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Abstract 
Early onset scoliosis is a three dimensional curvature of the spine that occurs in patients 10 years or younger. 
Physicians tend to pursue non-surgical options first. If these are unsuccessful, surgical intervention becomes 
necessary. In scoliosis cases, physicians use total lung capacity as the metric for determining the optimal 
time for surgery. Current standards of treatment do not offer an accurate way for physicians to measure 
total lung capacity for early onset scoliosis patients. This project offers a potential solution to this problem. 
The total lung capacity can be calculated by subtracting the mediastinum volume from the rib cage volume. 
A multivariate linear regression was used to create a predictive equation with patient demographics as input 
variables to predict the mediastinum volume. This equation predicted mediastinum volume at a higher 
accuracy compared to previous work and had a multiple R2 of 0.87. To calculate the rib cage volume, a 
convolutional neural network was built. Using X-ray images, a computer could train itself to identify the 
rib cage. Although the rib cage volume was not calculated, the convolutional neural network was able to 
identify the rib cage to a limited degree. The model built here can be further improved upon to calculate a 
volume. If successfully calculated, the mediastinum and rib cage volumes could be combined to calculate 
the total lung capacity. 
 
Keywords: Early Onset Scoliosis, Lung Volume, Predictive Equation, Convolutional Neural Network

Introduction 
Early onset scoliosis (EOS) is a spinal deformity that 
presents itself before 8-10 years of age1.  The four types of 
EOS are idiopathic, congenital, neuromuscular, and 
syndromic2.  Idiopathic scoliosis has no known cause. 
Congenital scoliosis is present at birth. Neuromuscular 
scoliosis is caused by a systemic condition such as cerebral 
palsy or muscular dystrophy. When scoliosis is part of a 
larger condition, such as Marfan’s Syndrome, it is called 
syndromic scoliosis. While the overall prevalence of EOS 
is unknown, scoliosis has an incidence of two to three 
percent of the US population3,4. While 80% of scoliosis 
cases are idiopathic, idiopathic EOS cases make up less 
than one percent of all scoliosis cases4,5. Although EOS is 
a rare condition, a treatment plan needs to be created for 
each patient. If left untreated, EOS can bring about an 
early death due to pulmonary complications1. 
 
Non-surgical options are often initially used to treat EOS 
to slow progression of the disease6. A common surgical 
option is spinal fusion, which corrects the spinal deformity 
and curvature seen in scoliosis patients. An incision is 
made either through the back or the side of the patient, and 
two metal rods are then placed alongside the vertebrae to 
force it to straighten7. If this procedure is performed too 
early, the patient can develop restrictive pulmonary 
disease8. For this reason, spinal fusion is not a routine 
procedure at a young age. In order to proceed with this 
surgery, it is crucial to determine the total lung capacity 
(TLC) of the lungs. TLC allows the physician to determine 
if the patient will have proper pulmonary function after 
spinal fusion surgery. Two common methods for 

measuring TLC are spirometry or pulmonary function 
testing (PFT), and computed tomography (CT)9. However, 
there are drawbacks to these methods. It is difficult for 
young children or those with disabilities to perform the 
PFT properly. CT scans also have multiple drawbacks. 
They are relatively expensive, subject patients to roughly 
ten times the amount of radiation of an X-ray10. The 
current options for determining TLC offer no clear set of 
rules or indications to perform surgery. Instead, the best 
option is to rely on the doctor’s expertise and experience6.  
 
This project investigates the hypothesis that sagittal and 
coronal X-ray images can be used in combination with 
patient demographics to calculate TLC. While X-rays may 
not be able to identify the lungs, they do display the rib 
cage. By using a convolutional neural network, a computer 
can learn to detect the rib cage from images. From this the 
volume of the chest cavity can be calculated. Patient 
demographics are used to predict mediastinum volume. If 
the volume of the mediastinum, the central portion of the 
thoracic cavity that is not the lungs,  is subtracted from the 
volume of the chest cavity, TLC will be calculated. 

Results 

Creating a Predictive Equation for Mediastinum Volume 
Using Patient Demographics as Inputs 

Calculation of Mediastinum Volume from CT Scans 
Mediastinal volume was computed using the MATLAB 
software package Pulmonary Toolkit. Our work was built 
upon the code of the previous capstone group and needed to 
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be debugged before it was able to run11. In order to make 
handoffs to future groups easier, comments were added to 
the code to make it easier to understand and modify.  

 
The Pulmonary Toolkit uses DICOM files from CT scans 
as its input. It finds the boundaries of both the right and left 
lung and then segments them (Figure 1). Each slice of  
the CT scan is examined and the area in between the lungs 
is calculated (Figure1). The mediastinum area of each slice 
is used to compute the volume.  
 
