that is completely auto-
mated. It utilizes different contrasts made available from a UTE Dual Echo pulse
sequence developed in the Miller Lab @ UVA, and yields a skull map which is
compared with co-registered CT data. We tested our algorithm on seven dif-
ferent subjects who previously underwent essential tremor (ET) treatment. We
provide DICE coefficients as a metric to discuss our current accuracy obtained
compared to the CT ground truth, and present viewpoints on further improve-
ments that can be incorporated to ensure efficacy of this algorithm for use on a
regular basis on clinical MRgFUS systems.
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Chapter 2

Data Acquisition

2.1 The MRgFUS System used

As mentioned previously, the MRgFUS consists of two important hardware com-
ponents – an MRI system for “guidance” and a Focused Ultrasound system for
sonic energy deposition. This integrated system is shown in Fig 2.1

FIGURE 2.1: MRgFUS System : Insightec ExAblate Neuro 4000 in-
tegrated with GE 1.5T MRI Scanner

An Insightec ExAblate R©Model 4000 neurosurgery platform (FUS system) avail-
able at the UVA Health System was used for the MRgFUS treatment for the 8
subjects. The FUS transducer is a phased array, piezoceramic helmet with 1024
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elements operating at a frequency of 650 kHz. The caregiver can utilize this sys-
tem to focus ultrasound at transcranial locations as minute as 2-5 mm, with a
focal accuracy of <1 mm [13]. This system utilizes a GE Signa 1.5T MRI Scanner
for image guidance.
The images used for this thesis were obtained using the Siemens Trio 3T Scanner
in the Snyder Building at the Fontaine Research Park, Charlottesville, Virginia,
The United States of America. An ultrashort dual echo UTE sequence developed
at the Miller Lab was run on the scanner to obtain the volumetric dataset for the
development of the automated skull extraction algorithm

2.2 MRI Pulse Sequence used for Skull Imaging

A 3D dual echo UTE pulse sequence with radial acquisition was used with echo
times(TE) of 0.8ms and 2.5ms. This pulse sequence is depicted in Fig 2.2

FIGURE 2.2: Dual Echo UTE Pulse Sequence : Courtesy Miller Lab

A UTE sequence in MRI is a steady state spoiled incoherent gradient echo se-
quence with very short repetition time TR. The signal in a voxel for a volume
collected using this pulse sequence is given by [14]

ρ̂(θ, TE) = ρ0 sin(θ)
(1− E1)

1− cos(θ)E1
E2 (2.1)

where

E1 = exp(
−TR

T1
)

and

E2 = exp(
−TE

T∗2
)

In the above equation, ρ̂(θ, TE) indicates the voxel signal intensity as a func-
tion of echo time and flip angle (longitudinal magnetization is ’flipped’ into the



2.3. The Dataset 9

transverse plane by an amount proportional to the sine of this angle) applied by
the RF pulse. ρ0 represents voxel spin density. There are four terms related to
time, which lay the foundation of signal evolution in MRI. These terms are pulse
repetition time TR (entire duration of the block shown in Fig 2.2), T1 (physical
time constant representing exponential rate of longitudinal magnetization re-
covery in MR), T2* (physical time constant representing exponential decay of
transverse magnetization due to spin-spin interactions and magnetic field inho-
mogeneities) and echo time TE (time at which signal is sampled). T1 and T2*

depend on the tissue type as well as the scanner field strength(1.5T or 3T gener-
ally). In a dual echo UTE pulse sequence, as described in Fig 2.2 , ’dual’ implies
the signal emanating from tissues is sampled twice, at two different echo times.
When TR<5T1 [15], the signal gets T1 weighted. Therefore, UTE MR images are
T1 weighted inherently. However, bone has a very short T2*, which necessitates
’ultra short’ echo times to sample the signal. An illustration of the same can be
better understood from Fig 1.4. In Fig 1.4 a), the TE is short, and bone and fat
appear to have similar intensity(due to T1 weighting). However, at the longer
TE, bone signal dies out,whereas fat remains bright. It is this unique contrast
between bone and the rest of the tissues that allows arithmetic combinations to
yield visually appealing cranium maps, comparable to CT (which is considered
the ground truth in modern clinical applications for bone)
This pulse sequence is advantageous to use since it provides two co-registered
images with multiple contrasts, specifically between bone and rest of the tissues
in the head. The shorter of the two echoes yields high signal from bone, whereas
the longer echo time yields 0 bone signal as can be observed from Fig 1.4 b) in
Section 1.4

