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ABSTRACT

In recent years, deep learning has led to the creation of accurate disease predictors using

images, better object detectors for isolating cell structures within images, enabled automated

tagging of clinical terms in text based data with accurate named entity recognition models

and many more such advances that have the potential to enable better healthcare outcomes

by assisting medical practitioners in their work. In this work, we focus on the applications

of deep learning, specifically developed for computer vision and natural language processing,

for Electronic Health Records (EHR) data, for structured data like diagnosis codes stored

over time for patients from different health systems collected by the NIH to help pinpoint risk

factors for Long COVID, as well as unstructured imaging and text data in the form of high

resolution histopathology images and their paired text descriptions and develop an image

captioning system that can automatically generate text descriptions from these images. We

also focus on attention based interpretability methods for deep learning models and how they

can be used to explain model behavior, as we believe explaining model decisions is crucial

for building trust in these models.

In the first portion of this research, we describe our image captioning system developed

to generate automatic text descriptions for high resolution histopathology slides built using

pre-trained transformer based models to address the lack of training data. We show that

by encoding the Whole Slide Image (WSI) as a sequence of image tokens using a Vision

Transformer pre-trained on a wide array of histopathology data and feeding them into a

Bidirectional Encoder Representations from Transformers (BERT) based language model

that has been pre-trained on medical research and clinical notes, we can build a fairly per-

formant captioning system that combines these two data modes, namely images and text.

We also show the results of our investigation of cross-attention layers for explanations of

model behavior.



In the second portion of this research, we describe how we used a Long Short Term Mem-

ory based neural network model, developed to analyze text sequences, to analyze temporally

arranged diagnosis code data recorded up to the first COVID-19 infection to investigate risk

factors for Long COVID. While modeling sequential diagnosis codes has been done before, we

add to this model by re-using pre-trained embeddings to encode the diagnosis data instead of

randomly initializing the embeddings. We also discuss the use of a semi-supervised learning

technique called as positive unlabeled (PU) learning to improve model learning to build a

better classification model. We then investigate these models using self-attention weights

generated during training to answer our stated goal of building models whose behavior can

be investigated.

We present in this work different methods to apply deep learning in clinical contexts.

We also validate by the results presented in this work that models developed for language

modeling, like LSTMs, can be successfully adapted for other sequential or time series data

like temporally arranged diagnosis data. We also build an encoder-decoder model, inspired

by existing image captioning models, but adapted for high resolution images that can find

applications in other domains like remote sensing where there is a need to handle high

resolution imaging data. We believe this work generates further proof that deep learning

can be successfully used in clinical contexts, while also showing how we can investigate model

behavior using attention based modeling, which is crucial for developing trust in these black

box models.
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Chapter 1

Introduction

1.1 Deep Learning

Deep learning, as defined by Turing prize award winners LeCun et al. [42], refers to

powerful computational models with multiple processing layers with the ability to do repre-

sentation learning on the data with multiple levels of abstraction. At its core, deep learning

consists of multiple non-linear layers of neurons, with each layer connected to the previous,

with the ability to learn more complex representations of the data at each subsequent layer.

As the authors in [42] describe, ‘With multiple non-linear layers, say a depth of 5 to 20,

a system can implement extremely intricate functions of its inputs that are simultaneously

sensitive to minute details ..’

Deep learning has revolutionized areas like speech recognition, image recognition and

segmentation with Convolutional Neural Networks (CNN) and more recently, being able to

generate images from natural language input with the help of a technique called as Stable

Diffusion [33, 34, 58]. This ability to handle versatile input data to build effective models has

helped increase its popularity over recent years, leading to explorations of its applications

into more specialized areas like medicine and finance [14, 22].

1



2 CHAPTER 1. INTRODUCTION

1.2 Deep learning in Healthcare

Deep learning has the capability to build effective models without robust feature engi-

neering of the input data [11]. Early implementations of automated technologies included

computer aided detection (CAD) for mammograms, which were rolled out in hospitals with

the intention of helping radiologists with identifying subtle cancers that might be missed,

but were unable to improve screening performance [29, 44]. The implementations mostly

depended on engineered image features generated by image processing techniques reliant on

specialized filters, that were then fed into a classification algorithm to determine the label

[11, 70]. Convolutional neural networks (CNN) with thousands of learnable filters removed

the need for generating image features using specialized filters [40]. As we train deeper net-

works, CNNs are able to learn more complex image features given vast amounts of training

data and perform better on image classification tasks like ImageNet [23]. This performance

is replicated for clinical images like chest X-rays and histopathology images [35, 65]. There-

fore, there is a clear case for deep learning to be applied to varied healthcare scenarios like

radiology as compared to traditional methods to drive better clinical outcomes.

1.3 Multi-modal machine learning in healthcare

Machine learning as described above is usually focused on a single mode of data at a

time, be it images for disease classification or segmentation or looking at electronic health

records to model disease phenotypes [39]. However, a physician usually considers multiple

modes of clinical data at once to determine diagnosis and treatment. Therefore, it becomes

important to build multi-modal models, that can interpret and understand data from, say

for example, images as well as text to make its decisions.
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1.4 Need for interpretability

The challenge with applying deep learning to healthcare is the need for the models to be

interpretable, since the wrong decisions can negatively impact human life [4]. Interpretable

in this case means that we should be able to query why a model made a certain decision

to be completely sure of the model recommendation, be it disease classification or survival

prediction among many other uses. This has the added benefit of being able to go back

and apply corrections in case of mistakes. This can be especially challenging in healthcare

scenarios since often model inputs are heterogeneous, like temporal medical records, clinical

text or medical imaging data. This might not be a problem when outcomes are modeled

using linear modeling with domain knowledge based handcrafted features, however, deep

learning models with their millions of parameters can be hard to decipher. Cynthia Rudin,

in her paper ‘Stop explaining black box machine learning models for high stakes decisions

and use interpretable models instead’ makes the case that using models that are by design

interpretable should be the way forward [59]. However, several models that are not inherently

interpretable might still outperform interpretable models. And there are several post-hoc

interpretation methods like saliency maps, attention layers and de-convolution that have

shown promising results [60]. While the argument can be made that basing life-changing

decisions like clinical diagnosis should not be made using black box models that cannot be

investigated in case of mistakes, there are ways to understand decisions using the post-hoc

methods mentioned earlier, while also making it clear that these models behave in an assistive

capacity that can help a physician make an informed choice and streamline workloads. In

conclusion, the need for interpretable methods for medical applications of deep learning help

us leverage the power of modern neural networks while making them more trustworthy to

use.
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1.5 Contributions

Motivated by the considerations described above, this work puts forwards the following

contributions:

1. In Chapter 3, we describe an extensible, transformer-based multi-modal system that

incorporates imaging and text based data, by creating a captioning system that can

automatically generate descriptions of a high resolution histopathology image. We have

built a pipeline that incorporates existing transformer-based vision-language modeling

for high resolution images, demonstrated here using histopathology whole slide images

(WSI) but usable in other domains, where such high resolution imaging is prevalent,

along with the added benefit of using highly parallelizable architectures that using an

all transformer model provides.

2. In Chapter 4, we have evaluated the use of cross-attention for interpreting the auto-

mated report generation model described in Chapter 3 and shown that there is added

benefit in understanding model decision-making using attention values. It not only

enables validating model decisions, but also improves trustworthiness in the model.

We are able to do this because of the nature of the architecture described in chap-

ter 3, that is able to preserve location information while encoding a high resolution

histopathology image.

3. In Chapter 5, we describe a method to improve model performance using Positive-

Unlabeled (PU) learning demonstrated on a model predicting Long COVID, using a

new method call RF bagging adapted from Mordelet and Vert [49]. We show that

by generating a reliably negative (RN) sample, we are able to build a better the

discriminative model, and therefore generate more trustworthy interpretations from

the model, since the model is now more sure of its predictions. This is important
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because our main goal was to investigate this model to determine risk factors for Long

COVID. With the help of this model, we can now understand what in the patient’s

medical history would pre-dispose them towards Long COVID. This is also in keeping

with our stated goal of building reliable and interpretable models.



Chapter 2

Literature Review

2.1 Transformers

With how ubiquitous large language models (LLMs) like OpenAI’s ChatGPT [50] or

Meta’s LLaMA [72] have become in recent years, the Transformer, the underlying archi-

tecture powering them, can reliably be crowned the seminal deep learning architecture of

the last decade. Proposed in 2017 by Vaswani et al. [74], transformers were an alternative

to Recurrent Neural Networks (RNN) [66] for sequential modeling. RNNs suffer from the

vanishing gradient problem and are non-parallelizable which increases training time [41].

Transformer blocks consisting of fast-forward neural networks and self-attention modules

solved the problem of local and long term dependencies with the added benefit of being

parallelizable thereby reducing training time [53]. Modifications of the underlying architec-

ture to reduce training time further by optimizing the transformer’s time complexity that

scales quadratically with sequence length to linear time, have also made it more desirable

and efficient to use transformers [75].

A Transformer unit as a stack of six encoders and six decoders. Each encoder or decoder

unit consists of a self-attention unit and a feed-forward neural network, whose output is

connected to the input of the encoder/decoder on top of it. The decoder also contains

another layer that does performs attention over the encoder outputs as well, which is called

as cross-attention. The presence of self-attention enables the transformer to focus on the

6
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correct word in a whole sequence of words in a source sentence, say, during translation to the

target sentence in another language. These transformer layers also employ skip connections

along with layer normalization, thereby propagating the input and added learned embeddings

throughout the layers.