Our group was provided with some initial calculated 
volumes but they lacked information on patient height. Our 
team hypothesized that height may be an important 
predictor of mediastinum volume, and in order to pair it 
with the appropriate volume, new volumes needed to be 
calculated. A total of 80 CT scans were used to create the 

predictive algorithm. Some scans were not used because 
they either lacked important patient demographics or were 
unable to be segmented.  
 
Validating Mediastinum Volumes 
CT scans can be used to estimate mediastinum volume, but 
they cannot provide the true value. Our team did not have 
access to the true mediastinum volumes, and  without them 
it is difficult to validate the calculated volumes. The heart is 
the largest component of the mediastinum, and therefore, 
heart volumes from literature were used to make sure our 
calculated values were reasonable12. The volumes from the 
literature are reported in averages and are organized by 
weight and gender. Since cardiac volume is an 
underestimate of mediastinum volume, it is expected  that 
our calculated volumes should be greater than the cardiac 
volumes. Our calculated data set did not have enough data 
points to compare exact weights so ten pound ranges 
centered on the target weight were used. As seen in 
Supplemental Table 1, most of the calculated mediastinum 
volumes were found to be significantly greater than the 
cardiac volumes. The calculated mediastinal volumes being 
larger than their component part does not completely verify 
them, but it shows that our data is not a gross underestimate. 
An underestimate of mediastinum volume would lead to an 
overestimate of TLC. This could have negative 
repercussions for the patient if their operation resulted in 
restrictive pulmonary disease due to their actual TLC being 
too low for the operation. The larger p-values in 
Supplemental Table 1 are likely due to small sample sizes 
and ten pound weight ranges. The large amount of N/As for 
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females in the upper weight ranges can be attributed to both 
a small sample size and lower average female weights. 
 
Since the heart is the largest component of the mediastinum, 
mediastinum volume trends should mirror those of cardiac 
volume. As seen in Figure 2, both cardiac and calculated 
mediastinal volume increase as weight increases with males 
having larger volumes in both cases. The similarity in trends 
suggests that our calculated data may be representative of 
mediastinum volume. 
 
Linear Regressions Using Individual Variables 
Individual variables were plotted against mediastinum 

volume so that potential inputs to a predictive equation 
could be identified and so that comparisons can be made 
against previous results11. Specifically, we analyzed how 
height, age, weight, and gender related to mediastinum 
volume. We found that age, weight, and height were 
positively correlated and that on average males had larger 
mediastinum volumes than females. The regression curves 
shown in Supplemental Figure 1 show that weight had the 
highest correlation coefficient, 0.85, and height had the 
lowest at 0.74. As seen in Supplemental Table 2, our linear 
regressions had much higher R squared values than the 
previous year for all measured variables. This is likely due 
to a narrowed patient age range. 
 
Predictive Model 
All four available patient demographics correlated with 
mediastinum volume and were included in the initial 
multivariate predictive models. The random forest (RF), 

multivariate adaptive regression splines (MARS), and 
multivariate linear regression (MVLR) models were tested 
to find the model that best fit the data. As seen in Table 1, 
the multivariate linear regression model is the highest 
performing model across all metrics. The correlation 
coefficients, intercept, and their respective p-values for the 
multivariate linear regression model can be found in 
Supplemental Table 3. All coefficients in the equation 
except the intercept were statistically significant at a 
significance level of ɑ = 0.01. Since this equation will not 
be used when all variables are at or near zero, a non-
significant intercept is not problematic. Each of the 
coefficients from patient demographics are positive 
indicating that an increase in them will result in an increase 
in mediastinum volume. This was expected due to the 
positive linear correlations described earlier. The 
multivariate linear regression model takes weight, age, and 
gender as its inputs. Age and height were found to be 
redundant variables and age provided for a slightly better 
predictive model. For this reason, height was excluded from 
the final predictive equation. 

 

Rib Cage Identification 
Generating Masks 
To train a U-Net model, masks of input images are required, 
which in this case are the biplanar X-rays. Masks are the 
specified boundaries the U-Net model uses to learn the 
desired region of interest. For example, a boundary was 
drawn along the rib cage. From the original image and the 
mask, the model can learn where the desired object is 
located. Our dataset did not contain masks; therefore, they 
were made manually. The VGG Image Annotator 
developed by the Visual Geometry Group was used to 
create the masks. An example of the masks can be seen in 
Figure 3. 
 