2.3 The Dataset

Seven subjects who underwent ET treatment were also scanned using the dual
echo UTE sequence depicted in Fig 2.2. Besides the MRI scan, these patients had
also undergone a prior CT scan to ensure accurate cranium estimation for their
treatment. Therefore, our final dataset included seven UTE MRI volumes which
were co-registered with seven CT scans. Fig 2.3 represents the co-registered UTE
MRI data with the CT data along axial, sagittal and coronal dimensions.
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FIGURE 2.3: 3D Volumetric UTE MR Data : Axial, Sagittal and
Coronal Slices depicted from a) through c)
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Chapter 3

The Automated Volumetric
Segmentation Algorithm

3.1 Challenges in Segmentation of UTE MR Volume
Images

The signal intensity measured from homogeneous tissue using MRI is seldom
uniform. This intensity inhomogeneity arises due to poor RF coil uniformity[16],
gradient-driven eddy currents, and patient anatomy both inside and outside
FOV. While these intensity inhomogeneities (ranging from 10-20%) have min-
imal impact on visual diagnosis, the performance of automated segmentation
techniques which assume homogeneity of intensity within each tissue type can
be significantly degraded[17].
The current dataset was collected using a 16 channel head coil. The spatial sen-
sitivity of the coils plays a key role in estimating the intensity inhomogeneity
that arises in MR images, since tissues of same type can appear bright or dark
depending on which coil was most sensitive spatially to its presence. Fig 3.1
depicts two major challenges in the segmentation of UTE MR image volumes
: intensity inhomogeneity, and bone intensity matching background noise in
asymmetry image.
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FIGURE 3.1: Two major challenges in UTE MR image volume
skull segmentation

The intensity non-uniformity indicates that same tissue types (which are ex-
pected to have same tissue intensity due to signal evolution in an MR image)
have variable intensity depending on their spatial location. This could lead to
errors in algorithms which do not correct this intensity inhomogeneity and uti-
lize histogram based segmentation methods.

3.2 Mathematical Model of MR Image Volumes with
Intensity Inhomogeneities

As discussed in Section 3.1 , MR images suffer from intensity inhomogeneity
variation due to varying spatial sensitivities of multiple coils used for acquisi-
tion of data. This intensity inhomogeneity is generally modeled as a multiplica-
tive field that systematically corrupts the underlying signal[18], which is the
desired MR Image Volume. This mathematical model is given by Equation 3.1

I(r) = B(r)J(r) + η(r) (3.1)

where r ∈ R3 is the set of voxels present in the image volume.I(r) represents the
observed image volume, B(r) represents the bias field, modeled as a smoothly
varying function over space r, J(r) is the desired image volume, and η(r) is the
additive white Gaussian noise. The measurement of B(r) is challenging and
time consuming in real time, requiring phantom calibrations, multicoil spatial
sensitivity analysis and also special pulse sequence designs[19]. Therefore, we
decided to proceed with estimation of B(r) using underlying statistics of the
data obtained. Our algorithm combines stochastic image modeling techniques
such as Gaussian mixture models and least squares optimization for estimating
tissue intensity in K classes and Markov random fields to incorporate spatial
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constraints on the tissue class assignment. The following assumptions about MR
images have been made, which are reasonable in context of data available[20].

• MR Images are theoretically piecewise constant with a small number of
classes. This implies that the signal arising from tissues of same type must
be same (as the signal is dependent on tissue properties itself, as described
in Section 2.2) , and the total number of tissues available in an MR image
are finite (as there are finite tissue types within the human anatomy).