2.1.1 Multiheaded Self-Attention

In intuitive terms, attention allows a deep learning model to add context to the current

input word by ‘attending’ or giving different weights to the words that surround that input

word. This is important when the input sequence is long and therefore this context informa-

tion is useful in understanding what is the intended meaning of the word at a certain point

in the sequence.

In transformers, self-attention works by generating 3 vectors, query(Q), key (K) and

value (V) from the input vector and then combined as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where dk is the dimension size of the query and key vectors.

The authors of the transformer paper call it the scaled dot product attention since they

use a scaling factor of 1√
dk

to scale it, since for higher values of dk the dot products grow

large in magnitude and therefore need to be scaled for the gradients to make sense.

Vaswani et al. [74] argue for the use of multiple h attention heads, instead of the single

one described above. The intuitive explanation for this is that instead of one head generating

single context weights for a input query, multiple heads generating context weights focusing

on different sections of the input sequence is more helpful. Each attention head weights the

surrounding context differently, thereby allowing the model to focus on different portions of
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the input sequence.

2.1.2 Cross Attention

Cross-attention is used to combine input sequences of different lengths, which is helpful

in the context of a training the model for translating from one language to another, where

the source and target sequences need not necessarily have the same length.

Figure 2.1: Cross-attention; source: Understanding Self-attention from scratch - Sebastian
Raschka

Cross attention works by calculating the key K and value V vectors from source input

sequence S1 and the query Q from the target output sequence S2. Mathematically, it is

done using the following:

CrossAttention = softmax(
(WqS2)(WkS1)

T

√
dk

)(WvS1)

https://sebastianraschka.com/images/blog/2023/self-attention-from-scratch/cross-attention.png
https://sebastianraschka.com/images/blog/2023/self-attention-from-scratch/cross-attention.png
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where Wq, Wk and Wv are learned weight matrices used to calculate the queries, keys

and values respectively.

Cross attention is of particular help when there is a need to translate from one embedding

space to another, as is the case during machine translation or even image captioning.

2.1.3 Positional Encoding

Vaswani et al. [74] also define a position encoding that encodes the position of each word

in a sentence such that it preserves the relative positioning of each word and generalizes

to longer sentences without any effort. A positional encoding therefore is a d-dimensional

vector that indicates the position of a word based on sinusoidal functions, with even positions

represented by sine and odd positions encoded by cosine function.

2.1.4 BERT

Figure 2.2: BERT input setup from Devlin et al. [25]

BERT is a transformer model pre-trained on a large corpus of unlabeled text data that is

able to learn bidirectional representations for text and has been successfully used for various

downstream tasks in like Question Answering (QA), Named Entity Recognition (NER) and

Natural Language Inference (NLI) [24]. BioBERT and ClinicalBERT, trained on medical
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research articles and clinical notes data respectively, performed better on clinical downstream

tasks than just BERT [3].

In the BERT paper, they achieve bidirectional pre-training of a language model by

achieving two tasks, masked language modeling (MLM) and next sentence prediction. MLM

means to randomly mask certain words in the input and predicting that masked word. BERT

also randomly inserts another word in place of the correct word and asks the model to predict

the current word. Next, sentence prediction involves giving the model two input sentences

and asking it to predict if the second sentence follows the first or not.

The input for BERT is as shown in Figure 2.2. Each input consists of a single or a

pair of sentences, with each word in the sentence treated as a token. At the start of each

sentence, a [CLS] (classification) token is added and a [SEP] token is added between a pair

of sentences. The final hidden state of the [CLS] token is used as the aggregate sequence

representations for the classification task. The intuition behind the [CLS] token is since it is

never masked and always in the beginning of each sentence, the 768-dimension embedding

from the trained BERT model captures a weighted average of information from the input

sequence when we fine-tune it in further downstream sentence classification tasks.

2.1.5 Vision Transformers

Vision transformer (ViT) was proposed by Dosovitskiy et al. [26] as an analogous ar-

chitecture to the transformer, but for images. The idea here is to mimic how we tokenize

sentences into words, by patching an image, such that each patch is now a visual token,

which can now be fed to a transformer like architecture. The authors show that by training

the ViT on a large corpus of images, they are able to beat a baseline convolution neural net

(CNN) architecture. The key thing to note here is that since there is much less inductive bias

when compared to CNNs and therefore need a large amount of data to beat a CNN based
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Figure 2.3: Vision transformer from Dosovitskiy et al. [26]

architectures. Nevertheless, the authors argue that since a transformer based architecture

is inherently more scalable, this trumps the inductive bias advantage of CNNs by showing

good results on different image classification benchmarks.

2.1.6 DINO Pre-training

Figure 2.4: DINO illustration from Caron et al. [15]

Proposed by Caron et al. [15], self-distillation with no labels or DINO, is a self-supervised
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method to train vision transformers.

It consists of a teacher and student network, each having the same architecture but

different parameters. They are fed two different random transformations of the same image.

The output of the teacher network is mean centered over the batch and then a softmax

function is applied, while no such centering takes place on the output of the student. The K-

dimensional output encodings from both networks are then compared using a cross-entropy

loss that measures their similarity. The loss gradient is only back-propagated through the

student network, while the parameters of the teacher network is updated by taking the

exponential moving average (EMA) of the student parameters. The authors show that using

this pre-training mechanism, they are able to achieve 80.1% top-1 on ImageNet in linear

evaluation with ViT-Base.

2.1.7 HIPT

In recent years, Chen et al. [17] have proposed a self-supervised Vision Transformer

(ViT) based image representation learning mechanism called Hierarchical Image Pyramid

Transformer (HIPT). The self-supervised pre-training leverages DINO (distillation with no

labels) from Caron et al. [15] at two levels, 256x256 sized patches and 4096x4096 sized

patches. The authors show that this can then be leveraged for further downstream tasks like

disease sub-typing and survival prediction, as the pre-trained ViT representations are now

looking at the WSI at multiscale level.

2.2 Electronic Health Records (EHR)

Electronic Health Records (EHR) often contain a variety of data associated with a pa-

tient, like medication, diagnoses, blood pressure and heart rate measurements, free-text clin-
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ical notes, radiology images and much more. These heterogeneous data points are collected

at different times over the duration of a patient’s visit to a health system. By leveraging the

temporal nature of this data as well as the information present in them, we can train models

to potentially help predict clinical outcomes given the past medical history of a patient.

Therefore, it is important to capture information from this wide variety of data and its tem-

poral nature into a vector representation that can further be used for predictive modeling

or patient clustering analysis.

2.2.1 Neural Networks for modeling EHR

Numerous previous studies have investigated the use of deep learning for analyzing Elec-

tronic Health Record (EHR) data. REverse Time AttentIoN model (RETAIN) for applica-

tion to Electronic Health Records (EHR) data [18] used Recurrent Neural Networks (RNNs)

to analyze time labeled sequence of observations like diagnosis codes where each patient

is represented by a sequence of temporally arranged tuples, while also being interpretable.

The model was able to assign a feature importance score to each input feature using out-

puts from its two constituent RNN networks for calculating attention at both visit level

and variable level. One of the earliest papers used plain LSTMs on temporally arranged

International Classification of Diseases-9th revision (ICD-9) diagnosis codes to predict 128

common diseases like heart failure and respiratory distress [47]. Similar studies using LSTMs

for analyzing temporal diagnosis codes, vital signs and medications for future disease onset

prediction have also been shown to perform well [21, 71]. These studies motivate our goal

of analyzing historical diagnosis codes prior to the COVID-19 infection present in the N3C

database to first predict if a patient is suffering from Long COVID, and then investigate

these models for associations between a patient’s diagnosis history and Long COVID.



Chapter 3

Automatic caption generation for

histopathology images

3.1 Introduction

High resolution histopathology slides are a rich resource of information that current

deep learning methods are able to exploit for various use cases like disease classification,

cell segmentation and outcome prediction. However, as the images are very high resolution,

usually in the range of 150,000x150,000px, they often require non-trivial modifications to

existing state-of-the-art (SOTA) deep learning architectures to be used successfully. The

most common method for handling these high resolution images is to patch the bigger image

into smaller sized images that can be fed into Convolutional Neural Networks. For example,

in a classification setting, this often works as a multiple instance learning problem, where

each patch is given the same overall image label. A potential drawback to this is that

patching can lead to removal of overall context from the whole slide image (WSI) that the

model might need to learn to make the correct decision, unless handled properly.

Automatic report generation for histopathology images is an area of existing research

that also suffers from the need for modifying SOTA image captioning architectures to fit

researchers needs. Image captioning for histopathology helps us combine two rich sources of

information, that is, high resolution WSIs and associated diagnostic reports that describe

14
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features of the image. In clinical settings, automatic report generation has been successfully

used for X-ray images and claim to reduce the burden for radiologists by assisting them

in describing the image [52]. Other use cases for automated image captioning in medical

images can be image retrieval, as generated reports could be part of a searchable database,

and encouraging standardized clinical ontologies by using words from a standard vocabulary

to describe similar things. Therefore, automated image captioning for histopathology can

be similarly useful for a wide variety of tasks that can assist physicians and radiologists in

their tasks.

