
Swift Securities Analyzer: A Deeper Look into Settlement Failures using Java Spring Boot

and Python

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Rithwik Raman

Fall 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Swift Securities Analyzer: A Deeper Look into Settlement Failures
using Java Spring Boot and Python

CS4991 Capstone Report, 2024

Rithwik Raman

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

xak7jw@virginia.edu

ABSTRACT
Failures in securities settlements often occur
because banks do not consistently adhere to
Swift's recommended practices for using
Securities View messaging. Analysis was
needed to see how the banks are using these
messages, which involved developing a Java
Spring boot RESTful application to read in and
parse daily securities messages. I then created
a Python analyzer tool to read the data and
visualize the findings. The project provided
Swift's Securities View team with automated
tools to analyze MT537 messages, identifying
compliance gaps and patterns that contribute
to settlement failures, ultimately enhancing
transparency and adherence to guidelines
while reducing delays and costs. This project
can be expanded to using machine learning to
predict and catch settlement failures before
they happen.

1. INTRODUCTION
Settlement failures in the securities market are
a pressing issue for financial institutions
worldwide, as they pose risks to market
stability and can cause increasing operational
costs. Swift, a global leader in secure financial
messaging, handles over 1.7 million securities
messages daily. Despite stringent standards
and practices, these settlements often fail due
to non-compliance, miscommunication, and
operational errors, resulting in delayed trade
settlement and large monetary penalties.

To identify and mitigate settlement failures, it
is crucial to understand the intricacies of Swift
messages—specifically, the MT537 message
used in handling penalties transactions. I
analyzed how banks use these Swift MT537
messages and utilized a standalone Java
Spring Boot RESTful application to ensure
that Swift-recommended practices are being
adhered to. This application parses, processes,
and extracts key information from MT537
messages, and a separate Python analyzer
extracts insights from the message data
providing the Swift Securities team a deeper
understanding of how financial institutions are
using the MT537 message.

Enhancing the visibility into settlement
practices empowers banks to adhere more
closely to Swift’s guidelines, potentially
reducing the frequency and impact of
settlement failures. My solution also sets the
stage for future machine learning ventures to
predict and prevent failures from happening
altogether.

2. RELATED WORKS
The analysis and prediction of settlement
failures have garnered increasing attention
among financial institutions. A key example of
this is the collaboration between BNY Mellon,
a multinational financial services company,
and Google Cloud, to use artificial intelligence
and machine learning to predict settlement
failures in the US Treasury. According to

Reuters (2021), the technology uses historical
data and advanced modeling to analyze
various factors like supply/demand, trading
velocity, and counterparty activity. It can
predict up to 40% of certain settlements
failures with an accuracy of 90%. This
partnership highlights a key example of using
AI and cutting-edge technology to solve
complex financial problems.

To gain a better understanding of usage of the
Swift MT537 message among financial
institutions, Swift released documentation that
specifies the exact structure of the message
and all the recommended/optional fields.
According to the MT537 scope, the MT537
message is sent by an account servicer to an
account owner to provide updates on the
applicable penalties for late securities
settlements (Swift, 2024). The documentation
contains the specific syntactical formats for all
the fields and includes various specifications
for different usage scenarios. The complete
Swift message is written in the “MT” format,
which is Swift’s proprietary messaging
schema. Understanding the complexity of
these messages is a key step in my
development of the Java application that
parses and extracts information from these
messages.

3. PROJECT DESIGN
The development of the securities analyzer
application was a result of the Swift Securities
View team need to gain insights into how
banks are using MT537 messages—almost
two million of these are sent daily. This section
provides a detailed overview of the system
architecture, the client needs, and the
challenges encountered during the
development process.

3.1 System Architecture
The overall system architecture for the Swift
Securities Analyzer consists of two key
components: a Java Spring Boot REST API
and a Python analytics tool. The Java Spring

Boot application handles message ingestion,
parsing, and data extraction, while the Python
tool focuses on processing the extracted data
and generating visual insights.

The first step in the process is for the Java
Spring Boot REST API controller to receive
the raw MT537 messages in their original
“MT” format, which is the Swift-proprietary
message format. Once the message is received,
it undergoes conversion from MT to MX
format, which is XML-based and easier to
work with programmatically. This conversion
is performed using an in-house tool developed
specifically for transforming MT messages
into XML.

An XPath expression is applied to extract
relevant fields. XPath allows for precise
navigation and parsing through the XML
structure, enabling the extraction of key
information such as penalties, transaction
details and settlement data. This extracted
information is then compiled into a JSON
object, which serves as the final output of the
Java application. Each JSON object is then
appended to log files for further analysis.

The next component is the Python analytics
tool, which reads the log files containing all
the individual JSON outputs generated by the
Java application. The primary role of this tool
is to check for the occurrence of Swift-
recommended fields within each message. By
analyzing the extracted data, the tool assesses
how closely banks adhere to Swift’s
guidelines. Finally, the Python tool produces a
visualization that shows the percentage of
recommended fields being used by each
institution. This visualization is crucial for
providing Swift’s Securities View team with
actionable insights to inform future decision-
making.

3.2 Client Needs
The primary client for this project is Swift’s
in-house Securities View team, as they needed

a system that would analyze the usage of the
MT537 message. The end product is the
Python-based visualization that provides a
clear indication of which recommended
message fields are repeatedly being under-
utilized.