• High contrast availability between different tissues (in this case specifically
bone and not bone) allows segmentation algorithms to function efficiently.
An example of the variety of contrasts available with Ultra Short TE MRI
has been depicted in Fig 1.4 a)-d) . By carefully choosing echo time in the
pulse sequence design, signal from a variety of tissues can be obtained
with appropriate contrast based on eventual requirements.

3.3 Mathematical Derivations for the Algorithm

Restating the problem mathematically from Equation 3.1(each term has been
defined in Section 3.2)

I(r) = B(r)J(r) + η(r)

We consider five types of image volumes for each subject, which are listed be-
low. Sagittal slices referring to these image volumes have been displayed in Fig
1.4. It is important to note only two of these five image volumes are physically
acquired. The other three are obtained through arithmetic combinations.

• I1 : Short TE of the Dual Echo UTE sequence, fat and bone both have non-
zero signal at ultra short echo times.

• I2 : Long TE of the Dual Echo UTE sequence, fat still has non zero signal
while bone has zero signal due to an extremely short T2*.

• I3 : Sum of I1 and I2, increased SNR due to signal averaging principles.

• I4 : Difference of I1 and I2, fat and bone are the only tissues with bright
signal.

• I5 : Self normalized image volume obtained by dividing I4 by I3. Yields
an appreciable non zero signal in the skull, visually comparable to CT.
Observing this image volume, it becomes essential to separate the bone
from fat tissue.
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The bias field B(r),as mentioned in Section 3.2, is a smoothly varying spatial
field. A popular approach used for correcting this bias field[21] utilized B-
splines to estimate this smooth variation, a form of polynomial interpolation.
Another approach utilized to measure this smoothly varying spatial field is Leg-
endre’s Polynomials, as used by Li. et al. in [22].
The current implementation of our algorithm uses B-spline approximations for
estimating the smoothly varying spatial field in a cuboid 3D space (all three di-
mensions available from the 7 subjects are unequal to each other). An important
point to be noted is that I5 does not require bias field estimation since the bias
field term gets cancelled in the division process.
The algorithm for skull extraction in the image volumes utilized two separate
steps.In the first step, bias field estimation and correction was performed to get
an initial segmentation comprising of only bone and fat tissue from the skull
image volume. The clique potentials (as described in Section 3.3.8 were not uti-
lized. An energy function, F1 (explained later in Section 3.3.4 was formulated
for Pass 1 of this algorithm.
However, Pass 2 of the algorithm did not utilize bias field correction estimation.
Instead, only clique potential estimation (explained in Section 3.3.8) was per-
formed to ensure majority of the skull could be included in our segmentation
algorithm. The energy function for this step of the algorithm was formulated as
F2 and has been expounded upon in Section 3.3.9.

3.3.1 Important Definitions

• Ω : Domain over which tissue classes are defined.

• r ∈ R3 : Set of voxels before first pass of algorithm - includes both skull
and brain.

• r f ∈ R3 : Set of voxels before second pass of algorithm - includes only fat
and bone tissue extracted post first pass.

• I(r) : Acquired image volume using UTE MRI - corrupted by bias field.

• B(r) : Smoothly varying Bias field which leads to intensity inhomogeneity
corruption. Modeled linearly.

• J(r) : Desired/true image volume, without intensity inhomogeneity cor-
rection. Modeled linearly.

• K : Number of tissue classes present in the image.

• i : i-th class of ’K’ classes.

• ci : scalar representing mean tissue intensity of all voxels ∈ i-th class.

• c: Vector containing ’K’ mean tissue intensities.
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• ui(r) : binary value representing membership of a voxel to i-th class. Equals
1 when voxels belong to i-th class.

• u(r): Vector containing voxel membership values defined over Ω.

• G : Column vector valued function representing basis functions for mod-
eling bias field B. First order B- Splines defined over Ω considered in this
thesis.

• M : Total number of basis functions used to model bias field B.

• wj(r) : Optimal coefficient for ’j’ out of M basis functions.

• w : row vector containing M coefficients for the basis functions defined in
G.

• σi : Standard deviation of voxel intensities in ith class, where i ∈ k, ∀k =
1, 2...K.