3.2 Related Work

Current research for histopathological image captioning focuses on Convolutional Neural

Network (CNN) based encoder and Recurrent Neural Network (RNN) based decoder archi-

tectures [30, 73, 78]. This is inspired by Show, attend and tell paper, that in particular has

the capability of using the attention mechanism to focus on certain areas of the image to

generate captions [77].

Using ImageNet pre-trained CNN-based encoders to encode smaller sized patches of the

high resolution WSI has been successfully used in a variety of ways to essentially reduce the

size of large dimensional WSIs to smaller and computationally manageable representations

[16]. In recent years, a self-supervised Vision Transformer (ViT) based image representa-

tion learning mechanism called Hierarchical Image Pyramid Transformer (HIPT) has been

proposed [17]. The self-supervised pre-training leverages DINO (distillation with no labels)

at two levels, 256x256 sized patches and 4096x4096 sized patches. The authors show that

this can then be leveraged for further downstream tasks like disease sub-typing and survival

prediction[15].
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A recent work uses a two-step process in which they first encode all patches of a WSI

using a triplet loss based convolutional autoencoder and use the features from the bottleneck

layer to cluster the patches into k ∈ [1, 2, 3..7] clusters [78]. In the second step they randomly

sample the patches from each cluster, use a ImageNet pretrained ResNet-18 to extract N -

dimensional features for the k-patches, then use attention pooling to reduce k×N dimensional

feature vector to 1 × N and then feed into a LSTM decoder to generate captions. More

recently, Gamper and Rajpoot [30] describe the ARCH dataset which contains histopathology

images extracted from textbooks and their associated descriptions, which they use for caption

generation based pre-training task to generate an encoder that when used for downstream

tasks like multiple instance learning shows promising results compared to other pre-trained

encoders. But as noted in Tsuneki and Kanavati in [73], these images, as they are curated

from textbooks and research articles, can be of mixed quality, magnifications, and resolutions

that while useful, does not really solve the problem for existing high resolution WSIs being

generated in hospital systems everywhere. In Tsuneki and Kanavati [73], the authors use

high resolution WSIs from a Japanese hospital system and associated translated text reports,

for their automated captioning system. They use EfficientNetB3 [68] and DenseNet121 [36]

pretrained on ImageNet dataset and extract features from the penultimate layer for 300x300

patches extracted from the WSI. They then use global average pooling and 3x3 average

pooling to reduce the feature sizes and feed them into an RNN based decoder for generating

their captions.

BERT is a transformer model pre-trained on a large corpus of unlabeled text data that is

able to learn bidirectional representations for text and has been successfully used for various

downstream tasks in like Question Answering (QA), Named Entity Recognition (NER) and

Natural Language Inference (NLI) [24]. BioBERT and ClinicalBERT, trained on medical

research articles and clinical notes data respectively, performed better on clinical downstream
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tasks than just BERT [3].

More recently, pre-trained transformers have been successfully used for optical char-

acter recognition (OCR), that is, converting text in images to machine-readable text [45].

The authors were able to outperform SOTA approaches for OCR using pre-trained Vision

Transformers and transformer-based language models. The authors utilize the image repre-

sentations from the vision transformers and, along with the context generated before, use

it to predict the next tokens. A ‘[BOS]’ and ‘[EOS]’ tokens are appended at the beginning

and end of the ground truth tokens. Note that using ‘[BOS]’ token shifts the sequence to

the right by one place and is used to indicate start of generation.

Motivated by the success of pre-trained transformer models for such diverse downstream

tasks, we propose a method that uses HIPT to encode WSIs that captures multi-level repre-

sentations, and a BERT based decoder that is able to utilize powerful text representations

to generate descriptions of the WSI.

3.3 Dataset

Figure 3.1: Screenshot of the GTEx portal https://www.gtexportal.org/home/
histologyPage. We scraped the histology data from this website similar to Zhang et al.
[78].

https://www.gtexportal.org/home/histologyPage
https://www.gtexportal.org/home/histologyPage
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Figure 3.2: Tissue Distribution of the data from GTEx portal.

We get our imaging and associated text data from the Genotype-Tissue Expression

(GTEx) portal (https://www.gtexportal.org/home/histologyPage), same as [78] (refer

Figure 3.1), resulting in about 25,120 samples of WSI-text pairs. We divide our dataset into

23517 training, 603 validation and 1000 testing samples. There are 40 different tissue types,

and you can find the plot showing the counts of different tissues in Figure 3.2. In Figure

3.3 you can find a word cloud describing the ‘Pathology Note’ section of the data. We use a

stratified split such that each tissue type is represented in the training, validation and test

Figure 3.3: Word cloud of the pathology notes section of the data.

https://www.gtexportal.org/home/histologyPage
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sets.

We do this because this is the only publicly available high resolution histology data

with associated descriptions of each histology slide at the time of writing this paper that we

could find. Data from Tsuneki and Kanavati [73] comes in the form of 300x300 patches1 and

the ARCH dataset by Gamper and Rajpoot[30] are of mixed quality, magnifications, and

resolutions that do not meet our criteria of working with high resolution Whole Slide Images

which are the most likely form of data available in health systems.

3.3.1 Caption pre-processing

Data in the GTEx portal comes in a tabular format with tissue_type, sex and pathology_notes

in separate columns. We create the description for each tissue in the following format:

this is a {tissue_type} tissue from a {sex} patient and it has {pathology_notes}.

An example caption would look like this: this is a small intestine - terminal ileum

tissue from a male patient and it has 6 pieces, prominent lymphoid component in 4

of 6 pieces.

This helped achieve two objectives:

1. Increase sentence length such that this data mimics real word notes, as they are bound

to be longer in length.

2. Helps check how good the captioning system is at tissue classification.

1https://zenodo.org/record/6021442
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Figure 3.4: Method overview for automatic image captioning. (A) We pre-extract embed-
dings from the HIPT [17]. (B) We add a learnable [CLS] token in front of all our patch
tokens and feed it to the patch encoder. We separately feed the thumbnail image of the WSI
to the thumbnail encoder. We concatenate these two representations such that each patch
token representation has the added image context vector from the thumbnail. We feed this
concatenated WSI representation to our transformer decoder for our caption generation.
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3.4 Methodology

3.4.1 Creating patch embeddings

In the formulation for Vision Transformers by Dosovitskiy et al. [26], the authors break

the image into 16x16 patches to generate visual tokens that act as an analogue to separat-

ing sentences into word tokens. Inspired by that, we break our high resolution WSI into

4096x4096 patches. This patch size is motivated by the patch size used by the authors of

HIPT [17] for generating multiscale representations at the 16x16 and 256x256 patch level,

which are generated by two different ViT architectures, denoted by ViT256-16 and ViT4096-

256. (Notation Guide: In the notation ViTL-l, l is the size of the l× l non overlapping tokens

extracted from the L×L or xL input image to each ViT subnetwork, following the notation

described in [17].)

The method to tokenize each image into patches and extracting their embeddings from

HIPT is done as follows:

1. Each WSI generates M patches, and for each patch we extract 256x[CLS]256 ∈ R1×384

from ViT256-16 and one [CLS]4096 ∈ R1×192 from ViT4096-256.

2. Therefore, each patch M i now has a representation Pi
256 ∈ R256×384 from the 256x[CLS]256

vectors and Pi
4096 ∈ R1×192 from the [CLS]4096 vector.

3. We take the mean of P256 along dim=0 to generate Pmean
256 ∈ R1×384 and concatenate it

with P4096 to generate Ppatch ∈ R1×576.

4. Each WSI can now be represented as a collection of M patch tokens such that WSI =

{P1
patch,P2

patch...PM
patch}.

We pre-extract these patch embeddings before training our vision encoder-decoder model.
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3.4.2 Encoder

Our vision encoder consists of two parts, one that takes in the patch embeddings prefixed

with classification token, similar to the ViT paper, and an ImageNet pre-trained ResNet-

18 based thumbnail encoder, that takes in a 3x224x224 resolution thumbnail image of the

WSI. The thumbnail encoder is added to provide additional visual context to the decoder to

generate associated captions.

The patch encoder, consists of a linear layer, a transformer encoder and another trainable

projection layer that transforms the transformer output. The intention again is to mimic the

original ViT paper by Dosovitskiy et al. [26] which in turn mimics the BERT paper by Devlin

et al. [25], by prepending an additional learnable classification [CLS] token, that is supposed

to encode the whole image, and training a transformer encoder for image recognition. Refer

to Figure 3.4 for an illustration of our vision encoder module.

We add another learnable projection layer on the transformer output and concatenate the

two representations, one that encodes the WSI at the multiscale level (16x16 and 256x256)

and another that encodes the WSI at a lower magnification (higher level) from the thumbnail

encoder that is analogous to how a pathologist might make their diagnosis by zooming in

and out of the full resolution high magnification image.

Since each WSI can have a different number of patches, we add padding to make the

sizes uniform. We supply an encoder attention mask, that is 1 for all the patch and added

[CLS] tokens, and 0 for the pad tokens. This is used to tell the decoder, which portions of

the image to pay attention to during generation of the note.
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3.4.3 Decoder

We utilize the pre-trained ‘bert-base-cased’ model from Devlin et al. [25] with 12-layers,

a hidden size of 768, 12 attention heads in each layer for a total of 110 million parameters.

