
Microservices: Consolidating Functionality Across Multiple Services

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jarod Johnson

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Joshua Earle, Department of Engineering and Society



Abstract
Amount Small Business, an independent
subsidiary of Amount Inc., has a platform
which runs on microservices to take loan
applications for smaller banks and return
decisions for those applications. Legacy
functionality in the PDF document
microservice, named “PDX” generates and
stores PDFs reports with useless
information. The software team decided to
replace this functionality with logic that only
pulled PDFs from third party financial
institutions such as Equifax, ThreatMatrix,
and Paynet. I was tasked with imitating the
PDF storage and retrieval functionality of
the third party reports in a different
microservice. In order to do this, I needed to
create new database tables for the PDF
objects in the alternate microservice,
“UDX.” Logic from PDF would be tweaked
and transferred over to UDX. The main tools
used to accomplish this were Orika object
mappers, JOOQ database query library,
Reactive Java (JavaRx). For testing, I sent
local HTTP requests using postman for
debugging and ensuring functionality
worked as expected, and I used Mockito
testing library for Java for unit tests. This
new functionality was successfully migrated
with a few small adjustments that will need
to be made by my team. One of the major
changes will need to be in the front end
React.js service to ensure that it pulls PDFs
from UDX instead of PDX.

1. Introduction

The microservice software architecture is an
alternative to the more traditional monolithic
architecture that many web applications are

built on. To create its platform, Amount
Small Business used Micronaut, a Java
based application framework designed for
microservices. The platform is made up of
over 15 different microservices, each with
unique functionalities. There were two main
microservices that I worked on: PDX which
was responsible for generating, storing, and
retrieving PDF reports of applications; and
UDX which is responsible for doing the
same with non-PDF report objects.
A majority of the PDF objects generated in
PDX were created with null attributes and/or
little to no useful information. Due to this,
the team I worked with aimed to consolidate
these functionalities into a single service,
deprecating the PDX service as a whole in
the process. This was my main task during
the summer of 2022. There were two main
concepts and tools that I needed to grasp
before starting to make my own changes in
the UDX repository: Reactive programming
and Microservice architecture.

2. Related Work

In my first couple of weeks, I dove into a
multitude of articles and websites relating to
reactive programming and microservices.
The first resource I came across,
microservices.io, was recommended by my
appointed mentor. This website holds
articles and pages explaining different
aspects of microservices on both high and
low levels for developers looking to create
new applications of their own or switch to
the microservice architecture. The most
important differences between a monolith
and microservice application is the fact that
they are loosely coupled, and independently



deployable. Micronaut’s documentation
page, Docs (2022), was another useful
resource that held any needed information
on syntax, annotations, and the general
makeup of a Micronaut application.
Last, Baeldung (2022) was crucial for my
understanding of reactive programming.
RxJava is a reactive programming library
and Java Virtual Machine extension used
almost everywhere in Amount Small
Business’ Java code base. This covered the
basics of observables, flowables, nullables,
and the concepts of publishers and
subscribers. Grasping reactive programming
as a concept was one of the largest obstacles
I faced in my internship.

3. Process Design

The micro-services that I worked with
mainly benefitted the front-end service that
was used by the company’s employees in
order to manually check and process loan
applications. The two previously mentioned
services, UDX and PDX, are just two of the
many services that interact with the API
gateway and UI service. All services
perform individual tasks that are ultimately
leveraged by the API gateway to pass values
to the React front end service. Originally,
the API gateway would call endpoints in
both PDX and UDX separately in order to
retrieve the PDF and report objects which
both end up being displayed in the same
webpage. See figure 1 below.

Figure 1: Simplified Conceptual
Layout of System Architecture

The endpoints that were called by the UI
service in PDX needed to be transferred to
UDX so that PDX could be deprecated
while all original functionality continued to
run without issues. To start this process, a
new SQL migration file would need to be
created to add a table for storing PDF
objects in UDX’s database instances. The
important attributes that each table entry
should include are: ID, ReportID,
ApplicationID, Data, and DataSourceID.
The ID is a primary key, which uniquely
identifies every single entry in the database.
The ReportID is a foreign key which
references which report it is referencing. A
foreign key is used here because of its
many-to-one relationship aspect. In order to
prevent any data loss, all PDF reports are to
be stored even if they are outdated.
Therefore, a single report may have multiple



PDFs connected to it. The ApplicationID
refers to the individual application that all of
the reporting and information applies to. The
Data attribute is a string value that holds the
bytecode for the PDF document; this is
converted to a viewable PDF at runtime
when an instance of one of the new UDX
endpoints is called. Last, the DataSourceID
references which third party financial
reporting agency originally created the
document.
The next step was to write the actual
business logic that would retrieve any PDF
objects and return them to the front end. The
most crucial endpoint used to do this
involved a HTTP GET request endpoint that
passed in the specified ApplicationID in
order to retrieve all PDF objects by this path
variable. The second endpoint I needed to
implement involved retrieving a single PDF
by passing in the primary key, ID, into a
HTTP GET request. This endpoint was
never actually used on the front end service,
but the convention is to always have
working endpoints that retrieve a database
object by its primary key.
Once an endpoint was fully implemented in
each layer of the micro-service, they needed
to be tested. The layers of a Micronaut
service are comprised of a controller,
service, dao, and database. Each of these has
its own responsibilities with the majority of
any complicated logic lying in the service
layer. I used Mockito unit tests in order to
separately test each of these layers. Mockito
tests allow for a forced response from a test
instance of one of the layers. This allows a
programmer to isolate which layer is being
tested.

Once unit tests were written, I performed
local testing with the Postman HTTP request
tool. In order to being this, I created a local
Postgresql database table with test data.
Then the UDX service is run in my local
environment. Followed by calling the
endpoint in Postman. The path used in
testing would require manual input of an
ApplicationID, like:
localhost:8080/PDF/appID123/. A similar
endpoint was also called locally to test the
secondary endpoint needing the primary key
of the PDF table.

4. Results

After completing the implementation of the
migrated functionality, all underlying bugs
and issues were eventually resolved. This
allowed me to deploy my pull request into
the live testing environments that ASB uses.
I was able to see my changes work properly
by viewing PDFs of different test reports in
the UI service. My internship before my
branch was actually merged to the
development branch. However, my mentor
and coworkers confirmed that my code
would be built upon as they continue to
improve all of their services.

5. Conclusion

The time I spent as an intern at ASB was a
great learning experience. I was able to hone
my skills as a software engineer, as well as
improve some of my soft skills. Version
control, relational databases, HTTP requests,
and API’s are all foundational concepts for
an aspiring software engineer to understand.
Completing an entire project involving the



aforementioned technologies was an
important step in forwarding my career.

6. Future Work

In order to fully take advantage of the
contributions that I made during my
internship, my coworkers will have to
update the front end React.js service to use
UDX for PDFs as opposed to PDX. This
should be a relatively easy task. Since PDX
will now be deprecated, the only edits
needed in the UI service will be to replace
any use of PDX and its endpoints with UDX
and the replacement endpoints that I
implemented.

References

Richardson, C. (2014, March 18). What are
Microservices? microservices.io. Retrieved
May 25, 2022, from https://microservices.io/

Rocher, G. (2018, May) “Docs,” Micronaut
Framework. [Online]. Available:
https://docs.micronaut.io/index.html.
[Accessed: 30-May-2021].

Baeldung. (2017, September) “Introduction
to rxjava,” Baeldung, 05-Jul-2022. [Online].
Available:
https://www.baeldung.com/rx-java.
[Accessed: 23-May-2022].