• F1(u,c,w) : Energy function to be optimized for first pass of the algorithm.

• Sj(r) : Segmented image volume with ’K’ tissues at jth iteration.

• F2(u,c) : Energy function to be optimized for the second pass of the algo-
rithm. This function does not depend on bias field B.

3.3.2 Modeling True Image Volume J

The piecewise approximately constant property of the true image volume J al-
lows the following modeling. J(r) is approximately a constant ci for r in i -th tis-
sue class. Let ui represent membership function for each voxel such that ui = 1 ∀
r ∈ i-th class and ui = 0 ∀ r /∈ i-th class. The true image volume can therefore
be approximated in matrix form as

J(r) =
K

∑
i=1

ciui(r) (3.2)

3.3.3 Modeling Bias Field B

The bias field B(r), as mentioned in Section 3.2, is a smoothly varying spatial
field. Piecewise polynomials can be utilized to model this smooth variation. M
total B-splines are used for estimating the smoothly varying spatial field. Let
this set of B-splines be represented by a column vector valued function G(r) =
g1 . . . gM The estimation of the bias field is performed by finding the optimal
coefficients w1 . . . wM in the linear combination B(r) = ∑M

k=1 wkgk. Therefore, in
matrix form, B(r) can be represented as

B(r) = wTG(r) (3.3)
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3.3.4 Modeling Energy Function F1 for Pass 1

The energy function F1 is modeled as a Gaussian mixture, which is optimized in
a least squares sense.

F1(u, c, w) = exp[−∑
r

K

∑
i=1
{ [I(r)−wTG(r)ci]ui(r)√

2σi
}2] (3.4)

By taking the negative natural logarithm, Equation 3.4 can be rewritten with
only the argument of the exponential function considered, as follows:

− ln F1(u, c, w) = [∑
r

K

∑
i=1
{ [I(r)−wTG(r)ci]ui(r)√

2σi
}2] (3.5)

Optimization of argument of Equation 3.5 leads to deterministic solutions for
voxel membership values u, vector containing K mean tissue intensities and also
the optimal coefficients for modeling the smoothly varying spatial bias field w ,
as proposed in [22]. We have introduced Gaussian mixture model optimization
to the energy function proposed in [22].It is important to note that maximizing
energy as in 3.5 has the same effect as minimizing the energy in 3.4. This energy
function is convex in each of its variables u, c and w, as defined in Section 3.3.1.

3.3.5 Deterministic solution for binary membership u

The following equation must be solved in order to obtain a deterministic solu-
tion for u.

arg max
u

[− ln F1(u, c, w)] (3.6)

Differentiating argument of Equation 3.5 w.r.t u and equating to 0 yields deter-
ministic solution for u

∂[ln F1(u, c, w)]

∂u
=

∂[∑r ∑K
i=1{

[I(r)−wTG(r)ci]ui(r)√
2σi

}2]

∂u
= 0

=⇒ ∑
r

∂{[(I(r)−wTG(r)ci)ui(r)]2}
∂u

= 0

Applying the product rule of differential calculus yields the following (terms
that are reduced to zero have not been represented)

=⇒ ∑
r

2[(I(r)−wTG(r)ci)
2ui(r)] = 0 (3.7)

From Equation 3.7, the following solutions for ui satisfy
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ui(r) =

{
1 i = imax(r)
0 i 6= imax(r)

(3.8)

where r represents a single voxel ∈ r .

3.3.6 Deterministic solution for mean tissue intensity c

The following equation must be solved in order to obtain a deterministic solu-
tion for c:

arg max
c

[− ln F1(u, c, w)] (3.9)

Introducing bias field B, differentiating argument of Equation 3.5 w.r.t ci and
equating to 0 yields deterministic solution for c

∂[− ln F1(u, c, w)]

∂ci
=

∂[∑r ∑K
i=1{

[I(r)−B(r)ci]ui(r)√
2σi

}2]

∂ci
= 0

The equation above must hold true for all ’i’s’ . Therefore, rewriting the above

=⇒ ∑
r

∂[{ [I(r)−B(r)ci]ui(r)√
2σi

}2]