Since we are using BERT as a decoder for caption generation, cross-attention layers (for

brevity, we refer to cross-attention as xattn in the results section) and a final language

modeling head is added to make the next token prediction.

We chose the base BERT since it has publicly available pre-trained versions like BioBERT

[43] or BioClinicalBERT [3], that are pre-trained on PubMed articles and clinical notes.

These pre-trained initializations are useful during fine-tuning as they incorporate clinical

knowledge, which is crucial in our case since we are dealing with pathology notes.

During training, the source words are appended with a BERT specific ‘[BOS]’ token at

the beginning of the sentence and an ‘[EOS]’ token at the end of the sentence to denote the

end of the clinical note to generate the target sequence. The ‘[BOS]’ token shifts the target

sequence to the right, and the task at training therefore becomes to predict the next token

based on the previous token and the encoded image features. We are using ‘teacher-forcing’

for training, since we are supplying the ground-truth to the decoder.

3.4.4 Training

We add padding to each collection of WSI patch tokens such that the total length is

128. We use a pad size of 128 for our text tokens and use the pre-trained BERT tokenizer

to tokenize the clinical notes.

For the thumbnail encoder, we add random augmentations like random resized crop and

random horizontal flipping to the thumbnail image during training.

We use the CrossEntropy loss function and a learning rate of 1e-3 with the Adam opti-
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mizer. We use a batch size of 32, with mixed precision training and a learning rate scheduler

that decays the learning rate by 0.8 when there is no decrease in the validation loss score

for 6 consecutive epochs. We also incorporate value based gradient clipping to tackle the ex-

ploding gradient problem. If the validation loss does not improve for 12 consecutive epochs,

we stop the training and save the model with the best validation loss. All our models were

trained on a single NVIDIA A100 GPU, and mixed precision training helped reduce training

time from 10hrs to 2hrs.

3.5 Experiments

We use natural language evaluation metrics like BLEU-4 [51], METEOR [8] and ROUGE-

L[46] scores to evaluate how closely the generated captions match the actual captions. We

report these metrics for the overall sentence and for just the pathology_notes section. We

also calculate the accuracy of generated tissue_typeg to the actual tissue_typea. These

metrics, we believe, allow us to holistically evaluate our model. We report our results on a

held out test set of 1000 patients. Note that we forgo reporting metrics on gender classifica-

tion as there is no visual way to determine gender from tissue images, and therefore it is a

meaningless metric.

During inference, we choose greedy decoding (beam size=1), as our method to generate

the related descriptions of the image.

In this first set of experiments, we evaluate the effect of the thumbnail encoder in our

encoding process. The decoder used is BERT-base-cased with pre-trained weights from

Devlin et al. [25].

In Tables 3.1 and 3.2, we report the results of the average of 3 runs on our held out test

set of 1000 WSIs, with natural language metrics for both the whole generated notes in Table
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3.1 and just the ‘Pathology Note’ section of the dataset in Table 3.2, which are denoted by

the prefix N. We also report the accuracy of the tissue type detected by the model while

generating the note in Table 3.1.

Table 3.1: Effect of ResNet-18 thumbnail encoder on caption generation. Note that the
decoder used is BERT-base-cased for both these experiments; mean/std of 3 runs;

Model Tissue Acc.(%) BLEU-4 ROUGE_L METEOR
VIT 89.867±0.723 0.565±0.006 0.737±0.003 0.703±0.002
VIT+ResNet 91.567±1.102 0.567±0.006 0.737±0.002 0.710±0.002

Table 3.2: Effect of ResNet-18 thumbnail encoder on caption generation on just the pathology
notes section which aactually describes the image; mean/std of 3 runs

Model N BLEU-4 N ROUGE-L N METEOR
VIT 0.120±0.004 0.419±0.003 0.376±0.004
VIT+ResNet 0.130±0.004 0.424±0.003 0.391±0.003

We can see from results above in Tables 3.1 and 3.2 that adding the thumbnail encoder

provides a sizable benefit to our caption generating model, especially when we compare

performance on just the notes section, which is the most important part of the generated

note. This shows that the added context of the whole thumbnail image is useful for report

generation for our model.

In Figure 3.5 we show the confusion matrix for the tissue type classification of our best

performing model from Table 3.1. To get the tissue type, we exploit the nature of our note

construction, which has these connecting words like ‘this is a’ and ‘from’ to isolate the tissue

type identified by the model during its caption generation.

We can see that the model is pretty good at recognizing where in the body tissue came

from. The tissue types that it does get confused by, such as the different sections of the

esophagus like ‘gastroesophageal junction’, ‘mucosa’ or ‘muscularis’ are relatively close in

clinical nature. Of note is that there are 40 different types of tissues in our dataset and
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Figure 3.5: Confusion matrix for the tissue type classification performance of the best per-
forming model from Table 3.1
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based on the results in Figure 3.5, the model is pretty good at tissue type classification.

This is of particular use in subtype classification problems.

3.6 Comparative Study of Histopathology Captioning

Architectures

We described in Section 3.4, a method for building a captioning system using pre-trained

vision encoders and decoders, that utilize the latest in the transformer based architectures

currently. In this section, we compare the architecture presented here against different ar-

chitectures proposed elsewhere [73] and by us [62, 63]. We hope to demonstrate the different

techniques we developed for histopathology captioning and the merits and weaknesses of

each.

For comparing against existing methods of histopathology image captioning presented

recently, we choose the work by Tsuneki and Kanavati [73], due to its straightforward archi-

tecture and promising results. We briefly describe each architecture and then compare their

performance on the actual captioning task.

3.6.1 Overview of architectures used for the comparison

CNN-RNN

Tsuneki and Kanavati [73] describe their method as follows:

“Given patches from a WSI, we extract features using a pre-trained CNN, which we

then pool and reduce the dimensionality of. The caption is then generated by feeding the

features into an RNN model step by step while updating its hidden state. In the case of

the EfficientNetB3 model, given n patches from a given WSI, the output from the feature
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extraction for a single patch was n × 10 × 10 × 1536. The global average pooling results

in an output of n×1×1×1536, while the 3x3 pooling results in an output of n×3×3×1536.

After the embedding dimensionality reduction, this becomes n × 1 × 1 × 256 and n × 3 ×

3 × 256, respectively. These outputs are then flattened to become single dimensional vectors

to be fed as input to the RNN model.”

Figure 3.6: CNN-LSTM architecture from Tsuneki and Kanavati [73].

VIT-LSTM

We described in Section 3.4.1 a way to encode each WSI as a collection of M patch tokens

such that WSI = {P1
patch,P2

patch...PM
patch} where each Pi

patch ∈ R1×576. The only thing different

in this architecture is that we do not take the mean of Pi
256 ∈ R256×384 and concatenating it

with Pi
4096 ∈ R1×192, to make Pi

patch ∈ R1×576, we instead broadcast Pi
4096 ∈ R1×192 256 times

and concatenate it with Pi
256 ∈ R256×384 to get P′i

patch ∈ R256×576.

We also talked about using padding the tokens to make the input data uniform and an
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‘encoder_attention_mask’ that told the model which were the pad tokens to avoid training

on them. In this architecture, instead of a mask, we use a trainable attention layer to

generate a WSI representation that is a weighted representation of all the patch tokens, and

then use that to feed into a LSTM based decoder as specified in the Show-Attend-Tell paper

from Xu et al. [77].

WSIrep = (α ∈ R1×M) · (Pvstack
patch ∈ RM×256×576) → PWSI ∈ R1×256×576

where α are the weights generated from the attention layer.

We feed the WSIrep into the attention-LSTM decoder to generate our captions. This

method is illustrated in Figure 3.7

Figure 3.7: VIT-LSTM architecture from Sengupta and Brown [62].
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Figure 3.8: VIT-BERT architecture from Sengupta and Brown [63].

VIT-BERT

In this architecture, we simply replace the LSTM based decoder with a BERT based

decoder, with added cross-attention-layers and a language modeling head 2. This method is

illustrated in Figure 3.8

VIT-BERT-ADV

This is the same architecture we described in this chapter in Section 3.4 without the

thumbnail encoder to ensure that all models have a similar amount of information available

for a fair comparison.

2https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertLMHeadModel

https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertLMHeadModel
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3.6.2 Comparison with CNN-RNN

For our first study, we use a sample of 998 patients from our original cohort of 25,120

patients stratified by tissue type. We divide those into 718 training, 82 validation and 200

testing patients, again stratifying by tissue type. We reduce our training size because of the

long training times required by the method described by Tsuneki and Kanavati [73] as we

are using the same code as provided with the paper. Our training of one model with 718

training samples required 3hrs per epoch on an NVIDIA A100 GPU. Using all of our data

would take prohibitively long. We train the CNN-RNN model for 10 epochs and report the

result of the epoch with the best validation BLEU-4 score.

We show the results in Tables 3.3 and 3.4 for the full note and the pathology note section,

respectively. We show the results on the smaller dataset and then the full dataset. Note

that all the metrics shown are an average of 3 training runs, except for CNN-RNN [73].