Albini et al., 06 05 2021 

5 

 
 
Final Model Specifications 
The Adam compiler, which uses the default Adam 
algorithm, in the keras library was used to construct the 
optimal model. The final model consisted of an input layer, 
4 downsampling layers, 4 max pooling layers, 5 bottleneck 
layers, 4 upsampling layers, 4 concatenating layers, and one 
output layer. The model trained itself on the same images 
over multiple epochs. In one epoch, the model trains itself 
once on the training images. Therefore, with multiple 
epochs. the model learns from each run and retrains itself. 
The model attempts to improve its predictions after each 
run. A total of 9 epochs were used for the sagittal model. A 
varying learning rate was also introduced to the model. The 
learning rate alters how quickly the model changes its 
prediction based on accuracy. If the accuracy remained 
constant, the learning rate would decrease. Additionally, the 
model would cease training when the same accuracy was 
obtained after successive epochs. The model stopped 
training after 9 epochs because of the constant output 
accuracy. 
 
Jaccard Index and Dice Coefficient 
The model output two accuracy measurements: the jaccard 
index and Dice coefficient. The Jaccard index is found by 
dividing the area of overlap between the prediction and 
actual values divided by its union. Therefore, the Jaccard 
index indicates how well the predicted region covers the 
actual region of interest. The Dice coefficient is found by 
dividing the area of overlap by the total number of pixels 
then multiplying this value by 2. The Dice coefficient 
indicates how much of the total area is covered by the area 
of overlap. The Jaccard index obtained from the sagittal 
model was 0.691364 and 0.66833 from the coronal model. 

The Dice coefficients obtained were 0.5 and 0.5485 from 
the sagittal and coronal models respectively. 

Discussion 

The correlation coefficients for the regressions we made this 
year were much higher than the previous year’s11. This is 
likely due to the exclusion of patients outside of the 
pediatric age range. The goal of predicting TLC is to 
determine if the lungs have sufficiently developed, and this 
is not a large concern for older patients. Furthermore, our 
focus is on the pediatric population. These older patients 
were also outliers for the previous group, and this explains 
why our correlation coefficients were higher.  
 
A study using pulmonary function tests for two patient 
groups whose average ages were 14.3 and 15.4 years old 
found that the worst PFTs had TLCs of 3L and the best were 
3.9L. Our RMSE was 175.26 ml, and this is 0.058% of the 
worst TLC13. On its own, the error from the mediastinum 
volume prediction makes it difficult to rely on this method 
as the sole measure of TLC for surgery, but it may be 
accurate enough to provide a physician a general idea of 
their patient’s TLC. This may allow a physician to not 
subject the patient to unnecessary CT scans if their 
predicted volume is much lower than the threshold. After 
chest volume is able to be calculated, the error for TLC will 
likely be higher and the equation for mediastinum volume 
prediction may need to be further optimized.  
 
The obtained Dice coefficient value was not as high as we 
had aimed. In the aforementioned study, Wessel et al. was 
able to get a dice coefficient equivalent to 0.73 for 
identification from sagittal X-rays14. The two U-Net models 
produced Dice coefficients near 0.5. The  larger Jaccard 
index values may indicate that the model was working 
effectively. Future tuning of the U-Net model could 
improve the model’s accuracy. 

Limitations 
For both the mediastinum and rib cage volume calculations, 
there were no actual measurements of volume. Therefore, 
the obtained measurements could not be compared to actual 
values. Using cardiac volumes for mediastinum volume 
validation made it difficult to judge how accurate  the 
predicted volumes were. It could only be found that the 
predicted volumes were within reason. This raises the 
possibility that the predictive model was created on 
inaccurate data. For the rib cage identification algorithm, 
there was no true mask for the rib cage. Instead, masks were 
manually generated. This manual creation introduces 
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human error. The model would then be trained on incorrect 
data. 
 
The metadata from the CT scans provided a limited amount 
of patient demographics and some had incomplete metadata 
that caused them to be excluded from analysis. Additional 
patient demographics and complete CT metadata would 
allow for more potential input variables and data points 
respectively.  
 
Additionally, the U-Net model was unable to output image 
predictions on the testing data. This lack of information 
does not allow a visualization of the rib cage prediction. 
Therefore, it can not be stated with certainty that the model 
is actually predicting the region of interest with 69%  or 
66% accuracy in the sagittal or coronal planes respectively.  

Future Work 
In future work, an emphasis should be placed on improving 
the accuracy of the rib cage identification algorithm. One 
possible solution would be acquiring a large dataset that 
contained both CT scans or spirometry data along with the 
patient's biplanar X-ray images. First, this would allow a 
comparison between the predicted volume measurements 
and the actual measurements. Second, a larger dataset could 
improve the accuracy of the rib cage identification model. 
For instance, the coronal model was only trained on 57 
images. More data could improve the model’s prediction 
accuracy. Additionally, further model tuning could improve 
its accuracy. One method would be to further augment the 
data. There are many data augmenting techniques that were 
not pursued. These methods have the potential to improve 
the model. 
 
Finally, creating a unified algorithm and simple software for 
both rib cage identification and mediastinum volume 
calculation would provide physicians an easy tool to use in 
clinical practice. The rib cage identification and 
mediastinum calculations were written separately.  
 