∂c
= 0

=⇒ ∑
r

2(I(r)− B(r)ĉi)(−B(r))ui(r) = 0

=⇒ ∑
r
[−2I(r)B(r) + 2B2(r)ĉi]ui = 0 (3.10)

Rearranging terms in Equation 3.10 yields

ĉi ∑
r

B2(r)ui = ∑
r

I(r)B(r)ui

Therefore,

ĉi =
∑r I(r)B(r)ui

∑r B2(r)ui
(3.11)

3.3.7 Deterministic solution for the optimal weights w for the
basis functions

The following equation must be solved in order to obtain a deterministic solu-
tion for w:
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arg max
w

[− ln F1(u, c, w)] (3.12)

∂[− ln F1(u, c, w)]

∂w
=

∂[∑r ∑K
i=1{

[I(r)−wTG(r)ci]ui(r)√
2σi

}2]

∂w
= 0

=⇒ ∑
r

K

∑
i=1

∂[{ [I(r)−wTG(r)ci]ui(r)√
2σi

}2]

∂w
= 0

=⇒ ∑
r

K

∑
i=1

∂[{ [I(r)−GT(r)wci]ui(r)√
2σi

}2]

∂w
= 0

=⇒ ∑
r

K

∑
i=1

[2(I(r)− GT(r)wci)(−GT(r)ci)ui(r)] = 0

=⇒ −2 ∑
r
[I(r)GT(r)(

K

∑
i=1

ciui(r)))] + 2 ∑
r

wTG(r)GT(r)(
K

∑
i=1

c2
i ui(r)) = 0

(3.13)
Let

v = ∑
r
[I(r)GT(r)(

K

∑
i=1

ciui(r)))]

A = ∑
r

wTG(r)GT(r)(
K

∑
i=1

c2
i ui(r))

Substituting the above values of A and v in Equation 3.13,

−2v(r) + 2A(r)w = 0

w = A−1v(r) (3.14)

The estimated bias field then becomes,

B = wTG(r) (3.15)

3.3.8 Modeling Clique Potentials using Markov Random Fields
for Pass 2

Neighborhood information for each voxel is incorporated in the segmentation
process by utilizing Markov random field in the second pass of the algorithm.
If Ns is the neighborhood of the voxel at position s ∈ r f , then if S(r f ) represents
segmentation, the following holds true
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p(S(r f )s|S(r f )q, ∀ q 6= s) = p(S(r f )s|S(r f )q, ∀ q ∈ Ns) (3.16)

26 neighborhood voxels are considered, except at the edges of the image vol-
ume, where voxels outside the image volume FOV are not considered. Accord-
ing to the Hammersley-Clifford theorem[23], the probability density of S(r f ) is
given by a Gibbs density which has the following form:

p(S(r f )) ∝ exp(−∑
C

Vc(r f )) (3.17)

The summation is performed over all cliques , C. A clique is a set of points
that are neighbors of each other. The clique potentials Vc depend only on the
pixels that belong to clique C. We only consider two-point cliques, which im-
plies, we considered only a pair of points (the voxel under consideration, and
its immediate neighbor across three levels of connectivity in the image volume).
We define the function Vc (r f ) as follows:

Vc(r f ) =

{
−β S(r f )s = S(r f )q, (s, q) ∈ C
+β S(r f )s 6= S(r f )q, (s, q) ∈ C

(3.18)

The parameter β is positive, so that two neighboring voxels (3D connectivity
of 26 considered) are more likely to belong to the same class than to different
classes. It is the formulation of clique potentials in Equation 3.17, and the re-
moval of bias field estimation in second pass of the algorithm that neatly com-
bines with Equation 3.4 to yield the energy function used.