Table 3.3: Comparison on the Full Note

Model Tissue Acc.(%) BLEU-4 ROUGE_L METEOR
998 Patients

CNN-RNN[73] 66.50 0.538 0.663 0.669
VIT-LSTM 79.34 0.589 0.757 0.719
VIT-BERT 72.00 0.532 0.719 0.667
VIT-BERT-ADV 71.50 0.521 0.710 0.667
All Data

VIT-LSTM 92.06 0.632 0.773 0.745
VIT-BERT 89.53 0.578 0.742 0.703
VIT-BERT-ADV 89.86 0.565 0.737 0.703

We can see that the VIT-LSTM model outperforms other models in all metrics except

for BLEU-4. This suggests that while the transformer based decoders are a more complex

architecture, for our data, the LSTM based decoder is sufficient. Our hypothesis is that

while LSTM based models might be sufficient for the length of sentences being considered in

our data, which rarely exceed 128 tokens, real world pathology notes will contain multiple
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Table 3.4: Comparison on the Pathology Note section

Model BLEU-4 ROUGE_L METEOR
998 Patients

CNN-RNN[73] 0.044 0.277 0.242
VIT-LSTM 0.065 0.416 0.348
VIT-BERT 0.082 0.391 0.327
VIT-BERT-ADV 0.088 0.376 0.329
All Data

VIT-LSTM 0.107 0.448 0.392
VIT-BERT 0.119 0.429 0.381
VIT-BERT-ADV 0.120 0.419 0.376

paragraphs. Since this would require retaining long term dependency information to generate

coherent and accurate reports, we believe our transformer based decoders might outperform

the LSTM based models.

3.6.3 Qualitative caption analysis

In Figure 3.9 we show the generated captions for a selection of patients from our test set.

Again the VIT-LSTM model seems to show better agreement with the actual pathology note,

especially in the case of Patient ID: GTEX-1313W-2526, where the LSTM based decoder is

able to detect ‘glomeruli’ while none of the others can.

3.7 Conclusion

In this work, we show that powerful pre-trained ViT based representations could be used

to encode a very high resolution histology image slide for another downstream task, that is,

successful automatic report generation.

We also compared different architectures proposed by us and elsewhere for this task

and showed that for our task, an LSTM based decoder outperformed our transformer based
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Figure 3.9: Qualitative analysis of captions

Figure 3.10: Qualitative analysis of captions
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decoders. However, since we only tested BERT pre-trained decoders and not more powerful

transformer based models like ‘GPT2’ [50] or T5 [56], we would caution against discarding

transformers completely. We present in Figure 3.10 an overview of the comparison between

all methods presented in this paper.

Another downside of the methods we compare against in our comparative analysis in

Section 3.6 is the lack of interpretability. We cannot associate the generated word tokens

with areas of the image, thus reducing trust. We built the model described in this chapter

specifically to be interpretable, which we detail in Chapter 4. Most previous methods for

caption generation in histopathology required having a method to encode these high reso-

lution images into manageable representations that could then be used for model learning,

which can now successfully be replaced by powerful self-supervised pre-trained encoders like

HIPT.

We also see that of the 40 different tissue types available in our test data, our model was

able to correctly classify over 90% of them, which suggests that we can successfully use the

captioning model for multi-class classification, which is a valuable objective. Even under-

represented tissue types like ‘cervix’ and ‘fallopian tube’ were for the most part accurately

classified. This points to the robust classification ability of language models grounded by

visual features using the vision encoder and cross-attention.

We present, in this work, a method to utilize powerful pre-trained transformer models

for automatic report generation specifically for histopathology with an end-to-end training

mechanism that to the best of our knowledge had not been proposed before. We believe

this work broadens the scope of research in histopathology by introducing transformers in

place of traditional CNN-RNN based encoder-decoder models for histopathological caption

generation.



Chapter 4

Evaluating cross attention for report

generation

4.1 Introduction

In Chapter 3 of this dissertation, we described a method to build a caption gener-

ation pipeline that first converts high resolution WSIs into patches, exploits a powerful

self-supervised model, HIPT [17] to generate patch embeddings, and then feeds it through

a custom encoder-decoder model that generates descriptions of the whole slide image. One

of the motivations of this dissertation was not only to combine multi-modal datasets like

images and text for the histopathology, but also to investigate methods that help us inves-

tigate model decisions. While deep learning models are powerful, they are often black boxes

which can hinder their trustworthiness. In clinical settings, in the event of an error, it is

highly useful to have a mechanism to investigate model decisions.

Towards that goal, due to the nature of the caption generation architecture presented in

Chapter 3, we are able to get cross-attention values for each word generated by the model.

This provides us with a unique opportunity to glance at what part of the image the model

was looking at for generating a word, thereby providing context in case of failure modes.

The main motivation of investigating cross-attention for model interpretation comes from

Tang et al. [69], where the authors investigate Stable Diffusion models [57] by aggregating

35
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cross-attention maps in the denoising module of the Stable Diffusion model. Using that,

they are able to generate text-image attribution maps, that help highlight sections of the

image associated with words in the text prompt. Similar qualitative analysis of attention

maps have been done by the authors of METransformer [76], which is a model to generate

captions for X-ray images.

For histopathology caption generation, Zhang et al. [78] utilize attention maps generated

from the attention LSTM decoder to highlight 256x256 patch clusters that were given im-

portance for generating a particular word. While there have been other caption generation

methods for histopathology, as described in Tsuneki and Kanavati [73] and Gamper and

Rajpoot [30], the authors do not investigate attention attribution maps. This is mainly due

to the high resolutions associated with WSIs which usually lead to compressing the WSI into

a K-dimensional vector, mostly through aggregating patch representations, as described in

the papers by Zhang et al. [78] and Tsuneki and Kanavati [73]. This compression often

leads to loss of location information since once aggregated over patches, it is hard to assign

importance to an area of the original high resolution image. Indeed, our previous work on

histopathology image captioning also suffers from this loss of localization due to compression

[62, 63].

Part of our motivation in building the architecture in Chapter 3 the way we did was to

retain the ability to perform such analyses, since they can be potentially useful clinically.

Our architecture retains the patch location information, since each patch is represented by

a multi-scale embedding vector extracted from the HIPT which had been pre-trained in a

self-supervised manner over other histopathology images. We do no aggregation over the

patches to generate a WSI representation, as each WSI is now a sequential collection of

visual tokens, with each token representing a 4096x4096 area of the image. While the patch

size is relatively big, leading to some loss in fidelity of the generated attention maps, it is
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nevertheless useful for model validation.

In this section of the dissertation, we first describe the mechanism to extract cross-

attention values for each generated word, then we show examples of our generated attention

maps. We got the 10 of the attention maps validated by a board certified pathologist, who

confirmed the existence of clinical features corresponding to the word being generated.

4.2 Cross Attention extraction

Our BERT-base transformer decoder consists of 12 transformer layers, where each trans-

former layer consists of a multi-head self-attention layer and a feed-forward neural network.

The number of attention heads in each layer is 12. Due to it being used as a decoder, we

also have a cross-attention layer between the self-attention and feed-forward layers. This is

illustrated in Figure 4.1.

Figure 4.1: Cross-attention; source: Understanding Self-attention from scratch - Sebastian
Raschka

https://sebastianraschka.com/images/blog/2023/self-attention-from-scratch/cross-attention.png
https://sebastianraschka.com/images/blog/2023/self-attention-from-scratch/cross-attention.png
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Cross attention works by calculating the key K and value V vectors from the source

input sequence S1, in this case the vision encoder outputs and the query Q from the target

output sequence S2, which in this case is the output of the self-attention head in the decoder.

Mathematically, it is done using the following:

CrossAttention = softmax(
(WqS2)(WkS1)

T

√
dk

)(WvS1)

where Wq, Wk and Wv are learned weight matrices used to calculate the queries, keys

and values respectively. Since there can be nattention_heads attention heads and nlayer-layers,

for each token generated we get nlayer × nattention_heads× (number of visual tokens). For the

case of BERT-base and its derivatives, nlayer and nattention_heads are equal to 12.

For the sake of simplicity, we use greedy decoding during inference, which results in

only the single most probable token generated based on previous tokens and encoded image.

We do not use the beam search mechanism for token generation, which can often lead to k

candidate tokens at every decode step, where k is the size of beam search.

For further simplification, we average over the number of heads per layer. Therefore,

cross_attention(token, layer) =

∑nattention_heads

i=0 cross_attention(token, i, layer)

nattention_heads

In the next section, we show outputs of visual attention maps associated with some

chosen words in the generated caption for the cross-attention values from the final layer of

the decoder.
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Figure 4.2: Comparison between the actual notes vs. the generated note. The patient is
from the held out test set of 1000 patients.

4.3 Cross Attention Maps

In Figure 4.2, we show the caption generated for a patient from the held out set of 1000

patients described in Chapter 3. We can see that the generated caption closely follows the

actual description from a pathologist. For the same patient, in Figure 4.3, we show the top

5 ranked patches by attention value, highlighted in blue shades, based on the cross attention

values extracted from the last layer of the BERT decoder. The rest of the patches not in

the top 5 are artificially set to an attention value of zero for simplicity and represented

by highlighting them in red. You can find the code to generate these visualizations at

https://github.com/ssen7/histo_cap_transformers_v2.

We can see that ‘macrovesicular steatosis’ generates similar attention maps, while the rest

produce different attention maps. The word ‘fibrosis’ appears twice and generates different

attention maps with some overlap each time. While the words ‘cardiac’ and ‘cirrhosis’ also

generate differing attention maps.