Materials and Methods 

Predicting Mediastinum Volume 
Dataset 
Dr. Keith Bachmann provided a data set of deidentified CT 
scans of patients primarily in the pediatric age range . The 
CT scans were DICOM files and patient information could 
be found in the files’ metadata.  
 
 

Mediastinum Volume Calculation 
The Pulmonary Toolkit MATLAB package was used to 
calculate mediastinum volume. The package found the 
boundaries of the lungs and segmented them. The right and 
left lung boundaries were identified. The code starts at the 
top of the lungs (closer to the head) and moves downwards 
until it finds the start of the both of the lungs. These indexes 
are used to create the upper boundary of the central 
mediastinum. If one lung is tilted higher than the other, the 
interior upper edges of both are found and connected using 
Bresenham’s line package. Given endpoints, Bresenhams’s 
line can calculate intermediate points which will form part 
of the upper boundary. 
 
The lower boundary of the mediastinum is found by finding 
the slice in the xz-plane that has the greatest lung area. This 
slice is used as it will likely be from a central portion of the 
lung and representative of the lower boundary. The code 
finds the z position at which the x component of the xz slice 
is discontinuous, and this marks the beginning of the 
diaphragm and the lower boundary of the mediastinum. The 
lungs curve around the diaphragm so a straight line along 
the x axis would be discontinuous.  
 
After the boundaries have been identified, the slices are 
stepped through and the area between the lungs is 
calculated. Any gaps in the area are filled in and the area of 
all the slices is used to calculate mediastinal volume.  
  
Predictive Model 
The predictive model was created using mediastinal volume 
as the response variable and weight, age, gender, and height 
as the initial input variables. The data was cleaned in excel 
and then imported into R for analysis. Initial linear 
regressions were performed to determine the linearity of the 
relationship between input variables and mediastinum 
volume and to serve as a benchmark to previous work. The 
patient population was trimmed to a pediatric age range as 
this range is relevant to EOS.  
 
The dataset was randomly divided into a training and testing 
dataset. Three predictive models were tested on the testing 
dataset RF, MARS, and MVLR. Each individual variable 
had a close fit to a linear regression when compared against 
mediastinum volume. This is the reason for the testing of 
the MVLR. The MARS model builds upon the MVLR 
model to make it more flexible and better fit non linear 
trends. This was used in case our initial impressions of the 
data were incorrect. The RF model is a machine learning 
model that can be used for regression and is not prone to 
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overfitting. Three different models were so that any unseen 
trends in the data could be caught. 

Rib Cage Identification 
Dataset 
For the rib cage identification, a dataset was given by Dr. 
Keith Bachmann. The dataset consisted of a set of biplanar 
X-ray images taken of scoliosis patients. Biplanar means for 
each patient there was both a sagittal and coronal image. 
The images were in DICOM format. 
 
Convolutional Neural Network 
The first step in completing the rib cage identification was 
to identify the optimal convolutional neural network (CNN) 
for image segmentation. A study illustrated that Mask R-
CNN had the potential to identify the rib cage. Although this 
study was successful, it was only implemented on posterior-
anterior X-ray images14. There was trouble implementing 
this network due to its dependency on older libraries and 
packages. Therefore, other CNN architectures were 
examined. U-Net is a CNN that was initially trained on 
medical images. Therefore, the network should train well on 
this dataset. The U-Net architecture consists of two parts. 
The first is typical of a traditional CNN. It involves 
downsampling and pooling the most important features of 
the training dataset. The second part involves upsampling 
and concatenating the images. At each layer, the feature 
map obtained from the downsampling is cut in half 15. 
 
The code for rib cage identification was implemented in 
Python. It was written on Google Colab Notebooks to allow 
collaborative coding. Sci-kit learn and keras, which are 
Python libraries and software, were used to develop the 
model. The pydicom library was used to convert the images 
from DICOM to PNG files. 
 
Since the dataset consisted of biplanar X-ray images, two 
separate models were created. The first model was trained 
on the sagittal dataset, while the second was trained on the 
coronal images. Additionally, this involved splitting the 
original images into their respective image group. In order 
to train the model, some images had to be removed due to 
their poor quality. In some cases, parts of the rib cage were 
not in the image or had objects obstructing its view as seen 
in Supplemental Figure 2. Eleven images were removed 
from the posterior-anterior dataset and 28 images from the 
lateral dataset. 
 
Finally, to train the model each image needed to be the same 
size. Therefore, the images were all resized to 224 by 224 
dimensions. The resizing also helps the model run more 

efficiently. The model will run faster with a smaller dataset 
versus larger images. The dataset needed to be split into 
training, testing, and validation images. The model uses the 
training and validation images to teach itself. The testing 
images are used to observe how accurate the model is after 
creation. The dataset was randomly split. 

End Matter 
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