3.3 System Limitations
One of the primary limitations encountered
during the development process was the lack
of access to production data. Due to the
sensitive nature of financial messaging, no
real-world MT537 messages were available
for testing purposes. As a result, all test cases
had to be hand-crafted, which required
extensive research into the structure and
syntax of the MT537 message format. This
created an additional layer of complexity, as I
needed to ensure that the test cases covered a
wide range of potential scenarios and edge
cases.

Another challenge was the intricacy of Swift’s
messaging system itself. The MT537 message
format is highly structured and includes a wide
array of mandatory, optional, and conditional
fields. This complexity meant that even small
mistakes in the parsing logic could lead to
incorrect data extraction or missed fields.

3.4 Key Components
This section provides a breakdown of the Swift
Securities Analyzer’s main functionalities,
specifications, challenges, and solutions; these
components highlight the system’s
architecture, designed to provide meaningful
insights despite limitations to data access.

3.4.1 Specifications
The project specifications were loosely
defined, with the main goal simply to provide
insights into customer adherence to Swift’s
recommended practices. The only
specification was that the analyzer must be a
Java-based application, as the bulk of the
team’s existing backend functionality is
written in Java. The key deliverable was the

visualization, which clearly showed how the
banks were using the MT537 message fields in
their transactions.

3.4.2 Challenges
The most significant challenge was the lack of
production data for testing, which made it
tedious to validate the accuracy of the solution
against real-world scenarios. In addition, there
was a steep learning curve associated with
learning the ins and outs of Swift’s messaging
format when testing functionality of the MT-
XML conversion and the XML field extraction
steps.

3.4.3 Solutions
To address the lack of production data, I
created a series of test cases designed to mimic
real-world MT537 messages. By studying
Swift’s documentation, I was able to construct
a variety of messages that included both
common and edge-case scenarios, ensuring
that the Java application would handle a wide
range of inputs.

Finally, containerizing the entire system using
Docker significantly streamlined the
packaging and deployment process. By
encapsulating all the components within a
single Docker container, I was able to
efficiently ship my application to the
Securities View team for testing and review.

4. ANTICIPATED RESULTS
The anticipated results revolve around
providing the Swift Securities View team with
valuable insights into how financial
institutions are using MT537 messages. By
analyzing the data, this project delivered a
clearer picture of which institutions adhere to
Swift's recommended practices, and identified
patterns that could lead to settlement failures.
The expected outcomes include increased
transparency into the settlement process and
improved adherence to Swift guidelines by
banks.

The Java Spring Boot application, along with
the Python analyzer, significantly reduce the
manual effort required to review and analyze
the MT537 messages. By automating the
extraction of key fields and visualizing their
usage, the system enables Swift’s Securities
View team to quickly identify problematic
trends or compliance gaps. For example, the
team will be able to see if certain banks
consistently omit critical fields, allowing them
to address the issues more proactively. This
will also help in reducing the frequency of
settlement failures, which could avoid
penalties and delays, saving financial
institutions both time and money.

5. CONCLUSION
The Swift Securities Analyzer project is
important because it offers a streamlined and
automated way to assess how banks are
adhering to Swift’s MT537 message
guidelines for securities settlements. With the
global impact of settlement failures, this tool
provides much-needed transparency, allowing
Swift’s Securities View team to monitor
message usage closely and identify any gaps
that could lead to settlement issues. By
parsing, analyzing and visualizing MT537
message data, the analyzer empowers Swift
and its clients with actionable insights,
ultimately promoting more consistent
compliance and reducing operational risk.

By integrating Java Spring Boot for data
parsing and Python for visualization, this
project brings together the best of both
languages in a neat and robust solution. As
Swift and other financial institutions continue
to automate compliance and improve message
accuracy, the analyzer’s insights will be
increasingly valuable, supporting operational
efficiency, regulatory adherence and reduced
financial penalties in the securities market.

6. FUTURE WORK
This project can be expanded to utilizing real-
time data to refine its accuracy and ensure full

compatibility with a wide range of MT537
message scenarios. With access to actual data,
the system could further identify more
nuanced patterns of MT537 messages, which
would in turn enhance the predictive value of
its analysis. Additionally, machine learning
algorithms could be used to proactively detect
settlement failures before they actually occur,
allowing financial institutions to address
potential issues before they escalate.

This analyzer could also be adapted to other
Swift message types outside of MT537
messages. Further product enhancements
could involve more sophisticated data
visualizations or a user-friendly dashboard for
the Swift team, allowing them to monitor
trends in real-time. Such upgrades could
extend the value of the analyzer to additional
departments within Swift, improving
transparency and efficiency across different
financial operations.

7. ACKNOWLEDGMENTS
I would like to acknowledge my mentors,
Venkata Mylavarpu and Sumanth Dachepally,
and the rest of the Swift Securities View team
for their invaluable guidance and support
throughout the project.

REFERENCES
Reuters. (2021, February 4). BNY Mellon,

Google Cloud technology to predict
Treasury settlement failures. Reuters.
https://www.reuters.com/article/technolog
y/bny-mellon-google-cloud-technology-
to-predict-treasury-settlement-failures-
idUSKBN2A42GO/

Swift ISO 20022. (2024).| ISO20022.

ISO20022.
https://www.iso20022.org/15022/uhb/fin
mt537.htm