When reviewed by a board certified pathologist, we were able to confirm the existence of

image features present in the patches that were consistent with the associated token being

generated.

https://github.com/ssen7/histo_cap_transformers_v2
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Figure 4.3: Each image shows the top 5 ranked patches by attention value, highlighted in
blue shades, based on the cross attention values extracted from the last layer of the BERT
decoder. Darker blue indicates higher attention value. We can see that ‘macrovesicular
steatosis’ generates similar attention maps, while the rest produce different attention maps.

Next, in Figure 4.4 we show the top 5 ranked patches by attention value, highlighted in

blue shades, based on the cross attention values extracted from the last 3 layers of the BERT

decoder. The token of interest is ‘squamous’. We can see from all the layers, the patches are

ranked fairly similarly.

Figure 4.4: Each image shows the top 5 ranked patches by attention value, highlighted in
blue shades, based on the cross attention values extracted from the last 3 layers of the BERT
decoder. Darker blue indicates higher attention value. The token of interest is ‘squamous’.

Next, in Figure 4.5 we show the top 5 ranked patches by cross-attention value from the
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final layer of the decoder. When reviewed by a pathologist, it showed evidence of ‘squamous’

epithelium, which are usually on the edge of tissues.

Figure 4.5: Each patch from highest ranked patches based on the cross-attention scores from
the final layer of the decoder. Highest rank on the left.

4.4 Conclusion

This shows evidence that the model is giving importance to the correct things while

generating associated tokens. We can also see that different layers of the decoder are giving

attention to similar areas of the image, but in different magnitudes. This is promising since

this validates the efficacy of the model architecture while also giving us a way to investigate

the model in case of failure modes. To the best of our knowledge, this is the first work

looking at cross-attention values for histopathology data and would set a starting point for

more work in increasing the fidelity of these attention maps, so that we can one day associate

smaller, more targeted areas of the image with each predicted token.



Chapter 5

Positive Unlabeled learning for

detecting Long COVID

5.1 Introduction

Post-acute sequelae of SARS-CoV-2 infection (PASC), also known as Long COVID, is

an emerging medical condition in the aftermath of the COVID-19 pandemic. Research on

this disease is limited by its newness and the lack of reliable controls, which can hinder

model development. The National COVID Cohort Collaborative (N3C)1 contains Electronic

Health Record (EHR) data for 7 million COVID positive patients from 76 sites across the

United States, of which there are fifty thousand Long COVID patients. For this study,

we model our risk factor analysis as Positive Unlabeled (PU) problem, where we treat Long

COVID patients as the positive sample and rest of the COVID positive patients as unlabeled

data. We first curate reliable controls using a PU modeling technique called bagging. We

then use this cohort of positive and the curated negative samples to model risk factors for

Long COVID. We utilize an attention-based deep learning approach using Long Short Term

Memory (LSTM) networks on historical diagnosis data prior to COVID-19 infection, to first

predict for Long COVID and then extract the model attention values to score input diagnoses

for each patient.

1https://ncats.nih.gov/n3c

42
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Figure 5.1: Long COVID common symptoms.

Long COVID is a newly developing condition that has affected people infected with the

COVID-19 virus even after recovering from initial symptoms. It has been characterized by

fatigue, dyspnea [20], loss of taste or smell, impaired concentration and memory problems

[13], brain fog [5] and other symptoms that continue for weeks or months after the initial

infection. Numerous studies have investigated risk factors associated with these Long COVID

symptoms using retrospective analysis of survey responses [1] or follow up [28]. These risk

factors include female sex [9], older age, hospitalization [28, 37] and vaccination status[6]. All

of this motivates a deeper look into patient diagnosis data prior to and up to the COVID-19

pandemic that would make patients susceptible to suffer from Long COVID.

The N3C database contains diagnosis, medications, lab measurements data and more for

7 million COVID positive patients. While other studies have focused on data collected from

questionnaires asking patients if they were suffering from Long COVID [6] which imparts a

degree of reliability to the assigned labels, this process can be time-consuming and expensive
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if we want to use information from all patients we have in the database. This entails lever-

aging data from some patients labeled with a Long COVID diagnosis as well as selecting

controls from a large set of COVID positive patients whom may not have been asked or had

a Long COVID condition documented.

In recent years, self-supervised learning, which uses unlabeled data to inform downstream

supervised learning, has shown good results in computer vision and natural language pro-

cessing tasks [55]. Positive Unlabeled (PU) learning is a subset of self-supervised learning,

that is, semi-supervised learning where the learner only has access to the positive samples

and the rest of the data is unlabeled, which is similar to our case, where we can reliably

identify patients suffering from Long COVID (P) and the rest we cannot reliably label (U)

[10]. In this paper, we build on prior work and use attention based Long Short Term Memory

(LSTM) models in the absence of labeled control data using a positive unlabeled learning

technique called bagging to first identify a set of reliably negative control patients and then

show that this performs better than a random selection of control patients. We then use

attention scores generated for each correct prediction to rank the input diagnosis codes to

help understand associations between them and Long COVID. We are also able to capture

and plot the time distribution of the most common diagnosis codes.

5.2 Related Work

5.2.1 Deep Learning for Electronic Health Records

Numerous previous studies have investigated the use of deep learning for analyzing Elec-

tronic Health Record (EHR) data. REverse Time AttentIoN model (RETAIN) for applica-

tion to Electronic Health Records (EHR) data [18] used Recurrent Neural Networks (RNNs)

to analyze time labeled sequence of observations like diagnosis codes where each patient
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is represented by a sequence of temporally arranged tuples, while also being interpretable.

The model was able to assign a feature importance score to each input feature using out-

puts from its two constituent RNN networks for calculating attention at both visit level

and variable level. One of the earliest papers used plain LSTMs on temporally arranged

International Classification of Diseases-9th revision (ICD-9) diagnosis codes to predict 128

common diseases like heart failure and respiratory distress [47]. Similar studies using LSTMs

for analyzing temporal diagnosis codes, vital signs and medications for future disease onset

prediction have also been shown to perform well [21, 71]. These studies motivate our goal

of analyzing historical diagnosis codes prior to the COVID-19 infection present in the N3C

database to first predict if a patient is suffering from Long COVID, and then investigate

these models for associations between a patient’s diagnosis history and Long COVID.

5.2.2 Positive Unlabeled Learning

There are several strategies used for PU learning. In [48], a two-step technique is used

where the first step is generating reliable negative samples from the unlabeled dataset, and

using a supervised learning method using the positives and the reliable negative samples.

Various techniques are used for generating reliable negatives, like Spy, where some labeled

samples are turned in spies by adding them to the unlabeled samples and the reliable neg-

ative samples are assigned to all samples whose posterior probability is lower than the pos-

terior probability of the spies. The second step utilizes supervised classification algorithms

like Support Vector Machine (SVM) to build robust classifiers. The other class of positive

unlabeled methods broadly treat an unlabeled dataset as noisy negative samples, that is,

contaminated with positive samples which can make learning harder [61]. Bagging SVMs

train multiple SVM models by taking the positives and treating a random sample of the

unlabeled as negatives, and then averaging their predictions [49]. Robust ensemble SVMs
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follow the same idea, but randomly sample the positives and use the bootstrap approach

[19]. Other techniques involved defining loss functions that minimize the non-negative risk

[38].

5.2.3 PU Learning Assumptions–Selected Completely At Random

There are a number of assumptions that enable us to learn from positive unlabeled

datasets. The most common among them is Selected Completely At Random (SCAR) where

we assume that all labeled samples are selected from a distribution of positive samples [27].

Under this assumption, the probability for a sample to be labeled is directly proportional

to the probability of it being positive. Therefore, it reduces the PU learning problem into

a binary classification model where if we train an estimator to classify between positive

and unlabeled samples, the estimator in theory should also be able to discriminate between

positive and negative samples [49]. This enables us to train classifiers like biased-SVM where

high penalties are given for false negatives and low penalties for false positives or a weighted

logistic regression approach, since we know that the unlabeled samples are contaminated

with positive samples.

5.2.4 Bagging for PU Learning

Bootstrap aggregating or Bagging creates a set of classifiers trained on a perturbed

sample of the training data, and aggregating their predictions has also been successfully

used for PU learning [49]. In the inductive setting, where the goal is to make predictions on

new or unseen data, this method which is also called SVM bagging, takes T -samples of size K

from the unlabeled dataset U , trains T -classifiers by treating the sample from the unlabeled

dataset as negatives. For previously unseen data, we can simply average the predictions from

all T models. In the transductive setting, where the goal is to identify positive data from
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Figure 5.2: Illustration of the SVM Bagging technique as described by Mordelet and Vert
[49]

the unlabeled dataset, models are trained using subsample UT from the unlabeled sample U ,

is used to assign prediction scores on all samples U\UT held out from the training. For all

data points in the unlabeled sample, the prediction scores are aggregated, and a threshold

is chosen, above which each data point is assigned a positive label. The authors also found

that having the K = size(P) was a safe choice for bagging predictors.