3.3.9 Modeling Energy Function F2 in Pass 2

F2(u, c) = exp[−∑
r f

K

∑
i=1
{
(I(r f )− ci)ui(r f )√

2σi
}2 −∑

C
Vc(r f )] (3.19)

The method for obtaining deterministic solutions for the above equation remain
the same as Pass 1, with two major differences being:

1) The penalty term introduced by the clique potential.
2) The lack of a bias correction term.
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3.4 Flowchart of the Algorithm

FIGURE 3.2: Flowchart of Algorithm

3.5 Reasoning Behind the Algorithm

The reasoning behind specific steps taken in the algorithm first and second pass
are explained below.
1) First Pass:

• In UTE difference image volume I4 (as defined in 3.2, fat and bone pixels
have similarly bright intensity,muscle and brain tissue are similarly dim,
and air pixels are essentially zero. Therefore, a three - class segmentation
is appropriate, and the brightest class will contain primarily fat and bone
pixels

• The signal distribution within each class is observed to be well approxi-
mated by a Gaussian function. Therefore, Gaussian mixture models are
more appropriate to segment rather than Euclidean distance minimization
approaches as K-means in this case.

• UTE difference image volume I4 is subject to bias field, and hence estimat-
ing and correcting for the same yields a better foreground mask for bone
voxels.
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• The aim of first pass is to generate an overcomplete segmentation. There-
fore, clique potentials (Markov random field modeling for spatial con-
straints) is unnecessary in this step.An empirical observation was that by
including clique potentials in this step, more non-bone pixels were classi-
fied as foreground.

• The skull is a contiguous tissue, so non-contiguous pixels are very unlikely
to be bone. Eliminate them after each pass.

2) Second Pass:

• Bone pixels appear considerably brighter than fat in the self-normalized
UTE image volume I5. However, noise pixels can appear bright too due
to divide by 0 erroneous values. To eliminate these noise pixels, a ’fore-
ground’ mask is obtained from Pass 1

• After noise and brain/muscle tissue are eliminated in Pass 1, the remain-
ing distribution is bimodal.A 2 class segmentation with Gaussian mixture
model yields desirable results

• Since there is a small overlap between the bone and fat distributions, clique
potentials(Markov random field based spatial constrain modeling) helps
in segmenting dimmer bone pixels from brighter fat pixels. Since skull is
a contiguous object, nearest-neighbor weighting is particularly well suited
to this anatomical situation.
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Chapter 4

Results

4.1 UTE MR Skull Segmented vs CT Ground Truth

For obtaining overlap, we consider the logical mask obtained from CT data
where a threshold of 750 Hounsfield unit was applied to ensure bone appears
distinct. The cranium map extracted from our algorithm was converted to a
binary mask.
The results obtained are shown in Fig 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8. The following
index represents the anatomy shown with the overlap maps

FIGURE 4.1: Visual Index for Overlap map
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FIGURE 4.2: Subject 1 Sagittal and Axial Slice Overlap map

FIGURE 4.3: Subject 2 Sagittal and Axial Slice Overlap map
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FIGURE 4.4: Subject 3 Sagittal and Axial Slice Overlap map

FIGURE 4.5: Subject 4 Sagittal and Axial Slice Overlap map
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FIGURE 4.6: Subject 5 Sagittal and Axial Slice Overlap map

FIGURE 4.7: Subject 6 Sagittal and Axial Slice Overlap map
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FIGURE 4.8: Subject 7 Sagittal and Axial Slice Overlap map

Yellow pixels are overlap, magenta are MR only, green are CT only. While
these are only some slices from the volumetric segmentation obtained, we shall
present DICE Coefficients to show overlap extent with CT ground truth in the
following section.

4.2 DICE Coefficients and Runtime Metrics

Sørensen-Dice similarity coefficient for image segmentation were calculated be-
tween UTE MR based cranium segmentation and CT volume thresholded at 750
Hounsfield Unit using MATLAB’s built in ’dice’ function. Runtime metrics were
also recorded for Pass 1 and Pass 2 of the algorithm (Pass 1 and Pass 2 are two
parts of the algorithm as shown in Flowchart 3.2).
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FIGURE 4.9: DICE Score comparison between UTE MR
cranium segmentation vs thresholded CT groundtruth.