5.2.5 Attention based neural networks

Attention in neural networks has been previously used in Neural Machine Translation

[7] and Image captioning [77] where it has been successfully used to “attend” to relevant

context in the input sentence and image respectively. It is essentially used to “look” at the

most useful feature of a given input to generate a response. In machine translation it is

used for exploiting relationships between sequences of words in the input sentence, while in

image captioning it is used to focus on the area of image most relevant for generating the

next word in the caption that best describes the image. There are many flavors of attention,

like deterministic “soft” or stochastic “hard” attention. Here, we focus on the simpler and

differentiable “soft” attention mechanism that we use in our model.
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In practice, soft attention is essentially a trainable linear layer that calculates the weights

on the annotation hi generated by the previous LSTM layers. From [7]: Each annotation

hi contains information about the whole input sequence, with a strong focus on the parts

surrounding the i-th word of the input sequence. The context vector ci is, then, computed as

a weighted sum of these annotations hi as ci =
∑Tx

j=1 αijhj. The weight αij of each annotation

hj is computed by αij =
exp(eij)∑Tx

k=1 exp(eik)
where eij = a(si−1, hj) is an alignment model, which

scores how well the inputs around position j and the output at position i match.

5.2.6 Attention for interpretation

Since attention provides a weighted average on representations of the input features, it

has often been used to assign relative importance of these inputs for the prediction, and

has found particular use in medical settings where model reliability and interpretability is of

the utmost importance [18]. There has been much debate around whether attention values

should be used for explanations [12]. In [31], the authors find that there can be meaningful

interpretations on the relative importance of input features in classification settings and there

is a higher chance of the interpretations being meaningful if the model itself is robust. The

authors recommend using ensembling methods to improve those interpretations in case of

failure modes where the model itself is good, but the attention values do not hold significant

information.

5.3 Dataset

Please refer to Table 5.1 for the inclusion criteria for patient selection. These criteria were

designed to focus the analysis on adult patients who are at sites with at least some patients

having coded labels of Long COVID in our dataset (visit at a Long COVID specialty clinic or
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Long COVID diagnosis U09.9). We also only want to include patients whose COVID index

occurred early enough to allow for the development of Long COVID. We define the COVID-

19 index event as the first time the patient tests positive for COVID-19 or a diagnosis of

COVID-19 was recorded in the EHR.
Table 5.1: Dataset Inclusion Criteria

Criteria N
Total N3C patients (June 14th 2023) 19,376,170
Total COVID positive Patients (June 14th 2023) 7,578,139
Age at COVID>=18 5,627,459
Patients from data partners sending Long COVID clinic
visit flags and/or U09.9 codes

4,711,807

Remove patients who died within 45 days of COVID
diagnosis

4,659,781

Keep patients with COVID index date between >=2020-
03-01 and <=2022-12-01

4,464,134

5.4 Methodology

5.4.1 Site Based Filtering

For each Long COVID patient:

1. find controls that are from the same site.

2. look for controls that have an index date within ± 45 days or patient’s COVID index

date.

3. take a sample of up to 10 random controls.

To create a list of potential controls, for each Long COVID patient, we randomly sample 5

of these random controls to create 1:5 case vs control patients. We define a Long COVID
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patient as anyone who has the U09.9 ICD-10 code in their EHR or has a Long COVID clinic

visit. At the end of this process we have 50,240 Long COVID patients and 251,200 patients

who are potential controls, and we treat as our unlabeled dataset.

Table 5.2 contains the demographic breakdown of our study cohort. We see that our

Long COVID cohort has a higher median age than those chosen by our site filtering method

for controls. We also see that female patients are a higher percent of our Long COVID

patients, which matches what other studies have found regarding Long COVID.

Table 5.2: Breakdown of Demographics After Site Based Filtering

All patients
301,440

Long
COVID
50,240

Unlabeled
251,200

Age
Median
(Q1,Q3)

48
(33,62)

54
(42,65)

46
(32,61))

Race/ethnicity

White 189,758
(63.0%)

34,005
(67.7%)

155,753
(62.0%)

Hispanic 37,927
(12.6%)

5,634
(11.2%)

32,293
(12.9%)

Black/African
American

42,252
(14.0%)

6,732
(13.4%)

35,520
(14.1%)

Asian 6,288
(2.1%)

870
(1.7%)

5,418
(2.2%)

Other 5,204
(1.70%)

536
(2.1%)

4,668
(1.9%)

Unknown 20,011
(6.6%)

2,463
(4.9%)

17,548
(7.0%)

Sex

Male 124,174
(41.3%)

17,371
(34.6%)

106,803
(42.5%)

Female 177,076
(58.7%)

32,854
(65.4%)

144,222
(57.5%)
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Figure 5.3: Positive Unlabeled learning for Long COVID detection, a method overview

5.4.2 RF Bagging method

To curate the probable negatives from the unlabeled sample, U we use the following

process:

1. Sampling with replacement from the unlabeled dataset U to create a set of “negatives”

UT and combine them with all our positive samples P to create multiple training

datasets DT = P ∪ UT . Note that these “negatives” UT can contain positive samples.

Also, each sample size K roughly matches the size of positive samples as found by [49].

For each such “training” dataset created, the rest of the unlabeled samples U\UT are

used for prediction.

2. Training a Random Forest model MT on each DT using patient features we know from

previous studies to be correlated with a Long COVID diagnosis, namely age, sex, the

total number of visit days the patient was recorded having prior and after to their



52 CHAPTER 5. POSITIVE UNLABELED LEARNING FOR DETECTING LONG COVID

Figure 5.4: RF Bagging technique overview.

COVID index event visit (with hospitalizations collapsed to a single visit), and the

patients overall comorbidity profile as represented by their Charleson’s Comorbidity

Index score at the time of COVID index event. We chose a Random Forest for this

task as it outperformed other classification models like Logistic Regression using Area

Under the ROC Curve metric and has a lower chance of overfitting on the data.

3. For each trained model MT , we assign probabilities PrSi
(y = 1) to the unlabeled

samples, U\UT where S represents the number of times a sample was held out from

training.

4. Aggregate the predictions probabilities
∑S

i=1 Pri(y=1)

S
for all the unlabeled samples. Note

that this is similar to bootstrap aggregating or bagging technique defined used in [49].

5.4.3 Choosing the threshold

Since we now have aggregated probabilities for all the unlabeled data we have, we choose

an appropriate threshold below which we can reasonably assume that the samples are reliably
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negative, thereby reducing the noise in our unlabeled dataset. The following criteria is

applied for choosing the threshold:

1. Use all patients whose average prediction <0.50 to create our reliably negative popu-

lation RN .

2. If size(RN) > size(P), keep on reducing the threshold until size(RN) ≊ size(P).

Here, we prioritize creating a balanced sample of our reliably negative population.

5.4.4 Prediction Task

Figure 5.5: Bidirectional LSTM model with an attention layer used for classification.

Our second step involves using our positives and the reliable negatives identified in step

1 to train our Bidirectional LSTM with Attention model for binary classification of Long

COVID, with all Long COVID patients assigned a label of 1 and the reliably negative patients

assigned a label 0. Each patient Pi is represented as a temporally ordered list of diagnosis
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codes, [C0, C1, ...CTx ] where Tx represents the time step at which the diagnosis occurred.

We limit the max length of input features to 1000 tokens as it covers 99 percent of the

Long COVID patients in our study cohort. We collect all diagnoses up to 45 days after

the COVID-19 index event. We have access to a Limited Dataset (LDS) as defined here

https://ncats.nih.gov/n3c/about/data-overview, and therefore have access to actual

dates on which each diagnosis occurred.

The embedding layer is initialized using 200-dimensional pre-trained SNOMED-CT em-

beddings trained using Snomed2Vec [2] and frozen during training. We identified 16,396

unique diagnosis codes, of which we found pre-trained embeddings for 15,563 codes and

treat the rest as unknown tokens assigned a special [‘UNK’] token. Our model consists of

2 bidirectional LSTM layers followed by an attention layer and a final classification linear

layer. We use the Cross Entropy loss and Adam optimizer for training, with a learning rate

of 0.001. We can then extract a list of αij scores for each input diagnosis code Ci. We show

through experiments that this trained classifier outperforms the same model trained on a

randomly chosen subsample of unlabeled data as negatives.

5.5 Experiments

5.5.1 Baseline Comparison

For baseline models, we use Naïve Bayes and Support Vector Machines (SVM) in a Bag

of Words (BoW) setting, where each patient feature set is defined by the count of times a

particular diagnosis occurs in their patient record. We chose the BoW setting because it

satisfies our stated goal of analyzing all historical diagnosis codes for analysis. We compare

the performance of these models against the neural network models. Our experiments show

that while neural networks outperform these baseline methods, model performance is still

https://ncats.nih.gov/n3c/about/data-overview
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not adequate. Note that these are trained on all data with 1:5 train to unlabeled proportion,

making it an imbalanced dataset. All performance measures are on the same held out test

set. See Table 5.3.

Table 5.3: Baseline Comparison

Model AUC Accuracy F1 Score
Naïve Bayes BoW Model 0.50 0.22 0.29
SVM BoW Model 0.55 0.83 0.18
BiLSTM CNN Model [64] 0.75 0.66 0.44
BiLSTM Attention Model 0.80 0.74 0.49

We see that the BiLSTM-Attention Model performs better than the others, and we use

this model for our experiments from here on out.

5.5.2 Balanced Random Control Sampling

Here we sought to balance the input dataset such that we have 1:1 ratio of positive and

unlabeled data. We randomly sampled 3 times from our unlabeled data, U and assigned

them a label of 0 and used the BiLSTM Attention model for classification. See Table 5.4 for

results.