The range of DICE scores available were from 0.721 to 0.817, with subject 4
dataset performing the best. We believe the DICE scores are being impacted
by low fidelity in the neck and face region of the head, which do not matter
for tcMRgFUS, thereby providing an opportunity for further improvement by
carefully selecting the FOV for the subject volume, ignoring neck and face.

4.3 Algorithm Performance Metrics

Our metric for performance of our algorithm was the rate of convergence of the
segmentation to a steady state value. It was observed that for majority of the
subjects(5 out of 7), the algorithm allowed for voxel flips reducing to approxi-
mately 0 for Pass 1 in about 13 iterations. However for Pass 2, the voxel flips did
not reduce to approximately 0, but stabilized around the 13th iteration.
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FIGURE 4.10: Plot of voxel flips/iteration for Pass 1. The voxel flips
stabilize around 10th iteration

FIGURE 4.11: Plot of voxel flips/iteration for Pass 2. Unlike pass 1,
the voxel flips stabilize at approximately 50,000 voxels
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Chapter 5

Discussion

A custom, iterative segmentation algorithm has been demonstrated that builds
on stochastic image models , with the following features and capabilities

• Operations performed on a single-contrast image (although could be mod-
ified to apply to multi-contrast images, was not necessary for this situation,
due to two-pass structure of the algorithm)

• A hard segmentation is performed (not fuzzy). However, if need be, a
fuzzifer can be easily introduced in this model based on the concepts pre-
sented in [22]. This may account for intravoxel signal differentiation

• Assumes that a multiplicative smoothly varying spatial field B(r f ) distorts
optimal image J(r f ). This is represented in Equation 3.1 The optimal image
is piecewise constant and is composed of K tissue types.

• Assumes distribution of bias-corrected pixel intensities within each class
is Gaussian

• Bias field estimation and clique potential introduction can be switched on
and off based on the code design

• Using UTE MR images, it is possible to generate DICE coefficients of 0.75-
0.85 when compared to CT registered ground truth data.

A brief yet concise reference for Markov Random Field and stochastic image
models is provided in [24].
As Miller et al. disucssed in [25], sonication using MRgFUS systems was sig-
nificantly improved when the cranium presence was corrected for by utilizing
manual thresholding algorithm – which allowed the researcher to get a DICE
coefficient of 0.8-0.9 with co-registered CT data.Our current algorithm performs
at par with this paper, while being automated. While at this moment , we are
unable to differentiate between cancellous(trabecular) and cortical bone to cal-
culate SDR, we demonstrate the working of this algorithm over multiple slices
and show this holds promise for assisting in tcMRgFUS procedures. Synthetic
CT volume images may be generated succesfully with a bone map when this au-
tomated skull segmentation algorithm is combined with Ultra Short Echo time
MR imaging, thereby improving the clinical workflow for MRgFUS patients.





33

Chapter 6

Limitations and Future Work

While this algorithm has been demonstrated to perform with reasonable accu-
racy on UTE MR data co-registered with CT ground truth for comparison, only
seven subjects were tested. By incorporating more medical image datasets, the
robustness of this algorithm could be tested. At this moment, the algorithm
takes approximately five minutes to execute over a volume of size 446 x 353
x 338. Incorporation of parallelization on a computer with higher computing
power could potentially reduce this further. Dice coefficients could be further
improved if the data is ignored neck and face region of the patient (since tcM-
RgFUS is concerned with the neurocranium for energy absorption and beam
aberration). There is also an opportunity for MR pulse sequence development
in order to quantify the differences between cortical and cancellous bones in the
skull, which form the basis of the SDR. This could be done by utilizing the subtle
differences in the T2* of these bone tissues. Sensitivity analysis of the algorithm
with respect to each variable in the energy function depicted in Equation 3.4
may prove valuable in an attempt to have the complete automated algorithm
implemented on a MRgFUS system in real time.
The Mumford-Shah model for image segmentation combined with a deep learn-
ing approach with unsupervised learning [26] also holds immense value for this
particular research, thanks to the advent in computational resources and deep
learning networks. It is a research area that definitely commends further explo-
ration specifically to skull segmentation using UTE MRI.
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