Table 5.4: 3 Controls randomly drawn from unlabeled samples U

Model AUC Accuracy F1 Score
BiLSTM Attention Ran-
dom Balanced v1

0.77 0.71 0.73

BiLSTM Attention Ran-
dom Balanced v2

0.79 0.71 0.72

BiLSTM Attention Ran-
dom Balanced v3

0.84 0.76 0.77

We can see that it is random luck of the draw to build a performant model and all
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performance metrics are highly dependent on the unlabeled sample we chose as negatives.

5.5.3 Balanced Pruned Controls with Different Bagging predictors

Here we show the results of our two-step technique, where we first use T predictors to

find our reliable control samples using the method described above and then run our best

performing neural network model on the dataset created using all our positive samples and

reliable controls found in the first step.

Applying our method for pruning controls results in consistently improved model per-

formance. Table 5.5 shows the effect of the number of times T we train a model for bagging

predictions of our reliably negative controls. As expected, as we increase the number of

bagging predictors, we get better at finding reliably negative patients and are able to build

better models.

Table 5.5: Controls Pruned with Different Bagging predictors

Number of predictors AUC Accuracy F1 Score
T=3 0.87 0.80 0.81
T=4 0.92 0.84 0.86
T=5 0.93 0.86 0.88

5.6 Analysis

In [31], the authors propose that using an ensemble of models improves robustness of

attention based interpretations. They propose two flavors of this, where they train multiple

models with the same hyperparameters with different seeds or take an ensemble of the top

performing models. In our case, we train the same model with different seeds, produce
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attention scores for the input features for every correctly classified Long COVID patient

from each model and average the scores.

We first report the performance metrics for models trained with different seeds in Table

5.6. We see that our chosen model is stable even when we have different initialization weights

due to a different choice of the random seed.

Table 5.6: Performance of models used for attention scoring

Model AUC Accuracy F1 Score
random seed v1 0.93 0.86 0.88
random seed v2 0.94 0.87 0.88
random seed v3 0.93 0.87 0.89

We are then able to extract the attention scores for all correctly classified Long COVID

patients from all 3 models, normalize them, and then average them. We then extract the

top 10 features by average attention score for these patients. Since we know when these

diagnoses were recorded, we can capture the distance in days from the first COVID index

event.

Figures 5.6 and 5.7 contains the top 10 features identified by the average normalized

attention scores for two correctly classified Long COVID patients, while Figure 5.8 contains

the top 10 features summarized over all patients correctly classified by the model as having

Long COVID.

We see in Figure 5.8a that “Mixed Hyperlipidemia” and “Essential Hypertension” are

the top 2 conditions that occur in the 10 most highly scored diagnoses for correctly classified

Long COVID patients [32, 67]. We also see unknown token (<unk >) show up in the top

10 conditions and when we look at the actual condition recorded in the EHR, we see that

most of those unknowns are “Platelet count-finding”, which comes before “Platelet count-

abnormal” and ”“Platelet count-normal” in the SNOMED-CT hierarchy. This points to a
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Figure 5.6: Top 10 Features for a correctly classified Long COVID patient identified using
average attention scores.

Figure 5.7: Top 10 Features for a correctly classified Long COVID patient identified using
average attention scores.
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(a) Top 10 conditions:patient counts (b) Day distribution from COVID index

Figure 5.8: Top 10 attention score distribution

limitation of analyzing EHR data, where recording practices in hospital systems are often

oriented towards billing. This finding will also guide our future work, where instead of

replacing tokens with unavailable pre-trained embeddings with a special token, we will work

towards identifying the next closest embedding for the token in the SNOMED-CT hierarchy.

In Figure 5.8b, we can see the distribution in number of days before or after the COVID

index event the diagnosis occurred. We see that “Dyspnea” usually is recorded closest to

and around the COVID index event, which suggests that having difficulty breathing around

the COVID-19 infection can be a significant risk factor for Long COVID.

In Figures 5.6 and 5.7 we see the top 10 features by average attention scores for 2 different

patients as identified by the models, plotted over how far in days from the COVID index

event these were recorded in the EHR. For Patient 1 in 5.6 all the diagnoses occur within

45 days of the COVID index event while the opposite is true for Patient 2 in 5.7, although

most of the highly scored features are observed nearer to the COVID-19 index event. These

visualizations can be useful for physician oversight into the trustworthiness of the model’s

predictions and offer insight into individual patient characteristics.
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5.7 Conclusion

In this chapter, we described utilizing a Positive Unlabeled learning based bagging tech-

nique to curate reliable negative samples when finding such samples from large, unlabeled

data can be expensive and time-consuming to do. We then show that we are able to build

effective models when we consider these negative samples for our modeling. We propose that

this technique will potentially be useful in further analyses which utilize data from multiple

institutions, such as in the N3C, where labeled data can be hard to come by. We also show

the applicability of using attention based neural network methods and the interpretability

they offer when applied to EHR data collected from multiple hospital sites from across the

United States, and hope this establishes a foundation for further research using state of the

art neural network models on the N3C platform.



Chapter 6

Conclusion and future work

We had a number of goals that we hoped to achieve with the works described in this

dissertation. One of the foremost among them was to build a multi-modal system for health-

care, especially in the histopathology domain. As described before, histopathology datasets

are challenging to deal with because they require workarounds for computationally han-

dling their large image sizes. Therefore, building multi-modal models, require a number of

considerations to handle this issue of size.

We described, in Chapter 3, an image captioning system that can automatically generate

reports given a histopathology slide image. We were able to incorporate existing state of

the art in both vision and language modeling, by using vision transformers and pre-trained

transformer based language models like BERT. Our model is flexible in the sense that we

can swap out different and more heavy-duty large language model decoders like T-5 [56] or

GPT2-Large [54] that has 770 Million parameters that can be trained for better performance.

We were also able to preserve patch location information in our image encoding pipeline. The

primary objective for this report generation system was to assist clinicians and pathologist

in their work of understanding the disease from images. The report generated from this

system can give a clinician a starting point in their investigation of a patient’s symptoms.

We also showed a comparative analysis of different architectures in Chapter 3 and showed

that an LSTM based decoder marginally beat out our transformer based decoders.

The other goal of this dissertation was to necessarily build models that were interpretable
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in some way, so that if/when these models are to be deployed in a real world clinical setting,

there are ways to investigate said models. In Chapter 4 we showed how we can use cross-

attention values from the decoder to generate visual attention maps associated with the

generated token. We were able to qualitatively validate the efficacy of the attention maps

from a board certified pathologist. These interpretation mechanisms are crucial in sensitive

settings like healthcare where if the model makes the wrong decision it can lead to potentially

fatal consequences.

In Chapter 5, in aid to our stated goal of building trustworthy models, we showed a

Positive-Unlabeled (PU) learning method that showed improved performance for detecting

Long COVID in the data from the N3C. The goal of improving the performance of our

attention based LSTM model, was to make the model more confident in its predictions,

which we showed by the improved F1 scores. The primary objective of the research was to

determine risk factors for Long COVID, which we did by investigating the attention scores

assigned to the input sequence of temporally arranged diagnosis code. To better trust these

attention scores, building a more robust model, that is able to better predict Long COVID

was crucial.

Some of the publications building towards this work are listed below:

• Sengupta, Saurav, and Donald E. Brown. “Automatic Report Generation for Histopathol-

ogy images using pre-trained Vision Transformers and BERT.” Accepted to IEEE In-

ternational Symposium of Biomedical Imaging (ISBI) 2024, Athens, Greece. https:

//arxiv.org/abs/2312.01435

• Sengupta, Saurav, and Donald E. Brown. “Automatic Report Generation for Histopathol-

ogy images using pre-trained Vision Transformers.” Machine Learning for Health (ML4H)

2023 Findings Track. https://arxiv.org/abs/2311.06176

https://arxiv.org/abs/2312.01435
https://arxiv.org/abs/2312.01435
https://arxiv.org/abs/2311.06176
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• Sengupta, Saurav, Johanna Loomba, Suchetha Sharma, Scott A. Chapman Donald E.

Brown. “Determining risk factors for Long COVID using Positive Unlabeled learning

on Electronic Health Records data from NIH N3C” accepted at IEEE International

Conference of Machine Learning Application (ICMLA) 2023, Jacksonville, Florida

• Sengupta, Saurav, et al.“Analyzing historical diagnosis code data from NIH N3C and

RECOVER Programs using deep learning to determine risk factors for Long Covid.”

2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

IEEE, 2022.

One of the obvious limitations of the attention maps described in Chapter 4 is that the

fidelity of the maps are constrained by the large patch size of 4096x4096. While useful,

these sometimes cover too large an area of the WSI, to be actually helpful for generating

new clinical insights. The most we can do is validate the token generated has some clinical

association with the highest ranked patches in terms of attention scores. Future work in this

area could focus on improving the fidelity of attention maps.

Our image captioning system was trained on the only available large scale histology

image-text paired data that we know of in the GTEx Tissue portal. However, real world

clinical notes are more descriptive and comprehensive. The advantage of our architecture is

that since it uses existing pre-trained language models as the decoder, once more descriptive

clinical notes are available, our model can be fine-tuned on the new data, relatively easily.

For the method described in Chapter 5, we were constrained by the what pre-trained

embeddings for the SNOMED-CT coded diagnosis codes that were available, thereby leading

to the ‘<unk>’ showing up in Figure 5.8. Future work would focus on using more compre-

hensive embedding space that covers the breadth of diagnosis codes such that we are able

to capture all possible conditions that might lead to pre-disposition to Long COVID.
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